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APPROXIMATION BOUNDS FOR QUADRATIC OPTIMIZATION
WITH HOMOGENEOUS QUADRATIC CONSTRAINTS∗
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Abstract. We consider the NP-hard problem of finding a minimum norm vector in n-dimensional
real or complex Euclidean space, subject to m concave homogeneous quadratic constraints. We show
that a semidefinite programming (SDP) relaxation for this nonconvex quadratically constrained
quadratic program (QP) provides an O(m2) approximation in the real case and an O(m) approxi-
mation in the complex case. Moreover, we show that these bounds are tight up to a constant factor.
When the Hessian of each constraint function is of rank 1 (namely, outer products of some given
so-called steering vectors) and the phase spread of the entries of these steering vectors are bounded
away from π/2, we establish a certain “constant factor” approximation (depending on the phase
spread but independent of m and n) for both the SDP relaxation and a convex QP restriction of the
original NP-hard problem. Finally, we consider a related problem of finding a maximum norm vector
subject to m convex homogeneous quadratic constraints. We show that an SDP relaxation for this
nonconvex QP provides an O(1/ ln(m)) approximation, which is analogous to a result of Nemirovski
et al. [Math. Program., 86 (1999), pp. 463–473] for the real case.
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1. Introduction. Consider the quadratic optimization problem with concave
homogeneous quadratic constraints:

υ
qp := min ‖z‖2

subject to (s.t.)
∑
�∈Ii

|hH
� z|2 ≥ 1, i = 1, . . . ,m,

z ∈ F
n,

(1)

where F is either R or C, ‖ · ‖ denotes the Euclidean norm in F
n, m ≥ 1, each h�

is a given vector in F
n, and I1, . . . , Im are nonempty, mutually disjoint index sets

satisfying I1 ∪ · · · ∪ Im = {1, . . . ,M}. Throughout, the superscript H will denote
the complex Hermitian transpose, i.e., for z = x + iy, where x, y ∈ R

n and i2 = −1,
zH = xT − iyT . Geometrically, problem (1) corresponds to finding a least norm vector
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in a region defined by the intersection of the exteriors of m cocentered ellipsoids. If
the vectors h1, . . . , hM are linearly independent, then M equals the sum of the ranks
of the matrices defining these m ellipsoids. Notice that the problem (1) is easily solved
for the case of n = 1, so we assume n ≥ 2.

We assume that
∑

�∈Ii
‖h�‖ �= 0 for all i, which is clearly a necessary condition for

(1) to be feasible. This is also a sufficient condition (since
⋃m

i=1{z |
∑

�∈Ii
|hH

� z|2 = 0}
is a finite union of proper subspaces of F

n, so its complement is nonempty and any
point in its complement can be scaled to be feasible for (1)). Thus, problem (1)
always has an optimal solution (not unique) since its objective function is coercive
and continuous, and its feasible set is nonempty and closed. Notice, however, that
the feasible set of (1) is typically nonconvex and disconnected, with an exponential
number of connected components exhibiting little symmetry. This is in contrast to
the quadratic problems with convex feasible set but nonconvex objective function
considered in [13, 14, 22]. Furthermore, unlike the class of quadratic problems studied
in [1, 7, 8, 15, 16, 21, 23, 24, 25, 26], the constraint functions in (1) do not depend on
z2
1 , . . . , z

2
n only.

Our interest in the nonconvex quadratic program (QP) (1) is motivated by the
transmit beamforming problem for multicasting applications [20] and by the wireless
sensor network localization problem [6]. In the transmit beamforming problem, a
transmitter utilizes an array of n transmitting antennas to broadcast information
within its service area to m radio receivers, with receiver i ∈ {1, . . . ,m} equipped
with |Ii| receiving antennas. Let h�, � ∈ Ii, denote the n× 1 complex steering vector
modeling propagation loss and phase shift from the transmitting antennas to the
�th receiving antenna of receiver i. Assuming that each receiver performs spatially
matched filtering/maximum ratio combining, which is the optimal combining strategy
under standard mild assumptions, then the constraint∑

�∈Ii

|hH
� z|2 ≥ 1

models the requirement that the total received signal power at receiver i must be
above a given threshold (normalized to 1). This constraint is also equivalent to a
signal-to-noise ratio (SNR) condition commonly used in data communication. Thus,
to minimize the total transmit power subject to individual SNR requirements (one at
each receiver), we are led to the QP (1). In the special case where each radio receiver
is equipped with a single receiving antenna, the problem reduces to [20]

min ‖z‖2

s.t. |hH
� z|2 ≥ 1, � = 1, . . . ,m,

z ∈ F
n.

(2)

This problem is a special case of (1), whereby each ellipsoid lies in F
n and the corre-

sponding matrix has rank 1.
In this paper, we first show that the nonconvex QP (2) is NP-hard in either the real

or the complex case, which further implies the NP-hardness of the general problem
(1). Then, we consider a semidefinite programming (SDP) relaxation of (1) and a
convex QP restriction of (2) and study their worst-case performance. In particular,
let υsdp, υcqp, and υqp denote the optimal values of the SDP relaxation, the convex QP
restriction, and the original QP (1), respectively. We establish a performance ratio of
υqp/υsdp = O(m2) for the SDP relaxation in the real case, and we give an example
showing that this bound is tight up to a constant factor. Similarly, we establish a
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performance ratio of υqp/υsdp = O(m) in the complex case, and we give an example
showing the tightness of this bound. We further show that in the case when the
phase spread of the entries of h1, . . . , hM is bounded away from π/2, the performance
ratios υqp/υsdp and υcqp/υqp for the SDP relaxation and the convex QP restriction,
respectively, are independent of m and n.

In recent years, there have been extensive studies of the performance of SDP re-
laxations for nonconvex QP. However, to our knowledge, this is the first performance
analysis of SDP relaxation for QP with concave quadratic constraints. Our proof tech-
niques also extend to a maximization version of the QP (1) with convex homogeneous
quadratic constraints. In particular, we give a simple proof of a result analogous to
one of Nemirovski et al. [14] (also see [13, Theorem 4.7]) for the real case, namely, the
SDP relaxation for this nonconvex QP has a performance ratio of O(1/ ln(m)).

2. NP-hardness. In this section, we show that the nonconvex QP (1) is NP-
hard in general. First, we notice that, by a linear transformation if necessary, the
problem

minimize zHQz
s.t. |z�| ≥ 1, � = 1, . . . , n,

z ∈ F
n,

(3)

is a special case of (1), where Q ∈ F
n×n is a Hermitian positive definite matrix (i.e.,

Q � 0), and z� denotes the �th component of z. Hence, it suffices to establish the NP-
hardness of (3). To this end, we consider a reduction from the NP-complete partition
problem: Given positive integers a1, a2, . . . , aN , decide whether there exists a subset
I of {1, . . . , N} satisfying

∑
�∈I

a� =
1

2

N∑
�=1

a�.(4)

Our reductions differ for the real and complex cases. As will be seen, the NP-hardness
proof in the complex case1 is more intricate than in the real case.

2.1. The real case. We consider the real case of F = R. Let n := N and

a := (a1, . . . , aN )T ,

Q := aaT + In � 0,

where In denotes the n× n identity matrix.
We show that a subset I satisfying (4) exists if and only if the optimization

problem (3) has a minimum value of n. Since

zTQz = |aT z|2 +

n∑
�=1

|z�|2 ≥ n whenever |z�| ≥ 1 ∀ �, z ∈ R
n,

we see that (3) has a minimum value of n if and only if there exists a z ∈ R
n satisfying

aT z = 0, |z�| = 1 ∀ �.

The above condition is equivalent to the existence of a subset I satisfying (4), with
the correspondence I = {� | z� = 1}. This completes the proof.

1This NP-hardness proof was first presented in an appendix of [20] and is included here for
completeness; also see [26, Proposition 3.5] for a related proof.
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2.2. The complex case. We consider the complex case of F = C. Let n :=
2N + 1 and

a := (a1, . . . , aN )T ,

A :=

(
IN IN −eN
aT 0TN − 1

2a
T eN

)
,

Q := ATA + In � 0,

where eN denotes the N -dimensional vector of ones, 0N denotes the N -dimensional
vector of zeros, and In and IN are identity matrices of sizes n × n and N × N ,
respectively.

We show that a subset I satisfying (4) exists if and only if the optimization
problem (3) has a minimum value of n. Since

zHQz = ‖Az‖2 +

n∑
�=1

|z�|2 ≥ n whenever |z�| ≥ 1 ∀ �, z ∈ C
n,

we see that (3) has a minimum value of n if and only if there exists a z ∈ C
n satisfying

Az = 0, |z�| = 1 ∀ �.

Expanding Az = 0 gives the following set of linear equations:

0 = z� + zN+� − zn, � = 1, . . . , N,(5)

0 =
N∑
�=1

a�z� −
1

2

(
N∑
�=1

a�

)
zn.(6)

For � = 1, . . . , 2N , since |z�| = |zn| = 1 so that z�/zn = eiθ� for some θ� ∈ [0, 2π), we
can rewrite (5) as

cos θ� + cos θN+� = 1,
sin θ� + sin θN+� = 0,

� = 1, . . . , N.

These equations imply that θ� ∈ {−π/3, π/3} for all � �= n. In fact, these equations
further imply that cos θ� = cos θN+� = 1/2 for � = 1, . . . , N , so that

Re

(
N∑
�=1

a�
z�
zn

− 1

2

(
N∑
�=1

a�

))
= 0.

Therefore, (6) is satisfied if and only if

Im

(
N∑
�=1

a�
z�
zn

− 1

2

(
N∑
�=1

a�

))
= Im

(
N∑
�=1

a�
z�
zn

)
= 0,

which is further equivalent to the existence of a subset I satisfying (4), with the
correspondence I = {� | θ� = π/3}. This completes the proof.
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3. Performance analysis of SDP relaxation. In this section, we study the
performance of an SDP relaxation of (2). Let

Hi :=
∑
�∈Ii

h�h
H
� , i = 1, . . . ,m.

The well-known SDP relaxation of (1) [11, 19] is

υ
sdp

:= min Tr(Z)

s.t. Tr(HiZ) ≥ 1, i = 1, . . . ,m,

Z 	 0, Z ∈ F
n×n is Hermitian.

(7)

An optimal solution of the SDP relaxation (7) can be computed efficiently using, say,
interior-point methods; see [18] and references therein.

Clearly υ
sdp

≤ υ
qp

. We are interested in upper bounds for the relaxation perfor-
mance of the form

υ
qp

≤ Cυ
sdp

,

where C ≥ 1. Since we assume Hi �= 0 for all i, it is easily checked that (7) has an
optimal solution, which we denote by Z∗.

3.1. General steering vectors: The real case. We consider the real case of
F = R. Upon obtaining an optimal solution Z∗ of (7), we construct a feasible solution
of (1) using the following randomization procedure:

1. Generate a random vector ξ ∈ R
n from the real-valued normal distribution

N(0, Z∗).

2. Let z∗(ξ) = ξ/min1≤i≤m

√
ξTHiξ.

We will use z∗(ξ) to analyze the performance of the SDP relaxation. Similar proce-
dures have been used for related problems [1, 3, 4, 5, 14]. First, we need to develop
two lemmas. The first lemma estimates the left-tail of the distribution of a convex
quadratic form of a Gaussian random vector.

Lemma 1. Let H ∈ R
n×n, Z ∈ R

n×n be two symmetric positive semidefinite
matrices (i.e., H 	 0, Z 	 0). Suppose ξ ∈ R

n is a random vector generated from the
real-valued normal distribution N(0, Z). Then, for any γ > 0,

Prob
(
ξTHξ < γE(ξTHξ)

)
≤ max

{
√
γ,

2(r̄ − 1)γ

π − 2

}
,(8)

where r̄ := min{rank(H), rank(Z)}.
Proof. Since the covariance matrix Z 	 0 has rank r := rank(Z), we can write

Z = UUT , for some U ∈ R
n×r satisfying UTZU = Ir. Let ξ̄ := QTUT ξ ∈ R

r, where
Q ∈ R

r×r is an orthogonal matrix corresponding to the eigen-decomposition of the
matrix

UTHU = QΛQT

for some diagonal matrix Λ = diag{λ1, λ2, . . . , λr} with λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0.
Since UTHU has rank at most r̄, we have λi = 0 for all i > r̄. It is readily checked
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that ξ̄ has the normal distribution N(0, Ir). Moreover, ξ is statistically identical to
UQξ̄, so that ξTHξ is statistically identical to

ξ̄TQTUTHUQξ̄ = ξ̄TΛξ̄ =

r̄∑
i=1

λi|ξ̄i|2.

Then we have

Prob
(
ξTHξ < γE(ξTHξ)

)
= Prob

(
r̄∑

i=1

λi|ξ̄i|2 < γE

(
r̄∑

i=1

λi|ξ̄i|2
))

= Prob

(
r̄∑

i=1

λi|ξ̄i|2 < γ

r̄∑
i=1

λi

)
.

If λ1 = 0, then this probability is zero, which proves (8). Thus, we will assume that
λ1 > 0. Let λ̄i := λi/(λ1 + · · · + λr̄) for i = 1, . . . , r̄. Clearly, we have

λ̄1 + · · · + λ̄r̄ = 1, λ̄1 ≥ λ̄2 ≥ · · · ≥ λ̄r̄ ≥ 0.

We consider two cases. First, suppose λ̄1 ≥ α, where 0 < α < 1. Then, we can
bound the above probability as follows:

Prob
(
ξTHξ < γE(ξTHξ)

)
= Prob

(
r̄∑

i=1

λ̄i|ξ̄i|2 < γ

)

≤ Prob
(
λ̄1|ξ̄1|2 < γ

)
≤ Prob

(
|ξ̄1|2 < γ/α

)
(9)

≤
√

2γ

πα
,

where the last step is due to the fact that ξ̄1 is a real-valued zero mean Gaussian
random variable with unit variance.

In the second case, we have λ̄1 < α, so that

λ̄2 + · · · + λ̄r̄ = 1 − λ̄1 > 1 − α.

This further implies (r̄ − 1)λ̄2 ≥ λ̄2 + · · · + λ̄r̄ > 1 − α. Hence

λ̄1 ≥ λ̄2 >
1 − α

r̄ − 1
.

Using this bound, we obtain the following probability estimate:

Prob
(
ξTHξ < γE(ξTHξ)

)
= Prob

(
r̄∑

i=1

λ̄i|ξ̄i|2 < γ

)

≤ Prob
(
λ̄1|ξ̄1|2 < γ, λ̄2|ξ̄2|2 < γ

)
= Prob

(
λ̄1|ξ̄1|2 < γ

)
· Prob

(
λ̄2|ξ̄2|2 < γ

)
(10)

≤
√

2γ

πλ̄1
·
√

2γ

πλ̄2

≤ 2(r̄ − 1)γ

π(1 − α)
.
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Combining the estimates for the above two cases and setting α = 2/π, we immediately
obtain the desired bound (8).

Lemma 2. Let F = R. Let Z∗ 	 0 be a feasible solution of (7) and let z∗(ξ) be
generated by the randomization procedure described earlier. Then, with probability 1,
z∗(ξ) is well defined and feasible for (1). Moreover, for every γ > 0 and μ > 0,

Prob

(
min

1≤i≤m
ξTHiξ ≥ γ, ‖ξ‖2 ≤ μTr(Z∗)

)
≥ 1 −m · max

{
√
γ,

2(r − 1)γ

π − 2

}
− 1

μ
,

(11)

where r := rank(Z∗).
Proof. Since Z∗ 	 0 is feasible for (7), it follows that Tr(HiZ

∗) ≥ 1 for all
i = 1, . . . ,m. Since E(ξTHiξ) = Tr(HiZ

∗) ≥ 1 and the density of ξTHiξ is absolutely
continuous, the probability of ξTHiξ = 0 is zero, implying that z∗(ξ) is well defined
with probability 1. The feasibility of z∗(ξ) is easily verified.

To prove (11), we first note that E(ξξT ) = Z∗. Thus, for any γ > 0 and μ > 0,

Prob

(
min

1≤i≤m
ξTHiξ ≥ γ, ‖ξ‖2 ≤ μTr(Z∗)

)
= Prob

(
ξTHiξ ≥ γ ∀ i = 1, . . . ,m and ‖ξ‖2 ≤ μTr(Z∗)

)
≥ Prob

(
ξTHiξ ≥ γTr(HiZ

∗) ∀ i = 1, . . . ,m and ‖ξ‖2 ≤ μTr(Z∗)
)

= Prob
(
ξTHiξ ≥ γE(ξTHiξ) ∀ i = 1, . . . ,m and ‖ξ‖2 ≤ μE(‖ξ‖2)

)
= 1 − Prob

(
ξTHiξ < γE(ξTHiξ) for some i or ‖ξ‖2 > μE(‖ξ‖2)

)
≥ 1 −

m∑
i=1

Prob
(
ξTHiξ < γE(ξTHiξ)

)
− Prob

(
‖ξ‖2 > μE(‖ξ‖2)

)

> 1 −m · max

{
√
γ,

2(r − 1)γ

π − 2

}
− 1

μ
,

where the last step uses Lemma 1 as well as Markov’s inequality:

Prob
(
‖ξ‖2 > μE(‖ξ‖2)

)
≤ 1

μ
.

This completes the proof.
We now use Lemma 2 to bound the performance of the SDP relaxation.
Theorem 1. Let F = R. For the QP (1) and its SDP relaxation (7), we have

υqp = υsdp if m ≤ 2, and otherwise

υqp ≤ 27m2

π
υsdp.

Proof. By applying a suitable rank reduction procedure if necessary, we can
assume that the rank r of the optimal SDP solution Z∗ satisfies r(r + 1)/2 ≤ m; see,
e.g., [17]. Thus r <

√
2m. If m ≤ 2, then r = 1, implying that Z∗ = z∗(z∗)T for

some z∗ ∈ R
n, and it is readily seen that z∗ is an optimal solution of (1), so that

υqp = υsdp. Otherwise, we apply the randomization procedure to Z∗. We also choose

μ = 3, γ =
π

4m2

(
1 − 1

μ

)2

=
π

9m2
.
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Then, it is easily verified using r <
√

2m that

√
γ ≥ 2(r − 1)γ

π − 2
∀ m = 1, 2, . . . .

Plugging these choices of γ and μ into (11), we see that there is a positive probability
(independent of problem size) of at least

1 −m
√
γ − 1

μ
= 1 −

√
π

3
− 1

3
= 0.0758 . . .

that ξ generated by the randomization procedure satisfies

min
1≤i≤m

ξTHiξ ≥ π

9m2
and ‖ξ‖2 ≤ 3 Tr(Z∗).

Let ξ be any vector satisfying these two conditions.2 Then, z∗(ξ) is feasible for (1),
so that

υqp ≤ ‖z∗(ξ)‖2 =
‖ξ‖2

mini ξTHiξ
≤ 3 Tr(Z∗)

(π/9m2)
=

27m2

π
υsdp,

where the last equality uses Tr(Z∗) = υsdp.
In the above proof, other choices of μ can also be used, but the resulting bound

seems not as sharp. Theorem 1 suggests that the worst-case performance of the SDP
relaxation deteriorates quadratically with the number of quadratic constraints. Below
we give an example demonstrating that this bound is in fact tight up to a constant
factor.

Example 1. For any m ≥ 2 and n ≥ 2, consider a special instance of (2),
corresponding to (1) with |Ii| = 1 (i.e., each Hi has rank 1), whereby

h� =

(
cos

(
�π

m

)
, sin

(
�π

m

)
, 0, . . . , 0

)T

, � = 1, . . . ,m.

Let z∗ = (z∗1 , . . . , z
∗
n)T ∈ R

n be an optimal solution of (2) corresponding to the above
choice of steering vectors h�. We can write

(z∗1 , z
∗
2) = ρ(cos θ, sin θ) for some θ ∈ [0, 2π).

Since {�π/m, � = 1, . . . ,m} is uniformly spaced on [0, π), there must exist an integer
� such that

either

∣∣∣∣θ − �π

m
− π

2

∣∣∣∣ ≤ π

2m
or

∣∣∣∣θ − �π

m
+

π

2

∣∣∣∣ ≤ π

2m
.

For simplicity, we assume the first case. (The second case can be treated similarly.)
Since the last (n− 2) entries of h� are zero, it is readily checked that

|hT
� z

∗| = ρ

∣∣∣∣cos

(
θ − �π

m

)∣∣∣∣ = ρ

∣∣∣∣sin
(
θ − �π

m
− π

2

)∣∣∣∣ ≤ ρ
∣∣∣sin( π

2m

)∣∣∣ ≤ ρπ

2m
.

2The probability that no such ξ is generated after N independent trials is at most (1−0.0758..)N ,
which for N = 100 equals 0.000375.. Thus, such ξ requires relatively few trials to generate.
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Since z∗ satisfies the constraint |hT
� z

∗| ≥ 1, it follows that

‖z∗‖ ≥ ρ ≥ 2m|hT
� z

∗|
π

≥ 2m

π
,

implying

υqp = ‖z∗‖2 ≥ 4m2

π2
.

On the other hand, the positive semidefinite matrix

Z∗ = diag{1, 1, 0, . . . , 0}

is feasible for the SDP relaxation (7), and it has an objective value of Tr(Z∗) = 2.
Thus, for this instance, we have

υqp ≥ 2m2

π2
υsdp.

The preceding example and Theorem 1 show that the SDP relaxation (7) can
be weak if the number of quadratic constraints is large, especially when the steering
vectors h� are in a certain sense “uniformly distributed” in space.

3.2. General steering vectors: The complex case. We consider the complex
case of F = C. We will show that the performance ratio of the SDP relaxation (7)
improves to O(m) in the complex case (as opposed to O(m2) in the real case). Similar
to the real case, upon obtaining an optimal solution Z∗ of (7), we construct a feasible
solution of (1) using the following randomization procedure:

1. Generate a random vector ξ ∈ C
n from the complex-valued normal distri-

bution Nc(0, Z
∗) [2, 26].

2. Let z∗(ξ) = ξ/min1≤i≤m

√
ξHHiξ.

Most of the ensuing performance analysis is similar to that of the real case. In
particular, we will also need the following two lemmas analogous to Lemmas 1 and 2.

Lemma 3. Let H ∈ C
n×n, Z ∈ C

n×n be two Hermitian positive semidefinite
matrices (i.e., H 	 0, Z 	 0). Suppose ξ ∈ C

n is a random vector generated from the
complex-valued normal distribution Nc(0, Z). Then, for any γ > 0,

Prob
(
ξHHξ < γE(ξHHξ)

)
≤ max

{
4

3
γ, 16(r̄ − 1)2γ2

}
,(12)

where r̄ := min{rank(H), rank(Z)}.
Proof. We follow the same notations and proof as for Lemma 1, except for two

blanket changes:

matrix transpose → Hermitian transpose,
orthogonal matrix → unitary matrix.

Also, ξ̄ has the complex-valued normal distribution Nc(0, Ir). With these changes, we
consider the same two cases: λ̄1 ≥ α and λ̄1 < α, where 0 < α < 1. In the first case,
we have similar to (9) that

Prob
(
ξHHξ < γE(ξHHξ)

)
≤ Prob

(
|ξ̄1|2 < γ/α

)
.(13)
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Recall that the density function of a complex-valued circular normal random variable
u ∼ Nc(0, σ

2), where σ is the standard deviation, is

1

πσ2
e−

|u|2

σ2 ∀ u ∈ C.

In polar coordinates, the density function can be written as

f(ρ, θ) =
ρ

πσ2
e−

ρ2

σ2 ∀ ρ ∈ [0,+∞), θ ∈ [0, 2π).

In fact, a complex-valued normal distribution can be viewed as a joint distribution
of its modulus and its argument, with the following particular properties: (1) the
modulus and argument are independently distributed; (2) the argument is uniformly
distributed over [0, 2π); (3) the modulus follows a Weibull distribution with density

f(ρ) =

{
2ρ
σ2 e

− ρ2

σ2 if ρ ≥ 0;
0 if ρ < 0,

and distribution function

Prob {|u| ≤ t} = 1 − e−
t2

σ2 .(14)

Since ξ̄1 ∼ Nc(0, 1), substituting this into (13) yields

Prob
(
ξHHξ < γE(ξHHξ)

)
≤ Prob

(
|ξ̄1|2 < γ/α

)
≤ 1 − e−γ/α ≤ γ/α,

where the last inequality uses the convexity of the exponential function.
In the second case of λ̄1 < α, we have similar to (10) that

Prob
(
ξHHξ < γE(ξHHξ)

)
≤ Prob

(
λ̄1|ξ̄1|2 < γ

)
· Prob

(
λ̄2|ξ̄2|2 < γ

)
= (1 − e−γ/λ̄1)(1 − e−γ/λ̄2)

≤ γ2

λ̄1λ̄2

≤ (r̄ − 1)2γ2

(1 − α)2
,

where the last step uses the fact that λ̄1 ≥ λ̄2 ≥ (1 − α)/(r̄ − 1). Combining the
estimates for the above two cases and setting α = 3/4, we immediately obtain the
desired bound (12).

Lemma 4. Let F = C. Let Z∗ 	 0 be a feasible solution of (7) and let z∗(ξ) be
generated by the randomization procedure described earlier. Then, with probability 1,
z∗(ξ) is well defined and feasible for (1). Moreover, for every γ > 0 and μ > 0,

Prob

(
min

1≤i≤m
ξHHiξ ≥ γ, ‖ξ‖2 ≤ μTr(Z∗)

)
≥ 1 −m · max

{
4

3
γ, 16(r − 1)2γ2

}
− 1

μ
,

where r := rank(Z∗).
Proof. The proof is mostly the same as that for the real case (see Lemma 2). In

particular, for any γ > 0 and μ > 0, we still have

Prob

(
min

1≤i≤m
ξHHiξ ≥ γ, ‖ξ‖2 ≤ μTr(Z∗)

)

≥ 1 −
m∑
i=1

Prob
(
ξHHiξ < γE(ξHHiξ)

)
− Prob

(
‖ξ‖2 > μE(‖ξ‖2)

)
.
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Therefore, we can invoke Lemma 3 to obtain

Prob

(
min

1≤i≤m
ξHHiξ ≥ γ, ‖ξ‖2 ≤ μTr(Z∗)

)

≥ 1 −m · max

{
4

3
γ, 16(r − 1)2γ2

}
− Prob

(
‖ξ‖2 > μE(‖ξ‖2)

)
≥ 1 −m · max

{
4

3
γ, 16(r − 1)2γ2

}
− 1

μ
,

which completes the proof.
Theorem 2. Let F = C. For the QP (1) and its SDP relaxation (7), we have

vsdp = vqp if m ≤ 3 and otherwise

vqp ≤ 8m · vsdp.

Proof. By applying a suitable rank reduction procedure if necessary, we can
assume that the rank r of the optimal SDP solution Z∗ satisfies r = 1 if m ≤ 3 and
r ≤

√
m if m ≥ 4; see [9, section 5]. Thus, if m ≤ 3, then Z∗ = z∗(z∗)H for some

z∗ ∈ C
n and it is readily seen that z∗ is an optimal solution of (1), so that vsdp = vqp.

Otherwise, we apply the randomization procedure to Z∗. By choosing μ = 2 and
γ = 1

4m , it is easily verified using r ≤
√
m that

4

3
γ ≥ 16(r − 1)2γ2 ∀ m = 1, 2, . . . .

Therefore, it follows from Lemma 4 that

Prob

{
min

1≤i≤m
ξHHiξ ≥ γ, ‖ξ‖2 ≤ μTr(Z∗)

}
≥ 1 −m

4

3
γ − 1

μ
=

1

6
.

Then, similar to the proof of Theorem 1, we obtain that with probability of at least
1/6, z∗(ξ) is a feasible solution of (1) and vqp ≤ ‖z∗(ξ)‖2 ≤ 8m · vsdp.3

The proof of Theorem 2 shows that by repeating the randomization procedure,
the probability of generating a feasible solution with a performance ratio no more than
8m approaches 1 exponentially fast (independent of problem size). Alternatively, a
derandomization technique from theoretical computer science can perhaps convert the
above randomization procedure into a polynomial-time deterministic algorithm [12];
also see [14].

Theorem 2 shows that the worst-case performance of SDP relaxation deteriorates
linearly with the number of quadratic constraints. This contrasts with the quadratic
rate of deterioration in the real case (see Theorem 1). Thus, the SDP relaxation can
yield better performance in the complex case. This is in the same spirit as the recent
results in [26] which showed that the quality of SDP relaxation improves by a constant
factor for certain quadratic maximization problems when the space is changed from
R

n to C
n. Below we give an example demonstrating that this approximation bound

is tight up to a constant factor.
Example 2. For any m ≥ 2 and n ≥ 2, let K = �

√
m� (so K ≥ 2). Consider a

special instance of (2), corresponding to (1) with |Ii| = 1 (i.e., each Hi has rank 1),

3The probability that no such ξ is generated after N independent trials is at most (5/6)N , which
for N = 30 equals 0.00421.. Thus, such ξ requires relatively few trials to generate.
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whereby

h� =

(
cos

jπ

K
, sin

jπ

K
e

i2kπ
K , 0, . . . , 0

)T

with � = jK −K + k, j, k = 1, . . . ,K.

Hence there are K2 complex rank-1 constraints. Let z∗ = (z∗1 , . . . , z
∗
n)T ∈ C

n be an
optimal solution of (2) corresponding to the above choice of �

√
m�2 steering vectors

h�. By a phase rotation if necessary, we can without loss of generality assume that z∗1
is real and write

(z∗1 , z
∗
2) = ρ(cos θ, sin θeiψ) for some θ, ψ ∈ [0, 2π).

Since {2kπ/K, k = 1, . . . ,K} and {jπ/K, j = 1, . . . ,K} are uniformly spaced in
[0, 2π) and [0, π), respectively, there must exist integers j and k such that∣∣∣∣ψ − 2kπ

K

∣∣∣∣ ≤ π

K
and either

∣∣∣∣θ − jπ

K
− π

2

∣∣∣∣ ≤ π

2K
or

∣∣∣∣θ − jπ

K
+

π

2

∣∣∣∣ ≤ π

2K
.

Without loss of generality, we assume∣∣∣∣θ − jπ

K
− π

2

∣∣∣∣ ≤ π

2K
.

Since the last (n−2) entries of each h� are zero, it is readily seen that for � = jK−K+k,

∣∣Re(hH
� z∗)

∣∣ = ρ

∣∣∣∣cos θ cos
jπ

K
+ sin θ sin

jπ

K
cos

(
ψ − 2kπ

K

)∣∣∣∣
= ρ

∣∣∣∣cos

(
θ − jπ

K

)
+ sin θ sin

jπ

K

(
cos

(
ψ − 2kπ

K

)
− 1

)∣∣∣∣
= ρ

∣∣∣∣sin
(
θ − jπ

K
− π

2

)
− 2 sin θ sin

jπ

K
sin2

(
Kψ − 2kπ

2K

)∣∣∣∣
≤ ρ

∣∣∣sin π

2K

∣∣∣ + 2ρ sin2 π

2K

≤ ρπ

2K
+

ρπ2

2K2
.

In addition, we have

∣∣Im(hH
� z∗)

∣∣ = ρ

∣∣∣∣sin θ sin
jπ

K
sin

(
ψ − 2kπ

K

)∣∣∣∣
≤ ρ

∣∣∣∣sin
(
ψ − 2kπ

K

)∣∣∣∣
≤ ρ

∣∣∣∣ψ − 2kπ

K

∣∣∣∣ ≤ ρπ

K
.

Combining the above two bounds, we obtain

∣∣hH
� z∗

∣∣ ≤ ∣∣Re(hH
� z∗)

∣∣ +
∣∣Im(hH

� z∗)
∣∣ ≤ 3ρπ

2K
+

ρπ2

2K2
.

Since z∗ satisfies the constraint |hH
� z∗| ≥ 1, it follows that

‖z∗‖ ≥ ρ ≥ 2K2|hH
� z∗|

π(3K + π)
≥ 2K2

π(3K + π)
,



APPROXIMATION BOUNDS FOR QUADRATIC OPTIMIZATION 13

implying

υqp = ‖z∗‖2 ≥ 4K4

π2(3K + π)2
=

4�
√
m�4

π2(3�
√
m� + π)2

.

On the other hand, the positive semidefinite matrix

Z∗ = diag{1, 1, 0, . . . , 0}

is feasible for the SDP relaxation (7), and it has an objective value of Tr(Z∗) = 2.
Thus, for this instance, we have

υqp ≥ 2�
√
m�4

π2(3�
√
m� + π)2

υsdp ≥ 2m

π2(3 + π/2)2
υsdp.

The preceding example and Theorem 2 show that the SDP relaxation (7) can
be weak if the number of quadratic constraints is large, especially when the steering
vectors h� are in a certain sense uniformly distributed in space. In the next subsection,
we will tighten the approximation bound in Theorem 2 by considering special cases
where the steering vectors are not too spread out in space.

3.3. Specially configured steering vectors: The complex case. We con-
sider the complex case of F = C. Let Z∗ be any optimal solution of (7). Since Z∗ is
feasible for (7), Z∗ �= 0. Then

Z∗ =

r∑
k=1

wkw
H
k(15)

for some nonzero wk ∈ C
n, where r := rank(Z∗) ≥ 1. By decomposing wk = uk + vk,

with uk ∈ span{h1, . . . , hM} and vk ∈ span{h1, . . . , hM}⊥, it is easily checked that
Z̃ :=

∑r
k=1 uku

H
k is feasible for (7) and

〈I, Z∗〉 =

r∑
k=1

‖uk + vk‖2 =

r∑
k=1

(‖uk‖2 + ‖vk‖2) = 〈I, Z̃〉 +

r∑
k=1

‖vk‖2.

This implies vk = 0 for all k, so that

wk ∈ span{h1, . . . , hM}.(16)

Below we show that the SDP relaxation (7) provides a constant factor approxi-
mation to the QP (1) when the phase spread of the entries of h� is bounded away
from π/2.

Theorem 3. Suppose that

h� =

p∑
i=1

βi�gi ∀ � = 1, . . . ,M(17)

for some p ≥ 1, βi� ∈ C, and gi ∈ C
n such that ‖gi‖ = 1 and gHi gj = 0 for all i �= j.

Then the following results hold:
(a) If Re(βH

i� βj�) > 0 whenever βH
i� βj� �= 0, then υ

qp
≤ Cυ

sdp
, where

C := max
i,j,� | βH

i�βj� �=0

(
1 +

|Im(βH
i� βj�)|2

|Re(βH
i� βj�)|2

)1/2

.(18)
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(b) If βi� = |βi�|eiφi� , where

φi� ∈ [φ̄� − φ, φ̄� + φ] ∀ i, � for some 0 ≤ φ <
π

4
and some φ̄� ∈ R,(19)

then Re(βH
i� βj�) > 0 whenever βH

i� βj� �= 0, and C given by (18) satisfies

C ≤ 1

cos(2φ)
.(20)

Proof. (a) By (16), we have wk =
∑p

i=1 αkigi for some αki ∈ C. This together
with (15) yields

〈I, Z∗〉 =

r∑
k=1

‖wk‖2 =

r∑
k=1

∥∥∥∥∥
p∑

i=1

αkigi

∥∥∥∥∥
2

=

r∑
k=1

p∑
i=1

|αki|2 =

p∑
i=1

λ2
i ,

where the third equality uses the orthonormal properties of g1, . . . , gp, and the last

equality uses λi :=
(∑r

k=1 |αki|2
)1/2

= ‖(αki)
r
k=1‖.

Let z∗ :=
∑p

i=1 λigi. Then, the orthonormal properties of g1, . . . , gp yield

‖z∗‖2 =

∥∥∥∥∥
p∑

i=1

λigi

∥∥∥∥∥
2

=

p∑
i=1

λ2
i = 〈I, Z∗〉 = υ

sdp
.(21)

Moreover, for each � ∈ {1, . . . ,M}, we obtain from (15) that

〈h�h
H
� , Z∗〉 =

r∑
k=1

〈h�h
H
� , wkw

H
k 〉 =

r∑
k=1

|hH
� wk|2

=

r∑
k=1

∣∣∣∣∣
p∑

i=1

αkih
H
� gi

∣∣∣∣∣
2

=

r∑
k=1

∣∣∣∣∣
p∑

i=1

αkiβi�

∣∣∣∣∣
2

= Re

⎛
⎝ r∑

k=1

p∑
i=1

p∑
j=1

αH
kiαkjβ

H
i� βj�

⎞
⎠ = Re

⎛
⎝ p∑

i=1

p∑
j=1

βH
i� βj�

r∑
k=1

αH
kiαkj

⎞
⎠

=

p∑
i=1

p∑
j=1

Re

(
βH
i� βj�

r∑
k=1

αH
kiαkj

)

≤
p∑

i=1

p∑
j=1

∣∣βH
i� βj�

∣∣ ∣∣∣∣∣
r∑

k=1

αH
kiαkj

∣∣∣∣∣ ≤
p∑

i=1

p∑
j=1

∣∣βH
i� βj�

∣∣ ‖(αki)
r
k=1‖‖(αkj)

r
k=1‖

=

p∑
i=1

p∑
j=1

∣∣βH
i� βj�

∣∣λiλj ,
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where the fourth equality uses (17) and the orthonormal properties of g1, . . . , gp; the
last inequality is due to the Cauchy–Schwarz inequality. Then, it follows that

〈h�h
H
� , Z∗〉 ≤

p∑
i=1

p∑
j=1

(
|Re(βH

i� βj�)|2 + |Im(βH
i� βj�)|2

)1/2
λiλj

=

p∑
i=1

p∑
j=1

∣∣Re(βH
i� βj�)

∣∣ (1 +
|Im(βH

i� βj�)|2
|Re(βH

i� βj�)|2

)1/2

λiλj

≤
p∑

i=1

p∑
j=1

∣∣Re(βH
i� βj�)

∣∣Cλiλj

=

p∑
i=1

p∑
j=1

Re(βH
i� βj�)Cλiλj ,

where the summation in the second step is taken over i, j with βH
i� βj� �= 0, the third

step is due to (18), and the last step is due to the assumption that Re(βH
i� βj�) > 0

whenever βH
i� βj� �= 0. Also, we have from (17) and the orthonormal properties of

g1, . . . , gp that

|hH
� z∗|2 =

∥∥∥∥∥
p∑

i=1

λih
H
� gi

∥∥∥∥∥
2

=

∥∥∥∥∥
p∑

i=1

λiβi�

∥∥∥∥∥
2

=

p∑
i=1

p∑
j=1

λiλjRe(βH
i� βj�).

Comparing the above two displayed equations, we see that

〈h�h
H
� , Z∗〉 ≤ C|hH

� z∗|2, � = 1, . . . ,M.

Since Z∗ is feasible for (7), this shows that
√
Cz∗ is feasible for (1), which further

implies

υqp ≤
∥∥∥√Cz∗

∥∥∥2

= C‖z∗‖2 = Cυsdp.

This proves the desired result.
(b) The condition (19) implies that |φi� − φj�| ≤ 2φ < π/2. In other words, the

phase angle spread of the entries of each β� = (β1�, β2�, . . . , βn�)
T is no more than 2φ.

This further implies that

cos(φi� − φj�) ≥ cos(2φ) ∀ i, j, �.(22)

We have

βH
i� βj� = |βi�|e−iφi� |βj�|eiφj�

= |βi�||βj�|ei(φj�−φi�)

= |βi�||βj�|(cos(φj� − φi�) + i sin(φj� − φi�)).

Since |φi�−φj�| < π/2 so that cos(φj�−φi�) > 0, we see that Re(βH
i� βj�) > 0 whenever

βH
i� βj� �= 0. Then

(
1 +

|Im(βH
i� βj�)|2

|Re(βH
i� βj�)|2

)1/2

≤
(
1 + tan2(φj� − φi�)

)1/2
=

1

cos(φj� − φi�)
≤ 1

cos(2φ)
,
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where the last step uses (22). Using this in (18) completes the proof.
In Theorem 3(b), we can more generally consider βi� of the form βi� = ωi�e

iφi�(1+
iθi�), where ωi� ≥ 0, αi� satisfies (19), and

|θj� − θi�| ≤ σ|1 + θi�θj�| ∀ i, j, � for some σ ≥ 0 with tan(2φ)σ < 1.(23)

Then the proof of Theorem 3(b) can be extended to show the following upper bound
on C given by (18):

C ≤ 1

cos(2φ)
·

√
1 + σ2

1 − tan(2φ)σ
.(24)

However, this generalization is superficial as we can also derive (24) from (20) by
rewriting βi� as

βi� = |βi�|eiφ̃i� with φ̃i� = φi� + tan−1(θi�).

Then, applying (20) yields C ≥ cos(2φ̃), where φ̃ = maxi,j,� |φ̃i� − φ̃j�|/2. Using

trigonometric identity, it can be shown that cos(2φ̃) equals the right-hand side of (24)
with σ = max{i,j,� | θi�θj� �=−1} |θj� − θi�|/|1 + θi�θj�|.

Notice that Theorem 3(b) implies that if φ = 0, then the SDP relaxation (7) is
tight for the quadratically constrained QP (1) with F = C. Such is the case when all
components of h�, � = 1, . . . ,M , are real and nonnegative.

4. A convex QP restriction. In this subsection, we consider a convex quadratic
programming restriction of (2) in the complex case of F = C and analyze its approx-
imation bound. Let us write h� (the channel steering vector) as

h� = (. . . , |hj�|eiφj� , . . . )Tj=1,...,n.

For any φ̄j ∈ [0, 2π), j = 1, . . . , n, and any φ ∈ (0, π/2), define the four corresponding
index subsets

J1
� := {j | φj� ∈ [φ̄j − φ, φ̄j + φ]},

J2
� := {j | φj� ∈ [φ̄j − φ + π/2, φ̄j + φ + π/2]},

J3
� := {j | φj� ∈ [φ̄j − φ + π, φ̄j + φ + π]},

J4
� := {j | φj� ∈ [φ̄j − φ + 3π/2, φ̄j + φ + 3π/2]}

for � = 1, . . . ,M . The above four subsets are pairwise disjoint if and only if φ < π/4
and are collectively exhaustive if and only if φ ≥ π/4. Choose an index subset J with
the property that

for each �, at least one of J1
� , J2

� , J3
� , J4

� contains J.

Of course, J = ∅ is always allowable, but we should choose J maximally since our
approximation bound will depend on the ratio n/|J | (see Theorem 4). Partition the
constraint set index {1, . . . ,M} into four subsets K1,K2,K3,K4 such that
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J ⊆ Jk
� ∀ � ∈ Kk, k = 1, 2, 3, 4.

Consider the following convex QP restriction of (2) corresponding to K1, K2, K3,
K4:

υ
cqp

:= min ‖z‖2

s.t. Re(hH
� z) ≥ 1 ∀ � ∈ K1,

−Im(hH
� z) ≥ 1 ∀ � ∈ K2,

−Re(hH
� z) ≥ 1 ∀ � ∈ K3,

Im(hH
� z) ≥ 1 ∀ � ∈ K4.

(25)

The above problem is a restriction of (2) because for any z ∈ C,

|z| ≥ max{|Re(z)|, |Im(z)|}
= max{Re(z), Im(z),−Re(z),−Im(z)}.

If J �= ∅ and (. . . , hj�, . . . )j∈J �= 0 for � = 1, . . . ,M , then (25) is feasible and
hence has an optimal solution. Since (25) is a restriction of (2), υ

qp ≤ υcqp . We have
the following approximation bound.

Theorem 4. Suppose that J �= ∅ and (25) is feasible. Then

υcqp ≤ υqp

N

cos2 φ
max

k=1,...,N

(
max
j∈Ĵk

η̄j
η
πk(j)

)2

,

where N := �n/|J |�, η̄j := max� |hj�|, ηj := min�|hj� �=0 |hj�|, Ĵ1, . . . , ĴN , is any par-

tition of {1, . . . , n} satisfying |Ĵk| ≤ |J | for k = 1, . . . , N and πk is any injective
mapping from Ĵk to J .

Proof. By making the substitution

z
new

j ← zje
iφ̄j ,

we can without loss of generality assume that φ̄j = 0 for all j and �.
Let z∗ denote an optimal solution of (2) and write

z∗ = (. . . , rje
iβj , . . . )Tj=1,...,n

with rj ≥ 0. Then, for any �, we have from |hj�| ≤ η̄j for all j that

1 ≤ |hH
� z∗| ≤ r :=

n∑
j=1

rj η̄j .

Also, we have

υqp = ‖z∗‖2 =

n∑
j=1

r2
j .

Define

Rk :=

⎛
⎝∑

j∈Ĵk

r2
j

⎞
⎠

1/2

, Sk :=
∑
j∈Ĵk

rj η̄j .
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Then

1 ≤ r =
N∑

k=1

Sk, υ
qp

=

N∑
k=1

R2
k.

Without loss of generality, assume that R1/S1 = mink Rk/Sk. Then, using the fact
that

min
k

|xk|
|yk|

≤
√
N

‖x‖2

‖y‖1

for any x, y ∈ R
N with y �= 0,4 we see from the above relations that

R1

S1
≤ R1

S1
r

≤
√
N

√
υqp

r
r

=
√
N
√
υ

qp
.

Since |Ĵ1| ≤ |J |, there is an injective mapping π from Ĵ1 to J . Let ω := minj∈Ĵ1
η
π(j)

/η̄j .

Define the vector z̄ ∈ C
n by

z̄j :=

{
rπ−1(j)/(S1ω cosφ) if j ∈ π(Ĵ1);

0 else.

Then,

‖z̄‖2 =
R2

1

S2
1ω

2 cos2 φ
≤

Nυ
qp

ω2 cos2 φ
.

Moreover, for each � ∈ K1, since π(Ĵ1) ⊆ J ⊆ J1
� , we have

Re
(
hH
� z̄

)
= Re

⎛
⎝ ∑

j∈π(Ĵ1)

hH
j�z̄j

⎞
⎠

=
1

S1ω cosφ
Re

⎛
⎝ ∑

j∈π(Ĵ1)

rπ−1(j)|hj�|e−iφj�

⎞
⎠

=
1

S1ω cosφ

∑
j∈π(Ĵ1)

rπ−1(j)|hj�| cosφj�

≥ 1

S1ω cosφ

∑
j∈π(Ĵ1)

rπ−1(j)ηj cosφ

=
1

S1ω

∑
j∈Ĵ1

rj η̄j
η
π(j)

η̄j

≥ 1

S1ω

∑
j∈Ĵ1

rj η̄j · min
j∈Ĵ1

η
π(j)

η̄j

= 1,

4Proof. Suppose the contrary, so that for some x, y ∈ RN with y �= 0, we have |xk|/|yk| >√
N‖x‖2/‖y‖1 for all k. Then, multiplying both sides by |yk| and summing over k yields ‖x‖1 >√
N‖x‖2, contradicting properties of 1- and 2-norms.
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where the first inequality uses |hj�| ≥ η
j

and φj� ∈ [−φ, φ] for j ∈ J1
� . Since z̄j = 0

for j �∈ J1
� , this shows that z̄ satisfies the first set of constraints in (25). A similar

reasoning shows that z̄ satisfies the remaining three sets of constraints in (25).
Notice that the z̄ constructed in the proof of Theorem 4 is feasible for the further

restriction of (25) whereby zj = 0 for all j �∈ J . This further restricted problem has
the same (worst-case) approximation bound specified in Theorem 4.

Let us compare the two approximation bounds in Theorems 3 and 4. First, the
required assumptions are different. On the one hand, the bound in Theorem 3 does not
depend on |hj�|, while the bound in Theorem 4 does. On the other hand, Theorem 3
requires that the bounded angular spread

|φj� − φi�| ≤ 2φ ∀ j, �(26)

for some φ < π/4, while Theorem 4 allows φ < π/2 and requires only the condition
(26) for all 1 ≤ � ≤ M and j ∈ J , where J is a preselected index set. Thus,
the bounded angular spread condition required in Theorem 3 corresponds exactly
to |J | = n. Thus, the assumptions required in the two theorems do not imply one
another. Second, the two performance ratios are also different. Naturally, the final
performance ratio in Theorem 4 depends on the choice of J through the ratio |J |/n, so
a large J is preferred. In the event that the assumptions of both theorems are satisfied
and let us assume for simplicity that η̄j = η

j
for all j, then |J | = n and φ < π/4, in

which case Theorem 4 gives a performance ratio of 1/ cos2 φ while Theorem 3 gives
1/ cos(2φ). Since cos(2φ) = cos2 φ − sin2 φ ≤ cos2 φ, we have 1/ cos(2φ) ≥ 1/ cos2 φ,
showing that Theorem 4 gives a tighter approximation bound. However, this does
not mean Theorem 4 is stronger than Theorem 3 since the two theorems hold under
different assumptions in general.

We can specialize Theorem 4 to a typical situation in transmit beamforming.
Consider a uniform linear transmit antenna array consisting of n elements, and let us
assume that the M receivers are in a sector area from the far field and the propagation
is line-of-sight. By reciprocity, each steering vector h� will be Vandermonde with
generator e−i2π d

λ sin θ� (see, e.g., [10]), where d is the interantenna spacing, λ is the
wavelength, and θ� is the angle of arrival of the �th receiving antenna. In a sector of
approximately 60 degrees about the array broadside, we will have |θ�| ≤ π/3. Suppose
that d/λ = 1/2. Then the steering vector corresponding to the �th receiving antenna
will have the form

h� = (. . . , e−i(j−1)π sin θ� , . . . )Tj=1,...,n.

In this case, we have that φj� = (j − 1)π sin θ� and |hj�| = 1 for all j and �. We can
take, e.g.,

φ̄j = 0, φ = j̄πmax
�

| sin θ�|, J = {1, . . . , j̄ + 1},

where j̄ := �1/max� | sin θ�|�. Thus, the assumptions of Theorem 4 are satisfied.
Moreover, since |θ�| ≤ π/3 for all �, it follows that |J | = j̄ + 1 ≥ 2. If n is not large,
say, n ≤ 8, then Theorem 4 gives a performance ratio of n/(|J | cos2 φ) ≤ 16.

More generally, if we can choose the partition Ĵ1, . . . , ĴN and the mapping πk in
Theorem 4 such that
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(. . . , η̄j , . . . )j∈Ĵk
= (. . . , η

πk(j)
, . . . )j∈J ∀ k,

then the performance ratio in Theorem 4 simplifies to N/ cos2 φ. In particular, this
holds when |hj�| = η > 0 for all j and � or when J = {1, . . . , n} (so that N =
1) and |hj�| is independent of � for all j, and, more generally, when the channel
coefficients periodically repeat their magnitudes. In general, we should choose the
partition Ĵ1, . . . , ĴN and the mapping πk to make the performance ratio in Theorem
4 small. For example, if J = Ĵ1 = {1, 2} and η̄1 = 100, η̄2 = 10, η

1
= 1, η

2
= 10, then

π1(1) = 2, π1(2) = 1 is the better choice.

5. Homogeneous QP in maximization form. Let us now consider the fol-
lowing complex norm maximization problem with convex homogeneous quadratic con-
straints:

υ
qp

:= max ‖z‖2

s.t.
∑
�∈Ii

|hH
� z|2 ≤ 1, i = 1, . . . ,m,

z ∈ C
n,

(27)

where h� ∈ C
n.

To motivate this problem, consider the problem of designing an intercept beam-
former5 capable of suppressing signals impinging on the receiving antenna array from
irrelevant or hostile emitters, e.g., jammers, whose steering vectors (spatial signatures,
or “footprints”) have been previously estimated, while achieving as high gain as pos-
sible for all other transmissions. The jammer suppression capability is captured in the
constraints of (27), and |Ii| > 1 covers the case where a jammer employs more than
one transmit antenna. The maximization of the objective ‖z‖2 can be motivated as
follows. In intercept applications, the steering vector of the emitter of interest, h, is
a priori unknown and is naturally modeled as random. A pertinent optimization ob-
jective is then the average beamformer output power, measured by E[|hHz|2]. Under
the assumption that the entries of h are uncorrelated and have equal average power,
it follows that E[|hHz|2] is proportional to ‖z‖2, which is often referred to as the
beamformer’s white noise gain.

Similar to (1), we let

Hi :=

m∑
�∈Ii

h�h
H
�

and consider the natural SDP relaxation of (27):

υ
sdp

:= max Tr(Z)
s.t. Tr(HiZ) ≤ 1, i = 1, . . . ,m,

Z 	 0, Z is complex and Hermitian.
(28)

We are interested in lower bounds for the relaxation performance of the form

υ
qp ≥ C υ

sdp
,

where 0 < C ≤ 1. It is easily checked that (28) has an optimal solution.
Let Z∗ be an optimal solution of (28). We will analyze the performance of the

SDP relaxation using the following randomization procedure:

5Note that here we are talking about a receive beamformer, as opposed to our earlier motivating
discussion of transmit beamformer design.
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1. Generate a random vector ξ ∈ C
n from the complex-valued normal distri-

bution Nc(0, Z
∗).

2. Let z∗(ξ) = ξ/max1≤i≤m

√
ξHHiξ.

First, we need the following lemma analogous to Lemmas 1 and 3.
Lemma 5. Let H ∈ C

n×n, Z ∈ C
n×n be two Hermitian positive semidefinite

matrices (i.e., H 	 0, Z 	 0). Suppose ξ ∈ C
n is a random vector generated from the

complex-valued normal distribution Nc(0, Z). Then, for any γ > 0,

Prob
(
ξHHξ > γE(ξHHξ)

)
≤ r̄ e−γ ,(29)

where r̄ := min{rank(H), rank(Z)}.
Proof. If H = 0, then (29) is trivially true. Suppose H �= 0. Then, as in the proof

of Lemma 1, we have

Prob
(
ξHHξ > γE(ξHHξ)

)
= Prob

(
r̄∑

i=1

λ̄i|ξ̄i|2 > γ

)
,

where λ̄1 ≥ λ̄2 ≥ · · · ≥ λ̄r̄ ≥ 0 satisfy λ̄1 + · · · + λ̄r̄ = 1 and each ξ̄i ∈ C has the
complex-valued normal distribution Nc(0, 1). Then

Prob
(
ξHHξ > γE(ξHHξ)

)
≤ Prob

(
|ξ̄1|2 > γ or |ξ̄2|2 > γ or · · · or |ξ̄r̄|2 > γ

)
≤

r̄∑
i=1

Prob
(
|ξ̄i|2 > γ

)
= r̄ e−γ ,

where the last step uses (14).
Theorem 5. For the complex QP (27) and its SDP relaxation (28), we have

vsdp = vqp if m ≤ 3 and otherwise

vqp ≥ 1

4 ln(100K)
vsdp,

where K :=
∑m

i=1 min{rank(Hi),
√
m}.

Proof. By applying a suitable rank reduction procedure if necessary, we can
assume that the rank r of the optimal SDP solution Z∗ satisfies r = 1 if m ≤ 3 and
r ≤

√
m if m ≥ 4; see [9, section 5]. Thus, if m ≤ 3, then Z∗ = z∗(z∗)H for some

z∗ ∈ C
n and it is readily seen that z∗ is an optimal solution of (27), so that vsdp = vqp.

Otherwise, we apply the randomization procedure to Z∗. By using Lemma 5, we have,
for any γ > 0 and μ > 0,

Prob

(
max

1≤i≤m
ξHHiξ ≤ γ, ‖ξ‖2 ≥ μTr(Z∗)

)

≥ 1 −
m∑
i=1

Prob
(
ξHHiξ > γE(ξHHiξ)

)
− Prob

(
‖ξ‖2 < μTr(Z∗)

)
≥ 1 −Ke−γ − Prob

(
‖ξ‖2 < μTr(Z∗)

)
,(30)

where the last step uses r ≤
√
m.
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Let

ηj :=

{
|ξj |2/Z∗

jj if Z∗
jj > 0;

0 if Z∗
jj = 0,

j = 1, . . . , n.

For simplicity, let us assume that Z∗
jj > 0 for all j = 1, . . . , n. Since ξj ∼ Nc(0, Z

∗
jj),

as we discussed in subsection 3.2, |ξj | follows a Weibull distribution with variance Z∗
jj

(see (14)), and therefore

Prob (ηj ≤ t) = 1 − e−t ∀ t ∈ [0,∞).

Hence,

E(ηj) =

∫ ∞

0

te−tdt = 1, E(η2
j ) =

∫ ∞

0

t2e−tdt = 2, Var(ηj) = 1.

Moreover,

E(|ηj − E(ηj)|) =

∫ 1

0

(1 − t)e−tdt +

∫ ∞

1

(t− 1)e−tdt =
2

e
.

Let us denote λj = Z∗
jj/Tr(Z∗), j = 1, . . . , n, and η :=

∑n
j=1 λjηj . We have E(η) = 1

and

E(|η − E(η)|) = E

⎛
⎝
∣∣∣∣∣∣

n∑
j=1

λj(ηj − E(ηj))

∣∣∣∣∣∣
⎞
⎠ ≤

n∑
j=1

λjE(|ηj − E(ηj)|) =
2

e
.

Since, by Markov’s inequality,

Prob (|η − E(η)| > α) ≤ E(|η − E(η)|)
α

≤ 2

αe
∀ α > 0,

we have

Prob
(
‖ξ‖2 < μTr(Z∗)

)
= Prob (η < μ)

≤ Prob (|η − E(η)| > 1 − μ)

≤ 2

e(1 − μ)
∀μ ∈ (0, 1).

Substituting the above inequality into (30), we obtain

Prob

(
max

1≤i≤m
ξHHiξ ≤ γ, ‖ξ‖2 ≥ μTr(Z∗)

)
> 1 − Ke−γ − 2

e(1 − μ)
∀ μ ∈ (0, 1).

Setting μ = 1/4 and γ = ln(100K) yields a positive right-hand side of 0.00898.., which
then proves the desired bound.

The above proof technique also applies to the real case, i.e., h� ∈ R
n and z ∈ R

n.
The main difference is that ξ ∼ N(0, Z∗), so that |ξ̄i|2 in the proof of Lemma 5 and ηj
in the proof of Theorem 5 both follow a χ2 distribution with one degree of freedom.
Then

Prob
(
|ξ̄i|2 > γ

)
=

∫ ∞

√
γ

e−t2/2

√
2π

dt ≤
∫ ∞

√
γ

e−γt/2

√
2π

dt =

√
2

πγ
e−γ/2 ∀ γ > 0,
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E(ηj) = 1, and

E|ηj − E(ηj)| =

∫ ∞

0

e−t/2

√
2πt

|t− 1|dt

=
1√
2π

∫ 1

0

e−t/2

√
t

dt− 1√
2π

∫ 1

0

√
te−t/2dt

+
1√
2π

∫ ∞

1

√
te−t/2dt− 1√

2π

∫ ∞

1

e−t/2

√
t

dt

=
4√
2πe

< 0.968,

where in the last step we used integration by parts on the first and the fourth terms.
This yields the analogous bound that for any γ ≥ 1 and μ ∈ (0, 1),

Prob

(
max

1≤i≤m
ξTHiξ ≤ γ, ‖ξ‖2 ≥ μTr(Z∗)

)
> 1 −K

√
2

πγ
e−γ/2 − 0.968

1 − μ

> 1 −Ke−γ/2 − 0.968

1 − μ
,

where K :=
∑m

i=1 min{rank(Hi),
√

2m}. Setting μ = 0.01 and γ = 2 ln(50K) yields a
positive right-hand side of 0.0022... This in turn shows that vsdp = vqp if m ≤ 2 (see
the proof of Theorem 1) and otherwise

vqp ≥ 1

200 ln(50K)
vsdp.

We note that, in the real case, a sharper bound of

vqp ≥ 1

2 ln(2mμ)
vsdp,

where μ := min{m,maxi rank(Hi)}, was shown by Nemirovski et al. [14] (also see
[13, Theorem 4.7]), although the above proof seems simpler. Also, an example in [14]
shows that the O(1/ lnm) bound is tight (up to a constant factor) in the worst case.
This example readily extends to the complex case by identifying C

n with R
2n and

observing that |hH
� z| ≥ |Re(h�)

TRe(z) + Im(h�)
T Im(z)| for any h�, z ∈ C

n. Thus, in
the complex case, the O(1/ lnm) bound is also tight (up to a constant factor).

6. Discussion. In this paper, we have analyzed the worst-case performance of
SDP relaxation and convex restriction for a class of NP-hard quadratic optimization
problems with homogeneous quadratic constraints. Our analysis is motivated by im-
portant emerging applications in transmit beamforming for physical layer multicasting
and sensor localization in wireless sensor networks. Our generalization (1) of the basic
problem in [20] is useful, for it shows that the same convex approximation approaches
and bounds hold in the case where each multicast receiver is equipped with multiple
antennas. This scenario is becoming more pertinent with the emergence of small and
cheap multiantenna mobile terminals. Furthermore, our consideration of the related
homogeneous QP maximization problem has direct application to the design of jam-
resilient intercept beamformers. In addition to these timely topics, more traditional
signal processing design problems can be cast in the same mathematical framework;
see [20] for further discussions.
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Fig. 1. Upper bound on
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sdp

for m = 8, n = 4, 300 realizations of real Gaussian i.i.d. steering

vector entries, solution constrained to be real.

While theoretical worst-case analysis is very useful, empirical analysis of the ra-
tio

υqp

υ
sdp

through simulations with randomly generated steering vectors {h�} is often

equally important. In the context of transmit beamforming for multicasting [20] for
the case |Ii| = 1 for all i (single receiving antenna per subscriber node), simulations
have provided the following insights:

• For moderate values of m, n (e.g., m = 24, n = 8), and independent and iden-
tically distributed (i.i.d.) complex-valued circular Gaussian (i.i.d. Rayleigh)
entries of the steering vectors {h�}, the average value of

υqp

υ
sdp

is under 3—much

lower than the worst-case value predicted by our analysis.
• In all generated instances where all steering vectors have positive real and

imaginary parts, the ratio
υqp

υ
sdp

equals one (with error below 10−8). This is

better than what our worst-case analysis predicts for limited phase spread
(see Theorem 3).

• In experiments with measured VDSL channel data, for which the steering
vectors follow a correlated log-normal distribution,

υqp

υ
sdp

= 1 in over 50% of

instances.
• Our analysis shows that the worst-case performance ratio

υqp

υ
sdp

is smaller in

the complex case than in the real case (O(m) versus O(m2)). Moreover, this
remains true with high probability when υ

qp is replaced by its upper bound

υ
ubqp

:= min
k=1,...,N

‖z∗(ξk)‖2,

where ξ1, . . . , ξN are generated by N independent trials of the randomization
procedure (see subsections 3.1 and 3.2) and N is taken sufficiently large. In
our simulation, we used N = 30nm. Figure 1 shows our simulation results
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Fig. 2. Histogram of the outcomes in Figure 1.

for the real Gaussian case.6 It plots
υ
ubqp

υ
sdp

for 300 independent realizations of

i.i.d. real-valued Gaussian steering vector entries for m = 8, n = 4. Figure 2
plots the corresponding histogram. Figures 3 and 4 show the corresponding
results for i.i.d. complex-valued circular Gaussian steering vector entries.7

Both the mean and the maximum of the upper bound
υ
ubqp

υ
sdp

are lower in the

complex case. The simulations indicate that SDP approximation is better in
the complex case not only in the worst case but also on average.

The above empirical (worst-case and average-case) analysis complements our the-
oretical worst-case analysis of the performance of SDP relaxation for the class of
problems considered herein.

Finally, we remark that our worst-case analysis of SDP performance is based on
the assumption that the homogeneous quadratic constraints are concave (see (1)).
Can we extend this analysis to general homogeneous quadratic constraints? The
following example in R

2 suggests that this is not possible.
Example 3. For any L > 0, consider the quadratic optimization problem with

homogeneous quadratic constraints:

min ‖z‖2

s.t. z2
2 ≥ 1, z2

1 − Lz1z2 ≥ 1, z2
1 + Lz1z2 ≥ 1,

z ∈ R
2.

(31)

The last two constraints imply z2
1 ≥ L|z1||z2| + 1 which, together with the first con-

straint z2
2 ≥ 1, yield z2

1 ≥ L|z1| + 1 or, equivalently, |z1| ≥ (L +
√
L2 + 4)/2. So the

optimal value of (31) is at least 1 + (L +
√
L2 + 4)2/4 (and in fact is equal to this).

6Here the SDP solution is constrained to be real-valued, and real Gaussian randomization is
used.

7Here the SDP solutions are complex-valued, and complex Gaussian randomization is used.
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The natural SDP relaxation of (31) is

min Z11 + Z22

s.t. Z22 ≥ 1, Z11 − LZ12 ≥ 1, Z11 + LZ12 ≥ 1,
Z 	 0.
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Clearly, Z = I2 is a feasible solution (and, in fact, an optimal solution) of this SDP,
with an objective value of 2. Therefore, the SDP performance ratio for this example
is at least 1/2 + (L +

√
L2 + 4)2/8, which can be arbitrarily large.
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Abstract. An incremental aggregated gradient method for minimizing a sum of continuously
differentiable functions is presented. The method requires a single gradient evaluation per iteration
and uses a constant step size. For the case that the gradient is bounded and Lipschitz continuous,
we show that the method visits infinitely often regions in which the gradient is small. Under certain
unimodality assumptions, global convergence is established. In the quadratic case, a global linear
rate of convergence is shown. The method is applied to distributed optimization problems arising in
wireless sensor networks, and numerical experiments compare the new method with other incremental
gradient methods.
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1. Introduction. Consider the unconstrained optimization problem

minimize f(x) =

L∑
l=1

fl(x), x ∈ R
p,(1.1)

where R
p is the p-dimensional Euclidean space, and fl : R

p → R are continuously
differentiable scalar functions on R

p. Our interest in this problem stems from opti-
mization problems arising in wireless sensor networks (see, e.g., [9, 33, 36, 37, 38]), in
which fl(x) corresponds to the data collected by the lth sensor in the network. This
problem also arises in neural network training, in which fl(x) corresponds to the lth
training data set (see, e.g., [7, 17, 18, 27, 28, 26]).

The iterative method proposed and analyzed in this paper for solving (1.1), which
we call the incremental aggregated gradient (IAG) method, generates a sequence
{xk}k≥1 as follows. Given L arbitrary initial points x1, x2, . . . , xL, an aggregated

gradient, denoted by dL, is defined as
∑L

l=1 ∇fl(x
l). Possible initializations are dis-

cussed in section 3. For k ≥ L,

xk+1 = xk − μ
1

L
dk,(1.2)

dk+1 = dk −∇f(k+1)L(xk+1−L) + ∇f(k+1)L(xk+1),(1.3)
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where μ is a positive constant step size chosen small enough to ensure convergence,
(k)L denotes k modulo L with representative class {1, 2, . . . , L}, and the factor 1/L
is explicitly included to make the approximate descent direction 1

Ld
k comparable

in magnitude to the one used in the standard incremental gradient method to be
discussed below. Thus, at every iteration a new point xk+1 is generated according to
the direction of the aggregated gradient dk. Then only one of the gradient summands
∇f(k+1)L(xk+1) is computed to replace the previously computed ∇f(k+1)L(xk+1−L).
Note that for k ≥ L the IAG iteration (1.2)–(1.3) is equivalent to

xk+1 = xk − μ
1

L

L−1∑
l=0

∇f(k−l)L(xk−l).(1.4)

The IAG method is related to the large class of incremental gradient methods
that has been studied extensively in the literature [8, 17, 18, 19, 21, 25, 26, 28, 44]
(see also [22, 32] and the references therein for incremental subgradient methods for
nondifferentiable convex optimization). The standard incremental gradient method
updates xk according to

xk+1 = xk − μ(k)∇f(k)L(xk),(1.5)

where μ(k) is a positive step size, possibly depending on k. Therefore, it is seen that
the principal difference between the two methods is that the standard incremental
gradient method uses only one of the components in order to generate an approxi-
mate descent direction, whereas the IAG method uses the average of the L previously
computed gradients. This property leads to convergence of the IAG method for fixed
and sufficiently small positive step size μ. This is in contrast to the standard incre-
mental gradient method, whose convergence requires that the step size sequence μ(k)
converge to zero.

Incremental gradient methods can be motivated by the observation that when the
iterates are far from the eventual limit, the evaluation of a single gradient component
is sufficient for generating an approximate descent direction. Hence, these methods
lead to a significant reduction in the amount of required computations per iteration
(see, e.g., [6, sect. 1.5.2] and the discussion in [5]). The drawback of these methods,
when using a constant step size, is that the iterates converge to a limit cycle and
oscillate around a stationary point [25], unless restrictions of the type ∇fl(x) = 0,
l = 1, . . . , L, whenever ∇f(x) = 0 are imposed [44]. Convergence for a diminishing
step size has been established by a number of authors under different conditions
[8, 17, 18, 21, 25, 26, 28, 44]. However, a diminishing step size usually leads to
slow convergence near the eventual limit and requires exhaustive experimentation to
determine how rapidly the step size must decrease in order to prevent scenarios in
which the step size becomes too small when the iterates are far from the eventual limit
(e.g., determining the constants a and b in step sizes of the form μ(k) = a/(k + b)).

A hybrid between the steepest descent method and the incremental gradient
method was studied in [5]. The hybrid method starts as an incremental gradient
method and gradually becomes the steepest descent. This method requires a tuning
parameter, which controls the transition between the two methods, to gradually in-
crease with k to ensure convergence. When the tuning parameter increases sufficiently
fast with the number of iterations, it is shown that the rate of convergence is linear.
However, the question of determining the rate of transition between the two methods
still remains. For any fixed value of the tuning parameter, the hybrid method con-
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verges to a limit cycle, unless a diminishing step size is used, similar to the standard
incremental gradient method.

The choice of the aggregated gradient dk (1.3) for generating an approximate
descent direction was mentioned in [18] in the context of adaptive step size methods,
which require repeated evaluations of either the complete objective function f(x) or
its gradient. This requirement renders the methods proposed in [18] inapplicable to
problems in sensor networks of interest to us or any other applications which require
decentralized implementation, as will be explained in section 3. In addition, as noted
in [46], if ∇fl(x), l = 1, . . . , L, are not necessarily zero whenever ∇f(x) = 0, the step
size tends to zero, resulting in slow convergence.

The IAG method is closely related to Tseng’s incremental gradient with momen-
tum term [46], which is an incremental generalization of Polyak’s heavy-ball method
[34, p. 65] (also called the steepest descent with momentum term [7, p. 104]). Rewrit-
ing Tseng’s method’s update rule as

xk+1 = xk − μ(k)

k∑
l=0

ζl∇f(k−l)L(xk−l),

we see from (1.4) that the IAG method is a variation of this method with a truncated
sum, ζ = 1, and a constant step size. Similar to [18], the step size adaptation
rule that leads to convergence in [46] requires repeated evaluations of the complete
objective function f(x) and its gradient. Hence, this method cannot be implemented
in a distributed manner either. Furthermore, a linear convergence rate is established
only under a certain growth property on the functions’ gradients, which requires
∇fl(x) = 0, l = 1, . . . , L, whenever ∇f(x) = 0.

In contrast to the available methods, the IAG method has all four of the following
properties: (a) it evaluates a single gradient per iteration, (b) it uses a constant step
size, (c) it is convergent (Proposition 2.7), and (d) it has a global linear convergence
rate for quadratic objective f(x) (Proposition 2.8).

Finally, we note that the IAG method is reminiscent of other methods in var-
ious optimization problems, such as the incremental version of the Gauss–Newton
method or the extended Kalman filter [2, 4, 15, 30], the distributed EM algorithm
for maximum likelihood estimation [31, 33], the ordered subset and incremental op-
timization transfer for image reconstruction [1, 3, 10], and iterative methods for the
convex feasibility problem [11, 12].

2. Convergence analysis. In this section we present convergence proofs for two
different function classes: (I) restricted Lipschitz and (II) quadratic. Under a Lipschitz
condition and a bounded gradient assumption on fl(x), l = 1, . . . , L (Assumptions 1
and 2), we obtain an upper bound on the limit inferior of ||∇f(xk)||, which depends
linearly on the step size μ. By imposing additional restrictions on the function f(x)
(Assumptions 3 and 4), we prove pointwise convergence of the method. There are
many functions that satisfy Assumptions 1–4. However, one important case does not
satisfy these assumptions. This is the case when f(x) and fl(x) are quadratic functions
on R

p. For this important case we provide a completely different convergence proof
and show in addition that the convergence rate is globally linear.

For later reference, it will be useful to write (1.4) in a form known as the “gradient
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method with errors” [8]:

xk+1 = xk − μ
1

L

[
L−1∑
l=0

∇f(k−l)L(xk) +

L−1∑
l=0

∇f(k−l)L(xk−l) −
L−1∑
l=0

∇f(k−l)L(xk)

]

= xk − μ
1

L

[
∇f(xk) + hk

]
,(2.1)

where

hk =

L−1∑
l=1

[
∇f(k−l)L(xk−l) −∇f(k−l)L(xk)

]
is the error term in the calculation of the gradient at xk. Also note that for all k ≥ 2L
and 1 ≤ l ≤ L,

xk−l − xk = μ
1

L

(
dk−1 + dk−2 + · · · + dk−l

)
.

2.1. Case I.
Assumption 1. ∇fl(x), l = 1, . . . , L, satisfy a Lipschitz condition in R

p; i.e., there
is a positive number M1 such that for all x, x ∈ R

p, ||∇fl(x)−∇fl(x)|| ≤ M1||x−x||,
l = 1, . . . , L.

Assumption 1 implies that ∇f(x) also satisfies a Lipschitz condition; that is, for
all x, x ∈ R

p, ||∇f(x) −∇f(x)|| ≤ M2||x− x||, where M2 = LM1.
Assumption 2. There exists a positive number M3 such that for all x ∈ R

p,
||∇fl(x)|| ≤ M3, l = 1, . . . , L.

Assumption 2 implies that for all x ∈ R
p, ||∇f(x)|| ≤ M4, where M4 = LM3.

Lemma 2.1. Let {sk}k≥1 be a sequence of nonnegative real numbers satisfying
for some fixed integer L > 1 and all k ≥ L

sk ≤ cQ(sk−1, sk−2, . . . , sk−L+1) + M,

where 0 < c < 1, M is nonnegative, and Q(sk−1, sk−2, . . . , sk−L+1) is a linear form in
the variables sk−1, sk−2, . . . , sk−L+1, whose coefficients are nonnegative and the sum
of the coefficients equals one. Then lim supk→∞ sk ≤ M

1−c .
Proof. Define the sequence {wk}k≥1 by wk = sk for 1 ≤ k ≤ L− 1 and

wk = cQ(wk−1, wk−2, . . . , wk−L+1) + M

for k ≥ L. Since sk ≤ wk for all k, if limk→∞ wk = M
1−c , then

lim sup
k→∞

sk ≤ lim sup
k→∞

wk = lim
k→∞

wk =
M

1 − c
.

To show that limk→∞ wk = M
1−c , define the sequence {vk}k≥1 by vk = sk − M

1−c for
1 ≤ k ≤ L− 1 and

vk = cQ(vk−1, vk−2, . . . , vk−L+1)

for k ≥ L. By this construction,

wL = cQ

(
M

1 − c
+ vL−1,

M

1 − c
+ vL−2, . . . ,

M

1 − c
+ v1

)
+ M

= c
M

1 − c
+ cQ(vL−1, vL−2, . . . , v1) + M =

M

1 − c
+ vL,
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and, by induction, wk = M
1−c + vk for all k > L. Therefore, if limk→∞ vk = 0, then

limk→∞ wk = M
1−c . To show that limk→∞ vk = 0, set A = max{|v1|, |v2|, . . . , |vL−1|}.

Hence,

|vL| = c|Q(vL−1, vL−2, . . . , v1)| ≤ cQ(|vL−1|, |vL−2|, . . . , |v1|) ≤ cA.

Similarly, |vL+1| ≤ cA, and in general |vk| ≤ cA for all k ≥ L. Consider now v2L.
Since max{|v2L−1|, |v2L−2|, . . . , |vL+1|} ≤ cA, we have

|v2L| = c|Q(v2L−1, v2L−2, . . . , vL+1)| ≤ cQ(|v2L−1|, |v2L−2|, . . . , |vL+1|) ≤ c2A,

and in general |vk| ≤ c2A for all k ≥ 2L. Similarly, we obtain |vk| ≤ cnL for all k ≥ nL.
Since 0 < c < 1, we have limn→∞ cn = 0, and therefore limk→∞ vk = 0.

Remark 1. Lemma 2.1 can also be proven using concepts from dynamical systems.
The sequence wk is the output of an autoregressive linear system

wk = c

L−1∑
l=1

αkwk−l + Mu(k − L),

where u(k) is the unit step function which equals one when k ≥ 0 and zero otherwise,
with initial condition wk = sk for 1 ≤ k ≤ L − 1. Since the coefficients of the linear
form are all positive and sum to one, and 0 < c < 1, it is possible to show that the
system is stable (bounded input bounded output) and the steady state response is
M

1−c [35], i.e., limk→∞ wk = M
1−c .

Lemma 2.2. Under Assumption 1, if ||∇f(xk)|| > ||hk||
1−2μM1

, and 0 < 1−2μM1 <

1, then f(xk) > f(xk+1).

Proof. Assume that ||∇f(xk)|| > ||hk||
1−2μM1

. Then

||dk||2 = ||∇f(xk) + hk||2 ≤ 2||∇f(xk)||2 + 2||hk||2

< 2||∇f(xk)||2 + 2
||hk||2

1 − 2μM1
< 4||∇f(xk)||2.

By [6, Prop. A.24], if Assumption 1 holds, then

f(x + y) − f(x) ≤ y′∇f(x) +
1

2
M2||y||2.

Hence

f(xk) − f(xk+1) = f(xk) − f

(
xk − μ

1

L
dk

)

≥ μ
1

L
dk′∇f(xk) − 1

2
M2μ

2 1

L2
||dk||2

> μ
1

L
(∇f(xk) + hk)′∇f(xk) − 1

2
M2μ

2 1

L2
4||∇f(xk)||2

= μ
1

L
||∇f(xk)||2 + μ

1

L
hk′∇f(xk) − 2M2μ

2 1

L2
||∇f(xk)||2

≥ μ
1

L
||∇f(xk)||2 − μ

1

L
||hk|| · ||∇f(xk)|| − 2M2μ

2 1

L2
||∇f(xk)||2

=
μ

L
||∇f(xk)||(1 − 2μM1)

(
||∇f(xk)|| − ||hk||

1 − 2μM1

)

> 0.
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Lemma 2.3. Set δ0 = μM2M3. Under Assumptions 1 and 2, if μM2 < 1, there
exists K such that for all k > K, ||hk|| < δ0.

Proof.

||hk|| ≤
L−1∑
l=1

||∇f(k−l)L(xk−l) −∇f(k−l)L(xk)||

≤ M1

L−1∑
l=1

||xk−l − xk||

= μM1
1

L

L−1∑
l=1

||dk−1 + dk−2 + · · · + dk−l||

≤ μM1
1

L

L−1∑
l=1

(
||dk−1|| + ||dk−2|| + · · · + ||dk−l||

)

= μM1
1

L

[
(L− 1)||dk−1|| + (L− 2)||dk−2|| + · · · + ||dk−L+1||

]
= μM1

1

L

L(L− 1)

2

[
(L− 1)||dk−1|| + (L− 2)||dk−2|| + · · · + ||dk−L+1||

L(L− 1)/2

]

= μM1
L− 1

2
Q(||dk−1||, ||dk−2||, . . . , ||dk−L+1||),

where Q(||dk−1||, ||dk−2||, . . . , ||dk−L+1||) is a linear form in the variables ||dk−1||,
||dk−2||, . . . , ||dk−L+1|| whose coefficients, L−1

L(L−1)/2 ,
L−2

L(L−1)/2 , . . . ,
1

L(L−1)/2 , sum to

one. Next, we use ||dk|| = ||∇f(xk) + hk|| ≤ ||∇f(xk)|| + ||hk|| to obtain

||hk|| ≤ μM1
L− 1

2
Q(||hk−1||, ||hk−2||, . . . , ||hk−L+1||)

+ μM1
L− 1

2
Q(||∇f(xk−1)||, ||∇f(xk−2)||, . . . , ||∇f(xk−L+1)||)

≤ μM1
L− 1

2
Q(||hk−1||, ||hk−2||, . . . , ||hk−L+1||) + μM1

L− 1

2
M3

< μ
M2

2
Q(||hk−1||, ||hk−2||, . . . , ||hk−L+1||) + μ

M2

2
M3,

where Assumption 2 was used in the second to last inequality. Hence, by Lemma 2.1,

since 0 < μM2

2 < 1/2, lim supk→∞ ||hk|| ≤ μ
M2
2 M3

1−μ
M2
2

. By using μM2

2 < 1/2, we obtain

lim supk→∞ ||hk|| < μM2M3 and the lemma follows.
Proposition 2.4. Under Assumptions 1 and 2, if f(x) is bounded from below

and μmax{2M1,M2} < 1, then

lim inf
k→∞

||∇f(xk)|| ≤ 2M2M3

1 − 2μM1
μ.

Proof. The proof is similar to the proof of Theorem 2.1 in [44].
Next, by imposing two additional assumptions, we prove that the IAG method

converges with a constant step size to the minimum point of f(x).
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Assumption 3. f(x) has a unique global minimum at x∗. The Hessian ∇2f(x) is
continuous and positive definite at x∗.

Assumption 4. For any sequence {tk}∞k=1 in R
p, if limk→∞ f(tk) = f(x∗) or

limk→∞ ||∇f(tk)|| = 0, then limk→∞ tk = x∗.

There is an equivalent form of Assumption 4: For each neighborhood U of x∗

there exists η > 0 such that if f(x) − f(x∗) < η or ||∇f(x)|| < η, then x ∈ U .

Remark 2. Assumptions 3 and 4 are stronger than the assumptions usually
made on f(x) in the literature (see [8] for a summary of the available convergence
proofs and the assumptions they require). However, our results hold for a constant
step size and do not require that ∇fl(x) = 0, l = 1, . . . , L, whenever ∇f(x) =
0. In addition, note that there are nonconvex functions that satisfy Assumption 4.
However, if f(x) is strictly convex and takes a minimum in the interior of its domain
(Rp), then Assumption 4 is automatically satisfied. In particular, if f(x) satisfies
Assumption 3 and is strictly convex, then Assumption 4 is satisfied. In fact, the
implication limk→∞ f(tk) = f(x∗) ⇒ limk→∞ tk = x∗ is the statement of Corollary
27.2.2 from [41]. The implication limk→∞ ||∇f(tk)|| = 0 ⇒ limk→∞ tk = x∗ can be
obtained as follows: Consider the function ∇f : R

p → R
p. The derivative (∇f)′ of

this function is the Hessian ∇2f . Since f(x) satisfies Assumption 3 and is strictly
convex, det(∇f)′ �= 0. Therefore, by the inverse function theorem, there are open
neighborhoods V of x∗ ∈ R

p and W of 0 ∈ R
p such that ∇f : V → W has a continuous

inverse γ : W → V . Let {tk}∞k=1 be a sequence such that limk→∞ ||∇f(tk)|| = 0. Then
there exists k0 such that ∇f(tk) ∈ W for all k ≥ k0. By Theorem B on page 99 in [40],
since f(x) is strictly convex, ∇f is one-to-one; i.e., if x �= y, then ∇f(x) �= ∇f(y). It
follows that tk ∈ V for all k ≥ k0. Now we have

lim
k→∞

tk = lim
k→∞

γ
(
∇f(tk)

)

= γ

(
lim
k→∞

∇f(tk)

)

= γ (0) = x∗.

Remark 3. Unimodal functions which are convex in the neighborhood of their
minimum and have bounded gradient are common in robust estimation [20]. An
example of a robust estimation objective function that satisfies Assumptions 1–4 is
given in section 4.1. Another important function which satisfies Assumptions 1–4
is the objective function minimized by the LogitBoost algorithm [16] (or adaptive
logistic regression). To explain the components which are used to construct this
objective function we include a short description (taken from [14]) of the supervised
learning problem, and in particular, the problem of combining weak features. Let
{zl, yl}Ll=1 be a set of training examples, where each instance zl takes values in an
instance domain Z, and each yl, called the label, takes values in {−1,+1}. Given a
set of p real-valued functions on Z, h1, h2, . . . , hp called features, the goal is to find a
vector x ∈ R

p for which the sign of gx(zl) =
∑p

i=1 xihi(zl) is a good predictor of yl for
l = 1, . . . , L. Let M be the L× p matrix whose (l, i) element is hi(zl). The objective
function f(x) : R

p → R minimized by the LogitBoost algorithm [14] is given by

f(x) =
L∑

l=1

log [1 + exp (−yl[Mx]l)] ,(2.2)
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where [Mx]l is the lth element of the vector Mx. It can be motivated as being a
convex surrogate to the nonconvex and nondifferentiable 0 − 1 loss function

f(x) =

L∑
l=1

I(gx(zl)yl ≤ 0),

which is the number of labels that are not predicted correctly by the sign of gx(zl), or
through the maximum likelihood method for estimating the conditional probability
of yl given zl. It is shown below that in the nonseparable case, i.e., when there exists
no value of x for which sign(gx(zl)) = yl, for l = 1, . . . , L, and when the features are
linearly independent on the training set, i.e., rankM = p, the function f(x) (2.2)
satisfies Assumptions 1–4:

∂

∂xj
log [1 + exp (−yl[Mx]l)] =

exp (−yl[Mx]l)

1 + exp (−yl[Mx]l)
(−ylhj(zl)) ≤ |hj(zl)|.

Hence Assumption 2 holds:

∂2

∂xj∂xk
log [1 + exp (−yl[Mx]l)] =

exp (−yl[Mx]l)

[1 + exp (−yl[Mx]l)]
2hj(zl)hk(zl)

≤ |hj(zl)hk(zl)|.

Hence Assumption 1 holds. Let dl(x) = exp (−yl[Mx]l) / [1 + exp (−yl[Mx]l)]
2 > 0.

Then

∂2f(x)

∂xj∂xk
=

L∑
l=1

dl(x)MljMlk.

To show that ∇f(x) is positive definite for all x, consider ζT∇f(x)ζ for some vector
ζ ∈ R

p:

ζT∇f(x)ζ =

p∑
j,k=1

L∑
l=1

dl(x)MlkMljζkζj =

L∑
l=1

dl(x) ([Mζ]l)
2 ≥ 0

with equality if and only if ζ = 0, by the assumption that rankM = p. Hence the
function f(x) is strictly convex. Assume the training set {zl, yl}Ll=1 is nonseparable
with respect to the features h1, h2, . . . , hp; i.e., for every x there exists at least one
l for which yl[Mx]l < 0. For any given x �= 0 let I1(x) = {l : yl[Mx]l < 0},
I2(x) = {l : yl[Mx]l = 0}, and I3(x) = {l : yl[Mx]l > 0}, and note that I1(x) is
nonempty by assumption. For a positive scalar c, we can write f(cx) as the sum of
three summations:

f(cx) =
∑

l∈I1(x)

log

{
1 + exp

[
−cyl

p∑
i=1

xihi(zl)

]}

+
∑

l∈I2(x)

log 2

+
∑

l∈I3(x)

log

{
1 + exp

[
−cyl

p∑
i=1

xihi(zl)

]}
.
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When c → ∞,

∑
l∈I1(x)

log

{
1 + exp

[
−cyl

p∑
i=1

xihi(zl)

]}
→ ∞

and ∑
l∈I3(x)

log

{
1 + exp

[
−cyl

p∑
i=1

xihi(zl)

]}
→ 0.

Therefore, limc→∞ f(cx) = ∞ for all x �= 0. This implies that f(x) has no directions
of recession. A direction of recession is a nonzero vector x1 such that f(x2 + cx1)
is a nonincreasing function of the scalar c for every choice of vector x2. Hence by
Theorem 27.1(d) in [41, p. 265] the minimum set of f(x) is nonempty. The minimum
is unique by the strict convexity of f(x). Therefore, Assumption 3 is also satisfied,
and the strict convexity, together with Assumption 3, implies Assumption 4 as well.

The following lemma is well known.
Lemma 2.5. Under Assumption 3, there exists a neighborhood U of x∗ and

positive constants A1, A2, B1, B2 such that for all x ∈ U ,

A1||x − x∗||2 ≤ f(x) − f(x∗) ≤ B1||x − x∗||2,(2.3)

A2||x − x∗||2 ≤ ||∇f(x)||2 ≤ B2||x − x∗||2.(2.4)

Let U be a neighborhood of x∗ for which inequalities (2.3) and (2.4) hold. By
Assumption 4 there exists η > 0 such that x ∈ U if f(x)−f(x∗) < η or ||∇f(x)|| < η.

Lemma 2.6. Set M5 = max{3
√

B1B2

A1A2
, 2

1−2μM1
} and λ = μM2M5. Under As-

sumptions 1, 3, and 4, if there exist positive numbers n1 and δ such that ||hk|| < δ
for every k ≥ n1, 3δ < η, 9B1

A2
δ2 < η, and 9μM1 < 1, then

(i) there exists a number k1 such that ||∇f(xk)|| < M5δ and ||dk|| < 2M5δ for
every k ≥ k1, and

(ii) there exists a number n2 such that ||hk|| < λδ for every k ≥ n2.
Proof. First, we show that there exists k such that k ≥ n1 and ||∇f(xk)|| <

2δ
1−2μM1

. In fact, if ||∇f(xk)|| ≥ 2δ
1−2μM1

for all k ≥ n1, then ||∇f(xk)|| > 2||hk||
1−2μM1

≥
||hk||

1−2μM1
for all k ≥ n1. By Lemma 2.2, the sequence {f(xk)}∞k=n1

is decreasing. Since

it is bounded from below by f(x∗), there exists limk→∞ f(xk). By replacing δ0 with
δ and max{K1,K2} with n1 at the last argument of the proof of Proposition 2.4, we
obtain a contradiction.

Let k1 be the smallest natural number such that k1 ≥ n1 and ||∇f(xk1)|| ≤
2δ

1−2μM1
. Without loss of generality, assume there exists k2, the smallest natural

number such that k2 > k1 and ||∇f(xk2)|| > 2δ
1−2μM1

. Let k3 be the smallest natural

number such that k3 > k2 and ||∇f(xk3)|| ≤ 2δ
1−2μM1

. Let k4 be the smallest natural

number such that k4 > k3 and ||∇f(xk4)|| > 2δ
1−2μM1

. We define k5, k6, . . . in a similar
manner.

For every natural m,

||dk2m−1|| ≤ ||∇f(xk2m−1)|| + ||hk2m−1|| ≤ 2δ

1 − 2μM1
+ δ ≤ 3δ

1 − 2μM1
,

||xk2m − xk2m−1|| = μ
1

L
||dk2m−1|| ≤ 3μ/L

1 − 2μM1
δ,
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and

||∇f(xk2m)|| ≤ ||∇f(xk2m) −∇f(xk2m−1)|| + ||∇f(xk2m−1)||

≤ M2||xk2m − xk2m−1|| + 2δ

1 − 2μM1

≤ M2
3μ/L

1 − 2μM1
δ +

2

1 − 2μM1
δ

=
2 + 3μM1

1 − 2μM1
δ < 3δ,

where we used μ < 1
9M1

to obtain the last inequality.

Since ||∇f(xk2m)|| < 3δ < η, xk2m ∈ U , and we can use Lemma 2.5. We obtain

f(xk2m) − f(x∗) ≤ B1||xk2m − x∗|| ≤ B1

A2
||∇f(xk2m)||2 <

B1

A2
9δ2.

Let k be such that k2m ≤ k < k2m+1. Then, by Lemma 2.2,

f(xk) − f(x∗) < f(xk2m) − f(x∗) < 9
B1

A2
δ2.

Since f(xk) − f(x∗) < 9B1

A2
δ2 < η, xk ∈ U , and we can use Lemma 2.5. We obtain

||∇f(xk)||2 ≤ B2||xk − x∗||2 ≤ B2

A1

[
f(xk) − f(x∗)

]
< 9

B1B2

A1A2
δ2.

Thus, if k satisfies k2m ≤ k < k2m+1, we have ||∇f(xk)|| < 3
√

B1B2

A1A2
δ. If k satisfies

k2m−1 ≤ k < k2m, we have ||∇f(xk)|| < 2
1−2μM1

δ. Therefore for each k ≥ k1,

||∇f(xk)|| < M5δ, and therefore

||dk|| ≤ ||∇f(xk)|| + ||hk|| ≤ M5δ + δ < 2M5δ.

Thus, if k ≥ k1, we have

||∇f(xk)|| < M5δ,

||dk|| < 2M5δ.
(2.5)

This proves the first part of the lemma.
To prove the second part, we take n2 = k1+L−1. If k ≥ n2, then not only xk but

also L − 1 previous terms of the sequence {xk} satisfy inequalities (2.5). Therefore,
by following the steps in the proof of Proposition 2.4, we have for k ≥ n2

||hk|| ≤ μM1
1

L

L−1∑
l=1

(
||dk−1|| + ||dk−2|| + · · · + ||dk−l||

)

< μM1
1

L
2M5δ

L−1∑
l=1

l∑
m=1

1 = μM1
1

L
2M5δ

L(L− 1)

2

< μM2M5δ = λδ.
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Thus ||hk|| < λδ. This proves the second part of Lemma 2.6.
Remark 4. A direct result of Lemma 2.6 is that under Assumptions 1–4, ||hk|| → 0

is a sufficient condition for the convergence of xk, generated by any gradient method
with errors (2.1), to x∗.

Proposition 2.7. Under Assumptions 1, 2, 3, and 4, if μ < min{ 1
9M1

, 1
M2M5

,

η
3M1M3

, 1
3M2M3

√
A2η
B1

}, then limk→∞ xk = x∗.

Proof. We prove Proposition 2.7 by repeated use of Lemma 2.6. We start with
δ = δ0. By applying Lemma 2.3, there exists K such that for all k > K, ||hk|| < δ0.
After applying Lemma 2.6 r times we get a number nr such that ||hk|| < δ0λ

r,
||∇f(xk)|| < M5δ0λ

r, and ||dk|| < 2M5δ0λ
r for k ≥ nr. The inequality μ < 1

M2M5

is equivalent to 0 < λ < 1. Hence, limk→∞ ||hk|| = 0, limk→∞ ||dk|| = 0, and
limk→∞ ||∇f(xk)|| = 0, and by Assumption 4, limk→∞ xk = x∗.

Note that the inequality μ < 1
9M1

was used in the proof of Lemma 2.6, and

the inequalities μ < η
3M2M3

and μ < 1
3M2M3

√
A2η
B1

are equivalent to 3δ0 < η and
9B1

A2
δ2
0 < η, respectively.

2.2. Case II: Quadratic case. In [25] it is shown that when applied to the
objective function

f(x) =
1

2
(x− c1)

2 +
1

2
(x− c2)

2,

the standard incremental gradient method with a constant step size

xk+1 = xk − μ∇f(k)L(xk)

converges to a limit cycle with limit points

x∗
1(μ) =

(1 − μ)c1 + c2
2 − μ

, x∗
2(μ) =

(1 − μ)c2 + c1
2 − μ

whenever 0 < μ < 1. When implementing the IAG method one obtains

xk+1 = xk − μ

2

[(
xk − c(k)2

)
+
(
xk−1 − c(k−1)2

)]
= xk − μ

2

[
xk + xk−1 − (c1 + c2)

]
.

Subtracting x∗ = (c1 + c2)/2, the unique minimum of f(x), from both sides and
denoting the error at the kth iteration by ek = xk − x∗ lead to the following error
form:

ek+1 = ek − μ

2

[
ek + ek−1

]
.

The characteristic polynomial of this linear system is λ2 − (1 − μ/2)λ + μ/2, and it
is easy to show that the roots of this polynomial are inside the unit circle whenever
0 < μ < 2. Hence, when 0 < μ < 2, ek → 0; i.e., xk converges to the unique minimum,
in contrast to the standard incremental gradient method.

More generally, suppose that the functions fl, l = 1, . . . , L, have the following
form:

fl(x) =
1

2
x′Qlx− c′lx, l = 1, . . . , L,(2.6)
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where Ql are given symmetric matrices, cl are given vectors, and
∑L

l=1 Ql is positive

definite. Under this assumption, the function f(x) =
∑L

l=1 fl(x) is strictly convex,
having its minimum point at

x∗ =

(
L∑

l=1

Ql

)−1 L∑
l=1

cl,(2.7)

and x∗ is the only stationary point of f(x).

Proposition 2.8. For sufficiently small μ, limk→∞ xk = x∗, and the rate of
convergence of the IAG method (1.4) is linear.

Proof. Plugging (2.6) into (1.4), the IAG method becomes

xk+1 = xk − μ

[
L−1∑
l=0

Q(k−l)Lx
k−l − c(k−l)L

]
= xk − μ

L−1∑
l=0

Q(k−l)Lx
k−l + μc,

where c =
∑L

l=1 cl, and the factor 1
L was absorbed into μ to simplify the notation.

Subtracting x∗ (2.7) from both sides and adding and subtracting x∗ inside the paren-
theses, we obtain

xk+1 − x∗ = xk − x∗ − μ

L−1∑
l=0

Q(k−l)L(xk−l − x∗ + x∗) + μc.

Denoting the error at the kth iteration by ek = xk − x∗ and the substitution of (2.7)
for x∗ lead to the following error form:

ek+1 = ek − μ

L−1∑
l=0

Q(k−l)Le
k−l.

This relation between a new error and the previous errors can be seen as a periodically
time varying linear system. To analyze its stability, which will lead to the convergence
result, it is useful to consider L iterations as one iteration [29]. This can be seen as
downsampling the original system by a factor of L, which leads to a time invariant
system of a lower sampling rate. Without loss of generality, consider the case where
k = NL for some integer N ; i.e., k + 1 corresponds to the first iteration of a new
cycle. In this case we have

ek+1 = ek − μ

L−1∑
l=0

Q(k−l)Le
k−l = ek − μ

[
QL QL−1 QL−2 . . . Q1

]
ek

=
[
Ip − μQL −μQL−1 −μQL−2 . . . −μQ1

]
ek,

where Ip is the p× p identity matrix and

ek =

⎡
⎢⎢⎢⎣

ek

ek−1

...
ek−L+1

⎤
⎥⎥⎥⎦ .
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Similarly,

ek+2 = ek+1 − μ

L−1∑
l=0

Q(k+1−l)Le
k+1−l

= ek+1 − μ
[
Q1 QL QL−1 . . . Q2

]
ek+1

=
[
Ip − μQ1 −μQL −μQL−1 . . . −μQ2

]
ek+1,

and finally

ek+L = ek+L−1 − μ

L−1∑
l=0

Q(k+L−1−l)Le
k+L−1−l

= ek+L−1 − μ
[
QL−1 QL−2 QL−3 . . . QL

]
ek+L−1

=
[
Ip − μQL−1 −μQL−2 −μQL−3 . . . −μQL

]
ek+L−1.

This leads to the relation

ek+L = MLe
k+L−1,

where

ML =

⎡
⎢⎢⎢⎢⎢⎣

Ip − μQL−1 −μQL−2 . . . −μQ1 −μQL

Ip 0p . . . 0p 0p
0p Ip . . . 0p 0p
...

...
. . .

...
...

0p 0p . . . Ip 0p

⎤
⎥⎥⎥⎥⎥⎦ ,

where 0p denotes the p× p zero matrix. Taking another step we have

ek+L = MLML−1e
k+L−2,

where

ML−1 =

⎡
⎢⎢⎢⎢⎢⎣

Ip − μQL−2 −μQL−3 . . . −μQL −μQL−1

Ip 0p . . . 0p 0p
0p Ip . . . 0p 0p
...

...
. . .

...
...

0p 0p . . . Ip 0p

⎤
⎥⎥⎥⎥⎥⎦ ,

and finally, by induction,

ek+L = MLML−1 . . .M1e
k,

where

M1 =

⎡
⎢⎢⎢⎢⎢⎣

Ip − μQL −μQL−1 . . . −μQ2 −μQ1

Ip 0p . . . 0p 0p
0p Ip . . . 0p 0p
...

...
. . .

...
...

0p 0p . . . Ip 0p

⎤
⎥⎥⎥⎥⎥⎦ .
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Denoting M = MLML−1 . . .M1, we have ek+L = Mek, and in general ek+nL = Mnek.
Therefore, if for sufficiently small μ > 0 the eigenvalues of M are inside the unit circle,
then limn→∞ ek+nL = 0pL×1, where 0pL×1 is a pL × 1 zero vector; i.e., the method
converges to the minimum of the function f(x) and the convergence rate is linear.

To prove that the eigenvalues of M are inside the unit circle, set

A =

⎡
⎢⎢⎢⎢⎢⎣

Ip 0p . . . 0p 0p
Ip 0p . . . 0p 0p
0p Ip . . . 0p 0p
...

...
. . .

...
...

0p 0p . . . Ip 0p

⎤
⎥⎥⎥⎥⎥⎦

and

Bk =

⎡
⎢⎢⎢⎢⎢⎣

Q(k−1)L Q(k−2)L . . . Q(k+1)L Qk

0p 0p . . . 0p 0p
0p 0p . . . 0p 0p
...

...
. . .

...
...

0p 0p . . . 0p 0p

⎤
⎥⎥⎥⎥⎥⎦ , k = 1, . . . , L,

so that Mk = A− μBk and M = (A− μBL)(A− μBL−1) . . . (A− μB1). Hence,

M = AL − μ
(
BLA

L−1 + ABL−1A
L−2 + A2BL−2A

L−3 + · · ·

+ AL−2B2A + AL−1B1

)
+ μ2C(μ),

where C(μ) is an Lp× Lp matrix whose elements are polynomials in μ.
Note that premultiplying a matrix by A will duplicate the first row of p×p matrices

and will shift the rest of the rows down, discarding the last p rows. Postmultiplying
by A will add the second column of p× p matrices to the first one and will shift the
rest of the columns to the left, inserting a block of p × p zero matrices to the last
column. It follows that

AL =

⎡
⎢⎢⎢⎢⎢⎣

Ip 0p . . . 0p 0p
Ip 0p . . . 0p 0p
Ip 0p . . . 0p 0p
...

...
. . .

...
...

Ip 0p . . . 0p 0p

⎤
⎥⎥⎥⎥⎥⎦

and

AL−kBkAk−1 =

[
W1(k) 0(L−k+1)p×(k−1)p

0(k−1)p×(L−k+1)p 0(k−1)p×(k−1)p

]
,

where W1(k) is a (L− k + 1)p× (L− k + 1)p matrix whose elements are

W1(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

k−1∑
l=0

Q(l)L QL−1 . . . Qk

...
...

...
k−1∑
l=0

Q(l)L QL−1 . . . Qk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.
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Therefore, the characteristic polynomial F (μ, λ) of M is

F (μ, λ) = det (M − λILp) = det

(
AL − μ

L∑
k=1

AL−kBkAk−1 − λILp + μ2C(μ)

)
.

The first p columns of
(
AL − μ

∑L
k=1 A

L−kBkAk−1 − λILp + μ2C(μ)
)

are⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(1 − λ)Ip − μ [LQL + (L− 1)Q1 + · · · + QL−1] + μ2C11

Ip − μ [(L− 1)QL + (L− 2)Q1 + · · · + QL−2] + μ2C21

Ip − μ [(L− 2)QL + (L− 3)Q1 + · · · + QL−3] + μ2C31

...
Ip − μ (2QL + Q1) + μ2CL−1 1

Ip − μQL + μ2CL1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

the second p columns are⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−(L− 1)μQL−1 + μ2C12

−(L− 1)μQL−1 − λIp + μ2C22

−(L− 2)μQL−1 + μ2C32

...
−2μQL−1 + μ2CL−1 2

−μQL−1 + μ2CL2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

the next (L− 3)p columns are⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−(L− 2)μQL−2 + μ2C13 . . . −2μQ2 + μ2C1 L−1

−(L− 2)μQL−2 + μ2C23 . . . −2μQ2 + μ2C2 L−1

−(L− 2)μQL−2 − λIp + μ2C33 . . . −2μQ2 + μ2C3 L−1

...
...

−2μQL−2 + μ2CL−1 3 . . . −2μQ2 − λIp + μ2CL−1 L−1

−μQL−2 + μ2CL3 . . . −μQ2 + μ2CL L−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

and the last p columns are ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−μQ1 + μ2C1L

−μQ1 + μ2C2L

−μQ1 + μ2C3L

...
−μQ1 + μ2CL−1 L

−μQ1 − λIp + μ2CLL

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

where Cij , i, j = 1, . . . , L, are p× p matrices whose entries are polynomials in μ.
It is easy to see that if μ = 0, then F (0, λ) = (−1)LpλLp−p(λ − 1)p. Hence,

if μ = 0, we have an eigenvalue 0 of multiplicity Lp − p and an eigenvalue 1 of
multiplicity p. If μ is close enough to zero, the 0-eigenvalues will be close to the
origin and therefore inside the unit circle. We need to prove that for sufficiently small
positive μ, all the 1-eigenvalues will be inside the unit circle. Let λ = λ(μ) be a
smooth function expressing the dependence of one of the 1-eigenvalues on μ. We will
prove that dλ

dμ (0+) < 0. It will be enough for our purposes, since it will show that the
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trajectory λ = λ(μ) is entering the unit circle, and hence λ(μ) is inside the unit circle
for sufficiently small positive μ.

By the definition of λ(μ), λ(0+) = 1 and F (μ, λ(μ)) = 0 for all μ. It follows that

dpF (μ, λ(μ))

dμp
= 0.(2.8)

To calculate the left-hand side of (2.8), we use the formula for the derivative of a
determinant [23]. Note that substituting μ = 0 and λ = 1 into each of the first p
rows of the matrix M − λILp leads to a row in which all of the entries are zeros,
and therefore the determinant has a zero value. Therefore the only nonzero terms in
dpF (μ,λ(μ))

dμp after substituting μ = 0 and λ = 1 (more precisely, taking μ → 0+) are

the terms with the first derivatives in the first p rows (there are p! such terms). Hence
taking the pth derivative is reduced to taking the first derivative of each of the first p
rows. Substituting λ = 1 and μ → 0+ we obtain

dpF (μ, λ(μ))

dμp
= p! det

[
W2 W3

W4 −I(L−1)p×(L−1)p

]
= 0,

where W2 = −λ′(0+)Ip −
∑L−1

k=0 (L− k)Q(k)L ,

W3 =
[
−(L− 1)QL−1 −(L− 2)QL−2 . . . −2Q2 −Q1

]
,

and W4 = [Ip Ip . . . Ip]
T . Add all columns of p×p matrices to the first column of p×p

matrices to obtain

det

[
W5 W3

0(L−1)p×p −I(L−1)p×(L−1)p

]
= 0,

where W5 = −λ′(0+)Ip − L
∑L

k=1 Qk. Calculating the last determinant gives

det

[
L

L∑
k=1

Qk + λ′(0+)Ip

]
= 0.

The last equation shows that −λ′(0+) is an eigenvalue of the matrix L
∑L

k=1 Qk. Since

L
∑L

k=1 Qk is positive definite, −λ′(0+) > 0, and therefore λ′(0+) < 0. This proves
that for sufficiently small μ > 0 the eigenvalues of the matrix M are strictly inside
the unit circle, and hence the sequence xk converges to x∗, and the convergence rate
is linear.

3. Initialization and distributed implementation. As mentioned in sec-
tion 1, the IAG method is initiated with L points, x1, x2, . . . , xL. Possible initializa-
tion strategies include setting x1 = x2 = · · · = xL or generating the initial points using
a single cycle of the standard incremental gradient method (1.5). Another possibility
is the following. Given x1, compute d1 = ∇f1(x

1). Then, for 1 ≤ k ≤ L− 1,

xk+1 = xk − μ
1

k
dk,

dkk + 1 = dk + ∇f(k+1)L(xk+1).

(3.1)

Therefore, after L− 1 iterations we obtain x1, . . . , xL and dL =
∑L

l=1 ∇fl(x
l).
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The key feature of the IAG method that makes it suitable for wireless sensor net-
works applications is that it can be implemented in a distributed manner. Consider
a distributed system of L processors enumerated over 1, 2, . . . , L, each of which has
access to one of the functions fl(x). The initialization (3.1) begins with x1 at proces-
sor 1. Then processor 1 sets d1 = ∇f1(x

1) and transmits x1 and d1 to processor 2.
Upon receiving xk−1 and dk−1 from processor k− 1, processor k calculates xk and dk

according to (3.1) and transmits them to processor k + 1. The initialization phase is
completed when processor L, upon receiving xL−1 and dL−1 from processor L − 1,
computes xL and dL according to (3.1) and transmits them to processor 1.

Once the initialization phase is completed, the algorithm progresses in a cyclic
manner. Upon receiving xk−1 and dk−1 from processor (k − 1)L, processor (k)L
computes xk and dk according to (1.2) and (1.3), respectively, and transmits them to
processor (k + 1)L. Note that ∇f(k)L(xk−L) in (1.3) is available at processor (k)L,
since it was the last gradient computed at that processor. Therefore, the only gradient
computation at processor (k)L is ∇f(k)L(xk). At no phase of the algorithm do the
processors share information regarding the complete function f(x) or its gradient
∇f(x).

4. Application to wireless sensor networks. There are two motivations to
use the IAG method: (a) reduced computational burden due to the evaluation of a
single gradient per iteration compared to L gradients required for the steepest descent
method; and (b) the possibility of a distributed implementation of the method in which
each component has access to one of the functions fl(x). The second item has been
shown to be very useful in the context of wireless sensor networks [38]. Wireless sensor
networks provide means for efficient large scale monitoring of large areas [45]. Often
the ultimate goal is to estimate certain parameters based on measurements that the
sensors collect, giving rise to an optimization problem. If measurements from distinct
sensors are modelled as statistically independent, the estimation problem takes the
form of (1.1), where fl(x) is indexed by the measurements available at sensor l (see,
e.g., [9, 33, 36, 37] and the references therein). When transmitting the complete set of
data to a central processor is impractical due to bandwidth and power constraints, the
IAG method can be implemented in a distributed manner as described in section 3.
In the following sections we consider two such estimation problems.

4.1. Robust estimation. One of the benefits of a wireless sensor network is
the ability to deploy a large number of low cost sensors to densely monitor a cer-
tain area [45]. Because low cost sensors have limited reliability, the system must be
designed to be robust to the possibility of individual sensor failures. In estimation
tasks, this means that some of the sensors will contribute unreliable measurements,
namely outliers. In [36] the authors suggest the use of robust statistics to alleviate
the influence of outliers in the data (see [20] or, specifically in the context of optimiza-
tion, [34, p. 347]). The robust statistics framework uses objective functions that give
less weight to outliers. A common objective function used to this end is the function
“Fair” [39, p. 110], given by

g(x) = c2
[
|x|
c

− log

(
1 +

|x|
c

)]
.(4.1)

Following [36] we simulate a sensor network for measuring pollution levels and
assume that a certain percentage of the sensors are damaged and provide unreliable
measurements. Each sensor collects a single noisy measurement of the pollution level,
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and the estimate of the average pollution level is found by minimizing the objective
function defined by

f(x) =

L∑
l=1

fl(x),(4.2)

where x ∈ R, and

fl(x) =
1

L
g(x− yl),

where yl is the measurement collected by sensor l. There were L = 50 sensors in
the simulation. To reflect the possibility of faulty sensors, half of the samples were
generated according to a Gaussian distribution with mean m1 = 10 and unit variance
(σ2

1 = 1), and the other half were generated according to a Gaussian distribution with
mean m2 = 10 and ten times higher variance (σ2

2 = 10). The coefficient c in (4.1) was
chosen to be 10.

For positive x, the first derivative of g(x) is x
1+x/c , and for negative x it is x

1−x/c .

Hence, g′(0+) = g′(0−) = 0. The continuity of g(x) implies then that it is differen-
tiable at zero despite the term |x|. Therefore, the first derivative of g(x) is x

1+|x|/c , it

is continuous, and it is bounded by c. Considering positive and negative x’s separately
also shows that g′′(0+) = g′′(0−) = 1 and that, in general, the second derivative of
g(x) is 1

(1+|x|/c)2 , which is bounded by 1. Hence both Assumptions 1 and 2 hold. In

addition, since 1
(1+|x|/c)2 is strictly positive, g(x) is strictly convex, and therefore f(x)

is strictly convex as well. Since both limx→∞ f(x) and limx→−∞ f(x) diverge to ∞,
f(x) has no directions of recession, and therefore, by Theorem 27.1(d) in [41, p. 265],
the minimum set of f(x) is nonempty. The minimum is unique by the strict convexity
of f(x). Since g′′(x) is continuous and positive everywhere, Assumption 3 is satisfied.
The strict convexity of f(x) implies that Assumption 4 holds as well (see Remark 2).

Both the standard incremental gradient method (1.5) with a constant step size
μ(k) = μ (abbreviated as IG in the figures) and the IAG method with the initialization
(3.1) were implemented with several choices of step size μ. The initial point x1 was
set to 0. In Figure 4.1 the trajectories of the two methods are presented. The solid
straight line corresponds to the minimum point x∗. It is seen that when the step
size is sufficiently small, IAG increases more rapidly towards x∗ than the standard
incremental gradient in the early iterations. Furthermore, as predicted by the theory,
IAG converges to the true limit, whereas the incremental gradient method converges
to a limit cycle. For a larger step size the IAG method overshoots due to its heavy
ball characteristic (1.4). When the step size is too large, the IAG method no longer
converges, but the incremental gradient method still converges to a limit cycle. We
have observed this behavior for other values of the parameters m1,m2, σ

2
1 , σ

2
2 , c as

well.
We also compared the IAG method with the incremental gradient method with a

diminishing step size, with Bertsekas’ hybrid method [5], and with Tseng’s incremental
gradient with momentum [46] in terms of number of iterations to convergence. To
optimize the performance of the incremental gradient method with a diminishing step
size, a relatively large constant step size μ = 0.2 is used until convergence to a limit

cycle is detected, and then the diminishing step size is μ(k) = .2μ/(k̃ − k), where k̃
is the first iteration in which a limit cycle is detected. Convergence to a limit cycle
is declared when |xk − xk−L| < .01 for k a multiple of L. To describe the parameters
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Fig. 4.1. Trajectories taken by the IG and IAG methods for the robust “Fair” estimation problem.

used in the hybrid method, we switch to the notation in [5]. We set γ = 0.05 and α(μ)
as defined in equation (47) in [5], with φ(μ) = ζ(1−μ), where ζ = 2.5. The transition
parameter μ is kept at zero; i.e., the iterates are identical to the incremental gradient
method until convergence to a limit cycle is detected as described above. Once a limit
cycle is detected, μ is updated after every cycle according to μ := 1.5μ+0.3, i.e., n̂ = 1.
These parameters seemed to optimize the performance of the hybrid method. The
parameters of the incremental gradient with momentum term were set according to
the recommendation in [46], which seemed to optimize the performance of the method
in our application as well. In particular, we set ε0 = 1, ε1 = ε2 = 0.00001, ε3 = 1000,
η = 1.5f(x0

1)+100, ρ = ∞, ω = 0.5, ζ = 0.8, and λ1 +λ2 + · · ·+λm = 1. For the IAG
method we set μ = 0.05. The convergence point was specified to be the first iteration
for which all subsequent iterations satisfy |xk−x∗| < ε. Since the IAG and the hybrid
methods outperform the incremental gradient method with a diminishing step size
and the incremental gradient with momentum term by a large margin, ε was specified
to be 0.01 for the IAG and the hybrid method and 0.1 for the incremental gradient
method with a diminishing step size and the incremental gradient with momentum
term. The average number of iterations until convergence and its standard deviation
were estimated from 100 Monte Carlo simulations and are summarized in Table 4.1.
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Table 4.1

Number of iterations to convergence.

IAG Hybrid IG diminishing step size IG momentum term
ε = 0.01 ε = 0.01 ε = 0.1 ε = 0.1

Mean 290 589 601 2063
Std 23 135 258 919
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Fig. 4.2. IAG compared to IG with diminishing step size, to the hybrid method, and to IG with
momentum term.

The trajectory taken by the different methods in one of these simulations is presented
in Figure 4.2. It is seen that for this application, the IAG method performs best.
Further experimentation is required to make more general conclusions.

4.2. Source localization. This section presents a simulation of a sensor net-
work for localizing a source that emits acoustic waves. L sensors are distributed on
the perimeter of a field at known spatial locations, denoted rl, l = 1, . . . , L, where
rl ∈ R

2. Each sensor collects a noisy measurement of the acoustic signal transmitted
by the source, denoted yl, at an unknown location x. Based on a far-field assumption
and an isotropic acoustic wave propagation model [13, 24, 36, 42, 43], the problem of
estimation of source location can be formulated as a nonlinear least squares problem.
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Fig. 4.3. Distance of IG and IAG iterates to the optimal solution x∗ for source localization
problem.

The objective function is again of the form (4.2), but now

fl(x) =
(
yl − g(||rl − x||2)

)2
,(4.3)

x ∈ R
2, and

g(z) =

{
A/z : z ≥ A/ε,

2ε− ε2z/A : z < A/ε.
(4.4)

In (4.3) g(·) models the received signal strength as a function of the squared distance.
In (4.4) A is a known constant characterizing the source’s signal strength. For z ≥ A/ε
(far-field source), the source’s signal strength has isotropic attenuation as an inverse
function of the squared distance, while for z < A/ε (near-field source), the attenuation
is linear in the squared distance. It is easy to see that Assumptions 1 and 2 are
satisfied, and therefore Proposition 2.4 holds. Clearly, since f(x) is multimodal in this
case, Assumptions 3 and 4 cannot hold. However, it was observed in our experiments
that when the source is sufficiently distant from the sensors, the objective function
has a single minimum inside the observed field (see Figure 4.4 for a contour plot of
the objective function) and, when initiated not too far from the minimum point, the
IAG method has good convergence properties. This suggests the possible application
of the IAG method under weaker assumptions than those considered in this paper
and motivates further investigation into its properties.

In the numerical experiment, L = 32 sensors are distributed equidistantly on the
perimeter of a 100 × 100 field. The source is located at the point [60, 60] and emits
a signal with strength A = 1000. The sensors’ noisy measurements were generated
according to a Gaussian distribution with a mean equal to the true signal power and
unit variance. Both the incremental gradient method with a constant step size and
the IAG method with the initialization (3.1) were initiated at the point [40, 40]. The
error term ||xk − x∗|| as a function of the iteration number is presented in Figure 4.3
for two choices of step size. The actual path taken by the methods for step size
μ = 10 is presented in Figure 4.4, where the asterisk denotes the true minimum
point of the objective function. It is seen that, as the theory predicts, the incremental
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Fig. 4.4. Path taken by the IG and IAG methods for source localization problem.

gradient method exhibits oscillations near the eventual limit, whereas the IAG method
converges to the minimum. In this scenario, the IAG method outperforms the IG
method at early iterations as well.
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Abstract. Considering iterative sequences that arise when approximate solutions xk to a nu-
merical problem are updated by xk+1 = xk +v(xk), where v is a differentiable vector field, we derive
necessary and sufficient conditions for such discrete processes to converge to a stationary point of v
at different Q-rates in terms of a similar notion of fast convergence for the corresponding continuous
processes.
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1. Introduction. In this paper we study sequences (xk)N0 which, given a start-
ing point x0, consist of points that are iteratively related to one another via the rule

xk+1 = xk + v(xk),(1.1)

where v : D ⊆ R
n → R

n is a differentiable vector field with Jacobian J = Dv,
and where D is a convex open domain. We are interested in the situation where xk

converges to a stationary point x∗ of v, i.e., a point where v(x∗) = 0. Sequences of the
form (1.1) appear in many areas of numerical analysis where an approximate solution
xk is iteratively improved, notably in unconstrained optimization and in zero-finding
problems. One of the major objectives in designing iterative schemes of this kind is
to ensure that they converge at a provably fast rate to a point x∗ which represents
a solution of interest. The concept of fast convergence used in this paper is that of
uniform Q-convergence. Related but not entirely equivalent notions of Q-convergence
have been discussed in the literature; see, e.g., [5].

Definition 1.1. We say that the process (1.1) converges to x∗ uniformly at
Q-convergence rate q > 1 in the ball Bρ(x

∗) if there exists β > 0 such that

‖x + v(x) − x∗‖ ≤ β‖x− x∗‖q(1.2)

for all x ∈ Bρ(x
∗), where ‖ · ‖ denotes the Euclidean norm.

Setting ρ̃ := min(ρ, β
1

q−1 ), another way to express this is that if the sequence (xk)N

ever enters the ball Bρ̃(x
∗), then it converges to x∗, and each iteration starting from

within the ball improves the accuracy of xk as an approximation of x∗ to about q times
as many correct digits as beforehand. The constant β is called the convergence factor.
For example, the well-known Kantorovich theorem [3] shows that Newton’s method
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for zero-solving converges Q-quadratically under standard regularity assumptions. A
weaker notion of fast convergence is the following.

Definition 1.2. We say that the process (1.1) converges uniformly Q-superlinearly
to x∗ if

lim
x→x∗

‖x + v(x) − x∗‖
‖x− x∗‖ = 0.(1.3)

That is, asymptotically, each iteration adds more than any fixed number of additional
correct digits to the current approximation of x∗.

Let us briefly comment on the notation used in this paper. All identity matrices
are denoted by I, irrespective of their dimension. We write Sn−1 for the set of unit
vectors {x ∈ R

n : ‖x‖ = 1} in R
n. This is a standard notation that accounts for

the fact that the sphere Sn−1 is a (n − 1)-dimensional manifold. Another standard
notation, already used, is to write Bδ(x) := {y ∈ R

n : ‖y − x‖ < δ} for the open
Euclidean ball of radius δ in R

n. We denote inner products by 〈·, ·〉 and use · for
scalar multiplication instead where it helps improve the readability of the text. If x
is a nonzero vector in R

n, we write n(x) := ‖x‖−1 · x for its normalization.

1.1. Overview. The discrete dynamical system (1.1) has a continuous analogue
obtained when damping with an infinitesimal step size is applied. The associated flow
is defined by

∂

∂t
ϕ(x, t) = v(ϕ(x, t)), ϕ(x, 0) = x.(1.4)

In other words, in the continuous process one chooses a starting point x and follows
the flux line t 	→ ϕ(x, t), obtained by integrating the ODE (1.4) to a limit point
x∗ = limt→∞ ϕ(x, t). Note that the flow-conservation property

ϕ(x, t + τ) = ϕ
(
ϕ(x, t), τ

)
(1.5)

holds for all x, t, and τ for which both sides are well defined.
The main goal of this paper is to investigate the notion of Q-convergence for

the discrete process (1.1) via a new notion of fast convergence for the associated
continuous process (1.4). This is done in section 3, where we define the notions of
exponential and p-exponential convergence for (1.4) and show that they are equivalent
to uniform Q-superlinear and Q-convergence of rate p+ 1 for (1.1); see Theorem 3.4.

Our results shed new light on the well-established notion of Q-convergence, as
exponential convergence has an easy geometric interpretation in terms of the flux
lines of (1.4): not only do these have to converge to x∗ exponentially fast in t, but
also does a rotational component have to die out sufficiently quickly.

It is often observed that continuous dynamical systems are easier to analyze than
discrete ones. Useful applications of Theorem 3.4 as an analytic tool derive from this
observation. We illustrate this in section 5, where we discuss an example of a vector
field v(x) with the property that none of the rescaled vector fields λ(x)v(x) leads to a
discrete process (1.1) with a faster Q-convergence rate than the process corresponding
to v(x). In this context λ(x) can be chosen as an arbitrary positive differentiable scalar
function. This observation is relevant in unconstrained optimization, as it shows that
a line search cannot be expected to speed up the asymptotic convergence rate of a
search direction field.

Continuous methods for solving zero-finding and optimization problems have been
proposed by various authors; see, e.g., [1, 2] for relevant ideas and references. To avoid
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any confusion, we point out that our paper is not intended as a direct contribution to
this discussion. Instead, our focus is on understanding convergence rates alone and
on deriving a useful observation in the context of unconstrained optimization.

To prepare the analysis of our main result in section 3, an exact characterization
of the vector fields that make the process (1.1) converge fast under either notion
of uniform Q-convergence is given in section 2: Theorem 2.3 shows that when the
Jacobian J(x) is sufficiently smooth at x∗, then the process (1.1) converges at a
quantifiable Q-convergence rate if and only if v(x∗) = 0 and J(x∗) = − I. This result
is also interesting in its own right.

2. Fast convergence of the discrete process. In this section we consider
the discrete dynamical system (1.1). We will see that uniform Q-superlinear conver-
gence and uniform Q-convergence at a given rate are characterized by the differential
properties of v(x) in a neighborhood of x∗.

Let p > 0. Recall that the tensor field J(x) is said to be p-Hölder continuous at
x∗ if there exist constants α > 0 and 
 > 0 such that

‖J(x) − J(x∗)‖ ≤ α‖x− x∗‖p(2.1)

for all x ∈ B�(x
∗).

Lemma 2.1. Let J be continuous at x∗, v(x∗) = 0, and J(x∗) = − I. Then (1.1)
converges uniformly Q-superlinearly to x∗. If J is furthermore p-Hölder continuous at
x∗ then (1.1) converges uniformly at the Q-convergence rate p + 1 in a neighborhood
of x∗.

Proof. Using v(x∗) = 0, we find that for all x ∈ D,

lim
x→x∗

‖x + v(x) − x∗‖
‖x− x∗‖ = lim

x→x∗

∥∥∥(I +
∫ 1

0
J(x∗ + t(x− x∗))dt

)
(x− x∗)

∥∥∥
‖x− x∗‖

≤ lim
x→x∗

∥∥∥∥ I +

∫ 1

0

J(x∗ + t(x− x∗))dt

∥∥∥∥ = 0,

where the last equality follows from the continuity of J at x∗. This shows the first
claim. The second claim is established as follows:

‖x + v(x) − x∗‖ =

∥∥∥∥
(

I +

∫ 1

0

J(x∗ + t(x− x∗))dt

)
(x− x∗)

∥∥∥∥
≤

∥∥∥∥ I +

∫ 1

0

J(x∗ + t(x− x∗))dt

∥∥∥∥ · ‖x− x∗‖

≤
∫ 1

0

αtp‖x− x∗‖pdt · ‖x− x∗‖ =
α

p + 1
· ‖x− x∗‖p+1.

We remark that Lemma 2.1 is a minor adaptation of a special case of Theorem
10.1.6 [4] by Ortega and Rheinboldt, which says that if G : D ⊂ R

n → R
n has

a fixed point x∗ ∈ D at which it is F-differentiable with G′(x∗) = 0, then x∗ is
a point of attraction of the process xk+1 := G(xk), and furthermore, if G(x) is p-
Hölder continuous at x∗, then the process converges at order p. In the context of
Lemma 2.1 one can choose G(x) = x+ v(x), so that the criterion G′(x∗) = 0 becomes
I +J(x∗) = 0 and the fixed-point criterion G(x∗) = x∗ becomes x∗ = x∗ + v(x∗).
Furthermore, p-Hölder continuity of G(x) at x∗ means the existence of a constant
β > 0 such that

‖x + v(x) − x∗‖ = ‖G(x) −G(x∗)‖ ≤ β‖x− x∗‖p(2.2)
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in a neighborhood of x∗, which is in fact nothing but the definition of uniform Q-
convergence of order p; see Definition 1.1. Thus, Theorem 10.1.6 in [4] applies to
more general maps under weaker differentiability assumptions than Lemma 2.1, but
by making the assumption (2.2), order-p convergence is a forgone conclusion in the
specific case that is of interest here.

We are now going to prove a partial inverse of Lemma 2.1.
Lemma 2.2. If (1.1) converges uniformly Q-superlinearly to x∗, then v(x∗) = 0

and J(x∗) = − I.
Proof. Equation (1.3) implies that for all ε > 0 there exists δε > 0 such that

x ∈ Bδε(x
∗) implies

‖x + v(x) − x∗‖ ≤ ε‖x− x∗‖.(2.3)

Taking limits x → x∗ on both sides and using the continuity of v, we obtain ‖v(x∗)‖ ≤
0, which shows that v(x∗) = 0. Next, let z ∈ Sn−1 and consider the sequence (xn)N

defined by xn = x∗ + z/n. Then (1.3) and v(x∗) = 0 show that

‖
(
I +J(x∗)

)
z‖ = lim

n→∞

‖xn − x∗ + v(xn) − v(x∗)‖
‖xn − x∗‖ = 0.

But this shows that J(x∗)z = −z, and since z was an arbitrary unit vector, it follows
that J(x∗) = − I.

It thus emerges that if continuity or Hölder continuity of J at x∗ is given, then the
two preceding lemmas yield the following exact characterization of fast convergence.

Theorem 2.3. If J is continuous at x∗, then (1.1) converges to x∗ uniformly Q-
superlinearly if and only if v(x∗) = 0 and J(x∗) = − I. If J is p-Hölder continuous at
x∗, then (1.1) converges uniformly at the Q-convergence rate p + 1 in a neighborhood
of x∗ if and only if v(x∗) = 0 and J(x∗) = − I.

Proof. Observe that Q-convergence at a rate p + 1 > 1 implies Q-superlinear
convergence. Everything else follows directly from Lemmas 2.1 and 2.2.

Note that Theorem 2.3 shows that the only difference between Q-superlinear
convergence and convergence at Q-rates p + 1 > 1 consists in the smoothness of the
Jacobian of v in a neighborhood of x∗.

3. Fast convergence of the continuous process. In this section we intro-
duce notions of fast convergence for the continuous dynamical system (1.4) which
we will show to be equivalent to uniform Q-superlinear convergence and uniform Q-
convergence of rate p + 1, respectively, of the discrete system (1.1).

The following property of differential inequalities is well known; see, e.g., [6].
Lemma 3.1. Let d

dty(t) = g(t, y(t)), y(0) = y0, t ≥ 0, where g ∈ C(R+,R) and

y ∈ C1(R+,R), and let d
dtz(t) � g(t, z(t)), z(0) = y0, t ≥ 0. If g(t, x) is monotone

increasing in x or of the form g(t, x) = h(t) or g(t, x) = h(t)x, then z(t) � y(t) for
all t ≥ 0.

We will be interested in the normalized vector

n(ϕ(x, t) − x∗) :=
ϕ(x, t) − x∗

‖ϕ(x, t) − x∗‖ ∈ Sn−1 :=
{
x ∈ R

n : ‖x‖ = 1
}

and the speed ‖ ∂
∂tn(ϕ(x, t)− x∗)‖ which we will call the angular speed and which can

be interpreted as the absolute angle traversed by the flux line ϕ(x, t) with respect to
x∗ per unit time.
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Lemma 3.2. For ϕ(x, t) as defined by (1.4) it is true that

∂

∂t
n(ϕ(x, t) − x∗) =

(I−P (x, t)) v(ϕ(x, t))

‖ϕ(x, t) − x∗‖ ,(3.1)

where P (x, t) denotes the orthogonal projection of R
n onto span{ϕ(x, t) − x∗}.

Proof. The proof is a straightforward calculation.
Definition 3.3. Let v : D → R be a differentiable vector field with Jacobian

J and let x∗ ∈ D be a stationary point of v, that is, v(x∗) = 0. We say that the
continuous dynamical system (1.4) defined by v converges exponentially to x∗ if for
all ε ∈ (0, 1) there exists ρε > 0 such that x ∈ Bρε

(x∗) \ {x∗} and t ≥ 0 imply

e−(1+ε)t ‖x− x∗‖ ≤ ‖ϕ(x, t) − x∗‖ ≤ e−(1−ε)t ‖x− x∗‖,(3.2) ∥∥∥∥ ∂

∂t
n(ϕ(x, t) − x∗)

∥∥∥∥ ≤ ε.(3.3)

We say that (1.4) converges p-exponentially to x∗ if (3.2) holds and there exist con-
stants ξ > 0 and γ > 0 such that ρε > ξε1/p for all ε small enough and∥∥∥∥ ∂

∂t
n(ϕ(x, t) − x∗)

∥∥∥∥ ≤ γ e−(1−ε)pt ‖x− x∗‖p(3.4)

for all x ∈ Bρε
(x∗) and t ≥ 0.

Our goal now is to establish the following equivalence that constitutes the main
result of this paper. Note that in contrast to Theorem 2.3, this theorem does not
make any assumptions on the Hölder continuity of J at x∗.

Theorem 3.4. The notion of exponential convergence of the continuous dynam-
ical system (1.4) is equivalent to the notion of uniform Q-superlinear convergence of
the discrete system (1.1). Likewise, the notion of p-exponential convergence of (1.4)
is equivalent to the notion of uniform Q-convergence of rate p + 1.

Proof. The proof follows immediately from Lemmas 3.5 and 3.6.
Lemma 3.5. If (1.1) converges uniformly Q-superlinearly to x∗, then (1.4) con-

verges exponentially to x∗. Moreover, if (1.1) converges uniformly at Q-convergence
rate p + 1 > 1, then (1.4) converges p-exponentially.

Proof. Let δε be chosen as in the proof of Lemma 2.2 and let ε ∈ (0, 1). If
ϕ(x, t) ∈ Bδε(x

∗), then (2.3) applied to ϕ(x, t) (in the role of x) yields

∂

∂t

∥∥∥ϕ(x, t) − x∗
∥∥∥ =

〈
v
(
ϕ(x, t)

)
, n
(
ϕ(x, t) − x∗)〉

(2.3)

≤ −(1 − ε)‖ϕ(x, t) − x∗‖ < 0.(3.5)

We now claim that

x ∈ Bδε(x
∗) ⇒ ϕ(x, t) ∈ Bδε(x

∗) ∀t ≥ 0.(3.6)

Indeed, if the contrary holds, then there exists τ > 0 such that ϕ(x, τ) ∈ ∂ Bδε(x
∗)

and ϕ(x, t) ∈ Bδε(x
∗) for all t ∈ [0, τ). But this leads to

δε = ‖ϕ(x, τ) − x∗‖ = ‖x− x∗‖ +

∫ τ

0

∂

∂t

∣∣∣
t=θ

‖ϕ(x, t) − x∗‖ dθ < δε +

∫ τ

0

0 dθ,
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which is a contradiction showing that (3.6) holds true, as claimed. It follows from
(3.6) that x ∈ Bδε(x

∗) implies (3.5) for all t ≥ 0. Now let

R(x, t) :=
v
(
ϕ(x, t)

)
+ ϕ(x, t) − x∗

‖ϕ(x, t) − x∗‖ .

By the definition of δε, ϕ(x, t) ∈ Bδε(x
∗) implies

‖R(x, t)‖ =

∥∥ϕ(x, t) + v
(
ϕ(x, t)

)
− x∗∥∥∥∥ϕ(x, t) − x∗‖

< ε.(3.7)

By (3.6), (3.7) thus holds true for all t ≥ 0 when x ∈ Bδε(x
∗), and then

∂

∂t
‖ϕ(x, t) − x∗‖ =

〈
v(ϕ(x, t)), n(ϕ(x, t) − x∗)

〉
=

(
−1 +

〈
R(x, t), n(ϕ(x, t) − x∗)

〉)
‖ϕ(x, t) − x∗‖

(3.7)

≥ −(1 + ε)‖ϕ(x, t) − x∗‖.

The combination of the last inequality with (3.5) establishes that if x ∈ Bδε(x
∗), then

−(1 + ε)‖ϕ(x, t) − x∗‖ ≤ ∂

∂t

∥∥∥ϕ(x, t) − x∗
∥∥∥ ≤ −(1 − ε)‖ϕ(x, t) − x∗‖ ∀t ≥ 0.(3.8)

Furthermore, for x ∈ Bδε(x
∗) we have

∥∥∥ ∂

∂t
n
(
ϕ(x, t) − x∗)∥∥∥ =

∥∥v(ϕ(x, t)) − ∂
∂t‖ϕ(x, t) − x∗‖ · n(ϕ(x, t) − x∗)

∥∥
‖ϕ(x, t) − x∗‖

=

∥∥v(ϕ(x, t)) + ϕ(x, t) − x∗ −
(
ϕ(x, t) − x∗ + ∂

∂t‖ϕ(x, t) − x∗‖ · n(ϕ(x, t) − x∗)
)∥∥

‖ϕ(x, t) − x∗‖
(3.9)

≤ ‖R(x, t)‖ +

∣∣‖ϕ(x, t) − x∗‖ + ∂
∂t‖ϕ(x, t) − x∗‖

∣∣
‖ϕ(x, t) − x∗‖

(3.7),(3.8)

≤ ε + ε.(3.10)

Equations (3.8), (3.10), and Lemma 3.1 therefore show that (3.2) and (3.3) hold with
ρε = δε/2 for all ε ∈ (0, 1). This settles the first claim of the lemma.

For the purposes of proving the second claim, let β and ρ be chosen as in (1.2),
and note that if (1.2) holds, then by the same arguments as above the inequality (3.8)
can be strengthened to

(3.11) − (1 + β‖ϕ(x, t) − x∗‖p)‖ϕ(x, t) − x∗‖

≤ ∂

∂t

∥∥∥ϕ(x, t) − x∗
∥∥∥

≤ −(1 − β‖ϕ(x, t) − x∗‖p)‖ϕ(x, t) − x∗‖

for x ∈ Br(x
∗) and t ≥ 0, where r = min{(β)−1/p, ρ} now ensures that if x ∈

Br(x
∗), then ϕ(x, t) ∈ Br(x

∗) for all t ≥ 0. It follows from (3.11) that for rε =
min{(ε/β)1/p, r} = min{(ε/β)1/p, ρ}, x ∈ Brε(x

∗), and t ≥ 0, it is the case that

−(1 + ε)‖ϕ(x, t) − x∗‖ ≤ ∂

∂t
‖ϕ(x, t) − x∗‖ ≤ −(1 − ε)‖ϕ(x, t) − x∗‖.
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Lemma 3.1 therefore shows that (3.2) holds with ρε = rε. Furthermore, if (1.2) holds,
then x ∈ Brε(x

∗) implies ϕ(x, t) ∈ Brε(x
∗) ⊂ Bρ(x

∗) for all t ≥ 0 and then

‖R(x, t)‖ ≤ β‖ϕ(x, t) − x∗‖p.

Equations (3.11), (3.10), and (3.2) therefore show that (3.4) holds with γ = 2β.
Lemma 3.6. If (1.4) converges exponentially to x∗, then (1.1) converges uni-

formly Q-superlinearly to x∗. Moreover, if (1.4) converges p-exponentially, then (1.1)
converges uniformly at Q-convergence rate p + 1.

Proof. Let ρε be as in Definition 3.3. Suppose that ∂
∂t‖ϕ(x, t0)−x∗‖ > −‖ϕ(x, t0)−

x∗‖(1 − ε) for some x ∈ Bρε(x
∗) and t0 > 0. By continuity there exists δ > 0 such

that

∂

∂t
‖ϕ(x, t) − x∗‖ > −‖ϕ(x, t) − x∗‖(1 − ε)

for all t ∈ [t0, t0 + δ]. By Lemma 3.1 we then have

‖ϕ(x, t) − x∗‖ > ‖ϕ(x, t0) − x∗‖ e−(1−ε)t

for t ∈ [t0, t0 + δ], contradicting the upper bound in (3.2) when ϕ(x, t0) is used in
place of x. This and a similar argument using the lower bound in (3.2) show that

−‖ϕ(x, t) − x∗‖(1 + ε) ≤ ∂

∂t
‖ϕ(x, t) − x∗‖ ≤ −‖ϕ(x, t) − x∗‖(1 − ε)

for all t ≥ 0 and x ∈ Bρε
(x∗), and hence,∥∥P (x, t)

(
v(ϕ(x, t)) + ϕ(x, t) − x∗)∥∥

=

∣∣∣∣ ∂∂t‖ϕ(x, t) − x∗‖ + ‖ϕ(x, t) − x∗‖
∣∣∣∣

≤ ε‖ϕ(x, t) − x∗‖.(3.12)

On the other hand, (3.1) and (3.3) show that for all t ≥ 0 and x ∈ Bρε
(x∗),∥∥(I−P (x, t))

(
v(ϕ(x, t)) + ϕ(x, t) − x∗)∥∥

=
∥∥∥ ∂

∂t
n(ϕ(x, t) − x∗)

∥∥∥ · ‖ϕ(x, t) − x∗‖

≤ ε‖ϕ(x, t) − x∗‖.(3.13)

Inequalities (3.12) and (3.13) finally show that

(3.14)∥∥x + v(x) − x∗∥∥
‖x− x∗‖ =

∥∥v(ϕ(x, 0)
)

+ ϕ(x, 0) − x∗∥∥
‖ϕ(x, 0) − x∗‖

≤
∥∥P (x, 0)

(
v(ϕ(x, 0)) + ϕ(x, 0) − x∗)∥∥
‖ϕ(x, 0) − x∗‖ +

∥∥(I−P (x, 0)
)(
v(ϕ(x, 0)) + ϕ(x, 0) − x∗)∥∥
‖ϕ(x, 0) − x∗‖

≤ 2ε

for all x ∈ Bρε(x
∗). Since this holds true for any ε > 0, we find that (1.3) holds,

showing the first claim. If (1.4) converges p-exponentially, then the estimate (3.13)
improves to ∥∥∥ ∂

∂t
n(ϕ(x, t) − x∗)

∥∥∥ · ‖ϕ(x, t) − x∗‖ ≤ γ‖x− x∗‖p+1 e−(1−ε)(p+1)t,
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which leads to the inequality∥∥(I−P (x, 0))
(
v(ϕ(x, 0)) + ϕ(x, 0) − x∗)∥∥ ≤ γ‖x− x∗‖p+1.(3.15)

Likewise, the estimate (3.12) improves, because there exists δ > 0 such that for all
x ∈ Bδ(x

∗) we have x ∈ Bρε(x
∗) for some ε ≤ ξ−p‖x − x∗‖p. But then (3.2) shows

that for t ≥ 0,

e−(1+ξ−p‖x−x∗‖p)t ‖x− x∗‖ ≤ ‖ϕ(x, t) − x∗‖ ≤ e−(1−ξ−p‖x−x∗‖p)t ‖x− x∗‖,

and by a similar argument as used above,

−
(
1 + ξ−p‖x− x∗‖p

)
‖ϕ(x, t) − x∗‖

≤ ∂

∂t
‖ϕ(x, t) − x∗‖ ≤ −

(
1 − ξ−p‖x− x∗‖p

)
‖ϕ(x, t) − x∗‖

for all t ≥ 0 and x ∈ Bδ(x
∗), so that∣∣∣∣ ∂∂t‖ϕ(x, 0) − x∗‖ + ‖ϕ(x, 0) − x∗‖

∣∣∣∣ ≤ ξ−p‖x− x∗‖p+1.

Using this in (3.12), we obtain∥∥P (x, 0)
(
v(ϕ(x, 0)) + ϕ(x, 0) − x∗)∥∥ ≤ ξ−p‖x− x∗‖p+1.(3.16)

Finally, substituting (3.15) and (3.16) in (3.14), we obtain (1.2) with β = γ+ξ−p and
q = p, and hence the second claim is true.

4. Implications for the Newton process. The notion of exponential con-
vergence shows that Q-convergence of the discrete process (1.1) corresponding to a
vector field v(x) is essentially due to two factors: the associated continuous flow
ϕ(x, t) converges exponentially fast to x∗, and the angular speed of ϕ(x, t) relative to
x∗ decays to zero at a fast-enough rate. An important condition is that these rates
must occur in neighborhoods of x∗ that are not too small. Theorem 3.4 thus sets a
geometric paradigm for constructing a vector field v(x) such that the process (1.1) is
attractive to x∗ and converges fast. Let us now comment on the extent to which the
Newton–Raphson approach satisfies this paradigm.

In Theorem 10.2.2 of [4], Ortega and Rheinboldt showed that if f : D → R
n,

x∗ ∈ D ⊂ R
n, is such that f(x∗) = 0 and f ′ is p-Hölder continuous and nonsingular

at x∗, then the Newton process converges to x∗ at order at least p + 1.
By linking the notion of uniform Q-convergence of order p+1 with the concept of

p-exponential convergence, Theorem 3.4 can be used to derive an alternative proof that
explains this phenomenon geometrically in the case where f is k times continuously
differentiable for some k > p ≥ 1: p-Hölder continuity of f ′ then implies that p ∈ N

and f ′′(x∗), . . . , f (p)(x∗) = 0 so that the Taylor developments of f , f ′, and f ′′ around
x∗ are of the form

f(x) = f ′(x∗)[x− x∗] + f (p+1)(x∗)[x− x∗, . . . , x− x∗] + o
(
‖x− x∗‖p+1

)
,(4.1)

f ′(x) = f ′(x∗) + f (p+1)(x∗)[x− x∗, . . . , x− x∗; ·] + o (‖x− x∗‖p) ,(4.2)

f ′′(x) = f (p+1)(x∗)[x− x∗, . . . , x− x∗; ·, ·] + o
(
‖x− x∗‖p−1

)
.(4.3)
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Therefore,

v(x) = −(f ′(x))−1f(x)

= − (f ′(x∗) + O(‖x− x∗‖p))−1 (
f ′(x∗)(x− x∗) + O(‖x− x∗‖p+1)

)
= −

(
f ′(x∗)−1 + O(‖x− x∗‖p)

) (
f ′(x∗)(x− x∗) + O(‖x− x∗‖p+1)

)
= x∗ − x + O(‖x− x∗‖p+1).(4.4)

Thus, multiplying the vector field f(x) with −(f ′(x))−1 produces a new vector field
v(x) that asymptotically looks like the radial vector field r(x) := x∗ − x in the sense
that

v(x) = r(x) + o(‖x− x∗‖).(4.5)

This is exactly the condition needed to make the associated flux ϕ(x, t) converge
exponentially to x∗: (4.5) implies that for every ε > 0 there exists ρε > 0 such that
for all x ∈ Bρε(x

∗),

‖v(x) − (x∗ − x)‖ ≤ ε‖x− x∗‖.(4.6)

Therefore,

∂

∂t
‖ϕ(x, t) − x∗‖ = ‖ϕ(x, t) − x∗‖−1

〈
∂

∂t
ϕ(x, t), ϕ(x, t) − x∗

〉
= 〈v(ϕ(x, t)), n(ϕ(x, t) − x∗)〉
≤ −‖ϕ(x, t) − x∗‖ · (1 − ε),

and likewise,

∂

∂t
‖ϕ(x, t) − x∗‖ ≥ −‖ϕ(x, t) − x∗‖ · (1 + ε).

Invoking Lemma 3.1, we find (3.2). Furthermore, by Lemma 3.2,∥∥∥∥ ∂

∂t
n(ϕ(x, t) − x∗)

∥∥∥∥ =

∥∥(I−P (ϕ(x, t))
)
v(ϕ(x, t))

∥∥
‖ϕ(x, t) − x∗‖ ≤ ε,

where the last inequality follows from P (ϕ(x, t))(ϕ(x, t)−x∗) = ϕ(x, t)−x∗ and (4.6).
Therefore, (3.3) holds as required.

In order to furthermore achieve p-exponential convergence, the “rotational speed”
∂
∂tn(ϕ(x, t) − x∗) needs to decay uniformly and fast enough. But if f ′(x) is p-Hölder
continuous, then

∂

∂t

∣∣∣
t=0

n(ϕ(x, t) − x∗)
(3.1)
=

(I−P (x, 0)) v(x)

‖x− x∗‖
(4.4)
= (I−P (x, 0))

(
x− x∗ + O(‖x− x∗‖p+1)

‖x− x∗‖

)
= O(‖x− x∗‖p),

where we used (I−P (x, 0))(x − x∗) = 0. This shows that the rotational component
dies out at the required rate (3.4).
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5. Q-convergence rates for rescaled vector fields. The question naturally
arises as to whether a rescaled vector field λ(x)v(x) for some scalar function λ :
D → R+ has a faster Q-convergence rate than v(x). Such rescaling is routinely
used in unconstrained optimization, where search-direction-based descent methods are
combined with line-searches. It turns out that in the general case the Q-convergence
rate cannot be arbitrarily increased by such a rescaling, that is, there exist vector
fields v ∈ C1(D,Rn) for which there exists a bound q̄ > 0 such that for all positive
scalar functions λ ∈ C1(D,R+) the vector field λ(x)v(x) has a Q-convergence rate no
faster than q̄. Indeed, the vector field of Example 5.1 has this property, as shown in
Theorem 5.3.

We believe that the existence of a finite q̄ is in fact typical in the sense that
arbitrarily fast convergence rates can be achieved only for a thin set of vector fields,
where thin has to be appropriately defined. For the moment, rather than developing
such a theory here, we content ourselves with answering the more modest question
regarding the existence of vector fields with finite q̄.

Example 5.1. Let g(t) := e−t e−1/t. Then the vector field

v(x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if x = 0,

−x if x ∈ S1 = ∂ B1(0),

−
[
x1

x2

]
+ g′ (− ln ‖x‖)

[
−x2

x1

]
if x ∈ B1(0) \ {0}

is continuously differentiable on the closed unit ball B1(0), and furthermore we have
J(0) = − I, that is, v(x) satisfies the conditions of Lemma 2.1 for superlinear conver-
gence of the process (1.1) to the stationary point x∗ = 0.

It is easily checked by taking the partial derivative with respect to t that for
y ∈ S1, the flux line through y defined by the vector field v(x) defined in Example 5.1
is given by

ϕ(y, t) = e−t

[
y1 −y2

y2 y1

] [
cos g(t)
sin g(t)

]
.(5.1)

We also observe that ϕ(Uθy, t) = Uθϕ(y, t) holds for all rotations

Uθ =

[
cos θ − sin θ
sin θ cos θ

]
;

see Figure 5.1. Since limt→∞ ϕ(y, t) = 0 for all y ∈ S1, this rotational invariance
implies that for all x ∈ B1(0) there exists y[x] ∈ S1 such that

ϕ(x, t) = e−t ‖x‖
[
y
[x]
1 −y

[x]
2

y
[x]
2 y

[x]
1

] [
cos g(t− ln ‖x‖)
sin g(t− ln ‖x‖)

]
.

To find y[x], it suffices to integrate the flow in reverse direction starting from x until
the flux line crosses S1. This crossing happens in finite time because of (5.1) and the
flow-conservation property (1.5). It is also easy to check that∥∥∥∥ ∂

∂t
n(ϕ(x, t))

∥∥∥∥ = |g′ (t− ln ‖x‖)| ,(5.2)

‖ϕ(x, t)‖ = e−t ‖x‖(5.3)
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Fig. 5.1. The figure on the left shows the vector field of Example 5.1 and a few of its flux lines,
while the figure on the right shows a rescaling of the same vector field, here w(x) = v(x)/

√
‖x‖.

for all t ≥ 0 and x ∈ B1(0).
Lemma 5.2. For the vector field v(x) constructed in Example 5.1 we have

q̄ := sup {q : the process (1.1) defined by v(x) is unif. Q-conv. with rate q} < +∞.

Proof. It suffices to show that the process (1.1) is uniformly Q-convergent at rate
2 but not 3. By Theorem 3.4 this is equivalent to showing that the continuous process
(3) converges 1-exponentially to x∗ = 0 but not 2-exponentially. Note that

‖ϕ(x, t)‖ = e−t ‖x‖.

To satisfy (3.2), ρε can thus be chosen arbitrarily in (0, 1), for example, ρε = e−1,
so that ρε ≥ ε = 1 · ε1/1 for all ε ≤ e−1, as required for the claim of 1-exponential
convergence. Furthermore, we have∥∥∥∥ ∂

∂t
n (ϕ(x, t) − x∗)

∥∥∥∥ = |g′ (t− ln ‖x‖)‖

= ‖x‖ · e
1

ln‖x‖−t ·
∣∣∣∣1 − 1

(t− ln ‖x‖)2

∣∣∣∣ · e−t(5.4)

for all t ≥ 0, and since x ∈ Bε−1(0) implies

e
1

ln ‖x‖−t ·
∣∣∣∣1 − 1

(t− ln ‖x‖)2

∣∣∣∣ ≤ 1,

we find that (3.4) holds with p = 1 and γ = 1. This establishes the claimed 1-
exponential convergence. On the other hand, if 2-exponential convergence were to
hold, then ∥∥∥∥ ∂

∂t
n (ϕ(x, t))

∥∥∥∥ ≤ γ · ‖x‖2 · e−2(1−ε)t

would have to be true for some fixed γ and for all t ≥ 0, x ∈ Bξε1/p(0), and ε ∈ (0, 1)
for some appropriately chosen ξ > 0. By virtue of (5.4), we thus need

e
1

ln ‖x‖−t ·
∣∣∣∣1 − 1

(t− ln ‖x‖)2

∣∣∣∣ ≤ γ · ‖x‖ · e−t+2εt
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to hold for all t ≥ 0 and x ∈ Bρε
(0). But since the left-hand side tends to 1 when

t → ∞ while the right-hand side converges to zero when ε < 1/2, this cannot be
achieved for any fixed γ.

We are now ready to show that a rescaling of the vector field v(x) from Example
5.1 cannot speed up the Q-convergence rate of the process (1.1).

Theorem 5.3. Let v(x) and q̄ be as in Lemma 5.2, let λ ∈ C1(R2,R+) be a
positive scalar function and consider the vector field w(x) = λ(x)v(x). Then

sup {q : the process (1.1) defined by w(x) is unif. Q-conv. with rate q} ≤ q̄.

Proof. Let p̄ = q̄ − 1. It suffices to show that for p > p̄ the process (1.1) w(x) is
not Q-convergent with rate p + 1. If the contrary holds for some choice of λ(x), then
the flux ψ(x, t) associated with w(x) converges p-exponentially to the origin, that is,
there exist constants ξ > 0, γp > 0 such that for all ε > 0 small enough there exists
ρε > ξε1/p with the property that for all x ∈ Bρε(0) and t ≥ 0,

e−(1+ε)t ‖x‖ ≤ ‖ψ(x, t)‖ ≤ e−(1−ε)t ‖x‖,(5.5) ∥∥∥∥ ∂

∂t
n(ψ(x, t))

∥∥∥∥ ≤ γp‖x‖p e−(1−ε)pt .(5.6)

On the other hand, ϕ(x, t) does not converge p-exponentially, and since (5.3) holds
for all x ∈ B1(0), this must be because for 0 < ε � 1 there exists zε ∈ Bρε

(0) and
T ≥ 0 such that

γp
1 − ε

‖zε‖p e−(1−ε)pT < |g′ (T − ln ‖zε‖)| .

Replacing zε by ϕ(zε, T ), it is easy to see that we may assume without loss of generality
that T = 0, and then by continuity there exist constants δ, τ > 0 such that

γp
1 − ε

‖zε‖p e−(1−ε)pt < |g′ (t− ln ‖zε‖)| (1 − δ)(5.7)

for all t ∈ [0, τ). Now let s(t) be defined by the ODE

d

dt
s(t) = λ

(
ϕ(zε, t)

)
, s(0) = 0.

Since λ > 0, s(t) is a monotone increasing reparameterization of t constructed so that
ψ(zε, t) = ϕ

(
zε, s(t)

)
. Using the chain rule, we find

∥∥∥∥ ∂

∂t
n(ψ(zε, t))

∥∥∥∥ =

∣∣∣∣ ddts(t)
∣∣∣∣ ·

∥∥∥∥ ∂

∂s
n(ϕ(zε, s))

∥∥∥∥
(5.2)
=

d

dt
s(t) · |g′ (s(t) − ln ‖zε‖)| ,

and using (5.6)) and (5.7) we obtain that

d

dt
s(t) · γp

1 − ε
‖zε‖p e−(1−ε)p s(t) <

d

dt
s(t) · |g′ (s(t) − ln ‖zε‖)| (1 − δ)

≤ γp ‖zε‖p e−(1−ε)pt (1 − δ)
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holds for every t ∈ [0, s−1(τ)), that is,

d

dt
(s(t) − t) <

γp ‖zε‖p e−(1−ε)pt (1 − δ)
γp

1−ε ‖zε‖p e−(1−ε)p s(t)
− 1 = (1 − ε) (1 − δ) e(1−ε)p (s(t)−t) −1.

Note that the right-hand side is monotone increasing in s(t) − t. Therefore, we can
apply Lemma 3.1 to find that

s(t) − t < −
ln
[
(1 − ε)(1 − δ) + (ε + δ − εδ) e(1−ε)pt

]
(1 − ε)p

holds for small positive t. Since

ln
[
(1 − ε)(1 − δ) + (ε + δ − εδ) e(1−ε)pt

]
= (ε + δ − εδ)(1 − ε)pt + O(t2),

it follows that

s(t) − t < −εt(5.8)

for small positive t. On the other hand, (5.3) and (5.5) imply

e−s(t) ‖zε‖ = ‖ϕ(zε, s(t))‖ = ‖ψ(zε, t)‖ ≤ e−(1−ε)t ‖zε‖,

and hence, −εt ≤ s(t) − t for small positive t. Since this contradicts (5.8), it follows
that our claim is true.
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AN INTERIOR-POINT TRUST-REGION ALGORITHM FOR
GENERAL SYMMETRIC CONE PROGRAMMING∗

YE LU† AND YA-XIANG YUAN‡

Abstract. An interior-point trust-region algorithm is proposed for minimizing a general (non-
convex) quadratic objective function in the intersection of a symmetric cone and an affine subspace.
The algorithm uses a trust-region model to ensure descent on a suitable merit function. Global
first-order and second-order convergence results are proved. Numerical results are presented.
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AMS subject classifications. 90C30, 90C51

DOI. 10.1137/040611756

1. Introduction. In the last two decades, interior-point algorithms for convex
programming have been developed quite well in both theory and practice. However,
research on interior-point algorithms for nonconvex programming is still very active,
as nonconvex problems are considerably more difficult. We mention here some of the
recent works. For semidefinite relaxations, see Zhang [33] and Ye and Zhang [31]; for
line search based algorithms, see Absil and Tits [1] and Bakry et al. [3], Forsgren and
Gill [12], Gay, Overton, and Wright [13], Tits et al. [25], Vanderbei and Shanno [27],
and Wächter [28]. By contrast, for trust-region-type interior-point algorithms, Ye [29]
developed an affine scaling algorithm for indefinite quadratic programming by solving
sequential trust-region subproblems. Global first-order and second-order convergence
results were proved, and later enhanced by Sun [24] for the convex case. The idea of
affine scaling can be traced back to Dikin [8]. An affine-scaling potential-reduction
interior-point trust-region algorithm was developed for the indefinite quadratic pro-
gramming in Ye [30, section 9]. Recently, in Faybusovich and Lu [11], Ye’s algorithm
has been extended to the minimization of a quadratic function in the intersection of
a symmetric cone and an affine subspace. In this paper, we call such a problem sym-
metric cone programming and develop an affine-scaling primal barrier interior-point
trust-region algorithm to solve it. Since the class of symmetric cones contains the
positive orthant in Rn, the second-order cone, and the cone of positive semidefinite
symmetric matrices, our approach solves a large class of optimization problems. In the
trust-region literature, we refer the reader to Conn, Gould, and Toint [6, section 13]
for a primal barrier algorithm and Conn et al. [7] for a primal-dual algorithm. Under
the theoretical framework of their work, we bring the properties of ϑ-normal barrier
and symmetric cone into our analysis. By doing so, we show that the primal barrier
algorithm developed in Conn, Gould, and Toint [6] can be extended to solve symmetric
cone programming. Although our algorithm still provides the mechanism to declare
the iteration unsuccessful if feasibility is not achieved, it does not contain an explicit
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constraint on the step calculation (see constraint (13.2.1) in Conn, Gould, and Toint
[6, p. 499] and the constraint (13.3.1) of the algorithm in Conn, Gould, and Toint
[6, p. 505]). This makes our algorithm theoretically somewhat simpler, although its
practical merit remains to be investigated. Moreover, we establish inequality (4.22)
in section 4 of this paper to explicitly estimate the convergence of the algorithm. This
is quite remarkable, since our analysis does not require any convexity assumptions.

This paper is organized as follows. In section 2, we present some concepts and
results of the symmetric cone and ϑ-normal barrier in the theory of interior-point
methods. In section 3, we formulate the first-order and second-order optimality con-
ditions for our optimization problem. In section 4, we present a convergence analysis
for our interior-point trust-region algorithm. The techniques of proofs in Lemmas 4.3–
4.6 essentially follow from Conn, Gould, and Toint [6, section 13], together with the
applications of the properties of the ϑ-normal barrier. In section 5, our algorithm
is used to solve the large-scale trust-region subproblem. In section 6, we apply our
algorithm to a class of quadratic programs and discuss some further implementation
issues. Concluding remarks and recommendations are presented in section 7.

2. Symmetric cone and ϑ-normal barrier. In this section we introduce some
concepts and relevant results which will be used in the following sections.

Nesterov and Nemirovskii [18] developed the concept of ϑ-normal barrier, which
has become one of the most important tools for the analysis of interior-point methods.
It is also an essential tool in our analysis. We assume that K is a convex cone in a
finite-dimensional real vector space E. Let K◦ be the interior of K. The definition of
ϑ-normal barrier is given as follows.

Definition 2.1. Let F : K◦ → R be a C3-smooth strictly convex function such
that F is a barrier for K (i.e., F (x) → ∞ as x ∈ K◦ approaches the boundary of K),
and there exists ϑ ≥ 1 such that for each t > 0,

F (tx) = F (x) − ϑ ln(t)(2.1)

and

| F ′′′
(x)[h, h, h] | ≤ 2 〈F ′′

(x)h, h〉3/2(2.2)

for all x ∈ K◦ and for all h ∈ E. Then F is called a ϑ-normal barrier for K and ϑ
is called barrier parameter of F .

In principle, every convex cone admits a ϑ-normal barrier (see Nesterov and Ne-
mirovskii [18, section 4]). But, in this paper we consider only a special kind of convex
cone, called a symmetric cone. As a regular convex cone K in a finite-dimensional
real vector space E endowed with an inner product 〈 〉, the dual of K is defined as

K∗ = {y ∈ E | 〈x, y〉 ≥ 0 ∀x ∈ E}.

We define Aut(K) to be the set of automorphisms of the convex cone K, that is,
AK = K for any A ∈ Aut(K). The following is the definition of symmetric cone.

Definition 2.2. A convex cone K is called homogeneous if Aut(K) is transitive
on K◦; that is, given any pair of points x, s ∈ K◦ there exists A ∈ Aut(K) such that
Ax = s. The cone K is said to be self-dual if there is an inner product such that
K∗ = K. K is said to be symmetric if it is homogeneous and self-dual.

The following important cones are special symmetric cones.
The positive orthant. The simplest symmetric cone is the positive orthant

Rn
++ = {x | x > 0, x ∈ Rn} = R++ ⊕ · · · ⊕R++,(2.3)
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which is the direct sum of n copies of R++. F (x) = −
∑n

i=1 lnxi is a ϑ-normal barrier
for Rn

++ with ϑ = n.
The second-order cone. This is the cone defined by

SOC :=

{
x ∈ Rn :

n−1∑
i=1

x2
i ≤ x2

n and xn ≥ 0

}
.(2.4)

The function F (x) = − ln(x2
n −

∑n−1
i=1 x2

i ) is a ϑ-normal barrier for the second-
order cone SOC with ϑ = 2.

The cone of positive semidefinite matrices. This is the cone of all positive semidef-
inite matrices

Sn×n
+ = {X |X ∈ Rn×n, X positive semidefinite}.(2.5)

F (X) = − ln det(X) is a ϑ-normal barrier for Sn×n
+ with ϑ = n.

Let F ′′(x) denote the Hessian of ϑ-normal barrier F (x). The strictly convex
assumption of F (x) implies that F ′′(x) is positive definite for every x ∈ K◦. Thus,

‖v‖x = 〈v, F ′′(x)v〉 1
2 is a norm on E induced by F ′′(x). Let Bx(y, r) denote the open

ball of radius r centered at y, where the radius is measured with respect to ‖ ‖x. This
ball is called the Dikin ball. The following lemmas are very crucial for the analysis of
our algorithm in the next sections.

Lemma 2.1. Assume F (x) is a ϑ-normal barrier for K; then for all x ∈ K◦ we
have Bx(x, 1) ⊆ K◦.

Lemma 2.2. Assume F (x) is a ϑ-normal barrier for K, x ∈ K◦, and y ∈
Bx(x, 1); then∣∣∣∣F (y) − F (x) − 〈F ′(x), y − x〉 − 〈y − x, F ′′(x)(y − x)〉

2

∣∣∣∣ ≤ ‖y − x‖3
x

3(1 − ‖y − x‖x)
.(2.6)

Lemma 2.3. Let F be a ϑ-normal barrier for K; then

F ′′(x)−1F ′(x) = −x,(2.7)

〈−F
′
(x), x〉 = ϑ.(2.8)

Lemma 2.4. If K is a symmetric cone and F is a ϑ-normal barrier for K, then
F ′′(x) is a linear automorphism of K for each x ∈ K◦.

The proofs of the above lemmas can be found in Chapter 2 of Renegar [20].
Lemma 2.1 tells us the ball of radius 1 measured by ‖.‖x is always contained

in K◦. Lemma 2.2 shows that at least locally, the quadratic approximation is very
good for the ϑ-normal barrier F . Lemma 2.3 plays an important role in our proof
of Lemma 4.1 in section 4. Lemma 2.4 is a special property of the symmetric cone,
which is one of the reasons why in this paper we focus on the symmetric cones instead
of general cones.

3. Optimality conditions. In this section, we formulate the first-order and
second-order optimality conditions of our optimization problem:

We consider the following optimization problem:

min q(x) =
1

2
〈x,Qx〉 + 〈c, x〉(3.1)

subject to Ax = b,(3.2)

x ∈ K.(3.3)
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Here Q : E → E is a symmetric linear operator, c ∈ E. A : E → Rm is a
linear operator and b ∈ Rm. K is a symmetric cone. We assume that our feasible
set �p = {x ∈ E|Ax = b, x ∈ K} is bounded and has relative interior. The following
theorem is the first-order optimality condition for our optimization problem. For a
proof, see, e.g., Bonnans and Shapiro [5] or Faybusovich and Lu [11].

Theorem 3.1 (first-order optimality condition). If x∗ is a locally minimal solu-
tion of (3.1)–(3.3), then there exists s ∈ K∗(= K) such that Qx∗ + c− s ∈ R(A∗) and
〈x∗, s〉 = 0; here R(A∗) is the range of A∗ and A∗ : Rm → E is the adjoint of A.

Assume x is a point in our feasible set �p = {x ∈ E|Ax = b, x ∈ K}; there must
be a unique face �x of �p such that x is a relative interior point of �x. We denote
Aff(�x) to be the affine space generated by �x and Vx to be the vector space such
that Aff(�x) = Vx + x. Now we are ready to formulate the second-order optimality
condition.

Theorem 3.2 (second-order optimality condition). If x∗ is a locally minimal
solution of (3.1)–(3.3), �x∗ is the unique face of the feasible set �p such that x∗

is one of its relative interior points, and Vx∗ = Aff(�x∗) − x∗, then Q is positive
semidefinite over Vx∗ .

Proof. For all d ∈ Vx∗ , because x∗ is a relative interior of �x∗ , we know x∗ + td ∈
�x∗ , provided that |t| is sufficiently small. Hence, there exists a ε > 0 such that

q(x∗ + td) − q(x∗) = t〈Qx∗ + c, d〉 +
t2

2
〈d,Qd〉 ≥ 0(3.4)

as long as |t| ≤ ε, due to the fact that x∗ is a local minimim. The above inequality
implies that

〈Qx∗ + c, d〉 = 0, 〈d,Qd〉 ≥ 0.(3.5)

This completes our proof.

If x ∈ K◦, it is obvious that Vx = {x ∈ E|Ax = 0}. If x ∈ ∂K, the matter
becomes much more complicated. But fortunately, we can get some very helpful
results in the case of symmetric cones.

If K = Rn
++ and x′ ∈ ∂K, it can be shown that Vx′ = {x ∈ Rn|Ax = 0, xj =

0, j ∈ I}, where I = {j|x′
j = 0}. We know that F (x) = −

∑n
i=1 lnxi is a ϑ-normal

barrier for Rn
++. Therefore, F ′′(x′)−

1
2 = diag{x′

1, x
′
2, . . . , x

′
n}, and consequently Vx′ =

{F ′′(x′)−
1
2x|AF ′′(x′)−

1
2x = 0, , x ∈ Rn}.

If K = Sn×n
+ , we know F (X) = − ln det(X) is a ϑ-normal barrier for Sn×n

+ .

Now let A′ ∈ ∂K, and rank(A′) = r < n. Then F ′′(A′)−
1
2X = A′ 1

2XA′ 1
2 . We set

V = {A′ 1
2XA′ 1

2 |AA′ 1
2XA′ 1

2 = 0, X ∈ Sn×n}; just as with the positive orthant case,
it holds that VA′ = V . The following theorem tells us that this property actually
holds for all symmetric cones. We will prove this theorem in the appendix.

Theorem 3.3. Assume K is a symmetric cone in a finite-dimensional real Eu-
clidean space E and F (x) is the ϑ-normal barrier for K. If x∗ ∈ K, then Vx∗ =

{F ′′(x∗)−
1
2x|AF ′′(x∗)−

1
2x = 0, x ∈ E}.

We want to mention that F ′′(x∗)−
1
2 is well defined on the boundary of the cone,

since it is the quadratic representation of x∗ in Jordan algebra. This theorem im-
mediately implies the following corollary, which is extremely important to prove that
any limit point of the iterate generated by our algorithm satisfies the second-order
optimality condition.
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Corollary 3.1. Assume K is a symmetric cone in our optimization problem
(3.1)–(3.3); then Q is positive semidefinite on Vx∗ if and only if the linear operator

F ′′(x∗)−
1
2QF ′′(x∗)−

1
2 is positive semidefinite on {x|AF ′′(x∗)−

1
2x = 0, x ∈ E}.

4. Interior-point trust-region algorithm. In this section, we present our
interior-point trust-region algorithm for solving (3.1)–(3.3). Global first-order and
second-order convergence results are proved.

We assume F (x) is the ϑ-normal barrier for the symmetric cone K and define the
merit function as

fηk
(x) = q(x) +

1

ηk
F (x).(4.1)

In the inner iterations, fηk
(x) is decreased for a fixed ηk, while ηk is increased to

positive infinity in outer iterations. From Lemma 2.1, for any xk,j ∈ K◦ and d ∈ E,

we have that xk,j + d ∈ K◦, provided that ‖F ′′(xk,j)
1
2 d‖ ≤ αk,j < 1. It follows from

Lemma 2.2 that

F (xk,j + d) − F (xk,j) ≤ 〈F ′(xk,j), d〉 +
〈d, F ′′(xk,j)d〉

2
+

‖d‖3
xk,j

3(1 − ‖d‖xk,j
)

≤ 〈F ′(xk,j), d〉 +
〈d, F ′′(xk,j)d〉

2
+

α3
k,j

3(1 − αk,j)
.(4.2)

Therefore, we get

fηk
(xk,j + d) − fηk

(xk,j) ≤
〈d, (Q + 1

ηk
F ′′(xk,j))d〉
2

+

〈
Qxk,j + c +

1

ηk
F ′(xk,j), d

〉
+

α3
k,j

3(1 − αk,j)ηk
.(4.3)

From the above relation, it is obvious that in order to decrease fηk
(x), we can try to

minimize its upper bound given in the right-hand side of the above inequality. This
leads to the following subproblem:

min
1

2

〈
d,

(
Q +

1

ηk
F ′′(xk,j)

)
d

〉
+

〈
Qxk,j + c +

1

ηk
F ′(xk,j), d

〉
= mk,j(d)(4.4)

subject to Ad = 0,(4.5)

‖F ′′(xk,j)
1
2 d‖2 ≤ α2

k,j .(4.6)

Define

Qk,j = F ′′(xk,j)
− 1

2QF ′′(xk,j)
− 1

2 +
1

ηk
I,(4.7)

ck,j = F ′′(xk,j)
− 1

2

(
Qxk,j + c +

1

ηk
F ′(xk,j)

)
,(4.8)

Ak,j = AF ′′(xk,j)
− 1

2 ,(4.9)

and using the transformation

d′ = F ′′(xk,j)
1
2 d,(4.10)
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equations (4.4)–(4.6) can be rewritten as

min q′k,j(d
′) =

1

2
〈d′, Qk,jd

′〉 + 〈ck,j , d′〉(4.11)

subject to Ak,jd
′ = 0,(4.12)

‖d′‖2 ≤ α2
k,j .(4.13)

Instead of solving (4.11)–(4.13) exactly, we need only compute an approximate
solution d′k,j satisfying the following two inequalities:

q′k,j(d
′
k,j) ≤ −θ‖pk,j‖min

{
‖pk,j‖
βk,j

, αk,j

}
(4.14)

and

q′k,j(d
′
k,j) ≤ θλk,j min{λ2

k,j , α
2
k,j},(4.15)

where θ ∈ (0, 1
2 ), βk,j = 1+‖Qk,j‖, pk,j is the projection of ck,j onto the null space of

Ak,j , and λk,j is the least eigenvalue of (Nk,j)
∗Qk,jNk,j , Nk,j being an orthonormal

basis spanning the null space of Ak,j . We can see that inequality (4.15) makes sense
only when λk,j < 0. The two conditions (4.14) and (4.15) are common in trust-
region methods. Inequality (4.14) can be obtained at the Cauchy point and inequality
(4.15) can be obtained when the negative curvature is exploited. Projected conjugate
gradient/Lanczos-like methods are able to produce such a step at a reasonable cost
(see Gould et al. [14]).

Once d′k,j is computed, we obtain the trial step

dk,j = F ′′(xk,j)
− 1

2 d′k,j(4.16)

and define the predicted reduction in the merit function (4.1) by

Predk,j = mk,j(0) −mk,j(dk,j) = −q′k,j(d
′
k,j).(4.17)

The feasible set is denoted by �p = {x ∈ E|Ax = b, x ∈ K}. Now we are ready to
present our algorithm.

Algorithm 4.1 (an interior-point trust-region algorithm).

Step 0 Initialization. An initial point x0,0 ∈ ri{�p}, an initial trust-region
radius α0,0 ∈ (0, 1), and an initial parameter η0 > 0 are given. The
constants η′1, η

′
2, γ1, and γ2 are also given and satisfy 0 < η′1 ≤ η′2 < 1

and 0 < γ1 ≤ γ2 < 1. Two tolerance numbers ε1, ε2 ∈ (0, 1) are given.
Set k = 0 and j = 0.

Step 1 Test inner iteration termination. If ηk‖pk,j‖ < ε1 and ηkλk,j > −ε2,
set xk+1,0 = xk,j and go to Step 5.

Step 2 Step calculation. Solve (4.11)–(4.13) to obtain d′k,j, which satisfies
(4.14) and (4.15), and set dk,j by (4.16).

Step 3 Acceptance of the trial point. If xk,j + dk,j �∈ ri{�p}, set ρk,j =
−∞, xk,j+1 = xk,j and go to Step 4; otherwise compute the ratio

ρk,j =
fηk

(xk,j) − fηk
(xk,j + dk,j)

Predk,j
.(4.18)
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Let

xk,j+1 =

{
xk,j + dk,j if ρk,j ≥ η′1,

xk,j otherwise.
(4.19)

Step 4 Trust-region radius update. If ρk,j ≥ η′2, set αk,j+1 ∈ [αk,j ,∞);
if ρk,j ≥ η′1, set αk,j+1 ∈ [γ2αk,j , αk,j ]; if ρk,j < η′1, set αk,j+1 ∈
[γ1αk,j , γ2αk,j ]; increase j by 1 and go to Step 1.

Step 5 Update parameter η. Choose ηk+1 > ηk in such a way as to ensure
that ηk → +∞ when k → +∞. Increase k by 1 and go to Step 1.

We want to mention that from Lemma 2.1, our trail point will always stay inside
the feasible set if we keep αk,j less than 1. However, we believe that our current
mechanism can make the algorithm more efficient without keeping αk,j less than 1.
Although it allows the feasibility to not be achieved, sufficient descent of the merit
function can be achieved in a successful step. Just like the usual notation in the
trust-region literature, if ρk,j ≥ η′2, we call this iteration very successful; if ρk,j ≥ η′1,
we call this iteration successful; if ρk,j < η′1, we call this iteration a failure. Since pk,j
is the projection of ck,j onto the null space of Ak,j , there exists a vector y ∈ Rm such
that

pk,j = ck,j − (Ak,j)
∗y.(4.20)

Lemma 4.1. Let pk,j be given by (4.20) and

sk,j = Qxk,j + c−A∗y;(4.21)

if ηk‖pk,j‖ < 1, then sk,j ∈ K◦ and

〈xk,j , sk,j〉 ≤
1

ηk
(
√
ϑ + ϑ).(4.22)

Proof. It follows from (4.20) that

pk,j = ck,j − (Ak,j)
∗y = F ′′(xk,j)

− 1
2Qxk,j + F ′′(xk,j)

− 1
2 c

+
1

ηk
F ′′(xk,j)

− 1
2F ′(xk,j) − (AF ′′(xk,j)

− 1
2 )∗y

= F ′′(xk,j)
− 1

2 sk,j +
1

ηk
F ′′(xk,j)

− 1
2F ′(xk,j).(4.23)

Therefore, the above relation and our assumption ηk‖pk,j‖ < 1 imply that

‖F ′′(xk,j)
− 1

2 (ηksk,j + F ′(xk,j))‖ = ‖F ′′(xk,j)
1
2 (F ′′(xk,j)

−1ηksk,j − xk,j)‖

< 1.(4.24)

Here the last equality follows from Lemma 2.3. Then from Lemma 2.1, we know
that F ′′(xk,j)

−1ηksk,j ∈ K◦. It follows from Lemma 2.4 that ηksk,j ∈ K◦, and
consequently sk,j ∈ K◦.
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It follows from (4.23) that sk,j = 1
ηk

(F ′′(xk,j)
1
2 (ηkpk,j)−F ′(xk,j)). Consequently,

we have that

〈xk,j , sk,j〉 =
1

ηk
(〈F ′′(xk,j)

1
2xk,j , ηkpk,j〉 + 〈xk,j ,−F ′(xk,j)〉)

≤ 1

ηk
(‖F ′′(xk,j)

1
2xk,j‖‖ηkpk,j‖ + 〈xk,j ,−F ′(xk,j)〉)

≤ 1

ηk
(〈xk,j , F

′′(xk,j)xk,j〉
1
2 + 〈xk,j ,−F ′(xk,j)〉)

=
1

ηk
(〈xk,j ,−F ′(xk,j)〉

1
2 + 〈xk,j ,−F ′(xk,j)〉)

=
1

ηk
(
√
ϑ + ϑ).(4.25)

The last two equalities follow from Lemma 2.3.

This convergence estimate is remarkable, considering the problem is nonconvex.
We can achieve this mainly due to the special properties of the ϑ-normal barrier. From
this estimate, we can see that the barrier parameter ϑ determines the complexity of
our problem, which coincides with its role in the interior-point algorithm for convex
programming.

For the rest of this section, we will show that the stop rule for the inner itera-
tions can be satisfied in finitely many iterations. First, the following two lemmas are
indispensable for our analysis.

Lemma 4.2. (a) The map x → F ′′(x)−
1
2 is continuous on the feasible set �p.

(b) There is a constant C > 0, such that ‖F ′′(x)−
1
2 ‖ ≤ C for any x ∈ �p.

For the positive orthant case, F ′′(x)−
1
2 = X = diag{x1, x2, . . . , xn}, and for the

cone of semidefinite matrices, F ′′(X)−
1
2 ξ = X

1
2 ξX

1
2 . Therefore, part (a) is obviously

true for these two cases. For the general symmetric cone, it is still true from the
Jordan algebra point of view. We will give an explanation in the appendix. Part (b)
follows immediately form part (a) and our assumption that �p is bounded.

Lemma 4.3. There exists a positive constant C ′ such that if

αk,j ≤ min

{
(1 − η′2)θηk‖pk,j‖

1 + (1 − η′2)θηk‖pk,j‖
,
‖pk,j‖
C ′

}
,(4.26)

then the iteration {k, j} is very successful and αk,j+1 ≥ αk,j.

Proof. Let C ′ = 1 +C2‖Q‖, where C is defined as in Lemma 4.2. It follows from
the definition of βk,j and the last lemma that

βk,j = 1 + ‖Qk,j‖ ≤ C ′.(4.27)

Therefore, when αk,j ≤ ‖pk,j‖
C′ , the inequality (4.14) becomes

q′(d′k,j) ≤ −θ‖pk,j‖αk,j .(4.28)

Inequality αk,j ≤ (1−η′
2)θηk‖pk,j‖

1+(1−η′
2)θηk‖pk,j‖ < 1 ensures that xk,j + dk,j ∈ ri{�p}. It follows
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from inequalities (4.3) and (4.28) that

|ρk,j − 1| =

∣∣∣∣fηk
(xk,j) − fηk

(xk,j + dk,j) + mk,j(dk,j)

Predk,j

∣∣∣∣ ≤
(αk,j)

3

3(1−αk,j)

θαk,jηk‖pk,j‖

<

αk,j

1−αk,j

θηk‖pk,j‖
≤ 1 − η′2.(4.29)

Therefore, −(ρk,j − 1) ≤ |ρk,j − 1| ≤ 1 − η′2, and we can see that ρk,j ≥ η′2. Conse-
quently, the iteration is very successful and αk,j+1 ≥ αk,j .

Lemma 4.4. If ηk‖pk,j‖ ≥ ε for some constant ε ∈ (0, αk,0) and all j, then

αk,j ≥ min

{
γ1(1 − η′2)θε

1 + (1 − η′2)θε
,
γ1ε

C ′ηk

}
(4.30)

holds for all j.
Proof. It is easy to see that (4.30) holds for j = 0 as αk,0 > ε. Assume that the

j is the first integer such that αk,j+1 < min{ γ1(1−η′
2)ε

1+(1−η′
2)ε

, γ1ε
C′ηk

}; from the update of the

trust-region radius, we know γ1αk,j ≤ αk,j+1, and hence

αk,j < min

{
(1 − η′2)θε

1 + (1 − η′2)θε
,

ε

C ′ηk

}

< min

{
(1 − η′2)θηk‖pk,j‖

1 + (1 − η′2)θηk‖pk,j‖
,
‖pk,j‖
C ′

}
.(4.31)

From the above inequality and the last lemma, we have that αk,j+1 ≥ αk,j , which
contradicts the assumption that αk,j+1 is the first trust-region radius violating (4.30).
The contradiction shows that the lemma is true.

Now we are ready to prove that the first part of the stopping rule, i.e., ηk‖pk,j‖ <
ε1, can be satisfied in finitely many iterations.

Lemma 4.5. (a) If there are only finitely many successful iterations in each inner
algorithm, then xk,j = x∗ and ‖pk,j‖ = ‖p(x∗)‖ = 0 for all sufficiently large j.

(b) lim infj→∞ ηk‖pk,j‖ = 0.
(c) limj→∞ ηk‖pk,j‖ = 0.
Proof. (a) The mechanism of the algorithm ensures that x∗ = xk,j0 = xk,j

for all j > j0, where {k, j0} is the index of the last successful iterate. Since all
iterations are unsuccessful for sufficiently large j, we know αk,j will converge to zero.
If ‖p(x∗)‖ = ‖pk,j0‖ > 0, Lemma 4.4 implies that αk,j will be bounded from zero.
This contradiction shows that ‖pk,j0‖ has to be zero.

(b) For the purpose of deriving contradiction, we assume that for all j, ηk‖pk,j‖ ≥
ε for some ε > 0. From Lemma 4.4 we know that αk,j ≥ min{ γ1(1−η2)θε

1+(1−η2)θε
, γ1ε
C′ηk

} for all

j. We consider all successful iterations {k, j}; then

fηk
(xk,j) − fηk

(xk,j + dxk,j
) ≥ η′1Predk,j

≥ η′1θ‖pk,j‖min

{
‖pk,j‖
βk,j

, αk,j

}
;(4.32)

here the last inequality follows by inequality (4.14). From the above analysis, we

know η′1θ‖pk,j‖min{‖pk,j‖
βk,j

, αk,j} ≥ σ > 0; here σ is some positive constant number
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that is independent of j. If we have infinitely many successful iterations, the difference
between fηk

(xk,0) and fηk
(xk,j) will be unbounded when j → +∞. This contradicts

the assumption that fηk
(x) is bounded from below on the feasible set. Hence, we

conclude that lim infj→∞ ηk‖pk,j‖ = 0.
(c) For the purpose of deriving a contradiction, assume there is a subsequence

of successful iterations {xk,ji} such that ηk‖pk,ji‖ ≥ 2ε for some ε > 0 and for all
{ji}. Our part (b) ensures the existence for each {ji} of a first successful iteration
li = l(ji) > ji such that ηk‖pk,li‖ < ε. We thus obtain another subsequence of
successful iterations {li} such that ηk‖pk,j‖ ≥ ε for ji ≤ j < li and ηk‖pk,li‖ < ε.
Define κ = {j ∈ S|ji ≤ j < li}; here S indicates the successful iterations. For j ∈ κ,
from inequality (4.32) we have

fηk
(xk,j) − fηk

(xk,j+1) ≥ η′1θ‖pk,j‖min

{
‖pk,j‖
βk,j

, αk,j

}

≥ η′1θ
ε

ηk
min

{
ε

ηkβk,j
, αk,j

}
.(4.33)

Since the sequence fηk
(xk,j) is monotonically decreasing and bounded from below,

it is convergent. Therefore, the left-hand side of (4.33) must tend to zero when j tends
to infinity. This gives that limj→∞,j∈κ αk,j = 0. As a consequence, the second term
dominates the minimum in (4.33) and we obtain that for j ∈ κ sufficiently large,

αk,j ≤
2ηk(fηk

(xk,j) − fηk
(xk,j+1))

η′1θε
.(4.34)

We then deduce from this bound that, for i sufficiently large,

‖xk,ji − xk,li‖ ≤
li−1∑

j=ji,j∈κ

‖dxk,j
‖ =

li−1∑
j=ji,j∈κ

‖F ′′(xk,j)
− 1

2 d′xk,j
‖

≤
li−1∑

j=ji,j∈κ

‖F ′′(xk,j)
− 1

2 ‖‖d′xk,j
‖ ≤

li−1∑
j=ji,j∈κ

Cαk,j

≤ C

li−1∑
j=ji,j∈κ

2ηk(fηk
(xk,j) − fηk

(xk,j+1))

η′1θε

=
2Cηk(fηk

(xk,ji) − fηk
(xk,li))

η′1θε
.(4.35)

Here the third inequality follows from part (b) of Lemma 4.2, and the fourth inequality
follows from inequality (4.34). Because fηk

(xk,j) is monotonically decreasing for j and
bounded from below, it is convergent. Consequently, fηk

(xk,ji) − fηk
(xk,li) tends to

zero when i → +∞. We therefore obtain that ‖xk,ji − xk,li‖ tends to zero when
i → +∞. Without loss of generality, we can assume x∗ to be the common limit point
of sequences {xk,ji}∞i=1 and {xk,li}∞i=1. Since the sequences of our algorithm make the
value of fηk

(x) decrease, the limit point x∗ must be in the interior of the feasible set
�p. We know

‖pk,ji − pk,li‖ ≤ ‖pk,ji − p(x∗)‖ + ‖p(x∗) − pk,li‖.(4.36)
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From part (a) of Lemma 4.2, we know that ck,j is continuous for x. Since pk,j
is the projection of ck,j over the null space of Ak,j , pk,j is also continuous for x.
Therefore, the right-hand side of inequality (4.36) will converge to zero when i tends to
infinity. But, on the other hand, we know ηk‖pk,ji −pk,li‖ ≥ ηk‖pk,ji‖−ηk‖pk,li‖ ≥ ε.
Therefore, we get a contradiction, which means our initial assumption that ηk‖pk,j‖
does not converge to zero cannot be true. This completes our proof.

Now we prove that the second part of the stop rule, ηkλk,j > −ε2, can also be
satisfied in finitely many iterations.

Lemma 4.6. For every fixed k, lim supj→∞ λk,j ≥ 0.

Proof. For the purpose of deriving a contradiction, we assume that λk,j ≤ λ∗ for
some λ∗ < 0 and all j. From inequality (4.15) we know that

Predk,j = −q′(d′xk,j
) ≥ −θλk,j min{λ2

k,j , α
2
k,j} ≥ −θλ∗ min{λ2

∗, α
2
k,j}.(4.37)

Therefore, we get

|ρk,j − 1| =

∣∣∣∣fηk
(xk,j) − fηk

(xk,j + dk,j) + mk,j(dk,j)

Predk,j

∣∣∣∣ ≤
(αk,j)

3

3(1−αk,j)

−ηkθλ∗ min{λ2
∗, α

2
k,j}

.

(4.38)

From this inequality, there exists a constant δ1 > 0 such that if αk,j < δ1, then
|ρk,j −1| ≤ 1−η′2, that is, ρk,j ≥ η′2, which means this iteration is very successful and
αk,j+1 ≥ αk,j . Now we assume {k, j0} is the first iteration such that αk,j0 ≤ δ1; then
from our above analysis, we know that αk,j ≥ min{γ1δ1, αk,j0} := δ2 for all j ≥ j0.
Consequently,

fηk
(xk,j) − fηk

(xk,j + dxk,j
) ≥ η′1Predk,j ≥ −η′1θλ∗ min{λ2

∗, α
2
k,j}

≥ −η′1θλ∗ min{λ2
∗, δ

2
2} > 0(4.39)

whenever {k, j} is successful. If there are infinitely many successful iterations after
{k, j0}, (4.39) contradicts the fact that fηk

(x) is bounded from below. If there are
finitely many successful iterations, the mechanism of our algorithm ensures that αk,j

converges to zero. But it again contradicts αk,j ≥ min{γ1δ1, αk,j0} := δ2 for all j ≥ j0.
Hence our original assumption that there exists λ∗ < 0 such that for all j, λk,j ≤ λ∗
cannot be true. This completes the proof.

From Lemma 4.6 and part (c) of Lemma 4.5, it is obvious that the stopping rule
of our inner algorithm can be satisfied in finite many iterations.

Theorem 4.1. For every fixed ηk, Step 1 through Step 4 can be terminated in
finitely many iterations.

Finally, we can derive that any limit point of the sequences our algorithm gener-
ates satisfies both the first-order and the second-order optimality conditions.

Theorem 4.2. Assume x∗ is any limit point of the sequences {xk,0}∞k=0 our algo-
rithm generates; then x∗ satisfies both the first-order and the second-order optimality
conditions for our problem (3.1)–(3.3).

Proof. We assume that sk+1,0 is defined by (4.21). From Lemma 4.1, we know

〈xk+1,0, sk+1,0〉 ≤
1

ηk
(ϑ +

√
ϑ).(4.40)
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The above inequality implies that ηk → ∞ as k → ∞. Hence, any limit point of the
sequences {xk,0}∞k=0 must satisfy the first-order optimality condition. Moreover, we
know that

λk+1,0 ≥ −ε2
ηk

,(4.41)

which implies that

lim inf
k→∞

λk,0 ≥ 0.(4.42)

The above inequality, the definition of λk,j , and our continuity assumption show that

F ′′(x∗)−
1
2QF ′′(x∗)−

1
2 is positive semidefinite on the vector space {x|AF ′′(x∗)−

1
2x =

0, x ∈ E}. From Corollary 3.1, we know x∗ satisfies the second-order optimality
condition.

5. Solve the large-scale trust-region subproblem. In this section, we show
how to use our algorithm to solve the trust-region subproblem exactly and approxi-
mately. Numerical results are presented.

Consider the following standard trust-region subproblem:

min q(x) =
1

2
〈x,Qx〉 + 〈c, x〉(5.1)

subject to ‖x‖ ≤ Δ,(5.2)

where ‖.‖ is the �2-norm. By introducing a new variable xn+1, we can transform this
problem into the following nonlinear second-order cone programming:

min q(x) =
1

2
〈x,Qx〉 + 〈c, x〉(5.3)

subject to xn+1 = Δ,(5.4)

n∑
i=1

x2
i ≤ x2

n+1.(5.5)

Obviously, this is a special symmetric cone programming with A = (0 · · · 0, 1) and
K = {x ∈ Rn+1 :

∑n
i=1 x

2
i ≤ x2

n+1 and xn+1 ≥ 0}. If we want to use Algorithm 4.1
to solve (5.3)–(5.5), we need to choose a method of solving (4.11)–(4.13). Since
we are interested in solving large-scale problems, this motivates us to choose the
methods that rely only on matrix-vector product. The first method in this class is
the Steihaug–Toint truncated conjugate gradient method, which is due to Toint [26]
and Steihaug [23]. And the adaptation to handle additional affine constraints can be
found in Gould, Hribar, and Nocedal [15]. Here we give the version of the algorithm
for solving (4.11)–(4.13).

Algorithm 5.1 (the Steihaug–Toint method with affine constraints).
Step 0 Initialization. For fixed {k, j} in (4.11)–(4.13), let d′0 = 0, g0 = ck,j,

v0 = PAk,j
ck,j, and p0 = −v0. For h = 0, 1, . . . until convergence,

perform the iteration.
Step 1 Check the negative curvature. Set κh = 〈ph, Qk,jph〉. If κh ≤ 0,

compute σh as the positive root of ‖d′h + σph‖ = αk,j, set d′h+1 = d′h +
σhph, and stop. End if
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Step 2 Check the boundary constraints. Set βh = 〈gh, vh〉/κh. If ‖d′h +
βhph‖ ≥ αk,j, compute σh as the positive root of ‖d′h + σph‖ = αk,j, set
d′h+1 = d′h + σhph, and stop. End if

Step 3 Perform the conjugate gradient step. Set d′h+1 = d′h+βhph, gh+1 =

gh + βhQk,jph, vh+1 = PAk,j
gh+1, and ph+1 = −vh+1 + 〈gh+1,vh+1〉

〈gh,vh〉 ph.

Here PAk,j
is the projection onto the null space of Ak,j .

There are several advantages of this algorithm:
(1) It requires only matrix-vector product.
(2) It usually terminates very fast.
(3) It is applicable to problems with affine constraints.
(4) If the objective function is convex, the computed approximation solution

gives at least half of the optimal reduction (Yuan [32]).
This Steihaug–Toint method is basically unconcerned with the trust region until

it blunders into its boundary and stops. This is rather unfortunate, particularly, as
considerable experience has shown that this frequently happens during the first few
iterations when a negative curvature is present, causing the following disadvantages
to the algorithm:

(A) Even if the problem is convex, optimal solution cannot be expected, except
when the solution lies interior to the trust region.

(B) If it blunders into the boundary or a negative curvature is present too early,
the approximate solution is not very good.

(C) It cannot handle the hard case.
(D) Optimal solution for the nonconvex problem is normally impossible for this

algorithm.
Can we remove these disadvantages of Algorithm 5.1 while retaining its advan-

tages? The answer is yes. After transforming (5.1)–(5.2) into (5.3)–(5.5), we use
Algorithm 4.1 to solve it. In each iteration we use the Steihaug–Toint conjugate gra-
dient method to solve (4.11)–(4.13). Since we basically repeat using Algorithm 5.1
in each iteration, we can keep all the advantages of Algorithm 5.1 as long as the
number of iterations is not too big. It turns out that the number of iterations is very
reasonable from the numerical results presented in this section. What can we achieve
by doing this? We can get at least a first-order critical point of (5.3)–(5.5). This
gives an optimal solution of (5.1)–(5.2) if Q is positive semidefinite. Thus we have
removed (A). Algorithm 5.1 sometimes cannot give us a good approximate solution
because it hits the boundary too early. By adding a ϑ-norm barrier to the quadratic
model, we can prevent the iterates to reach the boundary too soon. This idea can
give us a much better approximate solution, which is verified by the numerical results
in this section. Therefore, we have removed (B). We know that Algorithm 5.1 cannot
handle the hard case. If c = 0 and Q is indefinite, the method will terminate at
d′ = 0 with no decrease in the model. This cannot happen in our new framework.
For Algorithm 4.1, a first-order critical point is always ensured even if the problem
is in the hard case. Therefore, we have removed (C). Moreover, Algorithm 4.1 can
be improved to find the optimal solution of (5.1)–(5.2) for all the cases, including the
nonconvex case and the hard case. We first need the following lemma, which is well
known in the trust-region literature.

Lemma 5.1. Any global minimizer x∗ of (5.1)–(5.2) satisfies the equation

(Q + μ∗I)x∗ = −c;(5.6)

here Q + μ∗I is positive semidefinite, μ∗ ≥ 0, and μ∗(‖x∗‖ − Δ) = 0.
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For a proof, see, e.g., Section 7.2 of Conn, Gould, and Toint [6].
The following algorithm removes (D).
Algorithm 5.2 (an algorithm for optimal solution).

Step 0 Make Q positive semidefinite Find s, the smallest eigenvalue of Q
and v, its corresponding eigenvector. If s < 0, set Q = Q− sI, end if.

Step 1 Solve new model. Use Algorithm 4.1 to solve (5.3)–(5.5) with Q pos-
itive semidefinite to get solution x0.

Step 2 Go back to original model. If s ≥ 0, set x = x0, end if. If s < 0 and
‖x0‖ = Δ, set x = x0, end if. If s < 0 and ‖x0‖ < Δ, set x = x0 + σv,
σ is chosen so that ‖x0 + σv‖ = Δ, end if.

We claim that x is an optimal solution of (5.1)–(5.2). If s ≥ 0, it is obvious. If
s < 0 and ‖x0‖ = Δ, it follows from the fact that x0 is an optimal solution of the
new model with Q positive semidefinite and Lemma 5.1. If s < 0 and ‖x0‖ < Δ,
μ∗ = 0 in (5.6) of Lemma 5.1 and consequently Qx0 = −c for the new convex Q.
And since Qv = 0 for the new Q, Qx = Q(x0 + σv) = −c. From Lemma 5.1, we
know that x is an optimal solution of (5.1)–(5.2). Therefore, we have removed all the
disadvantages of the Steihaug–Toint method, while our algorithms mainly rely on the
conjugate gradient method. For finding the optimal solution of the problem when it
is nonconvex, we need to compute the least eigenvalue. However, those eigenvalue-
based algorithms like those of Sorensen [22], Rojas, Santos, and Sorensen [21], and
Rendl and Wolkowicz [19] require computing sequences of least eigenvalues, while we
compute the least eigenvalue only once. As pointed out to us by a referee, Griffin and
Gill [16] independently applied a truncated conjugate gradient algorithm to a shifted
quadratic function to solve the trust-region subproblem.

We need to mention two implementation techniques when we use Algorithm 5.1
to solve (4.11)–(4.13) in each iteration.

We can see that the main computation in this algorithm is the product of the ma-
trix Qk,j with a vector. In practice, we do not form Qk,j explicitly because it is expen-

sive and destroys the sparse structure of Q. Since Qk,j = F ′′(xk,j)
− 1

2QF ′′(xk,j)
− 1

2 +
1
ηk
I, we need to compute the product of the matrix F ′′(xk,j)

− 1
2 with a vector, which

can be done efficiently. For F (x) = − ln(x2
n+1 −

∑n
i=1 x

2
i ), F ′′(x)−1 and F ′′(x)−

1
2

have the following explicit forms:

F ′′(x)−1 =
1

2

[
(x2

n+1 − yT y)I + 2yyT 2xn+1y
2xn+1y

T x2
n+1 + yT y

]
,(5.7)

F ′′(x)−
1
2 =

√
2

2

[√
x2
n+1 − yT yI + yyT√

x2
n+1−yT y+xn+1

y

yT xn+1

]
,(5.8)

where y = (x1 . . . xn)T . For more details about the second-order cone and its barrier,
see, e.g., Alizadeh and Goldfarb [2] or Faybusovich and Tsuchiya [10].

The first technique is that we do not have to formulate F ′′(x)−
1
2 explicitly for

computing the product of the matrix F ′′(xk,j)
− 1

2 with a vector. Since yyTu = 〈y, u〉y
for any vector u ∈ Rn, the computation needs only O(n) arithmetic operations.

The second technique is for the projection PAk,j
. For any vector u ∈ Rn+1,

PAk,j
u = u−AT

k,j(Ak,jA
T
k,j)

−1Ak,ju

= u− F ′′(xk,j)
− 1

2AT (AF ′′(xk,j)
−1AT )−1AF ′′(xk,j)

− 1
2u.(5.9)
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Because A = (0 . . . 0, 1), AF ′′(xk,j)
−1AT is just the (n+1, n+1) entry of F ′′(xk,j)

−1.

The only thing left is to compute the product of F ′′(xk,j)
− 1

2 with a vector, which has
been taken care of by O(n) arithmetic operations.

By the above two techniques, each iteration of our algorithm takes hardly more
extra work than the Steihaug–Toint truncated conjugate gradient method.

When applying Algorithm 4.1 to (5.3)–(5.5), we change the stopping rule for the
inner iterations to make the algorithm more efficient. We remind the reader that there
are two conditions of our stopping rule: (a) ηk‖pk,j‖ < ε1 and (b) ηkλk,j > −ε2 for
some ε1, ε2 ∈ (0, 1). We ignore condition (b), since a first-order critical point is good
enough for our purpose. For condition (a), we need to change it a little because it is
independent of whether or not optimality is nearly achieved. In practice, we directly
follow the definition of the first-order optimality condition. If xk,j is a first-order
critical point, sk,j = Qxk,j + c−A∗y should be inside the second-order cone for some
y. In our case A = (0 . . . 0, 1) and all of the entries in the last row of Q are zeros.
Therefore, we set y = −‖Qxk,j + c‖ such that sk,j is inside the second-order cone.
Then we stop the inner iteration as soon as we find xk,j such that 〈xk,j , sk,j〉 ≤ ε

ηk

for some constant ε. Lemma 4.1 suggests that ε =
√
ϑ + ϑ is a good choice. For

the second-order cone, ϑ = 2. From our practical experience, it works very well for
convex problems. In the nonconvex case, it seems that this stopping rule works for
some problems but not all of them, which remains to be investigated. The algorithm
is halted as soon as xk,j is found such that 〈xk,j , sk,j〉 ≤ 10−4. In Algorithm 4.1,
η′1 = 0.05 and η′2 = 0.9 are used and the trust region is updated according to the usual
rule. If ρk,j ≥ η′2, set αk,j+1 = max(αk,j , 2‖d′k,j‖); if ρk,j ∈ [η′1, η

′
2), set αk,j+1 = αk,j ;

if ρk,j < η′1, set αk,j+1 = 1
2αk,j . The initial value of parameter η is set to be 1

Δ and
is updated by ηk+1 = 10ηk. In each iteration, the Steihaug–Toint conjugate gradient

method (Algorithm 5.1) is stopped as soon as ‖vh‖ ≤ 10−
3
2 ‖v0‖ if it does not hit the

boundary and negative curvature is not present before that. We decide not to put
an upper bound on the number of Steihaug–Toint iterations, which is denoted by h
in Algorithm 5.1. In this way, for the convex problems, we will be able to know the
number of iterations our algorithm needs to get an optimal solution if we solve each
trust-region subproblem approximately, which is measured by ‖vh‖ ≤ 10−

3
2 ‖v0‖.

The algorithms are tested in MATLAB 7.0 on a Linux system. We run our ex-
periments on a Gateway computer with a Pentium IV 3.2G processor and 1G RAM.
We compare our results with a software called “Newtrust4b” based on Rendel and
Wolkowicz [19]. We choose “Newtrust4b” because it is one of the best software pack-
ages for finding the optimal solution of the trust-region subproblem and because it is
also implemented in MATLAB code. For the test problems, Q and c are randomly
generated with entries uniformly distributed on (0,1). We set the trust-region radius
Δ = 1. For different radiuses, the computation time and the number of iterations may
vary, but they vary reasonably. In Tables 1–5, n is the dimension of the problems,
d is the density of Q; i.e., Q has d ∗ n2 nonzero entries. The data in those columns
under the algorithms’ names is the computational time by seconds. Sometimes, the
MATLAB timing is dependent on the CPU load. Our timings have been averaged to
eliminate this dependency. And its is the number of iterations of our algorithm. ST
its is the total number of Steihaug–Toint iterations used during the whole computa-
tion. From Algorithm 5.1, we can see that the dominating cost of each Steihaug–Toint
iteration is the product of Qk,j and ph. Therefore, ST its gives us the total number
of the matrix-vector products used by our algorithm. We first test some convex prob-
lems. To make the problem convex, we let Q = Q − sI if s, the least eigenvalue of
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Table 1

Convex singular problems.

n d Newtrust4b Algorithm 4.1 its ST its
2500 1 57 3 10 66
5000 0.5 1328 67 28 156
10000 0.05 284 16 12 42
20000 0.01 240 10 9 19
100000 0.0001 181 5 8 15
200000 101 band 248 17 7 11

Table 2

Q is sparse with d = 0.03.

n Newtrust4b Algorithm 5.2 Eigenvalue time its ST its
4000 8 6 4 10 31
8000 74 68 58 22 53
12000 156 143 121 21 53
16000 303 278 239 21 54
20000 356 312 253 20 48

Q, is negative. In this way, the problem is convex and nearly singular. To show that
our algorithm can handle the singular problems, we set Q =

[
Q 0
0 0

]
to make it even

more singular. Now the dimension of Q is n + 1, and so is c. Since the problems are
convex, Algorithm 4.1 gives us optimal solutions.

We can see that Algorithm 4.1 outperforms Newtrust4b for the convex singular
problems. The success of Algorithm 4.1 in this case is a good basis for Algorithm 5.2.
If the problem is nonconvex or if we do not know whether or not our problem is
convex, we have to use Algorithm 5.2 to get an optimal solution. The following two
groups of results show us the performance of Algorithm 5.2.

We can see that Algorithm 5.2 is competitive with Newtrust4b in both sparse
and dense cases. The eigenvalue time is the computational time cost by computing
the least eigenvalue of Q in Algorithm 5.2, which becomes dominant when the prob-
lem becomes large. Fortunately, we have reduced this part to the minimum level in
Algorithm 5.2 (we need only compute the least eigenvalue once for all). Moreover,
the number of iterations and ST iterations of our algorithm is independent of the
dimension of the problems.

So far, we have been focusing on finding the optimal solution of the trust-region
subproblem. But if the problem is nonconvex, Algorithm 4.1 can deliver us only an
approximate solution. How good is Algorithm 4.1 for nonconvex problems? From our
practical experience, we have to say that the performance of Algorithm 4.1 on finding
an approximate solution for nonconvex problems is not as stable as its performance
on finding exact solution for convex problems. This is reflected by the fact that
the convergence is sensitive to the inner iteration stopping rule. The inner iteration

stopping rule, 〈xk,j , sk,j〉 ≤
√
ϑ+ϑ
ηk

, works for some of our testing problems but not
for all of them. For those test problems where Algorithm 4.1 has good performance,
the number of iterations is around 40. For those test problems where Algorithm 4.1
has bad performance, the number of iterations can reach over 100. The change of

stopping rule of inner iteration (like from 〈xk,j , sk,j〉 ≤
√
ϑ+ϑ
ηk

to 〈xk,j , sk,j〉 ≤ 1
ηk

) can
significantly affect the performance of the algorithm on the same test problem. This
phenomenon remains to be investigated. On the positive side, even for the problems
where Algorithm 4.1 has bad performance, the convergence slows down only when ηk
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Table 3

Q is dense with d = 1.

n Newtrust4b Algorithm 5.2 Eigenvalue time its ST its
1000 9 3 2 15 144
2000 14 7 4 22 141
3000 36 18 11 20 154
4000 147 71 56 22 144
5000 323 145 127 19 164

Table 4

Nonconvex singular problems.

n d Algorithm 4.1 Accuracy its ST its
3000 1 1 90% 5 10
6000 1 5 90% 5 10
10000 0.03 3 95% 3 6
20000 0.03 11 95% 3 6
100000 0.0001 2 99% 3 4
200000 101 band 8 99% 3 4

becomes large and our solution is close to the optimal solution. Here we give a group
of examples to show that Algorithm 4.1 can deliver us a good approximate solution
at a relatively low cost. For each of these problems, we first use Algorithm 5.2 to
get an optimal solution and consequently the best possible reduction. Then we use
Algorithm 4.1 to solve it and stop the algorithm when 90% of the optimal reduction
is achieved. Q is randomly generated with entries uniformly distributed on (0,1). We
have check that Q is indefinite. To show the performance of our algorithm on the
singular problems, we set Q =

[
Q 0
0 0

]
. Therefore, the actual dimension of Q in Table

4 is n + 1.
We can see that after a few Steihaug–Toint iterations, Algorithm 4.1 can deliver

us a good approximate solution. Therefore, we have achieved our goal of improving
the solution quality of the Steihaug–Toint method while keeping its computational
advantages.

In summary, techniques developed in this section give us two algorithms for solv-
ing the trust-region subproblem. Algorithm 5.2 gives us an optimal solution for both
convex and nonconvex problems. Algorithm 4.1 gives us a good approximate solution
for nonconvex problems and an optimal solution for convex problems.

6. Further numerical results and implementation issues. In this section,
we discuss some implementation issues for solving general symmetric cone program-
ming. We also present some numerical results of solving a class of quadratic program-
ming.

To solve the general symmetric cone programming, we have to handle three basic
implementation issues. The first issue is to find a starting point in our feasible set.
This feasible set has been well studied in the interior-point algorithm literature. We
can use the same technique to find a feasible starting point for our problem. The
second issue is to handle affine constraints. This requires us either to solve the nor-
mal equations or to project iterates onto the null space of Ak,j . Gould, Hribar, and
Nocedal [15] is a good reference for handling this issue. The third issue is about

preconditioning. We recall that Qk,j = F ′′(xk,j)
− 1

2QF ′′(xk,j)
− 1

2 + 1
ηk
I. When we are

getting close to the optimal solution, ηk is getting large, and consequently the right
part 1

ηk
I is about to disappear. At the same time, the iterate xk,j is getting close
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Table 5

Q is positive definite with density d = 1.

n its ST its Algorithm 4.1
1000 67 529 4
2000 75 799 17
3000 81 777 40
4000 71 630 75
5000 70 671 109

to the boundary. Therefore, F ′′(xk,j)
− 1

2 becomes nearly singular, which can make
the condition number of Qk,j large. As we know, the convergence behavior of the
conjugate gradient method is strongly dependent on the conditioning of Qk,j . There-
fore, the appropriate preconditioning technique is necessary to make the algorithm
efficient.

Handling these implementation issues is beyond the scope of this paper. However,
to see how our algorithm performs on solving problems other than the trust-region
subproblem, we present some numerical results for a class of quadratic programming,
which is minimization of a strictly convex quadratic objective function over the pos-
itive orthant. This problem is bounded from below. We use the vector e with every
entry 1 as our starting point. Q is randomly generated with entries uniformly dis-
tributed on (0,1). We make the problem convex by letting Q = Q + (−s + 1)I if s,
the least eigenvalue of Q, is negative. c is randomly generated with entries uniformly
distributed on (−1, 0). In this way, the problem will have nontrivial solution. In
each step, the conjugate gradient method is stopped if the iterate hits the boundary
or ‖gh‖ ≤ 10−3/2‖g0‖. The inner iteration is stopped when we find xk,j such that

sk,j = Qxk,j +c belongs to positive orthant and 〈xk,j , sk,j〉 ≤ n+
√
n

ηk
. The algorithm is

halted as soon as xk,j is found such that 〈xk,j , sk,j〉 ≤ 10−4. All other implementation
techniques are similar to those we discussed in section 5. The following is a group of
results.

The number of iterations as well as the total number of Steihaug–Toint iterations
are independent of the dimension of problems, which makes our algorithm have prac-
tical potential for solving large-scale problems. One practical observation we want to
mention is that the computational time of reducing 〈xk,j , sk,j〉 from 10−3 to 10−4 is
even more than the computational time of reducing it from the starting value to 10−3.
This is caused by the fact that the convergence of the conjugate gradient algorithm
considerably slows down when the iterate is close to optimal solution and consequently
the boundary, which agrees with our theoretical analysis above. Therefore, appropri-
ate preconditioning is indispensable to make the algorithm more efficient. Since it
has been shown in section 5 that Algorithm 4.1 works well for solving the singular
problems, an alternative way is to use it to solve the trust-region subproblem when
the iterate is close to the boundary of the positive orthant. Which way is better
remains to be investigated.

7. Concluding remarks. In this paper, we have shown that combining the
techniques developed in trust-region literature (especially Conn, Gould, and Toint
[6]) with those techniques in interior-point method literature can be very powerful
both in theoretical analysis and practical implementation. For further theoretical
research, Lu and Yuan [17] have recently proved that the complexity of an interior-
point trust-region algorithm for convex programming is polynomial time. On the
practical side, the numerical results presented in this paper show that our algorithm
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has practical potential. But a lot more work needs to be done to turn this method
into a practical software package for solving general symmetric cone programming.

Appendix. In this appendix, we describe the face VA′ for the semidefinite case.
We use the Jordan algebra technique to prove Theorem 3.3 and give an explanation
why Lemma 4.2 holds for general symmetric cone.

If K = Sn×n
+ , we know F (X) = − ln det(X) is a ϑ-normal barrier for Sn×n

+ .

Let A′ ∈ ∂K, and rank(A′) = r < n; then F ′′(A′)−
1
2X = A′ 1

2XA′ 1
2 . We set V =

{A′ 1
2XA′ 1

2 |AA′ 1
2XA′ 1

2 = 0, X ∈ Sn×n}. In section 3, we have claimed that VA′ = V .
Now we give a proof.

Proof. First, we need to characterize VA′ . Since A′ is a semidefinite matrix,
then we can find an orthogonal matrix U , such that U−1A′U = D, where D =
diag{λ1, . . . , λr, 0, . . . , 0} with λi > 0, i = 1, . . . , r.

Let C = diag{0, . . . , 0, 1, . . . , 1} be the matrix whose first r diagonal entries are
0 and the last n − r diagonal entries are 1, and let Q′ = UCU−1. Then Q′ is a
nonzero positive semidefinite matrix and 〈Q′, A′〉 = 〈UCU−1, UDU−1〉 = 〈C,D〉 = 0.
Furthermore, for any positive semidefinite n × n matrix X, 〈Q′, X〉 ≥ 0. Therefore,
the hyperplane H = {X ∈ Sn×n|〈Q′, X〉 = 0} isolates Sn×n

+ and contains A′. We
claim that

�A′ = {X ∈ Sn×n
+ |AX = b, 〈Q′, X〉 = 0}.

To see that A′ is a relative interior point of �A′ , we need only show that A′ is an
interior point of � = {X ∈ Sn×n

+ |〈Q′, X〉 = 0}. The map X → Y = U−1XU is a
nondegenerate linear transform which maps Sn×n

+ onto itself, maps Q′ onto C, and

maps A′ onto D. Then � is mapped onto �
′

= {Y ∈ Sn×n
+ |〈C, Y 〉 = 0}. Clearly,

Y must have the last n − r rows and last n − r columns be 0. The upper left r × r
submatrix Y ′ of Y can be arbitrary positive semidefinite matrix, Y = ( Y

′
0

0 0
). It is easy

to see that �
′
contains D in its interior. Since Y → X = UY U−1 is a nondegenerate

linear transform, which maps D onto A′ and �
′

onto �, then A′ is an interior point
of �. Therefore A′ is a relative interior point of �A′ . Then

VA′ = {X ∈ Sn×n|AX = 0, 〈Q′, X〉 = 0}.

To show that VA′ = V, we need only verify that

V
′
= {A′ 1

2XA
1
2 |X ∈ Sn×n

+ } = � = {X ∈ Sn×n
+ |〈Q′, X〉 = 0}.

For all F ∈ �, since � = U�
′
U−1,

F = U

(
Y

′
0

0 0

)
U−1

for some r × r positive semidefinite matrix Y ′. Let

X = U

(
D

′
Y

′
D

′
0

0 0

)
U−1;

here D′ = diag{
√
λ1, . . . ,

√
λr}−1, λi > 0, i = 1, . . . , r are the eigenvalues of A′. Then

A′ 1
2XA′ 1

2 =
(
Udiag{

√
λ1, . . . ,

√
λr, 0, . . . , 0}U−1

)(
U

(
D

′
Y

′
D

′
0

0 0

)
U−1

)
,
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(
Udiag{

√
λ1, . . . ,

√
λr, 0, . . . , 0}U−1

)
= U

(
Y

′
0

0 0

)
U−1 = F.

We conclude that � ⊂ V ′. It is easy to see that dim(�) = dim(V ′) = r(r+1)
2 , and we

get � = V ′. Therefore,

{X ∈ Sn×n|〈Q′, X〉 = 0} = Aff(�) = Aff(V ′) = {A′ 1
2XA′ 1

2 |X ∈ Sn×n},

which implies that

VA′ = V = {F ′′(A′)−
1
2X|AF ′′(A′)−

1
2X = 0, X ∈ Sn×n}.

Before we prove Theorem 3.3, we introduce some notation of Jordan algebra.
Since every symmetric cone K can be realized as a cone of squares in an appropriated
Euclidean algebra (see Faraut and Koranyi [9] for details), we can use the Jordan
algebra technique to prove Theorem 3.3.

Let V be an Euclidean Jordan algebra and Ω be a cone of invertible squares in
V . We define 〈x, y〉 = tr(x ◦ y) as the canonical scalar product in V . Let F (x) =
− log det(x), x ∈ Ω. Then F ′′(x) = P (x)−1; here F ′′(x) is the Hession of F evaluated
at x ∈ Ω with respect to the canonical scalar product 〈, 〉. P (x) is the quadratic
representation of x. We assume rank(V ) = r. When x is on the boundary ∂Ω of Ω,
rank(x) = j < r.

In the following, we fix a Jordan frame c1, . . . , cr and denote ej = c1 + · · · + cj ,
V (j) = V (ej , 1). We denote by Ωj the symmetric cone associated with the subspace
V (j), i.e., the interior relative to V (j). Then Ωj ⊂ ∂Ω. The following lemma charac-
terizes the boundary of symmetric cone. For a proof, see Proposition IV.3.1 in Faraut
and Koranyi [9].

Lemma A.1. For x in Ω the following properties are equivalent:
(a) The rank of x is j.
(b) x ∈ kΩj for some k in K = G ∩O(V ); here G is the connected component

of the identity in G(Ω) and G(Ω) denotes the set of automorphisms of Ω.
(c) The rank of P (x) is equal to the dimension of V (j).

Now we assume x∗ ∈ Ω and rank(x∗) = j. From Lemma A.1, we know that
x∗ ∈ kΩj for some k in K. It can be verified that Vx∗ = kV (j). Now we are ready to
prove Theorem 3.3.

Proof of Theorem 3.3. From the above analysis, we need only prove P (x∗)
1
2V =

kV (j). Since P (x∗) is a positive semidefinite linear operator, P (x∗)
1
2V = P (x∗)V .

Therefore we need only prove P (x∗)V = kV (j). From part (b) of Lemma A.1, we

know x∗ = k
∑j

i=1 λici = kP (a)ej , with a =
∑j

i=1

√
λici +

∑r
i=j+1 ci. Then P (x∗) =

p(kP (a)ej) = kP (P (a)ej)k
∗ = kP (a)P (ej)P (a)k∗; here the second equality follows

by Proposition III.5.2 in Faraut and Koranyi [9] and the last equality follows by
Proposition II.3.3 in Faraut and Koranyi [9]. Since P (ej) is the orthogonal projection
onto V (j) and P (a) maps V (j) onto V (j), it is easy to see that P (x∗)V ⊂ kV (j). Since
from part (c) of Lemma A.1, we know rank(P (x∗)) = rank(V (j)) = rank(kV (j)), we
conclude that P (x∗)V = kV (j). We complete the proof.

Part (a) of Lemma 4.2 holds only because F ′′(x∗)−
1
2 = P (x∗)

1
2 and P (x∗) is the

quadratic representation of x∗.
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Abstract. We study certain linear and semidefinite programming lifting approximation schemes
for computing the stability number of a graph. Our work is based on and refines de Klerk and
Pasechnik’s approach to approximating the stability number via copositive programming [SIAM J.
Optim., 12 (2002), pp. 875–892]. We provide a closed-form expression for the values computed by
the linear programming approximations. We also show that the exact value of the stability number
α(G) is attained by the semidefinite approximation of order α(G) − 1 as long as α(G) ≤ 6. Our
results reveal some sharp differences between the linear and the semidefinite approximations. For
instance, the value of the linear programming approximation of any order is strictly larger than α(G)
whenever α(G) > 1.
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1. Introduction. The maximum stable set problem is a central problem in com-
binatorial optimization and has been the subject of extensive study. The survey by
Bomze et al. [2] gives an overview of a variety of approaches to the maximum clique
problem, which is equivalent to the maximum stable set problem. In addition to being
a classical NP-hard problem, the maximum stable set is among the provably hardest
combinatorial problems to approximate [7, 8].

The maximum stable set problem has a straightforward 0–1 integer programming
formulation and hence is a natural candidate for application of integer programming.
Indeed, lift-and-project approaches provide interesting insight into this problem. For
instance, the lift-and-project procedures of Balas, Ceria, and Cornuéjols [1] and of
Lovász and Schrijver [12] give relaxations of the stable set polytope that already satisfy
a number of valid inequalities. Furthermore, the repeated lift-and-project procedures
of Balas, Ceria, and Cornuéjols and of Lovász and Schrijver yield a finite sequence
of increasingly tighter relaxations of the stable set polytope. Indeed, for a graph G
with stability number α(G), the Lovász and Schrijver linear lifting procedure yields
the stable set polytope if it is applied n− α(G) − 1 times. The stronger Lovász and
Schrijver semidefinite lifting procedure yields the stable set polytope when applied
α(G) times.

Using a different mathematical programming formulation of the stable set prob-
lem, de Klerk and Pasechnik [4] proposed two alternative approximation schemes to
α(G). Their approach is based on a characterization of α(G) via copositive program-
ming (cf. (2)) combined with a successive approximation procedure for the copositive
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cone inspired by the work of Parrilo [14]. More specifically, de Klerk and Pasechnik [4]
define two sequences of cones K0

n ⊆ K1
n ⊆ · · · and C0

n ⊆ C1
n ⊆ · · · that converge to the

n-dimensional copositive cone Cn and define ϑ(r)(G) and ζ(r)(G) as the upper bounds
on α(G) obtained by replacing the copositive cone Cn by Kr

n and Cr
n, respectively.

Each ϑ(r)(G) can be computed via semidefinite programming, and each ζ(r)(G) can
be computed via linear programming. De Klerk and Pasechnik establish several prop-
erties of the approximations ϑ(r)(G) and ζ(r)(G). They show that ϑ(0)(·) coincides
with Schrijver’s ϑ′-function. They also show that ϑ(1)(·) = α(·) for odd cycles and
complements of triangle-free graphs. In addition, they prove that the approximations
ζ(r)(G) satisfy �ζ(r)(G)� = α(G) as long as r ≥ α(G)2 and ζ(r)(G) < ∞ only if
r ≥ α(G) − 1.

We refine the results of de Klerk and Pasechnik concerning the approximations
ζ(r)(G) and ϑ(r)(G) to the stability number α(G). We derive a closed-form expression
for ζ(r)(G) in terms of r and α(G) (Theorem 1). The closed-form expression readily
yields several interesting properties of ζ(r)(G) (Corollaries 2, 3, and 4).

We also define a third sequence of cones Q0
n ⊆ Q1

n ⊆ · · · that converges to Cn with
Cr
n ⊆ Qr

n ⊆ Kr
n, r = 0, 1, . . . . This in turn yields a third sequence of approximations

ν(r)(G) to α(G) with ϑ(r)(G) ≤ ν(r)(G) ≤ ζ(r)(G). Like ϑ(r)(G), each ν(r)(G) can
be computed via semidefinite programming. The approximations ν(r)(·) satisfy an
interesting recursive inequality (Theorem 6). Such inequality implies ν(r)(G) = α(G)
as long as r ≥ α(G) − 1 for α(G) ≤ 6 (Corollary 7). In particular, the latter gives a
partial solution to a conjecture of de Klerk and Pasechnik [4, Conjecture 5.1].

Our results reveal some sharp differences between the two approximation schemes
ζ(r)(G) and ν(r)(G). For instance, ζ(r)(G) ↓ α(G), but ζ(r)(G) > α(G) for all r
whenever α(G) > 1 (Corollary 2). Furthermore, as it was previously established by
de Klerk and Pasechnik, ζ(r)(G) = ∞ for r < α(G) − 1 (Corollary 3). By contrast,
ν(r)(G) ≤ χ(G) ≤ n for all r (Proposition 14), where χ(G) denotes the chromatic
number of the complement of G.

It is interesting to note that our results guarantee the convergence of ζ(r)(G) and
ν(r)(G) to α(G) without relying on the convergence of Qr

n and Cr
n to the copositive

cone Cn (Corollary 2).
The paper is organized as follows. In section 2 we introduce the basic terminology

and notation. In section 3 we present the closed-form expression for ζ(r)(·) and discuss
some of its consequences. In section 4 we discuss the successive approximations ν(r)(·).
Finally in section 5 we specialize some of our results to three special classes of graphs,
namely, the graphs whose stability number coincides with the chromatic number of
their complement, the cycles, and the complements of cycles.

During the completion of this paper, we learned about the related independent
work by Gvozdenović and Laurent [6]. Gvozdenović and Laurent studied some proper-
ties of the approximations ϑ(r)(G). In particular, they establish a connection with the
approximations obtained by applying Lasserre’s lift-and-project procedure [9, 10] and
also give a partial solution to [4, Conjecture 5.1] that is slightly stronger than ours.

2. Preliminaries. Throughout the paper G = (V,E) will denote a loopless
undirected graph with vertex set V = {1, . . . , n}. A subset S ⊆ V is stable if {i, j} 	∈ E
for all i, j ∈ S. The stability number α(G) is the cardinality of a stable set of maximum
size in G.

Let S
n denote the space of symmetric n × n matrices. The positive semidefinite

cone S
n
+ ⊆ S

n is

S
n
+ := {X ∈ S

n : uTXu ≥ 0 for all u ∈ R
n}.
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Following the usual convention in the semidefinite programming literature, we will
write X � 0 as shorthand for X ∈ S

n
+. In addition, we will write X ≥ 0 to indicate

that every entry of X is nonnegative.
The copositive cone Cn ⊆ S

n is

Cn := {X ∈ S
n : uTXu ≥ 0 for all u ∈ R

n
+}.

Throughout the paper A(G) ∈ S
n will denote the adjacency matrix of the graph

G; i.e., the (i, j) entry of A(G) is 1 if {i, j} ∈ E and it is 0 otherwise. Also, e will
denote the vector of all ones, and I will denote the identity matrix, whose dimensions
will be clear from the context.

Our work relies on the following inequality, which can be easily verified:

(1) α(G) ≤ inf{λ : λ(I + A(G)) − eeT ∈ Cn}.

De Klerk and Pasechnik showed that indeed the following stronger identity holds [4,
Corollary 2.4]:

(2) α(G) = min{λ : λ(I + A(G)) − eeT ∈ Cn}.

It is easy to see that {P + N : P,N ∈ S
n, P � 0, N ≥ 0} ⊆ Cn. Furthermore, it

is known [5] that this inclusion is strict for n ≥ 5. There is not a simple description
of the copositive cone, and in fact the problem of deciding if a matrix is copositive
is known to be NP-hard [13]. A way of addressing this difficulty was proposed by
Parrilo [14]. For a given symmetric matrix M ∈ S

n, consider the four degree form
(homogeneous polynomial)

PM (x) :=

n∑
i=1

n∑
j=1

Mijx
2
ix

2
j .

Observe that M is copositive if and only if PM (x) ≥ 0 for all x ∈ R
n.

Parrilo proposed the following sum-of-squares (sos) approximation scheme for the
copositive cone: Define the cone Kr

n ⊆ Cn as

(3) Kr
n :=

{
M ∈ S

n :

(
n∑

i=1

x2
i

)r

PM (x) is a sos

}
.

It is easy to see that the sos condition can be recast in terms of linear matrix inequal-
ities (LMI). Therefore, membership in each Kr

n can be phrased in terms of LMI. In
particular, Parrilo showed that M ∈ K0

n if and only if M = P +N for P � 0, N ≥ 0.
Parrilo also showed that M ∈ K1

n if the following system of LMI has a solution:

(4)

M − Λi � 0, i = 1, . . . , n,
Λi
ii = 0, i = 1, . . . , n,

Λi
jj + Λj

ji + Λj
ij = 0, i 	= j,

Λi
jk + Λj

ik + Λk
ij ≥ 0, i, j, k all different.

Bomze and de Klerk [3] showed that indeed M ∈ K1
n if and only if (4) has a solution.

De Klerk and Pasechnik define

ϑ(r)(G) := min{λ : λ(I + A(G)) − eeT ∈ Kr
n}.
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Since each Kr
n can be defined in terms of LMI, the approximation ϑ(r)(G) can be

computed via semidefinite programming.
De Klerk and Pasechnik also define the cone Cr

n ⊆ Cn as

Cr
n :=

{
P ∈ S

n :

(
n∑

i=1

xi

)r

xTPx has nonnegative coefficients

}
,

and

ζ(r)(G) := min{λ : λ(I + A(G)) − eeT ∈ Cr
n}.

It is easy to see that Cr
n ⊆ Kr

n ⊆ Cn so α(G) ≤ ϑ(r)(G) ≤ ζ(r)(G). Furthermore,
since each Cr

n is polyhedral, the approximation ζ(r)(G) can be computed via linear
programming. De Klerk and Pasechnik [4] established the following interesting prop-
erties of ϑ(r)(·) and ζ(r)(·): The function ϑ(0)(·) coincides with Schrijver’s ϑ′-function,
and ϑ(1)(·) = α(·) for odd cycles and complements of triangle-free graphs. They also
proved that �ζ(r)(G)� = α(G) for r ≥ α(G)2 and ζ(r)(G) < ∞ only if r ≥ α(G) − 1.

3. Linear programming approximations. From the above definition of the
linear approximation ζ(r)(G), the fact that C0

n ⊆ C1
n ⊆ · · · ⊆ Cn, and (1), it follows

that

ζ(0)(G) ≥ ζ(1)(G) ≥ · · · ≥ α(G).

Theorem 1 below gives a closed-form expression for ζ(r)(G) in terms of r and α(G).

Throughout this section, the binomial coefficient
(
a
2

)
is to be understood as a(a−1)

2

for any nonnegative integer a. In particular,
(
a
2

)
= 0 for a = 0 and a = 1. Also, by

convention a/0 = +∞ for a > 0.
Theorem 1. Assume r + 2 = uα(G) + v, where u, v are nonnegative integers

with v < α(G). Then

ζ(r)(G) =

(
r+2
2

)(
u
2

)
α(G) + vu

.

Corollary 2. ζ(r)(G) ↓ α(G). Furthermore, if α(G) > 1, then ζ(r)(G) > α(G)
for all nonnegative integers r.

Proof. To simplify notation write α as a shorthand for α(G). Let u, v be nonneg-
ative integers such that r + 2 = uα + v and v < α. Then for ε ≥ 0

(5) (α + ε)

((
u

2

)
α + vu

)
−
(
r + 2

2

)
=

uα(1 + εu− ε− α) + v(2εu− v + 1)

2
.

Let ε > 0 be given. Then from (5) it follows that for r sufficiently large

(α + ε)

((
u

2

)
α + vu

)
>

(
r + 2

2

)
.

Thus Theorem 1 yields lim supr→∞ ζ(r)(G) ≤ α(G). Since ζ(r)(G) ≥ α(G) for all r,
then indeed limr→∞ ζ(r)(G) = α(G).

For the second part, just observe that for ε = 0 and α > 1 the right-hand
side of (5) is negative. Thus again Theorem 1 yields ζ(r)(G) > α(G) whenever
α(G) > 1.
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From Theorem 1, we can also recover two key properties of ζ(r)(G) due to de
Klerk and Pasechnik [4]. The following two corollaries are slight refinements of [4,
Theorem 4.2] and [4, Theorem 4.1], respectively.

Corollary 3. ζ(r)(G) < ∞ if and only if r ≥ α(G) − 1.
Proof. By Theorem 1, ζ(r)(G) = ∞ if and only if

(
u
2

)
α(G) + vu = 0. The latter

occurs if and only if u = 0 or u = 1 and v = 0, i.e., if and only if r + 2 ≤ α(G).
Corollary 4. �ζ(r)(G)� = α(G) if and only if r ≥ α(G)2 − 1.
Proof. To simplify notation write α as a shorthand for α(G). Since ζ(r)(G) ≥ α, it

follows that �ζ(r)(G)� = α if and only if ζ(r)(G) < α+1. Since ζ(r)(G) is nonincreasing
in r, it suffices to show that

ζ(α2−2)(G) = α + 1 and ζ(α2−1)(G) < α + 1.

But this readily follows from Theorem 1.
The proof of Theorem 1 relies on Lemma 5, which gives a bound on the number

of edges of any induced subgraph of G = (V,E). Given a graph G and S ⊆ V , let
EG[S] be the set of edges of G with both endpoints in S.

Lemma 5. Let G = (V,E) be a graph, and assume S ⊆ V . Let u, v be nonnegative
integers such that |S| = uα(G) + v and v < α(G). Then |EG[S]| ≥

(
u
2

)
α(G) + vu.

Proof. Proceed by induction on u. The result is trivial for u = 0. Thus assume
|S| ≥ α(G). Let I be a maximal stable subset of S, and let S1 = S \ I. Since I is
stable, |I| ≤ α(G) and |S1| ≥ |S| − α(G) = (u− 1)α(G) + v. Furthermore, since I is
maximal in S, every vertex in S1 is connected to some vertex in I. Therefore there
are at least |S1| edges between S1 and I. Then

|EG[S]| ≥ |S1| + |EG[S1]| ≥ |S| − α(G) + |EG[S1]|.

But by induction hypothesis |EG[S1]| ≥
(
u−1

2

)
α(G) + v(u− 1). Therefore

|EG[S]| ≥ |S| − α(G) +

(
u− 1

2

)
α(G) + v(u− 1) =

(
u

2

)
α(G) + vu.

In the proof below we use the following convenient notation: For a positive integer
d, we write [d] as shorthand for the set {1, . . . , d}. Also, Kr denotes the complete
graph with r vertices.

Proof of Theorem 1. Let B := I + A(G). For any 1 ≤ i < j ≤ r + 2 we have(
n∑

k=1

xk

)r

xT(λB − eeT)x =
∑

s∈[n]r+2

(λBsi,sj − 1)xs1 . . . xsr+2 .

Thus, adding over all possible pairs (i, j) with 1 ≤ i < j ≤ r + 2, we get

(
n∑

k=1

xk

)r

xT(λB − eeT)x =
∑

s∈[n]r+2

⎛
⎝ λ(

r+2
2

) ∑
1≤i<j≤r+2

Bsi,sj − 1

⎞
⎠xs1 . . . xsr+2

=
∑

1≤s1≤···≤sr+2≤n

perm(s)

⎛
⎝ λ(

r+2
2

) ∑
1≤i<j≤r+2

Bsi,sj − 1

⎞
⎠xs1 . . . xsr+2 ,

where perm(s) is the number of different permutations of s = (s1, . . . , sr+2).
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Therefore

(6) ζ(r)(G) ≤ λ ⇔ λ
∑

1≤i<j≤r+2

Bsi,sj ≥
(
r + 2

2

)
for all s ∈ [n]r+2.

Fix s ∈ [n]r+2. Let H = Kr+2 × G, i.e., the strong product of the graphs Kr+2

and G. Let S = {(i, si) : i = 1, . . . , r + 2} ⊆ V (H). Notice that

Bsi,sj = 1 ⇔ {si, sj} ∈ E(G) or si = sj ⇔ {(i, si), (j, sj)} ∈ E(H).

Hence
∑

1≤i<j≤r+2 Bsi,sj = |EH [S]|. Since α(H) = α(G), Lemma 5 yields

∑
1≤i<j≤r+2

Bsi,sj ≥
(
u

2

)
α(G) + vu.

This can be done for each s ∈ [n]r+2. Hence it follows from (6) that

ζ(r)(G) ≤
(
r+2
2

)(
u
2

)
α(G) + vu

.

On the other hand, assume {v1, . . . , vα(G)} is a maximal stable set in G. Define
s ∈ [n]r+2 by putting skα(G)+l = vl for k = 0, 1, . . . , u− 1 and l = 1, . . . , α(G) and for
k = u and l = 1, . . . , v. Then

Bsi,sj = 1 ⇔ i ≡ j mod (α(G)),

and consequently

∑
1≤i<j≤r+2

Bsi,sj =

(
u + 1

2

)
v +

(
u

2

)
(α(G) − v) =

(
u

2

)
α(G) + vu.

Therefore, again from (6) it follows that ζ(r)(G) ≥
(
r+2
2

)
/
((

u
2

)
α(G) + vu

)
.

4. Semidefinite programming approximations. Define the sequences of
cones Er

n ⊆ R[x1, . . . , xn], Qr
n ⊆ S

n, r = 0, 1, . . . , as follows. For r = 0, 1, . . . let

(7) Er
n :=

⎧⎨
⎩

∑
β∈Nn, |β|=r

xβxT(Pβ + Nβ)x : Pβ , Nβ ∈ S
n, Pβ � 0, Nβ ≥ 0

⎫⎬
⎭ ,

where for a given β ∈ N
n, |β| := β1 + · · · + βn and xβ := xβ1

1 . . . xβn
n . Also let

(8) Qr
n :=

{
B ∈ S

n :

(
n∑

i=1

xi

)r

xTBx ∈ Er
n

}
.

Notice that Er
n contains all homogeneous polynomials of degree r+2 with nonnegative

coefficients. Therefore, by (8), we have Cr
n ⊆ Qr

n, r = 0, 1, 2, . . . .
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4.1. LMI description of Qr
n. From (7) and (8) it follows that membership in

Qr
n can be written in terms of an LMI in the matrix variables Pβ , Nβ ∈ S

n, Pβ �
0, Nβ ≥ 0. This involves 2

(
n+r−1

r

)
= 2|{β ∈ N

n, |β| = r}| matrices of size n×n. More
precisely, M ∈ Qr

n if and only if there exist Pβ , Nβ ∈ S
n, Pβ � 0, Nβ ≥ 0 such that

(9)
∑

β∈Nn, |β|=r

xβxTMx =
∑

β∈Nn, |β|=r

xβxT(Pβ + Nβ)x.

Notice that the equality in (9) is equivalent to the equality of the coefficients of the
two polynomials appearing in each side of the expression. Since each coefficient is
a linear combination of the entries of the involved matrices, the equality in (9) is a
linear system of equations in the entries of matrix M and the matrices Pβ , Nβ .

Notice that (9) can be written as

(10)
∑

β∈Nn, |β|=r

xβxTMx �
∑

β∈Nn, |β|=r

xβxTPβx

involving only the
(
n+r−1

r

)
matrix variables Pβ ∈ S

n
+. Here we use the sign “�”

to indicate that the vector of coefficients of the polynomial in the left-hand side
is componentwise less than or equal to the vector of coefficients of the polynomial
in the right-hand side. Furthermore, by grouping identical monomials, (10) can be
written in the following slightly more concise form involving fewer matrix variables
Pβ ∈ S

n
+:

(11)
∑

β∈Nn, |β|=r

xβxTMx �
∑

β∈N
n, |β|=r

β1≤β2≤···≤βr

xβxTPβx.

The condition (11) is a linear system of inequalities in the entries of M and Pβ . It
states that the vector of coefficients in the left-hand side, which is a linear combination
of entries of M , should be componentwise less than or equal to the vector of co-
efficients in the right-hand side, which is a linear combination of the entries of the
matrices Pβ .

It is insightful to compare the cones Qr
n and Kr

n. To that end, we note that by [17,
Proposition 9] a homogeneous polynomial p(x) of degree r + 2 satisfies the condition

p(x2
1, . . . , x

2
n) is a sos

if and only if

(12) p(x) ∈ Fr
n :=

⎧⎨
⎩

∑
β∈Nn,|β|≤r+2

xβqβ(x) : qβ(x) is a sos

⎫⎬
⎭ .

Hence the set Kr
n defined by (3) can also be described as

(13) Kr
n =

{
B ∈ S

n :

(
n∑

i=1

xi

)r

xTBx ∈ Fr
n

}
.

From (7) and (12) it follows that E0
n = F0

n, E1
n = F1

n, and Er
n ⊆ Fr

n, r = 2, . . . .
Therefore from (8) and (13) we get Q0

n = K0
n, Q1

n = K1
r , and Qr

n ⊆ Kr
n, r = 2, . . . . In
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addition, via a standard limiting argument it follows that each cone Qr
n is closed. It

should be noted that the identities E0
n = F0

n, E1
n = F1

n were first derived (in a slightly
different form) by Parrilo [14].

As it is now well documented (see, e.g., [9, 14, 17]), the sos condition can be
written as an LMI. Specifically, by letting x[d] denote the vector of monomials of
degree d, it follows that a 2d-degree homogeneous polynomial q(x) is sos if and only

if there exists P ∈ S
(n+d−1

d )
+ such that

q(x) = (x[d])TPx[d].

It thus follows that membership in Kr
n can be written as an LMI. More precisely,

from (12) it follows that M ∈ Kr
n if and only if for k = 0, 1, . . . , � r+2

2 � there exist

Pk,β ∈ S
(n+k−1

k )
+ such that

(14)
∑

β∈Nn, |β|=r

xβxTMx =

	 r+2
2 
∑

k=0

∑
β∈Nn, |β|=r+2−2k

xβ(x[k])TPk,βx
[k].

Again by grouping identical monomials, (14) can be written in the following slightly
more concise form:

(15)
∑

β∈Nn, |β|=r

xβxTMx �
	 r+2

2 
∑
k=1

∑
β∈N

n, |β|=r+2−2k
β1≤β2≤···≤βr+2−2k

xβ(x[k])TPk,βx
[k].

For r ≥ 2 the LMI description (11) involves a substantially lower number of matrix
variables than (15). To illustrate the difference, consider the case r = 4. We have
M ∈ Q4

n if and only if there exist Pijk� ∈ S
n
+ such that

(
n∑

i=1

xi

)4

xTMx �
∑

1≤i≤j≤k≤�≤n

xixjxkx� x
TPijk�x.

On the other hand, M ∈ K4
n if and only if there exist Pijk� ∈ S

n
+, Pij ∈ S

(n+1
2 )

+ , and

P ∈ S
(n+2

3 )
+ such that

(
n∑

i=1

xi

)4

xTMx �
∑

1≤i≤j≤k≤�≤n

xixjxkx� x
TPijk�x

+
∑

1≤i≤j≤n

xixj(x
[2])TPijx

[2] + (x[3])TPx[3].

4.2. New semidefinite programming approximations to α(G). In anal-
ogy to ζ(r)(G) and ϑ(r)(G) we define

(16) ν(r)(G) := min{λ : λ(I + A(G)) − eeT ∈ Qr
n}.

We note that the above minimum is indeed always attained. This follows by apply-
ing the same conic duality argument used in [4, section 4]: Both (16) and its dual
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are strictly feasible. Notice also that as ϑ(r)(G), the approximation ν(r)(G) can be
computed via semidefinite programming. The semidefinite program that computes
ν(r)(G) involves only n × n matrices because the LMI description (11) of Qr

n uses
n × n matrices only. By contrast, the LMI description (15) of Kr

n uses the same
number of n × n matrices in addition to some matrices of size

(
n+1

2

)
×

(
n+1

2

)
, some

matrices of size
(
n+2

3

)
×

(
n+2

3

)
, and so on. Henceforth, the semidefinite program

that computes ν(r)(G) is simpler than the one that computes ϑ(r)(G). Some matlab

code that constructs the relevant semidefinite programs for ν(r)(G) and ϑ(r)(G) in
SeDuMi format [16] is available at http://www.andrew.cmu.edu/user/jfp/alpha.html.
We have used this code for the numerical experiments discussed in section 5.

Observe that ν(r)(G) ≥ ϑ(r)(G) because Qr
n ⊆ Kr

n. Furthermore, the examples in
section 5 show that for r ≥ 2 there are graphs G such that ν(r)(G) > ϑ(r)(G).

Since Q0
n ⊆ Q1

n ⊆ · · · ⊆ Cn and Cr
n ⊆ Qr

n, Corollary 2 implies that

ν(r)(G) ↓ α(G).

Corollary 7 below shows that indeed ν(r)(G) = α(G) for r ≥ α(G) − 1 as long as
α(G) ≤ 6.

Given v ∈ {1, . . . , n} let v⊥ be the union of the neighborhood of v with itself, i.e.,
v⊥ := {j : {v, j} ∈ E} ∪ {v}. Given a set S ⊆ V let S⊥ :=

⋃
v∈S v⊥. Let G \ S⊥

denote the induced subgraph of G with vertex set V \ S⊥, i.e., the graph with vertex
set V \ S⊥ and edge set {{i, j} ∈ E : i, j ∈ V \ S⊥}.

Observe that α(G) satisfies the following relationship as long as α(G) > r:

α(G) = r + max
S⊆V stable, |S|=r

α(G \ S⊥).

The approximations ν(r)(·) in turn satisfy the related inequality in Theorem 6
below. We note that Theorem 6 generalizes [4, Theorem 5.3].

Theorem 6. For r = 1, 2, 3 and α(G) > r,

ν(r)(G) ≤ r + max
S⊆V stable, |S|=r

ν(0)(G \ S⊥).

Furthermore, the above inequality also holds for r = 4, 5 if α(G) ≤ 6.
Corollary 7. If r ≥ α(G) − 1 and α(G) ≤ 6, then ν(r)(G) = α(G).
Proof. Since ν(r)(G) ↓ α(G) it suffices to show that ν(α(G)−1)(G) ≤ α(G) as long

as α(G) ≤ 6. By Theorem 6 applied to r = α(G) − 1 we have

(17) ν(α(G)−1)(G) ≤ α(G) − 1 + max
S⊆V stable, |S|=α(G)−1

ν(0)(G \ S⊥).

Notice that ν(0)(K) = 1 = α(K) for every complete graph K. Notice also that, for
each stable set S ⊆ V with |S| = α(G)− 1, the subgraph G \S⊥ is a complete graph,
and thus ν(0)(G \ S⊥) = 1. Therefore (17) yields

ν(α(G)−1)(G) ≤ α(G) − 1 + 1 = α(G).

Since Qr
n ⊆ Kr

n ⊆ Cn, we have α(G) ≤ ϑ(r)(G) ≤ ν(r)(G). Thus Corollary 7 yields
ϑ(α(G)−1)(G) = α(G) for α(G) ≤ 6. This gives a partial solution to [4, Conjecture
5.1].

The proof technique of Theorem 6 also yields the following interesting result.
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Theorem 8. Let u ∈ V be such that u⊥ induces a clique in G. Then for r = 1, 2, 3
and α(G) > r,

ν(r−1)(G) ≤ r + max
S⊆V stable, |S|=r, u∈S

ν(0)(G \ S⊥).

Furthermore, the above inequality also holds for r = 4, 5 if α(G) ≤ 6.
Theorems 6 and 8 follow from Lemmas 10 and 11 below, which are interesting

on their own. Before stating these lemmas, we introduce some convenient notation:
We will write B as shorthand for I + A(G). For S ⊆ V we will write Sc to denote
V \S⊥ and BSc to denote I+A(G\S⊥). Observe that BSc is precisely the submatrix
of B obtained by deleting the rows and columns indexed by S⊥. For a given vector
of variables x = (x1, . . . , xn) we will write ΣS as shorthand for

∑
i∈S xi and xS

to denote the vector of variables indexed by the elements of S. Finally, given two
homogeneous polynomials p(x), q(x) of degree 2 + r, we write p(x) � q(x) to indicate
that p(x) − q(x) ∈ Er

n.
In what follows we use the recursive characterization of Er

n given in Proposition 9.
Proposition 9. For all r > 0,

Er
n =

{
n∑

i=1

xipi(x) : pi(x) ∈ Er−1
n , i = 1, . . . , n

}
.

Proof. The inclusion “⊇” is immediate. The inclusion “⊆” follows by induction
on r using the following identity:

∑
β∈Nn, |β|=r

xβxTBβ x =
∑

β∈Nn, |β|=r

1

r

n∑
i=1

βix
βxTBβ x

=
∑

β∈Nn, |β|=r

1

r

n∑
i=1

βixix
β−eixTBβ x

=
1

r

n∑
i=1

xi

∑
β∈Nn, |β|=r

βix
βi−eixTBβ x

=
1

r

n∑
i=1

xi

∑
β∈Nn, |β|=r, βi≥1

βix
βi−eixTBβ x

=
1

r

n∑
i=1

xi

∑
γ∈Nn, |γ|=r−1

(γi + 1)xγxTBγ+ei x,

where ei ∈ N
n denotes the vector with 1 in the ith coordinate and 0 in all the other

coordinates.
Lemma 10. For λ > 1∑

v∈V

xvx
T(λB − eeT)x �

∑
v∈V

xvPv(x),

where

Pv(x) =
1

λ− 1
((λ− 1)Σv⊥ − Σvc)

2
+

λ

λ− 1
xT
vc

(
(λ− 1)Bvc − eeT

)
xvc .
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Lemma 11 below can be seen as an extension of Lemma 10. First we introduce
one more piece of notation. Assume λ > k and v1, . . . , vk ∈ V are such that vj+1 ∈
{v1, . . . , vj}c for j = 1, . . . , k − 1. Put �v := {v1, . . . , vk}, and define

p�v(x) =
λk−2

2(λ− 1)(λ− 2) · · · (λ− k)

(
(λ− k + 1) ((λ− k)Σ�v⊥ − kΣ�vc)

2

+ 2λ2xT
�vc

(
(λ− k)B�vc − eeT

)
x�vc

)
.

In the statement of Lemma 11 below we also use the following convenient nota-
tion: Given �v = {v1, . . . , vk} as above and w ∈ �vc we write �v, w to denote the set
{v1, . . . , vk, w}.

Lemma 11. Assume λ > k + 1 and v1, . . . , vk ∈ V are such that vj+1 ∈
{v1, . . . , vj}c for j = 1, . . . , k − 1 and {v1, . . . , vk}c 	= ∅. If k = 1, 2 or if k = 3, 4 and
λ ≤ 6, then

ΣV p�v(x) �
∑
w∈�vc

xwp�v,w(x).

Proof of Theorem 6. Put

t = max
S⊆V stable, |S|=r

ν(0)(G \ S⊥).

Then for any stable set �v := {v1, . . . , vr} of size r we have ν(0)(G \ �v⊥) ≤ t, i.e.,
xT
�vc(tB�vc − eeT)x�vc ∈ E0

n. Therefore, for λ := t + r we have p�v(x) ∈ E0
n. In addition,

observe that for each v ∈ V the polynomial Pv(x) defined in Lemma 10 satisfies

Pv(x) = pv(x) +
1

2(λ− 1)
((λ− 1)Σv⊥ − Σvc)

2 � pv(x).

Hence from Lemmas 10 and 11 it follows that(∑
v∈V

xv

)r

xT(λB − eeT)x �
∑
v1∈V

xv1

∑
v2∈v

c
1

xv2 · · ·
∑

vr∈{v1,...,vr−1}c

xvrp�v(x) ∈ Er
n

and so

ν(r)(G) ≤ λ = r + t = r + max
S⊆V stable, |S|=r

ν(0)(G \ S⊥).

Proof of Theorem 8. If u ∈ V is such that u⊥ induces a clique in G, then

xT(λB − eeT)x � λ
(
Σ2

u⊥ + xT
ucBucxuc

)
− Σ2

V

= λ
(
Σ2

u⊥ + xT
ucBucxuc

)
− (Σu⊥ + Σuc)

2

= (λ− 1)Σ2
u⊥ − 2Σu⊥Σuc + 1

λ−1Σ2
uc + λxT

ucBucxuc − λ
λ−1Σ2

uc

= Pu(x)
� pu(x).

Hence by taking v1 := u, we can modify the last step in the proof of Theorem 6 to(∑
v∈V

xv

)r−1

xT(λB − eeT)x �
∑
v2∈v

c
1

xv2
· · ·

∑
vr∈{v1,...,vr−1}c

xvr
p�v(x) ∈ Er−1

n ,
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as long as λ := r + t, where

t := max
S⊆V stable |S|=r, u∈S

ν(0)(G \ S⊥).

Hence we obtain

ν(r−1)(G) ≤ λ = r + t = r + max
S⊆V stable |S|=r, u∈S

ν(0)(G \ S⊥).

We conclude this section with the proofs of Lemmas 10 and 11. The proof of
Lemma 10 relies on the following lemma.

Lemma 12. ∑
v∈V

xvΣv⊥Σvc �
∑
v∈V

xvx
T
vcBvcxvc .

Proof. ∑
v∈V

xvΣv⊥Σvc =
∑
v∈V

∑
u∈vc

xuxvΣv⊥

=
∑
u∈V

∑
v∈uc

xuxvΣv⊥

�
∑
u∈V

xu

∑
v∈uc

xv

∑
w∈v⊥∩uc

xw

=
∑
u∈V

xux
T
ucBucxuc .

The proofs below also rely on the following observation.
Observation 13. xT(λB − eeT)x =

∑
v∈V xv((λ− 1)Σv⊥ − Σvc).

Proof of Lemma 10. From Observation 13 and Lemma 12 it follows that∑
v∈V

xvx
T
(
λB − eeT

)
x =

∑
v∈V

xv((λ− 1)Σv⊥ − Σvc)ΣV

=
∑
v∈V

xv

(
1

λ− 1
((λ− 1)Σv⊥ − Σvc)

2
+

λ

λ− 1
((λ− 1)Σv⊥ − Σvc) Σvc

)

�
∑
v∈V

xv

(
1

λ− 1
((λ− 1)Σv⊥ − Σvc)

2
+

λ

λ− 1
xT
vc

(
(λ− 1)Bvc − eeT

)
xvc

)

=
∑
v∈V

xvPv(x).

Proof of Lemma 11. Put

C :=
λk−2

2(λ− 1)(λ− 2) · · · (λ− k)
.

By dropping some terms and the fact that ΣV = Σ�vc + Σ�v⊥ , it follows that

ΣV p�v(x) � C
(
(λ− k + 1)Σ�vc ((λ− k)Σ�v⊥ − kΣ�vc)

2

+ 2λ2Σ�vcxT
�vc

(
(λ− k)B�vc − eeT

)
x�vc

+ 2λ2Σ�v⊥xT
�vc

(
(λ− k)B�vc − eeT

)
x�vc

)
.
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To simplify notation, put � := λ− k. Then the latter inequality can be rewritten as

(18)

ΣV p�v(x) � C
(
(� + 1)Σ�vc (�Σ�v⊥ − kΣ�vc)

2

+ 2λ2Σ�vcxT
�vc

(
�B�vc − eeT

)
x�vc

+ 2λ2Σ�v⊥xT
�vc

(
�B�vc − eeT

)
x�vc

)
.

By Observation 13 (applied to the graph G := G \ �v⊥ and λ := �) and the fact that
Σ�v⊥ = 1

� (�Σ�v⊥ − kΣ�vc) + k
� Σ�vc , we can rewrite Σ�v⊥xT

�vc

(
�B�vc − eeT

)
x�vc as

1

�

∑
w∈�vc

xw (�Σ�v⊥ − kΣ�vc)
(
(�− 1)Σw⊥∩�vc − Σ{�v,w}c

)
+

k

�
Σ�vcxT

�vc

(
�B�vc − eeT

)
x�vc .

Thus from (18) we get

(19) ΣV p�v(x) � C
∑
w∈�vc

xwQ�v,w(x),

where

Q�v,w(x) = (� + 1) (�Σ�v⊥ − kΣ�vc)
2

+ 2λ3

� xT
�vc

(
�B�vc − eeT

)
x�vc

+ 2λ2

� (�Σ�v⊥ − kΣ�vc)
(
(�− 1)Σw⊥∩�vc − Σ{�v,w}c

)
.

By Lemma 10 (applied to the graph G := G \ �v⊥ and λ := �), it follows that

(20)
∑
w∈�vc

xwQ�v,w(x) �
∑
w∈�vc

xwq�v,w(x),

where

q�v,w(x) = (� + 1) (�Σ�v⊥ − kΣ�vc)
2

+ 2λ3

�(�−1)

(
(�− 1) Σw⊥∩�vc − Σ{�v,w}c

)2
+ 2λ3

�−1x
T
{�v,w}c

(
(�− 1)B{�v,w}c − eeT

)
x{�v,w}c

+ 2λ2

� (�Σ�v⊥ − kΣ�vc)
(
(�− 1)Σw⊥∩�vc − Σ{�v,w}c

)
.

Using some algebraic manipulations and the fact that � = λ−k, we can rewrite q�v,w(x)
as

(21)

q�v,w(x) = λ(�−1)
�

(
�Σ�v⊥ − kΣ�vc + λ

�−1

(
(�− 1)Σw⊥∩�vc − Σ{�v,w}c

))2

+ λ(2−k)+k2−k
� (�Σ�v⊥ − kΣ�vc)

2

+ λ3

�(�−1)

(
(�− 1)Σw⊥∩�vc − Σ{�v,w}c

)2
+ 2λ3

�−1x
T
{�v,w}c

(
(�− 1)B{�v,w}c − eeT

)
x{�v,w}c .

Since Σ�vc = Σ(w⊥∩�vc)∪{�v,w}c = Σw⊥∩�vc + Σ{�v,w}c , it follows that

(22)

(
�Σ�v⊥ − kΣ�vc + λ

�−1

(
(�− 1)Σw⊥∩�vc − Σ{�v,w}c

))2

=(
�Σ�v⊥ + (λ− k)Σw⊥∩�vc − k�+λ−k

�−1 Σ{�v,w}c

)2

=(
�Σ{�v,w}⊥ − (k+1)�

�−1 Σ{�v,w}c

)2

.

The last step holds because � = λ− k and Σ{�v,w}⊥ = Σ�v⊥ + Σw⊥∩�vc .
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Since λ > k+ 1, it follows that λ(2− k) + k2 − k ≥ 0 if k = 1, 2, or if k = 3, 4 and
λ ≤ 6. Thus by dropping the second and third terms in (21) and using (22), we get

(23)

q�v,w(x) � λ(�−1)
�

(
�Σ{�v,w}⊥ − (k+1)�

�−1 Σ{�v,w}c

)2

+ 2λ3

�−1x
T
{�v,w}c

(
(�− 1)B{�v,w}c − eeT

)
x{�v,w}c

= λ�
�−1

(
(�− 1)Σ{�v,w}⊥ − (k + 1)Σ{�v,w}c

)2
+ 2λ3

�−1x
T
{�v,w}c

(
(�− 1)B{�v,w}c − eeT

)
x{�v,w}c

= λ(λ−k)
λ−k−1

(
(λ− k − 1)Σ{�v,w}⊥ − (k + 1)Σ{�v,w}c

)2
+ 2λ3

λ−k−1x
T
{�v,w}c

(
(λ− k − 1)B{�v,w}c − eeT

)
x{�v,w}c

= λ
λ−k−1

(
(λ− k)

(
(λ− k − 1)Σ{�v,w}⊥ − (k + 1)Σ{�v,w}c

)2
+ 2λ2xT

{�v,w}c

(
(λ− k − 1)B{�v,w}c − eeT

)
x{�v,w}c

)
=

p�v,w(x)
C .

Combining (19), (20), and (23) we get

ΣV p�v(x) �
∑
w∈�vc

xwp�v,w(x).

5. Some special classes of graphs. Recall that the chromatic number χ(G)
of a graph G = (V,E) is the minimum number of colors required to color the vertices
of G so that for all {i, j} ∈ E the vertices i and j have different colors. Recall also
that the complement G of G = (V,E) is the graph with the same vertex set V and
set of edges {{i, j} : {i, j} 	∈ E}.

We next discuss in further detail three important classes of graphs: the class of
graphs G with α(G) = χ(G), the cycles Cn, and their complements Cn. For the first
class of graphs, Corollary 15 below shows that ν(0)(·) = α(·). This readily applies to
even cycles and their complements. By contrast, ν(0)(·) > α(·) for odd cycles and their
complements. Furthermore, for these classes of graphs, the identities in Examples 19
and 21 show that ν(1)(·) = α(·).

5.1. Graphs G with χ(G) = α(G). Proposition 14 below gives a succinct
proof of the inequality ν(0)(G) ≤ χ(G). We note that this inequality also follows from
putting together the Lovász sandwich theorem [11], the identity ν(0)(G) = ϑ(0)(G) =
ϑ′(G) due to de Klerk and Pasechnik [4], and the inequality ϑ′(G) ≤ ϑ(G) due to
Schrijver [15]. Here ϑ′(·) and ϑ(·) are, respectively, Schrijver’s ϑ′ function [15] and
Lovász ϑ function [11]. However, the proof below is direct and provides an interest-
ing constructive procedure. This procedure will allow us to derive the identities in
Examples 17, 18, and 19.

Proposition 14. ν(0)(G) ≤ χ(G).
Proof. To simplify notation, we shall write χ as shorthand for χ(G). Fix a

coloring of G with χ colors, and let Vj be the set of vertices colored with color j for
j = 1, . . . , χ. Since each Vj is a clique in G,

(24) xT(I + A(G))x =

χ∑
j=1

⎛
⎝∑

i∈Vj

xi

⎞
⎠

2

+ q(x)

for some quadratic form q(x) with nonnegative coefficients.
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On the other hand,

(25) χ ·
χ∑

j=1

(∑
i∈Vj

xi

)2

−
(∑

i∈V

xi

)2

=
∑

1≤j<k≤χ

(∑
i∈Vj

xi −
∑
i∈Vk

xi

)2

.

From (24) and (25) we get

xT
(
χ · (I + A(G)) − eeT

)
x =

∑
1≤j<k≤χ

⎛
⎝∑

i∈Vj

xi −
∑
i∈Vk

xi

⎞
⎠

2

+ χ · q(x).

Thus χ · (I + A(G)) − eeT ∈ Q0
n, and consequently ν(0)(G) ≤ χ(G).

Corollary 15. If α(G) = χ(G), then ν(0)(G) = α(G).
From Corollary 15, it readily follows that ν(0)(Cn) = α(Cn) and ν(0)(Cn) = α(Cn)

for n even or n = 3. By contrast, we next show that ν(0)(Cn) > α(Cn) = ν(1)(Cn)
and ν(0)(Cn) > α(Cn) = ν(1)(Cn) for n ≥ 5 and odd.

5.2. Odd cycles. For ease of notation, throughout this section the arithmetic
operations in the indices below are meant to be performed modulo 2m + 1, i.e.,
1 + 2m + 1 = 1, 3 + 2m = 2, etc.

Proposition 16. Assume m ≥ 2. Then ν(0)(C2m+1) > m = α(C2m+1).
Proof. Assume ν(0)(C2m+1) = m. Then m(I + A(C2m+1)) − eeT ∈ Q0

n, i.e.,

m(I + A(C2m+1)) − eeT = RR + N

for some R,N ∈ S
n with N ≥ 0. Let Rj denote the jth column of R. It follows that

for any stable set S ⊆ V of size m

0 =

∥∥∥∥∥∥
∑
j∈S

Rj

∥∥∥∥∥∥
2

+
∑
i,j∈S

Nij ≥

∥∥∥∥∥∥
∑
j∈S

Rj

∥∥∥∥∥∥
2

,

and thus
∑

j∈S Rj = 0. Taking the stable sets S = {j, j+3, j+5, . . . , j+2m−1} and

S′ = {j + 1, j + 3, j + 5, . . . , j + 2m− 1}, we get 0 = Rj +
∑m−1

k=1 Rj+2k+1 = Rj+1 +∑m−1
k=1 Rj+2k+1 and so Rj = Rj+1 for all j. Applying this to j = 1, 2, . . . , 2m + 1,

we conclude that R = 0. But this yields m(I + A(C2m+1)) − eeT = N ≥ 0, which is
clearly a contradiction.

Examples 17, 18, and 19 below show that m(I + A(C2m+1)) − eeT ∈ Q1
n for

every odd cycle C2m+1 with m ≥ 2. This in particular yields ν(1)(C2m+1) = m =
α(C2m+1). The identities in Examples 17, 18, and 19 follow from specializing the
proofs of Theorem 6 and Proposition 14 to odd and even cycles, respectively. We
note that the identity in Example 17 had been derived by Parrilo [14, Chapter 5].

Example 17. Let p(x1, x2, x3, x4, x5) = (x1 + x2 + x5 − x3 − x4)
2 + 4x2x3. Then

5∑
i=1

xix
T
(
2(I + A(C5)) − eeT

)
x =

5∑
i=1

xip(xi, xi+1, xi+2, xi+3, xi+4).

Example 18. Let

p(x1, . . . , x7) = 2

(
x1 + x2 + x7 −

1

2
(x3 + x4 + x5 + x6)

)2

+
3

2
(x3 + x4 − x5 − x6)

2 + 6(x2x3 + x4x5).
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Then

7∑
i=1

xix
T
(
3(I + A(C7)) − eeT

)
x =

7∑
i=1

xip(xi, xi+1, . . . , xi+6).

Example 19. Assume m ≥ 2. Let

p(x) = (m− 1)

(
x1 + x2 + x2m+1 −

1

m− 1

2m∑
k=3

xk

)2

+
m

m− 1

∑
1≤i<j≤m−1

(x2i+1 + x2i+2 − x2j+1 − x2j+2)
2

+ 2m

m−1∑
i=1

x2ix2i+1.

Then

2m+1∑
i=1

xix
T
(
m(I + A(C2m+1)) − eeT

)
x =

2m+1∑
i=1

xip(xi, xi+1, . . . , xi+2m).

5.3. Complements of odd cycles. The following proposition is proven with
an argument similar (but simpler) to that used in the proof of Proposition 16.

Proposition 20. Assume m ≥ 2. Then ν(0)(C2m+1) > 2 = α(C2m+1).
Example 21 below shows that 2(I + A(C2m+1)) − eeT ∈ Q1

n for every C2m+1,
which in turn yields ν(1)(C2m+1) = 2 = α(C2m+1). The identity in Example 21
follows from specializing the proof of Theorem 6 to complements of odd cycles.

Example 21. Assume m ≥ 2. Let

p(x) =

(
x1 − x2 − x2m+1 +

2m∑
k=3

xk

)2

+ 4x2

2m∑
k=4

xk.

Then

2m+1∑
i=1

xix
T
(
2(I + A(C2m+1)) − eeT

)
x =

2m+1∑
i=1

xip(xi, xi+1, . . . , xi+2m).

5.4. The smallest graphs G such that ν(α(G)−2)(G) > α(G) for α(G) =
2, 3, 4, 5. The examples below show that the result in Corollary 7 concerning the
attainment of α(G) is tight on r. Furthermore, the graphs in these examples are
the smallest possible. Several of these examples rely on numerical computations for
ν(r)(G). These numerical results were obtained by solving the semidefinite program-
ming formulations using SeDuMi [16], with a precision of at least 1E-8.

From Theorem 6 and Proposition 16 it follows that C5 is the smallest (with fewest
vertices) graph G such that ν(0)(G) > α(G). In addition, again by Theorem 6

(26) ν(1)(G) ≤ 1 + max
v∈V

ν(0)(G \ v⊥).
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Furthermore, if some vertex u ∈ V is such that deg(u) = 0 or 1, then u⊥ induces a
clique in G, and Theorem 8 yields

(27) ν(1)(G) ≤ 2 + max
v∈uc

ν(0)(G \ {u, v}⊥).

From (26) and (27) and the fact that C5 is the smallest graph G such that ν(0)(G) >
α(G), it follows that ν(1)(G) = α(G) if G has at most seven vertices and α(G) = 3.

Now consider the following graph G8:

We have ν(1)(G8) = 3.043276 > 3 = α(G8). Furthermore, it is easy to show that
if G′ is another graph with eight vertices such that ν(1)(G′) > α(G′), then the vertices
of G′ can be numbered so that E(G8) ⊆ E(G′). Thus G8 is the smallest graph G
such that ν(1)(G) > α(G) = 3.

We can extend the above reasoning further. Again, from observations above, it
follows that ν(2)(G) = α(G) if G has at most ten vertices and α(G) = 4. Consider
the following graph G11:

We have ν(2)(G11) = 4.011111 > 4 = α(G11).
We can go yet one step further. Again, from observations above, it follows that

ν(3)(G) = α(G) if G has at most 13 vertices and α(G) = 5. Now Consider the
following graph G14:
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We have ν(3)(G14) = 5.004886 > 5 = α(G14).
It is interesting to note that (up to the a numerical accuracy of 1E-8) both

ϑ(2)(G11) = α(G11) and ϑ(2)(G14) = α(G14). So in general ν(r)(·) > ϑ(r)(·) for r > 1
even though ν(r)(·) = ϑ(r)(·) for r = 0, 1.

We conjecture that the general construction suggested above gives graphs G with
α(G) = r and ν(r−2)(G) > r for any r. For example, for r = 4 consider the following
graph G17:

It should be the case that ν(4)(G17) > α(G17). Unfortunately the semidefinite
program involved in the calculation of ν(4)(G17) is beyond our current computational
capabilities. For this graph we did find that ϑ(2)(G17) = 6.000475 > 6 = α(G17). To
this date this is the smallest explicit example of a graph G with ϑ(2)(G) > α(G).
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APPROXIMATE GAUSS–NEWTON METHODS FOR NONLINEAR
LEAST SQUARES PROBLEMS∗
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Abstract. The Gauss–Newton algorithm is an iterative method regularly used for solving
nonlinear least squares problems. It is particularly well suited to the treatment of very large scale
variational data assimilation problems that arise in atmosphere and ocean forecasting. The procedure
consists of a sequence of linear least squares approximations to the nonlinear problem, each of which is
solved by an “inner” direct or iterative process. In comparison with Newton’s method and its variants,
the algorithm is attractive because it does not require the evaluation of second-order derivatives in
the Hessian of the objective function. In practice the exact Gauss–Newton method is too expensive
to apply operationally in meteorological forecasting, and various approximations are made in order to
reduce computational costs and to solve the problems in real time. Here we investigate the effects on
the convergence of the Gauss–Newton method of two types of approximation used commonly in data
assimilation. First, we examine “truncated” Gauss–Newton methods where the inner linear least
squares problem is not solved exactly, and second, we examine “perturbed” Gauss–Newton methods
where the true linearized inner problem is approximated by a simplified, or perturbed, linear least
squares problem. We give conditions ensuring that the truncated and perturbed Gauss–Newton
methods converge and also derive rates of convergence for the iterations. The results are illustrated
by a simple numerical example. A practical application to the problem of data assimilation in a
typical meteorological system is presented.

Key words. nonlinear least squares problems, approximate Gauss–Newton methods, variational
data assimilation
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1. Introduction. The Gauss–Newton (GN) method is a well-known iterative
technique used regularly for solving the nonlinear least squares problem (NLSP)

min
x

φ(x) =
1

2
‖f(x)‖2

2 ,(1)

where x is an n-dimensional real vector and f is an m-dimensional real vector function
of x [20].

Problems of this form arise commonly from applications in optimal control and
filtering and in data fitting. As a simple example, if we are given m observed data
(ti, yi) that we wish to fit with a model S(x, t), determined by a vector x of n pa-
rameters, and if we define the ith component of f(x) to be fi(x) = S(x, ti)− yi, then
the solution to the NLSP (1) gives the best model fit to the data in the sense of the
minimum sum of square errors. The choice of norm is often justified by statistical
considerations [22].

Recently, very large inverse problems of this type arising in data assimilation
for numerical weather, ocean, and climate prediction and for other applications in
the environmental sciences have attracted considerable attention [11, 6, 18, 19, 14].
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In data assimilation a set of observed data is matched to the solution of a discrete
dynamical model of a physical system over a period of time. The aim is to provide a
“best” estimate of the current state of the system to enable accurate forecasts to be
made of the future system behavior. Operationally the incremental four-dimensional
variational data assimilation technique (4D-Var) is now used in many meteorological
forecasting centers [6]. Recently it has been established that this method corresponds
to a GN procedure [14, 15].

The GN method consists of solving a sequence of linearized least squares approx-
imations to the nonlinear (NLSP) problem, each of which can be solved efficiently
by an “inner” direct or iterative process. In comparison with Newton’s method and
its variants, the GN method for solving the NLSP is attractive because it does not
require computation or estimation of the second derivatives of the function f(x) and
hence is numerically more efficient.

In practice, particularly for the very large problems arising in data assimilation,
approximations are made within the GN process in order to reduce computational
costs. The effects of these approximations on the convergence of the method need to
be understood. Here we investigate the effects of two types of approximation used
commonly in data assimilation: First, we examine “truncated” GN (TGN) methods
where the inner linear least squares problem is not solved exactly, and second, we
examine “perturbed” GN (PGN) methods where the true linearized inner problem is
approximated by a simplified, or perturbed, linear least squares problem. We give
conditions ensuring that the truncated and perturbed GN methods converge and also
derive rates of convergence for the iterations.

In the next section we state the problem in detail, together with our assump-
tions, and define the GN algorithm. We also present some basic theory for the exact
method. The truncated and perturbed algorithms that are to be investigated are then
defined. In the following sections theoretical convergence results are established for
the approximate GN methods. Two different approaches are used to derive the theory.
First, we apply extensions of the results of [20, 8] for inexact Newton (IN) methods to
the approximate GN methods in order to obtain general convergence theorems. We
then derive more restricted results using the approach of [9]. The restricted results
also provide estimates for the rates of convergence of the methods. Conditions for
linear, superlinear, and quadratic convergence are noted. Numerical results demon-
strating and validating the theory are presented. Finally, in the remaining sections,
an application to a practical problem arising in data assimilation is described, and
the conclusions are summarized.

2. GN method. We begin by introducing the GN method and reviewing briefly
some results on the convergence of the method. We then define the truncated and
perturbed approximate GN methods that will be examined in subsequent sections.

2.1. Statement of the algorithm. We consider the NLSP defined in (1), where
we assume that

A0. f : R
n �→ R

m is a nonlinear twice continuously Fréchet differentiable function.
We denote the Jacobian of the function f by J(x) ≡ f ′(x). The gradient and Hessian
of φ(x) are then given by

∇φ(x) = J(x)T f(x),(2)

∇2φ(x) = J(x)TJ(x) + Q(x),(3)
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where Q(x) denotes the second-order terms

Q(x) =

m∑
i=1

fi(x)∇2fi(x).(4)

The following additional assumptions are made in order to establish the theory:
A1. There exists x∗ ∈ R

n such that J(x∗)T f(x∗) = 0;
A2. The Jacobian matrix J(x∗) at x∗ has full rank n.

Finding the stationary points of φ is equivalent to solving the gradient equation

F (x) ≡ ∇φ(x) = J(x)T f(x) = 0.(5)

Techniques for treating the NLSP can thus be derived from methods for solving this
nonlinear algebraic system.

A common method for solving nonlinear equations of form (5) and hence for
solving the NLSP (1) is Newton’s method [20, section 10.2]. This method requires
the full Hessian matrix (3) of function φ. For many large scale problems, the second-
order terms Q(x) of the Hessian are, however, impracticable to calculate and, in order
to make the procedure more efficient, Newton’s method is approximated by ignoring
these terms. The resulting iterative method is known as the GN algorithm [20, section
8.5] and is defined as follows.

Algorithm GN algorithm.
Step 0. Choose an initial x0 ∈ R

n.
Step 1. Repeat until convergence:

Step 1.1. Solve J(xk)
TJ(xk)sk = −J(xk)

T f(xk).
Step 1.2. Set xk+1 = xk + sk.

Remarks. We note that at each iteration, Step 1.1 of the method corresponds to
solving the linearized least squares problem

min
s

1

2
‖J(xk)s + f(xk)‖2

2 .(6)

We note also that the GN method can be written as a fixed-point iteration of the
form

xk+1 = G(xk),(7)

where G(x) ≡ x− J+(x)f(x) and J+(x) ≡ (J(x)TJ(x))−1J(x)T denotes the Moore–
Penrose pseudoinverse of J(x).

2.2. Convergence of the exact GN method. Sufficient conditions for the
convergence of the GN method are known in the case where the normal equations for
the linearized least squares problem (6) are solved exactly in Step 1.1 at each iteration.
We now recall some existing results.

We introduce the notation ρ(A) to indicate the spectral radius of an n×n matrix
A, and we define

� = ρ
((

J(x∗)TJ(x∗)
)−1

Q(x∗)
)
.(8)

The following theorem on local convergence of the GN method then holds.
Theorem 1 (Ortega and Rheinboldt [20, Theorem 10.1.3]). Let assumptions A0,

A1, and A2 hold. If � < 1, then the GN iteration converges locally to x∗; that is, there
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exists ε > 0 such that the sequence {xk} generated by the GN algorithm converges to
x∗ for all x0 ∈ D ≡ {x | ‖x− x∗‖2 < ε}.

Theorem 1 has a geometrical interpretation as described in [23] (see also [2, section
9.2.2]). We denote by S the surface in R

m given by the parametric representation
y = f(x), x ∈ R

n, and we let M be the point on S with coordinates f(x∗), taking
O as the origin of the coordinate system. The vector OM is orthogonal to the plane
tangent to the surface S through M .

Theorem 2 (Wedin [23]). Suppose that the assumptions of Theorem 1 hold and
that f(x∗) is nonzero. Then

� = ‖f(x∗)‖2 χ,(9)

where χ is the maximal principal curvature of the surface S at point M with respect
to the normal direction w∗ = f(x∗)/ ‖f(x∗)‖2.

In the zero residual case, where f(x∗) = 0, the relation (9) continues to hold.
In this case the origin O lies on the surface S and χ denotes the maximal principal
curvature of S with respect to the direction normal to the tangent surface at O. Since
we then have Q(x∗) = 0 and hence � = 0, the result still holds.

For the GN method to converge it is therefore sufficient for the maximal principal
curvature χ of the surface S at the point f(x∗) to satisfy 1/χ > ‖f(x∗)‖2. This
condition holds if and only if ∇2φ(x∗) is positive definite at x∗ and ensures that x∗ is
a local minimizer of the objective function φ [2, section 9.1.2]. The relation (9) implies
that the convergence condition of Theorem 1 is invariant under transformation of the
NLSP by a local diffeomorphism, since the quantity ‖f(x∗)‖2 χ has this property [23].

The proofs of these results depend on theory for stationary fixed point iteration
processes [20]. The theory ensures local convergence at a linear rate. Additional, but
more restrictive, conditions for local convergence are given in [9]. Conditions giving
higher-order rates of convergence can be deduced from this theory. The GN method
can also be treated as an IN method [21, 8, 3, 4]. Results of these types will be
discussed further in sections 4 and 5.

We remark that the GN method may not be locally convergent in some cases [9].
Nevertheless, approximate GN methods are used widely in practice for solving the very
large NLSP problems arising in data assimilation. The approximations are designed
to make the algorithm more computationally efficient. Our aim here is to investigate
the effects of these approximations on the convergence of the GN algorithm and to
establish conditions for the local convergence of the approximate methods, given that
conditions hold for the exact GN method to be locally convergent.

3. Approximate GN algorithms. A serious difficulty associated with the use
of the GN method in large scale applications, such as data assimilation, is that the
linearized least squares problem (6) is computationally too expensive to solve exactly
in Step 1.1 of the algorithm at each iteration. The dimensions of the normal matrix
equations to be solved in Step 1.1 are often so great that the system coefficients cannot
be stored in core memory, even in factored form. Therefore, in order to solve the full
nonlinear problem efficiently, in real forecasting time, approximations must be made
within the GN procedure.

Two types of approximation are commonly applied. First, the linearized least
squares problem (6) is solved only approximately by an inner iteration method that is
truncated before full accuracy is reached. We refer to this approximate algorithm as
the TGN method. Second, the linearized least squares problem in Step 1.1 is replaced
by an approximate, simplified or perturbed, linear problem that can be solved more
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efficiently in the inner loop. We refer to this algorithm as the PGN method. Here
we examine both of these approximate GN methods and also the combined truncated
perturbed GN (TPGN) method, where both approximations are applied. In the next
subsections we define these procedures explicitly, and in sections 4 and 5 we analyze
the convergence of the approximate methods.

3.1. TGN method. At each outer iteration k of the GN method, we solve the
normal equations

J(xk)
TJ(xk)s = −J(xk)

T f(xk)(10)

for the linearized least squares problem (6) using an iterative procedure. Intuitively,
when xk is far from x∗ and the function f is nonlinear, it is not worth solving (10)
to high accuracy. A natural stopping criterion for the iterative process is where the
relative residual satisfies∥∥J(xk)

TJ(xk)sk + J(xk)
T f(xk)

∥∥
2
/
∥∥J(xk)

T f(xk)
∥∥

2
≤ βk.(11)

Here sk denotes the current estimate of the solution of (10), and βk is a specified
tolerance. For this reason we define the TGN algorithm as follows.

Algorithm TGN algorithm.
Step 0. Choose an initial x0 ∈ R

n.
Step 1. Repeat until convergence:

Step 1.1. Find sk such that
(J(xk)

TJ(xk))sk = −J(xk)
T f(xk) + rk

with ‖rk‖2 ≤ βk

∥∥J(xk)
T f(xk)

∥∥
2
.

Step 1.2. Update xk+1 = xk + sk.
The tolerances βk, k = 0, 1, 2 . . . , must be chosen to ensure convergence of the proce-
dure to the optimal x∗ of the NLSP (1). Conditions guaranteeing convergence of the
TGN method are presented in sections 4 and 5.

3.2. PGN method. For some applications it is desirable to apply a PGN
method in which the true Jacobian J is replaced by an approximation J̃ ; this is
practical, for example, in cases where a perturbed Jacobian is much easier or com-
putationally less expensive to calculate. We therefore define the PGN method as
follows.

Algorithm PGN algorithm.
Step 0. Choose an initial x0 ∈ R

n.
Step 1. Repeat until convergence:

Step 1.1. Solve J̃(xk)
T J̃(xk)sk = −J̃(xk)

T f(xk).
Step 1.2. Set xk+1 = xk + sk.

We emphasize that in Step 1.1 of the PGN algorithm only the Jacobian is approx-
imated and not the nonlinear function f(xk). The approximate Jacobian, J̃(x), is
assumed to be continuously Fréchet differentiable.

In applications to data assimilation the approximate Jacobian is derived from an
approximate linearization of the discrete nonlinear model equations, and hence the
perturbed Jacobian approximates the same underlying dynamical system as the exact
Jacobian and has similar properties. The assumptions made here and in sections 4.4–
4.6 on the perturbed Jacobian are therefore regarded as reasonable. The derivation of
the perturbed Jacobian for a practical data assimilation problem is shown in section 7.

In order to interpret the PGN iteration, it is convenient to define the function

F̃ (x) = J̃(x)T f(x)(12)
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and to write its first derivative in the form

F̃ ′(x) = J̃(x)TJ(x) + Q̃(x),(13)

where J(x) is the Jacobian of the function f(x) and Q̃(x) represents second-order
terms arising from the derivative of J̃(x). Then the PGN algorithm can be considered
as an iterative method for finding a solution x̃∗ to the nonlinear equation

F̃ (x) = 0.(14)

We remark that, just as the GN method can be regarded as an IN method for
solving the gradient equation (5), the PGN method can be treated as an IN method for
solving the perturbed gradient equation (14). In the PGN method, the second-order
term in the derivative F̃ ′ is ignored and the first-order term is now approximated,
allowing the iteration to be written as a sequence of linear least squares problems.

For the zero residual NLSP, where f(x∗) = 0, the solution x∗ of the problem
satisfies (14) and so the fixed point x̃∗ = x∗ of the PGN procedure is also a fixed
point of the exact GN iteration. Similarly, if f(x∗) lies in the null space of J̃(x∗),
then (14) is satisfied by x∗ and the fixed point of the PGN method is again a fixed
point of the exact GN method. In general, the fixed point of the PGN method will
not be the same as that of the GN algorithm. We might expect, however, that if J̃
is close to J , then the solution x̃∗ of (14) will be close to the solution x∗ of the true
gradient equation (5).

In sections 4 and 5 we give conditions for the PGN method to converge locally,
and in section 4 we also examine the distance between the fixed points of the two
algorithms.

3.3. TPGN method. In the PGN method, we solve the normal equations in
Step 1.1 of the algorithm at each outer iteration k by applying an iterative method
to the perturbed linear least squares problem

min
s

1

2

∥∥∥J̃(xk)s + f(xk)
∥∥∥2

2
.(15)

To improve the efficiency of the PGN procedure, the iteration is truncated before full
accuracy is reached. The iterations are halted where the relative residual satisfies∥∥∥J̃(xk)

T J̃(xk)sk + J̃(xk)
T f(xk)

∥∥∥
2
/
∥∥∥J̃(xk)

T f(xk)
∥∥∥

2
≤ βk.(16)

Here sk is the current estimate of the solution of (15), and βk is a specified tolerance.
This procedure is referred to as the TPGN method and is defined as follows.

Algorithm TPGN algorithm.
Step 0. Choose an initial x0 ∈ R

n.
Step 1. Repeat until convergence:

Step 1.1. Find sk such that
J̃(xk)

T J̃(xk)sk = −J̃(xk)
T f(xk) + rk

with ‖rk‖2 ≤ βk

∥∥∥J̃(xk)
T f(xk)

∥∥∥
2
.

Step 1.2. Update xk+1 = xk + sk.
The tolerances βk, k = 0, 1, 2 . . . , must be chosen to ensure convergence of the proce-
dure to the optimal x̃∗ of the perturbed gradient equation (14). Conditions guaran-
teeing local convergence of the TPGN method are presented in sections 4 and 5.
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4. Convergence of approximate GN methods I. We now derive sufficient
conditions for the convergence of the truncated and perturbed GN methods. The
theory is based on two different approaches. In this section we present results based
on theory for IN methods found in [8] and [3]. In the subsequent section we extend the
arguments of [9] for exact GN methods to the approximate truncated and perturbed
methods. The aim is to establish conditions for the convergence of the approximate
methods, given that conditions hold for the exact method to converge.

We begin by introducing the theory for IN methods. This theory is applied to the
exact GN method to obtain a new convergence condition. Criteria for the convergence
of the truncated and perturbed methods are then derived using these results.

4.1. IN methods. The IN method for solving the NLSP problem (1), as defined
in [8], is given as follows.

Algorithm IN algorithm.
Step 0. Choose an initial x0 ∈ R

n.
Step 1. Repeat until convergence:

Step 1.1. Solve ∇2φ(xk)sk = −∇φ(xk) + r̃k.
Step 1.2. Set xk+1 = xk + sk.

In Step 1.1 the residual errors r̃k measure the amount by which the calculated solution
sk fails to satisfy the exact Newton method at each iteration. It is assumed that the
relative sizes of these residuals are bounded by a nonnegative forcing sequence {ηk}
such that for each iteration

‖r̃k‖2

‖∇φ(xk)‖2

≤ ηk.(17)

Conditions for the convergence of the IN algorithm are established in the following
theorem.

Theorem 3 (Dembo, Eisenstat, and Steihaug [8]). Let assumptions A0, A1, and
A2 hold, and let ∇2φ(x∗) be nonsingular. Assume 0 ≤ ηk ≤ η̂ < t < 1. Then there
exists ε > 0 such that, if ‖x0 − x∗‖2 ≤ ε, the sequence of IN iterates {xk} satisfying
(17) converges to x∗. Moreover, the convergence is linear in the sense that

‖ xk+1 − x∗ ‖∗≤ t ‖ xk − x∗ ‖∗,(18)

where ‖ y ‖∗=
∥∥∇2φ(x∗)y

∥∥
2
.

In [3] Theorem 3 is applied to obtain more general results in which the Jacobian
and Hessian matrices are perturbed on each iteration of the Newton method. Here
we adopt similar techniques to derive results for the approximate GN methods based
on theory for the IN methods.

4.2. GN as an IN method. We first establish novel sufficient conditions for
the exact GN method to converge by treating it as an IN method.

Theorem 4. Let assumptions A0, A1, and A2 hold, and let ∇2φ(x∗) be nonsin-
gular. Assume 0 ≤ η̂ < 1. Then there exists ε > 0 such that, if ‖x0 − x∗‖2 ≤ ε and
if ∥∥Q(xk)(J(xk)

TJ(xk))
−1

∥∥
2
≤ ηk ≤ η̂ for k = 0, 1, . . . ,(19)

the sequence of GN iterates {xk} converges to x∗.
Proof of Theorem 4. We can write the GN method as an IN method by setting

r̃k = ∇φ(xk) −∇2φ(xk)(J(xk)
TJ(xk))

−1∇φ(xk)

= (I −∇2φ(xk)(J(xk)
TJ(xk))

−1)∇φ(xk).(20)
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Then, using (3), we have

‖r̃k‖2 =
∥∥(I −∇2φ(xk)(J(xk)

TJ(xk))
−1)∇φ(xk)

∥∥
2

≤
∥∥Q(xk)(J(xk)

TJ(xk))
−1

∥∥
2
‖∇φ(xk)‖2 .(21)

By Theorem 3, a sufficient condition for local convergence is therefore∥∥Q(xk)(J(xk)
TJ(xk))

−1
∥∥

2
≤ ηk ≤ η̂, k = 0, 1, . . . .(22)

The convergence condition derived in this theorem is more restrictive than that
obtained in Theorem 1, which requires a bound only on the spectral radius of the
matrix Q(x)(J(x)TJ(x))−1 at the fixed point x = x∗ rather than on its norm at
each iterate xk. The technique used in the proof of Theorem 4 is, however, more
readily extended to the case of the approximate GN iterations and enables qualitative
information on the conditions needed for convergence to be established. This approach
also provides a practical test of convergence for the approximate methods (see [17]).

4.3. Convergence of the TGN method (I). We now give a theorem that
provides sufficient conditions for the convergence of the TGN method. It is assumed
that the residuals in the TGN method are bounded such that

‖rk‖2 ≤ βk ‖∇φ(xk)‖2 ,(23)

where {βk} is a nonnegative forcing sequence. The theorem is established by consid-
ering the algorithm as an IN method, as in the proof of Theorem 4.

Theorem 5. Let assumptions A0, A1, and A2 hold, and let ∇2φ(x∗) be nonsin-

gular. Assume that 0 ≤ β̂ < 1, and select βk, k = 0, 1, . . . , such that

0 ≤ βk ≤
β̂ −

∥∥Q(xk)(J(xk)
TJ(xk))

−1
∥∥

2

1 + ‖Q(xk)(J(xk)TJ(xk))−1‖2

, k = 0, 1, . . . .(24)

Then there exists ε > 0 such that, if ‖x0 − x∗‖2 ≤ ε, the sequence of TGN iterates
{xk} satisfying (23) converges to x∗.

Proof of Theorem 5. We can write the TGN method as an IN method by setting

r̃k = ∇φ(xk)−∇2φ(xk)(J(xk)
TJ(xk))

−1∇φ(xk)+∇2φ(xk)(J(xk)
TJ(xk))

−1rk.(25)

Then we have

‖r̃k‖2 ≤
∥∥Q(xk)(J(xk)

TJ(xk))
−1

∥∥
2
‖∇φ(xk)‖2 +

∥∥I + Q(xk)(J(xk)
TJ(xk))

−1
∥∥

2
‖rk‖2

≤ (
∥∥Q(xk)(J(xk)

TJ(xk))
−1

∥∥
2

+ βk(1 +
∥∥Q(xk)(J(xk)

TJ(xk))
−1

∥∥
2
)) ‖∇φ(xk)‖2

≤ (
∥∥Q(xk)(J(xk)

TJ(xk))
−1

∥∥
2

+ (β̂ −
∥∥Q(xk)(J(xk)

TJ(xk))
−1

∥∥
2
)) ‖∇φ(xk)‖2

≤ β̂ ‖∇φ(xk)‖2 .
(26)
Local convergence then follows from Theorem 3.

Since βk ≥ 0 is necessary, we require that
∥∥Q(xk)(J(xk)

TJ(xk))
−1

∥∥
2
≤ β̂ < 1.

This is just the sufficient condition given by Theorem 4 for the exact GN method to
converge.

We remark also that the more highly nonlinear the problem is, the larger the
norm

∥∥Q(xk)(J(xk)
TJ(xk))

−1
∥∥

2
will be and hence the smaller the limit on βk will

be. The inner iteration of the TGN method must then be solved more accurately to
ensure convergence of the algorithm.
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4.4. Convergence of the PGN method (I). Next we present sufficient con-
ditions for the PGN method to converge. The theorem is established by considering
the PGN method as an IN method for solving the perturbed gradient equation (14).
We make the assumptions:

A1′. There exists x̃∗ ∈ R
n such that F̃ (x̃∗) ≡ J̃(x̃∗)T f(x̃∗) = 0;

A2′. The matrix J̃(x̃∗) at x̃∗ has full rank n.
We then obtain the theorem.

Theorem 6. Let assumptions A0, A1′, and A2′ hold, and let F̃ ′(x̃∗) ≡
J̃(x̃∗)TJ(x̃∗) + Q̃(x̃∗) be nonsingular. Assume 0 ≤ η̂ < 1. Then there exists ε > 0
such that, if ‖x0 − x̃∗‖2 ≤ ε and if∥∥∥I − (J̃(xk)

TJ(xk) + Q̃(xk))(J̃(xk)
T J̃(xk))

−1
∥∥∥

2
≤ ηk ≤ η̂, k = 0, 1, . . . ,(27)

the sequence of perturbed GN iterates {xk} converges to x̃∗.
Proof of Theorem 6. We can write the PGN method as an IN method by setting

r̃k = J̃(xk)
T f(xk) − (J̃(xk)

TJ(xk) + Q̃(xk))(J̃(xk)
T J̃(xk))

−1J̃(xk)
T f(xk)(28)

= (I − (J̃(xk)
TJ(xk) + Q̃(xk))(J̃(xk)

T J̃(xk))
−1)J̃(xk)

T f(xk).(29)

Then, provided the condition (27) holds, we have

‖r̃k‖2 ≤ η̂
∥∥∥J̃(xk)

T f(xk)
∥∥∥

2
,(30)

and by Theorem 3 local convergence is guaranteed.
The theorem gives explicit conditions on the perturbed Jacobian J̃ that are suf-

ficient to guarantee the convergence of the PGN method. The requirement is that
J̃(x)T J̃(x) should be a good approximation to the derivative F̃ ′(x) = J̃(x)TJ(x) +
Q̃(x) of the perturbed gradient equation (14).

4.5. Fixed point of the PGN method. We now consider how close the solu-
tion x̃∗ of the perturbed gradient equation (14) is to the solution x∗ of the original
NLSP. To answer this question we treat the GN method as a stationary fixed-point
iteration of the form (7).

We assume that the GN iteration converges locally to x∗ for all x0 in an open
convex set D containing x∗ (defined as in Theorem 1) and that G(x) satisfies

‖G(x) −G(x∗)‖2 ≤ ν ‖x− x∗‖2 ∀ x ∈ D with ν < 1,(31)

where G(x) is as given in section 2.1. Then we have the following theorem, which
bounds the distance between the solutions of the exact and perturbed iterations.

Theorem 7. Let assumptions A0, A1, A2, A1′, and A2′ hold, and assume � < 1.
Let (31) be satisfied. Also let x̃∗ ∈ D, and assume J(x̃∗) is of full rank. Then

‖x̃∗ − x∗‖2 ≤ 1

1 − ν

∥∥∥(J̃+(x̃∗) − J+(x̃∗))f(x̃∗)
∥∥∥

2
.(32)

Proof of Theorem 7. We define G̃(x) = x − J̃+(x)f(x). Then x̃∗ = G̃(x̃∗), and
we have

‖x̃∗ − x∗‖2 =
∥∥∥G̃(x̃∗) −G(x∗)

∥∥∥
2

≤
∥∥∥G̃(x̃∗) −G(x̃∗)

∥∥∥
2

+ ‖G(x̃∗) −G(x∗)‖2

≤ ν ‖x̃∗ − x∗‖2 +
∥∥∥G̃(x̃∗) −G(x̃∗)

∥∥∥
2
.
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Hence, we obtain

‖x̃∗ − x∗‖2 ≤ 1

1 − ν

∥∥∥G̃(x̃∗) −G(x̃∗)
∥∥∥

2

≤ 1

1 − ν

∥∥∥(J̃+(x̃∗) − J+(x̃∗))f(x̃∗)
∥∥∥

2
.

The theorem shows that the distance between x∗ and x̃∗ is bounded in terms
of the distance between the pseudoinverses of J̃ and J at x̃∗ and will be small if
these are close together. The theorem also implies, from (14), that the bound given
in (32) equals ‖J+(x̃∗)f(x̃∗)‖2 /(1 − ν), which is proportional to the residual in the
true gradient equation (5) evaluated at the solution x̃∗ of the perturbed gradient
equation (14).

A different approach to the convergence of the perturbed fixed point iteration
can be found in [20, Theorem 12.2.5]. This approach shows essentially that if the GN
method converges, then the PGN iterates eventually lie in a small region around x∗

of radius δ/(1−ν), where δ bounds the distance ‖G̃(x) −G(x)‖2 over all x ∈ D. This
theory does not establish convergence of the perturbed method, but the theory for
the distance between the fixed points of the GN and PGN methods presented here is
consistent with these results.

4.6. Convergence of the TPGN method (I). We now examine the conver-
gence of the approximate GN method where the Jacobian is perturbed and the inner
linear least squares problem is not solved exactly. The residuals in the inner normal
equations at each outer iteration are assumed to be bounded such that

‖rk‖2 ≤ βk

∥∥∥J̃(xk)
T f(xk)

∥∥∥
2
,(33)

where {βk} is a nonnegative forcing sequence. Sufficient conditions for the convergence
of this TPGN method are given by the next theorem.

Theorem 8. Let assumptions A0, A1′, and A2′ hold, and let F̃ ′(x̃∗) ≡
J̃(x̃∗)TJ(x̃∗) + Q̃(x̃∗) be nonsingular. Assume that 0 ≤ β̂ < 1, and select βk, k =
0, 1, . . . , such that

0 ≤ βk ≤
β̂ −

∥∥∥I − (J̃(xk)
TJ(xk) + Q̃(xk))(J̃(xk)

T J̃(xk))
−1

∥∥∥
2∥∥∥(J̃(xk)TJ(xk) + Q̃(xk))(J̃(xk)T J̃(xk))−1

∥∥∥
2

.(34)

Then there exists ε > 0 such that, if ‖x0 − x̃∗‖2 ≤ ε, the sequence of PGN iterates
{xk} satisfying (33) converges to x̃∗.

Proof of Theorem 8. We can write TPGN in the same form as IN by setting

r̃k = (I − (J̃(xk)
TJ(xk) + Q̃(xk))(J̃(xk)

T J̃(xk))
−1)J̃(xk)

T f(xk)

+ (J̃(xk)
TJ(xk) + Q̃(xk))(J̃(xk)

T J̃(xk))
−1rk.(35)

Then, provided the condition (33) holds, we have

‖r̃k‖2 ≤ β̂
∥∥∥J̃(xk)

T f(xk)
∥∥∥

2
,(36)

and by Theorem 3 local convergence is guaranteed.
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We remark that in order to ensure βk ≥ 0 we also require that∥∥∥I − (J̃(xk)
TJ(xk) + Q̃(xk))(J̃(xk)

T J̃(xk))
−1

∥∥∥
2
≤ β̂ < 1,

which is simply the sufficient condition found in Theorem 6 for the PGN method to
converge.

4.7. Summary. In this section we have established theory ensuring local linear
convergence of the GN, the TGN, the PGN, and the TPGN methods based on the
theory of [8] for IN methods. Numerical examples illustrating the results for the three
approximate GN methods are shown in section 6, and a practical application to data
assimilation is presented in section 7. In the next section we derive additional conver-
gence conditions for these methods based on the theory of [9] for exact GN methods.

5. Convergence of approximate GN methods II. We now derive conditions
for the convergence of the approximate GN methods by extending the results of [9]
for the exact GN method. These results are more restrictive than those given in
section 4 but provide more precise estimates of the rates of convergence of the methods.
Conditions for linear, superlinear, and quadratic convergence are established.

5.1. Sufficient conditions for the exact GN method. We begin by recalling
the sufficient conditions of [9] for local convergence of the GN iterates to a stationary
point x∗ of the NLSP.

Theorem 9 (Dennis and Schnabel [9, Theorem 10.2.1]). Let assumptions A0,
A1, and A2 hold, and let λ be the smallest eigenvalue of the matrix J(x∗)TJ(x∗).
Suppose that there exists an open convex set D containing x∗ such that

(i) J(x) is Lipschitz continuous in D with a Lipschitz constant equal to γ;
(ii) ‖J(x)‖2 ≤ α for all x ∈ D;
(iii) there exists σ ≥ 0 such that

∥∥(J(x) − J(x∗))T f(x∗)
∥∥

2
≤ σ ‖x− x∗‖2 for all

x ∈ D;
(iv) σ < λ.

Let c be such that 1 < c < λ/σ. Then there exists ε > 0 such that, if ‖x0 − x∗‖2 < ε,
the iterates {xk} generated by the GN algorithm converge to x∗. Additionally, the
following inequality holds:

‖xk+1 − x∗‖2 ≤ cσ

λ
‖xk − x∗‖2 +

cαγ

2λ
‖xk − x∗‖2

2 .(37)

The constant σ may be regarded as an approximation to the norm of the second-
order terms ‖Q(x∗)‖2 and is a combined measure of the nonlinearity of the problem
and the size of the residual [9, section 10.2]. The theorem shows that the convergence
of the GN method is quadratic in the case σ = 0. This holds, for example, for the
zero-residual problem where f(x∗) = 0.

The sufficient conditions given by Theorem 9 for the local convergence of the GN
method are more restrictive than those given in Theorem 1. We demonstrate this as
follows.

Theorem 10. If the assumptions of Theorem 9 hold, then � < 1.
Proof of Theorem 10. By Taylor expansion of the map x �→ J(x)T f(x∗) with

respect to x, we find

J(x)T f(x∗) = Q(x∗)(x− x∗) + ‖x− x∗‖2 Θ(x− x∗),(38)
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with limh→0 Θ(h) = 0. We denote f(x∗), J(x∗), and Q(x∗) by f∗, J∗, and Q∗,
respectively. Then multiplying (38) by (J∗TJ∗)−1 on the left yields

(J∗TJ∗)−1J(x)T f∗ = (J∗TJ∗)−1Q∗(x− x∗) + ‖x− x∗‖2 Θ1(x− x∗),(39)

with limh→0 Θ1(h) = 0. We let v be the right singular vector associated with the
largest singular value of (J∗TJ∗)−1Q∗ and let xε = x∗ + εv for ε > 0. Substituting xε

for x in (39) and rearranging the terms of the equality then gives us

ε(J∗TJ∗)−1Q∗v = (J∗TJ∗)−1J(xε)
T f∗ − εΘ1(εv).(40)

By the assumptions of Theorem 9, we have
∥∥J(xε)

T f∗∥∥
2
≤ σε for ε sufficiently small,

and therefore ∥∥(J∗TJ∗)−1J(xε)
T f∗∥∥

2
≤

∥∥(J∗TJ∗)−1
∥∥

2
σε = εσ/λ.(41)

Taking norms in (40) and letting ε tend to 0 then yields∥∥(J∗TJ∗)−1Q∗∥∥
2
≤ σ/λ.(42)

Since

� ≤
∥∥(J∗TJ∗)−1Q∗∥∥

2
,(43)

we obtain � ≤ σ/λ. Therefore, if σ < λ, then � < 1.
The conditions of Theorem 9 ensure that the conditions of Theorem 1 hold and

that the exact GN method converges, but the conditions of Theorem 1 are weaker than
those of Theorem 9. Since the quantity σ > ‖Q(x∗)‖2 can be made arbitrarily close
to ‖Q(x∗)‖2 in a sufficiently small neighborhood of x∗, the condition σ < λ can be
achieved only if ‖Q(x∗)‖2

∥∥(J(x∗)TJ(x∗)T )−1
∥∥

2
< 1, which is a stronger requirement

than that of Theorem 1 for convergence (see [12]).
We now extend the theory of Theorem 9 to the approximate GN methods. The

results are not as general as those of section 4 but allow the rates of convergence of
the methods to be determined.

5.2. Convergence of the TGN method (II). By an extension of Theorem 9,
we now establish alternative conditions for the TGN method to converge. We assume,
as previously, that the residuals in the TGN method are bounded such that

‖rk‖2 ≤ βk

∥∥J(xk)
T f(xk)

∥∥
2
,(44)

where {βk} is a nonnegative forcing sequence.
Theorem 11. Let the conditions of Theorem 9 hold, and let c be such that

1 < c < λ/σ. Select βk, k = 0, 1, . . . , to satisfy

0 ≤ βk ≤ β̂ <
λ− cσ

c(σ + α2)
, k = 0, 1, . . . .(45)

Then there exists ε > 0 such that, if ‖x0 − x∗‖2 < ε, the sequence of TGN iterates
{xk} satisfying (44) converges to x∗. Additionally, the following inequality holds:

‖xk+1 − x∗‖2 ≤ c

λ
(σ + βk(σ + α2)) ‖xk − x∗‖2 + C ‖xk − x∗‖2

2 ,(46)

where C = cαγ
2λ (1 + β̂).
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Proof of Theorem 11. The proof is by induction. Let k = 0, and denote by J0,
f0, J

∗, and f∗ the quantities J(x0), f(x0), J(x∗), and f(x∗), respectively. From the
proof of Theorem 9 (see [9, Theorem 10.2.1]), there exists a positive quantity ε1 such
that, if ‖x0 − x∗‖2 < ε1, then x0 ∈ D, JT

0 J0 is nonsingular,
∥∥(JT

0 J0)
−1

∥∥
2
≤ c/λ, and∥∥x0 − (JT

0 J0)
−1JT

0 f0 − x∗∥∥
2
≤ cσ

λ
‖x0 − x∗‖2 +

cαγ

2λ
‖x0 − x∗‖2

2 .(47)

Let

ε = min

{
ε1,

λ− c(σ + β̂(σ + α2))

cαγ(1 + β̂)

}
,(48)

where λ− c(σ + β̂(σ + α2)) > 0 by (45).
We start from∥∥JT

0 f0

∥∥
2

=
∥∥JT

0 f∗ + JT
0 (J0(x0 − x∗) + f0 − f∗) − JT

0 J0(x0 − x∗)
∥∥

2
(49)

and bound successively each term in the norm. From the definitions of σ and α in
Theorem 9, we have

∥∥JT
0 f∗∥∥

2
≤ σ ‖x0 − x∗‖2 and

∥∥JT
0 J0(x0 − x∗)

∥∥
2
≤ α2 ‖x0 − x∗‖2.

From [9, Lemma 4.1.12] and the Lipschitz continuity of J0, we also have

‖J0(x0 − x∗) + f∗ − f0‖2 ≤ γ

2
‖x0 − x∗‖2

2 .(50)

Using the triangular inequality then shows that∥∥JT
0 f0

∥∥
2
≤ (σ + α2) ‖x0 − x∗‖2 +

αγ

2
‖x0 − x∗‖2

2 .(51)

Gathering the partial results (47) and (51), we obtain

‖x1 − x∗‖2 =
∥∥x0 − (JT

0 J0)
−1JT

0 f0 + (JT
0 J0)

−1r0 − x∗∥∥
2

≤
∥∥x0 − (JT

0 J0)
−1JT

0 f0 − x∗∥∥
2

+ ‖r0‖2

∥∥(JT
0 J0)

−1
∥∥

2

≤
∥∥x0 − (JT

0 J0)
−1JT

0 f0 − x∗∥∥
2

+ β0

∥∥(JT
0 J0)

−1
∥∥

2

∥∥JT
0 f0

∥∥
2

≤ c

λ
(σ + β0(σ + α2)) ‖x0 − x∗‖2 + C ‖x0 − x∗‖2

2 ,(52)

where C = cαγ(1+β̂)/(2λ), which proves (46) in the case k = 0. Since ‖x0 − x∗‖2 < ε
is assumed initially, it follows from (45) and (48) that

‖x1 − x∗‖2 ≤
( c

λ
(σ + β̂(σ + α2)) + Cε

)
‖x0 − x∗‖2 ≤ K ‖x0 − x∗‖2 < ‖x0 − x∗‖2 ,

(53)

where K = (λ + c(σ + β̂(σ + α2)))/(2λ) < 1. The convergence is then established by
repeating the argument for k = 1, 2, . . . .

The theorem shows that to ensure the convergence of the TGN method, the
relative residuals in the solution of the inner linear least square problem must be
bounded in terms of the parameters σ, λ, and α. The theorem also establishes the
rates of convergence of the method in various cases. These cases are discussed in
section 5.5.

We remark that the convergence of the TGN method can be established under
weaker conditions than we give here, as proved in [10]. Only linear rates of convergence
can be derived under the weaker conditions, however, whereas quadratic rates of
convergence can be shown in certain cases under the assumptions made here (see
section 5.5).
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5.3. Convergence of the PGN method (II). In the next theorem we consider
the PGN iteration where an approximate Jacobian J̃ is used instead of J .

Theorem 12. Let the conditions of Theorem 9 hold, and let J̃(x) be an approx-
imation to J(x). Let c be such that 1 < c < λ/σ. Assume that

0 ≤ η̂ <
λ− cσ

c(σ + α2)
.(54)

Then there exists ε > 0 such that, if ‖x0 − x∗‖2 < ε and if

∥∥∥J(xk)
TJ(xk)

(
J+(xk) − J̃+(xk)

)
f(xk)

∥∥∥
2
/
∥∥J(xk)

T f(xk)
∥∥

2
≤ ηk ≤ η̂, k = 0, 1, . . . ,

(55)
the sequence of PGN iterates {xk} converge to x∗. Additionally, the following inequal-
ity holds:

‖xk+1 − x∗‖2 ≤ c

λ
(σ + ηk(σ + α2)) ‖xk − x∗‖2 + C ‖xk − x∗‖2

2 ,(56)

where C = cαγ(1 + η̂)/(2λ).
Proof of Theorem 12. The PGN iteration takes the form xk+1 = xk + sk, where

sk = −J̃+(xk)f(xk). Therefore, using the notation of Theorem 11, we may consider
the PGN method as a TGN method with the residual defined by

rk = J(xk)
TJ(xk)sk + J(xk)

T f(xk) = J(xk)
TJ(xk)(J

+(xk) − J̃+(xk))f(xk).

The conclusion then follows directly from Theorem 11.
We remark that Theorem 12 establishes the convergence of the PGN method to

the fixed point x∗ of the exact GN method. At the fixed point, the perturbed Jacobian
J̃ must, therefore, be such that J̃(x∗)T f(x∗) = 0 in order to be able to satisfy the
conditions of the theorem; that is, at the fixed point x∗ the null space of J̃(x∗)T must
contain f(x∗). In contrast the convergence results of Theorem 6 require only that a
point x̃∗ exists such that J̃(x̃∗)T f(x̃∗) = 0 and J̃(x̃∗) is full rank.

5.4. Convergence of the TPGN method (II). In the following theorem
we consider the TPGN iteration where an approximate Jacobian J̃ is used and the
inner linear least squares problem (15) is not solved exactly on each outer step. The
residuals in the inner normal equations at each outer iteration are assumed to be
bounded such that

‖rk‖2 ≤ βk

∥∥∥J̃(xk)
T f(xk)

∥∥∥
2
,(57)

where {βk} is a nonnegative forcing sequence. Sufficient conditions for the TPGN
method to converge are then given as follows.

Theorem 13. Let the conditions of Theorem 9 hold, and let J̃(x) be an ap-
proximation to J(x). Let c be such that 1 < c < λ/σ. Assume that ηk ≤ η̂ <
(λ− cσ)/(c(σ + α2)), and select βk, k = 0, 1, . . . , such that

0 ≤ βk ≤
(
ηk

∥∥J(xk)
T f(xk)

∥∥
2
−
∥∥∥J(xk)

TJ(xk)(J
+(xk) − J̃+(xk))f(xk)

∥∥∥
2

)
·
(∥∥∥J(xk)

TJ(xk)(J̃(xk)
T J̃(xk))

−1
∥∥∥

2

∥∥∥J̃(xk)
T f(xk)

∥∥∥
2

)−1

(58)
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for k = 0, 1, . . . . Then there exists ε > 0 such that, if ‖x0 − x∗‖2 < ε, the sequence
of PGN iterates {xk} satisfying (57) converges to x∗. Additionally, the following
inequality holds:

‖xk+1 − x∗‖2 ≤ c

λ
(σ + ηk(σ + α2)) ‖xk − x∗‖2 + C ‖xk − x∗‖2

2 ,(59)

where C = cαγ(1 + η̂)/(2λ).
Proof of Theorem 13. The TPGN iteration takes the form xk+1 = xk + sk, where

sk = −J̃+(xk)f(xk) + (J̃(xk)
T J̃(xk))

−1rk. Therefore, using the notation of Theorem
11, we may consider the TPGN method as a TGN method with the residual defined
as

r̃k = J(xk)
TJ(xk)(J

+(xk) − J̃+(xk))f(xk) + J(xk)
TJ(xk)(J̃(xk)

T J̃(xk))
−1rk.(60)

Then, provided the condition (57) holds, we have

‖r̃k‖2 ≤
∥∥∥J(xk)

TJ(xk)(J
+(xk) − J̃+(xk))f(xk)

∥∥∥
2

+
∥∥∥J(xk)

TJ(xk)(J̃(xk)
T J̃(xk))

−1
∥∥∥

2
βk

∥∥∥J̃(xk)
T f(xk)

∥∥∥
2

≤ ηk
∥∥J(xk)

T f(xk)
∥∥

2
.(61)

The conclusion then follows from Theorem 11.
We remark that to ensure βk ≥ 0 we require that the relation given by equation

(55) holds. This is simply the condition of Theorem 12 that guarantees the conver-
gence of the PGN method in the case where the inner loop is solved exactly without
truncation.

Theorem 13 gives conditions for the TPGN method to converge to the fixed point
x∗ of the exact GN method and is therefore more restrictive than the theorem devel-
oped in section 4. Here the allowable form of the perturbed Jacobian is constrained to
satisfy J̃(x∗)T f(x∗) = J(x∗)T f(x∗) = 0 in order that the conditions of the theorem
may be met. The theorem does, however, establish that the method converges with
rates of convergence higher than linear in certain cases. These cases are discussed in
the next section.

5.5. Rates of convergence of the approximate GN methods. From The-
orems 11, 12, and 13, the expected convergence rates of the approximate GN methods
may be established for various cases. The convergence rates are shown in (46), (56),
and (59) for the TGN, the PGN, and the TPGN methods, respectively. These rates
are dependent on the parameters σ, λ, and α, defined as in Theorem 9, and can be
contrasted directly with the convergence rates of the exact GN method, given by (37).
We observe the following.

1. Linear convergence. The theorems show that in general if the GN, TGN,
PGN, and TPGN methods converge, then they converge linearly. In com-
parison with the exact GN algorithm, we see that the price paid for the
inaccurate solution of the linear least squares problem in the inner step of the
approximate methods is a degradation of the local linear rate of convergence.

2. Superlinear convergence. As previously noted, if σ = 0, which holds, for ex-
ample, in the zero-residual case where f(x∗) = 0, the convergence of the exact
GN method is quadratic [9, Corollary 10.2.2]. In this same case, if σ = 0 and
if the forcing sequence {βk} satisfies limk→+∞ βk = 0, then the convergence
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rates of the approximate TGN and TPGN methods are superlinear. For the
PGN method to converge superlinearly in this case, the sequence {ηk} must
satisfy limk→+∞ ηk = 0.

3. Quadratic convergence. From the proof of Theorem 11, we see that the con-
vergence of the TGN method is quadratic if σ = 0 and if the normal equation
residual is such that

‖rk‖2 ≡
∥∥J(xk)

TJ(xk)sk + J(xk)
T f(xk)

∥∥
2
≤ C1

∥∥J(xk)
T f(xk)

∥∥2

2

for some positive constant C1. Similarly, in the case σ = 0, the PGN method
converges quadratically if∥∥∥J(xk)

TJ(xk)
(
J+(xk) − J̃+(xk)

)
f(xk)

∥∥∥
2
≤ C2

∥∥J(xk)
T f(xk)

∥∥2

2
,

as does the TPGN method in this case if∥∥∥(J(xk)
TJ(xk))((J

+(xk) − J̃+(xk))f(xk) + (J̃(xk)
T J̃(xk))

−1rk)
∥∥∥

2

≤ C3

∥∥J(xk)
T f(xk)

∥∥2

2

for positive constants C2, C3.
4. Effect of nonlinearity. Since λ − cσ > 0, we also see from the theorems

that the allowable upper bound on the truncation decreases as σ increases.
Since σ is a combined measure of the nonlinearity and the residual size in
the problem, we see therefore that, in order to guarantee convergence of the
approximate methods, the inner linearized equation must be solved more
accurately when the problem is highly nonlinear or when there is a large
residual at the optimal.

In section 6 we give numerical results demonstrating the convergence behavior of
the approximate GN methods. The rates of convergence of the approximate methods
are also illustrated for various cases.

5.6. Summary. In this section we have established theory ensuring local con-
vergence of the GN, the TGN, the PGN, and the TPGN methods based on the theory
of [9] for exact GN methods. The conditions for convergence derived in this section
are less general than those of section 4 but enable the rates of convergence to be es-
tablished. Numerical examples illustrating the results for the three approximate GN
methods are shown in the next section, and in section 7 an application to a practical
problem in data assimilation is presented.

6. Numerical example. We examine the theoretical results of sections 4 and 5
using a simple data assimilation problem from [13, Chapter 4]. The aim is to fit the
solution of a discrete dynamical model to observations of the model state at two points
in time. The system dynamics are described by the ordinary differential equation

dz

dt
= z2,(62)

where z = z(t). A second-order Runge–Kutta scheme is applied to the continuous
equation to give the discrete nonlinear model

xn+1 = xn + (xn)2Δt + (xn)3Δt2 +
1

2
(xn)4Δt3,(63)
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where Δt denotes the model time step and xn ≈ z(tn) at time tn = nΔt. The data
assimilation problem is then defined to be

min
x0

φ(x) =
1

2
(x0 − y0)2 +

1

2
(x1 − y1)2(64)

subject to (63), where y0, y1 are values of observed data at times t0, t1, respectively.
This is a NLSP of the form (1) with

f =

(
x0 − y0

x1 − y1

)
.(65)

The Jacobian of f is given by

J(x0) =

(
1

1 + 2x0Δt + 3(x0)2Δt2 + 2(x0)3Δt3

)
,(66)

and the second-order terms of the Hessian are

Q(x0) =
(
x0 + (x0)2Δt + (x0)3Δt2 + 1

2 (x0)4Δt3 − y1
)
(2Δt+6x0Δt2 +6(x0)2Δt3).

(67)

We use this example to test the convergence theory for the approximate GN
methods. In the experiments we set the true value of x0 to −2.5 and begin the
iteration with an initial estimate of −2.3 for x0. The observations are generated by
solving the discrete numerical model (63) with the true initial state. The time step is
set to Δt = 0.5. The algorithms are considered to have converged when the difference
between two successive iterates is less than 10−12, and we restrict the maximum
number of iterations to 1000. We first test the convergence of the TGN algorithm.

6.1. TGN method: Numerical results. The exact GN method is easy to
apply to this simple example since we can solve the inner step directly at each iteration.
In order to test the theory for the TGN algorithm, we apply an error to the exact GN
step and solve instead the approximate equation

J(x0
k)

TJ(x0
k)sk = −J(x0

k)
T f(x0

k) + rk,(68)

where on each iteration we select the size of the residual rk. We choose

rk = ε

(
β̂ − |Q(x0

k)(J(x0
k)

TJ(x0
k))

−1|
1 + |Q(x0

k)(J(x0
k)

TJ(x0
k))

−1|

)
|∇φ(x0

k)|,(69)

with ε a specified parameter and β̂ = 0.999. From Theorem 5 we expect the algorithm
to converge to the correct solution for values of ε less than 1. In Table 1 we show the
results of the iterative process for various levels of truncation. The first and second
columns of the table give the values of ε chosen for the truncation and the number of
iterations taken to reach convergence. The third and fourth columns show the differ-
ences between the iterated and true solutions and the gradient of the objective function
at the iterated solution, which should be 0 if the true minimum has been reached.

For ε = 0 (the exact GN method) the exact solution is found in 5 iterations. As
the value of ε is increased, the number of iterations to reach convergence also increases.
At ε = 0.95 the number of iterations needed to achieve convergence is 401, but even
for this large truncation, the correct solution to the NLSP is attained, as seen from
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Table 1

Perfect observations, exact Jacobian.

ε Iterations Error Gradient
0.00 5 0.000000e+00 0.000000e+00
0.25 20 9.015011e-14 1.364325e-13
0.50 37 7.207568e-13 1.092931e-12
0.75 84 2.246647e-12 3.407219e-12
0.90 210 8.292034e-12 1.257587e-11
0.95 401 1.857048e-11 2.816403e-11
1.00 1000 3.143301e-04 4.765072e-04
1.05 431 2.652062e-02 3.880614e-02
1.10 231 5.357142e-02 7.568952e-02
1.15 163 8.101821e-02 1.106474e-01
1.20 130 1.093852e-01 1.444877e-01
1.25 112 1.394250e-01 1.781241e-01

Table 2

Imperfect observations, exact Jacobian.

ε Iterations Error Gradient
0.00 10 4.440892e-15 7.778500e-15
0.25 17 9.503509e-14 1.806853e-13
0.50 32 6.181722e-13 1.176347e-12
0.75 66 1.671552e-12 3.180605e-12
0.90 128 4.250822e-12 8.088735e-12
0.95 181 6.231016e-12 1.185694e-11
1.00 359 1.052936e-11 2.003732e-11
1.05 157 6.324736e-02 1.093406e-01
1.10 116 8.697037e-02 1.452842e-01
1.15 93 1.103473e-01 1.783861e-01
1.20 79 1.336149e-01 2.092708e-01
1.25 69 1.570351e-01 2.384890e-01

the size of the error and gradient values. For a value of ε = 1.0 the algorithm fails
to converge within 1000 iterations. For values of ε greater than 1, the algorithm also
converges, but the solution is not correct. With ε = 1.05, for example, the stopping
criterion is satisfied after 431 iterations, but the final gradient is now of the order
10−2, indicating that a true minimum has not been found. Thus from these results
it appears that the bound on the truncation proposed in Theorem 5 is precise. For
truncations less than this bound we converge to the correct solution of the NLSP but
not for truncations above this bound.

We note that, for this example, if the observations are perfect, then we have a
zero-residual NLSP problem. In order to test the theory when this is not the case, we
consider an example where the observational data contains errors, as generally occurs
in practice. We add an error of 5% to observation y0 and subtract an error of 5%
from observation y1. The true solution is then calculated by applying the full Newton
method to the problem, giving the value x0 = −2.5938 in 7 iterations. (The accuracy
of this result is checked by ensuring that the gradient is 0 at the solution.) The
convergence results for this test case are shown in Table 2, where the third column
is now the difference between the iterated TGN solution and the solution calculated
using the exact Newton method.

We see a similar pattern of behavior to that in the perfect observation (zero-
residual) case. For all values of ε less than 1 the TGN algorithm converges to the
same solution as the exact Newton method, but the number of iterations required for
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convergence increases as ε increases. Where ε = 1, the method now converges within
the iteration limit to the optimal found by the Newton method. The procedure also
converges for values of ε greater than 1, but the solution is no longer correct. In these
cases the size of the gradient indicates that a minimum has not been found.

6.2. PGN method: Numerical results. In data assimilation, a perturbed
Jacobian is often derived by replacing the linearized discrete dynamical model by
a simplified discrete form of the linearized continuous system. In this test case we
generate a perturbed Jacobian in the same way, following the example of [13]. The
linearization of the continuous nonlinear equation (62) is written

d(δz)

dt
= 2z(δz),(70)

where δz(t) is a perturbation around a state z(t) that satisfies the nonlinear equation
(62). Applying the second-order Runge–Kutta scheme to this equation gives

(δx)n+1 =
(
1 + 2xnΔt + 3(xn)2Δt2 + 3(xn)3Δt3 + 5

2 (xn)4Δt4 + (xn)5Δt5
)
(δx)n,

(71)

where (δx)n ≈ δz(tn) at time tn = nΔt and xn ≈ z(tn) satisfies the discrete nonlinear
model (63). The perturbed Jacobian for this example thus becomes

J̃(x0) =

(
1

1 + 2x0Δt + 3(x0)2Δt2 + 3(x0)3Δt3 + 5
2 (x0)4Δt4 + (x0)5Δt5

)
.(72)

Using this perturbed Jacobian we apply the PGN algorithm to our example and
test whether the sufficient condition (27) for convergence is satisfied on each iteration.
For this example the second-order terms Q̃ are given by

Q̃(x0) =
(
x0 + (x0)2Δt + (x0)3Δt2 + 1

2 (x0)4Δt3 − y1
)

· (2Δt + 6x0Δt2 + 9(x0)2Δt3 + 10(x0)3Δt4 + 5(x0)4Δt5).(73)

In the case where we have perfect observations, condition (27) is satisfied on
each iteration, and the PGN method converges to the true solution in 27 iterations.
When error is added to the observations, as in the previous section, the PGN method
converges in 21 iterations, and again, the condition for convergence is always satis-
fied. Now, however, the NLSP problem is no longer a zero-residual problem, and the
fixed points of the GN and PGN methods are no longer the same. The converged
solutions differ in the norm by 0.05389, which is within the minimum upper bound
‖J+(x̃∗)f(x̃∗)‖2 = 0.05425 on the error (with ν = 0) given by Theorem 7.

In order to examine a case in which the sufficient condition (27) is not satisfied on
each iteration, we change the time step to Δt = 0.6, keeping all other parameters of the
problem the same. With this time step the perturbed linear model has significantly
different characteristics from the exact linear model (see [13]). The Jacobians J and
J̃ are therefore also very different, as are the second derivative matrices Q and Q̃,
which are dependent here upon the observations. For perfect observations (zero-
residual problem), the PGN iterations converge to the same solution as the exact GN
and Newton procedures in 36 iterations (compared with 10 and 7 iterations for the
GN and Newton methods, respectively). The condition for convergence of the PGN
method is satisfied on each iteration, with the maximum value of the left-hand side
of (27) reaching 0.709. In the case where there are errors in the observed values,
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Table 3

Imperfect observations, inexact Jacobian.

ε Iterations Error Residual
0.00 21 8.215650e-14 6.693951e-14
0.25 33 4.911627e-13 4.007662e-13
0.50 56 1.217249e-12 9.930633e-13
0.75 121 3.732126e-12 3.044658e-12
0.90 306 1.105871e-11 9.021988e-12
0.95 596 2.444178e-11 1.993989e-11
1.00 1000 1.260007e-01 9.382085e-02
1.05 90 1.714365e+00 1.765471e+00
1.10 53 1.842029e+00 1.934063e+00
1.15 36 1.940084e+00 2.069636e+00
1.20 25 2.019233e+00 2.184031e+00
1.25 23 2.085381e+00 2.283791e+00

however, the perturbed problem is no longer close to the NLSP, and the condition for
convergence of the PGN method fails on every second iteration. As anticipated in this
case, the PGN method fails to converge, even after 1000 iterations. By comparison,
the exact GN algorithm, using the true Jacobian, converges in 8 iterations to the same
solution of the NLSP as that obtained by Newton’s method. This example illustrates
the effects of approximations on the convergence properties of the GN method and
demonstrates the limits on the convergence of the PGN method as established by the
theory of sections 4 and 5.

6.3. TPGN method: Numerical results. Finally in this section we consider
the case in which the PGN method is also truncated. Following the same method as
in the previous two sections, we solve on each iteration the approximate equation

J̃(x0
k)

T J̃(x0
k)sk = −J̃(x0

k)
T f(x0

k) + rk,(74)

where we select the residual rk. We choose

rk = ε

(
β̂ − |1 − (J̃(xk)

TJ(xk) + Q̃(xk))(J̃(xk)
T J̃(xk))

−1|
|(J̃(xk)TJ(xk) + Q̃(xk))(J̃(xk)T J̃(xk))−1|

)
|∇φ(x0

k)|,(75)

where ε is a specified parameter and β̂ = 0.999. The other data are as before, with
errors added to the observations. From Theorem 8 we expect the method to converge
for values of ε < 1. The true solution is calculated by applying the exact Newton
method to the perturbed problem, giving a result in 5 iterations of x0 = −2.6477.
In Table 3 we present the convergence results for the TPGN method using various
levels of truncation. The third column now shows the difference between the TPGN
solution and the exact Newton method applied to the perturbed problem, and the
fourth column gives the residual in the perturbed equation (14). We find that, as
expected from the theory, the TPGN algorithm converges to the correct solution for
values of ε < 1. For values of ε > 1 the algorithm converges to an incorrect solution.
Thus it appears that the bound derived in Theorem 8 is robust.
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Fig. 1. Convergence rates for the cases of (a) an exact Jacobian and (b) a perturbed Jacobian for
the zero-residual case. The solid line is for no truncation; the dashed line is for constant truncation;
and the dotted line in plot (a) is for variable truncation.

6.4. Rates of convergence. Finally we test numerically the convergence rates
derived in section 5. We examine the zero-residual problem for the numerical example
with perfect observations. The convergence is measured in terms of the norms of the
errors on each iteration. If the convergence is of order p, then

‖ xk+1 − x∗ ‖2 = K ‖ xk − x∗ ‖p2 for some constant K,(76)

where x∗ is the exact fixed point. The plot of | log(‖ xk+1 − x∗ ‖2)| against
| log(‖ xk − x∗ ‖2)| will therefore have slope p.

In Figure 1(a) we plot this slope for the case where the exact Jacobian is used.
Three curves are shown corresponding to the exact GN method, the TGN method
with constant truncation, and the TGN method with βk → 0. From the theory of
section 5 we expect the rates of the convergence for these cases to be quadratic, linear,
and superlinear. We find that this is the case. For the exact GN method the slope
of the line in the figure is 1.97, and for the TGN method it is 0.98. For the case in
which the truncation tends to 0, the slope is 0.96 on the upper part of the line, which
corresponds to the initial iterations, but steepens to 1.5 on the lower part of the line,
demonstrating the superlinear nature of the convergence.

In Figure 1(b) the slope is plotted for the case where the perturbed Jacobian is
used. We show the convergence for the PGN method with no truncation and the
TPGN method with constant truncation. From the previous theory we expect both
of these to have linear convergence. The numerical results show that this is the case,
with both lines in the figure having a slope of one.

We conclude from these studies that the theoretical results of sections 4 and 5
predict the convergence behavior of the approximate GN methods reliably and ro-
bustly.

7. Application to data assimilation. We now consider the application of the
approximate GN theory to a more realistic problem in atmosphere and ocean data
assimilation. In the technique of 4D-Var the aim is to find an initial state x0 at time
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t0 such that the distance between the trajectory of the numerical model of the system
initiated from state x0 and a set of observations of the system at times ti, i = 0, . . . , N ,
is minimized. In practice other constraints may also be added to the system so as
to ensure, for example, that the state x0 lies close to an a priori estimate. These
constraints are not needed, however, in order to illustrate the theory developed here.
We therefore express the 4D-Var problem in the form

min
x0

J [x0] =
1

2

N∑
i=0

(H i[xi] − yi)
TR−1

i (Hi[xi] − yi)(77)

subject to xi = S(ti, t0, x0), where S is the solution operator of the discrete nonlinear
model, Hi is an operator that maps the model state into the pi-dimensional vector of
observations yi at time ti, and Ri is a weighting matrix given by the error covariance
matrix of the observations at time ti. This is an NLSP of the form (1) with

f(x0) = −

⎛
⎜⎜⎝

R
1/2
0 (H0[x0] − y0)

...

R
1/2
N (HN [xN ] − yN )

⎞
⎟⎟⎠ ,(78)

where we note that the definition of f(x0) implicitly involves the nonlinear model
operators S(ti, t0, x0) for calculating the states of the system xi at the different ob-
servation times. In atmospheric data assimilation the size of the state vector x is
very large, of order 107–108, and so efficient methods for minimizing (77) must be
found. A common implementation of 4D-Var is the incremental formulation of [6],
which minimizes a series of linear approximations to (77). Recently we have shown
this to be equivalent to applying a GN method to the nonlinear problem (77) [14, 15].

7.1. Model problem. To illustrate the theory we examine a 4D-Var assimi-
lation problem for a simplified model of fluid flow over an obstacle. The system is
described by the one-dimensional nonlinear shallow water equations in the absence of
rotation given by

Du

Dt
+

∂φ

∂ξ
= −g

∂h̄

∂ξ
,(79)

D(lnφ)

Dt
+

∂u

∂ξ
= 0,(80)

with

D

Dt
=

∂

∂t
+ u

∂

∂ξ
.(81)

In these equations u is the wind velocity; φ = gh is the geopotential, where g is
the gravitational constant; h > 0 is the height of the fluid above the topography;
and h̄ is the height of the underlying topography. We define the problem on a spatial
domain ξ ∈ [0, L] with periodic boundary conditions. The system is discretized using a
two-time-level semi-implicit semi-Lagrangian integration scheme, as described in [16].
This is a similar numerical scheme to that commonly used in operational weather
forecasting models (see, for example, [5, 7]).

We note that to apply the GN method to (77) we require the Jacobian of the
function f , which includes the linearization of the discrete nonlinear model operator
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S. This linear operator is known as the tangent linear model and is usually found by a
direct linearization of the discrete nonlinear model, using the procedure of automatic
differentiation [1]. An alternative method of generating the linear model is first to
linearize the continuous nonlinear equations (79) and (80) and then to discretize the
resulting linear equations. This is the method that the UK Met Office has used to
develop the linear model for their operational assimilation scheme [18]. In general this
method will usually give a discrete model that is not the exact linearization of the
discrete nonlinear model. Thus when this model is used within the GN iteration, we
have only an approximate Jacobian J̃ . The theory for the PGN method then applies.

To demonstrate this technique with the shallow water model, we let δu(ξ, t), δφ(ξ, t)
denote perturbations around states ū(ξ, t), φ̄(ξ, t) that satisfy the nonlinear equations.
Then substituting into (79) and (80) gives the linearized equations

D(δu)

Dt
+ (δu)

∂ū

∂ξ
+

∂(δφ)

∂ξ
= 0,(82)

D

Dt

(δφ
φ̄

)
+ (δu)

∂(ln φ̄)

∂ξ
+

∂(δu)

∂ξ
= 0,(83)

where

D

Dt
=

∂

∂t
+ ū

∂

∂ξ
(84)

is the material derivative defined with the linearization state wind ū. These equations
are discretized using a semi-implicit semi-Lagrangian scheme, similar to that used in
the full nonlinear model. Full details of the resulting numerical scheme are given in
[16], where it is also shown that this scheme is different from that of the tangent linear
model.

To solve the inner step of the GN method, a conjugate gradient iterative mini-
mization is applied to the exact or perturbed linear least squares problem (6) or (15).
The gradient directions are determined using the adjoints of the discrete linear model
equations. We note that, in the case where the inexact linear model is used, this
procedure generates the perturbed gradient J̃(x)T f(x), as required by the iteration
method, rather than the exact gradient J(x)T f(x).

The inner iteration is stopped when the relative residual, defined as in (11) or (16),
falls below a specified tolerance. If the minimization is stopped before full convergence,
then the theory derived in sections 4 and 5 for the convergence of the TGN or TPGN
method applies. For a complex model such as this, it is not possible to calculate
the tolerances on the residuals required by the theory. The convergence results do,
however, provide a theoretical basis for a practical inner loop stopping criterion that
leads to smoother convergence of the outer loops and more efficient algorithms for
solving the data assimilation problem, as described in [17]. Suitable tolerances are
found experimentally, and the inner loop is stopped when the relative change in the
gradient of the linear least squares problem, which is equal to the relative residual, is
below the selected tolerance.

We perform idealized assimilation experiments in which the observations are gen-
erated by the nonlinear model, starting from a known initial state that we define to
give the truth. These observations are then used in the assimilation, which is started
from an incorrect prior estimate of the state. Further details of the implementation of
the assimilation scheme can be found in [14]. Assimilation experiments are performed
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with the exact linear model (and hence exact Jacobian) and with the inexact lin-
ear model (perturbed Jacobian). We consider the cases of both perfect observations,
which imply a zero-residual problem, and observations with random Gaussian error
added, which lead to a nonzero residual. We see that in practice the convergence
behavior of the approximate GN methods is as predicted by the theory established in
sections 4 and 5.

7.2. Numerical results. For the numerical experiments we consider a periodic
domain of 200 grid points with a spacing of Δξ = 0.01 m, so that ξ ∈ [0 m, 2 m]. In
the center of the domain we define an idealized mountain by the formula

h̄(ξ) = h̄c

(
1 − ξ2

a2

)
for 0 < |ξ| < a(85)

and h̄(ξ) = 0, otherwise, where we choose h̄c = 0.05 m and a is taken to be 40Δξ =
0.4 m. The gravitational constant g is set to be 10 ms−2, and the model time step is
9.2 × 10−3 s.

Idealized observations of both u and φ are taken at every spatial grid point ξj , j =
1, . . . , 200, over a time window of 50 steps. This gives a state vector of dimension n =
400 with pi = 400 observations of the states at all grid points at times ti, i = 0, . . . , 50.
The function f is thus of dimension m = 20400. The observations are assimilated using
the GN or PGN method, starting from an incorrect prior estimate, which is generated
by adding a phase shift of 0.5 m to the true initial state. The outer iteration is stopped
when the norm of the gradient or the perturbed gradient, defined as in (5) or (12),
respectively, is less than a given tolerance. The tolerance is set to 0.005 in the case
of perfect observations and to 0.05 in the case where random errors have been added
to the observations.

The inner minimization loop is stopped when the relative change in the gradient of
the linear least squares problem falls below tolerances of 0.1 and 0.9. For a tolerance
of 0.1 we find that the inner loop is fully converged and choosing a value several
orders of magnitude lower than this does not change the convergence of the GN or
PGN iterations. Thus we can consider this case as the method without truncation.
The value of 0.9 on the other hand corresponds to a severely truncated method. In
the zero-residual case for the exact Jacobian, we also perform a variable truncation
experiment in which the truncation tolerance is initially set to 0.9 but is halved on
each new GN iteration.

We consider first the case where we have exact observations of the true solution, so
that the NLSP has a zero residual. In Figure 2 we plot the values of the nonlinear cost
function (77) and the gradient, or perturbed gradient, for each iterative procedure.
We observe that the fastest convergence is obtained when using the exact Jacobian
with no truncation, as we expect from the theory. When the truncation level is
increased, then the convergence rate slows down. (We remark that as the tolerance
level is increased, however, less work is needed per iteration.) From Figure 2 we see
also that if the tolerance tends to 0 as the iterations proceed, then the convergence
rate increases. This behavior is expected from the theory, which predicts superlinear
convergence in this case.

When the perturbed Jacobian is used, the convergence rate is found to be the
same or slightly slower than when using the exact Jacobian, depending on whether
truncation is applied or not. In general for the perturbed Jacobian with no truncation,
this rate is faster than we would expect from the theory, which predicts only linear
convergence. As we showed in section 5.5, however, the PGN method can converge
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Fig. 2. Convergence of the (a) cost function and (b) gradient, or perturbed gradient, for the
perfect observation case. The different lines are for the exact Jacobian with no truncation (dashed
line), with truncation (dotted line), and with variable truncation (solid line). The symbols indicate
the convergence for the perturbed Jacobian with no truncation (solid dots) and with truncation
(circles).

quadratically for the zero-residual problem if the perturbed and exact Jacobians are
close to each other. This can explain the fast convergence with the inexact Jacobian
in this case.

For the experiments with imperfect observations, the observational errors for u
and φ are taken from a Gaussian distribution, with standard deviations equal to 5%
of the mean value of each field. The rates of convergence for these experiments are
shown in Figure 3. In this case the solution does not fit the observations exactly, and
we have a nonzero-residual problem. The fixed points of the exact GN and the PGN
iterations are not the same now and differ in the norm by 0.01425. This difference
is within the minimum upper bound ‖J+(x̃∗)f(x̃∗)‖2 = 0.01608 on the error (with
ν = 0) predicted by Theorem 7.

For the nonzero-residual problem we expect linear convergence for all cases and so
we do not show a variable truncation run. If we examine the convergence for the exact
Jacobian, we again find that, where truncation is used on the inner minimization, the
convergence rate slows down in comparison with the case where the inner problem is
solved exactly. However, the difference is less marked than in the zero-residual case.
This is as expected from Theorem 11, which predicts linear convergence for both
of these cases, but with the rate constant increasing with the degree of truncation.
When the inexact Jacobian is used we see that, as for the perfect observation case,
the convergence is very close to that using the exact Jacobian.
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Fig. 3. Convergence of the (a) cost function and (b) gradient, or perturbed gradient, for the
imperfect observation case. The lines are for the exact Jacobian with no truncation (dashed line)
and with truncation (dotted line). The symbols indicate the convergence for the perturbed Jacobian
with no truncation (solid dots) and with truncation (circles).

8. Conclusions. We have described here three approximate GN methods, the
TGN, the PGN, and the TPGN methods, for solving the NLSP. We have derived
conditions for the local linear convergence of these approximate methods by treating
them as IN methods, following the theory of [8]. Additional, more restricted, con-
vergence results have been derived for the approximate methods by extending the
theory of [9] for the exact GN method. Through this approach, higher-order rates
of convergence have been established for the approximate methods. We remark that
many of these results could be generalized to hold under weaker assumptions than we
have made here. The theory for IN methods could also be applied to give results on
higher convergence rates for the approximate methods (see [4] and [8]).

In practice the approximate GN methods are used to treat very large data as-
similation problems arising in atmosphere and ocean modeling and prediction. The
convergence properties of these algorithms have not previously been investigated.
Here we have established sufficient conditions for convergence to hold, allowing the
approximate methods to be used operationally with confidence. By a simple numeri-
cal example we have shown that the bounds established by the theory are precise, in
a certain sense, and that the approximate methods are convergent if the conditions of
the theory hold. We have also demonstrated the application of the theory to a data
assimilation problem for a typical model of a meteorological system.

Acknowledgment. We are grateful to Professor Gene Golub of Stanford Uni-
versity for support that enabled the completion of this work in real time.
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Abstract. Original algorithmic approaches in integer programming rely on the availability of
different representations for all the lattice points in the feasible region. We present three results that
are applicable to fairly general sets of lattice points and characterize a nonnegative integer linear
representation.
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1. Introduction. A fundamental theorem for the theory of linear integer opti-
mization states that for every rational polyhedral cone C there exists a finite subset H
of the set of integer points in C such that every integer point in C can be represented
as a nonnegative linear integer combination of elements in H. This result follows from
the work of Gordan [3]; see also [7, 8]. It has applications in many scenarios for linear
integer programming. In particular, it is important for

• proving finiteness results in cutting plane theory [7],
• showing the existence of totally dual integral systems of linear diophantine

systems [2],
• deriving optimality conditions for linear integer optimization problems [4],
• designing integer simplex type methods based on reformulation techniques

[5].

In this paper it is our goal to extend this result to general sets of lattice points.
Here, and throughout the paper, Z+ denotes the nonnegative integer numbers. For a
set P ⊆ R

n we denote by

recCone(P ) := {δ ∈ R
n : ∃x ∈ P such that x + λδ ∈ P for all λ ≥ 0}

the recession cone of P . Moreover, for S ⊆ Z
n, we call T ⊆ S an integral generating

set of S if for every s ∈ S there exists a finite (integer) linear combination s =
∑

αiti
with ti ∈ T and αi ∈ Z+.

It follows immediately that not every set S has a finite integral generating set.
The following general result establishes necessary and sufficient conditions for a given
rational polyhedral cone C = cone(V ) such that a finite nonnegative integer repre-
sentation of S with elements in S ∪ C is possible.

The result can be used to determine a minimal number of vectors V that have to
be added to a given set S to guarantee the existence of an integral generating set of
S.
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Theorem 1.1.

(a) Let S ⊆ Z
n, and let C = cone(v1, . . . , vm) ⊆ R

n be a rational polyhedral cone.
Then there exists a polytope Q ⊆ R

n with S ⊆ Q + C if and only if there
exists a finite set H ⊆ S such that every s ∈ S can be written as

s = h +

m∑
j=1

αjvj

for some h ∈ H and with αj ∈ Z+, j = 1 . . . ,m.
(b) Every nonempty set S ⊆ Z

n possesses a finite integral generating set if and
only if the following two conditions hold:

– The recession cone recCone(conv(S)) of conv(S) is a rational polyhedral
cone.

– recCone(conv(S)) \ conv(S) contains only finitely many lattice points.
As a consequence of Theorem 1.1, we recover a few nice and well-known facts.

Corollary 1.2 (Giles and Pulleyblank [2]). For every nonempty rational poly-
hedron P ⊆ R

n, there exist a rational polytope Q ⊆ R
n and a rational polyhedral cone

C ⊆ R
n such that P ∩ Z

n = (Q ∩ Z
n) + (C ∩ Z

n).
Proof. By Weyl’s theorem, every rational polyhedron P can be written as the

Minkowski sum of a polytope Q and the recession cone C of P . Thus, S = P ∩ Z
n ⊆

Q + C. From the first part of Theorem 1.1 we now get a desired representation
S = P ∩ Z

n = (conv(H) ∩ Z
n) + (C ∩ Z

n).
Corollary 1.3 (Jeroslow [6]). A monoid M ⊆ Z

n has a finite (integral) gener-
ating set if and only if C = cone(M) is a rational polyhedral cone.

Proof. If C = cone(M) is a rational polyhedral cone, then there exist finitely
many elements v1, . . . , vm ∈ M that generate C. Therefore, we have M ⊆ {0} +
cone(v1, . . . , vm) and consequently, by the first part of Theorem 1.1, there exists a
finite generating set H ∪ {v1, . . . , vm} for M . The reverse direction is trivial, since
any basis of M forms a generating set for C = cone(M). If the basis is finite, C is a
rational polyhedral cone.

As a generalization of Jeroslow’s theorem one obtains the following statement, in
which we do not assume a structure on the set S of lattice points.

Corollary 1.4. Let S ⊆ Z
n be any set of lattice points in Z

n. Then the
following statements are equivalent:

(1) S has a finite integral generating set.
(2) cone(S) has a finite integral generating set.
(3) conv(S) has a finite integral generating set.
Proof. (1) ⇔ (2): It is easy to see that S has a finite integral generating set if

and only if the monoid generated by S has a finite integral generating set. The result
follows now from Corollary 1.3 and by the fact that a polyhedral cone C possesses a
finite integral generating set (Hilbert basis) if and only if C is rational [2].

(1) ⇒ (3): Let V ⊆ S be a finite integral generating set for S. Then cone(S) =
cone(V ) is a rational polyhedral cone and conv(S) ⊆ {0}+ cone(S) = {0}+ cone(V ).
Now, part (a) of Theorem 1.1 implies that there is some finite set H ⊆ conv(S) ∩ Z

n

such that H ∪ V forms a finite integral generating set of conv(S).
(3) ⇒ (2): Let V ⊆ conv(S) be a finite integral generating set of conv(S). Then

we conclude that cone(S) = cone(conv(S)) = cone(V ) is a rational polyhedral cone
and thus possesses a finite integral generating set.

Part (b) of Theorem 1.1 is an extension of the following result by using the
equivalence (1) ⇔ (3) of Corollary 1.4.
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Corollary 1.5 (Bertsimas and Weismantel [1]). For A ∈ Z
d×n and b ∈ Z

d,
define the sets P =

{
x ∈ R

n
+ : Ax ≤ b

}
, S = P ∩ Z

n, and C = {x ∈ R
n
+ : Ax ≤ 0}.

If S is not empty, there exists a finite integral generating set of S if and only if S
contains all but finitely many integer points in C ∩ Z

n.
Theorem 1.1 allows us to classify arbitrary sets S ⊆ Z

n according to the minimum
number of vectors v1, . . . , vr ∈ Z

n not in S such that cone(S∪{v1, . . . , vr}) is a rational
polyhedral cone. We call this number the polyhedral defect of cone(S) or simply of
S. Note that the polyhedral defect is always between 0 and n + 1, since n + 1 is the
conic dimension of R

n. Sets S have a polyhedral defect of 0 if and only if cone(S) is
rational and polyhedral.

It is an interesting open question to characterize all those sets S ⊆ Z
n that have

a given polyhedral defect. As a subproblem, we would find it interesting to devise an
algorithm that determines the polyhedral defect for sets S = P ∩ Z

n, where P is a
given rational polyhedron.

If S is the set of integer points in a semialgebraic set, then Theorem 1.1 can
be applied only if we know a polytope Q and a rational polyhedral cone C with
S ⊆ Q + C. It is, however, a nontrivial task to determine such a cone C generated
only by a minimal number of generators not belonging to S. This raises the question
of whether there exist other representations for x ∈ S of the kind

x = sx + vx,

where sx ∈ S and vx ∈ V , where V is not necessarily of the form

V =

{
v ∈ Z

n : v =

m∑
i=1

αivi, αi ∈ Z+, i = i, . . . ,m

}

as in Theorem 1.1.
For a quite general family of semialgebraic sets, such a representation is possible.

Interestingly, when the semialgebraic set describes a rational polyhedral cone, our
proof recovers finiteness of a Hilbert basis.

Theorem 1.6. Let C := {x ∈ R
n : ∃y ≥ 0 with x = g(y)} be a semialgebraic

set, where g : R
d → R

n is a vector of polynomial functions that map integer vectors
to integers. There exist two vectors of polynomial functions gl, gu : R

n → R
n with

maxdeg(gl),maxdeg(gu) < maxdeg(g) such that for every point x ∈ S = C ∩Z
n there

exist a λ ∈ Z
d
+ and a point vx ∈ Z

n satisfying x = g(λ)+ vx and gl(λ) ≤ vx ≤ gu(λ).

2. Proofs of main theorems.
Proof of Theorem 1.1. If there exists a finite set H ⊆ S such that every s ∈ S

can be written as

s = h +

m∑
j=1

αjvj

for some h ∈ H and with αj ∈ Z+, j = 1 . . . ,m, then we have S ⊆ conv(H) + C.
It remains to show that given a polytope Q ⊆ R

n with S ⊆ Q+C, there exists a
representation as desired.

First, note that S ⊆ Q + C implies

S ⊆
⋃

q∈Q∩Zn

(q + C).
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Next, let us triangulate C into (finitely many!) rational simplicial cones C1, . . . , Cl.
Note that we can and do choose such a triangulation for which the generators of the
cones Ci are also among the generators v1, . . . , vm of C. Then

S ⊆
⋃

q∈Q∩Zn

l⋃
i=1

(q + Ci).

We now construct a desired representation for each of the sets (q +Ci)∩ S. Without
loss of generality, we assume Ci = cone(v1, . . . , vr) (otherwise relabel the vi). Consider
the parallelepiped

Fi =

⎧⎨
⎩

r∑
j=1

αjvj : 0 ≤ α1, . . . , αr < 1

⎫⎬
⎭ .

As Fi is bounded, Fi contains only finitely many lattice points {f1, . . . , ft} in Z
n.

Moreover, (q +Ci)∩Z
n is the disjoint union of the following t sets Fi,1, . . . , Fi,t with

Fi,j =

{
q + fi,j +

r∑
k=1

αkvk : α1, . . . , αr ∈ Z+

}
.

Thus, it suffices to construct a desired representation for each of the sets Fi,j ∩ S. If
q + fi,j ∈ S, we have already found a desired representation of the points Fi,j ∩ S.
Thus assume on the contrary that q+fi,j �∈ S. We construct now a finite set Hi,j ⊆ S
such that every s ∈ Fi,j ∩ S can be written as

s = h +
r∑

j=1

αjvj

for some h ∈ Hi,j and with αj ∈ Z+, j = 1 . . . ,m, as desired.
As Ci is a simplicial cone, each point in Fi,j has a unique representation as

q+fi,j +
∑r

k=1 αkvk, implying that there is a one-to-one correspondences φi,j between
Fi,j and Z

r
+ given by

φi,j

(
q + fi,j +

r∑
k=1

αkvk

)
= (α1, . . . , αr).

Consider the set φi,j(Fi,j ∩ S) ⊆ Z
r
+. By the Gordan–Dickson lemma [3], there are

only finitely many points {g1, . . . , gp} that are minimal with respect to the partial

ordering ≤ defined on Z
r
+. Let Hi,j = {φ(−1)

i,j (g1), . . . , φ
(−1)
i,j (gp)} ⊆ S. Thus, for every

element s ∈ Fi,j ∩ S there exists some g ∈ {g1, . . . , gp} with g ≤ φi,j(s), implying

that s = φ
(−1)
i,j (g) +

∑r
k=1 αkvk for φ

(−1)
i,j (g) ∈ Hi,j and αk = (φi,j(s) − g)(k) ∈ Z+,

k = 1, . . . , r.
Proof of Theorem 1.6. Choose any x ∈ S := C ∩ Z

n. Then x = g(y) for some
y ∈ R

n
+. Now define λ := y� componentwise and let vx = x − g(λ) and h = y − λ.

We will now construct functions gl : R
n → R

n and gu : R
n → R

n, with the desired
properties.

Let D = maxdeg(g). By multivariate Taylor expansion, we get for j = 1, . . . , n

x(j) = g(j)(λ + h) = g(j)(λ) +

D∑
i=1

1

i!
·

∑
α ∈ Z

n
+ :

‖α‖1 = i

dg(j)(λ)

dxα
· hα.
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Therefore,

v(j)
x = x(j) − g(j)(λ) =

D∑
i=1

1

i!
·

∑
α ∈ Z

n
+ :

‖α‖1 = i

dg(j)(λ)

dxα
· hα.

Note that maxdeg(dg(j)

dxα ) < maxdeg(g) and that 0 ≤ h < 1 by construction.
This sum is a polynomial in λ and h; that is, it is a sum of terms cα,βλ

αhβ . Since
all λ ≥ 0 we can use 0 ≤ hi < 1, for all i, to bound the expression cα,βλ

αhβ by

0 ≤ cα,βλ
αhβ < cα,βλ

α

if cα,β > 0 and by

cα,βλ
α < cα,βλ

αhβ ≤ 0

if cα,β < 0. Putting now

g
(j)
l (λ) :=

∑
α,β:cα,β<0

cα,βλ
α and g(j)

u (λ) :=
∑

α,β:cα,β>0

cα,βλ
α

we have

g
(j)
l (λ) ≤ v(j)

x ≤ g(j)
u (λ)

by construction. Moreover, again by construction, the degree of g
(j)
l and of g

(j)
u is

strictly less than the degree of g(j).
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PROBABILITY DISTRIBUTION FUNCTIONS WITH GIVEN

MARGINALS AND COVARIANCES∗

XIAOLING HOU† AND ANDRÁS PRÉKOPA†

Abstract. Multivariate probability distributions with given marginals are considered, along with
linear functionals, to be minimized or maximized, acting on them. The functionals are supposed to
satisfy the Monge or inverse Monge or some higher order convexity property, and they may be only
partially known. Existing results in connection with Monge arrays are reformulated and extended
in terms of linear programming dual feasible bases. Lower and upper bounds are given for the
optimum value as well as for unknown coefficients of the objective function, based on the knowledge
of some dual feasible bases and corresponding objective function coefficients. In the two- and three-
dimensional cases dual feasible bases are obtained for the problem, where not only the univariate
marginals but also the covariances of the pairs of random variables are known.

Key words. distributions with given marginals, transportation problem, Monge arrays, bound-
ing expectations under incomplete information

AMS subject classifications. 90C05, 90C08, 90C15, 60E05, 90B06
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1. Introduction. In this paper we consider multivariate (or multidimensional)
discrete probability distributions with given marginals, along with special linear func-
tionals, to be minimized or maximized, acting on them. In other words, we consider
multidimensional transportation problems with special objective functions, where the
sum of the marginal values is equal to 1. In the two- and three-dimensional cases we
also look at distributions, where not only the marginals but also the covariances of
the random variables involved are prescribed.

About the objective functions we assume that they enjoy the Monge or inverse
Monge or some discrete higher order convexity property.

There is a considerable literature on the Monge property and its use in optimiza-
tion and other fields of applied mathematics. The papers by Burkard, Klinz, and
Rudolf [3] and Burkard [2] provide us with an overview of its history and the most
important results. For basic results in connection with multivariate discrete higher
order convexity, see Prékopa [6, 7] and Mádi-Nagy and Prékopa [5].

The purpose of this paper is the following. First, we reformulate the Monge and
inverse Monge properties in terms of dual feasible bases of the transportation problem
and obtain further results for them. Second, we give lower and upper bounds for the
optimum value based on the knowledge of the univariate marginals and the covari-
ances of pairs of bivariate marginals. The results for the latter case concern the two-
and three-dimensional transportation problems. Third, we look at partially known
objective functions and give lower and upper bounds for the unknown entries of the
coefficient array. The bounds are based on the knowledge of the univariate marginals
in the general d-dimensional case and on additional knowledge of the covariances in
the two- and three-dimensional cases.
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The d-dimensional (d ≥ 2) transportation problem is the following (linear pro-
gram) LP:

min(max)
∑

i1,...,id
c(i1, . . . , id)x(i1, . . . , id)

subject to
∑

i1,...,id,ik=i x(i1, . . . , id) = ak(i)

for all i = 1, . . . , nk, k = 1, . . . , d,

x(i1, . . . , id) ≥ 0,

for all ik = 1, . . . , nk, k = 1, . . . , d.

(1)

Let A = ({a(i1, . . . , id)}), b = (a1(1), . . . , a1(n1), . . . , ad(1), . . . , ad(nd))
T , c =

({c(i1, . . . , id)}), x = ({x(i1, . . . , id)}) be the coefficient matrix, the right-hand-side
vector, the vector of the objective function coefficients, and the decision vector, re-
spectively. Then problem (1) can be written as min(max)cTx, subject to Ax = b,
x ≥ 0. We assume that the above vectors and components are arranged in such a
way that (i1, . . . , id) follow the lexicographic order starting with the smallest. In what
follows, the d-tuples (i1, . . . , id) will be referred to as cells, and their collection will be
called a transportation tableau.

If in problem (1) we have the relation
∑n1

i=1 a1(i) = · · · =
∑nd

i=1 ad(i) = 1,
then {x(i1, . . . , id)} is a multivariate probability distribution, where its univariate
marginals are prescribed. Problem (1) can then be reformulated in such a way that
we minimize or maximize the expectation of c(X1, . . . , Xd), where X1, . . . , Xd are ran-
dom variables with given distributions, P (Xk = i) = ak(i), i = 1, . . . , nk, k = 1, . . . , d.
Note that {1, . . . , nk} serves as the support of Xk, k = 1, . . . , d, but the solution of
problem (1) does not depend on the choices of these sets.

In what follows we assume that the sum of each set of marginal values is equal to
1. Our results, however, generalize in a trivial way for the case where the sum of the
marginal values is not 1.

A d-dimensional n1 × · · · × nd array c = {c(i1, . . . , id)} is called a Monge array if
for all entries c(i1, . . . , id) and c(j1, . . . , jd), 1 ≤ ik, jk ≤ nk, 1 ≤ k ≤ d, we have

c(s1, . . . , sd) + c(t1, . . . , td) ≤ c(i1, . . . , id) + c(j1, . . . , jd),(2)

where for all 1 ≤ k ≤ d, sk = min{ik, jk}, tk = max{ik, jk}. If (2) holds strictly for
all (s1, . . . , sd) �= (i1, . . . , id) and (s1, . . . , sd) �= (j1, . . . , jd), then we say that c is a
strict Monge array. If the above inequalities are reversed, then c is called an inverse
Monge array or a strict inverse Monge array.

To define discrete higher order convexity, let Zj = {zj0, . . . , zjnj
}, j = 1, . . . , d,

be distinct element finite sets, and f(z), z ∈ Z = Z1×· · ·×Zd, a multivariate discrete
function. Take a subset of Z,

ZI1,...,Id = {z1i, i ∈ I1} × · · · × {zdi, i ∈ Id} = ZI1 × · · · × ZId ,

where |Ij | = kj + 1, kj ≤ nj , j = 1, . . . , d. The (k1, . . . , kd)-order divided difference,
corresponding to ZI1,...,Id , will be designated by [z1i, i ∈ I1; . . . ; zdi, i ∈ Id; f ]. The
sum k1 + · · · + kd is called its total order. We call the discrete function (k1, . . . , kd)-
order convex if all sequences in all Z1, . . . , Zd are increasing and all (k1, . . . , kd)-order
divided differences are nonnegative.

Our presentation is based, to a large extent, on linear programming theory. In
this respect we use the notations and definitions presented in Prékopa [6].

We also introduce the concept of an ordered sequence for the columns of matrix
A in problem (1). The collection of columns {a(i1, . . . , id), (i1, . . . , id) ∈ I} is called
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an ordered sequence if I has the following form:

I = {(1, . . . , 1, 1), . . . , (1, . . . , 1, id,1), . . . , (1, . . . , id−1,1, id,1),

. . . , (i1,1, . . . , id−1,1, id,1), . . . , (i1,n−1, . . . , id−1,n−1, id,n−1),

. . . , (i1,n−1, . . . , id−1,n−1, id,n), . . . , (i1,n−1, . . . , id−1,n, id,n),

. . . , (i1,n, . . . , id−1,n, id,n)},

where 1 ≤ ik,1 ≤ · · · ≤ ik,n−1 ≤ ik,n = nk for all 1 ≤ k ≤ d. In what follows, the
terms ordered sequence and basis for the columns of A will briefly be referred to as
ordered sequence and basis, respectively. It is easy to see that the following assertion
holds true: any ordered sequence forms a basis.

When d = 2 in problem (1), we call the collection of columns {aij , (i, j) ∈ J} an
inverse ordered sequence if J has the following form:

J = {(1, n− j0), . . . , (1, n− j1), (2, n− j1), . . . , (2, n− j2),

. . . , (m,n− jm−1), . . . , (m,n− jm)},

where 0 = j0 ≤ j1 ≤ j2 ≤ · · · ≤ jm−1 ≤ jm = n − 1. The following assertion holds
true: any inverse ordered sequence forms a basis.

An ordered (inverse ordered) sequence is a chain (antichain) in the partially or-
dered set of the cells.

The further parts of the paper are organized as follows. Section 2 is devoted
to the study of the bivariate and multivariate cases. Existing results in connection
with Monge and distribution arrays are reformulated and extended in terms of dual
feasibility of bases. Bounds on the expectation and the unknown components of c
are obtained under the condition that the univariate marginals of the random vector
are known. In section 3 a new algorithm called (GREEDY DUAL)d for solving the
d-dimensional transportation problem is presented. In section 4 the bivariate case
is considered, where, in addition to the knowledge of the marginal distributions, we
assume the knowledge of the covariance of the two random variables involved. We
give bounds for the same values as before. In section 5 we present similar results for
the three-dimensional case. Finally, some applications and illustrative examples are
given in section 6.

2. Monge property and dual feasible bases. In this section we establish
relationship between ordered sequences and dual feasible bases in the d-dimensional
problem (1), and between the inverse ordered sequences and the dual feasible bases
in the two-dimensional problem (1).

First, we present the relationship between ordered sequences and the dual feasible
bases in the d-dimensional problem (1). To prove our results we recall three theorems
from linear programming. For a proof of the first one, see Prékopa [6, Theorem 5];
the second one can be derived from Theorem 3 of the same paper.

Theorem 2.1. If problem (1) has a primal feasible solution and a finite optimum,
then there exists a primal feasible basis that is also dual feasible.

Theorem 2.2. If in problem (1) B is a nondegenerate optimal basis, then B is
dual feasible.

Bein et al. [1] extended the two-dimensional greedy algorithm GREEDY2, due
to Hoffman [4], to the d-dimensional greedy algorithm GREEDYd and proved the
following theorem.
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Theorem 2.3 (see Bein et al. [1]). Given a particular d-dimensional n1 × · · · ×
nd cost array c, the algorithm GREEDYd solves the corresponding d-dimensional
transportation problem for any b if and only if c is Monge.

For the d-dimensional minimization problem (1), we prove two theorems.
Theorem 2.4. In the minimization problem (1), any ordered sequence forms a

dual feasible basis if and only if c satisfies the Monge property.
Proof. For the proof of the “if” direction, assume that c is Monge. For any given

ordered sequence write positive numbers in its cells, and call what comes out on the
right-hand side (r.h.s.) b. For this b the algorithm GREEDYd produces the same
ordered sequence. By Theorem 2.3 this ordered sequence is a primal nondegenerate
optimal basis to the problem. By Theorem 2.2, this ordered sequence is dual feasible.

For the proof of the “only if” direction, assume that any ordered sequence forms
a dual feasible basis. Then for any b the algorithm GREEDYd solves the problem
optimally, because the algorithm GREEDYd produces an ordered sequence. Thus,
by Theorem 2.3, c is Monge.

To prove the next theorem we need the dual of the minimization problem (1) that
is given as follows:

max
∑d

k=1

∑nk

ik=1 ak(ik)wk(ik)
subject to

w1(i1) + · · · + wd(id) ≤ c(i1, . . . , id)

for all ik = 1, . . . , nk, k = 1, . . . , d.

Theorem 2.5. If, in the minimization problem (1), c satisfies the strict Monge
property, then any dual feasible basis is dual nondegenerate and forms an ordered
sequence.

Proof. Suppose that c satisfies the strict Monge property and that B is a dual
feasible basis. First, assume that the vectors of B do not form an ordered se-
quence. Then there must exist vectors a(i1, . . . , id) and a(j1, . . . , jd) in B such that
if sk = min{ik, jk}, tk = max{ik, jk}, then (s1, . . . , sd) �= (i1, . . . , id), (s1, . . . , sd) �=
(j1, . . . , jd). Let wk(ik), ik = 1, . . . , nk, k = 1, . . . , d, be the components of the dual
vector corresponding to B. Then

c(i1, . . . , id) = w1(i1) + · · · + wd(id),

c(j1, . . . , jd) = w1(j1) + · · · + wd(jd),

c(s1, . . . , sd) ≥ w1(s1) + · · · + wd(sd),(3)

c(t1, . . . , td) ≥ w1(t1) + · · · + wd(td).

Since

(4) w1(i1) + · · · + wd(id) + w1(j1) + · · · + wd(jd)

= w1(s1) + · · · + wd(sd) + w1(t1) + · · · + wd(td),

we have the relation

c(s1, . . . , sd) + c(t1, . . . , td) ≥ c(i1, . . . , id) + c(j1, . . . , jd).

This contradicts the strict Monge property, so any dual feasible basis must be an
ordered sequence.
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Table 1

“min (max)” means minimization (maximization) problem (1), “o.s.” means ordered sequence,
and “d.f.b.” means dual feasible basis.

d-dimensional min (max)
Any o.s. forms a d.f.b. iff c is (inverse) Monge
Any d.f.b. forms an o.s. if c is strict (inverse) Monge

Table 2

“i.o.s.” means inverse ordered sequence.

two-dimensional max (min)
Any i.o.s. forms a d.f.b. iff c is (inverse) Monge
Any d.f.b. forms an i.o.s. if c is strict (inverse) Monge

Second, suppose that the vector a(i1, . . . , id) is nonbasic. Since B forms an
ordered sequence, we can find a basic vector a(j1, . . . , jd) in B such that if sk =
min{ik, jk}, tk = max{ik, jk}, then (s1, . . . , sd) �= (i1, . . . , id), (s1, . . . , sd) �= (j1, . . . , jd).
It is easy to see that the last three equations in (3) and the one in (4) hold true. Be-
cause of the strict Monge property, we have the following relations:

c(i1, . . . , id) + c(j1, . . . , jd) > c(s1, . . . , sd) + c(t1, . . . , td)

≥ w1(s1) + · · · + wd(sd) + w1(t1) + · · · + wd(td)

= w1(i1) + · · · + wd(id) + w1(j1) + · · · + wd(jd).

So

c(i1, . . . , id) > w1(i1) + · · · + wd(id).

Therefore B is dual nondegenerate.
From these two theorems, we can easily get the similar results for the d-dimensional

maximization problem (1). We summarize all these results in Table 1.
In the two-dimensional case let c′ij = c(m−i+1)j , a′

ij = a(m−i+1)j . Then c = (cij)
is an inverse Monge array if and only if c′ = (c′ij) = (c(m−i+1)j) is a Monge array.
{aij , (i, j) ∈ J} is an inverse ordered sequence of A if and only if {a′

ij , (i, j) ∈ J}
is an ordered sequence of A′ = (a′

ij). Thus, for the two-dimensional problem (1) we
obtain the relationship between the inverse ordered sequences and the dual feasible
bases given in Table 2.

If c is Monge in the three-dimensional maximization problem (1), then we have
the following theorem.

Theorem 2.6. Consider the three-dimensional maximization problem (1). If c
is Monge, then each of the following sequences of vectors forms a dual feasible basis:

(S′
1) {ai11, i = 1, . . . , n1,a1j1, j = 2, . . . , n2,a11k, k = 2, . . . , n3},

(S′
2) {ain2n3

, i = 1, . . . , n1,an1jn3
, j = 1, . . . , n2 − 1,

an1n2k, k = 1, . . . , n3 − 1}.

3. The (GREEDY DUAL)d algorithm. In addition to the GREEDYd al-
gorithm a dual algorithm can also be constructed to solve the d-dimensional trans-
portation problem with a Monge array in the objective function.

Consider an ordered sequence, and single out from it those cells which are “turning
points” in the sequence of cells. Let us call them pivot cells. Thus, if in the ordered
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4 ◦ ◦ ◦
3 • ◦
2 ◦ ∗
1 ◦ ◦ ◦

1 2 3 4 5 6

Fig. 1. “◦” means basic cell, “•” means the leaving (entering) cell, and “∗” means the entering
(leaving) cell.

sequence we have one of the following consecutive cells,

(. . . , i− 1, . . . , j, . . . ) (. . . , i, . . . , j, . . . ) (. . . , i, . . . , j + 1, . . . ),(5)

(. . . , i, . . . , j − 1, . . . ) (. . . , i, . . . , j, . . . ) (. . . , i + 1, . . . , j, . . . ),(6)

where the elements represented by dots remains unchanged, then the cell (. . . , i, . . . ,
j, . . . ) is a pivot cell. The algorithm can be described as follows.

Step 0. Choose arbitrarily an ordered sequence. By Theorem 2.4 it represents a
dual feasible basis. Compute the corresponding basic solution.

Step 1. Check whether the basic components of the basic solution are nonnega-
tive. In view of the constraints in problem (1) only pivot cells may contain negative
entries; thus it is enough to check the entries in the pivot cells. If all pivot entries are
nonnegative, then stop; optimal basis and optimal solution have been found.

Step 2. Choose arbitrarily a pivot cell that contains a negative entry, and let it
leave the basis.

Step 3. If the leaving cell is the second one in (5) (in (6)), then let the cell
(. . . , i− 1, . . . , j + 1, . . . ) (the cell (. . . , i + 1, . . . , j − 1, . . . )) enter the basis.

Step 4. Compute the basic solution x′ corresponding to the new basis. In the
case of (5) we have

x′
(...,i−1,...,j,... ) = x(...,i−1,...,j,... ) + x(...,i,...,j,... )x

′
(...,i,...,j,... ) = 0,

x′
(...,i,...,j+1,... ) = x(...,i,...,j+1,... ) + x(...,i,...,j,... )x

′
(...,i−1,...,j+1,... ) = −x(...,i,...,j,... ).

All other x′ components remain unchanged. The basic solution for the case of (6) can
be obtained similarly. Go to Step 1.

Figure 1 provides an illustration of the leaving and entering cells.
With straightforward modification in the above algorithm we can create one to

solve the problem with an inverse Monge array.
The above algorithm does not depend on c as long as it is Monge. Since all dual

feasible bases are nondegenerate if c has the strict Monge property, it follows that the
algorithm terminates in a finite number of steps.

4. The use of covariance in the two-dimensional case. In this section we
consider the following problem:

min(max)
∑m

i=1

∑n
j=1 cijxij

subject to ∑n
j=1 xij = ai, i = 1, . . . ,m,∑m
i=1 xij = bj , j = 1, . . . , n,∑m
i=1

∑n
j=1 yizjxij = d,

xij ≥ 0, i = 1, . . . ,m, j = 1, . . . , n.

(7)
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We have in mind a pair of discrete random variables, Y , Z, with supports {yi},
{zj}, respectively, where the univariate marginal distributions as well as E(Y Z) are
prescribed but the joint distribution of Y and Z is not specified otherwise. Since the
marginal distributions determine E(Y ) and E(Z), to prescribe E(Y Z) is the same as
to prescribe Cov(Y,Z) = E(Y Z) − E(Y )E(Z). Since we can write cij in the form
cij = c(yi, zj), it follows that c is a function of the random vector (y, z), and if we plug
in the random variables Y , Z, it becomes a function of (Y,Z). Thus, the optimum
values of problem (7) provide us with the best possible lower and upper bounds for
E(c(Y,Z)) under the given conditions.

Problem (7) can be written in the following matrix form: min(max)cTx, subject
to Ax = b, x ≥ 0, where A = (aij), aij = ei + em+j + yizjem+n+1, i = 1, . . . ,m,
j = 1, . . . , n; ei, em+j , and em+n+1 are unit vectors in Em+n+1 with ones in the ith,
(m + j)th, and (m + n + 1)th positions, respectively; and b = (bT , d)T .

Theorem 4.1. Consider the minimization problem (7), and assume that {yi}
is strictly increasing, {zj} is strictly decreasing, and the (1,2)-order and (2,1)-order
divided differences of c(yi, zj) are nonnegative. Then B1 = {ai1, i = 1, . . . ,m,amj , j =
2, . . . , n,a1n} forms a dual feasible basis of the columns of A.

Proof. First, let us show that B1 forms a basis of the columns of A. It is easy
to see that the rank of A is m + n, and there are m + n vectors in B1. To show the
linear independence of the m + n vectors in B1, consider the linear combination of
the vectors of B1:
m∑
i=1

λi1ai1 +

n∑
j=2

λmjamj + λ1na1n

=

m∑
i=1

λi1(ei + em+1 + yiz1em+n+1) +

n∑
j=2

λmj(em + em+j + ymzjem+n+1)

+λ1n(e1 + em+n + y1znem+n+1)

= (λ11 + λ1n)e1 +

m−1∑
i=2

λi1ei +

⎛
⎝ n∑

j=1

λmj

⎞
⎠ em +

(
m∑
i=1

λi1

)
em+1 +

n−1∑
j=2

λmjem+j

+ (λmn + λ1n)em+n +

⎛
⎝ m∑

i=1

λi1yiz1 +

n∑
j=2

λmjymzj + λ1ny1zn

⎞
⎠ em+n+1.

If it equals 0, then, by the linear independence of the unit vectors, it follows that all
λ’s must be 0.

Secondly, let us show that this basis is dual feasible. For any nonbasic vector aij ,
1 ≤ i < m, 1 < j ≤ n, we have the equations

aij − ai1 + am1 − amj = (yi − ym)(zj − z1)em+n+1

aij − ai1 + a11 − a1n + amn − amj

= [(yi − ym)(zj − z1) − (y1 − ym)(zn − z1)]em+n+1.

From here we derive the expression of aij as the following linear combination of the
basic vectors:

aij =
(y1 − ym)(z1 − zn) − (yi − ym)(z1 − zj)

(y1 − ym)(z1 − zn)
(ai1 − am1 + amj)

− (yi − ym)(z1 − zj)

(y1 − ym)(z1 − zn)
(a11 − a1n + amn − amj − ai1).
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We have to prove that

(y1 − ym)(z1 − zn) − (yi − ym)(z1 − zj)

(y1 − ym)(z1 − zn)
(ci1 − cm1 + cmj)

− (yi − ym)(z1 − zj)

(y1 − ym)(z1 − zn)
(c11 − c1n + cmn − cmj − ci1) − cij ≤ 0,

or, equivalently,

(ci1 − cm1 + cmj − cij) ≤
(yi − ym)(z1 − zj)

(y1 − ym)(z1 − zn)
(c11 − cm1 + cmn − c1n).(8)

Since (yi − ym)(z1 − zj) < 0, the above inequality is equivalent to

ci1 − cm1 − cij + cmj

(yi − ym)(z1 − zj)
≥ c11 − cm1 − c1n + cmn

(y1 − ym)(z1 − zn)
.

We have assumed that the (1,2)-order and (2,1)-order divided differences of c(yi, zj)
are nonnegative. The nonnegativity of the (1,2)-order divided difference implies

c11−cm1−c1n+cmn

(y1−ym)(z1−zn) − c11−cm1−c1j+cmj

(y1−ym)(z1−zj)

zn − zj
≥ 0.

Similarly, the nonnegativity of (2,1)-order divided difference gives

c11−cm1−c1j+cmj

(y1−ym)(z1−zj)
− ci1−cm1−cij+cmj

(yi−ym)(z1−zj)

y1 − yi
≥ 0.

Since both zn − zj and y1 − yi are negative, the above two inequalities imply

ci1 − cm1 − cij + cmj

(yi − ym)(z1 − zj)
≥ c11 − cm1 − c1j + cmj

(y1 − ym)(z1 − zj)
≥ c11 − cm1 − c1n + cmn

(y1 − ym)(z1 − zn)
.

This completes the proof.
If we use the reasoning in the proof of Theorem 4.1, we can obtain a variety of

dual feasible bases for problem (7), under different conditions. Let B2 = {ain, i =
1, . . . ,m,a1j , j = 1, . . . , n − 1,am1}, B3 = {ai1, i = 1, . . . ,m,a1j , j = 2, . . . , n,amn},
B4 = {ain, i = 1, . . . ,m,amj , j = 1, . . . , n − 1,a11}. The cells corresponding to the
vectors in B1, B2, B3 and B4 are designated by boldface points in Figure 2.

We summarize all the results for the minimization (maximization) problem (7) in
Table 3.

5. The use of covariances in the three-dimensional case. In this section
we consider the following three-dimensional problem:

min(max)
∑n1

i=1

∑n2

j=1

∑n3

k=1 cijkxijk

subject to ∑n2

j=1

∑n3

k=1 xijk = ai, i = 1, . . . , n1,∑n1

i=1

∑n3

k=1 xijk = bj , j = 1, . . . , n2,∑n1

i=1

∑n2

j=1 xijk = ck, k = 1, . . . , n3,∑n1

i=1

∑n2

j=1

∑n3

k=1 yizjxijk = d1,∑n1

i=1

∑n2

j=1

∑n3

k=1 zjwkxijk = d2,∑n1

i=1

∑n2

j=1

∑n3

k=1 yiwkxijk = d3,

xijk ≥ 0, i = 1, . . . , n1, j = 1, . . . , n2, k = 1, . . . , n3.

(9)
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Fig. 2.

Table 3

“↗” means strictly increasing, “↘” means strictly decreasing. “(i, j)-order” means (i, j)-
order divided difference of c, i, j = 1, 2, and “d.f.b. in min (max)” means dual feasible basis in the
minimization (maximization) problem (7).

yi zj (1,2)-order (2,1)-order d.f.b. in min d.f.b. in max
↗ ↘ ≥ 0 ≥ 0 B1 B2

↘ ↗ ≤ 0 ≤ 0 B1 B2

↗ ↗ ≥ 0 ≤ 0 B1 B2

↘ ↘ ≤ 0 ≥ 0 B1 B2

↗ ↘ ≤ 0 ≤ 0 B2 B1

↘ ↗ ≥ 0 ≥ 0 B2 B1

↗ ↗ ≤ 0 ≥ 0 B2 B1

↘ ↘ ≥ 0 ≤ 0 B2 B1

↗ ↘ ≤ 0 ≥ 0 B3 B4

↘ ↗ ≥ 0 ≤ 0 B3 B4

↗ ↗ ≤ 0 ≤ 0 B3 B4

↘ ↘ ≥ 0 ≥ 0 B3 B4

↗ ↘ ≥ 0 ≤ 0 B4 B3

↘ ↗ ≤ 0 ≥ 0 B4 B3

↗ ↗ ≥ 0 ≥ 0 B4 B3

↘ ↘ ≤ 0 ≤ 0 B4 B3

This problem can be interpreted in such a way that, given the supports {yi}, {zj},
{wk}, the univariate marginals {ai}, {bj}, {ck}, and the covariances of all pairs of
three random variables Y , Z, W , we want to find the best possible lower and upper
bounds for E(c(Y,Z,W )), where c(yi, zj , wk) = cijk for all i, j, k. Problem (9) can
be written in the compact form min(max)cTx, subject to Ax = b, x ≥ 0, where
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A = (aijk), aijk = ei + en1+j + en1+n2+k + yizjen1+n2+n3+1 + zjwken1+n2+n3+2 +
yiwken1+n2+n3+3, i = 1, . . . , n1, j = 1, . . . , n2, k = 1, . . . , n3; el, 1 ≤ l ≤ n1+n1+n3+
3, is the unit vector in En1+n2+n3+3 with one in the lth position; and b = (bT ,dT )T ,
d = (d1, d2, d3)

T .
Let S1 = {ai11, i = 1, . . . , n1,an1j1, j = 2, . . . , n2,an1n2k, k = 2, . . . , n3}. We

prove the following result.
Theorem 5.1. Consider the minimization problem (9). If yi, zj, and wk are

strictly increasing; all (1, 2, 0)-order, (1, 0, 2)-order, (0, 1, 2)-order divided differences
of c(yi, zj , wk) are nonnegative; and all (2, 1, 0)-order, (2, 0, 1)-order, (0, 2, 1)-order,
and (1, 1, 1)-order divided differences of c(yi, zj , wk) are nonpositive, then S1∪{an11n3 ,
a1n21,a11n3} forms a dual feasible basis of the columns of A.

Proof. Similarly with Theorem 4.1 we can show that the vectors of the sequence
S1 supplemented by the vectors an11n3 , a1n21, and a11n3 form a basis of the columns
of A.

Now let us show that this basis is dual feasible. Assume that all {yi}, {zj}, and
{wk} sequences are strictly increasing. For any nonbasic vector aijk, 1 ≤ i ≤ n1,
1 ≤ j ≤ n2, 1 ≤ k ≤ n3, we have the following four equations:

aijk − ai11 + an111 − an1j1 + an1n21 − an1n2k

=

⎛
⎜⎜⎝

0
(yi − yn1

)(zj − z1)
(zj − zn2)(wk − w1)
(yi − yn1)(wk − w1)

⎞
⎟⎟⎠ ,(10)

aijk − ai11 + an111 − an1n2k + an1n2n3
− an11n3

+ an111 − an1j1

=

⎛
⎜⎜⎝

0
(yi − yn1

)(zj − z1)
(zj − zn2

)(wk − w1) − (z1 − zn2
)(wn3

− w1)
(yi − yn1)(wk − w1)

⎞
⎟⎟⎠ ,(11)

aijk − an1j1 + an1n21 − an1n2k + an11n3 − a11n3 + a111 − ai11

=

⎛
⎜⎜⎝

0
(yi − yn1)(zj − z1)
(zj − zn2)(wk − w1)

(yi − yn1)(wk − w1) − (y1 − yn1)(wn3 − w1)

⎞
⎟⎟⎠ ,(12)

aijk − ai11 + a111 − a1n21 + an1n21 − an1j1 + an1n21 − an1n2k

=

⎛
⎜⎜⎝

0
(yi − yn1)(zj − z1) − (y1 − yn1

)(zn2
− z1)

(zj − zn2
)(wk − w1)

(yi − yn1)(wk − w1)

⎞
⎟⎟⎠ ,(13)

where 0 is a zero vector in Rn1+n2+n3 . For simplicity, let

A1 = (yi − yn1)(zj − z1), A2 = (zj − zn2)(wk − w1),

A3 = (yi − yn1)(wk − w1), B1 = (y1 − yn1)(zn2 − z1),

B2 = (z1 − zn2
)(wn3

− w1), B3 = (y1 − yn1
)(wn3

− w1),

a12 =

⎛
⎜⎜⎝

0
A1

A2

0

⎞
⎟⎟⎠ , a13 =

⎛
⎜⎜⎝

0
A1

0
A3

⎞
⎟⎟⎠ , a23 =

⎛
⎜⎜⎝

0
0
A2

A3

⎞
⎟⎟⎠ .
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From (10) and (11) we obtain

A2 −B2

A2
(aijk − ai11 + an111 − an1j1 + an1n21 − an1n2k − a13)

= aijk − ai11 + an111 − an1n2k + an1n2n3 − an11n3 + an111 − an1j1 − a13.

Thus,

aijk = (ai11 − an111 + an1j1 − an1n21 + an1n2k + a13)

− A2

B2
(an1n2n3

− an11n3 + an111 − an1n21).(14)

Equations (10) and (12) imply

aijk = (ai11 − an111 + an1j1 − an1n21 + an1n2k + a12)

− A3

B3
(an11n3 − a11n3 + a111 − an111).(15)

Similarly, equations (10) and (13) imply

aijk = (ai11 − an111 + an1j1 − an1n21 + an1n2k + a23)

− A1

B1
(a111 − a1n21 + an1n21 − an111).(16)

Finally, from the definitions of a13, a12, a23, and (10), we derive the relation

a13 + a12 + a23 = 2(aijk − ai11 + an111 − an1j1 + an1n21 − an1n2k).

If we add (14), (15), and (16), we obtain

aijk = ai11 − an111 + an1j1 − an1n21 + an1n2k

− A2

B2
(an1n2n3

− an11n3
+ an111 − an1n21)

− A3

B3
(an11n3

− a11n3
+ a111 − an111)

− A1

B1
(a111 − a1n21 + an1n21 − an111).

To prove the dual feasibility we need to prove that

ci11 − cn111 + cn1j1 − cn1n21 + cn1n2k

− A2

B2
(cn1n2n3

− cn11n3 + cn111 − cn1n21)

− A3

B3
(cn11n3 − c11n3 + c111 − cn111)

− A1

B1
(c111 − c1n21 + cn1n21 − cn111) − cijk ≤ 0,

or, equivalently,

(ci11 − cn111 + cn1j1 − cij1) + (cij1 − cn1j1 + cn1jk − cijk)

+ (cn1j1 − cn1n21 + cn1n2k − cn1jk)

≤ A2

B2
(cn1n2n3 − cn11n3 + cn111 − cn1n21)(17)

+
A3

B3
(cn11n3 − c11n3 + c111 − cn111) +

A1

B1
(c111 − c1n21 + cn1n21 − cn111).
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If we fix one of the i, j, k subscripts in cijk, then, in view of Theorem 4.1 and the
results in Table 3, (8) will hold for the remaining two subscripts. Thus we can obtain
the following inequalities:

ci11 − cn111 + cn1j1 − cij1 ≤ A1

B1
(c111 − c1n21 + cn1n21 − cn111),(18)

cn1j1 − cn1n21 + cn1n2k − cn1jk ≤ A2

B2
(cn1n2n3 − cn11n3 + cn111 − cn1n21),(19)

cij1 − cn1j1 + cn1jk − cijk ≤ A3

B3
(cn1jn3

− c1jn3
+ c1j1 − cn1j1).(20)

Also, from the nonpositivity of the (1,1,1)-order divided difference of c(yi, zj , wk), we
obtain

c111−cn111−c11n3
+cn11n3

(y1−yn1 )(w1−wn3 ) − c1j1−cn1j1−c1jn3
+cn1jn3

(y1−yn1 )(w1−wn3 )

(z1 − zj)
≤ 0,

where z1 − zj < 0, y1 − yn1 < 0, w1 − wn3 < 0. This implies

c1j1 − cn1j1 − c1jn3
+ cn1jn3

≤ c111 − cn111 − c11n3
+ cn11n3

.(21)

By (20), (21), and the inequality A3

B3
> 0, we have

cij1 − cn1j1 + cn1jk − cijk ≤ A3

B3
(c111 − cn111 − c11n3 + cn11n3

).(22)

If we add (18), (19), and (22), we obtain (17). Thus the basis is dual
feasible.

By a similar proof we can obtain the following theorem.
Theorem 5.2. Under the same conditions as in Theorem 5.1, except that (1, 1, 1)-

order divided differences of c(yi, zj , wk) are nonnegative, the vectors in S1 ∪ {an11n3
,

a1n21,a1n2n3
} form a dual feasible basis of the columns of A.

Let

S2 = {ai11, i = 1, . . . , n1,an11k, k = 2, . . . , n3,an1jn3 , j = 2, . . . , n2},
S3 = {a1j1, j = 1, . . . , n2,ain21, i = 2, . . . , n1,an1n2k, k = 2, . . . , n3},
S4 = {a1j1, j = 1, . . . , n2,a1n2k, k = 2, . . . , n3,ain2n3 , i = 2, . . . , n1},
S5 = {a11k, k = 1, . . . , n3,ai1n3 , i = 2, . . . , n1,an1jn3 , j = 2, . . . , n2},
S6 = {a11k, k = 1, . . . , n3,a1jn3 , j = 2, . . . , n2,ain2n3 , i = 2, . . . , n1},
S′

1 = {ai11, i = 1, . . . , n1,a1j1, j = 2, . . . , n2,a11k, k = 2, . . . , n3},
S′

2 = {ain2n3 , i = 1, . . . , n1,an1jn3 , j = 1, . . . , n2 − 1,

an1n2k, k = 1, . . . , n3 − 1}.

The vectors of Si, i = 1, . . . , 6, S′
1, and S′

2 are illustrated in Figure 3. They are
represented by the lattice points of the boldface lines.
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Table 4

“(i, j, k)” means (i, j, k)-order divided difference of c, 0 ≤ i, j, k ≤ 2. Other notation as in Table 3.

yi ↗ ↗ ↗ ↘ ↗ ↘ ↘ ↘
zj ↗ ↗ ↘ ↗ ↘ ↗ ↘ ↘
wk ↗ ↘ ↗ ↗ ↘ ↘ ↗ ↘

r1 (1, 2, 0) ≥ 0 ≥ 0 ≥ 0 ≤ 0 ≥ 0 ≤ 0 ≤ 0 ≤ 0
r2 (2, 1, 0) ≤ 0 ≤ 0 ≥ 0 ≤ 0 ≥ 0 ≤ 0 ≥ 0 ≥ 0
r3 (1, 0, 2) ≥ 0 ≥ 0 ≥ 0 ≤ 0 ≥ 0 ≤ 0 ≤ 0 ≤ 0
r4 (2, 0, 1) ≤ 0 ≥ 0 ≤ 0 ≤ 0 ≥ 0 ≥ 0 ≤ 0 ≥ 0
r5 (0, 1, 2) ≥ 0 ≥ 0 ≤ 0 ≥ 0 ≤ 0 ≥ 0 ≤ 0 ≤ 0
r6 (0, 2, 1) ≤ 0 ≥ 0 ≤ 0 ≤ 0 ≥ 0 ≥ 0 ≤ 0 ≥ 0
r7 (1, 1, 1) ≤ 0 (≥ 0) ≥ 0 (≤ 0)

d.f.b. in min S11 (S12)

d.f.b. in max S62 (S61)

Table 5

Inequalities in Table 4 d.f.b. in min d.f.b. in max
reversed in rows

r1, r2, r3, r4, r5, r6, r7 S62 (S61) S11 (S12)

r5, r6, S21 (S22) S42 (S41)

r1, r2, r3, r4, r7 S42 (S41) S21 (S22)

r1, r2, S31 (S32) S52 (S51)

r3, r4, r5, r6, r7 S52 (S51) S31 (S32)

r1, r3, r5, r7 S′
11 S′

22, S′
23 or S′

24

(S′
12, S′

13 or S′
14) (S′

21)

r2, r4, r6 S′
22, S′

23 or S′
24 S′

11

(S′
21) (S′

12, S′
13 or S′

14. )

Let

S11 = S1 ∪ {an11n3
,a1n21,a11n3

}, S12 = S1 ∪ {an11n3
,a1n21,a1n2n3

},
S21 = S2 ∪ {a11n3 ,an1n21,a1n21}, S22 = S2 ∪ {a11n3 ,an1n21,a1n2n3

},
S31 = S3 ∪ {an111,a1n2n3

,a11n3
}, S32 = S3 ∪ {an111,a1n2n3

,an11n3
},

S41 = S4 ∪ {a11n3 ,an1n21,an111}, S42 = S4 ∪ {a11n3 ,an1n21,an11n3},
S51 = S5 ∪ {an111,a1n2n3 ,a1n21}, S52 = S5 ∪ {an111,a1n2n3 ,an1n21},
S61 = S6 ∪ {a1n21,an11n3 ,an111}, S62 = S6 ∪ {a1n21,an11n3 ,an1n21},
S′

21 = S′
2 ∪ {an111,a1n21,a11n3

}, S′
22 = S′

2 ∪ {an111,a1n21,a111},
S′

23 = S′
2 ∪ {an111,a111,a11n3}, S′

24 = S′
2 ∪ {a111,a1n21,a11n3},

S′
11 = S′

1 ∪ {an1n21,an11n3 ,a1n2n3},
S′

12 = S′
1 ∪ {an1n21,an11n3

,an1n2n3
},

S′
13 = S′

1 ∪ {an1n21,an1n2n3 ,a1n2n3},
S′

14 = S′
1 ∪ {an1n2n3

,an11n3
,a1n2n3

}.

These sets can be dual feasible bases of the three-dimensional problem (9) under
different conditions. We present some results in Table 4.

There are, however, cases other than those presented in Table 4. We summarize
the results for them in Table 5.
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6. Applications and illustrative examples. Monge and inverse Monge ar-
rays come up in many practical applications. In this section we present three more
applications which, at the same time, illustrate the ways we can use the results of the
present paper.

6.1. Bounding unknown entries in partially known arrays. Any dual fea-
sible basis in an LP may serve for bounding and approximation of unknown compo-
nents of the coefficient vector of the objective function. If B1 (B2) is a dual feasible
basis in a minimization (maximization) problem such that cB1 (cB2) is known, then
we have the bound for any unknown ck:

yT
B1

ak ≤ ck(≤ yT
B2

ak),(23)

where yBi is the solution of the equation yT
Bi

Bi = cTBi
, i = 1, 2.

In section 2 we presented dual feasible bases for problem (1) with Monge arrays in
the objective function. Each dual feasible basis gives us a lower (upper) bound. Thus,
we have created a method for bounding the entries of the above-mentioned arrays if
they are only partially known. If both the lower and upper bounds can be given for
ck and the bounds are close, then they may be used for the approximation of that
value.

We can improve on the bounds if we take further dual feasible bases, compute the
lower (upper) bounds to the unknown cij values with each of them, and then take the
best lower (upper) bounds obtained that way. One way to get further dual feasible
bases is to use the (GREEDY DUAL)d algorithm. We make subsequent steps until
the algorithm stops either because a primal feasible basis has been found or because
the objective function coefficient corresponding to the entering vector is unknown.
Then we take the best bound so far as our final (lower or upper) bound.

Any distribution array is a Monge array, and the entries of a distribution array
are values of a probability distribution function. Hence, the methodology of sections
2 and 3 provides us with a methodology for bounding and approximation of unknown
values of a multivariate discrete probability distribution function.

Example 6.1. We look at problem (1) where the values of partially known Monge
array c and ai, bj are given in the Table 6. First we choose the initial dual feasible
basis of the minimization problem as

L1 = {a11,a12,a22,a23,a33,a34,a35,a36,a46}.

The (GREEDY DUAL)2 algorithm provides us with the optimal basis in one step by
substituting a24 for a33. By the use of the two dual feasible bases encountered in the
algorithm, we have obtained the following final lower bounds:

c13 ≥ 11, c14 ≥ 9, c15 ≥ 5, c16 ≥ 8, c21 ≥ 14, c25 ≥ 11, c26 ≥ 14,

c31 ≥ 13, c32 ≥ 15, c41 ≥ 14, c42 ≥ 16, c43 ≥ 17, c44 ≥ 14, c45 ≥ 10.

Table 6

Values used in Example 6.1.

a4 = 14
93

c41 c42 c43 c44 c45 c46 = 13

a3 = 39
93

c31 c32 c33 = 16 c34 = 13 c35 = 9 c36 = 12

a2 = 22
93

c21 c22 = 16 c23 = 17 c24 = 15 c25 c26

a1 = 18
93

c11 = 8 c12 = 10 c13 c14 c15 c16

b1 = 10
93

b2 = 11
93

b3 = 13
93

b4 = 20
93

b5 = 24
93

b6 = 15
93
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Table 7

Values of cij for Example 6.2.

c41 = 0.17 c42 = 0.34 c43 = 0.53 c44 = 0.68 c45 = 0.81 c46 = 1.00
c31 = 0.12 c32 = 0.23 c33 = 0.36 c34 = 0.47 c35 = 0.57 c36 = 0.72
c21 = 0.07 c22 = 0.14 c23 = 0.23 c24 = 0.30 c25 = 0.37 c26 = 0.49
c11 = 0.02 c12 = 0.05 c13 = 0.09 c14 = 0.12 c15 = 0.16 c16 = 0.22

6.2. Bounding a probability P (X1 ≤ X2). Let X1, X2 be two independent
random vectors with the same discrete support set. Suppose that the probability
distribution of X1 is fully known but the distribution of X2 is only partially known.
We may know all univariate marginal distributions of the components of X2 and, if
d = 2 or 3, all covariances of the pairs. Then we can give lower and upper bounds
for P (X1 ≤ X2). Each lower or upper bound is based on a dual feasible basis. Any
dual feasible basis that we have presented in sections 2–5 provides us with a bound.
If the basis is both primal and dual feasible, then the bound is sharp, and no better
bound can be given based on the available information. If only the marginals are
known, then the (GREEDY DUAL)d algorithm provides us with the sharp bound.
If, however, the covariances are also known, then the dual algorithm can be used to
obtain the sharp bounds. The dual feasible bases presented in section 2, 4, 5 can serve
as initial bases.

Example 6.2. Suppose that the two-dimensional random vectors X1 = (Y1, Z1)
and X2 = (Y2, Z2) can take on the values (yi, zj), i = 1, . . . , 4, j = 1, . . . , 6, where

y1 = 1, y2 = 3, y3 = 4, y4 = 5,

z1 = 18, z2 = 11, z3 = 6, z4 = 3, z5 = 2, z6 = 1.

The values cij = FX1(yi, zj) are given in Table 7.
The distribution of X2 is not completely known; we know only the univariate

marginal distributions P (Y2 = yi) = ai, P (Z2 = zj) = bj that are given as follows:

a1 = 0.19, a2 = 0.24, a3 = 0.42, a4 = 0.15,

b1 = 0.11, b2 = 0.12, b3 = 0.14, b4 = 0.21, b5 = 0.26, b6 = 0.16.(24)

Since

P (X1 ≤ X2) = E[P (X1 ≤ X2|X2)] =

4∑
i=1

6∑
j=1

cijFX2(yi, zj),

the lower and upper bounds for P (X1 ≤ X2) can be obtained by application of
(GREEDY DUAL)2 with the ai, bj , and cij values presented in (24) and Table 7.
The inverse Monge property of the array cij allowed us the choice of an initial dual
feasible basis for the minimization problem and one for the maximization problem.
The obtained bounds for P (X1 ≤ X2) are as follows:

0.3232 ≤ P (X1 ≤ X2) ≤ 0.4381.

We can improve on these bounds if the covariance of Y2, Z2 is also known. Assume
that this covariance equals −5.003. Since

E[Y2] =

4∑
i=1

yiai = 3.34, E[Z2] =

6∑
j=1

zjbj = 5.45,
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it follows that

E[Y2Z2] =

4∑
i=1

6∑
j=1

yizjPX2
(yi, zj) = Cov(Y2, Z2) + E[Y2]E[Z2]

= −5.003 + (3.34)(5.45) = 13.2.

The new bounds can be obtained by the solutions of the minimization and maxi-
mization problems (7) by the use of a dual method with 13.2 on the r.h.s. of the last
constraint.

The c(yi, zj) = cij has nonnegative (1,2)-order and nonpositive (2,1)-order divided
differences; thus we could choose initial dual feasible bases for those problems by the
use of Table 3. Then the application of the dual method for both problems gives us
the improved bounds as follows:

0.4084 ≤ P (X1 ≤ X2) ≤ 0.4337.

6.3. The Wasserstein distance of two probability distributions. The
Wasserstein distance between the probability distributions μ and ν, defined in Rn, is
the value

W (μ, ν) = inf
π∈Π

√∫ ∫
1

2
d(x, y)2dπ(x, y),(25)

where Π is the set of all probability distributions in Rn × Rn with marginals μ and
ν, respectively; i.e., if π ∈ Π, then π(◦ × Rn) = μ, π(Rn × ◦) = ν, and d(x, y) is the
Euclidean distance between x and y.

Let n = 1 and μ, ν be the discrete distributions with supports {y1, . . . , ym},
{z1, . . . , zn} and corresponding probabilities {ai}, {bj}, respectively. Then

W 2(μ, ν) = min
∑m

i=1

∑n
j=1

1
2 (yi − zj)

2xij

subject to ∑n
j=1 xij = ai, i = 1, . . . ,m,∑m
i=1 xij = bj , j = 1, . . . , n,

xij ≥ 0, i = 1, . . . ,m, j = 1, . . . , n.

(26)

Assume that both {yi} and {zj} are increasing sequences. It is easy to see that
the array

cij =
1

2
(yi − zj)

2, i = 1, . . . ,m, j = 1, . . . , n,

has the Monge property (its (1, 1)-order divided difference is constant, equal to −1).
By Theorem 2.1 the objective function value, corresponding to any ordered se-

quence of the minimization transportation problem, is a lower bound on W 2(μ, ν).
That ordered sequence, which is also primal feasible, provides us with the exact value
of W 2(μ, ν).

7. Conclusions. We have reformulated some basic results, and obtained them in
connection with Monge and inverse Monge arrays, in terms of dual feasible bases in the
multidimensional transportation problem. We have also obtained general results in
connection with the structures of dual feasible bases in the two- and three-dimensional
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cases, where the constraints of the transportation problems are supplemented by
covariance constraints.

Our results allow for creating lower and upper bounds for unknown entries in
partially known Monge and inverse Monge arrays. We have also shown how the re-
sults can be used to obtain lower and upper bounds for the expectation of a function
of a discrete random vector, where the values of this function form a Monge or in-
verse Monge array and the univariate marginal distributions of the random vector are
known. In the two- and three-dimensional cases we have obtained improved bounds
under the condition that the covariances of the pairs of the random variables are also
known. In this case the coefficient array of the objective function is supposed to have
some special higher order convexity property.

We have presented three applications of the results of the paper. The first one
provides us with bounds for unknown entries in a Monge array. The second one
gives bounds for the probability that one random vector dominates another one. In
the third one we obtain bounds for the Wasserstein distance between two discrete
probability distributions.
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SECOND-ORDER CONE PROGRAMMING RELAXATION OF
SENSOR NETWORK LOCALIZATION∗
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Abstract. The sensor network localization problem has been much studied. Recently Biswas
and Ye proposed a semidefinite programming (SDP) relaxation of this problem which has various nice
properties and for which a number of solution methods have been proposed. Here, we study a second-
order cone programming (SOCP) relaxation of this problem, motivated by its simpler structure and
its potential to be solved faster than SDP. We show that the SOCP relaxation, though weaker
than the SDP relaxation, has nice properties that make it useful as a problem preprocessor. In
particular, sensors that are uniquely positioned among interior solutions of the SOCP relaxation are
accurate up to the square root of the distance error. Thus, these sensors, which are easily identified,
are accurately positioned. In our numerical simulation, the interior solution found can accurately
position up to 80–90% of the sensors. We also propose a smoothing coordinate gradient descent
method for finding an interior solution that is faster than an interior-point method.

Key words. sensor network localization, semidefinite program, second-order cone program,
approximation algorithm, error bound

AMS subject classifications. 90C22, 90C25, 90C26, 90C27, 90C31, 90C35, 90C59

DOI. 10.1137/050640308

1. Introduction. A problem that has received considerable attention is that of
ad hoc wireless sensor network localization [3, 10, 11, 16, 17, 22, 28, 30, 31]. The basic
version of this problem can be described as follows:

There are n distinct points in �d (d ≥ 1). We know the Cartesian coordinates
of the last n−m points (“anchors”) xm+1, . . . , xn and the Euclidean distance
dij > 0 between “neighboring” points i and j for (i, j) ∈ A, where A ⊆
({1, . . . , n} × {1, . . . ,m}) ∪ ({1, . . . ,m} × {1, . . . , n}).1 We wish to estimate
the Cartesian coordinates of the first m points (“sensors”).

Typically, d = 2 and two points are neighbors if the distance between them is below
some threshold (the radio range). In variants of this problem, the distances may be
non-Euclidean [30] or may have measurement errors, and there may be additional
constraints on the unknown points [16]. This problem is closely related to distance
geometry problems arising in the determination of protein structure [8, 24] and to
graph rigidity [1, 17, 31].

It is known that the sensor network localization problem is NP-hard in gen-
eral [29]; see also the remark in [24]. A proof for d = 1 is by reduction from the set
partition problem, which is readily generalized to d > 1. Additional studies are given
in [3, 28]. Thus, efforts have been directed at solving this problem approximately. A
method based on second-order cone programming (SOCP) relaxation was proposed
in [16]. In the case where the anchors lie on the “perimeter,” a distributed relaxation

∗Received by the editors September 14, 2005; accepted for publication (in revised form) Septem-
ber 10, 2006; published electronically February 26, 2007. This research is supported by National
Science Foundation grant DMS-0511283.
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†Department of Mathematics, University of Washington, Seattle, WA 98195-4350 (tseng@math.

washington.edu).
1The set A is undirected in the sense that (i, j) = (j, i) and dij = dji for all (i, j) ∈ A.
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method was proposed in [28]. The performances of these methods were tested through
simulations.

Recently, Biswas and Ye proposed an approach to sensor network localization
based on semidefinite programming (SDP) relaxation [10, 11]. In this approach, the
problem is formulated as the following nonconvex minimization problem:

υ
opt

def
= min

x1,...,xm

∑
(i,j)∈A

|‖xi − xj‖2 − d2
ij |,(1)

where ‖ · ‖ denotes the Euclidean norm. Introduce

X
def
= [x1 · · · xm], A

def
= [xm+1 · · · xn].

Then, for each (i, j) ∈ A,

‖xi − xj‖2 = (xi − xj)
T (xi − xj)

= (ei − ej)
T

[
XT

AT

] [
X A

]
(ei − ej)

= bTij

[
XT

Id

] [
X Id

]
bij

=

〈
bijb

T
ij ,

[
XTX XT

X Id

]〉
F

,

where ei is the ith coordinate vector in �n and bij
def
=

[
Im 0
0 A

]
(ei − ej). Throughout,

Ik is the k × k identity matrix and 〈A,B〉F
def
= trace[AB] for any symmetric real

matrices A,B of the same dimension. It is not difficult to see that[
Y XT

X Id

]

 0 has rank d ⇐⇒ Y = XTX.2

Thus (1) may be reformulated as

υopt = min
Z

∑
(i,j)∈A

∣∣〈bijbTij , Z〉
F
− d2

ij

∣∣
s.t. [Zij ]i,j≥n−d

= Id, Z 
 0, rankZ = d.

(2)

Relaxing the rank-d constraint yields the convex problem

υ
sdp

def
= min

Z

∑
(i,j)∈A

∣∣〈bijbTij , Z〉
F
− d2

ij

∣∣
s.t. [Zij ]i,j≥n−d

= Id, Z 
 0,

(3)

which is an SDP. In particular, by introducing slack variables, this can be written in
the standard conic form

min
∑

(i,j)∈A
uij + vij

s.t.
〈
bijb

T
ij , Z

〉
F
− uij + vij = d2

ij ∀(i, j) ∈ A,

[Zij ]i,j≥n−d
= Id,

uij ≥ 0, vij ≥ 0 ∀(i, j) ∈ A, Z 
 0,

(4)

2In general,
[
u
v

]
∈ Null

[
Y XT

X Id

]
if and only if u ∈ Null(Y −XTX), v = −Xu.
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which has (m+d)(m+d+1)/2+2|A| variables and |A|+d(d+1)/2 equality constraints.
Here |A| denotes the cardinality of A. In sensor network localization, |A| = Ω(m) and
d = 2 so that (4) has Ω(m2) variables and Ω(m) equality constraints. Properties of
the SDP relaxation and its solutions are studied in [10, 31].3 As noted in [11], the SDP
relaxation can be solved by existing SDP solvers for m ≤ 100 but not for much larger
m. Thus, a distributed (domain decomposition) method is proposed to solve larger
SDP relaxations. In [22], to further improve the speed and accuracy, the distributed
SDP method is terminated early and then a gradient search method is used to locally
refine the approximate solution. Simulation results show that this method can more
quickly and accurately position most sensors, even in the presence of distance errors.

The challenge in solving the SDP relaxation motivates us to consider SOCP re-
laxation, first studied by Doherty, Pister, and El Ghaoui [16], since SOCP can be
solved to a much larger size than SDP [2, 27]. In fact, there has been little study
of SOCP relaxation, compared to SDP relaxation, for nonconvex optimization. Be-
sides [16], which presented models and simulation results with SOCP relaxations of
sensor network localization (assuming no distance error), Kim and Kojima [20] and
Kim, Kojima, and Yamashita [21] studied SOCP relaxations of certain special classes
of SDP and quadratic optimization problems, but their results do not apply to sensor
network localization. Here, we present a study, both theoretical and numerical, of the
SOCP relaxation of the sensor network localization problem (1), allowing for distance
errors. In particular, we show that an interior solution of the SOCP relaxation can be
used to accurately position a high percentage of the sensors.4 To motivate the SOCP
relaxation, we reformulate (1) as

υ
opt

= min
x1,...,xm,yij

∑
(i,j)∈A

|yij − d2
ij |

s.t. yij = ‖xi − xj‖2 ∀(i, j) ∈ A.

(5)

Relaxing the equality constraints to “≥” inequality constraints yields the convex prob-
lem

υ
socp

def
= min

x1,...,xm,yij

∑
(i,j)∈A

|yij − d2
ij |

s.t. yij ≥ ‖xi − xj‖2 ∀(i, j) ∈ A,

(6)

which is an SOCP. In particular, by noting that yij ≥ d2
ij in any solution of (6) and

introducing slack variables, this can be written in the standard conic form

min
∑

(i,j)∈A
uij

s.t. xi − xj − wij = 0 ∀(i, j) ∈ A,

yij − uij = d2
ij ∀(i, j) ∈ ZA,

αij = 1
2 ∀(i, j) ∈ A,

uij ≥ 0, (αij , yij , wij) ∈ Rconed+2 ∀(i, j) ∈ A,

(7)

where Rconed+2 def
= {(α, y, w) ∈ � × � × �d : 2αy ≥ ‖w‖2} [32]. This is an SOCP

since

3Throughout, “solution” of an optimization problem means a global optimal solution.
4Throughout, “interior solution” means an element in the relative interior of the optimal solution

set.
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y ≥ ‖w‖2 ⇐⇒
(
y +

1

4

)2

≥
(
y − 1

4

)2

+ ‖w‖2 ⇐⇒ y +
1

4
≥

∥∥∥∥
(
y − 1

4
, w

)∥∥∥∥
(see [4, p. 88] or [25, p. 221]). The SOCP (7) has (d+3)|A|+md variables and (d+2)|A|
equality constraints. In sensor network localization, |A| = Ω(m) and d = 2, so that
(7) has Ω(m) variables and Ω(m) equality constraints. Thus, the SOCP relaxation
has smaller size than the SDP relaxation.

How good an approximation is the SOCP relaxation? Can it be efficiently solved?
We will show that the SOCP relaxation is always weaker than the SDP relaxation
and that any interior solution of the SOCP relaxation (which can be found by, say, an
interior-point method) will accurately position (up to square root distance error) those
sensors that are uniquely positioned; see Propositions 3.1, 7.1, and 7.2. Moreover, the
aforementioned sensors (which lie in the convex hull of the anchors) can be easily
identified; see Propositions 5.1 and 6.2. In our simulations, described in section 9,
up to 80–90% of the sensors are accurately positioned using this technique. Thus,
the SOCP relaxation can act as a useful preprocessor by accurately positioning most
of the sensors, thus greatly reducing the problem size. The remaining sensors can
be positioned by other means, such as SDP relaxation. In section 8, we propose a
smoothing coordinate gradient descent (SCGD) method that computes an interior
solution of the SOCP relaxation faster than an interior-point method. In sections 10
and 11, we present a mixed SDP-SOCP relaxation of (1), which can flexibly mediate
between strength of relaxation and problem size, and discuss alternative problem
formulations. In particular, other objective functions can be used in (1), for which
SOCP relaxation may be more “natural” than SDP relaxation. However, changing
the objective function of (1) changes its solution. Here we consider (1) so to better
compare with the existing SDP relaxation approach (Propositions 3.1 and 4.1) and
to introduce the mixed SDP-SOCP relaxation. In addition, the SOCP relaxation is a
useful problem preprocessor even if it is weaker than SDP relaxation.

Throughout, �n denotes the space of n-dimensional real column vectors (some-
times written horizontally for convenience), Sn denotes the space of n× n real sym-
metric matrices, and T denotes transpose. For A ∈ �m×n, Aij denotes the (i, j)th
entry of A. For A,B ∈ Sn, A 
 B means A − B is positive semidefinite. “conv”
means the convex hull.

2. An illustrative example. To understand properties of SDP and SOCP re-
laxations, it is instructive to look at an example. Consider the following example of
Ye, with d = 2, n = 3, m = 1, and

x2 = (−1, 0), x3 = (1, 0), d12 = d13 = 2.

The optimization problem (1) is

min
x1=(α,β)∈�2

|(1 − α)2 + β2 − 4| + |(−1 − α)2 + β2 − 4|.

It has two solutions at x1 = (0,
√

3), x1 = (0,−
√

3); see Figure 1.
The SDP relaxation (3) is

min
x1=(α,β)∈�2

y∈�

|y − 2α− 3| + |y + 2α− 3|

s.t.

⎡
⎣ y α β
α 1 0
β 0 1

⎤
⎦ 
 0.
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Fig. 1. The localization problem has two solutions at (0,±
√

3).
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analytic center

SDP       solutions

Fig. 2. The SDP relaxation has the entire line segment as its x1-solution set.

Its solutions have the form y = 3 and x1 is any point on the line segment joining
(0,−

√
3) and (0,

√
3). If we solve the corresponding SDP (4) by an interior-point

method, then it will find the solution that maximizes the barrier (see [25, p. 235], [4,
p. 384])

det

⎡
⎣ 3 0 β

0 1 0
β 0 1

⎤
⎦ = 3 − β2.

The maximum is attained at β = 0. The corresponding x1-solution (0, 0) is the
analytic center of the SDP solution set; see Figure 2.

The SOCP relaxation (6) is

min
x1=(α,β)∈�2

y,z∈�

|y − 4| + |z − 4|

s.t. y ≥ (α− 1)2 + β2,

z ≥ (α + 1)2 + β2.

Its solutions have the form y = z = 4 and x1 is any point in the intersection of the
two disks of radius 2 and centered at (−1, 0) and (1, 0). If we solve the corresponding
SOCP (7) by an interior-point method, then it will find the solution that maximizes
the barrier (see [25, p. 223], [4, p. 384], and also section 6)

log(4 − (α− 1)2 − β2) + log(4 − (α + 1)2 − β2).

This maximization is attained at α = β = 0. The corresponding x1-solution (0, 0)
is the analytic center of the SOCP solution set; see Figure 3. In general, finding the
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analytic center may be more efficient and accurate than the bounding approach sug-
gested in [16], which entails solving an SOCP 2d times with different linear objective
functions.

x
2

−1 1

2

2

x

analytic center

3

x
1

SOCP      solutions

Fig. 3. The SOCP relaxation has the intersection of two disks as its x1-solution set.

From the above example, we make the following observations:
• The SDP x1-solution set is contained in the SOCP x1-solution set.
• The analytic center of the SOCP x1-solution set lies in the convex hull of its

neighbors x2 and x3.
We will now study in more generality these observed properties of the SDP and SOCP
relaxations.

3. Properties of SDP and SOCP relaxations. We show below that the SDP
(x1, . . . , xm)-solution set is contained in the SOCP (x1, . . . , xm)-solution set, so that
the SOCP relaxation is weaker than the SDP relaxation.

Proposition 3.1. If Z =
[
Y XT

X Id

]
is feasible for the SDP relaxation (3), then

xi = ith column of X, i = 1, . . . ,m,

yij =

{
Yii − 2Yij + Yjj if (i, j) ∈ A, i < j ≤ m;

‖xi‖2 − 2xT
i xj + Yjj if (i, j) ∈ A, j ≤ m < i,

is feasible for the SOCP relaxation (6) with the same objective function value.
Proof. Since Z is feasible for (3), we have Z 
 0, so that Y −XTX 
 0. Then

any 2 × 2 principal submatrix of Y −XTX is positive semidefinite, so that, for any
(i, j) ∈ A with i < j ≤ m,[

Yii − ‖xi‖2 Yij − xT
i xj

Yij − xT
i xj Yjj − ‖xj‖2

]

 0,

implying that

Yii ≥ ‖xi‖2, Yjj ≥ ‖xj‖2, (Yii − ‖xi‖2)(Yjj − ‖xj‖2) ≥ (Yij − xT
i xj)

2.(8)

For any a ≥ 0, b ≥ 0, ab ≥ c2, we have (a + b)2 = 4ab + (a − b)2 ≥ 4c2 and hence
a + b ≥ 2|c|. Thus (8) implies

Yii − ‖xi‖2 + Yjj − ‖xj‖2 ≥ 2|Yij − xT
i xj | ≥ 2(Yij − xT

i xj).

Hence

yij = Yii − 2Yij + Yjj ≥ ‖xi‖2 − 2xT
i xj + ‖xj‖2 = ‖xi − xj‖2.
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Similarly, any diagonal entry of Y −XTX is nonnegative, so that, for any (i, j) ∈ A
with j ≤ m < i, Yjj − ‖xj‖2 ≥ 0 and hence

yij = ‖xi‖2 − 2xT
i xj + Yjj ≥ ‖xi‖2 − 2xT

i xj + ‖xj‖2 = ‖xi − xj‖2.

Thus x1, . . . , xm, (yij)(i,j)∈A is feasible for (6).

Last, we have from the definition of bij and yij that

∑
(i,j)∈A

∣∣〈bijbTij , Z〉
F
− d2

ij

∣∣
=

∑
i<j≤m
(i,j)∈A

|Yii − 2Yij + Yjj − d2
ij | +

∑
j≤m<i
(i,j)∈A

|‖xi‖2 − 2xT
i xj + Yjj − d2

ij |

=
∑

i<j≤m
(i,j)∈A

|yij − d2
ij | +

∑
j≤m<i
(i,j)∈A

|yij − d2
ij |.

Thus, Z and x1, . . . , xm, (yij)(i,j)∈A have the same objective function value for (3)
and (6), respectively.

Proposition 3.1 shows that (i) υSDP ≥ υSOCP and (ii) if υSDP = υSOCP , then the set
of SDP solutions is contained in the set of SOCP solutions when projected onto the
x1, . . . , xm-space.

It is well known that the solution set of (3) is closed and convex, and the same
is true of (6). An interior solution can be found by, say, applying an interior-point
method to (4) and (7). We will see that such an interior solution has desirable
properties for identifying sensors that are accurately positioned.

When solving SDP or SOCP by an interior-point method, the solution set must
be bounded. It is readily seen that the solution set of (3) is bounded if and only if
the solution set of (4) is bounded. Similarly, the solution set of (6) is bounded if and
only if the solution set of (7) is bounded. In [31, Proposition 1], it is shown in the
case of υ

opt
= 0 (i.e., no distance error) that the solution set of (3) is bounded if the

following assumption holds.

Assumption 1. Each connected component of the graph G def
= ({1, . . . , n},A)

contains an anchor index.

It is not difficult to see that this remains true when υ
opt

> 0 and that the converse
also holds. Similarly, it is readily shown that the set of solutions of (6) is bounded if
and only if Assumption 1 holds. This is summarized in the following lemma.

Lemma 3.2. (a) The solution set of (3) is bounded if and only if Assumption 1
holds.

(b) The solution set of (6) is bounded if and only if Assumption 1 holds.

Assumption 1 is reasonable since if a connected component of G does not contain
an anchor index, then the corresponding sensors cannot be accurately positioned.
In the absence of an anchor (i.e., m = n), as arises in protein structure prediction,
the solution set is unbounded and, in particular, each solution can be rotated and
translated to yield another solution. In [8], an optimization formulation is proposed
to remove the translation factor and ensure a bounded solution set (assuming no
distance error) and an extension of the distributed SDP method in [11] is proposed,
in which points in overlapping “subconfigurations” are further rotated and translated
to match closely on the overlap.
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4. Interior solution of the SDP relaxation. Let Z =
[
Y XT

X Id

]
be any solution

of the SDP relaxation (3). Biswas and Ye introduced the notion of individual traces
of Z, defined by

tri[Z]
def
= Yii − ‖xi‖2, i = 1, . . . ,m,

where xi is the ith column of X. Since Z 
 0 so that Y −XTX 
 0, we have

tri[Z] ≥ 0, i = 1, . . . ,m.

These individual traces were given a probabilistic interpretation in [10, section 4] as
the variance of random points x̃i with E[x̃i] = xi and E[x̃T

i x̃j ] = Yij . In [11, section 2],
they were used to evaluate the accuracy of the estimated positions xi, i = 1, . . . ,m,
with smaller trace indicating higher accuracy. So and Ye [31, Theorem 2] proved in
the case of υ

sdp
= 0 that the sensors are “uniquely localizable” if and only if, for any

interior solution Z (equivalently, Z is a solution of maximum rank), all individual
traces of Z are zero, i.e., Y = XTX.

The following proposition provides some justification for using individual traces
to evaluate accuracy of computed sensor positions. It shows that, for any interior
solution of (3), if the ith trace is zero, then the ith sensor is uniquely positioned by
the SDP relaxation (and hence is correctly positioned when υ

sdp
= 0). This result

gives a local generalization of the “if” direction in [31, Theorem 2] that is analogous
to [31, Theorem 4].

Proposition 4.1. Let Z =
[
Y XT

X Id

]
be an interior solution of (3). For each

i ∈ {1, . . . ,m}, if tri[Z] = 0, then xi is invariant over all solutions of (3), where xi

is the ith column of X. Moreover, YJJ −XT
J XJ = 0, where J

def
= {i ≤ m : tri[Z] = 0},

YJJ is the principal submatrix of Y indexed by J , and XJ is submatrix of X comprising
the columns indexed by J .

Proof. Consider any solution Z ′ of (3). Since Z is an interior solution, then

Z1 def
= Z + ε(Z ′ − Z), Z2 def

= Z − ε(Z ′ − Z)

are both solutions of (3) for any sufficiently small ε > 0. Write them in the forms

Z1 =

[
Y 1 (X1)T

X1 Id

]
and Z2 =

[
Y 2 (X2)T

X2 Id

]
.

Since Z = (Z1 + Z2)/2, this implies that, for any i ∈ {1, . . . ,m},

tri[Z] = tri[(Z
1 + Z2)/2]

= (Y 1
ii + Y 2

ii)/2 − ‖(x1
i + x2

i )/2‖2

= (Y 1
ii + Y 2

ii)/2 −
(
‖x1

i ‖2 + ‖x2
i ‖2 − ‖x1

i − x2
i ‖2/2

)/
2

= (tri[Z
1] + tri[Z

2])/2 + ‖x1
i − x2

i ‖2/4,

where x1
i , x2

i are the ith columns of X1, X2, respectively. Since tri[Z
1] ≥ 0 and

tri[Z
2] ≥ 0, if tri[Z] = 0, then x1

i = x2
i and hence x′

i = xi.
Since Y −XTX 
 0, we have YJJ−XT

J XJ 
 0. Since 0 = tri[Z] = [Y −XTX]ii for
all i ∈ J so that YJJ −XT

J XJ has zero diagonals, this implies YJJ −XT
J XJ = 0.

Proposition 4.1 shows that any interior solution identifies some subset of sensors
that are uniquely positioned by the SDP relaxation. It is an open question whether
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the converse of Proposition 4.1 holds, i.e., if Z is an interior solution of (3) and
tri[Z] > 0, then xi is not invariant over all solutions of (3). We will prove in section 5
an analogous result for the SOCP relaxation (6).

When an interior-point method is used to solve the SDP relaxation (4), it will
find not only an interior solution, but an interior solution that maximizes the nonzero
traces in some sense. Using such a solution should make the zero-trace test more
robust under computation errors. A rigorous study of this topic requires knowledge
of the asymptotic behavior of the central path for SDP, which is not fully understood;
see [26] and references therein. On the other hand, the simpler structure of the SOCP
relaxation (7) makes possible such a study, as we will do in section 5.

5. Interior solution of the SOCP relaxation. Since the SOCP is a con-
vex minimization problem, there exists a maximal subset of constraints that are
tight/active at every solution. In particular, there exists a unique B ⊆ A such that

‖xi − xj‖2 = yij ∀ solutions x1, . . . , xm, (yij)(i,j)∈A of (6) ⇐⇒ (i, j) ∈ B.(9)

Any solution that satisfies strictly the remaining constraints of (6) lies in the relative
interior of the solution set; i.e., it is an interior solution.

In what follows, we denote the set of neighbors of i ∈ {1, . . . ,m} relative to any
B ⊆ A by

NB(i)
def
= {j ∈ {1, . . . , n} : (i, j) ∈ B}.

Also,

MB
def
= {i ∈ {1, . . . ,m} : NB(i) �= ∅}.

The next result is key for identifying those sensors that are uniquely positioned by
the SOCP relaxation.

Proposition 5.1. Let x1, . . . , xm, (yij)(i,j)∈A be any interior solution of (6).
Let B be given by (9). The following results hold.
(a) For each i ∈ MB,

xi ∈ conv {xj}j∈NB(i) .(10)

(b) Each connected component of the graph GB
def
= (MB∪{m+1, . . . , n},B) contains

an anchor index i ∈ {m + 1, . . . , n}.
(c) For each i ∈ {1, . . . ,m}, xi is invariant over all solutions of (6) if and only if

i ∈ MB.
Proof. (a) We argue by contradiction. Suppose that (10) fails to hold for some

i ∈ MB. Let pi denote the nearest-point projection of xi onto conv {xj}j∈NB(i). Then,
pi �= xi and, for each j ∈ NB(i), we have (xi − pi)

T (pi − xj) ≥ 0, implying

‖xi − xj‖2 = ‖xi − pi + pi − xj‖2

= ‖xi − pi‖2 + ‖pi − xj‖2 + 2(xi − pi)
T (pi − xj)

> ‖pi − xj‖2.

For ε ∈ (0, 1), let

xε
i = (1 − ε)xi + εpi.
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Since ‖xi − xj‖2 = yij for all j ∈ NB(i) and ‖xi − xj‖2 < yij for all j ∈ NA\B(i), the
convexity and continuity of ‖ · ‖2 yield that

‖xε
i − xj‖2 < yij ∀j ∈ NA(i),

for all ε sufficiently small. Thus, replacing xi by xε
i yields another solution of (6), and

it satisfies strictly the constraints corresponding to j ∈ NB(i). This contradicts the
assumption that x1, . . . , xm, (yij)(i,j)∈A is an interior solution.

(b) Choose any ī ∈ MB and initialize M̄ ← {̄i}. Then, whenever there is an
i ∈ M̄ ∩ MB with NB(i) � M̄ , we add NB(i) to M̄ , i.e., M̄ ← M̄ ∪ NB(i), until no
such i exists. Since, for each i ∈ MB, each j ∈ NB(i) either indexes an anchor or else
belongs to MB (since NB(j) �= ∅), we see that M̄ ⊆ MB ∪ {m + 1, . . . , n}. Moreover,
for each i ∈ M̄ ∩MB, we have NB(i) ⊆ M̄ and, by (a), (10) holds, so that

xi ∈ conv {xj}j∈NB(i) ⊆ conv {xj}j∈M̄ ,

implying that xi is not an extreme point of {xj}j∈M̄ . Thus, all extreme points of
conv {xj}j∈M̄ are anchors. Let

Ā = {(i, j) : i ∈ M̄ ∩MB, j ∈ NB(i)}.

Then (M̄, Ā) is a connected subgraph of GB, and it contains an anchor index; see
Figure 4 for an illustrative example. Thus the connected component of GB that
contains this subgraph contains an anchor index. Since the choice of ī ∈ MB was
arbitrary, this shows that every connected component of GB contains an anchor index.

 x1

x2

x3

x4x5

x6

x7

x8

x9

x10

anchor

sensor

Fig. 4. In this example, B is shown as lines and MB = {1, 2, . . . , 6}. For ī ∈ {1, 2, 3, 4}, we have
M̄ = {1, 2, 3, 4, 7, 8, 9, 10}, Ā = {(1, 2), (1, 4), (1, 9), (2, 3), (2, 8), (3, 7), (3, 4), (4, 10)}. For ī ∈ {5, 6},
we have M̄ = {5, 6, 7, 9, 10}, Ā = {(5, 6), (5, 9), (5, 10), (6, 7), (6, 10)}.

(c) If x′
1, . . . , x

′
m, (y′ij)(i,j)∈A is any solution of (6), then for each (i, j) ∈ B,

‖x′
i − x′

j‖2 = y′ij

(with x′
i = xi for i > m). Combining this with ‖xi − xj‖2 = yij yields

yij + y′ij
2

=

∥∥∥∥xi − xj

2
+

x′
i − x′

j

2

∥∥∥∥
2

+

∥∥∥∥xi − xj

2
−

x′
i − x′

j

2

∥∥∥∥
2

.(11)

Since the solution set of (6) is convex, so that 1
2 (x1 + x′

1), . . . ,
1
2 (xm + x′

m), ( 1
2 (yij +

y′ij))(i,j)∈A also forms a solution, (i, j) ∈ B implies that the rightmost term in (11)
must be zero. This in turn implies that

x′
i − x′

j = xi − xj .
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Thus, for each (i, j) ∈ B there exists Δij ∈ �d such that

x′
i − x′

j = Δij ∀ solutions x′
1, . . . , x

′
m, (y′ij)(i,j)∈A

of (6) (with x′
i = xi for i > m).

(12)

Let (M̄, B̄) be any connected component of GB. By (b), there exists i ∈ M̄ ∩
{m + 1, . . . , n}, i.e., xi is an anchor. For each j ∈ NB̄(i), we have (i, j) ∈ B so that
(12) implies

xi − x′
j = Δij = xi − xj

for all solutions x′
1, . . . , x

′
m, (y′ij)(i,j)∈A of (6). Hence x′

j = xj . Since j ∈ M̄ , we can
repeat the above argument with j in place of i and so on. This yields x′

j = xj for all

j ∈ M̄ . Since the choice of the connected component was arbitrary, this shows that
x′
j = xj for all j ∈ MB.

If i ≤ m and i /∈ MB, then NB(i) = ∅. This implies

‖xi − xj‖2 < yij ∀j ∈ NA(i).

Then, we can perturb xi and obtain another solution x′
1, . . . , x

′
m, (yij)(i,j)∈A of (6)

with x′
i �= xi.

As a corollary of Proposition 5.1(c), we have that the solution of (6) is unique if
and only if each connected component of the graph ({1, . . . , n},B) contains an anchor
index (i.e., MB = {1, . . . ,m}).

Proposition 5.1 shows that those points xi with i ∈ MB have the following three
properties: (i) they satisfy (10), (ii) ‖xi − xj‖2 = yij for all j ∈ NB(i), and (iii) their
positions are uniquely determined by the anchors xm+1, . . . , xn and (yij)(i,j)∈B. Might
the first two properties (i), (ii) imply property (iii)? This question is related to graph
rigidity and uniqueness of graph realizability. However, the following example in
Figure 5, suggested by Connelly [15], shows that this is not true. The outer three
points are anchors, the edges of B are as shown, and the inner three points (sensors)
form a triangle that can be twisted slightly clockwise or counterclockwise to be in two
different positions, both of which have properties (i) and (ii).

(a) (b)

Fig. 5. An example in �2 of nonunique sensor positions satisfying (10) and preserving distances.

6. Analytic center solution of the SOCP relaxation. As mentioned in
section 2, when we solve (7) using an interior-point method, the method will generally
find not only an interior solution, but an analytic center of the solution set. We study
this in more depth below. We first need the following lemma to relate the solutions
of (6) and (7).

Lemma 6.1. (yij)(i,j)∈A is invariant over all solutions of (6).
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Proof. Let B be given by (9). Suppose we have two solutions of (6): x1, . . . , xm,
(yij)(i,j)∈A and x′

1, . . . , x
′
m, (y′ij)(i,j)∈A. Then, for each (i, j) ∈ B, yij = ‖xi − xj‖2

and y′ij = ‖x′
i − x′

j‖2 (with x′
i = xi for i > m), so that

yij + y′ij
2

=

∥∥∥∥xi − xj

2
+

x′
i − x′

j

2

∥∥∥∥
2

+

∥∥∥∥xi − xj

2
−

x′
i − x′

j

2

∥∥∥∥
2

.

Since the solution set is convex so that 1
2 (x1+x′

1), . . . ,
1
2 (xm+x′

m), ( 1
2 (yij+y′ij))(i,j)∈A

also forms a solution of (6), the rightmost term must be zero, i.e., xi − xj = x′
i − x′

j .
Thus yij = y′ij .

For each (i, j) ∈ A\B, we have yij > ‖xi−xj‖2 for all interior solutions x1, . . . , xm,
(yij)(i,j)∈A of (6), implying yij = d2

ij . (If yij �= d2
ij , then yij can be perturbed to

decrease |yij − d2
ij | and hence decrease the objective function value.) Taking closure

yields that yij = d2
ij for all solutions x1, . . . , xm, (yij)(i,j)∈A of (6) so that yij is

unique.
By using Lemma 6.1, we see that (uij)(i,j)∈A is invariant over all solutions of (7).

Then, under Assumption 1, the limiting point of the central path for (7) would be an
interior solution of (7) that maximizes (see [25, p. 223], [4, p. 384])

∑
(i,j)∈A\B

log

((
yij +

1

4

)2

−
∥∥∥∥
(
yij −

1

4
, wij

)∥∥∥∥
2
)

=
∑

(i,j)∈A\B
log

(
yij − ‖xi − xj‖2

)
.

Accordingly, we define an analytic center solution of (6) to be an interior solution
of (6) that maximizes ∑

(i,j)∈A\B
log

(
yij − ‖xi − xj‖2

)
(13)

over all interior solutions. Thus, an analytic center solution in some sense maximizes
the slacks yij − ‖xi − xj‖2 for all inactive constraints (i, j) ∈ A \ B. Its existence
is guaranteed by Assumption 1. It is unique because of Proposition 5.1(c) and that,
by Lemma 6.1 and the strict concavity of log(yij − ‖ · ‖2), xi − xj is unique for all
(i, j) ∈ A \ B. This is the interior solution that a log-barrier interior-point method
will likely find. If a barrier method based on a different barrier function is used to
solve (7), then the interior solution found need not be the analytic center.

The next proposition verifies one of our observations from the example in section 2.
This is further illustrated in Figure 7.

Proposition 6.2. If x1, . . . , xm, (yij)(i,j)∈A is the analytic center solution
of (6), then

xi ∈ conv {xj}j∈NA(i) , i = 1, . . . ,m.

Proof. We argue by contradiction. Suppose there exists i ∈ {1, . . . ,m} such that

xi /∈ conv {xj}j∈NA(i) .

Let pi denote the nearest-point projection of xi onto this convex hull. Then, as in the
proof of Proposition 5.1(a), we have

‖pi − xj‖2 < ‖xi − xj‖2 ∀j ∈ NA(i).
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Thus, replacing xi by pi would yield another interior solution of (6). Moreover, if
(i, j) ∈ A \ B, then yij − ‖pi − xj‖2 > yij − ‖xi − xj‖2 > 0, so that

log
(
yij − ‖pi − xj‖2

)
> log

(
yij − ‖xi − xj‖2

)
.

Summing these inequalities yields∑
j∈NA\B(i)

log
(
yij − ‖pi − xj‖2

)
>

∑
j∈NA\B(i)

log
(
yij − ‖xi − xj‖2

)
.

This contradicts our assumption that x1, . . . , xm, (yij)(i,j)∈A is the analytic center
solution of (6).

It is an open question whether a result analogous to Lemma 6.1 holds for the
SDP relaxation (3); namely, is

(〈
bijb

T
ij , Z

〉
F

)
(i,j)∈A invariant over all solutions of (3)?

There does not appear to be a result analogous to Proposition 6.2 for SDP relaxation.
In particular, (3) need not have any solution satisfying the convex hull condition of
Proposition 6.2; see an example in Figure 1(a) of [31].

7. Error analysis for the SOCP relaxation. In practice, the distance dij
has measurement error, i.e.,

d2
ij = ȳij + δij ∀(i, j) ∈ A,

where δij ∈ � and ȳij = ‖xtrue

i − x
true

j ‖2 for some x
true

1 , . . . , x
true

m representing the true

positions of the sensors, and with x
true

i = xi for i > m. What is the corresponding
error in the solution of (6)? We study this question in this section.

In what follows, we denote for simplicity x = (x1, . . . , xm) ∈ �d × · · · × �d and

qij(x)
def
= ‖xi − xj‖2 − ȳij ∀(i, j) ∈ A.(14)

Also,

Ξ
def
= {x : qij(x) ≤ 0 ∀ (i, j) ∈ A} .(15)

Then Ξ contains the true solution x
true

= (x
true

1 , . . . , x
true

m ). By the convexity of qij , Ξ
is a convex set and there exists B̄ ⊆ A such that

qij(x) = 0 ∀x ∈ Ξ ⇐⇒ (i, j) ∈ B̄.

Since x
true

, (ȳij)(i,j)∈A is feasible for (6), any solution x = (x1, . . . , xm), (yij)(i,j)∈A
of (6) satisfies ∑

(i,j)∈A
|yij − d2

ij | ≤
∑

(i,j)∈A
|ȳij − d2

ij | =
∑

(i,j)∈A
|δij |.(16)

Since ‖xi − xj‖2 ≤ yij so that qij(x) ≤ yij − ȳij , this yields∑
(i,j)∈A

qij(x)+ ≤
∑

(i,j)∈A
(yij − ȳij)+

≤
∑

(i,j)∈A
|yij − ȳij |

≤
∑

(i,j)∈A
(|yij − d2

ij | + |d2
ij − ȳij |)

≤ 2
∑

(i,j)∈A
|δij |,(17)
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where α+
def
= max{0, α}.

Using Proposition 5.1, we show below that if the distance error is small so the
right-hand side of (17) is small, then (xi)i∈MB in a solution of (6) has small error (in
fact, proportional to the square root of distance error), where B is given by (9); see
Propositions 7.1 and 7.2. Moreover, we can find B from an interior solution of (6); see
also section 9. Although there exist sensitivity analysis results for convex quadratic
inequalities of the form (15), the results either make the restrictive assumption that
Ξ has nonempty interior [23] or prove a much weaker result that the solution error is
proportional to the 2|A|+1th root of the distance error [33]; see discussions following
Corollary 7.3. Existing sensitivity analysis results for general nonlinear programs
make technical assumptions that either do not hold or are difficult to verify for (15);
see, e.g., [12, sections 5.2, 5.3].

For any B ⊆ A,

ΞB
def
= {x ∈ Ξ : qij(x) = 0 ∀(i, j) ∈ B} .

For any nonempty closed subset Ξ′ of Ξ, let

dist((x1 . . . , xm),Ξ′)
def
= min

(x̄1,...,x̄m)∈Ξ′
max

i=1,...,m
‖xi − x̄i‖.

Proposition 7.1. (a) For each ε > 0, there exists a scalar δ > 0 such that

ΞB �= ∅ and dist (x,ΞB) ≤ ε

whenever B satisfies (9), x = (x1, . . . , xm), (yij)(i,j)∈A is a solution of (6), and∑
(i,j)∈A |δij | ≤ δ.

(b) There exists an ε̄ > 0 such that, for each 0 < ε < ε̄, there exists a scalar δ > 0
such that

B ⊆ B̄ and ‖xi − x
true

i ‖ ≤ ε ∀i ∈ MB,

whenever B satisfies (9), x1, . . . , xm, (yij)(i,j)∈A is a solution of (6), and
∑

(i,j)∈A |δij |
≤ δ.

Proof. (a) Fix any ε > 0. If the desired δ does not exist, there would exist
(δtij)(i,j)∈A, t = 1, 2, . . . , with

∑
(i,j)∈A |δtij | → 0, and a B ⊆ A satisfying (9) with

d2
ij = ȳij+δtij for (i, j) ∈ A in (6), t = 1, 2, . . . . In addition, for each t = 1, 2, . . . , there

would exist a solution xt = (xt
1, . . . , x

t
m), yt = (ytij)(i,j)∈A, of (6) with d2

ij = ȳij + δtij ,
and yet either the set ΞB is empty or dist(xt,ΞB) > ε for all t.

We see from (16) that {ytij} → ȳij for all (i, j) ∈ A. Also, we can assume without

loss of generality that {xt} is bounded.5 By passing to a subsequence if necessary, we
assume that {xt} converges to some x̄ = (x̄1, . . . , x̄m). By (17),

∑
(i,j)∈A

qij(x
t)+ ≤ 2

∑
(i,j)∈A

|δtij |, t = 1, 2, . . . .

5Consider any connected component C of the graph G = ({1, . . . , n},A). If C contains an anchor
index, then {xt

i} is bounded for all i ≤ m in C. If C does not contain an anchor index, then it can be
seen that {‖xt

i −xt
j‖} is bounded for all i and j in C, so we can translate xt

i for all i in C by the same

displacement (thus preserving the distances between them) so that one of them is at the origin.
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This yields in the limit
∑

(i,j)∈A qij(x̄)+ ≤ 0, implying x̄ ∈ Ξ. Since B satisfies (9)

with d2
ij = ȳij + δtij for (i, j) ∈ A in (6), we also have

‖xt
i − xt

j‖2 = ytij ∀(i, j) ∈ B, t = 1, 2, . . . (with xt
i = xi ∀i > m).

This yields in the limit

‖x̄i − x̄j‖2 = ȳij ∀(i, j) ∈ B (with x̄i = xi ∀i > m),

implying x̄ ∈ ΞB. Moreover maxi=1,...,m ‖xt
i − x̄i‖ → 0. This contradicts ΞB = ∅ or

dist (xt,ΞB) > ε for all t.
(b) Since each qij is convex, Ξ has an interior solution, i.e., x′ = (x′

1, . . . , x
′
m) ∈ Ξ

satisfying

‖x′
i − x′

j‖2 < ȳij ∀(i, j) ∈ A \ B̄,(18)

where we let x′
i = xi for i > m.

By (a), for any ε > 0, there exists δ > 0 such that, for any interior solution
x1, . . . , xm, (yij)(i,j)∈A of (6) with

∑
(i,j)∈A |δij | ≤ δ, there exists x̄ = (x̄1, . . . , x̄m) ∈

ΞB with maxi=1,...,m ‖xi − x̄i‖ ≤ ε, where B satisfies (9). Let

di = x̄i − xi, i = 1, . . . , n,

d′i = x′
i − x̄i, i = 1, . . . , n,

with x̄i = xi for i > m. Since x̄ and x′ are both in Ξ, we have ‖x̄i− x̄j‖2 = ‖x′
i−x′

j‖2

for all (i, j) ∈ B̄, which yields (also see the proof of Lemma 6.1)

d′i − d′j = 0 ∀(i, j) ∈ B̄.(19)

For each (i, j) ∈ B, we have

‖x′
i − x′

j‖2 = ȳij − sij

for some sij ≥ 0, or, equivalently,

‖d′i − d′j + x̄i − x̄j‖2 = ‖x̄i − x̄j‖2 − sij .

Expanding the quadratics yields

2(x̄i − x̄j)
T (d′i − d′j) = −‖d′i − d′j‖2 − sij

or, equivalently,

2(xi − xj)
T (d′i − d′j) = −‖d′i − d′j‖2 − sij − 2(di − dj)

T (d′i − d′j)

≤ −‖d′i − d′j‖2 − sij + 2‖di − dj‖‖d′i − d′j‖.

Since sij ≥ 0, this implies that

(xi − xj)
T (d′i − d′j) < 0 whenever ‖di − dj‖ < ‖d′i − d′j‖/2.(20)

Let us choose

ε <
1

4
min

(i,j)∈A\B̄
{
√

ȳij − ‖x′
i − x′

j‖},(21)
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where the right-hand side is positive by (18). For each (i, j) ∈ B with d′i − d′j �= 0, we

have from (19) that (i, j) /∈ B̄. Then, by using ‖di‖ ≤ ε and (21), we have

‖di − dj‖ ≤ 2ε <

√
ȳij − ‖x′

i − x′
j‖

2
≤

‖d′i − d′j‖
2

,

where the last inequality follows from

‖d′i − d′j‖ = ‖x′
i − x′

j − (x̄i − x̄j)‖ ≥ ‖x̄i − x̄j‖ − ‖x′
i − x′

j‖ =
√
ȳij − ‖x′

i − x′
j‖.

Then, by (20), (xi − xj)
T (d′i − d′j) < 0. Thus, for each (i, j) ∈ B and for all α > 0

sufficiently small, we have

‖(xi + αd′i) − (xj + αd′j)‖2

{
< ‖xi − xj‖2 = yij if d′i − d′j �= 0;

= ‖xi − xj‖2 = yij if d′i − d′j = 0.

Also, for each (i, j) ∈ A \ B, since ‖xi − xj‖2 < yij , we have

‖(xi + αd′i) − (xj + αd′j)‖2 < yij

for all α > 0 sufficiently small. Thus, if d′i − d′j �= 0 for some (i, j) ∈ B, this would
contradict the definition of B. Hence d′i−d′j = 0 for all (i, j) ∈ B. This in turn implies

‖x′
i − x′

j‖2 = ‖x̄i − x̄j‖2 = ȳij ∀(i, j) ∈ B.

Hence (18) yields that B ⊆ B̄.
Since x̄ ∈ Ξ, by applying Proposition 5.1(c) we have

x̄i = x
true

i ∀i ∈ MB̄.

Since B ⊆ B̄, MB ⊆ MB̄. Thus

‖xi − x
true

i ‖ = ‖xi − x̄i‖ ≤ ε ∀i ∈ MB.

From the proof of Proposition 7.1(b) we see that we can take ε̄ to be the right-
hand side of (21), maximized over all (x′

1, . . . , x
′
m) ∈ Ξ. Proposition 7.1(b) says that

if the distance error is not too large, then the error in the position of those sensors
indexed by MB is also not too large. However, it does not say how fast the position
error grows with the distance error. We show below that the position error grows at
most like the square root of the distance error.

We say that B ⊆ B̄ is active with respect to M ⊆ {1, . . . ,m} if

qij(x) ≤ 0 ∀(i, j) ∈ B, xi = x
true

i ∀i /∈ M =⇒ qij(x) = 0 ∀(i, j) ∈ B.

We say that B is minimally active with respect to M if there is no proper subset of B
that is active with respect to M.

Proposition 7.2. There exists a constant K > 0 such that

max
i∈MB̄

‖xi − x
true

i ‖ ≤ K max
(i,j)∈B̄

qij(x)
1/2
+ ∀x = (x1, . . . , xm).

Proof. If B̄ = ∅, then our proof is complete. Otherwise, by its definition, B̄
is active with respect to {1, . . . ,m}. Then, there exists nonempty B1 ⊆ B̄ that is
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minimally active with respect to {1, . . . ,m}. By using Gordan’s theorem as in the
proof of [33, Theorem 3.1], there exist λij > 0, (i, j) ∈ B1, satisfying∑

(i,j)∈B1

∇qij(x
true

)λij = 0.6(22)

Fix any x = (x1, . . . , xm). For each (i, j) ∈ B1, we have from qij(x
true

) = 0 that

qij(x) = ∇qij(x
true

)T (x− x
true

) + ‖xi − xj − (x
true

i − x
true

j )‖2.

Multiplying both sides by λij and summing over all (i, j) ∈ B1 and using (22) yield∑
(i,j)∈B1

qij(x)λij =
∑

(i,j)∈B1

‖xi − xj − (x
true

i − x
true

j )‖2λij .

Thus

‖xi − xj − (x
true

i − x
true

j )‖2λij ≤
∑

(i,j)∈B1

λij · max
(i,j)∈B1

qij(x)+ ∀(i, j) ∈ B1.

This in turn implies

‖xi − xj − (x
true

i − x
true

j )‖ ≤ C1 max
(i,j)∈B1

qij(x)
1/2
+ ∀(i, j) ∈ B1,(23)

where

C1
def
=

( ∑
(i,j)∈B1

λij

min(i,j)∈B1
λij

)1/2

.

We can then apply Proposition 5.1(b) with dij , A, B, {1, . . . ,m} replaced by, respec-

tively,
√
ȳij , B1, B1, M1

def
= {i ∈ {1, . . . ,m} : NB1(i) �= ∅} = MB1 . This yields that

each connected component of the graph G1
def
= (M1 ∪ {m+ 1, . . . , n},B1) contains an

anchor index j ∈ {m + 1, . . . , n}. (In fact, this graph is connected since B1 is mini-
mally active with respect to M1.) Then, for each i ∈ NB1

(j), we have from (23) and

xj = x
true

j that

‖xi − x
true

i ‖ ≤ C1 max
(i,j)∈B1

qij(x)
1/2
+ .

Continuing this argument with each neighbor of i in G1, and so on, we obtain that

‖xi − x
true

i ‖ ≤ C1D1 max
(i,j)∈B1

qij(x)
1/2
+ ∀i ∈ M1,(24)

6Why? Since B1 is active with respect to {1, . . . ,m} and qij(x
true

) = 0 for all (i, j) ∈ B1, the

linear system ∇qij(x
true

)T d < 0, (i, j) ∈ B1, is infeasible. By Gordan’s theorem [13, p. 23], there

exist λij ≥ 0 for (i, j) ∈ B1, not all zero, satisfying (22). Let B̂1
def
= {(i, j) ∈ B1 : λij > 0}. By

Gordan’s theorem again, the linear system ∇qij(x
true

)T d < 0, (i, j) ∈ B̂1, is infeasible. If B̂1 	= B1,

then the quadratic system qij(x) < 0, (i, j) ∈ B̂1, would be feasible. (Otherwise there would exist a

nonempty B̃1 ⊆ B̂1 such that qij(x) = 0, (i, j) ∈ B̃1, whenever qij(x) ≤ 0, (i, j) ∈ B̂1. Choose B̃1 to

be maximal. Then B̃1 would be active with respect to {1, . . . ,m}, contradicting B1 being minimally

active with respect to {1, . . . ,m}.) Then the linear system ∇qij(x
true

)T d < 0, (i, j) ∈ B̂1, would be

feasible, which is a contradiction. Thus B̂1 = B1.
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where D1
def
= maxi∈M1

minj /∈M1
(minimum number of edges in a path between i and

j in G1).
If B̄ = B1, then our proof is complete. Otherwise, B̄ \ B1 is active with respect to

{1, . . . ,m} \M1. Then, there exists nonempty B2 ⊆ B̄ \ B1 that is minimally active
with respect to {1, . . . ,m} \M1. Repeating the above argument, we obtain that

‖xi − xj − (x
true

i − x
true

j )‖ ≤ C2 max
(i,j)∈B2

qij(x)
1/2
+ ∀(i, j) ∈ B2,(25)

with C2 defined analogously as C1 and with xi = x
true

i for i ∈ M1. We can then
apply Proposition 5.1(b) with dij , A, B, {1, . . . ,m} replaced by, respectively,

√
ȳij ,

B2, B2, M2
def
= {i ∈ {1, . . . ,m} \M1 : NB2

(i) �= ∅}. This yields that each connected

component of the graph G2
def
= (M1 ∪ M2 ∪ {m + 1, . . . , n},B2) contains a node

j ∈ M1 ∪{m+1, . . . , n}. Then, for each i ∈ NB2(j), we have from (25) and (24) that

‖xi − x
true

i ‖ ≤ C1D1 max
(i,j)∈B1

qij(x)
1/2
+ + C2 max

(i,j)∈B2

qij(x)
1/2
+ .

Continuing this argument with each neighbor of i in G2, and so on, we obtain that

‖xi − x
true

i ‖ ≤ C1D1 max
(i,j)∈B1

qij(x)
1/2
+ + C2D2 max

(i,j)∈B2

qij(x)
1/2
+ ∀i ∈ M2,

with D2 defined analogously as D1.
Continuing the above argument inductively completes the proof.
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Fig. 6. In this example, M1 = {1, 2, 3, 4}, B1 = {(1, 2), (1, 4), (1, 9), (2, 3), (2, 8), (3, 7), (3, 4),
(4, 10)}, M2 = {5}, B2 = {(5, 2), (5, 9), (5, 10)}, and B̄ = B1 ∪ B2. Removing a point indexed by
M1 affects points indexed by M2 but not conversely.

The proof of Proposition 7.2 shows that the points indexed by M1, which are
the sensors “nearest” to the anchors, are the least sensitive to distance measurement
errors. An important (and intuitively reasonable) result shown by Proposition 7.2 is
that the errors affect the sensor positions additively as they percolate to M2, and so
on; see Figure 6 for an illustrative example.

Corollary 7.3. There exists a constant L > 0 such that

dist(x,Ξ) ≤ L max
(i,j)∈A\B̄

qij(x)+ + LK max
(i,j)∈B̄

qij(x)
1/2
+ ∀x = (x1, . . . , xm),

where K is defined as in Proposition 7.2.
Proof. Consider the system of convex quadratic inequalities and linear equations

in x = (x1, . . . , xm):

qij(x) ≤ 0 ∀(i, j) ∈ A \ B̄, xi = x
true

i ∀i ∈ MB̄.
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By applying Proposition 5.1(c) with dij replaced by
√
ȳij , we see that Ξ equals the

solution set of this system. Moreover, each interior solution of Ξ satisfies the quadratic
inequalities strictly. Thus, applying a result of Luo and Luo [23], there exists L > 0
such that

dist(x,Ξ) ≤ L max
(i,j)∈A\B̄

qij(x)+ + L max
i∈MB̄

‖xi − x
true

i ‖ ∀x = (x1, . . . , xm).

Using Proposition 7.2 to bound the second term on the right-hand side completes the
proof.

The error bound in Corollary 7.3 sharpens the Hölderian error bound of Wang and
Pang [33] for general convex quadratic inequalities. In particular, a direct application
of the result in [33] yields the existence of τ > 0 and integer 	 ≤ |A| + 1 such that

dist(x,Ξ) ≤ κ max
(i,j)∈A

(
qij(x)+ + qij(x)

1/2�

+

)
∀x = (x1, . . . , xm).

An example in [33] shows that, for general convex quadratic functions qij , 	 = |A|
is possible. Corollary 7.3 in effect shows that we can take 	 = 1 in the special case
where each qij has the form (14). It is an open question whether the active set index
B̄ can be identified using the Lipschitzian error bound. The difficulty lies in that ȳij
is unknown, so that qij(x) cannot be directly evaluated.

Last, we show that the x-component of the analytic center solution of (6) con-
verges to the analytic center solution of Ξ as the distance error goes to zero.

Proposition 7.4. Under Assumption 1, let xc = (xc
1, . . . , x

c
m), (ycij)(i,j)∈A be

the analytic center solution of (6). As
∑

(i,j)∈A |δij | → 0, xc converges to the analytic

center x̄c = (x̄c
1, . . . , x̄

c
m) of Ξ.

Proof. For i = 1, . . . ,m, let

x̃i
def
=

{
xc
i if i ∈ MB̄;

x̄c
i if i /∈ MB̄.

By x̄c ∈ Ξ and Proposition 7.2, we have x̄c
i = x

true

i for all i ∈ MB̄. Let

ρ
def
= − max

(i,j)∈A\B̄
qij(x̄

c) > 0.(26)

Suppose
∑

(i,j)∈A |δij | ≤ δ for some δ > 0. By (16), (17), and Proposition 7.2, we
have

max
(i,j)∈A

|ycij − ȳij | ≤ δ, max
i∈MB̄

‖xc
i − x̄c

i‖ ≤ K
√

2δ.(27)

For each (i, j) ∈ A, consider the following three cases: (i) If i ∈ MB̄ and j ∈ MB̄, then

‖x̃i − x̃j‖2 = ‖xc
i − xc

j‖2 ≤ ycij .

(ii) If i /∈ MB̄ and j /∈ MB̄, then (i, j) /∈ B̄ and hence (26), (27) yield

‖x̃i − x̃j‖2 = ‖x̄c
i − x̄c

j‖2 ≤ ȳij − ρ ≤ ycij + δ − ρ.
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(iii) If i ∈ MB̄ and j /∈ MB̄, then (i, j) /∈ B̄ and hence (26), (27) yield

‖x̃i − x̃j‖2 = ‖xc
i − x̄c

j‖2

≤ (‖xc
i − x̄c

i‖ + ‖x̄c
i − x̄c

j‖)2

≤ (K
√

2δ + ‖x̄c
i − x̄c

j‖)2

≤ 2K2δ + 2K
√

2δ
√
ȳij + ȳij − ρ

≤ 2K2δ + 2K
√

2δ
√
ȳij + ycij + δ − ρ.

Notice that (i, j) = (j, i), so the case of i /∈ MB̄ and j ∈ MB̄ is covered by case (iii).
Since xc = (xc

1, . . . , x
c
m), (ycij)(i,j)∈A is a solution of (6) and ρ > 0, the above analysis

shows that, for δ sufficiently small, x̃1, . . . , x̃m, (ycij)(i,j)∈A is an interior solution of (6).
Since xc = (xc

1, . . . , x
c
m), (ycij)(i,j)∈A is the analytic center solution of (6), this implies∑

(i,j)∈A\B
log

(
ycij − ‖xc

i − xc
j‖2

)
≥

∑
(i,j)∈A\B

log
(
ycij − ‖x̃i − x̃j‖2

)
,

where B satisfies (9) (with xc
i = x̃i = xi for i > m). By Proposition 7.1(b), we have

B ⊆ B̄ for δ sufficiently small. For (i, j) ∈ B̄, since i ∈ MB̄ and j ∈ MB̄, we have
‖x̃i − x̃j‖2 = ‖xc

i − xc
j‖2. Thus we further have∑

(i,j)∈A\B̄

log
(
ycij − ‖xc

i − xc
j‖2

)
≥

∑
(i,j)∈A\B̄

log
(
ycij − ‖x̃i − x̃j‖2

)
.

Taking δ → 0, we have from (27) that ycij → ȳij for all (i, j) ∈ A\B̄ and x̃i = xc
i → x̄c

i

for all i ∈ MB̄. Also, x̃i = x̄c
i for all i /∈ MB̄. Thus, we obtain in the limit that any

cluster point x̄ = (x̄1, . . . , x̄m) of xc (which exists since xc is uniformly bounded by
Assumption 1) belongs to Ξ (using (17) and Corollary 7.3) and satisfies∑

(i,j)∈A\B̄

log
(
ȳij − ‖x̄i − x̄j‖2

)
≥

∑
(i,j)∈A\B̄

log
(
ȳij − ‖x̄c

i − x̄c
j‖2

)

(with x̄i = x̄c
i = xi for i > m). This shows that x̄ is an analytic center of Ξ, so that

in fact x̄ = x̄c.
It is an open question whether the results of this section extend to the SDP

relaxation (3).

8. Methods for solving the SOCP relaxation. We saw in previous sections
that the SOCP relaxation (6), though weaker than the SDP relaxation (3), has the
advantage of a smaller problem size and its interior solutions are useful for identifying
sensors that are accurately positioned. What method would best solve (6) and, in
particular, find an interior solution? A primal-dual interior-point method can find
an analytic center solution of SOCP with good accuracy. However, as we will see in
section 9, applying an interior-point method directly to (7) can be slow, due to the
large size of the SOCP. We tried adapting the distributed SDP method of Biswas
and Ye [11] to the SOCP relaxation. However, possibly due to the weaker SOCP
relaxation, the resulting distributed SOCP method was not satisfactory. Further
studies are needed. Below we describe a third method, based on smoothing and
(block) coordinate gradient descent, which can find an interior solution faster, as we
will see in section 9. This method has the nice feature that its computations easily
distribute over many processors in parallel.
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First, we observe that, for any d ∈ �,

min
y≥z

|y − d2| = [z − d2]+ ∀z ∈ �,

where [t]+ = max{0, t}. Thus, we can rewrite the SOCP relaxation (6) as the uncon-
strained optimization problem

υ
socp = min

x1,...,xm

∑
(i,j)∈A

[‖xi − xj‖2 − d2
ij ]+.(28)

The objective function is convex, but nonsmooth due to the term max{0, ·}. It is well
known in the context of complementarity problems that a smoothing approach can be
effective in handling this type of nonsmoothness; see [14, 18] and references therein.
In particular, for any function h : � → � that is smooth and convex and satisfies
limt→−∞ h(t) = limt→∞ h(t) − t = 0, we have that

lim
μ↓0

μh(t/μ) = [t]+.

Thus, for μ > 0 and small, we have μh(t/μ) ≈ [t]+. In our numerical tests, we use a
popular choice of h due to Chen, Harker, Kanzow, and Smale:

h(t) = ((t2 + 4)1/2 + t)/2.

Thus, the nonsmooth problem (28) is approximated by the smooth problem, param-
eterized by μ > 0:

min
x1,...,xm

∑
(i,j)∈A

μh

(
‖xi − xj‖2 − d2

ij

μ

)
.(29)

For each μ > 0, the objective function is smooth and convex and, as μ → 0, any
cluster point of the solution of (29) is a solution of (28).

Since we wish to find an interior solution, following the interior-point approach,
we add a log-barrier term and consider

min
y≥z

|y − d2| − μ log(y − z) = [z + μ− d2]+ − μ log
(
μ + [d2 − z − μ]+

)
∀z ∈ �.

This is a convex function of z. Upon smoothing [·]+ by μh(·/μ), we obtain the
corresponding smooth barrier problem:

min
x=(x1,...,xm)

fμ(x)
def
=

∑
(i,j)∈A

μh

(
tij
μ

)
− μ log

(
1 + h

(
−tij
μ

))
tij=‖xi−xj‖2+μ−d2

ij

.

(30)

Here, for simplicity, we used the same parameter μ for the log-barrier and the smooth-
ing function. Notice that the objective function fμ is partially separable, being a sum
of functions each of which depends only on the difference of neighboring points. This
suggests that a block-coordinate descent approach may be efficient for solving (30),
whereby at each iteration the objective function fμ is minimized with respect to xi,
for some i ∈ {1, . . . ,m}, while the other points are held fixed at their current value.
Since exact minimization is expensive, the minimization is done only inexactly. In
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particular, we minimize a quadratic approximation of fμ with respect to xi to generate
the descent direction di and then minimize fμ inexactly along di using an Armijo step-
size rule [6]. We decrease μ whenever ‖∇fμ(x)‖ is small relative to μ. The method,
which we refer to as the smoothing coordinate gradient descent (SCGD) method, is
described more precisely below.

0. Initialize μ > 0 and x = (x1, . . . , xm). Choose μ
final

> 0 and a continuous
function ψ : (0,∞) → (0,∞) satisfying limμ↓0 ψ(μ) = 0. Choose stepsize
parameters 0 < β < 1, 0 < σ < 1

2 . Go to step 1.
1. If there exists an i ∈ {1, . . . ,m} satisfying ‖∇xi

fμ(x)‖ > ψ(μ), then set

di = −[Hi]
−1∇xifμ(x),

update

x
new

i = xi + αdi,

and repeat step 1, where Hi ∈ �d×d is a user-chosen symmetric positive
definite matrix, and α is the largest element of {1, β, (β)2, . . . } satisfying

fμ(x1, . . . , xi + αdi, . . . , xm) ≤ fμ(x) − ασdTi ∇xifμ(x).

Otherwise, go to step 2.

2. If μ ≤ μ
final

, then stop. Otherwise decrease μ, and return to step 1.
The SCGD method is highly parallelizable since updating xi requires knowledge

of only neighboring points {xj}j∈NA(i), so nonneighbors can update their positions
simultaneously. Thus the computation can be distributed over the sensors, with each
sensor communicating with its neighbors only.

In our current implementation of the SCGD method, we choose

Hi = ∇2
xixi

fμ(x),

which can be verified to be positive definite. Both ∇xifμ(x) and Hi can be efficiently
evaluated using network data structure for G.

9. Numerical simulation results. In this section, we present simulation re-
sults based on the SOCP relaxations (6) and (7). Following Biswas and Ye [10, 11],

we generate the true positions of the points x
true

1 , . . . , x
true

n independently according
to a uniform distribution on the unit square [−.5, .5]2, and set m = 0.9n (i.e., 10% of

the points are anchors), A = {(i, j) : ‖xtrue

i − x
true

j ‖ < radiorange}, and

dij = ‖xtrue

i − x
true

j ‖ · |1 + εij · noisyfactor | ∀(i, j) ∈ A,

where εij is a random variable representing measurement noise, and radiorange ∈
(0, 1), noisyfactor ∈ [0, 1]. Similar to [10, 11], each εij is normally distributed, and
we use the parameter values of noisyfactor = 0, .001, .01 and radiorange = .06 for
n = 1000, 2000, radiorange = .035 for n = 40007; see Table 1.

We wrote two codes to compute an interior solution of the SOCP relaxation (6).
The first code is written in MATLAB and calls SeDuMi (Version 1.05) by Jos Sturm
[32], a C implementation of a predictor-corrector primal-dual interior-point method

7Other noise models can also be used. We use the model from [10, 11] to facilitate comparison
with previous work.
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Table 1

Input parameters for the test problems and the corresponding SOCP (7) dimensions.
(radiorange = .06 for n = 1000, 2000, radiorange = .035 for n = 4000.)

P n noisyfactor |A| SOCP dim
1 1000 0 5318 21472×28590
2 1000 .001 5068 20472×27340
3 1000 .01 5276 21304×28380
4 2000 0 21010 84440×109050
5 2000 .001 20859 83836×108295
6 2000 .01 20859 83836×108295
7 4000 0 29322 118088×154610
8 4000 .001 29322 118088×154610
9 4000 .01 29322 118088×154610

for solving SDP/SOCP, to find an interior solution of (7).8 The second code is written
in Fortran 77 and implements the SCGD method described in section 8, whereby
we initialize μ = 10−5, and xi = x

true

i + Δi, with the components of Δi randomly
generated from the square [−.2, .2]2. We choose

μ
final

= 10−9, ψ(μ) = max{10μ, 10−7}, β = 0.5, σ = 0.1.

We choose i in step 1 in a cyclic order, and we decrease μ by a factor of 10 in step 2.
These choices were made with little experimentation. Conceivably the performance
can be improved with more judicious choices (e.g., replacing the cyclic order by a
queue, as in the Bellman–Ford method for shortest path [5, section 2.4]).

For the interior solution x1, . . . , xm, (yij)(i,j)∈A found, the position of the ith
sensor is judged to be uniquely positioned (using Propositions 7.1 and 7.2) if there
exists a j ∈ NA(i) satisfying∣∣∣∣‖xi − xj‖2 − yij

∣∣∣∣ ≤ 10−7dij

(with xi = x
true

i for i > m). In what follows, mup is the number of sensors that
are judged to be uniquely positioned by this test. To check the accuracy of these
sensors, we compute the maximum error between their computed positions and their
true positions:

errup = max
i is uniquely positioned

‖xi − x
true

i ‖.

For comparison, we also compute the maximum error between computed positions
and true positions of all sensors:

err = max
i=1,...,m

‖xi − x
true

i ‖.

Table 2 reports the iteration count, cpu time, the final SOCP objective value, mup,
errup, err for the two codes. We see from Table 2 that SCGD is consistently faster
than SeDuMi, though it uses more iterations. SCGD is more sensitive to noisyfactor
than SeDuMi. We do not have a good explanation for this yet. On the other hand, the

8We also tried a new version 1.1 of SeDuMi, maintained by the Advanced Optimization Labora-
tory at McMaster University, but it gave wrong answers on our SOCP problems.
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Table 2

Times to solve SOCP relaxation and accuracy of sensors judged to be uniquely positioned. cpu
times are in minutes on an HP DL360 workstation, running MATLAB (Version 7.0) and Gnu F-77
compiler (Version 3.2.57) under Red Hat Linux 3.5.

SeDuMi SCGD
P iter/cpu/obj/mup/errup/err iter/cpu/obj/mup/errup/err
1 22/3.6/7.8e-6/402/7.2e-4/.11 1803189/.2/2.1e-06/357/3.8e-5/.11
2 22/3.2/9.1e-4/473/1.8e-3/.17 3523150/.4/9.1e-4/442/1.5e-3/.17
3 22/3.9/1.0e-2/554/1.5e-2/.17 14381707/1.6/1.0e-2/518/1.1e-2/.17
4 25/176.7/6.0e-6/1534/4.3e-4/.058 3482697/0.8/1.5e-5/1541/3.3e-4/.077
5 25/208.6/1.1e-2/1464/3.6e-3/.088 7894112/1.8/1.1e-2/1466/3.6e-3/.090
6 17/161.8/1.30/1710/5.1e-2/.093 12113931/2.9/1.30/1707/5.1e-2/.094
7 27/202.5/4.5e-5/2851/4.0e-4/.099 9345127/1.6/2.1e-5/2844/3.2e-4/.099
8 25/193.8/4.7e-3/2938/3.2e-3/.099 29304035/5.1/4.7e-3/2894/3.0e-3/.099
9 25/196.3/4.9e-2/3073/1.0e-2/.099 34650852/6.1/4.9e-2/3020/9.1e-3/.099

cpu times for SCGD are still high on problems with higher distance errors. These times
can conceivably be further reduced by fine tuning the algorithm parameters and/or
distributing the computations over multiple processors. This is a topic for future
research. One idea would be to adapt the approach in [22] by terminating the SOCP
method early and then applying a local descent method to the original problem (1) to
refine the solution. Or we can find new methods to solve the SOCP (6), as is discussed
in section 12.

We also see from Table 2 that errup is much smaller than err and decreases with
noisyfactor, which corroborates Propositions 7.1 and 7.2. For the larger problems 4–9,
mup is large (80–90% of m), showing that a large number of sensors are accurately
positioned (with error errup) by the interior solutions found. Of course, mup depends
on radiorange also. If radiorange is small, so the graph G has low connectivity, then
mup would be small.

The true sensor positions and the computed positions for problems 1 and 3 are
shown in Figure 7. Notice the close match of sensors whose true positions lie in the
convex hull of “nearby” anchors. The positions are least accurate on the boundary,
as we expect. The computed position of each sensor lies in the convex hull of its
neighbors, corroborating Proposition 6.2.

At the suggestion of a referee, we also compare the SOCP solutions with solutions
of the SDP (3) when n,m are small, noisyfactor is large, and εij ’s have different

distributions. In particular, we apply SeDuMi to compute a solution Z =
[
Y XT

X Id

]
of

the SDP (4), which is likely to be the analytic center solution, and extract the sensor
positions X = [x1 · · · xm]. To compare with existing work, we follow a recent study
by Biswas et al. [9] of an SDP solution under noisy distance measurements and choose
n = 64, m = 60, radiorange = 0.3, with 4 anchors at (±.45,±.45). We also choose
noisyfactor ∈ {0.1, 0.2} and choose εij ’s to be (i) normally distributed, (ii) uniformly
distributed on [−

√
3,
√

3], or (iii) distributed as an additive-Gaussian which, with
probability 1

2 , is normally distributed with mean 1 (otherwise with mean −1). Thus
εij has mean 0 and variance 1. Table 3 reports the final objective value for SDP and
SOCP, as well as

errrms =

m∑
i=1

‖xi − x
true

i ‖2

and mup, errup for SOCP.
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Fig. 7. The left figure shows the anchors (“ ◦”) and the analytic center solution found by SCGD
for problem 1 (n = 1000). Each sensor position found (“ ·”) is joined to its true position (“ ∗”) by
a line. The right figure shows the same information for problem 3.

Table 3

Comparing analytic center solutions of SDP and SOCP for smaller problems and more noisy
distance measurements.

SOCP SDP
Noise Pdf noisyfactor obj/errrms/mup/errup obj/errrms

Normal .1 .28/.24/52/.10 1.78/.06
.2 .43/.48/48/.17 2.82/.23

Uniform .1 .09/.41/30/.07 .88/.13
.2 .24/.29/41/.11 2.26/.16

Additive- .1 .34/.63/42/.17 2.30/.41
Gaussian .2 .82/.71/52/.22 3.86/.50

We see from Table 3 that objective value is higher and errrms is lower for the
SDP solution than for the SOCP solution, corroborating Proposition 3.1. The errrms

is higher for both SDP and SOCP solutions under additive Gaussian noise. We do
not yet have a good explanation for this. Figures 8–10 display the SDP solutions
and SOCP solutions for the case of noisyfactor = .2. These results suggest that, for
small randomly generated problems where the points are irregularly spaced, SDP (3)
is much more preferable than SOCP (6). This situation could change with alternative
problem formulations (see section 11), so further studies would be needed. In general,
SOCP relaxation and mixed SDP-SOCP relaxation (see next section) seem most useful
for larger problems where SDP relaxation is expensive to solve. Also, the SCGD
method for solving (6) can be implemented in a highly distributed manner, with each
sensor communicating with its neighbors only; see discussions at the end of section 8.
This may help to reduce communication and synchronization delays among sensors
in practice.

10. A mixed SDP-SOCP relaxation. Instead of an SDP or an SOCP relax-
ation, we can more generally consider a mixed SDP-SOCP relaxation of (1). Let N
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Fig. 8. The left figure shows the anchors (“ ◦”) and the analytic center solution of SDP found
by SeDuMi for normally distributed noise and noisyfactor = .2 (row 2 of Table 3). Each sensor
position found (“ ·”) is joined to its true position (“ ∗”) by a line. The right figure shows the same
information for the analytic center solution of SOCP found by SCGD.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Fig. 9. This figure is analogous to Figure 8, but for uniformly distributed noise and
noisyfactor = .2 (row 4 of Table 3).

be any subset of {1, . . . ,m}. By renumbering the points if necessary, we assume that

N = {m̂ + 1, . . . ,m},

with 0 ≤ m̂ ≤ m. Let

Â def
= {(i, j) ∈ A : i ∈ N or j ∈ N}.



182 PAUL TSENG

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Fig. 10. This figure is analogous to Figure 8, but for additive Gaussian noise and noisyfactor =
.2 (row 6 of Table 3).

Then the mixed SDP-SOCP relaxation associated with N is

min
x1,...,xm,yij ,Z

∑
(i,j)∈A\Â

∣∣∣〈b̂ij b̂Tij , Z〉
F
− d2

ij

∣∣∣ +
∑

(i,j)∈Â

|yij − d2
ij |

s.t. [Zij ]i,j≥n−d
= Id, Z 
 0,

[Zij ]i≥n−d,j≤m̂
= [x1 · · · xm̂],

yij ≥ ‖xi − xj‖2 ∀(i, j) ∈ Â,

where b̂ij
def
=

[
Im̂ 0 0
0 0 A

]
(ei− ej). Notice that Z ∈ Sd+m̂. This relaxation reduces to the

SDP relaxation (3) if Â = ∅ and reduces to the SOCP relaxation (6) if Â = A.
Such a mixed SDP-SOCP relaxation mediates between approximation accuracy

and solution efficiency. In particular, Propositions 5.1 and 6.2 suggest putting into
Â those pairs (i, j) ∈ A of sensors that are estimated to lie in the convex hull of
their neighbors. Can the results in sections 4–7 be extended to the mixed SDP-SOCP
relaxation? Can we design efficient methods to find interior solutions? These are
topics for future research.

11. Variants of the basic problem. If “sum” is replaced by “max,” then (1)
becomes

min
x1,...,xm

max
(i,j)∈A

|‖xi − xj‖2 − d2
ij |,(31)

and the SDP relaxation (3) and SOCP relaxation (6) change accordingly. In general,
if the objective function is a convex piecewise linear/quadratic function of ‖xi−xj‖2,
(i, j) ∈ A, then both an SDP relaxation and an SOCP relaxation can be analogously
formulated. If the distances are not squared, then (1) becomes

min
x1,...,xm

∑
(i,j)∈A

|‖xi − xj‖ − dij |.(32)
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If the distances dij are exact (i.e., υ
opt

= 0), then (32) is equivalent to (1). In general,
(32) puts a smaller penalty on large deviation from dij and has different solutions
from (1). We leave the choice of the objective function to the modeler.

For (32), an SOCP relaxation, which seems more natural than an SDP relaxation,
is

min
x1,...,xm,yij

∑
(i,j)∈A

|yij − dij |

s.t. yij ≥ ‖xi − xj‖ ∀(i, j) ∈ A.

(33)

By noting that yij ≥ dij in any solution of (33), we can write this in the standard
conic form

min
∑

(i,j)∈A
uij

s.t. xi − xj − wij = 0 ∀(i, j) ∈ A,

yij − uij = dij ∀(i, j) ∈ A,

uij ≥ 0, (yij , wij) ∈ Qconed+1 ∀(i, j) ∈ A,

(34)

where Qconed+1 def
= {(y, w) ∈ � × �d : y ≥ ‖w‖} [32]. This SOCP has a smaller size

than (7). In general, if the objective function is a convex piecewise linear/quadratic
function of ‖xi − xj‖, (i, j) ∈ A, then an SOCP relaxation can be analogously for-
mulated. Other variants of (1) involve replacing the Euclidean (	2) distance by, say,
rectilinear (	1) distance or 	∞ distance.

When υ
opt = 0, (33) is equivalent to (6) and, moreover, they have the same

analytic center solution.

12. Future directions. There are many directions for future research. For
example, can our results for (1) be extended to other variants such as (31) and (32)?
How do these variants compare under different distance noise distributions? What
about additional constraints as discussed in [16] or replacing the 2-norm by a p-norm
(1 ≤ p ≤ ∞)? Can our analysis of the SOCP relaxation (6) be extended to the mixed
SDP-SOCP relaxation of section 10? Can finite termination of the SCGD method
be proved? Finally, the SOCP relaxation (28) may be interpreted as the Lagrangian
dual of a d-commodity convex network flow problem. For d = 1, this can be solved
very efficiently using an ε-relaxation method [5, 7, 19]. Can this method be extended
to d ≥ 2, thus speeding up the solution time of the SOCP relaxation?
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[30] S. N. Simić and S. Sastry, Distributed Localization in Wireless Ad Hoc Networks, Report,
Department of Electrical Engineering and Computer Sciences, University of California,
Berkeley, CA, 2002; First ACM International Workshop on Wireless Sensor Networks and
Applications, Atlanta, 2002, submitted.

[31] A. M.-C. So and Y. Ye, Theory of Semidefinite Programming for Sensor Network Localization,
Report, Electrical Engineering, Stanford University, Stanford, CA, 2004; in SODA 2005;
Math. Program., to appear.

[32] J. F. Sturm, Using Sedumi 1.02, A MATLAB∗ Toolbox for Optimization over Symmetric
Cones (Updated for Version 1.05), Report, Department of Econometrics, Tilburg Univer-
sity, Tilburg, The Netherlands, 1998–2001.

[33] T. Wang and J.-S. Pang, Global error bounds for convex quadratic inequality systems, Opti-
mization, 31 (1994), pp. 1–12.



SIAM J. OPTIM. c© 2007 Society for Industrial and Applied Mathematics
Vol. 18, No. 1, pp. 186–205
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JIMING PENG† AND YU WEI‡

Abstract. One of the fundamental clustering problems is to assign n points into k clusters
based on minimal sum-of-squared distances (MSSC), which is known to be NP-hard. In this paper,
by using matrix arguments, we first model MSSC as a so-called 0-1 semidefinite programming (SDP)
problem. We show that our 0-1 SDP model provides a unified framework for several clustering
approaches such as normalized k-cut and spectral clustering. Moreover, the 0-1 SDP model allows
us to solve the underlying problem approximately via the linear programming and SDP relaxations.
Second, we consider the issue of how to extract a feasible solution of the original 0-1 SDP model from
the optimal solution of the relaxed SDP problem. By using principal component analysis, we develop
a rounding procedure to construct a feasible partitioning from a solution of the relaxed problem. In
our rounding procedure, we need to solve a K-means clustering problem in �k−1, which can be done

in O(nk2−2k+2) time. In case of biclustering, the running time of our rounding procedure can be
reduced to O(n logn). We show that our algorithm provides a 2-approximate solution to the original
problem. Promising numerical results for biclustering based on our new method are reported.

Key words. K-means clustering, principal component analysis, 0-1 SDP, relaxation, computa-
tional complexity, approximation
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1. Introduction. In general, clustering involves partitioning a given data set
into subsets based on the closeness or similarity among the data. Clustering is one of
the major issues in data mining and machine learning with many applications arising
from different disciplines including text retrieval, pattern recognition, and web mining
[19, 23].

There are many kinds of clustering problems and algorithms, resulting from vari-
ous choices of measurements used in the model to measure the similarity/dissimilarity
among entities in a data set. For a comprehensive introduction to the topic, we refer
the reader to the books [19, 23], and for more recent results, see survey papers [9] and
[20].

Among various criteria in clustering, the minimum sum-of-squared Euclidean dis-
tance (MSSC) from each entity to its assigned cluster center is the most intuitive and
broadly used. In the present paper, we are particularly interested in the partitioning
procedure for MSSC. A well-known method to deal with this problem is the classical
K-means [28]. To describe the algorithm, let us go into a bit more detail.
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Given a set S of n points in a d-dimensional Euclidean space,1 denoted by

S = {si = (si1, . . . , sid)
T ∈ Rd, i = 1, . . . , n},

the task of a partitional MSSC is to find an assignment of the n points into k disjoint
clusters S = (S1, . . . , Sk) centered at cluster centers cj (j = 1, . . . , k) such that the
total sum-of-squared Euclidean distances from each point si to its assigned cluster
centroid ci

f(S,S) =

k∑
j=1

|Sj |∑
i=1

∥∥∥s(j)
i − cj

∥∥∥2

is minimized. Here |Sj | is the number of points in Sj , and s
(j)
i is the ith point in

Sj . Note that if the cluster centers are known, then the function f(S,S) achieves its
minimum when each point is assigned to its closest cluster center. Therefore, MSSC
can be described by the following bilevel programming problem (see, for instance,
[4, 30]):

min
c1,...,ck

n∑
i=1

min{‖si − c1‖2
, . . . , ‖si − ck‖2}.(1)

Geometrically speaking, assigning each point to the nearest center fits into a frame-
work called the Voronoi program, and the resulting partition is named the Voronoi
partition. On the other hand, if the points in cluster Sj are fixed, then the function

f(Sj ,Sj) =

|Sj |∑
i=1

∥∥∥s(j)
i − cj

∥∥∥2

is minimized when

cj =
1

|Sj |

|Sj |∑
i=1

s
(j)
i .

The classical K-means algorithm [28], based on the above two observations, is de-
scribed as follows.

K-means clustering algorithm.
(1) Randomly generate k cluster centers in a domain containing all the points,
(2) Assign each point to the closest cluster center,
(3) Recompute the cluster centers using the current cluster memberships,
(4) If a convergence criterion is met, stop; Otherwise go to step 2.
In spite of its popularity, the above simple procedure is very sensitive to the

initial choice of the starting points and could not find the global solution in terms of
its objective in general.

Another way to model MSSC works as follows. Let X = [xij ] ∈ �n×k be the
assignment matrix defined by

xij =

{
1 if si is assigned to Sj ;
0 otherwise.

1In the present paper, we always assume that n ≥ k > 1, because otherwise the underlying
clustering problem becomes trivial.
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As a consequence, the cluster center of the cluster Sj , as the mean of all the points
in the cluster, is defined by

cj =

∑n
l=1 xljsl∑n
l=1 xlj

.

Using this fact, we can represent (1) as

min
xij

k∑
j=1

n∑
i=1

xij

∥∥∥∥si −
∑n

l=1 xljsl∑n
l=1 xlj

∥∥∥∥
2

(2)

s.t.

k∑
j=1

xij = 1 (i = 1, . . . , n),(3)

n∑
i=1

xij ≥ 1 (j = 1, . . . , k),(4)

xij ∈ {0, 1} (i = 1, . . . , n; j = 1, · · · , k).(5)

The constraint (3) ensures that each point si is assigned to one and only one cluster,
and constraint (4) ensures that there are exactly k clusters. This is a mixed integer
programming problem with a nonlinear objective function [14], which is NP-hard. The
problem has two difficulties. First, the constraints are discrete. Second, the objective
is nonlinear and nonconvex. Both difficulties make MSSC extremely hard to solve.

Many different approaches have been proposed for attacking (2) both in the com-
munities of machine learning and optimization [1, 14, 8]. Most methods are heuristics
that can locate only a good local solution and not the exact global solution for (2).
Only a few works are dedicated to the exact algorithm for (2) as listed in the references
of [8]. In particular, by using the notion of Voronoi partitions, Inaba, Katoh, and Imai
[18] showed that the exact solution of (2) can be located in O(nkd+1) time. Due to its
high complexity, the algorithm can be applied only to small data sets. In the special
case k = 2, Hansen, Jaumard, and Mladenović [15] provided an algorithm running in
O(nd+1 log n) time, where d is the dimension of the space to which the entities belong.
Promising numerical results are reported for data sets in low dimensions.

Approximation methods provide a useful approach for solving (2). There are
several ways to approximate (2). For example, Hasegawa et al. [16] proposed to
select the k points from the present data set and then run the classical K-means
for the selected centers. If we try all possible combinations of the k starting centers
and output the best solution as the final one, then we can obtain a 2-approximately
optimal solution for (2) in O(nk+1) time [16]. In [33], Mutousek proposed a geometric
approximation method that can find a (1 + ε) approximately optimal solution for
(2) in O(dn logk n) time, where the constant hidden in the big-O notation depends
polynomially on ε−1. Though theoretically efficient, so far no numerical results have
been reported based on Matousek’s algorithm. More recently, Kumar, Sabharwal,

and Sen [25] proposed a linear time O(2ε
−O(1)

nd) algorithm for K-means clustering
based on random sampling techniques and showed that their algorithm can find a
(1 + ε) approximation with a certain probability. Only theoretical analysis based on
the probabilistic model is presented, however. For more results on approximation
algorithms for K-means clustering based on randomization techniques, we refer the
reader to [25] and the references therein.
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An efficient way of approximation is to attack the original problem (typically NP-
hard) by solving a relaxed polynomially solvable problem. This has been well studied
in the field of optimization, in particular, in the areas of combinatorial optimization
and semidefinite programming (SDP) [10]. We noted that recently, Xing and Jor-
dan [44] considered the SDP relaxation for the so-called normalized k-cut spectral
clustering.

In the present paper, we mainly focus on developing approximation methods for
(2) based on SDP relaxation. A crucial step in relaxing (2) is to rewrite the objective
in (2) as a simple convex function of matrix argument that can be tackled easily, while
the constraint set still enjoys certain geometric properties. This idea was possibly first
suggested in [12], where the authors owed the idea to an anonymous referee. However,
the authors of [12] did not explore the idea in depth to design any usable algorithm.
A similar effort was made in [45], where the authors rewrote the objective in (2) as a
convex quadratic function in which the argument is an n× k orthonormal matrix.

One major contribution of the present paper is the introduction of a new opti-
mization model (0-1 SDP), which follows the same stream as in [12, 45]. However,
different from the approach in [45], where the authors used only a quadratic objective
and simple spectral relaxation, we elaborate more on how to characterize (2) exactly
by means of matrix arguments. In particular, we show that MSSC can be mod-
eled as the so-called 0-1 SDP, which can be further relaxed to polynomially solvable
linear programming (LP) and SDP. Our model provides novel avenues not only for
solving MSSC, but also for solving clustering problems based on some other criteria.
For example, the K-means clustering in the kernel space and the clustering problem
based on normalized cuts can also be embedded into our model. Moreover, by slightly
changing the constraints in the 0-1 SDP model, we can attack clustering problems
with constraints, e.g., the so-called balanced clustering.

The second major contribution of the present work is the development of an
efficient approximation algorithm for the 0-1 SDP model, especially for biclustering.
For this purpose, we first relax the 0-1 SDP model by removing some constraints so
that the relaxed problem can be solved by using singular value decomposition (SVD) of
the underlying coefficient matrix. Then we introduce a rounding procedure to extract
a feasible solution for the original 0-1 model. In our rounding procedure, we need
to solve the K-means clustering problem in �k−1, which can be done in O(nk2−2k+2)
time. We show that our algorithm provides a 2-approximate solution to the original
K-means clustering.

Our algorithm uses an idea similar to the so-called spectral clustering [7, 45, 34],
where the SVD of the coefficient matrix is employed to calculate the eigenvectors
corresponding to the first k largest eigenvalues of the coefficient matrix, and these
eigenvectors are further used to formulate a new data set in a lower dimension for
which the classical K-means clustering is performed. A similar idea has been adopted
in the principal components analysis (PCA) [22, 5]. In particular, Drineas et al. [7]
proposed to solve the K-means clustering problem in �k whose solution can be found
in O(nk2+1) time and showed that their method can provide a 2-approximate solution
to the original K-means clustering problem.2 For the classical K-means clustering,
our algorithm can be viewed as a slight improvement over the algorithm in [7]. As we

2It should be pointed out that although the algorithm in [7] enjoys some nice properties, the
high complexity in solving the subproblem might prevent it from practical efficiency when dealing
with large-scale data sets. For example, for the biclustering problem with a data set with n = 104,
the running time of the algorithm in [7] will reach a formidable O(1020).
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shall see later in our discussion, the only difference between the two algorithms in [7]
and that in the present paper lies in how the 0-1 SDP model is relaxed.

It should be mentioned that for the cases with k ≥ 3, the complexity of our
algorithm is not as good as that of the algorithms in [16, 33]. However, in the case
of biclustering (k = 2, which is still NP-hard), the global solution to the subproblem
in our algorithm can be found in O(n log n) time. This implies that, for the classical
K-means clustering problems with k = 2 and d << n, the complexity of our algorithm
reduces to O(n log n). Although the theoretical complexity of our algorithm is only
slightly better than that of the algorithm in [33], our algorithm is practically much
simpler and allows us to efficiently solve large-scale biclustering problems in many
applications with guaranteed quality.

Besides the above-mentioned contributions, our algorithm also provides a useful
tool for solving several new clustering problems such as the balanced K-means clus-
tering for which no approximation algorithms have been reported in the literature.
The algorithm is particularly helpful for solving clustering problems arising from text
mining where the data is typically in very high dimension (n << d) since the original
data is only used to calculate the coefficient matrix.

The paper is organized as follows. In section 2, we show that MSSC can be
modelled as a 0-1 SDP, which allows convex relaxation such as SDP and LP. In
section 3, we consider approximation algorithms for solving our 0-1 SDP model. We
propose to use PCA to reduce the dimension of the problem, and then perform K-
means clustering in the lower dimension. The approximate ratio between the obtained
solution and the global solution of the original K-means clustering is estimated in
section 4. In section 5, we report some preliminary numerical tests, and finally we
close the paper by a few concluding remarks.

2. 0-1 SDP for clustering problems. In this section, we establish the equiv-
alence between several clustering scenarios and the 0-1 SDP model. The section has
three parts. In the first part, we briefly describe SDP and 0-1 SDP. In the second
part, we establish the equivalence between MSSC and the 0-1 SDP model. In the last
part, we explore the interrelation between the 0-1 SDP model and other K-means-type
clustering problems.

2.1. 0-1 semidefinite programming. In general, SDP refers to the problem
of minimizing (or maximizing) a linear function over the intersection of a polyhedron
and the cone of symmetric and positive semidefinite matrices. The canonical SDP
takes the following form:

(SDP)

⎧⎨
⎩

min Tr(WZ)
s.t. Tr(BiZ) = bi for i = 1, . . . ,m,

Z � 0.

Here Tr(M) denotes the trace of the matrix M , and Z � 0 means that Z is positive
semidefinite. If we replace the constraint Z � 0 by the requirement that Z2 = Z and
Z = ZT , then we end up with the following problem:

(0-1 SDP)

⎧⎨
⎩

min Tr(WZ)
s.t. Tr(BiZ) = bi for i = 1, . . . ,m,

Z2 = Z,Z = ZT .

We call it 0-1 SDP owing to the similarity of the constraint Z2 = Z to the classical
0-1 requirement in integer programming.
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2.2. Equivalence of MSSC to 0-1 SDP. In this subsection we give the 0-1
SDP model of MSSC, which was first established in [36]. However, for completeness,
we still give a detailed description of the reformulation process.

By rearranging the items in the objective of (2), we have

f(S,S)=

n∑
i=1

‖si‖2

⎛
⎝ k∑

j=1

xij

⎞
⎠−

k∑
j=1

‖
∑n

i=1 xijsi‖2∑n
i=1 xij

(6)

= Tr
(
WSW

T
S

)
−

k∑
j=1

‖
∑n

i=1 xijsi‖2∑n
i=1 xij

,

where WS ∈ �n×d denotes the matrix whose ith row is sTi . Since X is an assignment
matrix, we have

XTX = diag

(
n∑

i=1

x2
i1, . . . ,

n∑
i=1

x2
ik

)
= diag

(
n∑

i=1

xi1, . . . ,

n∑
i=1

xik

)
.

Let

Z := [zij ] = X(XTX)−1XT ;

we can write (6) as Tr
(
WSW

T
S (I − Z)

)
= Tr

(
WT

S WS

)
− Tr

(
WT

S WSZ
)
. Obviously Z

is a projection matrix satisfying Z2 = Z with nonnegative elements. For any integer
m, let em be the vector in �m with all entries equal to 1. We can write the constraint
(3) as

Xek = en.

It follows immediately that

Zen = ZXek = Xek = en.

Moreover, the trace of Z should equal to k, the number of clusters, i.e.,

Tr(Z) = k.

Therefore, we have the following 0-1 SDP model for MSSC:

minTr
(
WSW

T
S (I − Z)

)
(7)

Ze = e,Tr(Z) = k,

Z ≥ 0, Z = ZT , Z2 = Z.

Here Z ≥ 0 means the componentwise inequality, and the constraints ZT = Z and
Z2 = Z imply that Z is an orthogonal projection matrix.

The following result from [36] established the equivalence between the 0-1 SDP
model (7) and MSSC.

Theorem 2.1. Solving the 0–1 SDP problem (7) is equivalent to finding a global
solution of the integer programming problem (2).

It is worthwhile comparing the two objective functions in (7) and (2). First, the
objective function in (7) is linear while the constraint in (7) is still nonlinear. The
most difficult part in the constraint of (7) is the requirement that Z2 = Z. Several
relaxations of problem (7) will be discussed in the next section.
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2.3. 0-1 SDP reformulation for other clustering approaches. In this sub-
section, we show that the 0-1 SDP can also be used for other clustering approaches
based on other measurements. Let us consider the more general 0-1 SDP model for
clustering,

minTr(W (I − Z))(8)

Ze = e,Tr(Z) = k,

Z ≥ 0, Z2 = Z,Z = ZT ,

where W is the so-called affinity matrix whose entries represent the similarities or
closeness among the entities in the data set. In the MSSC model, we use the geometric
distance between two points to characterize the similarity between them. In this case,
we have Wij = sTi sj . However, we can also use a general function φ(si, sj) to describe
the similarity relationship between si and sj . For example, let us choose

Wij = φ(si, sj) = exp−‖si−sj‖2

σ , σ > 0.(9)

This leads to the so-called K-means clustering in the kernel space. In order to apply
the classical K-means algorithm to (8), we can first use the singular eigenvalue decom-
position method to decompose the matrix W into the product of two matrices, i.e.,
W = UTU . In this case, each column of U can be cast as a point in a suitable space.
Then, we can apply the classical K-means method for the MSSC model to solving
problem (8). This is exactly the procedure that the recently proposed spectral clus-
tering follows [2, 34, 43, 44]. However, we now have a new interpretation for spectral
clustering, i.e., a variant of MSSC in a different kernel space. It is worthwhile men-
tioning that certain variants of K-means can be adapted to solve (8) directly without
using the SVD of the affinity matrix.

We note that recently, the normalized cut and spectral clustering have attracted a
lot of attention in the machine learning community, and many interesting results about
these two approaches have been reported [13, 31, 34, 40, 43, 44, 45]. In particular,
Zha et al. [45] discussed the links between spectral relaxation and K-means clustering.
Similar ideas were also used in [34]. An SDP relaxation for the normalized k-cut
problem was discussed in [44]. For completeness, we next describe briefly how the
normalized cut problem can be embedded into the 0-1 SDP model. Let us first recall
the exact model for the normalized k-cut problem [44]. Let W be the affinity matrix
defined by (9) and X be the assignment matrix in the set Fk defined by

Fk = {X : Xek = en, xij ∈ {0, 1}}.

Let d = Wen and D = diag (d). The exact model for the normalized k-cut problem
in [44] can be rewritten as

max
X∈Fk

Tr
(
(XTDX)−1XTWX

)
.(10)

If we define

Z = D
1
2X(XTDX)−1XTD

1
2 ,

then we have

Z2 = Z,ZT = Z,Z ≥ 0, Zd
1
2 = d

1
2 .
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Following a similar process as in the proof of Theorem 2.1, we can show that the
model (10) is equivalent to the following 0-1 SDP:

minTr
(
D− 1

2WD− 1
2 (I − Z)

)
(11)

Zd
1
2 = d

1
2 ,Tr(Z) = k,

Z ≥ 0, Z2 = Z,Z = ZT .

The only difference between (8) and (11) is the introduction of the scaling matrix D.
Besides the above-mentioned cases, the 0-1 SDP model can also be applied to

the so-called balanced clustering [3], where the number of entities in every cluster is
restricted. One special case of balanced clustering is requiring the number of entities
in every cluster to be equal to or larger than a prescribed quantity, i.e., |Ci| ≥ ñ. It
is straightforward to see that such a problem can be modeled as a 0-1 SDP by adding
the constraint Zii ≤ 1

ñ to (8), which leads to the following problem:

minTr(W (I − Z))(12)

Zii ≤
1

ñ
, i = 1, . . . , n,

Ze = e,Tr(Z) = k,

Z ≥ 0, Z2 = Z,Z = ZT .

3. Approximation algorithms for solving 0-1 SDP. In this section we dis-
cuss how to solve the 0-1 SDP model for clustering. For simplification of our discus-
sion, we restrict ourselves to the model (8) with a positive semidefinite matrix W .
This assumption is satisfied in the MSSC model as well as in the so-called kernel
K-means clustering, where the kernel matrix is defined by (9) or some other kernel
function. It is worthwhile mentioning that although we restrict our discussion to (8),
with minimal effort our results can be extended to (11) as well.

The section consists of two parts. In the first subsection, we give a general
introduction to algorithms for solving (8). In the second part, we introduce a new
approximation method for (8).

3.1. Algorithms for 0-1 SDP. In this subsection, we discuss various algo-
rithms for solving the 0-1 SDP model (8). From an algorithm design viewpoint, we
can categorize all the algorithms for (8) into two groups. The first group consists of
the so-called feasible iterative algorithms, where all the generated iterates are feasible
for problem (8) and the objective function value decreases step by step until some
termination criterion is reached. The classical K-means algorithm described in the
introduction can be interpreted as a special feasible iterative scheme for attacking
(8). It is also easy to see that many variants of the K-means algorithm, such as the
variants proposed in [17, 21], can also be interpreted as specific iterative schemes for
(8).

The second group of algorithms for (8) consists of approximation algorithms that
are based on LP/SDP relaxation. We start with a general procedure for those algo-
rithms.

Approximation Algorithm Based on Relaxation.
Step 1. Choose a relaxation model for (7),
Step 2. Solve the relaxed problem for an approximate solution,
Step 3. Use a rounding procedure to extract a feasible solution to (7) from the ap-

proximate solution.
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Various relaxations and rounding procedures have been proposed for solving (8)
in the literature. For example, in [36], Peng and Xia considered a relaxation of (8)
based on linear programming and a rounding procedure was also proposed in that
work. Xing and Jordan [44] considered an SDP relaxation for the normalized cut
problem and proposed a rounding procedure based on the SVD of the solution Z of
the relaxed problem, i.e., Z = UTU . In their approach, every row of UT is cast as
a point in the new space, and then the weighted K-means clustering is performed
over the new set of points in �k. Similar works for spectral clustering can also be
found in [13, 31, 34, 43, 45], where the SVD of the underlying matrix W is used
and a K-means-type clustering based on the eigenvectors of W is performed. In the
above-mentioned works, the solutions obtained from the weighted K-means algorithm
for the original problem and that based on the eigenvectors of W has been compared,
and simple theoretical bounds have been derived based on the eigenvalues of W .

The idea of using the SVD of the underlying matrix W is natural in the so-
called PCA [22]. In [5], the link between PCA and K-means clustering was also
explored and simple bounds were derived. In particular, Drineas et al. [7] proposed
using PCA to reduce the dimension of the input data, and then performing K-means
clustering in the reduced subspace �k. They proved that their algorithm can provide
a 2-approximation solution to the clustering problem in the original input space.

We note that in [40], Shi and Malik used the eigenvector of a projection matrix of
W (not W itself) onto a subspace to construct a feasible partitioning for the original
problem. In this paper, we follow a similar idea as that in [40]. We first use SVD
to obtain the k − 1 eigenvectors corresponding to the first k − 1 largest eigenvalues
of a projection matrix of W , and then perform K-means clustering in �k−1. This
allows us to improve the complexity of the algorithm for solving the subproblem in
the reduced space. As we shall see later, such a rounding procedure can also provide
a 2-approximation solution to the original problem.

3.2. A new approximation method. In this subsection, we describe our SDP-
based approximation method for (8). We start our discussion on various relaxation
forms for (8).

First, recall that in (8), the argument Z is stipulated to be a projection matrix,
i.e., Z2 = Z and Z = ZT . This implies that the matrix Z is a positive semidefinite
matrix whose eigenvalues are either 0 or 1. A straightforward relaxation to (8) is
replacing the requirement Z2 = Z by the relaxed condition

I � Z � 0.

Note that in (8), we further stipulate that all the entries of Z are nonnegative, and
the sum of each row (or each column) of Z equals to 1. This means all the eigenvalues
of Z are less than or equal to 1. In this circumstance, the constraint Z � I becomes
superfluous and can be removed. Therefore, we obtain the following SDP relaxation3:

minTr(W (I − Z))(13)

Ze = e,Tr(Z) = k,

Z ≥ 0, Z � 0.

The above problem is feasible and bounded below. We can apply many existing
optimization solvers such as interior-point methods to solve (13). It is known that an

3In [44], the constraint Ze = e in (8) is replaced by Zd = d, where d is a positive scaling vector
associated with the affinity matrix.
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approximate solution to (13) can be found in polynomial time. However, we would
like to point out here that although there exist theoretically polynomial algorithms
for solving (13), most of the present optimization solvers are unable to handle the
problem in large size efficiently.

Another interesting relaxation to (8) is to further relax (13) by dropping some
constraints. For example, if we remove the nonnegative requirement on the elements
of Z, then we obtain the following simple SDP problem4:

minTr(W (I − Z))(14)

Ze = e,Tr(Z) = k,

I � Z � 0.

In what follows we discuss how to solve (14). Note that if Z is a feasible solution for
(14), then we have

1√
n
Ze =

1√
n
e,

which implies 1√
n
e is an eigenvector of Z corresponding to its largest eigenvalue 1.

For any feasible solution of (14), let us define

Z1 = Z − 1

n
eeT .

It is easy to see that

Z1 =

(
I − 1

n
eeT

)
Z =

(
I − 1

n
eeT

)
Z

(
I − 1

n
eeT

)
;(15)

i.e., Z1 represents the projection of the matrix Z onto the null subspace of e. Moreover,
it is easy to verify that

Tr(Z1) = Tr(Z) − 1 = k − 1.

Let W1 denote the projection of the matrix W onto the null space of e, i.e.,

W1 =

(
I − 1

n
eeT

)
W

(
I − 1

n
eeT

)
.(16)

Then, we can reduce (14) to

minTr(W1(I − Z1))(17)

Tr(Z1) = k − 1,

I � Z1 � 0.

Let λ1, . . . , λn−1 be the eigenvalues of the matrix W1 listed in the order of decreasing
values. The optimal solution of (17) can be achieved if and only if [35]

Tr(W1Z1) =

k−1∑
i=1

λi.

4We point out that in [7], the authors considered a relaxation of the K-means clustering based
on projection matrices of rank k. This relaxation is equivalent to simply removing the nonnegativity
requirement on the elements of Z and the constraint Ze = e. In such a case, solving the relaxed
problem in [7] reduces to the standard PCA.
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This gives us an easy way to solve (17) and correspondingly (14). The algorithmic
scheme for solving (14) can be described as follows.

Relaxation Algorithm 1.
Step 1. Calculate the projection W1 via (16);
Step 2. Use the SVD method to compute the first k− 1 largest eigenvalues of the

matrix W1 and their corresponding eigenvectors v1, . . . , vk−1,
Step 3. Set

Z =
1

n
eeT +

k−1∑
i=1

vivi
T
.

From our above discussion, we immediately have the following theorem.
Theorem 3.1. Let Z∗ be the global optimal solution of (8), and λ1, . . . , λk−1 be

the first largest eigenvalues of the matrix W1. Then we have

Tr(W (I − Z∗)) ≥ Tr(W ) − 1

n
eTWe−

k−1∑
i=1

λi.

It is of interest to discuss briefly the computational cost of the relaxation algo-
rithm 1. In general, to compute the projection matrix W1, we need O(n2) operations
in total. Typically, performing the SVD for W1 requires O(n3) time. If we use the
power method or some other iterative methods [11] to compute the eigenvectors cor-
responding to the first k−1 largest eigenvalues of W1, then the overall computational
cost can be reduced to O(kn2). It should be mentioned that for the classical K-means
clustering, we do not even need to compute the matrices W and W1 explicitly. Recall
that in case of the classical K-means clustering, we have W = WsW

T
S . It is straight-

forward to see that for calculating W1, we can first perform a simple normalization
for the data set si = si − s̄, where s̄ is the geometric center of the whole data set.
Correspondingly, the task in Step 2 of the relaxation algorithm can be realized by
performing the SVD on the new coefficient matrix WS̄ for the normalized data set,
which can be done in O(min{n, d}3 + min{n, d}nd) time.5 If d << n (this is true
for data sets in many applications), the computational cost involved in the relaxation
algorithm is linear in n.

We point out that if k = 2, then Step 2 in the above algorithm uses the eigenvector
corresponding to the largest eigenvalue of W1. A similar relaxation was used by Shi
and Malik [40] (see also [43]) for image segmentation where the normalized cut problem
with k = 2 was discussed. Similar bounds for the normalized cut problem and spectral
clustering can also be found in [34, 5].

Note that solving the relaxed problem (14) cannot provide a solution to the orig-
inal problem (8). In what follows we propose a rounding procedure to extract a
feasible solution for (8) from a solution of the relaxed problem (14). Our rounding
procedure follows a similar vein as the rounding procedure in [7]. Let us denote
V = (

√
λ1v

1, . . . ,
√
λk−1v

k−1) ∈ �n×(k−1) the solution matrix obtained from the re-
laxation algorithm, Algorithm 1. We can cast each row of V as a point in �k−1, and
thus we obtain a data set of n points in �k−1, i.e., V = {v1, . . . , vn}. Then we perform

5To see this, let us first consider the case d < n. We can perform the SVD for the matrix
WT

S̄
WS̄ = V T diag {λ1, . . . , λd}V , which takes O(d3) time. Then we can get the eigenvalues and

their corresponding eigenvectors of WS̄ from the product WS̄V . The whole process takes only
O(d3 + d2n) operations. The case for d ≥ n follows similarly.
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the classical K-means clustering for the new reduced data set V. From Theorem 2.1,
this is equivalent to solving the following 0-1 SDP problem:

minTr

(
(I − Z)

k−1∑
i=1

λiv
i(vi)T

)
(18)

Ze = e,Tr(Z) = k,

Z ≥ 0, Z2 = Z,Z = ZT .

For constrained K-means clustering, we need to solve the following subproblem:

minTr

(
(I − Z)

k−1∑
i=1

λiv
i(vi)T

)
(19)

Zii ≥
1

ñ
i = 1, . . . , n,

Ze = e,Tr(Z) = k,

Z ≥ 0, Z2 = Z,Z = ZT .

Finally, we partition all the entities in the original space based on the clustering on
V; i.e., the entities si, sj belong to the same cluster if and only if vi, vj are in the same
cluster.

The whole algorithm can be described as follows.
Approximation Algorithm 2.
Step 1. Calculate the projection of the matrix W onto the null space of e, i.e.,

W1 =

(
I − 1

n
eeT

)
W

(
I − 1

n
eeT

)
;

Step 2. Use the SVD method to compute the first k− 1 largest eigenvalues of the
matrix W1 and their corresponding eigenvectors v1, . . . , vk−1;

Step 3. Solve problem (18) (or (19)) for (constrained) K-means clustering;
Step 4. Assign all the entities in S based on the assignment obtained from Step

3.
Before closing this section, we discuss the complexity of Algorithm 2. We can

resort to the exact algorithm in [7] or the algorithm in [18]6 to solve problem (18).

According to Theorem 5 of [18], the algorithm takes O(n(k−1)2) time to find the global
solution of the subproblem in Step 3 of Algorithm 2, which improves the running time
when the same procedure is applied to solve the subproblem in [7]. This is because
the working space in our algorithm is one dimension less than the space in [7]. In
case of biclustering, the improvement is substantial since we can use our refined K-
means described in the next section. For general kernel K-means clustering or spectral
clustering, the overall complexity becomes O(kn2+n(k−1)2). For the classical K-means

clustering, the overall complexity is O(min{n, d}3 + min{n, d}mn + n(k−1)2). In case
of k = 2 and d << n, then the complexity of Algorithm 2 reduces to O(n log n). Since
our algorithm uses only SVD and the constant in the big-O notation is very small,
the algorithm for biclustering is very efficient and can be implemented easily. Because

6We point out that both works [7] and [18] employed the same technique for the MSSC model.
However, in the present work, we cite only the results from [18] because the estimation of the
complexity in [7] is not precise [6].
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biclustering is the basis of the so-called divisive hierarchical clustering, our results are
applicable to clustering methods based on divisive approaches.

We also point out that it is possible to use some approximation algorithm to solve
the reduced problem in Algorithm 2. For example, if we apply the algorithm in [16]
to the reduced problem, then we can find a 2-approximation to the reduced problem
in O(nk+1) time. From Theorem 4.1, we can immediately conclude that the obtained
solution is a 4-approximation to the original problem. Note that the quality of the
solution we have now is worse than what was obtained by applying the algorithm
in [16] directly to the original data set. However, when d ≥ n, the complexity of
the algorithm in [16] goes up O(nk+2). This implies that the complexity of the new
approximation algorithm is better than the direct algorithm in [16] for scenarios like
the kernel K-means clustering, spectral clustering, or problems from text mining where
d ≥ n.

4. Estimation of the approximate solution. In this section, we estimate
the approximation solution provided by our algorithm. We first consider the case
for the classical K-means clustering. It should be pointed out that in [7], Drineas
et al. considered a similar algorithm based on the SVD of W and showed that their
algorithm can provide a 2-approximation solution to the original K-means clustering.
However, since the working subspace in our algorithm is different from that in [7],
a new analysis is necessary to investigate the approximation ratio of the solution of
Algorithm 2.

We first discuss the case of biclustering. One reason for this is that for biclustering,
the subproblem involved in Step 3 of Algorithm 2 is in �. In such a case, the task in
Step 3 of Algorithm 2 reduces to partitioning the data set V = {vi ∈ �, i = 1, . . . , n}
into two clusters based on the MSSC model. Therefore, we can refer to the following
refined K-means clustering in one dimension.

Refined K-means in One Dimension.
Step 0. Input the data set V = {v1, v2, . . . , vn};
Step 1. Sort the sequence so that

vi1 ≥ vi2 · · · ≥ vin ,

where {i1, . . . , in} is a permutation of the index set {1, . . . , n};
Step 2. For l = 1 to n, set

Cl
1 = {vi1 , . . . , vil}, Cl

2 = {vil+1
, . . . , vin},

and calculate the objective function

f(Cl
1, C

l
2) =

∑
vi∈Cl

1

⎛
⎝vi −

1

l

∑
vi∈Cl

1

vi

⎞
⎠

2

+
∑

vi∈Cl
2

⎛
⎝vi −

1

n− l

∑
vi∈Cl

2

vi

⎞
⎠

2

based on the partition (Cl
1, C

l
2);

Step 3. Find the optimal partition (C∗
1 , C

∗
2 ) such that

(C∗
1 , C

∗
2 ) = arg min

l∈{1,...,n}
f(Cl

1, C
l
2),

and output it as the final solution.
The above algorithm is similar to the algorithm in [15] for divisive k-clustering in

low dimension. It is straightforward to see that for biclustering problems in � based
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on the MSSC model, the above procedure can find the global solution in O(n log n)
time.

If k ≥ 3, then we can use some existing exact algorithms in the literature for
K-means clustering such as the algorithms in [7, 18] to solve the subproblem (18).

We next progress to estimate the approximation ratio of the solution of Algo-
rithm 2. Let Z∗ be a global solution to (8), and Z̄ is the solution provided by
Algorithm 2. Let us define

U =
1

n
eeT +

k−1∑
i=1

vi(vi)T .(20)

It follows that

Tr

(
(I − U)

k−1∑
i=1

vi(vi)T

)
= 0;(21)

Tr

(
U

n−1∑
i=k

vi(vi)T

)
= 0.(22)

From Theorem 3.1, we have

Tr(W (I − Z∗)) ≥ Tr(W (I − U)).(23)

It follows that

Tr
(
W (I − Z̄)

)
= Tr

(
W (I − U + U − Z̄)

)
≤ Tr(W (I − Z∗)) + Tr

(
W (U − Z̄)

)
.

The above relation implies that if

Tr
(
W (U − Z̄)

)
≤ Tr(W (I − Z∗)),(24)

then

Tr
(
W (I − Z̄)

)
≤ 2Tr(W (I − Z∗));

i.e., in the worst case, the solution provided by Algorithm 2 is a 2-approximation to
the original K-means clustering.

In what follows we prove (24), which can be equivalently stated as

Tr
(
W (I − Z∗ + Z̄ − U)

)
≥ 0.(25)

By the choices of Z∗, Z̄, and U , it is easy to verify

(I − Z∗ + Z̄ − U)e = 0,(26) (
I− eeT

n

)
(I−Z∗+Z̄−U) =

(
I− eeT

n

)
(I−Z∗+Z̄−U)

(
I− eeT

n

)
.(27)
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It follows immediately that

Tr
(
W (I − Z∗ + Z̄ − U)

)
=

1

n
Tr

(
W (I − Z∗ + Z̄ − U)eeT

)
+ Tr

(
W1(I − Z∗ + Z̄ − U)

)
= Tr

(
(I − Z∗ + Z̄ − U)

n−1∑
i=1

λiv
i(vi)T

)

= Tr

(
(I − Z∗ + Z̄ − U)

k−1∑
i=1

λiv
i(vi)T )

)

+Tr

(
(I − Z∗ + Z̄ − U)

n−1∑
i=k

λiv
i(vi)T

)

= Tr

(
(Z̄ − Z∗)

k−1∑
i=1

λiv
i(vi)T )

)
+ Tr

(
I − Z∗ + Z̄)

n−1∑
i=k

λiv
i(vi)T

)

≥ Tr

(
(Z̄ − Z∗)

k−1∑
i=1

λiv
i(vi)T )

)
,

where the last equality is given by (21) and (22), and the last inequality is implied by
the fact that the matrix I−Z∗+ Z̄ is positive semidefinite. Recall that Z̄ is the global
solution of subproblem (18) and Z∗ is only a feasible solution of (18); we therefore
have

Tr

(
(Z̄ − Z∗)

k−1∑
i=1

λiv
i(vi)T )

)
≥ 0,

which further implies (24).
Now we are ready to state the main result in this section, which follows immedi-

ately from (23) and (24).
Theorem 4.1. Suppose that Z∗ is a global solution to problem (8) and Z̄ is the

solution provided by Algorithm 2. Then, we have

Tr
(
W (I − Z̄)

)
≤ 2Tr(W (I − Z∗)).

In what follows we estimate the approximation ratio of Algorithm 2 for con-
strained K-means clustering. It is worthwhile mentioning that in such a case, no
polynomial algorithm has been reported in the literature to find a global solution of
subproblem (19). However, suppose a global solution to (19) can be located; then by
following a similar chain of reasoning as in the proof of Theorem 4.1, we can prove
the following result.

Theorem 4.2. Suppose that Z∗ is a global solution to problem (12) and Z̄ is the
solution provided by Algorithm 2. Then, we have

Tr
(
W (I − Z̄)

)
≤ 2Tr(W (I − Z∗)).

5. Numerical experiments. To test the new algorithm, we have done some
preliminary numerical experiments on several data sets from the UCI Machine Learn-
ing Repository7 and internet newsgroups. All the experiments are done by using

7http://www.ics.uci.edu/˜mlearn/MLRepository.html
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Table 5.1

Results on three UCI data sets.

Data set Stage 1 Stage 2 Global opt.
Soybean 404.4593 404.4593 404.4593
The Späth’s 6.0255e + 11 6.0255e + 11 6.0255e + 11
Spam e-mail 9.43479784e + 08 9.43479784e + 08 9.43479784e + 08

MATLAB on a personal computer with a Pentium 4 1700 MHz Processor and a 256M
memory. The power method is applied for calculating the largest eigenvalue and
eigenvector for the matrix [11].

It should be mentioned that although the subproblem (18) can be solved by using
the procedure in [7], the running time of the procedure is clearly too much for a
reasonably large data set. Due to this fact, in our experiments, we restrict ourselves
only to biclustering (k = 2).

We mention that in the following tables, we concentrate mainly on the quality
of the obtained solutions. This is due to the fact that our tests are on biclustering
problems. Based on our theoretical analysis, our algorithm enjoys the best complexity
for the underlying problems compared with the algorithms in [16] and [36]. Even for
the largest test problem (e-mail spam database) in this work, our algorithm takes less
than one second to find the solution, while such a problem cannot be handled by using
the LP relaxation in [36] because of the huge number (n3) of constraints introduced
in the LP model.8

Data sets from the UCI machine learning repository.

• Soybean data set (small). See also [32]. This data set has 47 points in �35.
• The Späth’s postal zones. This data set is from [41] about the post zones in

Bavaria. It has 89 points in �3.
• Spam e-mail database. Created by M. Hopkins et al. from Hewlett–Packard

Labs. It has 4601 in �57. For purposes of clustering, we have removed the last
boolean attribute which indicates whether the e-mail was considered spam or
not.

In our experiments, we use a two-phase strategy. After we obtain the partition
of the data sets from Approximation Algorithm 2, we use the classical K-means to
further improve the partition. In other words, we use Algorithm 2 only as a starting
strategy for K-means clustering. In the following tables, we list the solutions from
both phase 1 and phase 2.

Since, for the first two data sets, the global optimum has already been reported
in [36] by using a linear programming model in the case of K = 2, we list it in the
Global opt. column as a reference. The global solution for the third data set has
been reported in [37]. The numerical results for general biclustering are summarized
in Table 5.1. As one can see from the table, for the test problems, the solutions from
stage 1 match the global solution.

Numerical results for balanced biclustering. We also test our algorithm for
balanced biclustering. To find a global solution to balanced biclustering, we adapt the

8In one of our recent works [38], we also compared the algorithm in [16] with the so-called Q-means
developed in [38] and our preliminary tests indicated that the Q-means algorithm outperformed
the algorithm in [16]. For example, for the Email spam database under the same computational
environment as in the present work, the Q-means took more than 300 seconds while the algorithm
in [16] took more than half an hour to find a solution [38].
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Table 5.2

Results for balanced biclustering.

Data set Stage 1 Stage 2 LP/Q-means
Soybean 419.5473 418.5273 418.5273
The Späth’s 1.6310e + 012 1.6310e + 012 1.6310e + 012
Spam e-mail 1.4049e + 09 1.4046e + 09 1.4046e + 09

Table 5.3

Newsgroups and their labels.

NG1 alt.atheism NG11 rec.sport.hockey
NG2 comp.graphics NG12 sci.crypt
NG3 comp.os.ms-windows.misc NG13 sci.electronics
NG4 comp.sys.ibm.pc.hardware NG14 sci.med
NG5 comp.sys.mac.hardware NG15 sci.space
NG6 comp.windows.x NG16 soc.religion.christian
NG7 misc.forsale NG17 talk.politics.guns
NG8 rec.autos NG18 talk.politics.mideast
NG9 rec.motorcycles NG19 talk.politics.misc
NG10 rec.sport.baseball NG20 talk.religion.misc

LP model in [36] slightly to incorporate balanced constraints. The solution obtained
from the LP model gives us a lower bound for the global optimum of the balanced
biclustering. We also pointed out that for the third data set, its relatively large size
prevents us from the use of the LP model due to the enormous amount O(n3) of
constraints involved in the model. In such a case, we list the result from [38], which
is derived by a so-called Q-means heuristic for the same data and same balanced
constraint.

In the experiments for the last two data sets, we require that each cluster have at
least n/3 entities. For the soybean data set, we require that each cluster have at least
22 entities. This is because the data set itself is fairly balanced already (the optimal
biclustering has a (20, 27) distribution). Table 5.2 summarizes the results.

From the above tables we can see that the solution from phase 1 is very close to
the solution from phase 2. In all the cases, the solution from phase 2 matches the
global solution of the underlying problem.

Internet newsgroups. Text mining has been popular in document analysis,
search engine, and knowledge discovery in a large volume of text data. We have also
performed experiments on newsgroup articles submitted to 20 newsgroups.9 This
data set has also been used in [5, 13, 45], where a similar framework to ours was used
to solve the problem. The algorithm we use is still the two-phase heuristic which was
introduced in the last section.

This data set consists of about 20,000 articles (e-mail messages) evenly distributed
among the 20 newsgroups. We list the name of the newsgroups together with the
associated group labels.

Before constructing the word-document matrices, we perform the preprocessing
by using the bow toolkit, a preprocessor similar to what was employed in [5, 13,
45]. In particular, we use the tokenization option such that the UseNet headers are
stripped, since the headers include the name of the correct newsgroup, and we also

9The news group data together with the bow toolkit for preprocessing can be downloaded from
http://www-2.cs.cmu.edu/afs/cs/project/theo-11/www/naive-bayes.html.
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Table 5.4

Results on internet newsgroup data sets.

Data set Stage 1 Stage 2 LP
NG1/NG2 92.6690 92.6630 92.6630
NG2/NG3 94.0377 94.0377 94.0377
NG8/NG9 93.7051 93.5380 93.4007
NG10/NG11 92.0785 92.0299 92.0299
NG1/NG15 91.9277 91.9011 91.9011
NG18/NG19 92.2275 92.2035 92.2035

apply stemming [27]. Afterward, we apply the standard tf.idf weighting scheme and
normalize each document vector to have unit Euclidean length. Finally, we conduct
feature selection where 500 words are selected according to the mutual information
between words and documents in an unsupervised manner.

In our experiment, we choose 50 random document vectors from each of two
newsgroups. This implies that for each test, we have a data set with 100 points
in �500. Then we apply our approximation algorithm to the problem. The results
are summarized in Table 5.3. Note that, since the global optima are not known for
these data sets, we use the linear programming relaxation model proposed in [36] to
get a lower bound on the global optimum. More specifically, we implement the LP
relaxation model (14) in [36] using package CPLEX 7.1 with AMPL interface on an
IBM RS-6000; by solving this LP problem, we can obtain a lower bound for the global
optimum solution. Apparently, if the solution obtained from the LP relaxation equals
to the solution provided by our two-phase heuristic, then it must be a global optimal
solution of the original problem. The numerical results for the internet newsgroups
are summarized in Table 5.4.

From the above experiments, we can conclude that our deterministic two-phase
heuristic performs very well on these data sets and it finds the global optimum for
most of these data sets.

6. Conclusions. In this paper, we reformulated the classical MSSC as a 0-1
SDP. Our new model not only provides a unified framework for several existing clus-
tering approaches, but also opens new avenues for clustering. An approximation
method based on the SDP relaxation and PCA has been proposed to attack the
underlying 0-1 SDP. It is shown that in the worst case, our method can provide a
2-approximate solution to the original classical or constrained K-means clustering.
Preliminary numerical tests indicate that our algorithm can always find a global so-
lution for biclustering.

Several important issues regarding the new framework remain open. First, for
general k ≥ 3, although subproblem (18) can be solved by using some exact algorithms
in the literature [7, 18], its complexity is still exponential in k. This makes the
algorithm impractical for relatively large data sets. Second, the current model can
deal with only a simple case of constrained K-means clustering. The issue of how to
deal with general constrained K-means clustering still remains open. More study is
needed to address these questions.
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Abstract. We introduce two-stage stochastic semidefinite programs with recourse and present
an interior point algorithm for solving these problems using Bender’s decomposition. This decom-
position algorithm and its analysis extend Zhao’s results [Math. Program., 90 (2001), pp. 507–536]
for stochastic linear programs. The convergence results are proved by showing that the logarithmic
barrier associated with the recourse function of two-stage stochastic semidefinite programs with re-
course is a strongly self-concordant barrier on the first stage solutions. The short-step variant of the
algorithm requires O(

√
p + Kr lnμ0/ε) Newton iterations to follow the first stage central path from

a starting value of the barrier parameter μ0 to a terminating value ε. The long-step variant requires
O((p + Kr) lnμ0/ε) damped Newton iterations. The calculation of the gradient and Hessian of the
recourse function and the first stage Newton direction decomposes across the second stage scenarios.
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1. Introduction. We introduce and study the two-stage stochastic semidefinite
programming (TSSDP) problem with recourse in the dual standard form:

max η(x) := cTx + �(x)

s.t. Ax + s = b,(1.1)

s ∈ Kp,

where

�(x) := E[�ξ̃(x)](1.2)

and

�ξ(x) := max dξ
T
yξ

s.t. W ξyξ + sξ = hξ − T ξx,(1.3)

sξ ∈ Kr.

In the first stage problem (1.1), x ∈ R
n and s ∈ R

p2

are decision variables. A is a
p2×n matrix with n linearly independent columns that are obtained by vectorization
of n symmetric real p× p matrices and b ∈ R

p2

. We have chosen this form of TSSDP
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for notational convenience in the analysis of this paper. By S := mat(s) we denote the

ν×ν matrix whose (i, j)th element is the ((j−1)ν+ i)th element of a vector s ∈ R
ν2

.
We use vec(S) to denote a vector whose ((j−1)ν+i)th element is the (i, j)th element of
a matrix S. The cone Kν := {vec(S) | S ∈ R

ν×ν is symmetric positive semidefinite} is
the cone of vectors obtained from the vectorization of symmetric positive semidefinite
matrices. Kν

+ is used to describe the cone generated by positive definite matrices.

Randomness in the second stage is governed by the random variable ξ̃. We assume
that the support Ξ of ξ̃ is discrete and finite. E[·] in (1.2) represents the expectation.

For each realization ξ of ξ̃, yξ ∈ R
m and sξ ∈ R

r2

are decision variables. hξ ∈ R
r2

and T ξ is a r2 × n matrix with n linearly independent columns that are obtained by
vectorization of n symmetric real r×r matrices. Similarly, W ξ is a r2×m matrix with
m linearly independent columns that are obtained by vectorization of m symmetric
real r×r matrices. Under suitable assumptions (see section 2), �ξ(x) is finite and well
defined for all feasible first stage solutions (x, s). �(x) is called the recourse function.

The TSSDP problem is a natural generalization of a semidefinite programming
problem [14] to its two-stage stochastic programming counterpart. Problems where
objective and constraints are defined by convex quadratic inequalities or second order
cone inequalities are special cases. The linear-quadratic model introduced by Rockafel-
lar and Wets [11] is also a special case. In general, we can write the explicit extensive
formulation of these problems as a large-scale semidefinite program. We can then
solve this extensive formulation directly, particularly by using primal-dual interior
point methods, exploiting its special structure through efficient matrix factorization
schemes [3, 4, 5]. However, the focus of this paper is in developing decomposition-
based interior point methods for TSSDP in the spirit of Bender’s decomposition.

Optimal dual solutions of second stage problems are used in the evaluation of
the gradient and Hessian of the recourse function, which is central to the algorithm.
In practice, we can calculate the gradient and Hessian information approximately.
This view of the algorithm has several potential advantages since it does not require
explicit knowledge of all the scenarios and associated variables in the algorithm up
front. First, the scenarios can be added as the algorithm progresses. This has the
potential for speeding up the algorithm in its early stages. Mehrotra and Özevin [7]
provide evidence for this benefit. Second, if computations for some of the scenarios
fail due to unreliability of available computational resources, one may still be able
to proceed with the algorithm. This allows for implementations in a distributed
computing environment where some of the computing nodes may not be reliable.

In general, the recourse function �(x) is not differentiable with respect to x every-
where. The decomposition approaches either use the nonsmooth optimization tech-
niques [1, 2, 13], or use techniques to smooth this function [11, 12]. Given the success
of interior point methods, it is logical to investigate whether decomposition-based in-
terior point algorithms are possible for stochastic programming problems. Zhao [15]
developed an interior decomposition algorithm for linear two-stage stochastic pro-
grams by regularizing the second stage problem with a log barrier. In particular, he
showed that the log barrier associated with the recourse function of two-stage stochas-
tic linear programs behaves as a strongly self-concordant barrier (see Nesterov and
Nemirovskii [8] and Renegar [10]) on the first stage solutions. Mehrotra and Ozevin
[6] extended Zhao’s analysis for two-stage stochastic convex quadratic programs. In
this paper we show that the recourse function is also strongly self-concordant for
TSSDP. This allows us to give a Benders decomposition-based linearly convergent
interior point algorithm for TSSDP. The convergence analysis of this paper provides
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the conceptual framework for a more practical algorithm developed and implemented
in [7].

This paper is organized as follows. In section 2 we give barrier problem formu-
lations and our assumptions. In section 3 we show that the barrier recourse function
comprises a self-concordant family. In section 4 we present short- and long-step vari-
ants of an interior point decomposition algorithm and state the convergence results.
Proofs of these convergence theorems are given in section 5.

We use the following additional notation. For any strictly positive vector x in R
n,

we define x−1 := (x−1
1 , . . . , x−1

n )T . An identity matrix of appropriate dimension is
denoted by I. Throughout this paper we use “∇”,“∇2”,“∇3” to denote the gradient,
Hessian, and the third order derivative with respect to x, and a “ ′ ” for the derivative
with respect to a single variables other than x. For example,

[{∇2f(μ, x)}′]i,j =
∂

∂μ

(
∂2f(μ, x)

∂xi∂xj

)
.

“∇” is also used to denote the Jacobian of a vector function. A ⊗ B represents the
Kronecker product of matrices A and B. The Kronecker product satisfies relationship
[A⊗B][C ⊗D] = [AC ⊗BD], assuming that the number of rows in A and B equals
the number of columns in C and D. Also, (A⊗B)vec(C)= vec(BCAT ).

2. Problem formulation and assumptions. Let the random variable ξ̃ have a
finite discrete support Ξ = {ξ1, . . . , ξK} with probabilities {π1, . . . , πK}. For simplic-

ity of notation we define �i(x) := �ξ
i

(x), T i := T ξi , W i := W ξi , hi := hξi , yi := yξ
i

,

and di := πidξ
i

. The problem (1.1)–(1.3) is rewritten as

max η(x) := cTx + �(x)

s.t. Ax + s = b,(2.1)

s ∈ Kp,

where

�(x) :=
K∑
i=1

�i(x),(2.2)

and for i = 1, . . . ,K,

�i(x) := max di
T
yi

s.t. W iyi + si = hi − T ix,(2.3)

si ∈ Kr.

Let γ and λi be the first and second stage dual multipliers. The dual of (2.3) is

min (hi − T ix)Tλi

s.t. W iTλi = di,(2.4)

λi ∈ Kr.

Here si ∈ R
r2

, W i ∈ R
r2×m, and hi, T i is data of appropriate dimensions.
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Let us define the following feasibility sets:

F i(x) := {yi | W iyi + si = hi − T ix, si ∈ Kr}, F i
1 := {x | F i(x) �= ∅},

F1 := ∩K
i=1F i

1, F0 := F1 ∩ {x | Ax + s = b, s ∈ Kp}, and
F := {(x, s, γ)×(y1, s1, λ1, . . . , yK , sK , λK) |Ax + s = b, s ∈ Kp;W iyi + si = hi − T ix,

si ∈ Kr;W iTλi = di, λi ∈ Kr, for i = 1, . . . ,K; AT γ +
∑K

i=1 T
iTλi = c}.

We make the following assumptions:
A1. The set F is not empty, is bounded, and has a nonempty relative interior.
A2. Matrices A and W i have full column rank.
Assumption A1 requires that primal and dual feasible sets of the explicit deter-

ministic equivalent formulation of (2.1)–(2.3) have nonempty interiors. In particular,
it assumes strong duality (see, for example, Ramana, Tunçel, and Wolkowicz [9]) for
first and second stage semidefinite programs. This assumption also ensures that the
recourse function �(x) : F → R is finite and well defined. In practice this assumption
can be ensured by introducing artificial variables. Assumption A2 is for convenience.

Consider the following log-barrier decomposition problem

max η(μ, x) := cTx + ρ(μ, x) + μ ln detS

s.t. Ax + s = b,(2.5)

s ∈ Kp,

where

ρ(μ, x) :=

K∑
i=1

ρi(μ, x)(2.6)

and for i = 1, . . . ,K

ρi(μ, x) := max di
T
yi + μ ln detSi

s.t. W iyi + si = hi − T ix,(2.7)

si ∈ Kr.

The log-barrier problem associated with the dual (2.4) is given by

min (hi − T ix)Tλi − μ ln det Λi

s.t. W iTλi = di,(2.8)

λi ∈ Kr.

Note that, for a given μ > 0, the log-barrier recourse function ρ(μ, x) < ∞ iff
x ∈ F1. Hence, it describes the interior of F0 implicitly. Assumption A1 implies
that problems (2.5) and (2.7)–(2.10) have a unique solution. Since the objective in
problems (2.7) and (2.8), is respectively, concave and convex function, (yi, si) and
λi are optimal solutions to (2.7) and (2.8), respectively, iff they satisfy the following
optimality conditions:

W iTλi = di,

W iyi + si = hi − T ix,(2.9)

SiΛi = μI,

λi, si ∈ Kr
+,
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where Λi = mat(λi). Throughout this paper we denote the optimal solution of the
first stage problem (2.5) by x(μ), and the solutions of the optimality conditions (2.9)
for a given x ∈ F1 by (yi(μ, x), si(μ, x), λi(μ, x)). The optimal solutions of (2.5)–(2.7)
and those of the log-barrier problem

max cTx +

K∑
i=1

di
T
yi + μ ln detS + μ

K∑
i=1

ln detSi

s.t. Ax + s = b,

W iyi + si = hi − T ix, i = 1, . . . ,K,(2.10)

s ∈ Kp, si ∈ Kr, i = 1, . . . ,K,

associated with the extensive formulation of (2.1)–(2.3) have the following relation-
ship.

Proposition 2.1. For a given μ > 0, if (x(μ), s(μ); y1(μ), s1(μ), . . . , yK(μ), sK(μ))
is the optimal solution of (2.10), then (x(μ), s(μ)) is the optimal solution of (2.5), and
(y1(μ), s1(μ), . . . , yK(μ), sK(μ)) are the optimal solutions of subproblems (2.7) for the
given μ and x = x(μ). Conversely, if for a given μ, (x(μ), s(μ)) is the optimal so-
lution of (2.5) and (y1(μ), s1(μ), . . . , yK(μ), sK(μ)) are the optimal solutions of (2.7)
with x = x(μ), then (x(μ), s(μ)y1(μ), s1(μ), . . . , yK(μ), sK(μ)) is the optimal solution
of (2.10).

3. The self-concordance properties of the log-barrier recourse.

3.1. Computation of ∇η(μ, x) and ∇2η(μ, x). From (2.9) we can show that
the optimal objective values of primal and dual barrier problems (2.7)–(2.8) differ by
a constant term, in particular

ρi(μ, x) = (hi − T ix)λi(μ, x) − μ ln det Λi(μ, x) + rμ(1 − lnμ).(3.1)

In order to compute ∇η(μ, x) and ∇2η(μ, x) we need to determine the derivative of
λi(μ, x) with respect to x. Let (yi, λi, si) := (yi(μ, x), λi(μ, x), si(μ, x)). Differentiat-
ing (2.9) with respect to x, we obtain

W iT∇λi = 0,

W i∇yi + ∇si = −T i,(3.2)

(I ⊗ Si)∇λi + (Λi ⊗ I)∇si = 0.

Solving the system (3.2), we get

∇yi = −Ri−1
W iTQi2T i,

∇λi = QiP iQiT i,(3.3)

∇si = −Qi−1
P iQiT i,

where

Qi := Qi(μ, x) = (Λi ⊗ Si−1
)1/2, Ri := Ri(μ, x) = W iTQi2W i(3.4)

and P i := P i(μ, x) = I −QiW iRi−1
W iTQi.(3.5)



TWO-STAGE STOCHASTIC SEMIDEFINITE PROGRAMMING 211

Now differentiating (3.1) and using the optimality conditions (2.9) and (3.3), we
can verify that

∇ρi(μ, x) = −T iTλi(μ, x) and ∇2ρi(μ, x) = −T iT∇λi(μ, x).(3.6)

Hence,

∇η(μ, x) = c−
K∑
i=1

T iTλi(μ, x) − μAT s−1,(3.7)

∇2η(μ, x) = −
K∑
i=1

T iT∇λi(μ, x) − μAT (S−1 ⊗ S−1)A.(3.8)

Then, substituting for ∇λi in (3.8), we get

∇2η(μ, x) = −
K∑
i=1

T iTQiP iQiT i − μAT (S−1 ⊗ S−1)A.(3.9)

3.2. Self-concordance of the recourse function. The following definition of
self-concordant functions was introduced by Nesterov and Nemirovskii [8].

Definition 3.1 (Nesterov and Nemirovskii [8]). Let E be a finite-dimensional
real vector space, Q be an open nonempty convex subset of E, and f : Q → R be
a function, α > 0. f is called α-self-concordant on Q with the parameter value α
if f ∈ C3 is a convex function on Q, and, for all x ∈ Q and h ∈ E, the following
inequality holds:

|∇3f(x)[h, h, h]| ≤ 2α−1/2(∇2f(x)[h, h])3/2.

An α-self-concordant on Q function f is called strongly α-self-concordant on Q if
f(xi) tends to infinity along every sequence {xi ∈ Q} converging to a boundary point
of Q.

We now show that recourse function ρ(μ, x) behaves as a strongly self-concordant
barrier on F1.

Lemma 3.1. For any fixed μ > 0, ρi(μ, ·) is strongly μ-self-concordant on F i
1, i =

1, . . . ,K.
Proof. For any μ > 0, d ∈ R

n, and x̄ ∈ {x | ρi(x) < ∞} we define the univariate
function

Φi(t) := ∇2ρi(μ, x̄ + td)[d, d].

Note that Φi(0)′ = ∇3ρi(μ, x̄)[d, d, d]. Along every sequence {xj ∈ F i
1} converging

to the boundary of F i
1, ρ

i(μ, xj) tends to infinity. To prove this lemma it suffices to
show that

|Φi(0)′| ≤ 2
√
μ
|Φi(0)|3/2.

Let (λi(t), P i(t), si(t), Qi(t), Ri(t)) := (λi(μ, x̄ + td), P i(μ, x̄ + td), si(μ, x̄ + td),
Qi(μ, x̄+ td), Ri(μ, x̄+ td)). We define ui(t) := P i(t)Qi(t)T i(t)d. The argument “(t)”
is dropped when considering all of these variables and their derivatives at t = 0, e.g.,

u′ := u′(0). Note that Φi(0) = −uiTui = −‖ui‖2 and thus |Φi(0)′| = |2uiTui′|.
The first equality below follows from using (3.4)–(3.5). The second equality is

derived by using derivatives by parts. The third equality uses Ri′ = W iT [QiQi′ +

Qi′Qi]W i.
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We have

ui′ = [Qi −QiW iRi−1
W iQi2]′T id

= [Qi′ −Qi′W iRi−1
W iQi2 + QiW iRi−1

Ri′Ri−1
W iQi2

−QiW iRi−1
W i(QiQi′ + Qi′Qi)]T id

= [Qi′(I −W iRi−1
W iQi2) −QiW iRi−1

W i(QiQi′ + Qi′Qi)

(I −W iRi−1
W iQi2)]T id

= [(Qi′ −QiW iRi−1
W i(QiQi′ + Qi′Qi))](I −W iRi−1

W iQi2)T id

= [(Qi′ −QiW iRi−1
W i(QiQi′ + Qi′Qi))]Qi−1

ui

(noting that (I −W iRi−1
W iQi2)T id = Qi−1

ui).(3.10)

Observing that uiTQiW i = 0, from (3.10) we get

|Φi(0)′| = |2uiTui′| = |2uiTQi′Qi−1
ui|

= |uiT (Qi′Qi−1
+ Qi−1

Qi′)ui| (since Qi, Qi′are symmetric matrices)

= |uiTQi−1
(QiQi′ + Qi′Qi)Qi−1

ui| = |uiTQi−1
(Qi2)′Qi−1

ui|.(3.11)

We let ∇λi := ∇λi(μ, x̄) and λi′ := ∂λi(μ,x̄+td)
∂t

∣∣
t=0

= ∇λid. Note that from (3.4) we
have

(Qi2)′ = (Λi ⊗ Si−1
)′ = μ−1(Λi ⊗ Λi)′ = μ−1(Λi ⊗ Λi′ + Λi′ ⊗ Λi)

(since Λi′ = mat(∇λid))

= μ−1(Λi ⊗ mat(∇λid) + mat(∇λid) ⊗ Λi).(3.12)

Combining (3.11), (3.12), and using (3.4), we obtain

|Φi(0)′| = |uiT (Λi−1/2 ⊗ Λi−1/2
)

[(Λi ⊗ mat(∇λid) + mat(∇λid) ⊗ Λi)](Λi−1/2 ⊗ Λi−1/2
)ui|

= |uiT [I ⊗ (Λi−1/2
mat(∇λid)Λi−1/2

) + (Λi−1/2
mat(∇λid)Λi−1/2

) ⊗ I]ui|

≤ 2‖ui‖2
2 ‖vec(Λi−1/2

mat(∇λid)Λi−1/2
)‖2

= 2‖ui‖2
2 ‖(Λi−1/2 ⊗ Λi−1/2

)(∇λid)‖2

= 2μ−1/2‖ui‖2
2 ‖Qi−1∇λid‖2 (noting that Qi−1

=
√
μ(Λi−1/2 ⊗ Λi−1/2

))

= 2μ−1/2‖ui‖3
2 (noting that Qi−1∇λid = ui)

= 2μ−1/2|Φi(0)|3/2 (since |Φi(0)| = ‖ui‖2
2).(3.13)

We have the following corollary.
Corollary 3.1. The recourse function ρ(μ, x) is a μ-self-concordant barrier on

F1, and the first stage objective function η(μ, x) := cTx + ρ(μ, x) + μ ln detS is a
strongly μ-self-concordant barrier on F0.

Proof. It is easy to verify that μ ln detS is a strongly μ-self-concordant barrier on
{x|Ax + s = b, s ∈ Kp}. The corollary follows from Proposition 2.1.1(ii) in [8].
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3.3. Parameters of the self-concordant family. The self-concordant family
with appropriate parameters is defined in Nesterov and Nemirovskii [8]. They showed
that, given such a family, the parameters defining the family allow us to relate the rate
at which the barrier parameter μ is varied and the number of Newton steps required
to maintain the proximity to the central path. Below is the definition of a strongly
self-concordant family adapted to the current setting from the original definition in
Nesterov and Nemirovskii [8]. These conditions might look rather technical; never-
theless they simplify our convergence analysis and the accompanying proofs in what
follows and explicitly reveal some essential properties of the log-barrier recourse func-
tion ρ(μ, x). They allow us to invoke the interior point convergence theory developed
by Nesterov and Nemirovskii [8].

Definition 3.2. The family of functions {η(μ, ·) : μ > 0} is strongly self-
concordant on F0 with parameter functions α(μ), γ(μ), ν(μ), ξ(μ), and σ(μ) if the
following six conditions are satisfied:

C1. η(μ, x) is concave in x, continuous in (μ, x) ∈ R++ × F0, and has three
derivatives in x, continuous in (μ, x) ∈ R++ ×F0.

C2. ∇η(μ, x) and ∇2η(μ, x) are continuously differentiable in μ.
C3. For any μ ∈ R++, η(μ, x) is strongly α(μ)-self-concordant on F0.
C4. The parameter functions α(μ), γ(μ), ξ(μ), and σ(μ) are continuous positive

scalar functions on μ ∈ R++.
C5. For every (μ, x) ∈ R++ ×F0 and h ∈ R

n,

|{∇η(μ, x)h}′ − {ln ν(μ)}′{∇η(μ, x)h}| ≤ ξ(μ)α(μ)1/2(−hT∇2η(μ, x)h)1/2.

C6. For every (μ, x) ∈ R++ ×F0 and h ∈ R
n,

|{hT∇2η(μ, x)h}′ − {ln γ(μ)}′hT∇2η(μ, x)h| ≤ −2σ(μ)hT∇2η(μ, x)h.

We refer the reader to Nesterov and Nemirovskii [8] for the original definition of
self-concordant families and their properties. The essence of the above definition is in
conditions C5 and C6.

Theorem 3.1. The family of functions η : R++ × F → R is a strongly self-

concordant family with parameters α(μ) = μ, γ(μ) = ν(μ) = 1, ξ(μ) =
√
p+Kr
μ , and

σ(μ) =
√
r

2μ .
Proof. It is easy to verify that conditions C1–C4 of Definition 3.2 hold. Lemmas

3.2 and 3.3 below show that C5 and C6 are satisfied.
In Lemmas 3.2 and 3.3 we bound the changes of ∇η(μ, x) and ∇2η(μ, x) as

the barrier parameter μ changes. This requires us to calculate the derivatives of
(yi(μ, x), λi(μ, x), si(μ, x)) with respect to μ. This derivative is represented by

(yi
′
, λi′, si

′
). Differentiating (2.9) with respect to μ, we get

W iTλi′ = 0,

W iyi
′
+ si

′
= 0,(3.14)

(I ⊗ Si)λi′ + (Λi ⊗ I)si
′
= vec(I).

Solving (3.14), we obtain

yi
′
= −Ri−1

W iT si
−1

,

λi′ =
1
√
μ
QiP ivec(I),(3.15)

si
′
= W iRi−1

W iT si
−1

.
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Lemma 3.2. For any μ > 0, x ∈ F0, and h ∈ R
n we have

|{∇η(μ, x)Th}′| ≤
[
−(p + Kr)

μ
hT∇2η(μ, x)Th

]1/2

.

Proof. Differentiating (3.7) with respect to μ and applying (3.15), we get

{∇η(μ, x)}′ = − 1
√
μ

K∑
i=1

T iTQiP ivec(I) −AT s−1

= − 1
√
μ

K∑
i=1

T iTQiP ivec(I) −AT (S−1/2 ⊗ S−1/2)vec(I).

We define

B :=

[
1
√
μ
T 1TQ1P 1, . . . ,

1
√
μ
TKT

QKPK , AT (S−1/2 ⊗ S−1/2)

]
,

and let z be a (p2 + Kr2)-dimensional vector defined by z := [vec(Ir), . . . , vec(Ir),
vec(Ip)]. We can write

{∇η(μ, x)}′ = −Bz.(3.16)

Note that BBT = 1
μ

∑K
i=1 T

iTQiP iQiT i + AT (S−1 ⊗ S−1)A = − 1
μ∇2η(μ, x).

Now we have

−{∇η(μ, x)T }′[∇2η(μ, x)]−1{∇η(μ, x)}′ =
1

μ
zTBT [BBT ]−1Bz ≤ 1

μ
zT z =

1

μ
(p + Kr).

(3.17)

Now by using norm inequalities and (3.17), it follows that

|{∇η(μ, x)Th}′| ≤
[
−{∇η(μ, x)T }′[∇2η(μ, x)]−1{∇η(μ, x)}′

]1/2 [−hT∇2η(μ, x)h
]1/2

≤
[
−(p + Kr)

μ
hT∇2η(μ, x)h

]1/2

.

Lemma 3.3. For any μ > 0, x ∈ F0 and h ∈ R
n we have

|{hT∇2η(μ, x)h}′| ≤ −
√
r

μ
hT∇2η(μ, x)h.

Proof. We fix h ∈ R
n and let (λi, P i, si, Qi, Ri) := (λi(μ, x), P i(μ, x), si(μ, x),

Qi(μ, x), Ri(μ, x)). Let us define ui := P iQiT ih. We have

hT∇2η(μ, x)h = −
K∑
i=1

uiTui − μhTAT (S−1 ⊗ S−1)Ah.

Following the steps in Lemma 3.1 leading up to (3.11) and the definition of η(μ, x),
we have

{hT∇2η(μ, x)h}′ = −
K∑
i=1

uiTQi−1
(Qi2)′Qi−1

ui − hTAT (S−1 ⊗ S−1)Ah.(3.18)
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From (3.15), the definition of Qi from (3.4), SiΛi = μI, and using SiΛi′+ΛiSi′ =

I, Λi−1
= μ−1Si, it follows that

uiTQi−1
(Qi2)′Qi−1

ui

= uiT (I ⊗ Λi−1/2
Λi′Λi−1/2 − Si−1/2

Si′Si−1/2 ⊗ I)ui

= μ−1uiT (I ⊗ I − μ(Si−1/2
Si′Si−1/2 ⊗ I + I ⊗ Si−1/2

Si′Si−1/2
))ui

≤ ‖ui‖2
2

μ
‖vec(I) − 2μ(Si−1/2 ⊗ Si−1/2

)si
′‖2

=
‖ui‖2

2

μ
‖vec(I) − 2μ(Si−1/2 ⊗ Si−1/2

)W iRi−1
W iT si

−1‖2

=
‖ui‖2

2

μ
‖(I − 2P i)vec(I)‖2

≤
√
r

μ
‖ui‖2

2 (since I − 2P � I, ‖(I − 2P i)‖2 ≤ 1).(3.19)

From (3.18) and (3.19), we obtain for any h ∈ Rn

|{hT∇2η(μ, x)h}′| ≤
√
r

μ

K∑
i=1

uiTui+hTAT (S−1⊗S−1)Ah = −
√
r

μ
hT∇2η(μ, x)h.

4. Interior point decomposition algorithms for TSSDP. Once it is estab-
lished that the family of functions {η(μ, ·) : μ > 0} is strongly self-concordant, the
development of primal path following interior point methods is straightforward. These
methods reduce μ by a factor at each iteration and seek to approximate the minimizer
x(μ) for each μ by taking one or more Newton steps. The novelty of the algorithm
in the context of TSSDP is in computing the Newton direction from the solutions of
the decomposed second stage problems. As μ varies, the minimizers x(μ) form the
central path. By tracing the central path as μ → 0, this procedure will generate a
strictly feasible ε-solution to (2.5).

For a given μ the optimality condition for the problem (2.5) is

∇η(μ, x(μ)) = 0.(4.1)

Hence, at a feasible point x the Newton direction is given by

Δx = −[∇2η(μ, x)]−1∇η(μ, x).(4.2)

Note that although problems (2.5)–(2.7) and (2.10) share the same central path,
the associated Newton directions are not identical and lead to different ways of path
following. A conceptual primal path following algorithm is given below.

The Decomposition Algorithm. Here β > 0, γ ∈ (0, 1) and θ > 0 are suitable
scalars. We make their values more precise in Theorems 4.1 and 4.2. The desired
precision ε, an initial point x0 ∈ F0, and μ0 are given as inputs.

Initialization. x = x0; μ = μ0.
Step 1 (Newton or damped Newton iterations).
1.1. For all i solve the optimality conditions (2.9) to find (yi(μ, x), si,

λi(μ, x)).
1.2. Compute the Newton direction Δx from (4.2).
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1.3. Let δ(μ, x) =
√

− 1
μΔxT∇2η(μ, x)Δx. If δ ≤ β, go to Step 2.

1.4. Set x = x + θΔx and go to Step 1.1.
Step 2 (termination check). If μ ≤ ε, stop; otherwise set μ = γμ and go
to Step 1.1.

In the above algorithm we assume that we can find exact solutions of the optimal-
ity conditions (2.9). This assumption considerably simplifies the complexity analysis.
In a practical implementation of this algorithm (such as the one in [7]) we use approx-
imate solutions of the optimality conditions (2.9) to construct the Newton direction
(4.2).

Theorems 4.1 and 4.2 give two standard complexity results for the generic primal
interior point method. In the short-step version of the algorithm, barrier parameter
μ is decreased by a factor 1 − σ/

√
n + m (σ > 0) in each iteration.

An iteration of the short-step algorithm is performed as follows. At the beginning
of iteration k, xk is close to the central path; i.e., δ(μk, xk) ≤ β. After reducing the
parameter from μk to μk+1 = γμk, we will have δ(μk+1, xk) ≤ 2β. Then a Newton step
with step size θ = 1 is taken, resulting in a new point xk+1 with δ(μk+1, xk+1) ≤ β.
We have the following theorem.

Theorem 4.1. Let μ0 be the initial barrier parameter, ε > 0 the stopping crite-
rion, and β = (2 −

√
3)/2. If the starting point x0 is sufficiently close to the central

path, i.e., δ(μ0, x0) ≤ β, then the short-step algorithm reduces the barrier parameter μ
at a linear rate and terminates within O(

√
p + Kr lnμ0/ε) executions of Steps 1.1–1.4

in Algorithm 1.
Proof. For the proof, see section 5.1.
In the long-step version we decrease the barrier parameter μ by an arbitrary

constant factor λ ∈ (0, 1). This has a potential for much faster progress; however,
several damped Newton steps might be needed for restoring the proximity to the
central path. We have the following theorem.

Theorem 4.2. Let μ0 be the initial barrier parameter, ε > 0 be the stopping
criterion, and β = 1/6. If the starting point x0 is sufficiently close to the central
path, i.e., δ(μ0, x0) ≤ β, then the long-step algorithm reduces the barrier parameter μ
at a linear rate and terminates within O((p+Kr) lnμ0/ε) executions of Steps 1.1–1.4
in Algorithm 1.

Proof. For the proof, see section 5.2.

5. Convergence proof for short- and long-step algorithms. Part (i) of
the following proposition follows directly from the definition of self-concordance and
is due to Nesterov and Nemirovskii [8, Theorem 2.1.1]. Part (ii) is a corollary of part
(i) and is given in Zhao [15] without a proof.

Proposition 5.1. For any μ > 0, x ∈ F0, and Δx computed from (4.2), let

δ :=
√
− 1

μΔxT∇2η(μ, x)Δx. Then, for δ < 1, τ ∈ [0, 1], and any h ∈ R
n we have

(i) −(1 − τδ)2hT∇2η(μ, x)h ≤ −hT∇2η(μ, x + τΔx)h ≤ −(1 − τδ)−2hT∇2η(μ, x)h,

(ii) |hT
1 [∇2η(μ, x + τΔx) −∇2η(μ, x)]h2|

≤ [(1 − τδ)−2 − 1]
√
−hT

1 ∇2η(μ, x)h1

√
−hT

2 ∇2η(μ, x)h2.

For the estimation of the number of Newton steps needed for recentering we use
two different merit functions to measure the progress of Newton iterates. We use
δ(μ, x) for the short-step algorithm and the first stage objective η(μ, x) for the long-
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step algorithm. The following lemma is due to Theorem 2.2.3 in [8] and describes the
behavior of the Newton method as applied to η(μ, ·).

Lemma 5.1. Let μ > 0 and x ∈ F0, Δx be the Newton direction calculated at x

from (4.2); δ := δ(μ, x) =
√

− 1
μΔxT∇2η(μ, x)Δx, x+ = x+ Δx, Δx+ be the Newton

direction calculated at x+; and δ(μ, x+) :=
√
− 1

μΔx+T∇2η(μ, x+)Δx+. Then,

(i) if δ < 2 −
√

3, then

δ(μ, x+) ≤
(

δ

1 − δ

)2

≤ δ

2
;

(ii) if δ ≥ 2 −
√

3, then

η(μ, x) − η(μ, x + θΔx) ≥ μ[δ − ln(1 + δ)],

for θ = (1 + δ)−1.

5.1. Complexity of the short-step algorithm. We now show that in this
version of the algorithm a single Newton step is sufficient for recentering after updating
the barrier parameter μ. To this end we make use of Theorem 3.1.1 in [8], which is
restated for the present context in the next proposition.

Proposition 5.2. Let ϕκ(η;μ, μ+) :=
(

1+r
2 +

√
p+Kr
κ

)
ln γ−1. Assume that

δ(μ, x) < κ and μ+ := γμ satisfies

ϕκ(η;μ, μ+) ≤ 1 − δ(μ, x)

κ
.

Then δ(μ+, x) < κ.
Lemma 5.2. Let μ+ = γμ, where γ = 1− σ/

√
p + Kr and σ ≤ 0.1. Furthermore

let β = (2 −
√

3)/2. If δ(μ, x) ≤ β, then δ(μ+, x) ≤ 2β.
Proof. Let κ = 2β = 2 −

√
3. It is easy to verify that with σ ≤ 0.1, μ+ satisfies

ϕκ(η;μ, μ+) =

(
1 + r

2
+

√
p + Kr

κ

)
ln(1 − σ/

√
p + Kr)−1

≤ 1

2
≤ 1 − δ(μ, x)

κ
.

Now Proposition 5.2 implies

δ(μ+, x) ≤ κ = 2β.

From Lemmas 5.1 and 5.2 it is clear that we can reduce μ by the factor γ =
1− σ/

√
p + Kr, σ < 0.1, at each iteration and that a single Newton step is sufficient

to restore proximity to the central path. Hence, Theorem 4.1 follows.

5.2. Complexity of the long-step algorithm. For the analysis of the long-
step algorithm we use η as the merit function since the iterates generated by the less
conservative long-step algorithm may violate the condition, δ < 2 −

√
3, required in

part (i) of Lemma 5.1. Our analysis follows the steps in Zhao [15].
Assume that we have a point xk−1 sufficiently close to x(μk−1). Next we reduce

the barrier parameter from μk−1 to μk = γμk−1, where γ ∈ (0, 1). While searching
for a point xk that is sufficiently close to x(μk), the long-step algorithm generates a
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finite sequence of points (inner iterates) p1, . . . , pN ∈ F0, and we finally set xk = pN .
We need to determine an upper bound on N , the number of Newton iterations needed
for recentering. Let

φ(μ, x) := η(μ, x(μ)) − η(μ, x).

The next lemma gives upper bounds on φ(μk−1, x) and φ′(μk−1, x), respectively, for
any μ > 0 and x ∈ F0. They facilitate us bounding φ(μk, x).

Lemma 5.3. Let μ > 0 and x ∈ F0. We denote Δ̃x := x(μ) − x and define

δ̃(μ, x) :=

√
− 1

μ
Δ̃xT∇2η(μ, x)Δ̃x.

For any μ > 0 and x ∈ F0, if δ̃ < 1, then

φ(μ, x) ≤ μ

[
δ̃

1 − δ̃
+ ln(1 − δ̃)

]
,(5.1)

|φ′(μ, x)| ≤ −
√

p + Kr ln(1 − δ̃).(5.2)

Proof.

φ(μ, x) = η(μ, x(μ)) − η(μ, x) =

∫ 1

0

∇η(μ, x + τΔ̃x)T Δ̃xdτ.

Since x(μ) is the optimal solution of (2.5), it satisfies the optimality conditions (4.1).
Hence,

φ(μ, x) =

∫ 1

0

∫ τ

0

Δ̃xT∇2η(μ, x + αΔ̃x)Δ̃xdαdτ

≤
∫ 1

0

∫ τ

0

μδ̃2

(1 − αδ̃)2
dαdτ (using Proposition 5.1 (i))

= μ

[
δ̃

1 − δ̃
+ ln(1 − δ̃)

]
.(5.3)

This proves (5.1). Now, for any μ > 0, by applying the chain rule and using (4.1) we
have

φ′(μ, x) = η′(μ, x(μ)) − η′(μ, x) + ∇η(μ, x(μ))Tx′(μ)

= η′(μ, x(μ)) − η′(μ, x).(5.4)

From (5.4), applying the mean-value theorem, we obtain

|φ′(μ, x)| =

∣∣∣∣
∫ 1

0

{∇η(μ, x + τΔ̃x)T }′Δ̃x dτ

∣∣∣∣
≤

∫ 1

0

[
−Δ̃xT∇2η(μ, x + τΔ̃x)Δ̃x

]1/2

[
−{∇η(μ, x + τΔ̃x)T }′[∇2η(μ, x + τΔ̃x)]−1{∇η(μ, x + τΔ̃x)T }′

]1/2

dτ.

(5.5)
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From (5.5), and using (3.17) from the proof of Lemma 3.2 and Proposition 5.1(i),
we get

|φ′(μ, x)| ≤
∫ 1

0

√
−Δ̃xT∇2η(μ, x)Δ̃x

1 − δ̃ + τ δ̃

√
p + Kr

μ
dτ

≤
∫ 1

0

√
μδ̃

1 − δ̃ + τ δ̃

√
p + Kr

μ
dτ = −

√
p + Kr ln(1 − δ̃).

Lemma 5.4. Let μ > 0 and x ∈ F0 be such that δ̃ < 1, where δ̃ is defined in
Lemma 5.3. Let μ+ = γμ with γ ∈ (0, 1). Then,

η(μ+, x(μ+)) − η(μ+, x) ≤ O(p + Kr)μ+.

Proof. By differentiating (5.4) with respect to μ, we obtain

φ′′(μ, x) = η′′(μ, x(μ)) + ∇η′(μ, x(μ))Tx′(μ) − η′′(μ, x).(5.6)

Now we will bound the two terms on the right-hand side of (5.6) separately.
From the definition of η(μ, x) in (2.5) we see that for μ > 0 and x ∈ F0, η

′′(μ, x) =∑K
i=1 ρ

i′′(μ, x). Differentiating ρi(μ, x) and using (3.15), we obtain

ρi
′
(μ, x) = di

T
yi

′
+ ln detSi + μsi

−T
si

′

= ln detSi + (−di + W iTλi)TRi−1
W iT si

−1

= ln detSi.(5.7)

Differentiating (5.7) once more and using (3.15) for μ > 0 and x ∈ F0, we get

ρi
′′
(μ, x) = si

−T
si

′
= si

−T
W iRi−1

W iT si
−1

= si
−T

Qi−1
P iQi−1

si
−1

.

Since P i in (3.5) is an orthogonal projection matrix ρi
′′
(μ, x) ≥ 0, hence η(μ, x) is a

convex function in μ. We also have

ρi
′′
(μ, x(μ)) ≤ si

−T
Qi−2

si
−1

= si
−T

λi−1
=

r

μ

and thus

η′′(μ, x(μ)) ≤ Kr

μ
.(5.8)

Differentiating the optimality condition of the first stage problem (2.5), we observe

x(μ)′ = −[∇2η(μ, x(μ))]−1∇η′(μ, x(μ)).(5.9)

Hence, we have

∇η′(μ, x(μ))Tx′(μ) = −∇η′(μ, x(μ))T [∇2η(μ, x(μ))]−1∇η′(μ, x(μ))

≤ μ−1(p + Kr).(5.10)

In the last inequality we used (3.17), which is valid for any μ > 0 and x ∈ F0.
Combining (5.8), (5.10), and using η′′(μ, x) > 0, we have

φ′′(μ, x) ≤ μ−1(p + 2Kr).(5.11)
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Now in view of Lemma 5.3 and (5.11), we have

φ(μ+, x) = φ(μ, x) + φ′(μ, x)(μ+ − μ) +

∫ μ+

μ

∫ τ

μ

φ′′(ν, x) dν dτ

≤ μ

[
δ̃

1 − δ̃
+ ln(1 − δ̃)

]
−
√

p + Kr ln(1 − δ̃)(μ− μ+)

+ (p + 2Kr)

∫ μ+

μ

∫ τ

μ

ν−1 dν dτ

≤ μ

[
δ̃

1 − δ̃
+ ln(1 − δ̃)

]
−
√

p + Kr ln(1 − δ̃)(μ− μ+)

+ (p + 2Kr) ln γ−1 (μ− μ+).(5.12)

Since γ and δ̃ are absolute constants, and given the fact that η(μ, x) is a strictly
convex function in μ (implying η′′(μ, x) > 0), we have a proof of this lemma.

Note that Lemmas 5.3 and 5.4 require δ̃ to be less than one. However, we cannot
evaluate δ̃ since we do not explicitly know the points x(μ) forming the central path.
Nonetheless we can evaluate δ and δ̃ in proportion to δ, as shown in the following
lemma.

Lemma 5.5. For any given μ > 0, x ∈ F0, let Δx be the Newton direction defined
in (4.2) and Δ̃x := x− x(μ). We denote

δ := δ(μ, x) =

√
− 1

μ
ΔxT∇2η(μ, x)Δx and δ̃ := δ̃(μ, x) =

√
− 1

μ
Δ̃xT∇2η(μ, x)Δ̃x.

If δ ≤ 1/6, then

2

3
δ ≤ δ̃ ≤ 2δ.(5.13)

Proof. Let H := ∇2η(μ, x), g := ∇η(μ, x). We denote g := g + HΔ̃x. Note that

Δ̃x = −Δx + H−1g.(5.14)

By applying the triangle inequality to (5.14), we obtain

δ̃ ≤ δ +

√
− 1

μ
gTH−1g.(5.15)

It is straightforward to verify that

−gH−1g = max{hTHh− 2hT g | h ∈ R
n}.

Now in consideration of Proposition 5.1(ii), we have

−hT g = −
∫ 1

0

hT [∇2η(μ, x) −∇2η(μ, x− (1 − τ)Δ̃x)]Δ̃xdτ

≤
∫ 1

0

[(1 − (1 − τ)δ̃)−2 − 1]dτ
√
−Δ̃xTHΔ̃x

√
−hTHh

=

√
μδ̃2

1 − δ̃

√
−hTHh.
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Hence,

−gH−1g ≤ max

{
hTHh +

2
√
μδ̃2

1 − δ̃

√
−hTHh | h ∈ R

n

}

=
μδ̃4

(1 − δ̃)2
.(5.16)

Combining (5.15) and (5.16), we obtain

δ̃ ≤ δ +
δ̃2

(1 − δ̃)
.(5.17)

When δ ≤ 1
6 , the quadratic inequality (5.17) implies δ̃ ≤ 2δ. The condition δ ≤ 1

6 is
eventually reached, since the inner iterations of the long-step algorithm converge.

From (5.15), exchanging positions of Δx and Δ̃x and following the above steps,

we obtain δ ≤ δ̃ + δ̃2

(1−δ̃)
, which in turn implies δ ≤ 3

2 δ̃, since δ̃ ≤ 2δ ≤ 1
3 .

Lemma 5.1 implies that each inner iteration decreases the value of η by at least
μ[δ− ln(1+δ)]. Therefore, in view of Lemmas 5.1 and 5.4 after reducing μ by a factor
γ ∈ (0, 1), at most O(p + Kr) Newton iterations are needed for recentering. In the
long-step version of our algorithm we need to update the barrier parameter μ no more
than O(lnμ0/ε) times.

Theorem 4.2 follows from Lemma 5.1(ii), Lemma 5.4, and Lemma 5.5.

6. Concluding remarks. We have described and analyzed short- and long-step
interior point decomposition algorithms that follow the primal central trajectory of the
first stage problem. At each iteration, these algorithms generate gradient and Hessian
information for the first stage problem using optimal dual solutions of the second stage
barrier problems and then update the primal first stage solution taking a step along
the Newton direction. Although this framework is attractive from the decomposition
point of view, it has several limitations that need further work to develop practical
implementations. These include (i) generating a good starting point, (ii) development
of a practical first stage step length selection procedure, (iii) a practical strategy for
reducing μ in our context, (iv) adaptive addition of scenarios, (v) computation of
approximate solutions of the second stage problems, and (vi) a proper choice of ε to
terminate the algorithm. These issues are addressed in a companion computational
paper [7].

Acknowledgement. We would like to thank two anonymous referees, whose
careful reading of the first draft of this paper resulted in several improvements and
corrections.
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A COPOSITIVE PROGRAMMING APPROACH TO GRAPH
PARTITIONING∗

JANEZ POVH† AND FRANZ RENDL‡

Abstract. We consider 3-partitioning the vertices of a graph into sets S1, S2, and S3 of specified
cardinalities, such that the total weight of all edges joining S1 and S2 is minimized. This problem
is closely related to several NP-hard problems like determining the bandwidth or finding a vertex
separator in a graph. We show that this problem can be formulated as a linear program over the
cone of completely positive matrices, leading in a natural way to semidefinite relaxations of the
problem. We show in particular that the spectral relaxation introduced by Helmberg et al. (1995)
can equivalently be formulated as a semidefinite program. Finally we propose a tightened version
of this semidefinite program and show on some small instances that this new bound is a significant
improvement over the spectral bound.

Key words. semidefinite programming, copositive programming, graph partitioning problem,
bandwidth problem, vertex separator problem
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1. Introduction. We consider the following partition problem on graphs, and
we denote it as the MIN-CUT problem (MCP). Let G = (V, E) be an undirected
graph on n vertices, given by its (weighted) adjacency matrix A ≥ 0, so aij > 0
implies the edge (ij) ∈ E(G) with weight aij . For given integers m1, m2, and m3

summing to n, we are interested in the following NP-complete problem: find subsets
S1, S2, and S3 of V (G) with cardinalities m1, m2, and m3, respectively, such that the
total weight of edges between S1 and S2 is minimal. More formally, let (S1, S2, S3)
be a partition of V with |Si| = mi for i = 1, 2, 3. The total weight of edges between
sets S1 and S2 will be denoted as cut(S1, S2). Hence

cut(S1, S2) =
∑

i∈S1, j∈S2

aij .

We define the MCP as the following optimization problem:

min cut(S1, S2)
(MCP) such that (S1, S2, S3) partitions V (G)

and |Si| = mi, i = 1, 2, 3.

The optimal value of this problem will be denoted as OPTMC .
Remark 1. If m1 = 0 or m2 = 0, then the MCP is trivial: OPTMC = 0.

Therefore, we assume from now on that 1 ≤ m1 ≤ m2. If m3 = 0, m1 = �n
2 �, and

m2 = �n
2 �, we get the NP-complete bisection problem as a special case (see [7]).
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The MCP by itself may seem like an artificial optimization problem. It can how-
ever serve as a powerful tool to solve some fundamental graph optimization problems.
It is connected to the (balanced) vertex separator problem, where the objective is to
find a minimal subset of V (G), whose removal disconnects the graph into two sub-
graphs of roughly equal size. If OPTMC = 0, then the graph G underlying A has
a vertex separator of size m3 and its connectivity is at most m3 (see [10] for more
details). On the other hand, if OPTMC > 0, then the bandwidth of the matrix A is
at least m3 + 1 (see [10]). The ability to solve (or at least approximate) the MCP
therefore has strong impact on these graph problems. The MCP is a special instance
of more general graph partitioning problems, where one is interested in a partition
of V (G) into k disjoint subsets S1, . . . , Sk with cardinalities m1 ≤ m2 ≤ · · · ≤ mk,∑

i mi = |V (G)|, such that the total weight of edges between some subsets is min-
imized. A survey on the graph partitioning problem and related problems is given
in [13]. Graph partitioning, bandwidth minimization, and vertex separator problems
appear in a wide range of applications, from numerical linear algebra to floor planning
and analysis of bottlenecks in communication networks. In parallel computing, par-
titioning the set of tasks among processors in order to minimize the communication
between processors is another instance of a graph partitioning problem. A compre-
hensive survey with results in this area up to 1995 is contained in [1]. Formulating
the partitions using vertex variables leads to a quadratic cost function with linear and
quadratic constraints in binary variables; see (1)–(5) below. Maintaining the orthog-
onality condition (2) leads to spectral relaxations based on the Hoffman–Wielandt
inequality; see [10, 17]. In [10, 17], these relaxations are investigated for the MCP.
The quality of this approach has also been studied in [8]. The spectral relaxation of
the MCP from [10] is attractive because of the closed form optimal solution; see (15)
in section 3 below. The drawback of this model however is that further refinements,
like adding sign constraints, make it intractable. It is the purpose of the present paper
to overcome these difficulties, and extend and strengthen the spectral approach. Here
are our main contributions.

(i) We first formulate the MCP as a linear program over the cone of completely
positive matrices; see section 2. This does not make the problem tractable, since linear
optimization over this cone is NP-hard [14], but suggests a new family of tractable
relaxations, which we get by approximating the copositive constraint with a tractable
one, for example, by using the hierarchy of cones, suggested by Parrilo [15], which
approximates the cone of completely positive matrices arbitrarily close.

(ii) The conic formulation of the MCP leads to various semidefinite program-
ming (SDP) relaxations of increasing complexity and strength. In section 3 we show
that the spectral model from [10] corresponds to a specific semidefinite program,
obtained by approximating the cone of completely positive matrices by the cone of
positive semidefinite matrices. The proof of this result is rather involved, and we
break it down into several smaller steps. It is given in section 4. As in [10] we provide
a closed form solution of this semidefinite program (subsection 4.3).

(iii) Finally, we investigate further tightenings of the SDP relaxation in section 5.
This opens the way to powerful new approximations of the bandwidth and vertex
separator problems. We provide some preliminary computational results which clearly
indicate the potential of the new relaxations.

We point out that similar results have been shown recently for other combinatorial
optimization problems. De Klerk and Pasechnik [11] have shown that computing the
stability number of a graph is equivalent to solving a copositive program. Anstreicher
and Wolkowicz [2] have shown that the spectral relaxation of the quadratic assignment
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problem can equivalently be formulated as a semidefinite program. SDP also turned
out to be a useful tool to get tractable relaxations for the graph partitioning problem
(see [19]) and the vertex separator problem (see [6]). Finally, de Sousa and Balas have
recently proposed an integer linear programming approach combined with a branch
and cut algorithm to get minimal balanced vertex separators; see [18].

1.1. Notation. We denote the ith standard unit vector by ei, while the vector
of all ones is un ∈ Rn (or u if dimension n is obvious). The square matrix of all
ones is Jn (or J) and the identity matrix is I = (δij). We set Eij = eie

T
j and

its symmetrization is Bij = 1
2 (Eij + Eji). In this paper we consider the following

sets of matrices. The vector space of real symmetric n × n matrices is denoted by
Sn = {X ∈ Rn×n : X = XT }. The cone of n × n positive semidefinite matrices is
S+
n = {X ∈ Sn : yTXy ≥ 0 ∀y ∈ Rn}. The cone of n × n copositive matrices is

denoted by Cn = {X ∈ Sn : yTXy ≥ 0 ∀y ∈ Rn
+}, the cone of n × n completely

positive matrices is C∗
n = {X =

∑k
i=1 yiy

T
i , k ≥ 1, yi ∈ Rn

+ ∀i = 1, . . . , k}, and the
cone of n× n symmetric nonnegative matrices is Nn = {X ∈ Sn : xij ≥ 0 ∀i, j}. We
also use X 
 0 for X ∈ S+

n and X ≥ 0 for an elementwise nonnegative matrix. A
linear program over S+

n is called a semidefinite program, while a linear program over
Cn or C∗

n is called a copositive program.

The sign ⊗ stands for Kronecker product, while the matrices Vi and Wj denote
Vi = eiu

T
3 ∈ R3×3, Wj = eju

T
n ∈ Rn×n, 1 ≤ i ≤ 3, 1 ≤ j ≤ n. When we consider a

matrix X ∈ Rm×n as a vector from Rmn, we write this vector as vec(X) or x. The
〈·, ·〉 denote the standard scalar product. For u, v ∈ Rn we have 〈u, v〉 = uT v and
for X,Y ∈ Rm×n we have 〈X, Y 〉 = trace(XTY ). For matrix columns and rows we
will use MATLAB notation; hence X(i, :) and X(:, i) will stand for the ith row and
column, respectively. If a ∈ Rn, then Diag(a) is an n × n diagonal matrix with a
on the main diagonal. When P is the name of the optimization problem then OPTP

denotes its optimal value.

2. The MCP as a conic linear program. We first use the partition formula-
tion of the MCP to express the MCP as a quadratic program in nonnegative variables.
Following [10] we represent partitions (S1, S2, S3) of V (G) by n×3 matrices X, where

xij =

{
1 if i ∈ Sj ,
0 if i /∈ Sj .

It will also be useful to identify columns of X directly; hence we denote the ith column
of X by xi. Using X, we can easily express cut(S1, S2) as

cut(S1, S2) = xT
1 Ax2 =

1

2
〈X, AXB〉,(1)

where

B =

⎡
⎣ 0 1 0

1 0 0
0 0 0

⎤
⎦ .

In [17] it is shown that an n× 3 matrix X represents a partition of V (G) into subsets
S1, S2, and S3 of prescribed sizes m = (m1,m2,m3)

T if and only if X satisfies the
following relations:
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XTX = Diag(m) =: M,(2)

Xu3 = un,(3)

X ≥ 0.(4)

Note in particular that the constraint

XTun = m,(5)

asking that each partition block has the right number of elements, is implied by these
conditions. The set of all n×3 matrices, representing some partition of V (G) into sets
of cardinalities, specified by m, will be denoted by F . Using the above characterization
of such partition matrices, we have

F = {X ∈ Rn×3; X satisfies (2)–(4)}.

The MCP can equivalently be written as a quadratic program:

(MCQP ) min 1
2 〈X, AXB〉 such that X ∈ F .

This problem has a nonconvex objective function, defined over a finite set. Our main
goal in this section is to transform this problem into an equivalent linear program
over the cone of completely positive matrices. We do this by expressing the linear
constraints in an appropriate way as quadratic ones. Then we linearize the resulting
quadratic terms. Specifically, we consider the following equations in the variable
X ∈ Rn×3:

(eTi Xu3)
2 =

(∑
k

Xik

)2

= 1, 1 ≤ i ≤ n,(6)

(uT
nXej)(e

T
i Xu3) =

(∑
k

Xkj

)(∑
k

Xik

)
= mj , 1 ≤ i ≤ n, 1 ≤ j ≤ 3,(7)

(uT
nXei)(u

T
nXej) =

(∑
k

Xki

)(∑
k

Xkj

)
= mimj , 1 ≤ i ≤ j ≤ 3.(8)

Equations (6) are obtained by squaring the equations from (3). The equations (7) are
obtained by elementwise multiplication of (3) and (5). The last set of equations is
obtained from pairwise multiplication of (5). Clearly, any X ∈ F will satisfy (6)–(8).
Using the Kronecker product and the property vec(PXQ) = (QT ⊗P ) vec(X) we get

〈X, PXQ〉 = vec(X)T vec(PXQ) = xT (QT ⊗ P )x = 〈QT ⊗ P, xxT 〉.

This helps us to reformulate the constraints (6)–(8) as follows:⎧⎪⎪⎨
⎪⎪⎩

(eTi Xu3)
2 = 〈X, eie

T
i Xu3u

T
3 〉 = 〈J3 ⊗ Eii, xx

T 〉,

(uT
nXei)(e

T
j Xu3) = 〈X, une

T
j Xu3e

T
i 〉 = 〈Vi ⊗WT

j , xxT 〉,

(uT
nXei)(u

T
nXej) = 〈X, unu

T
nXeje

T
i 〉 = 〈Eij ⊗ Jn, xx

T 〉.

(9)

In the last term we may replace Eij with Bij , since xxT is symmetric. Similarly, we
can rewrite the (i, j)th component on the left-hand side of (2) as

eTi X
TXej = 〈Xei, Xej〉 = 〈X, XEji〉 = 〈Eij ⊗ I, xxT 〉.
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Let us now introduce Y = xxT . Then MCQP can be equivalently formulated as
follows:

min
1

2
〈BT ⊗A, Y 〉

〈Bij ⊗ I, Y 〉 = miδij , 1 ≤ i ≤ j ≤ 3,(10)

s. t. 〈J3 ⊗ Eii, Y 〉 = 1, 1 ≤ i ≤ n,(11)

〈Vi ⊗WT
j , Y 〉 = mi, 1 ≤ i ≤ 3, 1 ≤ j ≤ n,(12)

〈Bij ⊗ Jn, Y 〉 = mimj , 1 ≤ i ≤ j ≤ 3,(13)

Y = xxT , x ∈ R3n
+ .

To see that this optimization problem is equivalent to MCQP , we note that for any
X feasible for MCQP , we can take x = vec(X) to get a feasible Y = xxT for this
problem with the same objective value and vice versa. The above problem has linear
objective, linear constraints, and the quadratic equation, coupling Y and x. As a final
simplification, we replace the constraints Y = xxT and x ≥ 0 by Y ∈ C∗

3n. The new
optimization problem, which is a copositive program, will be denoted by MCCP :

(MCCP ) min
1

2
〈BT ⊗A, Y 〉 such that Y ∈ C∗

3n satisfies (10)–(13).

The following theorem explains the relation between the feasible sets of MCQP and
MCCP .

Theorem 1.

CONV{xxT ; x ∈ R3n
+ , xxT feasible for (10)–(13)}

= {Y ∈ C∗
3n; Y feasible for (10)–(13)}.

Proof. The “⊆” inclusion is obvious. To show inclusion in the other direction,
we have to prove that for any Y ∈ C∗

3n, feasible for MCCP , there exist finitely many
vectors y1, y2, . . . ∈ R3n

+ and numbers λk ∈ [0, 1] with
∑

k λk = 1 such that yk(yk)T

are feasible for constraints (10)–(13) and Y =
∑

k λky
k(yk)T . Let Y ∈ C∗

3n. From
the definition of the cone C∗

3n follows that there exist finitely many nonzero vectors
xk ∈ R3n

+ such that Y =
∑

k x
k(xk)T . We can treat xk as a vector representation

of some matrix Xk ∈ Rn×3; therefore we will index the components of each xk with
two indices: xk = (xk

ij), i = 1, . . . , n and j = 1, 2, 3 (components xk
:1 are the first n

components of xk—the first “column” of xk, etc.). Let us first fix i and j (1 ≤ i ≤ n,

1 ≤ j ≤ 3). If we denote with rk =
∑3

s=1 x
k
is the sum of the “ith row” of xk and with

ck =
∑n

s=1 x
k
sj the sum of the “jth column” of xk, then we can rewrite the constraints

(11)–(13) using (6)–(9) as∑
k r

2
k = 1,

∑
k rkck = mj ,

∑
k c

2
k = m2

j .

The Cauchy inequality, applied to vectors v1 = (r1, r2, . . . ) and v2 = (c1, c2, . . . ),
implies rk = ck/mj , or equivalently

∑
s

xk
is =

∑
s x

k
sj

mj
, k = 1, 2, . . . .(14)

Since this is true for all i and j, we can see that the numbers
∑

s x
k
sj/mj are equal

for all j. This means that in any vector xk the sum of any “row” is equal to the sum
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of column j divided by mj for all j = 1, 2, 3. Therefore we may take without loss of
generality j = 1 and define αk =

∑
s x

k
s1/m1. Since none of xk is zero we have αk > 0

for all k, and we may define λk = α2
k = (

∑
s x

k
s1)

2/m2
1 and yk = xk/αk. From (13)

we get

∑
k

λk =
1

m2
1

∑
k

(∑
s

xk
s1

)2

= 1.

Equation (14) implies that yk(yk)T are feasible for (11)–(13) and Y =
∑

k λky
k(yk)T .

To finish the proof it remains to show that yk(yk)T is feasible for (10) for all k.
Indeed, if there exist i �= j and k such that 〈Bij ⊗ I, yk(yk)T 〉 > 0, then because
of nonnegativity of yk we have 〈Bij ⊗ I, Y 〉 > 0, but this is a contradiction to the
feasibility of Y . In particular, this means that in each “row” of yk there is only one
nonzero component, which must be equal to 1 because of feasibility for (11). Hence yk

is a 0–1 vector. This implies together with (13) that 〈Eii⊗ I, yk(yk)T 〉 =
∑

s(y
k
si)

2 =∑
s y

k
si = mi; hence yk(yk)T is feasible for (10), too.

The feasible set of MCCP is therefore a polytope, spanned by the rank 1 matrices
of type xxT , where x is a vector representation of matrix X, feasible for MCQP . Since
MCCP is a linear program, it has a rank 1 optimal solution; hence OPTCP ≥ OPTQP .
The opposite direction is obvious; hence we have the following corollary.

Corollary 2. Problems MCQP and MCCP have the same optimal value; there-
fore the MCP can be equivalently formulated as a linear program in completely positive
matrices.

Remark 2. This copositive representation again confirms the importance of
copositive programming in combinatorial optimization which was revealed by de Klerk
and Pasechnik [11], who proved that computing the stability number of a graph is
equivalent to solving a copositive program and then presented a hierarchy of positive
semidefinite relaxations, which follow from this approach and are strongly connected
with the ϑ-function.

3. The spectral relaxation as a semidefinite program. Helmberg et al.
have derived in [10] a lower bound for OPTMC which is easy to compute. They have
omitted the nonnegativity constraint (4) in MCQP and added constraint (5), yielding
the problem

OPTHW = min 1
2 〈X, ÂXB〉 such that X satisfies (2), (3), and (5).

In the above formulation we introduced Â = A + D with D = s(A)
n I − Diag(r(A))

and s(A) = uTAu, r(A) = Au. This is a quadratic problem defined over a nonconvex
set described by linear and quadratic equations. If we replace in the models MCQP

and MCCP matrix A with Â, then the optimal values of these models do not change,
since matrix XBXT in the model MCQP has only zeros on the main diagonal and
similarly any feasible matrix Y in model MCCP has only zeros on the main diagonals
of off-diagonal blocks, as follows from (10) and complete positiveness of Y . Therefore
OPTMC ≥ OPTHW . Helmberg et al. [10] have in fact shown that OPTHW has the
explicit form

OPTHW = −1

2
μ2λ2 −

1

2
μ1λn,(15)

where λ2 and λn are second smallest and the largest Laplacian eigenvalues of the graph

G (i.e., the eigenvalues of matrix L = Diag(r(A)) −A = s(A)
n I − Â) and μ1 ≥ μ2 are

defined as
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μ1,2 =
1

n

(
−m1m2 ±

√
m1m2(n−m1)(n−m2)

)
.(16)

The key tool to get this result was the Hoffman–Wielandt inequality [9] combined
with a projection technique for partitioning the nodes of a graph from [17]. It is an
attractive feature of this bound that the closed form solution (15) is quite easy to
compute, as it involves only the computation of the extreme Laplacian eigenvalues.
On the other hand, the relaxation OPTHW , as described above, does not permit the
inclusion of further constraints, like, for instance, X ≥ 0, without losing tractability.
One of the main motivations for the current research was in fact the search for a new
equivalent formulation of OPTHW which is suitable for further tractable refinements.
We now propose such a refinement. As already mentioned, we do not change the
optimal value by replacing A with Â in the models MCQP and MCCP . Let us consider
the model, obtained from MCCP by this replacement and relaxing the constraint
Y ∈ C∗

3n to Y ∈ S+
3n. We will denote it by MCSDP and its optimal value by OPTSDP .

Hence

OPTSDP = min 1
2 〈B

T ⊗ Â, Y 〉

(MCSDP ) s. t. Y ∈ S+
3n

Y satisfies (10)–(13).

In the next section we will show that the value OPTSDP is equal to OPTHW . First
we have the easy part.

Lemma 3.

OPTHW ≥ OPTSDP .

Proof. If X satisfies (2), (3), and (5), then X satisfies constraints (2) and (6)–(8).
The matrix Y = xxT satisfies (10)–(13) and is in S+

3n hence is feasible for MCSDP .

Since 1
2 〈X, ÂXB〉 = 1

2 〈BT ⊗ Â, Y 〉, the lemma follows.
The main result of this section is the following theorem.
Theorem 4.

OPTHW = OPTSDP .

From Lemma 3 it follows that we need to prove that OPTHW ≤ OPTSDP . Our
proof of this result is rather involved and consists of two major steps. In the first
step we reformulate the semidefinite program MCSDP in a new coordinate system,
obtained by diagonalizing the cost matrix BT ⊗ Â. This is the content of subsec-
tion 4.1, which ends with the main result of the first step, i.e., with the semidefinite
program (18). The second part of the proof is more subtle. We extract a subproblem
of (18) by leaving out some constraints and projecting the feasible set to a proper
hyperplane. In subsection 4.2 we show that this subproblem, denoted by MCSDPa,
in fact captures the essential part of MCSDP , and its optimal solution OPTSDPa

satisfies OPTSDP ≥ OPTSDPa ≥ OPTHW . This closes the chain of inequalities and
the proof is finished.

4. Proof of Theorem 4.

4.1. Diagonalization of the cost matrix. Let 1
2 Â = PSPT , B = QTQT ,

where P and Q are orthonormal matrices whose columns are eigenvectors of 1
2 Â and

B, respectively, and S, T are diagonal matrices with eigenvalues on the diagonal. We
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take the factorizations where the eigenvalues are in nondecreasing order; hence we
have

Q =
1

2

⎡
⎣ −

√
2 0

√
2√

2 0
√

2
0 2 0

⎤
⎦ , T =

⎡
⎣ −1 0 0

0 0 0
0 0 1

⎤
⎦ .

If we denote with �i = sii, then from Â = s(A)
n I−L (see the beginning of the previous

section) follows �i = s(A)
2n − λn−i+1(L)

2 , in particular �1 = s(A)
2n − λn(L)

2 and �n = s(A)
2n .

We choose P in such a way that the last column of P is equal to u/
√
n. This can

be done since u is an eigenvector of Â corresponding to the largest eigenvalue of Â.
In the following lemmas we investigate what happens if we substitute in the model
MCSDP the matrix variable Y with matrix variable Z, which are related by

Y = (Q⊗ P )Z (Q⊗ P )T .(17)

This substitution simplifies the objective function, which becomes 〈T ⊗ S, Z〉; hence
only diagonal elements of Z will determine the objective value. If Y ∈ S+

3n, then the
new matrix variable Z is from S+

3n, too. We will often for the sake of simplicity write
matrix Z as a block matrix: Z = [Zij ]1≤i,j≤3, where Zij ∈ Rn×n. This actually
means that

Z =
∑

1≤i,j≤3

Eij ⊗ Zij =

⎡
⎣ Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

⎤
⎦ .

We will denote with Zij
kl the (k, l)th component of matrix Zij .

Lemma 5. Let Y,Z ∈ S3n satisfy (17). The matrix Y satisfies constraint (13) if
and only if the matrix Z satisfies

Zij
nn = fij , 1 ≤ i ≤ j ≤ 3,(13a)

where matrix F = (fij) ∈ S+
3 is as follows:

F =
1

2n

⎡
⎣ m2 −m1√

2m3

m2 + m1

⎤
⎦ ·

⎡
⎣ m2 −m1√

2m3

m2 + m1

⎤
⎦
T

.

Proof. Here we use the fact that P (:, n) = u/
√
n. Constraint (13) becomes

〈(QTBijQ) ⊗ (PTJnP ), Z〉 = mimj . Since all columns of P are orthogonal, we have

PTJnP = PTWT
n = nEnn. We also get matrices B̃ij := QTBijQ:

B̃11 = 1
2

⎡
⎣ 1 0 −1

0 0 0
−1 0 1

⎤
⎦ , B̃12 = 1

2

⎡
⎣ −1 0 0

0 0 0
0 0 1

⎤
⎦ ,

B̃13 =
√

2
4

⎡
⎣ 0 −1 0

−1 0 1
0 1 0

⎤
⎦ , B̃22 = 1

2

⎡
⎣ 1 0 1

0 0 0
1 0 1

⎤
⎦ ,

B̃23 =
√

2
4

⎡
⎣ 0 1 0

1 0 1
0 1 0

⎤
⎦ , B̃33 =

⎡
⎣ 0 0 0

0 1 0
0 0 0

⎤
⎦ .
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Therefore we get 〈B11⊗Jn, Y 〉 = n〈B̃11⊗Enn, Z〉 = n
2 (Z11

nn−2Z13
nn+Z33

nn). Equation
〈B11 ⊗ Jn, Y 〉 = m2

1 is thus equivalent to

Z11
nn − 2Z13

nn + Z33
nn =

2m2
1

n
.

Similarly, we rewrite the other equations from constraint (13) into

−Z11
nn + Z33

nn = 2m1m2

n , −Z12
nn + Z23

nn =
√

2m1m3

n ,

Z11
nn + 2Z13

nn + Z33
nn =

2m2
2

n , Z12
nn + Z23

nn =
√

2m2m3

n ,

Z22
nn =

m2
3

n .

The solution of this system of six linear equations in six variables is Zij
nn = fij .

Lemma 6. Let Y,Z ∈ S3n satisfy (17). The matrix Y satisfies constraint (10) if
and only if the matrix Z satisfies constraint

trace(Zij) = hij , 1 ≤ i ≤ j ≤ 3,(10a)

where matrix H = (hij) ∈ S3 is defined as

H =
1

2

⎡
⎣ m1 + m2 0 m2 −m1

0 2m3 0
m2 −m1 0 m1 + m2

⎤
⎦ .

Proof. From PT I P = I follows 〈Bij ⊗ I, Y 〉 = 〈B̃ij ⊗ I, Z〉. If i = j = 1,

then 〈B̃11 ⊗ I, Z〉 = (trace(Z11) − 2 trace(Z13) + trace(Z33))/2, so the first equation
from (10) could be rewritten as

1

2

(
trace(Z11) − 2 trace(Z13) + trace(Z33)

)
= m1.

Similarly, we get the other five linear equations in six variables trace(Zij). The unique
solution is given by trace(Zij) = hij , 1 ≤ i ≤ j ≤ 3.

Lemma 7. Let Y,Z ∈ S3n satisfy (17).
(a) The matrix Y satisfies constraint (11) if and only if the matrix Z satisfies

the constraint 〈
U ⊗ P (i, :)TP (i, :), Z

〉
= 1, 1 ≤ i ≤ n,(11a)

where

U = QTJ3Q =

⎡
⎣ 0 0 0

0 1
√

2

0
√

2 2

⎤
⎦ .

(b) The matrix Y satisfies constraint (12) if and only if the matrix Z satisfies
the constraint

〈Ṽi ⊗ (en · P (j, :)), Z〉 =
mi√
n
, 1 ≤ i ≤ 3, 1 ≤ j ≤ n,(12a)

where Ṽi = QTViQ.
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Proof. (a) This statement follows immediately from PTEiiP = P (i, :)TP (i, :).
(b) After the substitution the left-hand side of constraint (12) becomes

〈(QTViQ) ⊗ (PTWT
j P ), Z〉 = mi. A short calculation shows

Ṽ1 = 1
2

⎡
⎣ 0 −

√
2 −2

0 0 0

0
√

2 2

⎤
⎦ , Ṽ2 = 1

2

⎡
⎣ 0

√
2 2

0 0 0

0
√

2 2

⎤
⎦ , Ṽ3 =

⎡
⎣ 0 0 0

0 1
√

2
0 0 0

⎤
⎦ .

The term PTWT
j P simplifies because of the choice of the last column of P into√

nEnjP =
√
nene

T
j P =

√
nenP (j, :).

By introducing the set

G = {Z ∈ S+
3n, Z satisfies constraints (10a), (11a), (12a), and (13a)},

we can see that the problem MCSDP is equivalent to the problem

min 〈T ⊗ S, Z〉 such that Z ∈ G,(18)

since for any feasible solution Y for MCSDP we can find a solution Z ∈ G via (17)
with the same value of the objective value and vice versa. It should be noted that the
cost function in (18) simplifies to 〈T ⊗ S, Z〉 =

∑n
i=1 �i(Z

33
ii − Z11

ii ).

4.2. A block-diagonal subproblem. The semidefinite program (18) is still
quite complicated. Since Lemmas 5–7 show that feasibility for constraints (10a)–(13a)
is mostly determined with the diagonal entries of blocks Zij , we are going to study the
following semidefinite program, which we obtain by keeping in the program (18) only
constraints (10a) and (13a) and ignoring all nondiagonal components in any block
Zij . We also omit blocks Z2i and Zi2, i = 1, 2, 3, since they do not contribute to the
cost function.

min
∑n−1

i=1 �i(ri − pi) + �n(f33 − f11)

s. t.
∑n−1

i=1 pi = h11 − f11 := b1,

(MCSDPa)
∑n−1

i=1 ri = h33 − f33 := b2,∑n−1
i=1 qi = h13 − f13 := b3,

Ui =

[
pi qi
qi ri

]

 0.

The constants bi are

b1 =
4m1m2 + m1m3 + m2m3

2n
, b2 =

(m1 + m2)m3

2n
, and b3 =

(m2 −m1)m3

2n
.

In the following lemma we compare the optimal values of MCSDP and MCSDPa.
Lemma 8.

OPTSDP ≥ OPTSDPa.

Proof. We will show that any feasible solution for (18) implies a feasible solution
for MCSDPa. Let Z = [Zij ] be a feasible solution for (18) and let us define pi =
Z11
ii , ri = Z33

ii , and qi = Z13
ii for 1 ≤ i ≤ n − 1. From Lemmas 5 and 6 follows∑n−1

i=1 pi = trace(Z11) − Z11
nn = b1, and hence pi are feasible for the first equation

in MCSDPa. Similarly we can show that the other two constraints are satisfied and
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that the matrices Ui =
[ pi qi
qi ri

]
are positive semidefinite, following from Z 
 0. The

objective value of the MCSDPa is exactly
∑n

i=1 �i(Z
11
ii − Z33

ii ) = 〈T ⊗ S, Z〉; hence
the lemma follows.

Here is the dual semidefinite program for MCSDPa:

max b1y1 + b2y2 + 2b3y3 + �n(f33 − f11)

(DMCSDPa) s. t. Vi =

[
−�i − y1 −y3

−y3 �i − y2

]

 0, 1 ≤ i ≤ n− 1.

First let us introduce the number

δ =
2m1m2 + m1m3 + m2m3

2
√
m1m2(n−m1)(n−m2)

=
m1(n−m1) + m2(n−m2)

2
√
m1m2(n−m1)(n−m2)

.

This number is well defined in view of Remark 1. Note also that δ is of the form

1

2

(
u +

1

u

)
with u =

√
m1(n−m1)

m2(n−m2)
> 0.

Therefore δ ≥ 1. The next lemma allows us to finish the proof of Theorem 4. We
need the following simple observation for its proof.

Proposition 9. If a + b = c + d and |a− b| ≤ |c− d|, then ab ≥ cd.
Proof. We can write (a− b)2 = (a+ b)2 − 4ab and (c−d)2 = (c+d)2 − 4cd. Using

the assumptions of the proposition we get (a + b)2 − 4ab ≥ (c + d)2 − 4cd and the
result follows.

Lemma 10. The numbers

y1 = −�1 + �n−1

2
− δ

2
(�n−1 − �1),

y2 =
�1 + �n−1

2
− δ

2
(�n−1 − �1),

y3 =
√

(−�1 − y1)(�1 − y2)

form an optimal solution for the dual problem DMCSDPa with objective value equal
to OPTHW .

Proof. First note that δ ≥ 1 implies y1 ≤ −�n−1 and y2 ≤ �1. This shows that in
the definition of y3 we take the square root of a nonnegative number; hence y3 is well
defined. To see that Vi 
 0, we first note that the numbers �i are in nondecreasing
order; therefore −�i − y1 ≥ 0, �i − y2 ≥ 0. Using that y2 = y1 + �1 + �n−1 we
get y2

3 = (−�1 − y1)(�1 − y2) = (−�n−1 − y1)(�n−1 − y2) and (−�i − y1) + (�i − y2) =
−y1−y2 = δ(�n−1−�1). Since |(−�i−y1)−(�i−y2)| = |�1+�n−1−2�i| ≤ |�n−1−�1| =
|(−�1 − y1) − (�1 − y2)|, we get by Proposition 9

(−�i − y1)(�i − y2) ≥ (−�1 − y1)(�1 − y2) = (−�n−1 − y1)(�n−1 − y2) = y2
3 ;

hence det(Vi) ≥ 0 and positive semidefiniteness of Vi follows. Second we will show
the optimality of (y1, y2, y3). It is sufficient to prove that

b1y1 + b2y2 + 2b3y3 + �n(f33 − f11) = −1

2
μ2λ2 −

1

2
μ1λn = OPTHW ,

since from Lemmas 3 and 8 and the weak duality property we know that the op-
timal value of DMCSDPa is at most OPTSDP ≤ OPTHW . Using the fact that
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�1 = s(A)
2n − λn

2 , �n−1 = s(A)
2n − λ2

2 , and �n(f33 − f11) = s(A)m1m2

n2 , it remains to show
that

b1y1 + b2y2 + 2b3y3 = μ2�n−1 + μ1�1.

One can derive that

y3 =
√

(−�1 − y1)(�1 − y2) = �n−1−�1
2

√
δ2 − 1 = m3(m2−m1)(�n−1−�1)

4
√

m1m2(n−m1)(n−m2)

and show

b1y1 + b2y2 + 2b3y3 = �1
2 (δ(b1 + b2) − b1 + b2 − 2b3

m3(m2−m1)

2
√

m1m2(n−m1)(n−m2)
)

− �n−1

2 (δ(b1 + b2) + b1 − b2 − 2b3
m3(m2−m1)

2
√

m1m2(n−m1)(n−m2)
)

= μ1�1 + μ2�n−1.

Checking the last equality involves tedious but straightforward algebraic manipula-
tion.

Proof of Theorem 4. From Lemmas 3, 8, and 10 and the weak duality property
for semidefinite program MCSDPa follows

OPTHW ≥ OPTSDP ≥ OPTSDPa ≥ OPTDSDPa = OPTHW ;

hence equality holds throughout.

4.3. Reconstructing the optimal solution of the problem MCSDP . Once
we know the optimal solution of the dual problem DMCSDPa, we can reconstruct the
optimal solution of MCSDP by tracing the procedure from the previous subsection
and using the structural information about the feasible set G. We will first compute
the optimal solution of MCSDPa from the optimal solution of MCDSDPa and then
will extend it to the optimal solution of MCSDP . Let U∗ = diag(U1, . . . , Un−1) be
the optimal solution of MCSDPa and (y1, y2, y3) the optimal solution for DMCSDPa

from Lemma 8. We define matrix V ∗ = diag(V1, . . . , Vn−1) with

Vi =

[
−�i − y1 −y3

−y3 �i − y2

]
, 1 ≤ i ≤ n− 1.(19)

From the feasibility of (y1, y2, y3) it follows that Vi 
 0 and any matrix Vi is in fact
the dual matrix to Ui for 1 ≤ i ≤ n− 1. Since V ∗ is actually optimal for DMCSDPa,
the strong duality property implies 〈Ui, Vi〉 = 0 for 1 ≤ i ≤ n− 1. Suppose first that
�1 < �n−1 and V1 and Vn−1 are the only singular matrices in V ∗ (hence V1 and Vn−1

are rank one matrices). Let

U1 =

[
p1 q1
q1 r1

]
, Un−1 =

[
p2 q2
q2 r2

]
, V1 =

[
v1 z1

z1 w1

]
, and Vn−1 =

[
v2 z2

z2 w2

]
.

Using (19) we see that v1 = −�1 − y1, z1 = −y3, w1 = �1 − y2, etc. From the strong
duality property it follows that U2, U3, . . . , Un−2 are zero matrices and U1, Un−1 are
singular. Since U1, Un−1, V1, and Vn−1 are singular, the following must be true:

z2
1 = v1w1, z2

2 = v2w2,

q2
1 = p1r1, q2

2 = p2r2.
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Together with the strong duality property 〈U1, V1〉 = p1v1 + 2q1z1 + r1w1 = 0 this
implies that

p1v1 + r1w1

2
= |q1z1| =

√
p1v1r1w1.

From the arithmetic-geometric inequality it follows that p1v1 = r1w1 and similarly
p2v2 = r2w2. Components of U1 and Un−1 must also satisfy linear constraints from
MCSDPa: p1 + p2 = b1, r1 + r2 = b2, and q1 + q2 = b3. All these equations uniquely
determine the components of U1 and Un−1 as

p1 = αw1, q1 = −αz1, r1 = αv1,
p2 = βw2, q2 = −βz2, r2 = βv2,

(20)

where

α = b2w2−b1v2

v1w2−v2w1
=

−m1m2+
√

m1m2(n−m1)(n−m2)

(�n−1−�1)n
= μ1

�n−1−�1
,

β = b1v1−b2w1

v1w2−v2w1
=

m1m2+
√

m1m2(n−m1)(n−m2)

(�n−1−�1)n
= − μ2

�n−1−�1
.

If we have �1 < �n−1 and there exists 1 < i < n− 1 such that Vi is a rank one matrix,
then the matrix U∗ = diag(U1, . . . , Un−1), where U2, . . . , Un−2 are zero matrices and
components of U1 and Un−1 are those from (20), is still the (nonunique) optimal
solution of MCSDPa. The last case is that �1 = �n−1. In this case we cannot use
U1 and Un−1, defined with (20), because α and β are not defined. We will find the
optimal solution of MCSDPa directly. Let us define U1 and Un−1 with

p1 = p2 = b1
2 , r1 = r2 = b2

2 , q1 = q2 = b3
2 ,(21)

and let Ui be zero matrices for 2 ≤ i ≤ n− 2. The matrix U = Diag(U1, . . . , Un−1) is

feasible for MCSDPa and
∑n−1

i=1 �i(ri−pi)+�n(f33−f11) = �1(b2−b1)+�n(f33−f11) =

− 2m1m2�1
n + s(A)m1m2

n2 = OPTHW ; hence U is optimal for MCSDPa. However, the
MCP is trivial if �1 = �n−1, since in this case the underlying graph is the complete
graph Kn. Let us introduce the matrices

Z1 =

⎡
⎣ p1 −

√
2q1 q1

−
√

2q1 2r1 −
√

2r1
q1 −

√
2r1 r1

⎤
⎦ , Zn−1 =

⎡
⎣ p2 −

√
2q2 q2

−
√

2q2 2r2 −
√

2r2
q2 −

√
2r2 r2

⎤
⎦ ,

and Zn = F , where F ∈ S+
3 is from Lemma 5, and pi, ri, and qi are either from (20)

or from (21).
Proposition 11. The matrix

Z∗ = Z1 ⊗ E11 + Zn−1 ⊗ En−1,n−1 + Zn ⊗ Enn(22)

is the optimal solution for (18) and the matrix

Y ∗ = (Q⊗ P )Z∗ (Q⊗ P )T

is the optimal solution for MCSDP .
Proof. The structure of Z∗ for the case n = 3 can be seen in Figure 1. From

the construction of Z∗, Theorem 4, and Proposition 10 follows that 〈T ⊗ S, Z∗〉 =
�1(r1 − p1) + �n−1(r2 − p2) + �n(f33 − f11) = OPTHW = OPTSDP ; hence Z∗ gives
the optimal value of (18). Therefore it remains to show that Z∗ is feasible for the
problem (18). Positive semidefiniteness of Z∗ follows from positive semidefiniteness



236 JANEZ POVH AND FRANZ RENDL

Z∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1 0 0 −
√

2q1 0 0 q1 0 0

0 p2 0 0 −
√

2q2 0 0 q2 0
0 0 f11 0 0 f12 0 0 f13

−
√

2q1 0 0 2r1 0 0 −
√

2r1 0 0

0 −
√

2q2 0 0 2r2 0 0 −
√

2r2 0
0 0 f12 0 0 f22 0 0 f23

q1 0 0 −
√

2r1 0 0 r1 0 0

0 q2 0 0 −
√

2r2 0 0 r2 0
0 0 f13 0 0 f23 0 0 f33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 1. Structure of Z∗ for n = 3.

of matrices U1, Un−1, and F . Feasibility for the constraints (10a) and (13a) follows
immediately from the feasibility of U1 and Un−1 for the problem MCSDPa and the
structure of Z∗.

To check the feasibility for (11a) we need to compute for all 1 ≤ i ≤ n〈
U ⊗ P (i, :)TP (i, :), Z∗〉 = P (i, n)2(f22 + 2

√
2f23 + 2f33)

+ (P (i, 1)2 + P (i, n− 1)2)(2r1 + 2r2 − 4r1 − 4r2 + 2r1 + 2r2)

= (f22 + 2
√

2f23 + 2f33)/n + 0 = 1,

so Z∗ is feasible for (11a). The last constraint (12a) reduces for i = 1 and arbitrary
1 ≤ j ≤ n to

〈Ṽ1 ⊗ enP (j, :), Z∗〉 =
P (j, n)

2

(
−
√

2f12 − 2f13 +
√

2f23 + 2f33

)
=

1

2
√
n

2m1 =
m1√
n
.

Similarly, we check the feasibility for (12a) for i = 2, 3. Once we know that Z∗ is
optimal for (18), the optimality of Y ∗ follows from Lemmas 5–7 and the fact that
〈T ⊗ S, Z∗〉 = 1

2 〈B ⊗ Â, Y ∗〉.
A simple implication of Proposition 11 is the following closed form formula for

the optimal solution of the semidefinite program MCSDP :

Y ∗ = (Q⊗ P )Z∗ (Q⊗ P )T = (QZ1Q
T ) ⊗ (P (:, 1)P (:, 1)T )(23)

+ (QZn−1Q
T ) ⊗ (P (:, n− 1)P (:, n− 1)T ) +

1

n
(QZnQ

T ) ⊗ Jn.

We can see that for any graph and fixed m, Y ∗ is completely determined by (y1, y2, y3)

from Lemma 8 and hence with the first and the second to last eigenvalues of Â
and corresponding eigenvectors, which are determined by the second and the last
eigenvalues of the graph Laplacian (λ2 and λn) and corresponding eigenvectors.

5. A new family of relaxations for the MCP. In the previous section we
have seen that relaxing the constraint Y ∈ C∗

3n in model MCCP to Y ∈ S+
3n leads to

the lower bound OPTHW . To get a better lower bound it is therefore natural to use
a (tractable) set K with C∗

3n ⊂ K ⊂ S+
3n. Specifically, let OPTK be defined by

OPTK = min
1

2
〈BT ⊗ Â, Y 〉 such that Y ∈ K and Y satisfies (10)–(13);

then OPTMC ≥ OPTK ≥ OPTHW . A simple (and tractable) candidate for the set
K is K0 = S+

3n ∩ N3n. This is actually the first member in the hierarchy of cones
introduced by Parrilo in [15] and used also by de Klerk and Pasechnik in their work
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about the stability number in [11]. We may also replace it with any other member of
this hierarchy, but already the second cone K1 leads to a very expensive semidefinite
program. OPTK0 is already quite expensive, since each sign constraint contributes
one linear equation and one slack variable and we have approximately 9n2/2 of them.
We get cheaper models if we take for K the cone

Ka
0 = {X ∈ S+

3n, Z(X) = 0, and X12
ij ≥ 0 for any (i, j) with aij > 0},

where Z(X) = 0 means that all diagonal entries in all nondiagonal blocks must
be zero, which corresponds to componentwise orthogonality of columns of partition
matrices. Taking the last cone makes sense, since the matrix BT ⊗ Â in the model
MCCP is nonzero only in those positions of (1, 2)th and (2, 1)th blocks, where aij > 0,
and the constraint Z(X) = 0 is satisfied by any feasible solution for MCCP . Table 1
shows numerical results, which we obtained by optimizing over the cones K0 and Ka

0 .
Table 1 contains computational results on small graphs: P6×P4 is the product of two
paths, i.e., a 6 × 4 grid graph, K6,9 is the complete bipartite graph on 15 nodes, and
rand(15, 0.5) is a random graph on 15 nodes with edge density 0.5. We partition them
in several different ways, given by m in column 2. The vectors m are exactly those
for which m2/2 ≤ m1 ≤ m2 and m3 fixed (later we will see that this is useful when
considering the balanced vertex separators of a graph). For all these graphs except the
random graph we can determine OPTMC by inspection; see column 3. The last three
columns contain the original bound OPTHW from [10] and improvements obtained
by optimizing over the cones K0 and Ka

0 .

Table 1

MCP and the relaxations on some small graphs.

Graph m1, m2, m3 OPTMC OPTHW OPTK0
OPTKa

0

P6 × P4 7 14 3 1 -3.36 0.26 0.00
P6 × P4 8 13 3 1 -3.32 0.22 0.00
P6 × P4 9 12 3 1 -3.31 0.15 0.00
P6 × P4 10 11 3 1 -3.29 0.10 0.00
P6 × P4 8 14 2 2 -1.88 1.12 0.00
P6 × P4 9 13 2 2 -1.84 1.09 0.00
P6 × P4 10 12 2 2 -1.81 0.94 0.05
P6 × P4 11 11 2 2 -1.80 0.85 0.06

rand(15, 0.5) 5 6 4 7 0.19 6.65 6.07
K6,9 4 6 5 4 2.18 4.00 3.61
K6,9 5 5 5 5 2.50 4.79 3.99
K6,9 4 7 4 8 4.71 8.00 6.87
K6,9 5 6 4 9 5.41 8.99 7.75

While the relaxation over K0 provides a substantial improvement as compared to
OPTHW , this bound is also rather expensive: we need to solve a semidefinite program
in matrices of order 3n with approximately 9n2/2 additional constraints. Looking at
OPTKa

0
we see that this relaxation is slightly weaker than OPTK0 but is less expensive

since it includes only approximately m = |E| additional constraints, if E is the edge
set of the graph. When it is positive, then it is significantly better than OPTHW . We
note that OPTK0

rounded up gives the exact value OPTMC in almost all cases.
To explore the potential of our approach, we also generated some bigger instances

with up to 100 nodes. We generated random graphs with edge probability p (g50.1,
g50.4, g100) and also random graphs where the entries in the (1,2) block of size
(m1,m2) are chosen with probability q < p. This should result in “easier” instances,
as the partition S1 = {1, . . . ,m1}, S2 = {m1 +1, . . . ,m1 +m2} has a smaller expected
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Table 2

Some random graphs on n nodes.

Graph n |E| p q m1 m2

g50.1 50 247 0.2
g50.2 50 237 0.2 0.15 20 20
g50.3 50 198 0.2 0.10 25 20
g50.4 50 114 0.1
g100 100 1000 0.2

Table 3

Min-Cut approximation for the graphs from Table 2.

Graph m1, m2, m3 ubd OPTHW OPTKa
0

m3 + �
√

2α� − 1

g50.1 20 25 5 49 16.4 41.8 14
20 20 10 29 -4.3 22.9 16
15 20 15 14 -20.9 8.3 19

g50.2 20 25 5 45 17.2 36.7 13
20 20 10 26 -4.9 19.1 16
15 20 15 12 -22.6 5.8 18

g50.3 20 25 5 29 -1.1 24.1 12
20 20 10 15 -17.5 10.1 14
15 20 15 12 -22.6 5.8 16

g50.4 20 25 5 43 7.2 35.1 8
g100 40 50 10 251 161.7 225.1 31

40 40 20 173 80.2 147.4 37
35 35 30 107 12.5 84.7 43

number of edges (g50.2, g50.3). In Table 2 we provide some specifics about these
graphs.

For these graphs the computation of the relaxation over K0 is beyond the possibil-
ities of our computing facilities. The simpler relaxation over Ka

0 can still be calculated
rather easily. In Table 3 we summarize the results. The column labeled ubd gives
an upper bound on OPTMC , obtained by a simulated annealing heuristic. Then we
compare OPTKa

0
to the spectral bound OPTHW . We partition the graphs in several

ways, indicated by the vector m. We note also here that the new relaxation pro-
vides a substantial improvement over the original spectral bound, which in case of
negative values does not give any relevant information at all. Further, more detailed,
computational experiments will be reported elsewhere; see the dissertation [16].

6. Advances to the bandwidth and the vertex separator problem. For
a graph G on n vertices we define a labeling of vertices as a bijection
Φ: V = {v1, . . . , vn} → {1, 2, . . . , n}. The labeling bandwidth σ∞(G,Φ) of the la-
beling Φ is the maximal difference over all graph edges:

σ∞(G,Φ) := max
(i,j)∈E

|Φ(vi) − Φ(vj)|.

The bandwidth of a graph G is the minimum of the labeling bandwidth over all
labelings:

σ∞(G) := min
Φ

σ∞(G,Φ).

The bandwidth problem is an NP-hard problem and remains NP-hard even if the
graph G is a tree with maximal degree at most 3 or a caterpillar with hairlength ≤ 3.
Even approximating the bandwidth is an extremely difficult task. Blache et al. have
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shown that there is no polynomial time algorithm with an approximation ratio smaller
than 1.5 unless P = NP (for more results about the bandwidth problem and its
complexity see [3, 4, 5, 12]). In [10] several lower bounds for σ∞ have been established
for an unweighted graph, using Laplacian eigenvalues of the graph. The basic tool the
authors used was showing that OPTMC > 0. If this is the case, then σ∞(G) ≥ m3+1.
This is generalized in the following proposition.

Proposition 12. Let G be an undirected and unweighted graph. If for some
m = (m1, m2, m3) it holds that OPTMC ≥ α > 0, then

σ∞(G) ≥ max{m3 + 1, m3 + �
√

2α� − 1}.

Proof. Let Φ be the optimal labeling of G. We may assume that the vertices of
G are initially labeled such that Φ is identity, i.e., Φ(i) = i. Let (S1, S2, S3) be a
partition of V (G), defined by S1 = {1, . . . ,m1} and S2 = {m1 + m3 + 1, . . . , n}, Δ
the maximal difference of end numbers over all edges, connecting sets S1 and S2, and
δ = Δ − m3. We have δ ≥ 1 since OPTMC > 0. The only vertices from S1 that
might have a neighbor in S2 are m1 − δ + 1, . . . ,m1, since otherwise the difference of
end vertices is greater than Δ. The same argument implies that the vertex m1 has δ
neighbors at most in S2 , the vertex m1 −1 has δ−1 neighbors at most, etc. The last
vertex m1 − δ+1 has 1 neighbor at most in S2. The number of edges between S1 and
S2 is therefore δ + (δ − 1) + · · ·+ 1 = δ(δ + 1)/2 at most; hence we get the inequality
δ(δ + 1) ≥ 2α, which implies δ ≥ �

√
2α� − 1. Since we also know that δ ≥ 1, the

proposition follows from σ∞(G) ≥ Δ.
Table 4 demonstrates the tightness of this lower bound on the graph instances

from Table 1. The third column contains the bandwidth of the graph (for graphs
Pm×Pn and Km,n we can compute it using the closed form formula, e.g., σ∞(Pm×Pn)
= min{m, n}). In the fourth column we have α, the lower bound for OPTMC , ob-
tained by rounding up the best OPTK0 from Table 1, and the last column shows the
lower bound for σ∞(G) from Proposition 12. We can see that we might get good
information about the bandwidth using a good lower bound for the OPTMC , and this
is very important according to the complexity hardness of the bandwidth problem.

Table 4

Lower bounds for bandwidth for the graphs from Table 1.

Graph m3 σ∞(G) α m3 + �
√

2α� − 1

P6 × P4 3 4 1 4
P6 × P4 2 4 2 3

rand(15, 0.5) 4 10 7 7
K6,9 5 10 5 8
K6,9 4 10 9 8

Finally, we also compare the lower bound on the bandwidth from [10], which is
based on the spectral bound OPTHW , and the bound from Proposition 12 on the
graphs from Table 2. The results in Table 5 show again that the new model provides
a significant improvement over the spectral bound.

A set S3 ⊂ V is a vertex separator if removing these vertices disconnects the
graph. It is a balanced vertex separator if the resulting graph has two components of
sizes between s/3 and 2s/3, where s = |V |− |S3|. Helmberg et al. have derived in [10]
several lower bounds on the size of a minimal vertex separator. They have used the
fact that if OPTMC = 0 then OPTHW ≤ 0 and from this have derived lower bounds
on the size of the vertex separator. By using the fact that for fixed m3 is OPTHW
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Table 5

Lower bounds on the bandwidth for the graphs from Table 2.

Graph Bound from [10] Proposition 12

g50.1 9 19
g50.2 9 18
g50.3 5 16
g50.4 5 8
g100 33 43

maximal if m1 and m2 are equal (or differs by 1 if n − m3 is an odd number) they
have extended the result to balanced vertex separators. The optimal values OPTK
for K as above give information about the vertex separators only if they are positive,
since in this case we know that the graph does not have a vertex separator of size m3

whose removal divides the graph vertices into sets of sizes m1 and m2. Table 1 shows
that on the test instances we always detected the nonexistence of the appropriate
vertex separator. However, since in general the value OPTK does not monotonically
change with the difference |m1 − m2| as is the case for OPTHW , we can get the
information about the balanced vertex separator only by checking all possible pairs
m2/2 ≤ m1 ≤ m2 with m1 + m2 = n − m3. This might be time consuming so it is
worth trying to change the model MCCP in order to include the balanced cardinality
constraint and then relaxing this model. We have already done some promising steps
and the results appear in [16].

7. Conclusions. We have shown that the MCP can be formulated as a linear
program over the cone of completely positive matrices of order 3n × 3n. Replacing
the cone of completely positive matrices with any cone for which we are able to
solve the separation problem gives a tractable approximate model. We have analyzed
the relaxation, obtained by using the cone of positive semidefinite matrices, and we
showed that this model gives the eigenvalue lower bound, originally found by Helmberg
et al. in [10]. We provided the closed form solution of this relaxation and showed
that it is determined with the second and the largest eigenvalues of graph Laplacian
and corresponding eigenvectors. We also proposed some other relaxations, using the
hierarchy of cones, proposed by Parrilo in [15]. Numerical results in section 5 show
that the lower bounds, obtained this way, may be very tight. At this point we want to
emphasize that our approach may be easily extended to a general graph partitioning
problem. We finished with the study of the impact that the new results have on
approximation of some other combinatorial problems. A reasonable good lower bound
for the bandwidth problem may be obtained this way as well as the certificate that
the graph does not have a separator of specified size, whose removal disconnects the
graph into two sets of prescribed sizes. A preliminary study in modeling the balanced
vertex separator problem by copositive programming has also been done and the
results together with an extension to the general graph partitioning problem will be
reported elsewhere; see also the dissertation [16].

Acknowledgments. We thank two anonymous referees for several suggestions
to improve an earlier version of the paper.
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Abstract. We consider the bilevel problem of minimizing a nonsmooth convex function over the
set of minimizers of another nonsmooth convex function. Standard convex constrained optimization
is a particular case in this framework, corresponding to taking the lower level function as a penalty
of the feasible set. We develop an explicit bundle-type algorithm for solving the bilevel problem,
where each iteration consists of making one descent step for a weighted sum of the upper and lower
level functions, after which the weight can be updated immediately. Convergence is shown under
very mild assumptions. We note that in the case of standard constrained optimization, the method
does not require iterative solution of any penalization subproblems—not even approximately—and
does not assume any regularity of constraints (e.g., the Slater condition). We also present some
computational experiments for minimizing a nonsmooth convex function over a set defined by linear
complementarity constraints.
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1. Introduction. We consider a class of bilevel problems of the form

minimize f1(x)
subject to x ∈ S2 = arg min{f2(x) | x ∈ �n},(1.1)

where f1 : �n → � and f2 : �n → � are convex functions, in general nondifferentiable.
The above is a special case of the mathematical program with generalized equation

(or equilibrium) constraint [20, 7], which is

minimize f1(x)
subject to x ∈ {x ∈ �n | 0 ∈ T (x)},

where T is a set-valued mapping from �n to the subsets of �n. The bilevel problem
(1.1) is obtained by setting T (x) = ∂f2(x), x ∈ �n. In the formulation of the problem
considered here, there is only one (decision) variable x ∈ �n, and we are interested
in identifying specific solutions of the inclusion 0 ∈ T (x) (equivalently, of the lower
level minimization problem in (1.1)); see [7]. Problems of the form of (1.1) are also
sometimes referred to as hierarchical optimization; see, e.g., [12, 4].

Note that, as a special case, (1.1) contains the standard convex constrained opti-
mization problem

minimize f1(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m,

(1.2)
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where g : �n → �m is a (nonsmooth) convex function. Indeed, (1.2) is obtained from
(1.1) by taking f2(x) = p(x), where p : �n → �+ is some penalty of the constraints,
e.g.,

f2(x) = p(x) =

m∑
i=1

max{0, gi(x)}.(1.3)

In this paper, we show that the bilevel problem (1.1) can be solved by a properly
designed (proximal) bundle method [15, 11, 3], iteratively applied to the parametrized
family of functions

Fσ(x) = σf1(x) + f2(x), σ > 0,(1.4)

where σ varies along the iterations. Specifically, if xk ∈ �n is the current iterate
and σk > 0 is the current parameter, it is enough to make just one descent step for
Fσk

from the point xk, after which the parameter σk can be immediately updated.
We emphasize that at no iteration is the function Fσk

minimized to any prescribed
precision. Once the descent condition is achieved, the parameter can be updated
immediately and we can start working with the new function Fσk+1

. For convergence
of the resulting algorithm to the solution set of (1.1), parameters {σk} should be
chosen is such a way that

lim
k→∞

σk = 0,

∞∑
k=0

σk = +∞.(1.5)

The requirement that σk must tend to zero is natural and indispensable, as can
be seen from the case of standard optimization (1.2). To this end, it is interesting to
comment on the relation between our method and the classical penalty approximation
scheme [8, 23]. The penalty scheme consists of solving a sequence of unconstrained
subproblems

minimize Fσ(x), x ∈ �n,(1.6)

where Fσ is given by (1.4) with f2 being a penalty term p, such as (1.3). (In the
literature, it is more common to minimize σ−1Fσ(x) = f1(x) + σ−1p(x), but the
resulting subproblem is clearly equivalent to (1.6).) As is well known, under mild
assumptions optimal paths of solutions x(σ) of penalized problems (1.6) tend to the
solution set of (1.2) as σ → 0. We emphasize that the requirement that penalty
parameters should tend to zero is, in general, indispensable. To guarantee that a
solution of (1.6) is a solution of the original problem (1.2) for some fixed σ > 0 (i.e.,
exactness of the penalty function), some regularity assumptions on constraints are
needed (e.g., see [3, section 14.4]). No assumptions of this type are made in this paper.
The fundamental issue is approximating x(σk) for some sequence of parameters σk →
0. It is clear that approximating x(σk) with precision is computationally impractical.
It is therefore attractive to trace the optimal path in a loose (and computationally
cheap) manner, while still safeguarding convergence. In a sense, this is what our
method does: instead of solving subproblems (1.6) to some prescribed accuracy, it
makes just one descent step for Fσk

from the current iterate xk and immediately
updates the parameter. We emphasize that this results in meaningful progress (and
ultimately produces iterates converging to solutions of the problem) for arbitrary
points xk, and not just for points close to the optimal path, i.e., points close to x(σk).
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We therefore obtain an implementable algorithm for tracing optimal paths of penalty
schemes.

We next discuss the relationship of our algorithm to the existing literature. For
the bilevel setting of (1.1), we believe that our proposal is the first method which is
completely explicit. In some ways, it is related to [4], where a proximal point method
for (1.1) has been considered, and (1.5) is referred to as slow control. However, as
any proximal method, the method of [4] is implicit: it requires solving nontrivial
subproblems of minimizing regularizations of functions Fσk

at every iteration, even if
approximately. By contrast, the method proposed in this paper is completely explicit:
each iteration is a serious (or descent) step for the current Fσk

, constructed by a finite
number of null steps in a way which is essentially standard in nonsmooth optimization.

The special case of standard optimization deserves some further comments. We
next discuss bundle methods applicable to problems with nonlinear constraints, such
as (1.2) above. When the problem admits exact penalization, one can solve the
equivalent unconstrained problem of minimizing the exact penalty function; see [14,
18]. However, as already mentioned above, exact penalization requires regularity
assumptions on constraints, such as the Slater condition (existence of some x ∈ �n

such that gi(x) < 0 for all i = 1, . . . ,m). We stress that no assumptions of this type
are needed for our method. For example, our method is applicable to minimizing a
nonsmooth function subject to (monotone linear) complementarity constraints

(Qx + q)i ≥ 0, xi ≥ 0, xi(Qx + q)i = 0, i = 1, . . . , n,

where Q is an n× n positive semidefinite matrix. Those constraints can be modeled
in the form (1.2) as

−Qx− q ≤ 0, −x ≤ 0, 〈Qx + q, x〉 ≤ 0.

Complementarity constraints do not satisfy constraint qualifications, no matter how
they are modeled, which makes this class of problems particularly difficult. We shall
come back to problems with complementarity constraints in section 4, where some
computational experiments are presented.

The methods in [21, 22] and [15, Chap. 5] do not use penalization but enforce
feasibility of every serious iteration. In particular, they require a feasible starting
point, which is a difficult computational task (in the case of nonlinear constraints).
In addition, regularity of constraints is still needed for convergence. Bundle methods
which do not use penalty functions and do not enforce feasibility are [19, 9, 24, 13].
The methods in [24, 13] share one feature in common with the one proposed here: they
apply bundle techniques to a dynamically changing objective function, except that
the function is different (underlying [24, 13] is the so-called improvement function,
which goes back to [21, 15, 1]). The methods of [24, 13] require the Slater condition,
while those in [19, 9] do not. However, [19, 9] (as well as [21, 17, 18]) need a priori
boundedness assumptions on the iterates to prove convergence. For our method, we
assume only that the solution set of the problem is bounded.

For the standard optimization setting (1.2), this paper is also somewhat related to
[5], where interior penalty schemes are coupled with continuous-time steepest descent
to produce a family of paths converging to a solution set. However, concrete numerical
schemes in [5] arise from implicit discretization and, thus, result in implicit proximal-
point iterations, just as in [4]. Nevertheless, it was conjectured in [5] that an economic
algorithm performing a single iteration of some descent method for each value of σk

could be enough to generate a sequence of iterates converging to a solution of the
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problem. This is what the presented method does, although we use exterior rather
than interior penalties and consider the more general nonsmooth setting (as well as
the more general bilevel setting). A related explicit descent scheme for the smooth
case has been developed in [25].

Our notation is quite standard. By 〈x, y〉 we denote the inner product of x and
y, and by ‖ · ‖ the associated norm, where the space is always clear from the context.
For a convex function f : �n → �, its ε-subdifferential at the point x ∈ �n is denoted
by ∂εf(x) = {g ∈ �n | f(y) ≥ f(x) + 〈g, y − x〉 − ε for all y ∈ �n}, where ε ∈ �+.
Then the subdifferential of f at x is given by ∂f(x) = ∂0f(x). If S is a closed convex
set in �n, then PS(x) stands for the orthogonal projection of the point x ∈ �n onto
S, and dist(x, S) = ‖x− PS(x)‖ is the distance from x to S.

2. The algorithm. As already outlined above, the conceptual idea of the algo-
rithm is quite simple. If xk ∈ �n is the current approximation to a solution of (1.1)
and σk > 0 is the current parameter defining the function Fσk

in (1.4), an iteration
of the method consists of making a descent step for Fσk

relative to its value at xk.
After this, the value of σk can be changed immediately. Since the function Fσk

is
nonsmooth, the computationally implementable way to construct a descent step is
the bundle technique [15, 11, 3]. We next introduce the notation necessary for stating
our algorithm.

Bundle methods keep memory of the past in a bundle of information. Let xk be
the current approximation to a solution and let yi, i = 1, . . . , �− 1, be all the points
that have been produced by the method so far, including the ones which have not
been accepted as satisfactory (so-called “null steps”). Generally, {xk} is a particular
subsequence of {yi}. For an iteration index �, we shall denote by k(�) the index of
the last iteration preceding the iteration � at which xk and σk have been modified.
Whenever k and � appear in the same expression, we mean that k = k(�).

Let us denote the function and subgradient values of f1 at the points yi, i =
1, . . . , � − 1, by f i

1 = f1(y
i), gi1 ∈ ∂f1(y

i), and similarly for f2. Since (σkg
i
1 + gi2) ∈

∂Fσk
(yi), this information can be used to define a cutting-planes approximation Ψ�

of the function Fσk
, as follows:

Ψ�(y) := max
i<�

{
σkf

i
1 + f i

2 + 〈σkg
i
1 + gi2, y − yi〉

}
= σkf1(x

k) + f2(x
k)

+ max
i<�

{
−(σke

k,i
1 + ek,i2 ) + 〈σkg

i
1 + gi2, y − xk〉

}
,(2.1)

where the second expression is centered at xk and uses the linearization errors at yi

with respect to xk:

ek,ip := fp(x
k) − f i

p − 〈gip, xk − yi〉 ≥ 0, p = 1, 2.(2.2)

We note that the second representation of Ψ� in (2.1) is better suited for implemen-
tations, due to lower storage requirements. As is readily seen from the definition of
ε-subgradients, it holds that

gip ∈ ∂ek,i
p
fp(x

k), p = 1, 2,(2.3)

and

(σkg
i
1 + gi2) ∈ ∂(σkek,i

1 +ek,i
2 )Fσk

(xk).(2.4)
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The linearization errors in (2.2) have to be properly updated every time xk changes.
Choosing a proximal parameter μ� > 0, we generate the next candidate point y�

by solving a quadratic programming (QP) reformulation of the problem

min
y∈�n

{
Ψ�(y) +

1

2
μ�‖y − xk‖2

}
.(2.5)

We note that the resulting quadratic program possesses a certain special structure,
for which efficient software has been developed [16, 10]. The iterate y� is considered
good enough when Fσk

(y�) is sufficiently smaller than Fσk
(xk) (the so-called “serious

step”; this will be made precise later). If y� is acceptable, then we set xk+1 := y�,
choose new σk+1, and proceed to construct a descent step for Fσk+1

. Otherwise, a so-
called “null step” is declared and the procedure continues for Fσk

, using the enhanced
approximation Ψ�+1.

In order for the basic idea outlined above to be practical, some important details
have to be incorporated into the design of the method, as discussed next.

The number of constraints in the QP reformulation of (2.5) is precisely the number
of elements in the bundle. Obviously, one has to keep this number computationally
manageable. Thus, the bundle has to be compressed whenever the number of elements
reaches some chosen bound. Reducing the bundle amounts to replacing the cutting-
planes model (2.1) with another function, defined with a smaller number of cutting
planes, which we shall still denote by Ψ�. This has to be done without impairing
convergence of the algorithm. For this purpose, the so-called aggregate function is
fundamental [3, Chap. 9], which we shall introduce in what follows.

It is convenient to split the information kept at iteration � into two separate
parts. One is the “oracle” bundle containing subgradient values at (some of!) points
yi, i = 1, . . . , �− 1, and the associated linearization errors (recall (2.3) and (2.2)):

Boracle
� ⊂

⋃
i<�

{(
ek,ip ∈ �+, g

i
p ∈ ∂ek,i

p
fp(x

k), p = 1, 2
)}

.

Note that here, the bundle Boracle
� is not required to contain information at all the

previous points (this is reflected by the use of the inclusion, rather than equation,
in the definition above). The other part is the “aggregate” bundle, obtained from
solutions of the QP subproblems. This bundle contains certain special ε-subgradients
at xk, to be introduced in Lemma 2.1 below. For now, we formally set

Bagg
� ⊂

⋃
i<�

{(
ε̂k,ip ∈ �+, ĝ

i
p ∈ ∂ε̂k,i

p
fp(x

k), p = 1, 2
)}

,

without specifying how exactly those objects are obtained. Note that here there may
no longer exist any previous point yi, i < �, for which ĝip ∈ ∂fp(y

i), p = 1, 2.

The information in Boracle
� and Bagg

� defines a cutting-planes approximation of
Fσk

given by

Ψ�(y) = σkf1(x
k) + f2(x

k)

+ max

{
max

i∈Boracle
�

{
−(σke

k,i
1 + ek,i2 ) + 〈σkg

i
1 + gi2, y − xk〉

}
,

max
i∈Bagg

�

{
−(σkε̂

k,i
1 + ε̂k,i2 ) + 〈σkĝ

i
1 + ĝi2, y − xk〉

}}
,(2.6)
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where by i ∈ Boracle
� we mean that there exists an element in the set Boracle

� indexed by
i; and similarly for Bagg

� . Although this notation is formally improper (the bundles are
not sets of indices), it does not lead to any confusion while simplifying the formulas.

We next discuss properties of the solution of QP subproblem (2.5) with Ψ� given
by (2.6). The following characterization is an adaptation of [3, Lemma 9.8] for our
setting.

Lemma 2.1. For the unique solution y� of (2.5) with Ψ� given by (2.6), it holds
that

(i) y� = xk − 1
μ�

(σkĝ
�
1 + ĝ�2);

(ii) ĝ�p =
∑

i∈Boracle
�

λ�
ig

i
p +

∑
i∈Bagg

�
λ̂�
i ĝ

i
p, p = 1, 2,

where λ� ≥ 0, λ̂� ≥ 0 and
∑

i∈Boracle
�

λ�
i +

∑
i∈Bagg

�
λ̂�
i = 1;

(iii) (σkĝ
�
1 + ĝ�2) ∈ ∂Ψ�(y

�);

(iv) ĝ�p ∈ ∂ε̂k,�
p

fp(x
k), where ε̂k,�p =

∑
i∈Boracle

�
λ�
ie

k,i
p +

∑
i∈Bagg

�
λ̂�
i ε̂

k,i
p , p = 1, 2;

(v) (σkĝ
�
1 + ĝ�2) = ĝ� ∈ ∂ε̂k,�Fσk

(xk), where ε̂k,� = σkε̂
k,�
1 + ε̂k,�2 ;

(vi) ε̂k,� = Fσk
(xk) − Ψ�(y

�) − 1
μ�
‖ĝ�‖2 ≥ 0.

Proof. The assertions can be verified following the analysis in [3, Lemma 9.8], and
taking into account the special structure of the function Fσk

and of its approximation
Ψ�. We omit the details.

We note that λ� and λ̂� in Lemma 2.1 are the Lagrange multipliers associated
with y� in the quadratic program reformulation of (2.5) (or the problem variables, if

one solves the dual of this quadratic program, as in [16]). In any case, λ� and λ̂� are
available as part of the solution to (2.5). The quantities ĝ�p, ε̂k,�p , p = 1, 2, defined
in Lemma 2.1 are precisely the ones that appear in the definition of Bagg

� (except
that Bagg

� contains information computed at iterations previous to the �th; at the first
iteration we formally set Bagg

� = ∅). We are now ready to introduce the aggregate
function, already mentioned above:

lk,�(y) := σkf1(x
k) + f2(x

k) − (σkε̂
k,�
1 + ε̂k,�2 ) + 〈σkĝ

�
1 + ĝ�2, y − xk〉,

where

ĝ�p ∈ ∂ε̂k,�
p

fp(x
k), p = 1, 2,(2.7)

and consequently,

(σkĝ
�
1 + ĝ�2) ∈ ∂(σk ε̂

k,�
1 +ε̂k,�

2 )Fσk
(xk).(2.8)

As already noted above, this function is defined directly from the quantities available
after solving (2.5).

As pointed out in [6, eqs. (4.7)–(4.9)], to guarantee that a bundle technique would
be able to construct a descent step for Fσk

with respect to its value at xk (assuming
xk is not a minimizer of Fσk

) one can actually use any cutting-planes models Ψ�

satisfying (for all y ∈ �n) the following three conditions:

Ψ�(y) ≤ Fσk
(y) for all � ≥ 1 and all k ,

lk,�(y) ≤ Ψ�+1(y) for those � for which y� is a null step,
σkf

�
1 + f �

2 + 〈σkg
�
1 + g�2, y − y�〉 ≤ Ψ�+1(y) for those � for which y� is a null step.

The last two conditions mean that when defining the new bundles, it is enough for
Boracle
�+1 to contain the cutting plane computed at the new point y� (i.e., the subgradi-

ents g�1, g
�
2, and the associated linearization errors ek,�1 , ek,�2 ) and for Bagg

�+1 to contain
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the last aggregate function lk,� (i.e., the ε-subgradients ĝ�1, ĝ
�
2, and the associated ε̂k,�1 ,

ε̂k,�2 ). In particular, at any iteration, the bundle can contain as few elements as we
wish (as long as the two specified above are included). This fact is crucial for effective
control of the size of subproblems (2.5). Finally, to make sure that the first condition
above holds for all k, the linearization and aggregate errors have to be properly up-
dated every time xk changes to xk+1 (in particular, to ensure the key relations (2.4)
and (2.8)). As is readily seen, the following formulas do the job:

ek+1,i
p = ek,ip + fp(x

k+1) − fp(x
k) + 〈gip, xk − xk+1〉, p = 1, 2, for i ∈ Boracle

�+1 ,

ε̂k+1,i
p = ε̂k,ip + fp(x

k+1) − fp(x
k) + 〈ĝip, xk − xk+1〉, p = 1, 2, for i ∈ Bagg

�+1.

(2.9)

We are now ready to formally state the algorithm.
Algorithm 2.1 (bilevel bundle method).

Step 0. Initialization.

Choose parameter m ∈ (0, 1) and an integer |B|max ≥ 2.
Choose x0 ∈ �n and σ0 > 0, β0 > 0. Set y0 := x0 and compute f0

p , g
0
p,

p = 1, 2. Set k = 0, � = 1, e0,0
p := 0, p = 1, 2. Define the starting bundles

Boracle
1 := {(e0,0

p , g0
p, p = 1, 2)} and Bagg

1 := ∅.
Step 1. QP subproblem.

Choose μ� > 0 and compute y� as the solution of (2.5), where Ψ� is
defined by (2.6). Compute

ĝ� = μ�(x
k − y�), ε̂k,� = Fσk

(xk) − Ψ�(y
�) − 1

μ�
‖ĝ�‖2, δ� = ε̂k,� +

1

2μ�
‖ĝ�‖2.

Compute f �
p, g

�
p, p = 1, 2. Compute ek,�p , p = 1, 2, using (2.2) written with

i = �.
Step 2. Descent test. If

Fσk
(y�) ≤ Fσk

(xk) −mδ�,(2.10)

then declare a serious step. Otherwise, declare a null step.
Step 3. Bundle management.

Set Boracle
�+1 := Boracle

� and Bagg
�+1 := Bagg

� . If the bundle has reached the

maximum size (i.e., if |Boracle
�+1 ∪ Bagg

�+1| = |B|max), then delete at least

two elements from Boracle
�+1 ∪ Bagg

�+1 and append the aggregate information

(ε̂�,kp , ĝ�p, p = 1, 2) to Bagg
�+1.

In any case, append (ek,�p , g�p, p = 1, 2) to Boracle
�+1 .

Step 4. If Descent test was satisfied,
set xk+1 = y� and choose 0 < σk+1 ≤ σk and 0 < βk+1 ≤ βk.
Update the linearization and aggregate errors using (2.9).
Set k = k + 1 and go to Step 5.
If

max{ε̂k,�, ‖ĝ�‖} ≤ βkσk,(2.11)

choose 0 < σk+1 < σk and 0 < βk+1 < βk.
Set xk+1 = xk, k = k + 1 and go to Step 5.

Step 5. Set � = � + 1 and go to Step 1.
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The role of checking condition (2.11) is to detect the situation when the point xk

happens to be a minimizer of the function Fσk
(or is almost a minimizer; recall Lemma

2.1(v)). If it is so, we immediately update the parameter σk. This is reasonable, since
we are not interested in minimizing Fσk

. The case of xk being a minimizer of Fσk
,

however, is very unlikely to occur, since for no iteration k the function Fσk
is being

minimized with any prescribed precision. This is also confirmed by our numerical
experiments in section 4, where we ignored the safeguard (2.11) in our implementation.

The algorithm does not have an overall stopping test. In the unconstrained case,
a reliable stopping test is one of the important advantages of bundle methods (as
compared, for example, to subgradient methods). However, lack of a stopping test
in our setting cannot be considered to be a drawback of the algorithm. Indeed, a
bilevel problem does not admit an explicit optimality condition. Actually, the same is
in general already true for constrained optimization without a regularity assumption
on the constraints (except for some special cases, of course). As a result, there is no
explicit way to measure violation/satisfaction of optimality in (1.1), and, consequently,
lack of a stopping test is inherent in the nature of the problem.

We note that there is certain freedom in updating or not updating the parameter
σk after every iteration. While our goal is to show that we can update it after a
single descent step, note that, in principle, we are not obliged to do so (σk+1 = σk

is allowed, unless (2.11) holds; in the latter case, xk almost minimizes Fσk
and it

does not make sense to insist on further descent for this function). For convergence,
it would be required that σk not go to zero too fast, in the sense of condition (1.5)
stated above. In the case of the standard optimization problem (1.2), this condition
allows a natural interpretation. In order to be able to trace the optimal penalty path
x(σ) with such a relaxed precision (making just one descent step for each penalized
subproblem (1.6)), we should not be jumping too far from the target x(σk) on the path
to the next target x(σk+1) as we move along. On the other hand, if σk is kept constant
over a few descent iterations, this allows for a more rapid change in the parameter
for the next iteration, while still guaranteeing the second condition in (1.5). This is
intuitively reasonable: if we get closer to the optimal path, then the target can be
moved further. In our numerical experiments in section 4, we have used the simplest
generic choice of σk = σ0/(k+1). We have experimented with some other options (for
example, keeping the parameter unchanged for some iterations), but found that this
does not make much difference (for our test problems). We shall discuss this further
in section 4.

3. Convergence analysis. In our convergence analysis, we assume that the
objective function f1 is bounded below; i.e.,

−∞ < f̄1 = inf {f1(x) | x ∈ �n}.

Since we also assume that the problem is solvable, the function f2 is automatically
bounded below, and we define

−∞ < f̄2 = min {f2(x) | x ∈ �n}.

For the subsequent analysis, it is convenient to think of Algorithm 2.1 as “applied”
to the shifted function

Fσ(x) = σ(f1(x) − f̄1) + (f2(x) − f̄2),(3.1)

instead of the function Fσ given by (1.4), as stated originally. We can do this because
Algorithm 2.1 would generate the same iterates whether Fσ were given by (3.1) or
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(1.4). Indeed, the two functions have the same subgradients and the same difference
for function values at any two points. Hence, the cutting-planes models (2.6) for the
two functions would differ by a constant term (not dependent on y). This means that
solutions y� of QP subproblems (2.5) would be the same, as well as the quantities
ĝ� and ε̂k,�, which are defined by those solutions. Therefore, the relations in (2.10)
and (2.11), which are guiding the algorithm, also do not change. From now on, we
consider that the method is “applied” to function Fσ defined by (3.1) (even though the
function from (1.4) is used in reality, of course). This is convenient for the subsequent
analysis and should not lead to any confusion.

We proceed to prove convergence of the algorithm.
Proposition 3.1. Let f1 and f2 be convex functions.
If for consecutive null steps it holds that μ̄ ≥ μ�+1 ≥ μ� > 0, then Algorithm 2.1 is

well defined and either (2.10) or (2.11) (or both) hold infinitely often. In particular,
the parameter σk is updated infinitely often.

Proof. Let k be any iteration index and consider the sequence of null steps applied
to the current (fixed over those null steps) function Fσk

. By properties of standard
bundle methods (e.g., [3, Thm. 9.15]), it holds that either the descent test (2.10) is
satisfied after a finite number of null steps, or xk is a minimizer of Fσk

. In the latter
case, it further holds that δ� → 0 as � → ∞. Hence, ĝ� → 0 and ε̂k,� → 0 as � → ∞.
This means that the condition (2.11) would be satisfied after a finite number of null
steps.

We have therefore established that either (2.10) or (2.11) is guaranteed to be
satisfied after a finite number of null steps. This shows that the method is well
defined and updates σk infinitely often.

We next prove that the generated sequence {xk} is bounded and its accumulation
points are feasible for problem (1.1).

Proposition 3.2. Let f1 and f2 be convex functions such that f1 is bounded
below on �n and the solution set S1 of problem (1.1) is nonempty and bounded.

Suppose that μ̄ ≥ μ� ≥ μ̂ > 0 for all iterations �, that μ�+1 ≥ μ� on consecutive
null steps, and that σk → 0 as k → ∞.

Then any sequence {xk} generated by Algorithm 2.1 is bounded and all its accu-
mulation points are feasible for problem (1.1); i.e., they belong to S2.

Proof. If the serious step descent test (2.10) is satisfied only a finite number of
times, it is readily seen that there exists some iteration index k0 such that xk = xk0

for all k ≥ k0 (because xk is changed only at serious steps, i.e., when (2.10) holds).
Hence, in this case {xk} is trivially bounded.

Assume now that (2.10) is satisfied infinitely often. In what follows, we consider
the subsequence of indices k at which (2.10) holds, i.e., at which xk changes. But
to simplify the notation, we shall not introduce this subsequence explicitly. Here,
we can simply disregard all the iterations at which xk remained fixed. We can do
this within the current analysis of boundedness of {xk}, because those iterations
merely changed σk (and the only assumption for the latter used below is that it
should be nonincreasing—the property which holds for any subsequence of {σk} by
the construction of the method).

For each k, let �(k) be the index � for which (2.10) was satisfied (in particular,
xk+1 = y�(k)). By (2.10), it holds that

mδ�(k) ≤ Fσk
(xk) − Fσk

(xk+1)

= σk(f1(x
k) − f̄1) − σk(f1(x

k+1) − f̄1)

+ (f2(x
k) − f̄2) − (f2(x

k+1) − f̄2).
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Summing up the latter inequalities for k = 0, . . . , k1, we obtain that

m

k1∑
k=0

δ�(k) ≤ σ0(f1(x
0) − f̄1) +

k1−1∑
k=0

(σk+1 − σk)(f1(x
k+1) − f̄1)

−σk1(f1(x
k1+1) − f̄1) + (f2(x

0) − f̄2) − (f2(x
k1+1) − f̄2)

≤ σ0(f1(x
0) − f̄1) + (f2(x

0) − f̄2),

where we have used the facts that, for all k, f1(x
k) ≥ f̄1, f2(x

k) ≥ f̄2, and 0 < σk+1 ≤
σk. Letting k1 → ∞, we conclude that

∞∑
k=0

δ�(k) ≤ m−1(σ0(f1(x
0) − f̄1) + (f2(x

0) − f̄2)) < +∞.(3.2)

In particular,

δ�(k) → 0 as k → ∞.(3.3)

Take any x̄ ∈ S1 �= ∅. Using Lemma 2.1(i), we obtain that

‖xk+1 − x̄‖2 = ‖xk − x̄‖2 − 2

μ�(k)
〈ĝ�(k), xk − x̄〉 +

1

μ2
�(k)

‖ĝ�(k)‖2

≤ ‖xk − x̄‖2 +
2

μ�(k)

(
Fσk

(x̄) − Fσk
(xk) + ε̂k,�(k) +

1

2μ�(k)
‖ĝ�(k)‖2

)

= ‖xk − x̄‖2 +
2

μ�(k)
δ�(k)

+
2

μ�(k)

(
σk(f1(x̄) − f1(x

k)) + f2(x̄) − f2(x
k)
)

≤ ‖xk − x̄‖2 +
2

μ�(k)
δ�(k) +

2σk

μ�(k)

(
f1(x̄) − f1(x

k)
)
,(3.4)

where the first inequality is by Lemma 2.1(v), and the last is by the fact that f2(x̄) ≤
f2(x

k), since x̄ ∈ S1 ⊂ S2.
We next consider separately the following two possible cases:

Case 1. There exists k2 such that f1(x̄) ≤ f1(x
k) for all k ≥ k2.

Case 2. For each k, there exists k3 ≥ k such that f1(x̄) > f1(x
k3).

Case 1. For k ≥ k2, we obtain from (3.4) that

‖xk+1 − x̄‖2 ≤ ‖xk − x̄‖2 +
2

μ̂
δ�(k).(3.5)

Recalling (3.2), we conclude that {‖xk− x̄‖2} converges (see, e.g., [23, Lem. 2, p. 44]).
Hence, {xk} is bounded.

Case 2. For each k, define

ik = max{i ≤ k | f1(x̄) > f1(x
i)}.

In the case under consideration, it holds that ik → ∞ when k → ∞.
We first show that {xik} is bounded. Observe that

S1 = {x ∈ S2 | f1(x) ≤ f1(x̄)}
= {x ∈ �n | max{f2(x) − f̄2, f1(x) − f1(x̄)} ≤ 0}.
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By assumption, the set S1 is nonempty and bounded. Therefore, the convex function

φ : �n → �, φ(x) = max{f2(x) − f̄2, f1(x) − f1(x̄)}

has a particular level set {x ∈ �n | φ(x) ≤ 0} which is nonempty and bounded. It
follows that all level sets of φ are bounded (see, e.g., [2, Prop. 2.3.1]), i.e.,

Lφ(c) = {x ∈ �n | φ(x) ≤ c}

is bounded for any c ∈ �.
Since f1(x) − f̄1 ≥ 0 for all x ∈ �n and 0 < σk+1 ≤ σk, it holds that

Fσk+1
(x) ≤ Fσk

(x) for allx ∈ �n.

Hence,

0 ≤ Fσk+1
(xk+1) ≤ Fσk

(xk+1) ≤ Fσk
(xk),

where the third inequality follows from (2.10). The above relations show that {Fσk
(xk)}

is nonincreasing and bounded below. Hence, it converges. It then easily follows that
{f2(x

k)−f̄2} is bounded (because both terms in Fσk
(xk) = σk(f1(x

k)−f̄1)+(f2(x
k)−

f̄2) are nonnegative).
Fix any c ≥ 0 such that f2(x

k) − f̄2 ≤ c for all k. Since f1(x
ik) − f1(x̄) < 0 ≤ c

(by the definition of the index ik), we have that xik ∈ Lφ(c), which is a bounded set.
This shows that {xik} is bounded.

By the definition of ik, it further holds that

f1(x̄) ≤ f1(x
i), i = ik + 1, . . . , k (if k > ik).

Hence, from (3.4), we have that

‖xi+1 − x̄‖2 ≤ ‖xi − x̄‖2 +
2

μ̂
δ�(i), i = ik + 1, . . . , k.

Therefore, for any k, it holds that

‖xk − x̄‖2 ≤ ‖xik − x̄‖2 +
2

μ̂

k−1∑
i=ik+1

δ�(i)

≤ ‖xik − x̄‖2 +
2

μ̂

∞∑
i=ik+1

δ�(i).(3.6)

Recalling that ik → ∞, by (3.2) we have that

∞∑
i=ik+1

δ�(i) → 0 as k → ∞.(3.7)

Taking also into account the boundedness of {xik}, the relation (3.6) implies that the
whole sequence {xk} is bounded.

We next show that all accumulation points of {xk} belong to S2. For each k,
either (2.10) or (2.11) holds. Regardless of whether both conditions hold infinitely
often or only one does, it is easy to see that

ĝ�(k) → 0 and ε̂k,�(k) → 0 as k → ∞,(3.8)
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where (3.3) is used if (2.10) holds infinitely often, and (2.11) is used directly.

Let x ∈ �n be arbitrary but fixed. By Lemma 2.1(v),

σkf1(x) + f2(x) ≥ σkf1(x
k) + f2(x

k) + 〈ĝ�(k), x− xk〉 − ε̂k,�(k).(3.9)

Let x∞ be any accumulation point of {xk}. Using boundedness of {xk}, the continuity
of f1 and f2, the fact that σk → 0 and (3.8), and passing onto the limit in (3.9) along
the subsequence which converges to x∞, we obtain that f2(x) ≥ f2(x

∞), where x ∈ �n

is arbitrary. Hence, x∞ ∈ S2.

The rest of the proof is done separately for the following two cases: the number
of serious steps when (2.10) is satisfied is either infinite or finite.

Theorem 3.3. Let f1 and f2 be convex functions such that f1 is bounded below
on �n and the solution set S1 of problem (1.1) is nonempty and bounded.

Suppose that μ̄ ≥ μ� ≥ μ̂ > 0 for all iterations �, and that μ�+1 ≥ μ� on consecu-
tive null steps.

If serious step descent test (2.10) is satisfied an infinite number of times and we
choose {σk} according to (1.5) and {βk} → 0 as k → ∞, then dist(xk, S1) → 0 as
k → ∞, and all accumulation points of {xk} are solutions of (1.1).

Proof. Take any x̄ ∈ S1. We again consider separately the two possible cases
introduced in the proof of Proposition 3.2:

Case 1. There exists k2 such that f1(x̄) ≤ f1(x
k) for all k ≥ k2.

Case 2. For each k, there exists k3 ≥ k such that f1(x̄) > f1(x
k3).

Case 2. Recalling that ik = max{i ≤ k | f1(x̄) > f1(x
i)} so that f1(x

ik) < f1(x̄),
by the continuity of f1 it holds that f1(x

∞) ≤ f1(x̄) for any accumulation point
x∞ of {xik}. Since all accumulation points of {xk} belong to S2 (as established in
Proposition 3.2), it must be the case that all accumulation points of {xik} are solutions
of the problem. In particular,

dist(xik , S1) → 0 as k → ∞.(3.10)

For each k, define x̄k = PS1(x
ik). Using (3.6) with x̄ = x̄k gives

dist(xk, S1)
2 ≤ ‖xk − x̄k‖2

≤ dist(xik , S1)
2 +

2

μ̂

∞∑
i=ik+1

δ�(i).

Passing onto the limit in the latter relation as k → ∞, and using (3.7) and (3.10), we
obtain that dist(xk, S1) → 0.

Case 1. As has been shown in Proposition 3.2, in this case the sequence {‖xk−x̄‖}
converges for any x̄ ∈ S1. Therefore, if we establish that {xk} has an accumulation
point x∞ ∈ S1, it would immediately follow that {‖xk − x∞‖} → 0; i.e., the whole
sequence {xk} converges to x∞ ∈ S1.

Suppose first that (2.11) is satisfied only a finite number of times. Suppose further
that there is no accumulation point of {xk} which solves (1.1). Since, by Proposition
3.2, all accumulation points are feasible for (1.1), the second assumption means that
lim infk→∞ f1(x

k) > f1(x̄), where x̄ ∈ S1. In particular, there exists t > 0 such that
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f1(x̄) ≤ f1(x
k) − t for all k ≥ k4. We then obtain from (3.4) that for k > k4, it holds

that

‖xk+1 − x̄‖2 ≤ ‖xk − x̄‖2 +
2

μ̂
δ�(k) −

2t

μ̄
σk

≤ ‖xk4 − x̄‖2 +
2

μ̂

k∑
i=k4−1

δ�(i) −
2t

μ̄

k∑
i=k4−1

σi.

Passing onto the limit when k → ∞ in the latter relation, we obtain

2t

μ̄

∞∑
i=k4−1

σi ≤ ‖xk4 − x̄‖2 +
2

μ̂

∞∑
i=k4−1

δ�(i),

which is a contradiction, due to (3.2) and (1.5). Hence, lim infk→∞ f1(x
k) = f1(x̄).

Since {xk} is bounded, it must have an accumulation point x∞ such that f1(x
∞) =

f1(x̄). As x∞ ∈ S2, this means that x∞ ∈ S1.
Finally, suppose that (2.11) is satisfied an infinite number of times. Consider the

subsequence of indices k for which (2.11) holds (we shall not specify it explicitly) and
let �(k) denote the associated index � in (2.11). We have that

max{σ−1
k ε̂k,�(k) , σ−1

k ‖ĝ�(k)‖} ≤ βk, βk → 0.(3.11)

Taking any x ∈ S2 and using Lemma 2.1(v), we have that

σkf1(x) + f2(x) ≥ σkf1(x
k) + f2(x

k) + 〈ĝ�(k), x− xk〉 − ε̂k,�(k).

Since f2(x) ≤ f2(x
k) for any x ∈ S2, we obtain

f1(x) ≥ f1(x
k) + 〈σ−1

k ĝ�(k), x− xk〉 − σ−1
k ε̂k,�(k).(3.12)

Hence, passing onto the limit in (3.12) as k → ∞ along some subsequence converging
to x∞ and taking into account (3.11), we conclude that f1(x) ≥ f1(x

∞) for any
x ∈ S2. Therefore, x∞ ∈ S1 also in this case, which concludes the proof.

It remains to consider the case of a finite number of serious steps in Algorithm
2.1. As already discussed above, this is rather unlikely to occur. Actually, as the next
result shows, it can happen only if we hit an exact solution of the problem, which is
generally an exceptional situation.

Theorem 3.4. Let f1 and f2 be convex functions such that f1 is bounded below
on �n and the solution set S1 of problem (1.1) is nonempty and bounded.

Suppose that μ̄ ≥ μ� ≥ μ̂ > 0 for all iterations �, and that μ�+1 ≥ μ� on consecu-
tive null steps.

If the serious step descent test (2.10) is satisfied a finite number of times and we
choose {σk} → 0 and {βk} → 0 as k → ∞, then there exists an iteration index k0

such that xk = xk0 for all k ≥ k0 and xk0 ∈ S1.
Proof. Since xk is changed only when (2.10) holds, it is readily seen that xk = xk0

for all k ≥ k0. By Proposition 3.2, we have that xk0 ∈ S2.
By Proposition 3.1, we have that for all k ≥ k0, σk is updated when (2.11) holds.

For each k, let �(k) denote the index � for which (2.11) is satisfied. We have that

max{σ−1
k ε̂k,�(k) , σ−1

k ‖ĝ�(k)‖} ≤ βk, βk → 0.(3.13)
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Taking any x ∈ S2 and using Lemma 2.1(v), we have that

σkf1(x) + f2(x) ≥ σkf1(x
k0) + f2(x

k0) + 〈ĝ�(k), x− xk0〉 − ε̂k,�(k).

Since f2(x) = f2(x
k0) for any x ∈ S2, we obtain

f1(x) ≥ f1(x
k0) + 〈σ−1

k ĝ�(k), x− xk0〉 − σ−1
k ε̂k,�(k).(3.14)

Hence, passing onto the limit in (3.14) as k → ∞ and taking into account (3.13), we
conclude that f1(x) ≥ f1(x

k0) for any x ∈ S2. Therefore, xk0 ∈ S1, as claimed.

4. Computational experiments. In this section, we report on some numerical
experiments for the problem of minimizing a piecewise quadratic convex function
over a set defined by monotone linear complementarity constraints. Specifically, we
consider the problem

minimize maxj=1,...,l{〈Ajx, x〉 + 〈bj , x〉 + cj}
subject to Qx + q ≥ 0, x ≥ 0, 〈x,Qx + q〉 ≤ 0,

(4.1)

where Q and Aj , j = 1, . . . , l, are n × n positive semidefinite matrices; q and bj ,
j = 1, . . . , l, are vectors in �n; and cj ∈ �, j = 1, . . . , l. This problem is converted to
the setting of the paper by choosing

f1(x) = max
j=1,...,l

{〈Ajx, x〉 + 〈bj , x〉 + cj},

f2(x) =

n∑
i=1

max{−xi, 0} +

n∑
i=1

max{−(Qx + q)i, 0} + max{〈Qx + q, x〉, 0}.

The code is written in MATLAB, essentially by making modifications to a more-or-less
standard unconstrained proximal bundle code. Runs are performed under MATLAB
Version 7.0.0.19901 (R14). The test problems were constructed by first generating a
feasible point x̄ of (4.1), and then a function f1 for which x̄ is optimal. Details are
presented next.

The process starts with defining an n×n positive semidefinite matrix Q of rank r <
n, whose entries are uniformly distributed in the interval [−5, 5]. We next generate a
point x̄, with each coordinate having equal probability of being zero or being uniformly
distributed in [0, 5]. Finally, we define q = −Qx̄+ ȳ, where a coordinate of ȳ is zero if
the corresponding coordinate of x̄ is positive, while other coordinates of ȳ have equal
probability of being zero or uniformly generated from [0, 5]. As can be easily seen,
such x̄ is a feasible point for problem (4.1). It does not satisfy strict complementarity
and, typically, is not an isolated feasible point (here, it is important that Q is a
degenerate matrix). Obviously, x̄ is an unconstrained minimizer of the function f2,
i.e., x̄ ∈ S2.

Next, we construct a function f1 such that x̄ is a minimizer of f1 over S2. As the
constraints in (4.1) do not satisfy a constraint qualification, we can only overestimate
the tangent cone TS2(x̄) to S2 at x̄, which gives underestimation of its dual:

(TS2
(x̄))∗ ⊃ K = cone

(
{−ei | x̄i = 0} ∪ {−Qi | ȳi = 0} ∪ {q + (Q + Q�)x̄}

)
,(4.2)

where ei is the ith element of the canonical basis of �n, Qi is the ith row of the matrix
Q, and cone(X) stands for the conic hull of the set X in �n.
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We shall construct the needed function f1 by defining antigradients of pieces of
f1 active at x̄ as some elements belonging to the right-hand side of (4.2). This would
guarantee the optimality condition

0 ∈ ∂f1(x̄) + (TS2
(x̄))∗,(4.3)

even though the set (TS2
(x̄))∗ is not fully known. First, we generate symmetric n×n

positive semidefinite matrices Aj , j = 1, . . . , l, with random entries distributed in
[−5, 5]. Choosing the number l0 ≤ l of pieces of f1 active at x̄, we next define

bj = −2Aj x̄− uj , uj ∈ K, j = 1, . . . , l0,

where elements uj of K are generated by taking random coefficients in [0, 1] for all
vectors in the right-hand side of (4.2). The elements bj , j = l0+1, . . . , l, are generated
randomly.

It remains to make sure that the first l0 pieces in the definition of f1 are active
at x̄. To this end, we compute

c̄ = 5 + max
j=1,...,l

{〈Aj x̄, x̄〉 + 〈bj , x̄〉},

and set

cj = c̄− 〈Aj x̄, x̄〉 − 〈bj , x̄〉, j = 1, . . . , l0,

cj = 0, j = l0 + 1, . . . , l.

It can be seen that for the point x̄, the maximum in the definition of f1 is attained
for indices j = 1, . . . , l0, and that f1(x̄) = c̄. By the previous constructions, we have
that (4.3) holds, and thus x̄ is a solution of (4.1). Furthermore, the optimal value of
this problem is c̄.

Our code is a slightly simplified version of Algorithm 2.1, in particular in the fol-
lowing two details. First, instead of an aggregation technique to control the bundle,
we use simple selection of active pieces; i.e., after every iteration we discard those
cutting planes which correspond to zero multipliers in the solution of the QP sub-
problem. Second, we ignore the safeguard (2.11) that detects when the current point
xk is almost a minimizer of Fσk

, and so σk needs to be reduced (even if a serious
step has not yet been constructed). As already discussed above, since at no iteration
Fσk

is being minimized to any specific precision, this situation is unlikely to occur
prematurely if σk is updated after each serious step. This intuition was confirmed by
our experiments. We observed that optimality is achieved only asymptotically, and
so the standard bundle stopping test,

ε̂k,� ≤ t1 and ‖ĝ�‖2 ≤ t2,(4.4)

can be used without any harm. But, of course, one has to be aware that this stopping
test cannot be fully reliable in our setting. In our experiments, we set t1 = 10−2 and
t2 = 10−4, as it is often difficult to get more precision from a nondifferentiable opti-
mization code in a simple MATLAB implementation. We start with x0 = (2, . . . , 2),
and set m = 10−1 in the descent test (2.10). The proximal parameter μ� in (2.5) is
changed at serious steps only by the safeguarded version of the reversal quasi-Newton
scalar update; see [3, section 9.3.3]. More precisely,

μk+1 = min {c1,max{μ̃k+1, c2}} ,
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Table 4.1

Summary of numerical experiments.

Convergence (out of 20) “Failures” (out of 20)
n = 5 18 cases 38.3 oracle calls 2 cases 100 oracle calls
rankQ = 4 R1 = 2.2 ∗ 10−5 R2 = 1.2 ∗ 10−5 R1 = 4.1 ∗ 10−4 R2 = 2.2 ∗ 10−4

n = 5 19 cases 32.2 oracle calls 1 case 100 oracle calls
rankQ = 2 R1 = 6.2 ∗ 10−4 R2 = 8.1 ∗ 10−5 R1 = 3.2 ∗ 10−4 R2 = 1.1 ∗ 10−5

n = 10 12 cases 109.5 oracle calls 8 cases 200 oracle calls
rankQ = 8 R1 = 2.8 ∗ 10−5 R2 = 1.4 ∗ 10−5 R1 = 2.2 ∗ 10−4 R2 = 3.3 ∗ 10−5

n = 10 14 cases 89.9 oracle calls 6 cases 200 oracle calls
rankQ = 5 R1 = 3.7 ∗ 10−4 R2 = 4.2 ∗ 10−5 R1 = 7.2 ∗ 10−4 R2 = 5.3 ∗ 10−4

n = 10 16 cases 60.6 oracle calls 4 cases 200 oracle calls
rankQ = 2 R1 = 9.8 ∗ 10−4 R2 = 5.4 ∗ 10−6 R1 = 2 ∗ 10−3 R2 = 3.1 ∗ 10−6

where μ̃k+1 is the value prescribed by [3, section 9.3.3], and c1 = 10, c2 = 10−1.
Subproblems (2.5) are solved by applying the MATLAB QP routine qp.m to the dual
formulation of (2.5).

For updating the weight parameter, we use the simple generic choice

σk = σ0/(k + 1).(4.5)

For lower dimensions (say, n = 5), when fewer iterations are expected, we start with
σ0 = 10. For higher dimensions (say, n = 10), when more iterations are typically
needed, we start with σ0 = 20. We have experimented with other possibilities, like
keeping σk fixed over some number of serious steps, as well as with some more involved
strategies. While improvements are possible, at this time we did not find them signifi-
cant enough, with respect to the simple (4.5), to warrant their description. Generally,
our experiments are intended for merely verifying that the proposed algorithm works
and in a reasonable way. We did not spend much time on tuning various parameters
to obtain an efficient code. To achieve this, as a first step, one should dispense with
the generic qp.m MATLAB QP solver, which is known to be problematic (and was ob-
served to be a limitation for our experiments as well). Instead, some good specialized
solver (e.g., based on [16, 10]) has to be employed.

Our results are summarized in Table 4.1. We report on problems of dimensions
n = 5 and n = 10, with various degrees of degeneracy of matrix Q, i.e., for different
values of rank Q = r < n. Note that the number of constraints in (4.1) is 2n + 1.
For each pair of n and r the results are averaged over 20 runs. For all the problems,
l = 5 and l0 = 3; i.e., f1 is defined by a maximum of five quadratic functions, with
three of them being active at x̄. We found that moderate variations of l and l0 do not
change much of the average behavior of the method. We thus keep them fixed in our
report, to simplify the table. We report the number of times (out of 20 runs) that
convergence had been declared according to the stopping rule (4.4), and the number
of times this did not happen (declared as a failure) after a maximum allowed number
of calls to the oracle (i.e., evaluations of f1, f2, and of their subgradients). In the case
of n = 5, the maximal number of oracle calls is 100, and in the case of n = 10, it is
200. For both outcomes, we report the average number of oracle calls at termination
(which is redundant in the case of failures) and the average of the relative accuracies
achieved with respect to the optimal value c̄ of problem (4.1) and of the (in)feasibility
measure (the optimal value of f1, which is zero). Specifically, in Table 4.1, we denote

R1 = |(f1(x
k) − c̄)/(f1(x

0) − c̄)|, R2 = f2(x
k)/f2(x

0),

where xk is the last serious iterate before termination.
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We note that even in the cases of “failure” the method actually makes reasonable
progress to the solution of the problem, as evidenced by the values of R1 and R2 in
Table 4.1. We believe that a more careful implementation, including a better QP
solver, should improve the accuracy (especially in higher dimensions) and eliminate
“failures” of nonsatisfaction of the stopping rule (4.4). To this end, we observed that
in most cases, the values of R1 and R2 (which measure actual proximity to solution)
are very satisfactory, and close to those reported at termination, well before the
stopping rule (4.4) is activated or the maximum number of oracle calls is reached. To
some extent, this is quite normal for bundle methods, as they have to generate enough
information in order to “recognize” optimality of the current point. For example, even
starting with x0 = x̄, about 20 oracle calls were required in our experiments before
the method stopped according to (4.4). But in some cases, even when the values in
the stopping test (4.4) are already quite close to the required tolerances relatively
early, it proves difficult to get more precision and satisfy (4.4). As already stated,
we believe that the QP solver used in our implementation is likely the main reason
we are not able to progress to higher accuracy with respect to stopping test (4.4).
In any case, we believe that Table 4.1 shows reasonable behavior of Algorithm 2.1,
even in our simple implementation, on problems with complementarity constraints
(which is a difficult class of problems). Finally, we observe that degeneracy of the
matrix Q defining complementarity constraints is not a problem for our algorithm at
all. Actually, problems with higher degeneracy of Q appear even easier to solve. We
conjecture that the reason for this is that, in the case of high degeneracy of Q, the
feasible set of (4.1) is larger and the function f2 is easier to minimize. This may make
the overall problem easier to deal with in our setting.

5. Concluding remarks. We have presented a bundle method for solving a
nonsmooth convex bilevel problem, which includes standard nonsmooth constrained
optimization as a special case. The attractive feature of the method is that it is
completely explicit. In particular, it does not require an iterative solution (not even
approximate) of any optimization subproblems with general structure. Moreover, in
the case of optimization, no constraint qualifications are required for convergence.

Acknowledgment. The author thanks Claudia Sagastizábal for her MATLAB
unconstrained bundle code, which served as the basis for the implementation of Al-
gorithm 2.1.
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1. Introduction and outline. The solutions of infinite-dimensional minimiza-
tion problems are in general not computable. In order to get computable approxima-
tions, one usually replaces the infinite-dimensional feasible set by a finite-dimensional,
or discrete, one. For an important class of minimizations, this can be done with the
help of finite elements. Of course, the error of such an approximate minimum is then
affected by the choice of the discrete feasible set. There are two ways to decrease the
error. In view of the fact that the true minima are unknown, classical or nonadap-
tive methods enlarge the discrete feasible sets in such a way that any element of the
infinite-dimensional feasible set is approximated by elements from discrete feasible
sets; see, e.g., [7]. In contrast, adaptive methods aim only at the approximation of
solutions and enlarge the discrete feasible sets with the help of information extracted
from data and previous approximate minima; see, e.g., [1, 2, 26]. In many examples,
in particular in the presence of singularities, adaptive methods lead to a much more
efficient use of the computational resources.

The well-known convergence proofs of the classical finite element methods do not
apply to the adaptive framework. In the case of the infinite-dimensional quadratic
minimizations associated with linear elliptic boundary value problems, there has been
recent progress in the analysis of adaptive finite element methods. We mention the
convergence results of Dörfler [9] and Morin, Nochetto, and Siebert [15, 16, 17] that
are based upon a result which, under certain conditions, guarantees a strict error
reduction in one adaptive iteration. Combining this strict error reduction result with
a coarsening procedure, Binev, Dahmen, and DeVore [5] ensured that the finite ele-
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ment solutions are near-best approximations, while Stevenson [23] established optimal
convergence rates in terms of the number of the degrees of freedom (DOFs) without
invoking coarsening.

The sole convergence of adaptive finite elements without coarsening has been
established also for a nonquadratic but convex minimization by Veeser [25] and an
“equality-constrained” quadratic minimization by Bänsch, Morin, and Nochetto [3].
Similarly to Dahlke, Hochmuth, and Urban [8] in the context of wavelets, the latter
is based upon an adaptively approximated Uzawa iteration, and thus the iterates are
not Galerkin approximations to the original problem.

This article concerns adaptive (Ritz–)Galerkin approximations with finite ele-
ments and their convergence for the following infinite-dimensional “inequality-con-
strained” quadratic minimization. Let Ω ⊂ R

d, d = 2, 3, be a polyhedral Lipschitz
domain and f ∈ L2(Ω) a load term. The lower obstacle is given by a finite sequence
of pairs {(Ki, ψi)}ni=1 such that

• each Ki ⊂ Ω is a nondegenerate closed m-simplex, m ∈ {d− 1, d},
• their interiors (with respect to the induced topology) are pairwise disjoint,
• each ψi is an affine function over Ki satisfying ψi ≤ 0 on ∂Ω ∩Ki.

Let u be the typically unknown minimizer of the “inhomogeneous Dirichlet energy”

(1.1) I[v] :=

∫
Ω

1
2 |∇v|2 − fv

in the set

(1.2) F := {v ∈ H1
0 (Ω) | v ≥ ψi on Ki for i = 1, . . . , n},

which is nonempty, convex, and closed thanks to the trace theorem. The minimizer
u exists, is unique, and is characterized by the variational inequality

(1.3) ∀ v ∈ F 〈∇u,∇(v − u)〉 ≥ 〈f, v − u〉 ,

where 〈·, ·〉 indicates the L2-scalar product; see, e.g., [12, Chapter II, Theorem 2.1].
In order to approximate such minimum computionally, in section 2 we design an

adaptive algorithm with continuous linear finite elements. The algorithm is based
upon an iteration of the following main steps:

(1.4) minimize → estimate → select → include,

that is, determine the minimum uk of I in the current finite element subset Fk of F
and estimate its error to test if it already meets a prescribed tolerance; if not, select
new basis functions that allow for the inclusion of new directions in the next discrete
feasible set Fk+1.

The steps “estimate” and “select” involve an a posteriori estimator Ek for the
error in the energy minimum

(1.5) I[uk] − I[u] ≥ 0.

This is a quantity that is, in terms of the approximate minimizer uk and data, com-
putable and splits into contributions associated with possibly new basis functions.
Although some part of the estimator Ek is related to the heuristical one of Kornhuber
[13], it is new and differs from those in [4, 11, 18, 19, 24] in various aspects, e.g., error
notion, accumulation of indicators, and range of covered obstacles.
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Its derivation in section 3 is based upon the quantity

(1.6) sup{〈−Dk, ϕ〉 | ϕ ∈ H1
0 (Ω) such that ‖∇ϕ‖ ≤ 1, uk + ϕ ∈ F},

where Dk ∈ H−1(Ω) := H1
0 (Ω)∗ denotes the derivative of I (or the residual) in the

current approximate minimizer uk,

(1.7) ∀ϕ ∈ H1
0 (Ω) 〈Dk, ϕ〉 = 〈∇uk,∇ϕ〉 − 〈f, ϕ〉 ,

and 〈·, ·〉 stands for the duality pairing of H−1(Ω) and H1
0 (Ω) or the L2-scalar product.

Although (1.6) is used in finite-dimensional constrained optimization as criticality
measure, it has not yet been used to derive a posteriori error estimators. Further
important ingredients of the derivation are the concept of full contact introduced in
[11], an adaptation of the projection operators on stars in [17], and the technique for
lower bounds from [25].

In section 4 we prove that the sequence of approximate minima {uk}k produced
by the algorithm converges to the true minimum u in the following sense:

(1.8) I[uk] → I[u] and uk → u in H1(Ω).

The described algorithm has been implemented within the framework of the finite
element toolbox ALBERTA [20, 21]. Our numerical results in section 5 corroborate and
complement the theoretical results of sections 3 and 4. In particular, they illustrate
properties of the a posteriori error estimator Ek and address the convergence speed in
(1.8) with respect to the number of DOFs, a key ingredient for the overall complexity
of the algorithm. In particular for a singular solution, the observed convergence rate is
superior to nonadaptive refinement and coincides with the one of nonlinear or adaptive
approximation where the exact solution u is supposed to be known, the obstacle is
disregarded, and the (Besov) regularity of u essentially determines the convergence
rate.

2. Adaptive minimization with linear finite elements. In this section we
introduce the adaptive algorithm for the minimization of I in F with the help of linear
finite elements. Notice that, since finite element functions are defined over meshes, the
sequence of approximate minima {uk}k has to be accompanied by a corresponding
sequence of meshes {Tk}k. We start with the initialization of iteration (1.4), then
present its single steps, and conclude with some elementary properties.

We denote by L2(Ω) the set of measurable functions that are square integrable
in Ω with respect to the d-dimensional Lebesgue measure Ld, by H1

0 (Ω) the L2(Ω)-
functions with first weak derivatives in L2(Ω) and zero trace on ∂Ω, and by H−1(Ω)
the dual space of H1

0 (Ω). For any subset ω ⊂ Ω with nonempty interior, we denote
the L2(ω)-norm by ‖ · ‖ω and set ‖ · ‖ = ‖ · ‖Ω.

2.1. Initialization. In order to start and execute iteration (1.4), three inputs
are needed:

tol ≥ 0, θ ∈ (0, 1), and T0.

The first quantity tol is used as tolerance in the stopping test of step “estimate.” If
tol = 0, then the algorithm stops only when the current approximate minimizer is the
exact one.

The second quantity θ is a parameter in step “select” that affects the number of
iterations and the way new DOFs are introduced, two ingredients for the complexity of
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the algorithm. On one hand, the closer θ to 1, the lower the number of iterations (1.4).
On the other hand, the closer θ to 0, the more selective new DOFs will be introduced.
In all our numerical experiments in section 5, we have used the compromise θ = 0.3.
See also section 2.6 below for an interpretation of this parameter.

The last quantity T0 is the initial mesh, i.e., a decomposition of Ω into closed
triangles (if d = 2) or closed tetrahedrons (if d = 3) such that

• Ω = ∪T∈T0
T and

• the intersection T1 ∩ T2 of each pair T1, T2 ∈ T0 is empty or a common m-
subsimplex, m = 0, . . . , d.

Moreover, we suppose that T0 is subordinated to {Ki}ni=1 in the following sense:

(2.1) each Ki is a union of (sub)simplices from T0.

The successive meshes, which are generated in step “include,” inherit this property.
This property is crucial to guarantee that the discrete feasible sets are nested and
subsets of the nondiscrete one F.

Denoting by σ(T ) the ratio of the minimum diameter of a ball containing T over
the maximum diameter of a ball contained in T , the quantity

(2.2) σ0 := max
T∈T0

σ(T ) ∈ [1,∞)

is called the shape regularity of T0. It affects the decisions that are taken in steps
“estimate” and “select.” In particular, for a fixed tolerance tol, the stopping test may
get less stringent if σ0 gets bigger.

2.2. Minimize with respect to admissible finite element functions. Sup-
pose that the mesh Tk has been constructed. In order to define the corresponding
finite element minimizer uk, let

Vk := {v ∈ C(Ω) | ∀T ∈ Tk v|T is affine}

be the space of linear finite elements over Tk and define the discrete feasible set in
step k as

(2.3) Fk :=
{
v ∈ Vk | v(z) = 0 for z ∈ Nk ∩ ∂Ω and v(z) ≥ ψ∗(z) for z ∈ Nk

}
,

where Nk indicates the nodes (or vertices) of Tk and

(2.4) ψ∗(x) := max
{
ψi(x) | i ∈ {1, . . . , n} such that Ki � x

}
, x ∈ Ω,

with the convention max ∅ = −∞. Like F, the set Fk is closed, convex, and nonempty
due to ψ∗ ≤ 0 on ∂Ω. Consequently, I has an unique minimizer uk in Fk that is
characterized by the discrete variational inequality

(2.5) ∀ v ∈ Fk 〈∇uk,∇(v − uk)〉 ≥ 〈f, v − uk〉 .

The approximate minimizer uk can be computed, e.g., by the SOR method with
projection analyzed by Elliott [10] or by the multigrid method of Kornhuber [14].
These and other iterative solvers can be conveniently started with the finite element
minimizer uk−1 of the previous step.
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z
ωz

γz

Fig. 1. Example of a test function ϕS associated with an interior side S (left) and finite element
star ωz with skeleton γz (indicated by dashed lines) for d = 2 (right).

2.3. Estimate error in minimum. In order to estimate the error (1.5), we will
use hierarchical indicators related to the underlying operator and indicators related
to the load term f . We shall omit the iteration counter k for these indicators and
similar quantities that are parametrized by an index set depending on k.

We first introduce the hierarchical indicators. Let Sk denote the set of interior
sides (edges or faces in two or three dimensions, respectively) of Tk. With each such
side S ∈ Sk, we associate a test function ϕS �∈ Vk with the following properties:

• the support of ϕS is contained in ωS := {T ∈ Tk | T ⊃ S};
• ϕS is continuous and piecewise affine over a finer mesh in ωS that may be

generated in step “include” and contains a node xS in the interior of S (which
will be specified in step “include” more precisely);

• ϕS is positive, attains its maximum in xS , and is normalized: ‖∇ϕS‖ = 1.
A construction of ϕS is given in the beginning of section 5; see Figure 1 (left) for an
example in d = 2.

Given ϕS , we define the computable quantities

(2.6) ρS := 〈−Dk, ϕS〉 and dS :=
uk(xS) − ψ∗(xS)

ϕS(xS)
≥ 0.

If ρS > 0, then ϕS is a descent direction, which points upwards, and thus any correc-
tion of uk in the direction of ϕS is admissible. If ρS < 0, then −ϕS is a downwards
correcting descent direction. Hence a correction in this direction may be not ad-
missible. The quantity dS measures the maximal available space for an admissible
correction in the direction of −ϕS . In other words,

(2.7) uk + βϕS ∈ F ⇐⇒ β ≥ −dS .

If we add the test function ϕS to Vk, the corresponding reduction of the approximate
minimum value is at least

(2.8) ξS := I[uk] − I[uk + αSϕS ] = αSρS − 1
2α

2
S ,

where αS is the solution of a one-dimensional constrained quadratic minimization:

(2.9) I[uk + αSϕS ] = min
β≥−dS

I[uk + βϕS ].

The unconstrained minimization minβ∈R I[uk +βϕS ] has the solution β = ρS . Conse-
quently, if ρS ≥ −dS , then αS = ρS and ξS = 1

2ρ
2
S ; otherwise, there holds αS = −dS

and ξS = dS |ρS | − 1
2d

2
S > 1

2dS |ρS |; see also Figure 2. Note that in the first case ξS
depends on |ρS | in a quadratic manner, while in the second one essentially in a linear
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I[uk + βϕS ]I[uk + βϕS ]

ββ −dS−dS

Fig. 2. The two cases of “unconstrained” (left) and “constrained” (right) new direction.

manner. The relationship between the reduction ξS and the pair (ρS , dS) suggests
distinguishing “unconstrained” and “constrained” sides:

(2.10a) S ∈ S2
k ⇐⇒ ρS ≥ −dS and S ∈ S1

k ⇐⇒ ρS < −dS

such that

(2.10b) ξS = 1
2ρ

2
S , S ∈ S2

k , and ξS > 1
2dS |ρS |, S ∈ S1

k .

In light of (2.10), we associate ρ2
S with an unconstrained side S ∈ S2

k and dS |ρS | with
a constrained one S ∈ S1

k .
Next, we introduce the notion of full contact and then the indicators related to

the load term f . For each node z ∈ Nk, let ωz :=
⋃
{T ∈ Tk : T � z} be the star

around z and let γz =
⋃
{S ∈ Sk : S � z} be the skeleton of the star ωz; see Figure 1

(right). Moreover, denote by jk the normal component of the jumps in ∇uk across
interior sides. More precisely, if S ∈ Sk, ωS = T− ∪ T+ with T−, T+ ∈ Tk, and n is
the normal of S pointing from T− to T+, then

jk|S =
(
∇uk|T+ −∇uk|T−

)
· n.

The set of full contact nodes is defined as

(2.11) N 0
k :=

{
z ∈ Nk | uk = ψ∗ in ωz \ ∂ωz, f ≤ 0 in ωz, and jk ≤ 0 on γz

}
,

where

(2.12) ψ∗(x) := min
{
ψi(x) | i ∈ {1, . . . , n} such that Ki � x

}
, x ∈ Ω,

with the convention min ∅ = +∞. Thus uk is in full contact around a node if it is in
contact and additional conditions hold; these additional conditions are necessary for
uk = u around that node. The full contact nodes in turn determine the full contact
elements T 0

k := {T ∈ Tk | Nk ∩ T ⊂ N 0
k } and their complement

(2.13) T +
k := Tk \ T 0

k .

Only with “nonfull-contact” elements T ∈ T +
k do we associate indicators

∫
T
h2
k|f |2,

where hk denotes the piecewise constant function with

hk|T = Ld(T )1/d, T ∈ Tk.
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We finally define the estimator as

(2.14) Ek :=

⎛
⎝∑

S∈S2
k

ρ2
S

⎞
⎠

1/2

+
∑
S∈S1

k

dS |ρS | +

⎛
⎝ ∑

T∈T +
k

∫
T

h2
k|f |2

⎞
⎠

1/2

,

and we stop the algorithm if there holds

(2.15) Ek ≤ tol.

The reliability, stability, and efficiency properties of this stopping test are investigated
theoretically in sections 3.2 and 3.3, as well as practically in section 5.2 and also in
section 5.3.

2.4. Select effective new descent directions. If the stopping test (2.15) is
not satisfied, we have to enlarge the discrete feasible set. To this end, we select
certain sides for which their corresponding test functions ϕS will be included in Vk+1.
Denoting the hierarchical part of the estimator by

(2.16) ηk :=

⎛
⎝∑

S∈S2
k

ρ2
S

⎞
⎠

1/2

+
∑
S∈S1

k

dS |ρS |,

we choose Ŝk ⊂ Sk such that

(2.17a)

⎛
⎝ ∑

S∈Ŝk∩S2
k

ρ2
S

⎞
⎠

1/2

+
∑

S∈Ŝk∩S1
k

dS |ρS | ≥ θηk.

Moreover, regarding the third term of the estimator Ek, we define

(2.17b) T̂k :=

{
T ∈ T +

k |
∫
T

h2
k|f |2 ≥ η2

k

N+
k

}
,

where N+
k := #T +

k denotes the number of nonfull-contact elements of Tk. In sec-
tion 4 we will prove that the properties of the estimator (2.14) in combination with
the selection criterion (2.17) and the refinement rule (2.18) below imply convergence.
Notice that, since θ < 1 in (2.17a), the set Ŝk of “marked” sides is typically a proper
subset of Sk and not unique. In order to keep the dimension of the next finite el-
ement space Vk+1 low, one should choose Ŝk such that #Ŝk is as small as possible
by collecting the biggest indicators. Following an idea of Dörfler [9], such a minimal
choice can be approximated with an algorithm that is easy to implement within the
data structures of adaptive meshes, has complexity #Sk, and thus avoids a sort of
complexity #Sk ln #Sk.

2.5. Include selected descent directions. We refine Tk into Tk+1 by bisecting
selected elements appropriately. More precisely, given the selected sides Ŝk and the
selected elements T̂k from the previous step, we apply the following refinement rule:

(2.18)
if an element T ∈ Tk belongs to T̂k or one of its side to Ŝk, then
create by bisection all its children of 2nd (if d = 2) or 5th (if d = 3)
generation.
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Fig. 3. A triangle with its children of first and second generation using bisection.

In order to ensure that the resulting triangulation is conforming, it may happen that
additional elements have to be bisected. The required bisections (2.18) can be realized,
e.g., with the help of the recursive bisection algorithms described in [21, section 1.1.1].
The refinement by bisection has the following properties:

Tk+1 is conforming and its shape regularity is bounded in terms of σ0,(2.19a)

∀T ∈ Tk hk+1|T < hk|T =⇒ hk+1|T ≤ 1
2 hk|T ,(2.19b)

Vk ⊂ Vk+1.(2.19c)

In two dimensions, the refinement rule (2.18) ensures that for each selected edge
S ∈ Ŝk the midpoint xS belongs to the nodes of Tk+1; see Figure 3. Now consider a
marked face S ∈ Ŝk in three dimensions. The refinement rule (2.18) here guarantees
that at least the edge which is created first inside this face is also bisected. This
generates the vertex xS = 1

4 (a0 + a1) + 1
2a2 as a node of Tk+1, where a0, a1, a2 is

an appropriate enumeration of the vertices of that face. Hence in two and three
dimensions, for each marked side, the associated test function ϕS is in the new finite
element space:

∀S ∈ Ŝk ϕS ∈ Vk+1.(2.20)

The refinement rule (2.18) enters the convergence proof through the properties (2.19)
and (2.20).

Now a new mesh Tk+1 has been constructed, and we can increment k and repeat
the iteration starting with step “minimize.”

2.6. A line search interpretation. We now interpret the described algorithm
as a line search method. This interpretation also serves as a guideline for the conver-
gence proof in the following sections.

The algorithm defines a finite or infinite sequence {uk}k of approximate minimiz-
ers, accompanied in particular by sequences of triangulations {Tk}k, of finite element
spaces {Vk}k, and discrete feasible sets {Fk}k.

In view of (2.1), (2.19c), (2.3), and (2.4), there holds the identity

Fk = {v ∈ Vk | v = 0 on ∂Ω and v ≥ ψi on Ki for i = 1, . . . , n},

which in turn yields that the discrete feasible sets are nested and the minimization in
each iteration is an inner approximation of (or a conforming method for) the original
minimization:

(2.21) Fk ⊂ Fk+1 ⊂ F.

This implies

(2.22) I[uk] ≥ I[uk+1] ≥ I[u].
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In descent methods, the convergence is usually ensured with the help of a suitable
strengthening of the strict decrease I[uk+1] < I[uk]. Here such strict decrease typically
holds (see Remark 4.1), but, although there holds Fk+1 �= Fk whenever Ek > 0, there
may be exceptions: for example, if the obstacle is negative and the load term f is
L2(Ω)-orthogonal to the new finite element space Vk+1 and thus not visible in (2.5),
then I[uk+1] = I[uk]; see also [15]. This may happen for any refinement rule that
generates a fixed finite number of subelements. We therefore decided to deal with the
presence of degenerate iterations with I[uk+1] = I[uk].

The strengthening of I[uk+1] < I[uk] in line search methods consists of condi-
tions on the search direction (e.g., the angle condition) and the step length (e.g.,
Armijo–Goldstein–Wolfe conditions) which imply that the criticality measure for uk

is bounded in terms of the decrease I[uk+1] − I[uk]. Here the derivation of such a
bound, as well as the determination of a computable search direction, is complicated
by the fact that the derivative Dk is an infinite-dimensional object and by the presence
of the aforementioned degenerate iterations.

In step “estimate,” the hierarchical part ηk of the estimator investigates the re-
striction of Dk to the enlarged finite element space Ṽk := Vk ∪ span{ϕS | S ∈ Sk},
while the nonhierarchical part in particular checks for components of f that are or-
thogonal to Ṽk; the latter happens only in the nonfull-contact region, which thus plays
the role of an active or working set for the nonhierarchical part. The full estimator
Ek bounds the noncomputable criticality measure (1.6); see Proposition 3.2 below.

Steps “select” and “refine” then essentially produce the next finite element space
Vk+1. The construction is such that the following hold:

• The hierarchical part ηk of the estimator can be shown to be controlled by
the energy decrease I[uk+1] − I[uk]; see step 2 in the proof of Theorem 4.1
below. To this end, condition (2.17a), which involves the input parameter θ,
replaces the angle condition, with the difference that not Dk on H1

0 (Ω) but
rather its restriction to Ṽk ∩H1

0 (Ω) is taken as a reference.
• The most promising directions of Ṽk are contained in Vk+1.
• The active components of f that are orthogonal to Ṽk will eventually be

resolved.
The fact that uk+1 is then the (Ritz–)Galerkin approximation in Fk+1 implies that
the step length is optimal and the search direction is given by the restriction of −Dk

to Vk+1 ∩H1
0 (Ω) and the Lagrange multiplier associated with uk+1. More precisely,

the search direction is the Riesz representation of their sum in Vk+1∩H1
0 (Ω) endowed

with the H1
0 (Ω)-scalar product (v, w) �→ 〈∇v,∇w〉. Furthermore, if the Lagrange

multipliers of uk+1 and uk are equal, the search direction corresponding to uk+1 − uk

is conjugate with respect to the H1
0 (Ω)-scalar product to all previous search directions.

Thus, iteration (1.4) may be seen as a line search method in which the search
direction is adaptively determined with the help of an a posteriori error estimator
and the step length is optimal.

3. A posteriori estimator for the error in the minimum. The purpose
of this section is twofold: on one hand, we theoretically investigate reliability and
efficiency of the stopping test (2.15); on the other hand, we prepare the convergence
proof in section 4 by starting to establish the link between the criticality measure
(1.6) and the decrease I[uk] − I[uk+1].

Estimates with “�” instead of “≤” indicate a hidden constant, i.e., a � b ⇔
a ≤ Cb with a constant C > 0, that, if not stated otherwise, depends only on the
dimension d and the shape regularity σ0 of T0 in (2.2).
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3.1. Criticality measure and abstract error control. In the unconstrained
minimization F = H1

0 (Ω), the a posteriori error analysis is based upon the identities

(3.1) I[uk] − I[u] = 1
2‖∇(uk − u)‖2 = 1

2‖Dk‖2
H−1(Ω),

where the dual norm of the residual (1.7),

(3.2) ‖Dk‖H−1(Ω) := sup{〈Dk, ϕ〉 | ϕ ∈ H1
0 (Ω) such that ‖∇ϕ‖ ≤ 1},

depends only on the approximate minimizer uk and the load f .
For F as in (1.2), however, already the first identity in (3.1) may not hold. More

specifically, the quadratic nature of I readily leads to

(3.3) I[uk] − I[u] = 〈D, uk − u〉 + 1
2‖∇(uk − u)‖2,

where D denotes the derivative of I in the minimizer u. Therefore, (1.3) implies

(3.4) 1
2‖∇(uk − u)‖2 ≤ I[uk] − I[u],

while an opposite inequality has to take into account the “linear” term 〈D, uk − u〉
when this term is strictly positive; see also the analog situation illustrated in Figure 2
(right).

In addition, a test function (or correction) ϕ in (3.2) may correspond to a function
that is not admissible; i.e., uk + ϕ ∈ Fk may not hold. We therefore consider

(3.5) ρk(−Dk) := sup{〈−Dk, ϕ〉 | ϕ ∈ H1
0 (Ω) such that ‖∇ϕ‖ ≤ 1, uk + ϕ ∈ F}.

Notice that ρk is a seminorm in H−1(Ω) that is definite in the set of positive func-
tionals:

• thanks to uk ∈ F, it is nonnegative, positively 1-homogeneous, and sublinear
(and so convex) but not symmetric;

• if uk = ψi in Ki for some i ∈ {1, . . . , n}, there are negative functionals F �= 0
with ρk(F ) = 0;

• there holds

(3.6) ρk(F ) = 0 =⇒ 〈F,ϕ〉 ≤ 0 ∀ ϕ ∈ H1
0 (Ω) with ϕ ≥ 0.

With the help of ρk(−Dk), the relationship (3.1) can be replaced as follows.
Proposition 3.1 (abstract error control). The error in the energy minimum is

controlled by ρk(−Dk) from (3.5). More precisely, there holds

1
2 min

{
ρk(−Dk)

2, ρk(−Dk)
}
≤ I[uk] − I[u] ≤ max

{
1
2ρk(−Dk)

2, ρk(−Dk)
}
.

Proof. 1. Similarly to (3.3), we obtain

(3.7) I[uk] − I[uk + αϕ] = α〈−Dk, ϕ〉 −
α2

2
‖∇ϕ‖2

for ϕ ∈ H1
0 (Ω) and α ∈ R.

2. In order to prove the upper bound for I[uk] − I[u], we choose ϕ = u− uk and
α = 1 in (3.7) to obtain

(3.8) I[uk] − I[u] = 〈−Dk, u− uk〉 −
1

2
‖∇(u− uk)‖2.
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The estimation of 〈−Dk, u− uk〉 in terms of ρk(−Dk) from (3.5) suggests considering
two cases.

Case 1: uk + ‖∇(u− uk)‖−1(u− uk) ∈ F. Then

(3.9) 〈−Dk, u− uk〉 −
1

2
‖∇(u− uk)‖2

≤ ρk(Dk)‖∇(u− uk)‖ −
1

2
‖∇(u− uk)‖2 ≤ 1

2
ρk(−Dk)

2

by using ab ≤ 1
2a

2 + 1
2b

2.
Case 2: uk+‖∇(u−uk)‖−1(u−uk) �∈ F. Then, since u, uk ∈ F implies uk+α(u−

uk) ∈ F for all α ∈ [0, 1], we have ‖∇(u−uk)‖ < 1. Consequently, the definition (3.5)
of ρk(−Dk) directly gives

(3.10) 〈−Dk, u− uk〉 −
1

2
‖∇(u− uk)‖2 ≤ ρk(Dk).

Inserting the two cases (3.9) and (3.10) into the identity (3.8) then yields the
claimed upper bound for I[uk] − I[u].

3. It remains to show the lower bound for I[uk] − I[u]. To this end, choose
ϕ∗ ∈ H1

0 (Ω) such that

ρk(−Dk) = 〈−Dk, ϕ
∗〉, ‖∇ϕ∗‖ ≤ 1, and uk + ϕ∗ ∈ F.

Such ϕ∗ can be constructed with the help of a maximizing sequence, weak compact-
ness, and Mazur’s lemma. We again consider two cases.

Case 1: uk + ρk(−Dk)ϕ
∗ ∈ F. This, (3.7) with ϕ = ϕ∗, and α = ρk(−Dk), as

well as the properties of ϕ∗, imply

(3.11) I[uk] − I[u] ≥ I[uk] − I[uk + ρk(−Dk)ϕ
∗]

= ρk(−Dk)
2 − ρk(−Dk)

2

2
‖∇ϕ∗‖2 ≥ 1

2
ρk(−Dk)

2.

Case 2: uk + ρk(−Dk)ϕ
∗ �∈ F. Then, in view of uk + ϕ∗, uk ∈ F, we derive

ρk(−Dk) > 1, and so

(3.12) I[uk] − I[u] ≥ I[uk] − I[uk + ϕ∗] = ρk(−Dk) −
1

2
‖∇ϕ∗‖2 ≥ 1

2
ρk(−Dk)

by using also (3.7) with ϕ = ϕ∗, α = 1, and the properties of ϕ∗.
Combining the inequalities (3.11) and (3.12) yields the claimed lower bound for

I[uk] − I[u].
Suppose for a moment that I[v] = 1

2 |v|2, v ∈ R, and that uk ∈ R is some
approximation of the exact minimum u = 0. In this case, straightforward calculations
for different cases in the spirit of Figure 2 show that the bounds in the corresponding
one-dimensional counterpart of Proposition 3.1 are sharp. Consequently, a proof of
improved bounds has to rely on additional information about uk. The following
remark, which will be useful in section 5.4, is an example for such an improvement.

Remark 3.1 (more stringent error control). Suppose that uk = ψi on Ki for all i =
1, . . . , n and that ρk(−Dk) ≤ 1. After the computation of uk, the first condition can
be directly checked and the second one may be verified with the help of Proposition 3.2
below. The first condition implies that u−uk ≥ 0 in

⋃n
i=1 Ki. Consequently, Case 1 in
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the proof of the upper bound in Proposition 3.1 applies, and there holds I[uk]−I[u] ≤
1
2ρh(−Dk)

2. The second condition excludes Case 2 of the proof of the lower bound
since Case 2 entails ρk(−Dk) > 1. Thus, there holds also I[uk] − I[u] ≥ 1

2ρh(−Dk)
2

by the corresponding Case 1. To summarize, under the aforementioned assumptions,
we perfectly mimic (3.1) by

(3.13) I[uk] − I[u] = 1
2ρk(−Dk)

2.

3.2. On reliability. The goal of this section is to derive an upper bound of the
error I[uk]−I[u] in the energy minimum in terms of the a posteriori estimator Ek from
(2.14). To this end, in view of Proposition 3.1, we may estimate ρk(−Dk) by Ek, that
is, by “local” and, partially, “finite-dimensional” quantities, while the evaluation of
ρk(−Dk) corresponds to an infinite-dimensional optimization that involves, in addition
to the usual H1

0 (Ω)-constraint, also one of pointwise nature.
A device for “localization” is the partition of unity

(3.14)
∑
z∈Nk

φz = 1 in Ω,

where φz, z ∈ Nk, are the hat functions defined by φz ∈ Vk and φz(y) = δyz for all
y ∈ Nk. Notice that the support of φz is the star around z ∈ Nk, i.e., suppφz = ωz.

Additionally, we need a projection operator Π which allows us, together with the
fact that uk is piecewise affine, to reduce the high flexibility of a generic test function
in the definition of ρk(−Dk). The operator Π has to have local properties that are
subordinated to the localization induced by the partition of unity (3.14). We define
Π : H1

0 (Ω) → span{ϕS | S ∈ Sk} by requiring, for all ϕ ∈ H1
0 (Ω),

(3.15) ∀S ∈ Sk

∫
S

ϕ =

∫
S

Πϕ.

The latter is, writing Πϕ =
∑

S∈Sk
αS(ϕ)ϕS , equivalent to

∀S ∈ Sk αS(ϕ) =

∫
S
ϕ∫

S
ϕS

.

To state the local properties of Π, we introduce the following notion: given a side
S ∈ Sk, a function ϕ ∈ H1

0 (Ω) is S-admissible whenever

(3.16) ∀ i ∈ {1, . . . , n} with S ⊂ Ki, there holds

∫
S

(uk + ϕ) ≥
∫
S

ψi.

Note that uk + ϕ ∈ F implies that ϕ is S-admissible for all S ∈ Sk.
Lemma 3.1 (local properties of Π). The coefficients αS, S ∈ Sk, of Π are stable

and monotone on H1
0 (Ω). More precisely, for all S ∈ Sk there holds

|αS(ϕ)| � diam(ωS)−1‖ϕ‖ωS
+ ‖∇ϕ‖ωS

,

ϕ ≥ 0 on S =⇒ αS(ϕ) ≥ 0,

ϕ is S-admissible =⇒ αS(ϕ) � −dS .

Proof. 1. To show the first claim, we set hS := diam(ωS) and observe that,
thanks to (2.19a), the measures of elements and sides involved in the definition of
ϕS are about hd

S and hd−1
S , respectively. The piecewise affine function ϕS attains



272 KUNIBERT G. SIEBERT AND ANDREAS VEESER

its maximum in xS and equals 0 outside ωS . The normalization ‖∇ϕS‖ωS
= 1 now

readily implies h
1−d/2
S � ϕS(xS) � h

1−d/2
S . From this, one directly computes the

lower bound

(3.17)

∫
S

ϕS � h
d/2
S .

Moreover, if T ∈ Tk with T ⊃ S, there holds the “scaled” trace theorem

(3.18) ‖ϕ‖S � h
−1/2
S ‖ϕ‖T + h

1/2
S ‖∇ϕ‖T .

The scaling of the norms can be determined by transforming to a reference element,
applying there the corresponding trace inequality, and transforming back; see also [7,
section 15]. Combining (3.18) with the Cauchy–Schwarz inequality on S yields∫

S

ϕ ≤ h
(d−1)/2
S ‖ϕ‖S � h

d/2
S

(
h−1
S ‖ϕ‖ωS

+ ‖∇ϕ‖ωS

)
,

and therefore, in view of (3.17), the first claim is proven.
2. The second claim readily follows from (3.17) and the monotonicity of the

integral
∫
S
.

3. It remains to prove the last claim. Suppose that ϕ is S-admissible. If there is
no i ∈ {1, . . . , n} with Ki ⊃ S, then dS = ∞ and the claim is trivial. Otherwise, fix
any i ∈ {1, . . . , n} with Ki ⊃ S and observe

αS(ϕ) ≥
∫
S
(ψi − uk)∫

S
ϕS

= −
∫
S
(uk − ψi)∫

S
ϕS

.

Thus, if we can show

(3.19)

∫
S

(uk − ψi) �
[
uk(xS) − ψi(xS)

]
Hd−1(S),

then the third claim follows because of Hd−1(S) ≤ hd−1
S , ϕS(xS) � h

1−d/2
S , (3.17),

and the definition (2.4) of ψ∗.
For d = 2, the node xS is the midpoint of S, and thus (3.19) is a consequence of

the midpoint rule since uk − ψi is affine on S. For d = 3, the verification of (3.19)
is a bit more involved. Denoting by a0, a1, a2 an appropriate enumeration of the
vertices of S, we can write xS = 1

4 (a0 + a1) + 1
2a2; see section 2.5. A calculation

yields that xS is the barycenter of S with respect to the measure induced by φa2
, i.e.,

xS =
∫
S
xφa2

(x)dx, where φa2
∈ Vk is the hat function at node a2. Consequently,

g affine =⇒
∫
S

gφa2
= g(xS)

∫
S

φa2
= g(xS)

Hd−1(S)

d
.

We now observe uk −ψi ≥ 0 on S because of uk ∈ F, and so the equivalence of norms
on the affine functions over a reference side yields

∫
S

uk − ψi �
∫
S

[uk − ψi]φa2 = [uk(xS) − ψi(xS)]
Hd−1(S)

d
,

which is (3.19). Thus, the proof of the last claim is also concluded.
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For given ϕ ∈ H1
0 (Ω) and z ∈ Nk, we will apply the projection operator Π to the

localized function ϕφz:

Π(ϕφz) =
∑
S∈Sz

αS(ϕφz)

with Sz := {S ∈ Sk | S � z} being the set of interior sides in the star ωz. The first
claim of Lemma 3.1, combined with ‖ϕS‖ωS

� diam(ωS), ensures

‖Π(ϕφz)‖ωz
� ‖ϕφz‖ωz + diam(ωz)‖∇(ϕφz)‖ωz

(3.20)

� ‖ϕ‖ωz
+ diam(ωz)‖∇ϕ‖ωz .

The last inequality follows from ‖∇(ϕφz)‖ωz � diam(ωz)
−1‖ϕ‖ωz + ‖∇ϕ‖ωz since

φz ≤ 1 and |∇φz| � diam(ωz)
−1.

The first bound in Lemma 3.1 and also (3.20) involve not only an H1-seminorm
but also an L2-norm. In order to estimate the latter ones by the previous ones locally,
we shall invoke a suitable Poincaré inequality. It is based upon a cancellation on one
of the (not necessarily interior) sides of Tk containing z. The set of all these sides is
indicated with S̄z. Notice that

∫
S
φz = 1

d H
d−1(S) > 0 holds for all S ∈ S̄z.

Lemma 3.2 (Poincaré inequality). Let ωz be any star of Tk and ϕ ∈ H1(ωz). If∫
S
ϕφz = 0 for some S ∈ S̄z, then there holds

‖ϕ‖ωz � diam(ωz)‖∇ϕ‖ωz .

Proof. Let S ∈ S̄z and suppose
∫
S
ϕφz = 0. Then we may write

ϕ = ϕ−
[∫

S

φz

]−1 ∫
S

ϕφz = (ϕ− c) −
[∫

S

φz

]−1 ∫
S

(ϕ− c)φz,

where c is any real. We thus obtain

‖ϕ‖ωz
� ‖ϕ− c‖ωz

+
Ld(ωz)

1/2[ ∫
S
φz

]1/2
(
h
−1/2
S ‖ϕ− c‖ωS

+ h
1/2
S ‖∇ϕ‖ωS

)
� ‖ϕ− c‖ωz + diam(ωz)‖∇ϕ‖ωz

with the help of a “weighted” Cauchy–Schwarz inequality on S, φz ≤ 1, the scaled
trace theorem (3.18), Ld(ωz) � diam(ωz)

d,
∫
S
φz � hd−1

S , and hS ≈ diam(ωz). The
variant [22, eq. (4.2)] of the Bramble–Hilbert lemma then finishes the proof.

After these preparations we now turn to the upper bound for ρh(−Dk). We refer
to a node z ∈ Nk \∂Ω as a proper contact node if uk(z) = ψ∗(z) and (2.5) is “locally”
strict in that 〈∇uk,∇φz〉 > 〈f, φz〉 holds. If in addition there is no side S ∈ Sz and
no i ∈ {1, . . . , n} such that S ⊂ Ki and uk = ψi on S, we call z an isolated proper
contact node and set

(3.21) N⊥
k := {z ∈ Nk \ ∂Ω | z is an isolated proper contact node}.

Proposition 3.2 (upper bound for criticality measure). We have

ρk(−Dk) � Ek,

where the hidden constant depends on d and σ0 and, only if N⊥
k �= ∅, in addition on

f , {ψi}ni=1, and T0.
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Proof. 1. Let ϕ ∈ H1
0 (Ω) such that ‖∇ϕ‖ ≤ 1 and uk + ϕ ∈ F. We have to show

that 〈−Dk, ϕ〉 � Ek. To this end, we derive the representation formula

〈−Dk, ϕ〉 =
∑
T∈Tk

∫
T

(
fϕ−∇uk · ∇ϕ

)
=
∑
S∈Sk

∫
S

jkϕ +
∑
T∈Tk

∫
T

fϕ(3.22)

=
∑
z∈Nk

(∫
γz

jkϕφz +

∫
ωz

fϕφz

)

with the help of elementwise integration by parts and the partition of unity (3.14).
We set

(3.23) ρz(ϕ) :=

∫
γz

jkϕφz +

∫
ωz

fϕφz, z ∈ Nk,

and observe that the definition of uk implies, for any interior node z ∈ Nk ∩ Ω,

ρz(1) ≤ 0,(3.24a)

uk(z) > ψ∗(z) =⇒ ρz(1) = 0.(3.24b)

In fact, (3.24a) follows by choosing v = uk + φz in (2.5), while (3.24b) by choosing
v = uk − εφz with ε > 0 sufficiently small. In what follows, we shall estimate the
terms ρz(ϕ), z ∈ Nk, separately, depending on the node type.

2. We consider the full contact nodes (2.11). If z ∈ N 0
k , then ωz =

⋃
i∈Iz

Ki ∩ ωz

with Iz := {i ∈ {1, . . . , n} | Ki ∩ ωz �= ∅}; for otherwise there exists a x ∈ ωz \ ∂ωz

such that ψ∗(x) = ∞, which is in contradiction with ψ∗(x) = uk(x) < ∞. In view of
uk + ϕ ∈ F, we also have

ϕ ≥ ψi − uk ≥ ψ∗ − uk = 0

on Ki ∩ ωz for any i ∈ Iz and, thus, ϕ ≥ 0 on the whole star ωz. Consequently, the
sign conditions on jk and f in (2.11) yield

(3.25) ρz(ϕ) =

∫
γz

jkϕφz +

∫
ωz

fϕφz ≤ 0 for any z ∈ N 0
k .

Because ρz(ϕ) is nonpositive, these values do not contribute to the upper bound.
3. For the remaining nodes z ∈ Nk \N 0

k , we first derive the following conditional
auxiliary estimate for ζ ∈ H1(ωz):

(3.26)

If ζφz is S-admissible ∀ S ∈ Sz, then ρz(ζ) is bounded by

∑
S∈Sz∩S1

k

dS |ρS | +

⎛
⎝ ∑

S∈Sz∩S2
k

|ρS |2 + ‖hkf‖2
ωz

⎞
⎠

1/2(
‖ζ‖ωz

diam(ωz)
+ ‖∇ζ‖ωz

)
.

Exploiting (3.15) and the fact that jk is constant on any side, we may write

ρz(ζ) =

∫
γz

jkζφz +

∫
ωz

fζφz

=

∫
γz

jkΠ(ζφz) +

∫
ωz

fΠ(ζφz) +

∫
ωz

f
[
ζφz − Π(ζφz)

]
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such that we obtain∫
γz

jkΠ(ζφz) +

∫
ωz

fΠ(ζφz) = 〈−Dk,Π(ζφz)〉 =
∑
S∈Sz

αS(ζφz)ρS

=
∑

S∈Sz∩S1
k

[
− αS(ζφz)

]
|ρS | +

∑
S∈Sz∩S2

k

αS(ζφz)ρS

�
∑

S∈Sz∩S1
k

dS |ρS | +
∑

S∈Sz∩S2
k

|ρS |
[
diam(ωS)−1‖ζ‖ωS

+ ‖∇ζ‖ωS

]

by Lemma 3.1 and ‖∇(ζφz)‖ωS
� diam(ωS)−1‖ζ‖ωS

+ ‖∇ζ‖ωS
. In addition,∫

ωz

f
[
ζφz − Π(ζφz)

]
� ‖hkf‖ωz

[
diam(ωz)

−1‖ζ‖ωz
+ ‖∇ζ‖ωz

]

by (3.20) and hk � diam(ωz) on ωz. Summing up the two estimates gives the claimed
bound (3.26) for ρz(ζ).

4. In order to apply (3.26) and then Lemma 3.2, it is convenient to write

(3.27) ρz(ϕ) = ρz(ϕ
+) + ρz(ϕ

−),

where ϕ+ = max{ϕ, 0} and ϕ− = min{ϕ, 0} denote the positive and negative part
of ϕ, respectively. Since ϕ+ is the “unconstrained” part of the test function ϕ, the
corresponding terms ρz(ϕ

+) should be treated in a similar way as in an unconstrained
problem. We first estimate these terms and then the ones associated with ϕ−. Let
z ∈ Nk \ N 0

k be arbitrary. Then there exist a nonnegative real c+z ≥ 0 and a side
Sz ∈ S̄z in ωz such that

(3.28)

∫
Sz

(ϕ+ − c+z )φz = 0.

In fact, if z ∈ ∂Ω is a boundary vertex, then take c+z = 0 and a side in ∂ωz ∩ ∂Ω for
Sz; otherwise, choose

c+z := min

{[∫
S

φz

]−1 ∫
S

ϕ+φz | S ∈ Sz

}
≥ 0

together with the minimizing side Sz. By construction of c+z , the locally shifted test
function ζφz with ζ = ϕ+ − c+z is S-admissible for all S ∈ Sz. Exploiting (3.24a),
applying (3.26) and Lemma 3.2 with (3.28), we derive

ρz(ϕ
+) = ρz(ϕ

+ − c+z ) + c+z ρz(1) ≤ ρz(ϕ
+ − c+z )(3.29)

�
∑

S∈Sz∩S1
k

dS |ρS | +

⎛
⎝ ∑

S∈Sz∩S2
k

|ρS |2 + ‖hkf‖2
ωz

⎞
⎠

1/2

‖∇ϕ+‖ωz .

Notice that (3.28) and the sign c+z ρz(1) ≤ 0 are crucial for deriving (3.29).
5. Next, we estimate those ρz(ϕ

−), z ∈ Nk \ N 0
k , for which we can proceed

similarly as for ρz(ϕ
+). More precisely, we suppose that there exist a nonpositive real

c−z ≤ 0 and a side Sz ∈ S̄z in ωz such that

(3.30)

∫
Sz

(ϕ− − c−z )φz = 0 and c−z ρz(1) ≤ 0.
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Then (3.26) with ζ = ϕ− − c−z and Lemma 3.2 yield

ρz(ϕ
−) = ρz(ϕ

− − c−z ) + c−z ρz(1) ≤ ρz(ϕ
− − c−z )(3.31)

�
∑

S∈Sz∩S1
k

dS |ρS | +

⎛
⎝ ∑

S∈Sz∩S2
k

|ρS |2 + ‖hkf‖2
ωz

⎞
⎠

1/2

‖∇ϕ−‖ωz
.

Condition (3.30) is verified for boundary nodes with c−z = 0 and a boundary side Sz.
For interior nodes z with ρz(1) = 0, we can choose, for instance,

c−z := max

{[∫
S

φz

]−1 ∫
S

ϕ−φz | S ∈ Sz

}
≤ 0

and Sz as the maximizing side.
In view of (3.24), the remaining nodes are necessarily proper contact nodes. For

contact nodes that are not isolated, there exist a side Sz ∈ Sz and some i ∈ {1, . . . , n}
such that

0 ≥ ϕ− ≥ ψi − uk = 0 on Sz

and, thus, (3.30) holds with c−z = 0.
6. It remains to estimate ρz(ϕ

−) for isolated proper contact nodes z ∈ N⊥
k . In

order to compensate a missing cancellation as in (3.30), we observe that for isolated
proper contact nodes there is some i ∈ {1, . . . , n} and some side S ∈ Sz such that

uk(z) = ψi(z) and uk + ϕ− ≥ ψi on S

because z is in contact. Hence, by a “discrete” Poincaré inequality and hS Hd−1(S) �
Ld(ωS),

‖ϕ−‖S ≤ ‖ψi − uk‖S � hS‖∇S(ψi − uk)‖S
� diam(ωS)1/2

(
‖∇uk‖ωS

+ Ld(ωS)1/2M
)
,

where ∇S is the tangential gradient on S and M := max{|∇ψi| | i = 1, . . . , n}.
Therefore c−z :=

[ ∫
S
φz

]−1 ∫
S
ϕ−φz satisfies

‖c−z ‖ωz
≤ Ld(ωz)

1/2[ ∫
S
φz]1/2

‖ϕ−‖S � diam(ωz)
[
‖∇uk‖ωz

+ Ld(ωz)
1/2M

]
,

whence

‖ϕ−‖ωz ≤ ‖ϕ− − c−z ‖ωz + ‖c−z ‖ωz

� diam(ωz)
[
‖∇ϕ−‖ωz

+ ‖∇uk‖ωz
+ Ld(ωz)

1/2M
]

by using Lemma 3.2 for the first term. Combining this with (3.26) for ζ = ϕ−, we
obtain

(3.32) ρz(ϕ
−) �

∑
S∈Sz∩S1

k

dS |ρS | +

⎛
⎝ ∑

S∈Sz∩S2
k

|ρS |2 + ‖hkf‖2
ωz

⎞
⎠

1/2

×
[
‖∇ϕ−‖ωz

+ ‖∇uk‖ωz
+ Ld(ωz)

1/2M
]
.
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7. Using (3.23) and (3.27), we insert (3.25), (3.29), (3.31), and (3.32) into (3.22).
Moreover, we note that each element (side) is contained at most in d+1 (d) stars and
that ‖∇ϕ+‖2 + ‖∇ϕ−‖2 = ‖∇ϕ‖2 ≤ 1. Thus, we finally arrive at

〈−Dk, ϕ〉 �

⎡
⎢⎣∑
S∈S1

k

dS |ρS | +

⎛
⎝∑

S∈S2
k

|ρS |2
⎞
⎠

1/2

+

⎛
⎝ ∑

T∈T +
k

∫
T

h2
k|f |2

⎞
⎠

1/2
⎤
⎥⎦

×
[
1 + ‖∇uk‖Ω⊥

k
+ Ld(Ω⊥

k )1/2M
]
,

where Ω⊥
k :=

⋃
z∈N⊥

k
ωz denotes the union of all stars associated with isolated proper

contact nodes. The stability of {uk}k, which is proved in the following lemma, then
finishes the proof.

Lemma 3.3 (stability). The approximate minimizers {uk}k are stable: there is
a constant C depending on f , {ψi}ni=1, and T0 such that, for any admissible k,

(3.33) ‖∇uk‖ ≤ C.

Proof. Let ψ denote the Lagrange interpolation of max{0, ψ∗} onto the initial
finite element space V0. Then ψ ∈ Fk for any k, and so we can choose v = ψ in (2.5)
and obtain (3.33) by standard manipulations.

The combination of Propositions 3.1 and 3.2 yields the main result of this section.
Theorem 3.1 (upper bound). The error estimator Ek in (2.14) bounds the error

I[uk] − I[u] in the energy minimum from above. More precisely, there holds

I[uk] − I[u] � max{ 1
2E

2
k , Ek}.

The hidden constant depends on d and the shape regularity σ0 in (2.2) and, only if the
set of isolated proper contact nodes N⊥

k defined in (3.21) is not empty, in addition on
the initial mesh T0, the load term f , and the obstacle functions {ψi}ni=1.

Remark 3.2 (isolated proper contact nodes). The existence of isolated, proper
contact nodes can be easily verified a posteriori. They appear on relatively coarse
meshes, e.g., if the obstacle is a pyramid. On finer meshes, they do not persist and
get proper contact nodes that are not isolated. Thus, at least in this generic situation,
the hidden constant in Theorem 3.1 asymptotically depends only on d and σ0.

Remark 3.3 (localization and stability). In view of the definition (2.13) of T +
k ,

the evaluation of the nonhierarchical part⎛
⎝ ∑

T∈T +
k

∫
T

h2
k|f |2

⎞
⎠

1/2

might appear unstable because small changes in uk may produce big changes in T +
k .

However, in light of the results of Brezzi and Caffarelli [6], this occurs only when |f |
is small in the corresponding regions.

3.3. On efficiency. In this section we theoretically investigate the sharpness of
the upper bound in Theorem 3.1, which is related to the efficiency of the stopping
test (2.15).

We first consider the hierarchical part (2.16) of the estimator Ek. By construction,
its indicators satisfy the following local lower bounds with respect to an error in a
“local” energy minimum ξS given by (2.8); see (2.10b):

(3.34) ξS = 1
2ρ

2
S , S ∈ S2

k , and ξS > 1
2dS |ρS |, S ∈ S1

k .
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Their global counterparts follow with the help of the convexity of the Lagrangian
associated with I.

Theorem 3.2 (lower bounds for hierarchical part of estimator). The two sums
of the hierarchical estimator part ηk from (2.16) bound the error I[uk] − I[u] in the
energy minimum from below:

max

⎧⎨
⎩
∑
S∈S2

k

ρ2
S ,

∑
S∈S1

k

dS |ρS |

⎫⎬
⎭ ≤ 2(d + 1)

(
I[uk] − I[u]

)
.

Proof. 1. For notational convenience, denote by S̄k all sides of Tk, including the
boundary ones, and define ϕS , ωS also for S ∈ S̄k \ Sk. Let

(3.35) ϕ =
1

d + 1

∑
S∈S̄k

βSϕS

be a linear combination of the test functions involved in ηk and observe that, on each
element T ∈ Tk, uk + ϕ is a convex combination of certain vS := uk + βSϕS , S ∈ S̄k:

(3.36) (uk + ϕ)|T =
1

d + 1

∑
S∈S̄k, S⊂T

vS |T .

Thus, the convexity of R
d � p �→ 1

2 |p|2 implies

I[uk + ϕ] =
∑
T∈Tk

∫
T

1
2 |∇(uk + ϕ)|2 − f(uk + ϕ)

≤ 1

d + 1

∑
T∈Tk

∑
S∈S̄k, S⊂T

∫
T

1
2 |∇vS |2 − fvS .

Subtracting this from I[uk] = 1
d+1

∑
T∈Tk

∑
S∈S̄k, S⊂T

∫
T

(
1
2 |∇uk|2 − fuk

)
and reor-

ganizing the sum leads to

I[uk] − I[uk + ϕ](3.37)

≥ 1

d + 1

∑
S∈S̄k

[∫
ωS

(
1
2 |∇uk|2 − fuk

)
−
∫
ωS

(
1
2 |∇vS |2 − fvS

)]

≥ 1

d + 1

∑
S∈S̄k

(
I[uk] − I[uk + βSϕS ]

)
.

2. We first bound the sum associated with S2
k , and therefore we choose

βS =

{
αS if S ∈ S2

k ,

0 otherwise
with αS from (2.9)

in (3.35). Since αS ≥ −dS , (2.7) implies uk +αSϕS ∈ F for all S ∈ Sk. The convexity
of F in combination with (3.36) then yields uk + ϕ ∈ F. For all interior sides S ∈ Sk

the identity I[uk] − I[uk + αSϕS ] = ξS = 1
2ρ

2
S holds by (2.8) and (3.34). With the

help of (3.37), we thus obtain

I[uk] − I[u] ≥ I[uk] − I[uk + ϕ] =
1

d + 1

∑
S∈S2

k

ξS =
1

2(d + 1)

∑
S∈S2

k

ρ2
S .

The sum over S1
k is bounded analogously.
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We next discuss the efficiency of the estimator part related to the load f and then
finish the section by confronting Theorems 3.1 and 3.2.

Remark 3.4 (lower bounds for nonhierarchical estimator part). Introducing ϕT ,
xT , ρT , dT , and ξT for elements T ∈ T +

k in an analog manner as for sides, one can
prove that, on unconstrained elements T ∈ T 2

k := {T ∈ T +
k | ρT ≥ −dT }, there hold

the local lower bounds ∫
T

h2
k|f |2 � ξT +

∫
T

h2
k|f − f̄T |2

with f̄T := Ld(T )−1
∫
T
f in the oscillation term. This implies the global lower bound∑

T∈T 2
k

∫
T

h2
k|f |2 � I[uk] − I[u] +

∑
T∈T 2

k

∫
T

h2
k|f − f̄T |2;

that is, the nonhierarchical part of the estimator is sharp apart from a higher order
term and the contribution associated with T 1

k := T +
k \ T 2

k . The latter is typically
also of higher order because it is localized to a narrowing stripe around the exact free
boundary. We omit the proof since this property is not used below.

As in the unconstrained problem, it is also possible to derive an upper bound that
deals also with the load term in a hierarchical way apart from a higher oscillation part.
Since the cost for computing such an estimator is higher (especially for d = 3), we
used the estimator given in (2.14).

Remark 3.5 (gap between upper and lower bound). The powers appearing in
Theorems 3.1 and 3.2 do not match, thus producing a gap between upper and lower
bounds; e.g., the asymptotically relevant one corresponds to the second case in Propo-
sition 3.1 and amounts to

I[uk] − I[u] � Ek �
(
I[uk] − I[u]

)1/2
for f = 0 and I[uk] − I[u] ≤ 1. The reason for the gap is that, in Proposition 3.1, we
distinguish an “unconstrained” and a “constrained” case in a global manner, while in
Theorem 3.2, the cases are distinguished in a local manner, which may mismatch with
the global choice. Notice, however, that our numerical experiments indicate a linear
estimator-error relationship Ek ≈

(
I[uk] − I[u]

)
1/2 as in the unconstrained problem;

see, e.g., section 5.2.

4. Convergence of approximate minima. The goal of this section is to prove
that the algorithm described in section 2 converges for tol = 0. Since the algorithm
depends on tol only through the stopping test (2.15), this implies in particular that,
for any strictly positive tolerance tol > 0, the algorithm finishes after a finite number
of steps. Notice that the algorithm of section 2 does not ensure that the maximum
meshsize maxΩ hk decreases to 0. In fact, this may not happen; see, e.g., section 5.1.
Therefore, the convergence theory for nonadaptive finite elements does not apply.

Theorem 4.1 (convergence). Suppose that tol = 0 and that the initial triangu-
lation T0 is subordinated to the lower obstacle in the sense of (2.1).

Then the algorithm of section 2 converges in a finite number of steps or produces
an infinite sequence of approximate minima {uk}k∈N such that

I[uk] → I[u] and uk → u in H1(Ω) (k → ∞).

Proof. 1. If the algorithm finishes after a finite number of steps, the upper bound
in Theorem 3.1 guarantees that the last approximate minimizer coincides with the
exact one.
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Suppose that the algorithm never finishes. Then (2.22) ensures that

m := lim
k→∞

I[uk]

exists, and we need to check that m = I[u]. In view of the characterization (1.3) of
the exact minimizer and the property (3.6) of the seminorm ρk, we may do this by
showing

(4.1) lim
k→∞

ρk(−Dk) = 0.

To this end, our starting point is the convergence of the energy reduction in one
adaptive iteration,

(4.2) lim
k→∞

(
I[uk] − I[uk+1]

)
= 0,

which is an immediate consequence of the existence of limk→∞ I[uk].
2. As a first step towards (4.1), we show that the hierarchical part (2.16) of the

estimator tends to 0, i.e., limk→∞ ηk = 0. The idea is, exploiting (2.20), to modify
the proof of the lower bounds in Theorem 3.2. Let us choose

βS =

{
αS if S ∈ Ŝk ∩ S2

k ,

0 otherwise
with αS from (2.9)

in (3.35). Then (2.20) implies ϕS ∈ Vk+1 for all S ∈ Ŝk, and thus we conclude
uk +ϕ ∈ Fk+1 with the same arguments used in the proof of Theorem 3.2. By (3.37)
we then obtain∑

S∈Ŝk∩S2
k

ρ2
S ≤ 2(d + 1)

(
I[uk] − I[uk + ϕ]

)
≤ 2(d + 1)

(
I[uk] − I[uk+1]

)
.

Analogously we derive ∑
S∈Ŝk∩S1

k

dS |ρS | ≤ 2(d + 1)
(
I[uk] − I[uk+1]

)
.

Combining these two inequalities with the selection criterion (2.17a) for Ŝk, we obtain

(4.3) ηk ≤ 1

θ

⎡
⎢⎣
⎛
⎝ ∑

S∈Ŝk∩S2
k

ρ2
S

⎞
⎠

1/2

+
∑

S∈Ŝk∩S1
k

dS |ρS |

⎤
⎥⎦ ≤ g

(
I[uk] − I[uk+1]

)

with g(t) := 4θ−1(d + 1) max{
√
t, t} for all t ≥ 0. Thanks to (4.2), we thus devise

(4.4) lim
k→∞

ηk = 0.

3. Next, we verify the convergence of the nonhierarchical estimator part with the
help of (2.17b) and (2.19b). We may write

∑
T∈T +

k

∫
T

h2
k|f |2 =

∫
Ω

h2
k|f |2χk,
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where χk(x) = 1 if there is a T ∈ T +
k with T � x and χk(x) = 0 otherwise. In view

of Lebesgue’s theorem about dominated convergence, it is sufficient to show that the
integrand h2

k|f |2χk tends to 0 a.e. in Ω. Note that the set Γ∞ =
⋃
{∂T : T ∈ Tk, k ∈

N} has Lebesgue measure 0 and that, for each x ∈ Ω \ Γ∞, the sequence {hk(x)}k∈N

is nonincreasing and nonnegative. Consequently, h∞(x) := limk→∞ hk(x) exists and
is nonnegative for almost all x ∈ Ω. Obviously, there holds

(4.5) lim
k→∞

h2
k|f |2χk = 0 a.e. in {h∞ = 0}

with {h∞ = 0} := {x ∈ Ω | h∞(x) = 0}. In view of (2.19b), the remaining set
{h∞ > 0} is covered by the elements of T∗ :=

⋃
k∈N

⋂
�≥k T� that, after a certain step,

will never be refined. Let T ∈ T∗ be arbitrary and consider two cases.
Case 1: There exists k ∈ N such that T �∈ T +

� for all � > k. Then we readily
obtain lim�→∞ h2

� |f |2χ� = 0 a.e. in T from χ� = 0 on T for all � > k.
Case 2: For all k ∈ N exists � > k with T ∈ T +

� . The fact that T ∈ T∗ is not
refined after a certain step implies the existence of a subsequence {Tk�

}�∈N of {Tk}k∈N

such that T ∈ T +
k�

\ T̂k�
for all � ∈ N. The selection criterion (2.17b) then yields

∫
T

h2
∞|f |2 =

∫
T

h2
k�
|f |2 ≤

η2
k�

N+
k�

≤ η2
k�
,

which in turn entails f = 0 a.e. in T thanks to (4.4) and h∞|T > 0. Consequently, we
obtain limk→∞ h2

k|f |2χk = 0 a.e. in T also in this case.
Combining the two cases, taking into account that T∗ is separable, and invoking

(4.5) yields

lim
k→∞

h2
k|f |2χk = 0 a.e. in Ω.

Hence, the dominated convergence theorem implies

(4.6) lim
k→∞

⎛
⎝ ∑

T∈T +
k

∫
T

h2
k|f |2

⎞
⎠

1/2

= 0.

4. Inserting (4.4) and (4.6) into (2.14) yields limk→∞ Ek = 0. Thanks to Propo-
sition 3.2 and Theorem 3.1, we thus obtain limk→∞ ρk(−Dk) = 0 as well as

m = lim
k→∞

I[uk] = I[u].

The convergence uk → u in H1(Ω) then follows from (3.4) and the well-known
Poincaré inequality ‖u‖ ≤ CΩ‖∇u‖.

Remark 4.1 (strict decrease). The estimate (4.3) in step 2 shows that there holds
I[uk+1] < I[uk] whenever the hierarchical part ηk of the estimator is nonzero.

5. Numerical results. In this section we present a couple of examples imple-
mented within the finite element toolbox ALBERTA of Schmidt and Siebert [20, 21].
The computation of the hierarchical estimator involves a global refinement of Tk that
contains for all sides S ∈ Sk the corresponding nodes xS . This globally refined mesh
contains the mesh Tk+1 of the next step but is in general larger, because not all el-
ements in Tk are refined when creating Tk+1. In order to obtain a cheap realization
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of the global refinement of Tk, we correspondingly refine all elements of Tk in a sep-
arate and virtual manner. More precisely, with the help of the rules for refinement
by bisection, each element is virtually refined without using information on neighbors
and without changing the data structures of the current mesh Tk. The contributions
of the hierarchical estimator are then computed on the virtual subelements. If an
element is actually refined later on (e.g., when producing Tk+1), it is refined in the
same way it was virtually refined.

For the virtual refinement of a single element, we use refinement patterns for
reference situations that ensure the additional nodes for all sides. In two dimensions,
the situation is rather simple, and we need only the one refinement pattern depicted
in Figure 3, which exactly corresponds to all children of the second generation. In
three dimensions, the situation is more involved: There are elements of three different
types where the element type is uniquely assigned by the refinement procedure; see
[21, section 1.1.1]. The creation of all children of the fifth generation is sufficient to
ensure interior nodes for all sides, but these nodes are already created with fewer
bisections producing a certain mixture of children of the fourth and fifth generations.
In order to minimize work in the computation of the estimator, we have stored for each
element type a refinement pattern with the fewest number of children that guarantees
the additional nodes for all faces. However, for the sake of simplicity of the refinement
of Tk into Tk+1, we create in (2.18) all children of fifth generation. Note that the test
functions ϕS created by the virtual refinement can be written as linear combinations
of few hat functions in Vk+1.

The estimator is implemented in the form Ek := Ek,1 + Ek,2 + Ek,3, where

Ek,1 := c1
∑
S∈S1

k

dS |ρS |, Ek,2 := c2

⎛
⎝∑

S∈S2
k

ρ2
S

⎞
⎠

1/2

, Ek,3 := c3

⎛
⎝ ∑

T∈T +
k

∫
T

h2
k|f |2

⎞
⎠

1/2

and the constants are chosen in all experiments as c1 = c2 = 0.25 and c3 = 0.5.

5.1. Effect of localization for a Lipschitz obstacle. In order to illustrate
the effect of the localization of the estimator Ek to nonfull-contact regions, we consider
an example with Lipschitz obstacle as in [18, section 7.4] and [19, section 3.2]. On
the diamond domain Ω := {x = (x1, x2) | |x1| + |x2| < 1}, let

ψ(x) := dist(x, ∂Ω) − 1
2 ,

and f(x) := −15. The graph of ψ is a pyramid with a square base centered at the
origin; see Figure 4 (left), where also the initial mesh is depicted. Hence, due to the
relatively heavy load, the exact solution is in contact in the middle of the domain,
then detaches, and finally increases towards the boundary; see Figure 4 (right) for
the finite element minimizer u5 of iteration k = 5. Figure 5 displays the meshes for
iterations k ∈ {4, 5, 6}. Notice that they remain coarse in the contact region, even
where the gradient of the finite element minimizers jumps. This saving of degrees of
freedoms (DOFs), which is also helpful for solving (2.5) in less stable situations, is
thanks to the localization of Ek to the nonfull-contact region.

5.2. Estimator effectivity for stable free boundaries in two and three
dimensions. Next, in the situation of stable free boundaries, we examine the error-
estimator relationship and the importance of Ek,1—the estimator part that is built
up with the “constrained” sides S1

k . On the domains Ω = (−1, 1)d with d ∈ {2, 3},
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Fig. 4. Lipschitz obstacle: graphs of the obstacle with initial mesh (left) and finite element
minimizer u5 with corresponding mesh T5 (right).

Fig. 5. Lipschitz obstacle: meshes Tk for k ∈ {4, 5, 6}. The meshes remain coarse in the
contact region thanks to the localization of Ek to the nonfull-contact region.

consider a constant obstacle ψ(x) := 0, the continuous load

f(x) :=

{
−4

(
2 |x|2 + d (|x|2 − r2)

)
, |x| > r,

−8 r2
(
1 − (|x|2 − r2)

)
, |x| ≤ r,

and the Dirichlet boundary values g(x) := (|x|2 − r2)2 with r = 0.7. (We neglect the
approximation of the boundary data that is not piecewise affine.) The exact minimizer
to this problem is

u(x) =
(
max{|x|2 − r2, 0}

)2
;

see Figure 6 for a finite element minimizer in the case d = 2. Figure 7 depicts the
estimator Ek from (2.14), the square root of the error

(
I[uk] − I[u]

)
1/2 in the energy

minimum, and the energy norm error ‖∇(uk − u)‖ versus the number of DOFs in a
log-log scale. We can see that, at least in these cases, the estimator Ek is equivalent
with

(
I[uk] − I[u]

)
1/2 and ‖∇(uk − u)‖. Table 5.1 reveals that the constrained part

Ek,1 is clearly dominated by the unconstrained part Ek,2+Ek,3, thus providing a partial
explanation for the aforementioned equivalence. These two observations are valid also
for the experiments of the following sections, which cover unstable free boundaries.
This indicates that, at least typically, the stopping test (2.15) is reliable and efficient
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Fig. 6. Stable free boundary: a finite element minimizer with obstacle for d = 2.
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Fig. 7. Stable free boundary: estimator, error in energy minimum, and energy norm error
versus DOFs in log-log scale for d = 2 (left) and d = 3 (right). Estimator and errors are equivalent,
and their asymptotic decays coincide with the best possible decay rate −1/2 and −1/3 for linear
finite elements in two and three dimensions, respectively.

Table 5.1

Stable free boundary: comparison of the estimator contributions for d = 2 (left) and d = 3
(right). The constrained part Ek,1 is clearly dominated by the unconstrained part Ek,2 + Ek,3.

DOFs Ek,1 Ek,2 + Ek,3
5 0.000e+00 7.152e+00

13 2.579e−01 4.386e+00
41 0.000e+00 2.197e+00

145 1.432e−03 1.101e+00
517 2.232e−04 5.478e−01

1737 1.877e−05 2.734e−01
6077 3.722e−06 1.366e−01

22461 3.353e−07 6.828e−02
85365 3.447e−08 3.413e−02

332245 2.665e−09 1.706e−02

DOFs Ek,1 Ek,2 + Ek,3
8 0.000e+00 2.352+01

189 0.000e+00 4.850+00
3465 2.150e−04 1.936+00

30667 6.043e−06 8.777−01
296495 1.061e−06 3.970−01

in the usual linear sense; i.e., there holds Ek ≈
(
I[uk] − I[u]

)
1/2 ≈ ‖∇(uk − u)‖; see

also Remarks 3.1 and 3.5.

5.3. Insensitivity to ineffective data changes. The following examples serve
to investigate the behavior of the adaptive algorithm with respect to changes in the
data that are not reflected in the exact solution. Recall that the adaptive algorithm
aims only at the approximation of the exact minimizer and therefore should be insen-
sitive to such changes.
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no contact almost contact

unstable contact stabilized contact

Fig. 8. Ineffective data changes: comparison of finite element minimizers that approximate
the same solution for different data ranging from “no contact” to “stabilized contact.” There is no
visual difference between the discrete minimizers.

We consider four examples that all have the same exact solution,

u(x1, x2) :=

{
1
2x

4
1 if x1 ≥ 0,

0 else
for (x1, x2) ∈ Ω := (−1, 1)2,

but different obstacles and loads so that this solution is
• unconstrained,
• “almost in contact” with the obstacle,
• just and thus in a “unstable” manner in contact, and
• in “stabilized contact.”

More precisely, let

ψ1 ≡ −1, ψ2 ≡ −0.001, ψ3 ≡ ψ4 ≡ 0

and

fi(x1, x2) :=

⎧⎪⎨
⎪⎩
−6x2

1 if x1 ≥ 0,

0 if x1 ≤ 0 and i ∈ {1, 2, 3},
x1 if x1 ≤ 0 and i = 4.

The initial mesh is the same for all four examples and not aligned with the one-dimen-
sional structure of the exact solution. Figure 8 depicts for all four examples the finite
element minimizers u4 and Figure 9 the corresponding meshes T4, while Figure 10
shows the decays of estimator and errors versus number of DOFs in a log-log scale.

We notice that the finite element minimizers and their meshes do not depend, or
only little, on the four different data regimes. The same holds true for the decays
and, moreover, the single estimator contributions; see Table 5.2. This indicates that
the estimator and adaptive algorithm depend essentially only on the approximated
exact solution. In particular, it appears insensitive to contact set changes that are
not reflected in the solution, even if they are discontinuous; see also Remark 3.3.
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no contact almost contact

unstable contact stabilized contact

Fig. 9. Ineffective data changes: comparison of the meshes T4. Only in the last case of stabilized
contact is there a slight difference around the free boundary x1 = 0.
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Fig. 10. Ineffective data changes: comparison of convergence histories of estimator, error in
energy minimum, and energy norm error versus number of DOFs in log-log scale. The histories
are essentially independent of the varying data, and their asymptotic decays coincide with the best
possible decay rate −1/2 for linear finite elements.
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Table 5.2

Ineffective data changes: comparison of estimator contributions from “no contact” (top) to
“stabilized contact” (bottom). Single contributions are essentially independent of varying data.

DOFs Ek,1 Ek,2 Ek,3
32 0.000e+00 1.232e−01 4.298e−01
69 0.000e+00 1.269e−01 2.151e−01

152 0.000e+00 6.020e−02 1.088e−01
462 0.000e+00 2.935e−02 5.567e−02

1571 0.000e+00 1.469e−02 2.823e−02
5841 0.000e+00 7.381e−03 1.424e−02

22487 0.000e+00 3.704e−03 7.162e−03
88086 0.000e+00 1.857e−03 3.595e−03

DOFs Ek,1 Ek,2 Ek,3
32 7.802e−08 1.240e−01 4.298e−01
69 1.380e−06 1.276e−01 2.151e−01

152 0.000e+00 6.020e−02 1.088e−01
462 0.000e+00 2.935e−02 5.567e−02

1571 0.000e+00 1.469e−02 2.823e−02
5841 0.000e+00 7.381e−03 1.424e−02

22487 0.000e+00 3.704e−03 7.162e−03
88086 0.000e+00 1.857e−03 3.595e−03

DOFs Ek,1 Ek,2 Ek,3
32 0.000e+00 1.242e−01 4.298e−01
68 5.559e−07 1.276e−01 2.152e−01

152 1.620e−08 6.020e−02 1.088e−01
462 0.000e+00 2.935e−02 5.567e−02

1571 0.000e+00 1.469e−02 2.823e−02
5841 0.000e+00 7.381e−03 1.424e−02

22487 0.000e+00 3.704e−03 7.162e−03
88086 0.000e+00 1.857e−03 3.595e−03

DOFs Ek,1 Ek,2 Ek,3
32 0.000e+00 1.242e−01 4.300e−01
68 1.149e−06 1.276e−01 2.174e−01

162 8.153e−07 6.022e−02 1.106e−01
479 4.393e−07 2.943e−02 5.662e−02

1635 8.578e−08 1.472e−02 2.840e−02
5953 9.644e−10 7.384e−03 1.427e−02

22661 7.813e−12 3.708e−03 7.166e−03
88268 6.298e−12 1.857e−03 3.596e−03

5.4. Optimal convergence speed for a discontinuous and thin obstacle.
The main features of our last example are the singularities of the exact solution that
are induced by the discontinuous and thin nature of the obstacle. Figure 11 (left)
depicts a finite element minimizer in Ω = (−1, 1) × (− 1

2 ,
1
2 ) and reveals also the

obstacle that is made of two parts: a “triangle-shaped” one with constant level, and
a “segment-shaped” one with increasing level; to be more precise,

K1 := conv hull{(0, 0), ( 1
2 , 0), ( 1

2 ,
1
4 )}, ψ1(x1, x2) = 1,

K2 := conv hull{(−1, 1
2 ), (− 1

2 ,
1
4 )}, ψ2(x1, x2) = 2 + 2x1.

The load term f is set to 0. Obviously, the induced singularities are related to the
ones of solutions to Poisson’s equation on domains with reentrant corners or on the
crack domain. The solution u is at most in H3/2(Ω), and thus, for nonadaptive
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Fig. 11. Discontinuous and thin obstacle: a finite element minimizer (left) and decay of esti-
mator versus number of DOFs, together with maximum decay rate for nonlinear approximation with
linear finite elements, in log-log scale (right).

Fig. 12. Discontinuous and thin obstacle: adaptive meshes Tk for iteration k = 15 (left) and
k = 22 (right).

uniform refinement, the decay rate of the energy norm error with respect to the
number of DOFs is not better than −1/4, see, e.g., [7, Ch. 23]. However, the second
derivatives of u are better than L1(Ω), entailing that u in the energy norm error can
be approximated on adaptive meshes with rate −1/2, which is the best decay rate
that can be attained with linear finite elements for d = 2; see [5, Theorem 9.1 and
Remark 9.2].

Figure 12 depicts two correspondingly adapted meshes, and Figure 11 (right)
indicates the decay of the estimator Ek versus the number of DOFs in a log-log scale.
The numerically observed decay rate of the estimator is −1/2. Notice that in the
present case our theory ensures

(5.1) 1
2‖∇(uk − u)‖2 ≤ I[uk] − I[u] ≈ 1

2E
2
k .

Indeed, the first inequality is just (3.4) and “≈” holds because, on one hand, (3.13)
applies, see Remark 3.1, while on the other hand, we need only estimate the term
with the unconstrained sides S2

k in Theorem 3.2 since the constrained sides S1
k in

Proposition 3.2 do not contribute. Consequently, (5.1) and the observation that the
estimator decays with the best possible rate for the energy norm error mean that the
estimator, the error in the energy minimum, and the energy norm error decay with
the optimal rate.
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[3] E. Bänsch, P. Morin, and R. H. Nochetto, An adaptive Uzawa FEM for the Stokes problem:
Convergence without the inf-sup condition, SIAM J. Numer. Anal., 40 (2002), pp. 1207–
1229.

[4] S. Bartels and C. Carstensen, Averaging techniques yield reliable a posteriori finite element
error control for obstacle problems, Numer. Math., 99 (2004), pp. 225–249.

[5] P. Binev, W. Dahmen, and R. DeVore, Adaptive finite element methods with convergence
rates, Numer. Math., 97 (2004), pp. 219–268.

[6] F. Brezzi and L. A. Caffarelli, Convergence of the discrete free boundaries for finite element
approximations, RAIRO Anal. Numér., 17 (1983), pp. 385–395.

[7] P. G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of Numerical Analysis,
Vol. II, P. G. Ciarlet and J.-L. Lions, eds., North–Holland, Amsterdam, 1991, pp. 17–352.

[8] S. Dahlke, R. Hochmuth, and K. Urban, Adaptive wavelet methods for saddle point prob-
lems, M2AN Math. Model. Numer. Anal., 34 (2000), pp. 1003–1022.

[9] W. Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal.,
33 (1996), pp. 1106–1124.

[10] C. M. Elliott, On the finite element approximation of an elliptic variational inequality arising
from an implicit time discretization of the Stefan problem, IMA J. Numer. Anal., 1 (1981),
pp. 115–125.

[11] F. Fierro and A. Veeser, A posteriori error estimators for regularized total variation of
characteristic functions, SIAM J. Numer. Anal., 41 (2003), pp. 2032–2055.

[12] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their
Applications, Pure Appl. Math. 88, Academic Press, New York, 1980.

[13] R. Kornhuber, A posteriori error estimates for elliptic variational inequalities, Comput.
Math. Appl., 31 (1996), pp. 49–60.

[14] R. Kornhuber, Adaptive Monotone Multigrid Methods for Nonlinear Variational Problems,
Adv. Numer. Math., B. G. Teubner, Stuttgart, 1997.

[15] P. Morin, R. H. Nochetto, and K. G. Siebert, Data oscillation and convergence of adaptive
FEM, SIAM J. Numer. Anal., 38 (2000), pp. 466–488.

[16] P. Morin, R. H. Nochetto, and K. G. Siebert, Convergence of adaptive finite element
methods, SIAM Rev., 44 (2002), pp. 631–658.

[17] P. Morin, R. H. Nochetto, and K. G. Siebert, Local problems on stars: A posteriori error
estimators, convergence, and performance, Math. Comp., 72 (2003), pp. 1067–1097.

[18] R. H. Nochetto, K. G. Siebert, and A. Veeser, Pointwise a posteriori error control for
elliptic obstacle problems, Numer. Math., 95 (2003), pp. 163–195.

[19] R. H. Nochetto, K. G. Siebert, and A. Veeser, Fully localized a posteriori error estimators
and barrier sets for contact problems, SIAM J. Numer. Anal., 42 (2005), pp. 2118–2135.

[20] A. Schmidt and K. G. Siebert, ALBERT—Software for scientific computations and applica-
tions, Acta Math. Univ. Comenian. (N.S.), 70 (2000), pp. 105–122.

[21] A. Schmidt and K. G. Siebert, Design of Adaptive Finite Element Software: The Finite
Element Toolbox ALBERTA, Lect. Notes Comput. Sci. Engrg. 42, Springer, Berlin, 2005.

[22] L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying
boundary conditions, Math. Comp., 54 (1990), pp. 483–493.

[23] R. Stevenson, Optimality of a standard adaptive finite element method, Found. Comput.
Math., published online, 2006, DOI 10.1007/s10208-005-0183-0.

[24] A. Veeser, Efficient and reliable a posteriori error estimators for elliptic obstacle problems,
SIAM J. Numer. Anal., 39 (2001), pp. 146–167.

[25] A. Veeser, Convergent adaptive finite elements for the nonlinear Laplacian, Numer. Math.,
92 (2002), pp. 743–770.

[26] R. Verfürth, A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement
Techniques, Adv. Numer. Math., John Wiley, Chichester, UK, 1996.



SIAM J. OPTIM. c© 2007 Society for Industrial and Applied Mathematics
Vol. 18, No. 1, pp. 290–308

A VECTOR LABELING METHOD FOR SOLVING DISCRETE ZERO
POINT AND COMPLEMENTARITY PROBLEMS∗
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Abstract. In this paper we establish the existence of a discrete zero point of a function from
the n-dimensional integer lattice Zn to the n-dimensional Euclidean space Rn under very general
conditions with respect to the behavior of the function. The proof is constructive and uses a com-
binatorial argument based on a simplicial algorithm with vector labeling and lexicographic linear
programming pivot steps. The algorithm provides an efficient method to find an exact solution. We
also discuss how to adapt the algorithm for two related problems, namely, to find a discrete zero
point of a function under a general antipodal condition and to find a solution to a discrete nonlinear
complementarity problem. In both cases the modified algorithm provides a constructive existence
proof, too. We further show that the algorithm for the discrete nonlinear complementarity problem
generalizes the well-known Lemke’s method to nonlinear environments. An economic application is
also presented.

Key words. integer lattice, zero point, vector labeling rule, simplicial algorithm, discrete
complementarity
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1. Introduction. We consider the problem of finding a point x∗ ∈ Z
n such that

f(x∗) = 0n,

where 0n is the n-vector of zeroes, Z
n is the integer lattice of the n-dimensional

Euclidean space R
n, and f is a function from Z

n to R
n. Such an integral point

x∗ is called a discrete zero point of f . Recently, the existence problem of an integral
solution has been investigated in several papers. These papers were all inspired by the
discrete fixed point statement given in Iimura [11]. In Iimura, Murota, and Tamura
[12] and Danilov and Koshevoy [4], the existence theorems concern functions that
exhibit the so-called direction-preserving property proposed by Iimura [11], which can
be seen as the counterpart of the continuity property for functions defined on the
Euclidean space R

n. The existence results in Yang [37] and [38] hold for the class
of so-called locally gross direction-preserving mappings, which is substantially more
general and richer than the class of Iimura’s direction-preserving mappings and which
contains the results in [4] and [12] as special cases. Besides establishing these more
general existence results, Yang also initiated in [37] the study of discrete nonlinear
complementarity problems and provided several general theorems for the existence
of solutions for this class of problems. All this literature, however, is not concerned
with the problem of finding an integral solution. In fact, all these existence proofs are
nonconstructive.
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To provide constructive proofs based on a combinatorial argument, we apply the
technique of the so-called simplicial algorithms originally designed to find approxi-
mate zero or fixed points of continuous functions or upper semicontinuous mappings.
The first of such algorithms was developed by Scarf [28], and subsequent algorithms
proposed by Eaves [5], Eaves and Saigal [6], Merrill [23], and van der Laan and Tal-
man [17], among others, substantially improved Scarf’s original algorithm in terms of
efficiency and applicability. For comprehensive treatments on such algorithms we refer
to Allgower and Georg [1], Todd [30], and Yang [36]. The 2n-ray integer labeling al-
gorithm in [18] and [26] has been modified by van der Laan, Talman, and Yang in [20]
to find an integral zero point of a function satisfying the direction-preserving property
and in [21] to find a solution of a discrete nonlinear complementarity problem.

The aim of this paper is to provide a combinatorial algorithm for finding an
integral zero point of a function satisfying the more general simplicially local gross
direction-preserving property. This algorithm is also a modification of the 2n-ray
simplicial algorithm introduced in [18] and [26]. However, in this case we cannot rely
on integer labeling anymore; instead we have to apply the more subtle concept of
vector labeling. The modified algorithm makes use of a triangulation of R

n, being
a family of integral simplices, constructed in such a way that the set of vertices of
the simplices of the triangulation is equal to Z

n and the mesh size of each simplex
in the triangulation is equal to 1 according to the maximum norm. Starting with
some integral point in Z

n, the algorithm leaves the starting point along one out of 2n
directions and then generates a sequence of adjacent simplices of varying dimension by
making lexicographic linear programming pivot steps in a system of linear equations.
We show that under a mild convergence condition the algorithm ends in a finite
number of steps with an exact integral zero point. It is worth mentioning that in the
case of a continuous function on R

n, algorithms for finding a zero (or fixed) point
find only an approximate solution, whereas the current algorithm for the discrete case
finds an exact solution.

We also discuss how to adapt the algorithm for two related problems, namely,
to find a discrete zero point of a function under a general antipodal condition and
to find a solution to a discrete nonlinear complementarity problem. In the first case
the antipodal condition guarantees convergency; in the second case we also propose a
convergence condition. We show that the modified algorithm for the discrete nonlinear
complementarity problem generalizes the well-known Lemke’s method. In particular,
when the function f(x) is affine, i.e., f(x) = Mx + q, where M is an n × n matrix
and q is an integral n-vector, it is shown that the algorithm finds an integral solution
provided that M is totally unimodular and copositive-plus, and the system of Mx+q ≥
0n, x ≥ 0n, is feasible.

This paper is organized as follows. In section 2 we introduce the concepts of
triangulation and simplicially local gross direction-preservingness and describe the
algorithm. In section 3 we state a convergence condition guaranteeing the existence
of an integral solution to the discrete zero point problem and provide a constructive
proof. In section 4 we modify the algorithm for the case that the function satisfies
a general antipodal condition. In section 5 we modify the algorithm for the discrete
complementarity problem and show that this modified algorithm generalizes Lemke’s
method. An economic application is discussed in section 6.

2. A method for solving discrete nonlinear equations. For a given positive
integer n, let N denote the set {1, 2, . . . , n}. For i ∈ N , e(i) denotes the ith unit
vector of R

n. Given a set D ⊂ R
n, Co(D) and Bd(D) denote the convex hull of

D and the relative boundary of D, respectively. For any x and y in R
n, we say y is
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lexicographically greater than x and denote it by y � x, if the first nonzero component
of y − x is positive.

Two integral points x and y in Z
n are said to be cell-connected if maxh∈N |xh −

yh| ≤ 1, i.e., their distance is less than or equal to 1 according to the maximum norm.
In other words, two integral points x and y are cell-connected if and only if there
exists q ∈ Z

n such that both x and y belong to the hypercube [0, 1]n + {q}.
For an integer t, 0 ≤ t ≤ n, the t-dimensional convex hull of t + 1 affinely

independent points x1, . . . , xt+1 in R
n is called a t-simplex or simply a simplex and

will be denoted by 〈x1, . . . , xt+1〉. The extreme points x1, . . . , xt+1 of a t-simplex
σ = 〈x1, . . . , xt+1〉 are called the vertices of σ. The convex hull of any subset of k + 1
vertices of a t-simplex σ, 0 ≤ k ≤ t, is called a face or k-face of σ. A k-face of a
t-simplex σ is called a facet of σ if k = t− 1, i.e., if the number of vertices is just one
less than the number of vertices of the simplex. A simplex is said to be integral if all
of its vertices are integral vectors and are cell-connected. Any two vertices x and y of
an integral simplex are said to be simplicially connected.

Given an m-dimensional convex set D, a collection T of m-dimensional simplices
is a triangulation or simplicial subdivision of the set D if (i) D is the union of all sim-
plices in T , (ii) the intersection of any two simplices of T is either empty or a common
face of both, and (iii) any neighborhood of any point in D meets only a finite number
of simplices of T . A facet of a simplex of T either lies on the boundary of D and is a
facet of no other simplex of T or it is a facet of precisely one other simplex of T . A tri-
angulation is called integral if all its simplices are integral simplices. One of the most
well-known integral triangulations of R

n is the K-triangulation owing to Freuden-
thal [8]. This triangulation is the collection of all integral simplices σ(y, π) with ver-
tices y1, . . . , yn+1, where, for y ∈ Z

n and π = (π(1), . . . , π(n)) a permutation of the ele-
ments 1, 2, . . . , n, the vertices are given by y1 = y and yi+1 = yi+e(π(i)), i = 1, . . . , n.
Furthermore, a triangulation T is symmetric if σ ∈ T implies −σ ∈ T . An example
of symmetric integral triangulations of R

n is the K ′-triangulation of Todd [31].
Now we introduce the class of simplicially local gross direction-preserving func-

tions on Z
n on which the existence theorems of this paper are based. Locally gross

direction-preservingness replaces the continuity condition for the existence of a zero
point of a function defined on R

n. Let a · b denote the inner product of two n-vectors
a and b.

Definition 2.1. (i) A function f : Z
n → R

n is locally gross direction-preserving
if, for any cell-connected points x and y in Z

n,

f(x) · f(y) ≥ 0.

(ii) A function f : Z
n → R

n is simplicially local gross direction-preserving with respect
to some given integral triangulation T of R

n if, for any vertices x and y of a simplex
of T ,

f(x) · f(y) ≥ 0.

The locally gross direction-preserving property was originally introduced in Yang
[38] and prevents the function from changing too drastically in direction within one
cell. The simplicially local gross direction-preserving condition is weaker and requires
only that the function does not change too drastically in direction within any integral
simplex of the given integral triangulation. Since any two vertices of a simplex of
an integral triangulation are cell-connected, we have the property that every locally
gross direction-preserving function is also simplicially local gross direction-preserving
with respect to any integral triangulation.
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To compute a discrete zero point of a simplicially local gross direction-preserving
function, we adapt the 2n-ray vector labeling algorithm of van der Laan and Talman
[18] (see also Reiser [26] for integer labeling) to the current discrete setting. Let f
be a simplicially local gross direction-preserving function with respect to some given
integral triangulation T of R

n. Let v be an arbitrarily chosen integral vector in Z
n.

The point v will be the starting point of the algorithm. For a nonzero sign vector
s ∈ {−1, 0,+1}n, the subset A(s) of R

n is defined by

A(s) =

{
x ∈ R

n | x = v +
∑
h∈N

αhshe(h), αh ≥ 0, h ∈ N

}
.

Clearly, the set A(s) is a t-dimensional subset of R
n, where t is the number of nonzero

components of the sign vector s, i.e., t = |{i | si 
= 0}|. Since T is an integral
triangulation of R

n, it triangulates every set A(s) into t-dimensional integral simplices.
For some s with t nonzero components, denote {h1, . . . , hn−t} = {h | sh = 0}, and let
σ = 〈x1, . . . , xt+1〉 be a t-simplex of the triangulation in A(s). Following Todd [32],
who improved the original system of equations used by van der Laan and Talman [18],
we say that σ is almost s-complete if there is an (n+2)× (n+1) matrix W satisfying

[
1 · · · 1 0 · · · 0 0

f(x1) · · · f(xt+1) e(h1) · · · e(hn−t) −s

]
W = I(2.1)

and having rows w1, . . . , wn+2 such that wh � 0n+1 for 1 ≤ h ≤ t+1, wn+2 � wi and
wn+2 � −wi for t + 1 < i ≤ n + 1, and wn+2 � 0n+1. Here I denotes the identity
matrix of rank n + 1. If wn+2

1 = 0, then we say that the simplex σ is complete.
Further, let τ be a facet of σ, and without loss of generality, index the vertices of σ
such that τ = 〈x1, . . . , xt〉. We say that τ is s-complete if there is an (n+ 1)× (n+ 1)
matrix W satisfying

[
1 · · · 1 0 · · · 0 0

f(x1) · · · f(xt) e(h1) · · · e(hn−t) −s

]
W = I(2.2)

and having rows w1, . . . , wn+1 such that wh � 0n+1 for 1 ≤ h ≤ t, wn+1 � wi and
wn+1 � −wi for t + 1 ≤ i ≤ n, and wn+1 � 0n+1. If wn+1

1 = 0, then we say that τ is
complete.

The lemma below says that the zero-dimensional simplex 〈v〉 is an s0-complete
facet for a uniquely determined sign vector s0. Let α = maxh |fh(v)|. If fh(v) = −α
for some h, then we take s0

k = −1, where k is the smallest index h such that fh(v) =
−α, and s0

j = 0 for j 
= k. If fh(v) > −α for all h, then we take s0
k = 1, where k is

the largest index h such that fh(v) = α, and s0
j = 0 for j 
= k. Let σ0 be the unique

one-dimensional simplex in A(s0) containing 〈v〉 as a facet. Clearly, s0 contains only
one nonzero element.

Lemma 2.2. The simplex 〈v〉 is an s0-complete facet of σ0. Moreover, s0 is
uniquely determined.

Proof. Consider the system

[
1 0 · · · 0 0 · · · 0 0

f(v) e(1) · · · e(k − 1) e(k + 1) · · · e(n) −s0
ke(k)

]
V = I.
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Clearly, the first matrix on the left-hand side is regular, and therefore its inverse exists
and equals the matrix V . The rows of V are given by

v1 = (1, 0, . . . , 0),

vh = (−fh−1(v), 0, . . . , 0, 1, 0, . . . , 0), h = 2, . . . , k if k > 1,

with 1 being the hth component,

vh = (−fh−1(v), 0, . . . , 0, 1, 0, . . . , 0), h = k + 1, . . . , n if k < n,

with 1 being the (h + 1)th component, and

vn+1 = (s0
kfk(v), 0, . . . , 0,−s0

k, 0, . . . , 0),

with −s0
k being the (k + 1)th component. Clearly, v1 is lexicographically positive.

Moreover, vn+1 is lexicographically positive, because we have either s0
kfk(v) > 0 or

s0
kfk(v) = 0 and −s0

k > 0. For j = 2, . . . , k, we have vn+1 � vj , because s0
kfk(v) > 0

and s0
kfk(v) > −fj−1(v), and we also have vn+1 � −vj , because s0

kfk(v) > 0 and
s0
kfk(v) > fj−1(v). For j = k + 1, . . . , n and s0

k = −1, we have vn+1 � vj , because
either s0

kfk(v) > 0 and s0
kfk(v) > −fj(v) or s0

kfk(v) = −fj(v) and the (j + 1)th
component of vj is 0, but the same component of vn+1 is 1; we also have vn+1 � −vj ,
because either s0

kfk(v) > 0 and s0
kfk(v) > fj(v) or s0

kfk(v) = fj(v) and the (j + 1)th
component of vj is 0, but the same component of vn+1 is 1. For j = k + 1, . . . , n and
s0
k = 1, we have vn+1 � vj , because s0

kfk(v) > 0 and s0
kfk(v) > −fj(v), and we also

have vn+1 � −vj , because either s0
kfk(v) > 0 and s0

kfk(v) > fj(v) or s0
kfk(v) = fj(v)

and the (j + 1)th component of −vj is −1, but the same component of vn+1 is 0.
Hence, V satisfies all the requirements of the matrix W in system (2.2), and thus 〈v〉
is an s0-complete facet of σ0. Clearly, there is no other sign-vector s for which 〈v〉 is
s-complete.

We are now able to describe the algorithm for finding an integral solution to the
system of equations f(x) = 0n. When for some nonzero sign vector s a t-simplex
σ = 〈x1, . . . , xt+1〉 in A(s) is almost s-complete, the system (2.1) has two “basic
solutions.” At each of these solutions exactly one row of the solution matrix W is
binding. If wn+2

1 = 0, then σ is complete. If wh � 0n+1 is binding for some h,
1 ≤ h ≤ t + 1, then the facet τ of σ opposite the vertex xh is s-complete, and so τ is
either (i) the zero-dimensional simplex 〈v〉 or (ii) a facet of precisely one other almost
s-complete t-simplex σ′ of the triangulation in A(s) or (iii) τ lies on the boundary of
A(s) and is an almost s′-complete (t − 1)-simplex in A(s′) for some unique nonzero
sign vector s′ with t − 1 nonzero elements differing from s in only one element. If
wn+2 � wi (wn+2 � −wi) is binding for some t + 1 < i ≤ n + 1, σ is an s′-complete
facet of precisely one almost s′-complete (t + 1)-simplex in A(s′) for some nonzero
sign vector s′ differing from s in only the ith element, namely, s′i = +1 (−1).

Since 〈v〉 is s0-complete, σ0 is an almost s0-complete one-dimensional simplex
in A(s0). Starting with σ0, the 2n-ray algorithm generates a sequence of adjacent
almost s-complete simplices in A(s) with s-complete common facets for varying sign
vectors s. Moving from one s-complete facet to the next s′-complete facet corresponds
to making a lexicographic linear programming pivot step from one of the two basic
solutions of system (2.1) to the other. The algorithm stops as soon as it finds a
complete simplex. We will show that in that case one of its vertices is a discrete zero
point of the function f .
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Lemma 2.3. Let f be simplicially local gross direction-preserving with respect to
T . Then any complete simplex contains a discrete zero point of the function f .

Proof. Let x1, . . . , xk+1 be the vertices of a complete simplex σ in A(s), and let t
be the number of nonzeros in s. Notice that k = t− 1 or k = t depending on whether
σ is a t-simplex in A(s) or a facet of a t-simplex in A(s). From the system (2.1) or
(2.2) it follows that there exists λ1 ≥ 0, . . . , λk+1 ≥ 0 with sum equal to 1 such that∑k+1

j=1 λjf(xj) = 0n. Let j∗ be such that λj∗ > 0. Then by premultiplying f(xj∗) on

both sides of
∑k+1

j=1 λjf(xj) = 0n, we obtain

λ1f(x1) · f(xj∗) + · · · + λj∗f(xj∗) · f(xj∗) + · · · + λk+1f(xk+1) · f(xj∗) = 0.

Since f is simplicially local gross direction-preserving, it is easy to see that every
term in the above expression is nonnegative. Therefore every term is equal to 0. In
particular, f(xj∗) = 0n, and so xj∗ is a discrete zero point of the function f .

Formally, the steps of the above algorithm are given below in detail.
1. Initial Step: Compute f(v). If f(v) = 0n, then the algorithm terminates with

v as a solution. Otherwise 〈v〉 is an s0-complete facet of a unique 1-simplex
σ0 = 〈v, v+〉 in A(s0). Let s = s0, t = |{i | si 
= 0}|, and σ = σ0. Go to main
step 1 with the system (2.1) corresponding to σ0.

2. Main Step 1: Perform a lexicographic linear programming (LLP) pivot step
in the system (2.1) with the column (1, f(v+)). If wn+2

1 = 0, the algorithm
terminates with a complete simplex which yields a solution. Otherwise, in
the case that wh � 0n+1 is binding for some h, 1 ≤ h ≤ t + 1, then the facet
τ of σ opposite the vertex xh is s-complete, and go to main step 2. In the
case that wn+2 � wi (wn+2 � −wi) is binding for some t+ 1 < i ≤ n+ 1, go
to main step 3.

3. Main Step 2: If τ is a facet of precisely one other almost s-complete t-simplex
σ′ of the triangulation in A(s), let v+ be the vertex of σ′ differing from those
of τ , let σ = σ′, and go to main step 1. Otherwise, τ lies on the boundary of
A(s) and is an almost s′-complete (t − 1)-simplex in A(s′) for some unique
nonzero sign vector s′ with t − 1 nonzero elements differing from s in only
one element. Let h be the unique element with sh 
= 0 and s′h = 0, σ = τ and
s = s′, and go to main step 4.

4. Main Step 3: σ is an s′-complete facet of precisely one almost s′-complete
(t + 1)-simplex σ′ in A(s′) for some nonzero sign vector s′ differing from s
in only the ith element, namely, s′i = +1 (−1). Let v+ be the vertex of σ′

differing from those of σ, s = s′ and σ = σ′, and go to main step 1.
5. Main Step 4: Perform an LLP pivot step in the system (2.1) with the column

(0, e(h)). If wn+2
1 = 0, the algorithm terminates with a complete simplex

which yields a solution. Otherwise, in the case that wh � 0n+1 is binding
for some h, 1 ≤ h ≤ t + 1, then the facet τ of σ opposite the vertex xh is
s-complete, and go to main step 2. In the case that wn+2 � wi (wn+2 � −wi)
is binding for some t + 1 < i ≤ n + 1, go to main step 3.

Because all steps are uniquely determined due to the lexicographically pivoting
and the properties of a triangulation, the algorithm cannot visit any simplex more than
once, and therefore either the algorithm terminates in a finite number of iterations
with a complete simplex yielding a solution or the sequence of simplices generated by
the algorithm goes to infinity. In the next section we present a convergence condition
which prevents the latter case from happening and thus ensures the existence of a
solution.
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3. Convergence conditions. To present a convergence condition for the al-
gorithm, for x ∈ Z

n, let N(x) denote the set of integer points being simplicially
connected to x.

Assumption 3.1 (convergence condition). Given a function f : Z
n → R

n, there
exist vectors m, M ∈ Z

n, with mh < Mh − 1 for every h ∈ N , such that for every
integral vector x on the boundary of the set Cn = {z ∈ R

n | m ≤ z ≤ M} the
following conditions hold:

(i) If xi = mi, then fi(y) ≥ 0 for all y ∈ N(x) ∩ Cn satisfying yi = mi, or there
exists j ∈ N such that fj(y) < fi(y) for all y ∈ N(x) ∩ Cn satisfying yi = mi.

(ii) If xi = Mi, then fi(y) ≤ 0 for all y ∈ N(x) ∩ Cn satisfying yi = Mi, or there
exists j ∈ N such that fj(y) > fi(y) for all y ∈ N(x) ∩ Cn satisfying yi = Mi.

The condition means that there exist lower and upper bounds such that, when x
is an integral vector on the ith lower (upper) bound, then either fi(y) is nonnegative
(nonpositive) for any integral vector y on the same lower (upper) bound being sim-
plicially connected to x or, for some j 
= i, fi(y) is bigger (smaller) than fj(y) for any
integral vector y on the same lower (upper) bound being simplicially connected to x.
We show that under this condition any simplicially local gross direction-preserving
function has a discrete zero point within the bounded set Cn induced by the lower
and upper bounds. To do so, the starting point v of the 2n-ray algorithm is taken
to be an arbitrarily chosen integral vector in the interior of the set Cn. Then the
constructive proof of Theorem 3.2 is based on the combinatorial argument that under
the convergence condition the algorithm cannot cross the boundary of the set Cn, and
therefore it must terminate in a finite number of steps with a simplex having one of its
vertices as an integral solution to f . It is worth pointing out that while both the lower
and upper bounds are part of the condition in the theorem, in our constructive proof
we need only the starting point to lie between these bounds without need to know
exactly what they are. Typically, in applications these bounds are naturally deter-
mined and indicate the domain of interest underlying the problem; see, for instance,
the application in section 6.

Theorem 3.2. Let f : Z
n → R

n be a simplicially local gross direction-preserving
function with respect to some integral triangulation T . If f satisfies Assumption 3.1,
then f has a discrete zero point.

Proof. Take any integral vector in the interior of the set Cn as the starting point
v of the algorithm. By definition of integral triangulation, T triangulates the set Cn

and also the set A(s) ∩ Cn for any sign vector s into integral simplices.
For some nonzero sign vector s, let τ be an s-complete facet in A(s) with vertices

x1, . . . , xt, where t is the number of nonzeros in s. We first show that τ is complete
if it is on the boundary of Cn. From system (2.2) it follows that there exist λ1 ≥
0, . . . , λt ≥ 0 with sum equal to 1, β ≥ 0, and −β ≤ μi ≤ β for si = 0 such
that f̄i(z) = β if si = 1, f̄i(z) = −β if si = −1, and f̄i(z) = μi if si = 0, where
z =

∑t
i=1 λix

i and f̄(z) =
∑t

i=1 λif(xi); i.e., f̄ is the piecewise linear extension of f
with respect to T . Since τ lies on the boundary of Cn, there exists an index h such
that either xj

h = mh for all j or xj
h = Mh for all j. In case xj

h = mh for all j, we
have sh = −1 and therefore f̄h(z) = −β. Furthermore, by Assumption 3.1, we have
(i) fh(xj) ≥ 0 for all j or (ii) there exists k such that fk(x

j) < fh(xj) for all j. In
case (ii) we obtain f̄k(z) < f̄h(z). On the other hand, f̄k(z) ≥ −β = f̄h(z), yielding
a contradiction; i.e., this case cannot occur. In case (i) we obtain f̄h(z) ≥ 0. On the
other hand f̄h(z) = −β ≤ 0. Therefore f̄h(z) = 0 and also β = 0. Since wn+1

1 = β we
obtain that τ is complete. Similarly, we can show that the same results hold for the
case of xj

h = Mh for all j.
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Fig. 1. Illustration of the algorithm.

Now, consider the algorithm as described at the end of the previous section. Due
to the lexicographic pivoting rule, the algorithm will never visit any simplex more
than once. So, because the number of simplices in Cn is finite, the algorithm finds
in a finite number of steps a complete simplex. Since f is simplicially local gross
direction-preserving, Lemma 2.3 guarantees that at least one of the vertices of this
simplex is a discrete zero point of the function f .

We conclude this section with an example to illustrate the conditions of the theo-
rem and how the algorithm operates. Consider the function f : Z

2 → R
2 defined

by f(x) = (2 − 2x1, x1 − x2
2). This function is simplicially locally gross direction-

preserving with respect to the K-triangulation described in the previous section.
It is interesting to note that f is not locally gross direction-preserving since, e.g.,
for the cell-connected points x = (1, 2) and y = (2, 1), we have f(x) = (0,−3) and
f(y) = (−2, 1) and so f(x)·f(y) = −3 < 0. Further, the example satisfies Assumption
3.1 for any vector m = (a, a) and M = (b, b) with a < 0 and b > 1, implying that the
convergence condition of Theorem 3.2 is satisfied. Hence, there exists a solution, and
in fact x∗ = (1, 1) is a discrete zero point. Let the starting point v be (5, 4). Then
the sequence of points traced by the algorithm is shown in Figure 1 and given by
x1 = (5, 3), x2 = (4, 3), x3 = (4, 4), x4 = (3, 3), x5 = (3, 2), x6 = (2, 2), x7 = (2, 3),
and x8 = (1, 2) and leads to the solution x∗ = (1, 1) in 10 function evaluations.
Observe that to apply the algorithm we do not need to fix the bounds a priori.

The following corollary strengthens a result of Yang [38] for locally gross direction-
preserving functions and follows immediately from Theorem 3.2.
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Corollary 3.3. Let f : Z
n → R

n be a simplicially local gross direction-
preserving function. Suppose that there exist vectors m, M ∈ Z

n, with mh < Mh − 1
for every h ∈ N , such that for every integral vector x on the boundary of the set
Cn = {z ∈ R

n | m ≤ z ≤ M}, xi = mi implies fi(x) ≥ 0 and xi = Mi implies
fi(x) ≤ 0. Then f has a discrete zero point.

Furthermore, we have the following discrete fixed point theorem.
Corollary 3.4. Let Dn = {z ∈ Z

n | m ≤ z ≤ M}, where m and M are vectors
in Z

n with mh < Mh − 1 for every h ∈ N . Assume that f : Dn → Co(Dn) is a
function such that x − f(x) is a simplicially local gross direction-preserving function
in x. Then f has a discrete fixed point.

Proof. Define the function g : Dn → R
n by g(x) = x − f(x). Clearly, g satisfies

the condition of Corollary 3.3. So there exists x∗ ∈ Dn such that g(x∗) = 0, i.e.,
f(x∗) = x∗.

4. Convergency under an antipodal condition. In this section we modify
the algorithm in section 2 to find a discrete zero point under a general antipodal
condition to be stated next.

Assumption 4.1 (antipodal condition). Given a function f : Z
n → R

n, there
exists a vector u ∈ Z

n with uh ≥ 1 for all h ∈ N such that f(x) · f(−y) ≤ 0 for
any cell-connected integral points x and y lying on a same proper face of the set
Un = {z ∈ R

n | −u ≤ z ≤ u}.
This condition is very natural and might be viewed as a discrete analogue of

a weak version of the Borsuk–Ulam antipodal condition for a continuous function
saying that f(x) · f(−x) ≤ 0 when x is on the boundary of Un. It is known that
under the latter condition a continuous function has a zero point; see for instance van
der Laan [16] and Yang [36]. Todd and Wright [33] used a modification of the 2n-ray
algorithm to give a constructive proof of the Borsuk–Ulam theorem and Freund and
Todd [9] used the modified algorithm to give a constructive proof for a combinatorial
lemma of Tucker [34]. Yang [38] proposed the antipodal condition and showed that
under the condition a locally gross direction-preserving function has a discrete zero
point. The next theorem strengthens this result by allowing for simplicially local gross
direction-preservingness on a symmetric triangulation in the interior of Un.

Theorem 4.2. Let f : Z
n → R

n be a simplicially local gross direction-preserving
function with respect to a symmetric integral triangulation T of R

n, satisfying As-
sumption 4.1 and f(x) · f(y) ≥ 0 for any cell-connected integral points x and y lying
on a same proper face of the set Un. Then f has a discrete zero point.

The next example illustrates the theorem. Let f : Z
2 → R

2 be given by f(x) =
(x1 −x2 − 1, x2 − 1). Then it is easy to see that f satisfies the antipodal property for
u1 = u2 = 4. Further, it is easy to check that f is simplicially local gross direction-
preserving with respect to the symmetric integral K ′-triangulation of R

2 (see section
2) on the interior of Un and f is locally gross direction-preserving on the boundary of
Un, as required in the last condition of the theorem. So, f has a discrete zero point
and in fact the point (2, 1) is the unique discrete zero point. Observe that f is not
locally gross direction-preserving in the interior of Un and therefore the existence does
not follow from the result of Yang [38]. For instance, for the cell-connected points
x = (2, 0) and y = (1, 1), we have f(x) · f(y) = −1 < 0.

Besides the relaxation to simplicially local gross direction-preserving, the main
contribution of this section is that, in contrast to the nonconstructive proof in [38],
below we give a constructive proof for the theorem. We now modify the 2n-ray
algorithm of section 2 to accomodate the antipodal condition. The modification is
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based on a lemma on the extension V n of the set Un given by

V n = {x ∈ R
n | −(ui + 1) ≤ xi ≤ ui + 1 ∀i ∈ N}.

Let the projection function p : V n → Un be defined by

ph(x) = max{−uh,min{uh, xh}} ∀h ∈ N.

Clearly, p(x) = x if x ∈ Un. Moreover, p(x) ∈ Un ∩ Z
n if x ∈ V n ∩ Z

n. We now
extend f to the function g : V n ∩ Z

n → R
n by setting g(x) = f(x) for x ∈ Un

and g(x) = f(p(x)) − f(−p(x)) for x ∈ V n \ Un. It follows straightforwardly that
g(x) = −g(−x) for any x ∈ Z

n ∩ Bd(V n). We now have the following lemma.
Lemma 4.3. For f : Z

n → R
n as given in Theorem 4.2, the extension g of f to

V n is simplicially local gross direction-preserving on Z
n∩V n with respect to the given

symmetric triangulation T .
Proof. Clearly, g is simplicially local gross direction-preserving on Un. It remains

to consider the following two cases.
First, let x, y ∈ Z

n be two vertices of a simplex of T on the boundary of V n.
Then p(x) and p(y) are two cell-connected points on a same proper face of Un and
thus satisfy f(p(x)) · f(p(y)) ≥ 0. The same holds for −p(x) and −p(y). Together
with the antipodal Assumption 4.1 this yields

g(x) · g(y) = (f(p(x)) − f(−p(x))) · (f(p(y)) − f(−p(y)))
= f(p(x)) · f(p(y)) − f(p(x)) · f(−p(y)) − f(−p(x)) · f(p(y))
+ f(−p(x)) · f(−p(y)) ≥ 0.

Second, let x, y ∈ Z
n be two vertices of a simplex of T with x on the boundary of

Un and y on the boundary of V n. Again x and p(y) are two cell-connected points on
a same proper face of Un and thus f(x) · f(p(y)) ≥ 0. Together with the antipodal
condition this again yields

g(x) · g(y) = f(x) · (f(p(y)) − f(−p(y)))
= f(x) · f(p(y)) − f(x) · f(−p(y)) ≥ 0.

Proof of Theorem 4.2. To prove the theorem, let the set V n and the function g
be defined as above. Take the origin 0n of R

n as the starting point v of the algorithm
as described in section 2. The underlying symmetric integral triangulation T for the
function f subdivides each set A(s) into t-simplices such that if σ is a simplex in A(s),
then −σ is a simplex in A(−s).

Starting with the origin, the algorithm generates a sequence of adjacent almost
s-complete simplices with s-complete common facets in A(s) ∩ V n for varying sign
vectors s with the following modification. If in the main step 2 of the algorithm τ is an
s-complete facet lying in A(s) on the boundary of V n, then the antipodal facet −τ is
a (−s)-complete facet in A(−s) on the boundary of V n, since g(x) = −g(−x) for any
x ∈ Z

n ∩Bd(V n). The algorithm continues with main step 1 by letting s = −s, σ the
unique almost (−s)-complete simplex in A(−s)∩V n containing −τ as a facet and v+

the vertex of σ opposite to facet −τ . The algorithm therefore always stays in V n and
due to the lexicographic pivoting rule will never visit any simplex in V n more than
once. Since the number of simplices in V n is finite, within a finite number of steps the
algorithm terminates with a complete simplex σ∗ in V n. Since g is simplicially local
gross direction-preserving, by the Lemmas 2.3 and 4.3 it follows that σ∗ has a vertex
z being a discrete zero point of g. It remains to prove that p(z) ∈ Un is a discrete
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zero point of f . If z is not on the boundary of V n, then p(z) = z is an integral vector
in Un and g(z) = f(z), and therefore z is a discrete zero point of f . Suppose z is on
the boundary of V n. Since g(z) = 0n, this implies

0 = f(p(z)) · g(z) = f(p(z)) · (f(p(z)) − f(−p(z)))
= f(p(z)) · f(p(z)) − f(p(z)) · f(−p(z)),

and therefore

0 ≤ f(p(z)) · f(p(z)) = f(p(z)) · f(−p(z)) ≤ 0,

where the last inequality follows from the antipodal condition on f . Hence, f(p(z)) ·
f(p(z)) = 0 and therefore p(z) is a discrete zero point of f in Un.

5. A method for discrete complementarity problems. The complemen-
tarity problem is to find a point x∗ ∈ R

n such that

x∗ ≥ 0n, f(x∗) ≥ 0n, and x∗ · f(x∗) = 0,

where f is a given function from R
n into itself. For an arbitrary function f , the

problem is called the nonlinear complementarity problem. In case f is affine, i.e.,
f(x) = Mx+q with M being an n×n matrix and q being an n-vector, the problem is
called the linear complementarity problem, denoted by LCP(M, q). There is by now
a voluminous literature on the complementarity problem; see Lemke [22], Cottle [2],
Karamardian [13], Moré [24] and [25], Kojima [14], and van der Laan and Talman
[19], among others. For comprehensive surveys on the subject, see, e.g., Kojima et
al. [15], Cottle, Pang, and Stone [3], and Facchinei and Pang [7].

In the following we consider the problem that the solution of the complementarity
problem is required to be integral or that the function f is defined only on the integer
lattice Z

n of R
n. In this case we call the problem the discrete complementarity prob-

lem, denoted by DCP(f). We first give sufficient conditions under which the general
case DCP(f) has a solution, and we will give a constructive proof of this existence re-
sult by modifying the system of equations of the algorithm in section 2 to the current
situation. Next we will show that when applied to the linear complementarity prob-
lem LCP(M, q), the algorithm reduces to the well-known Lemke’s method [22] and
finds an integral solution provided that M is totally unimodular and copositive-plus,
and the system of Mx + q ≥ 0n, x ≥ 0n, is feasible.

In the following, for any x, y ∈ R
n, let I(x) = {i | xi > 0}, and let I(x, y) = I(x)∪

I(y). We first modify the definition of simplicially local gross direction-preservingness
for points on the boundary of the nonnegative orthant R

n
+.

Definition 5.1. A function f : Z
n → R

n is simplicially local gross direction-
preserving with respect to some given integral triangulation T of R

n if, for any two
vertices x and y of a simplex of T in R

n
+, it holds that

fi(x)fi(y) ≥ 0 whenever xi = yi = 0 and
∑

h∈I(x,y)

fh(x)fh(y) ≥ 0.

The next theorem establishes the existence of a solution to DCP(f) under a
natural condition.

Theorem 5.2. Let f : Z
n → R

n be a simplicially local gross direction-preserving
function on Z

n
+. If there exists a vector M ∈ Z

n
++ such that, for any x ∈ Z

n
+ with

x ≤ M , xi = Mi implies fi(x) ≥ 0, then DCP(f) has a solution.
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We will provide a constructive proof by applying the algorithm in section 2 to the
current situation. To do so, the origin 0n is taken as the starting point v. Since 0n lies
on the boundary of R

n
+, the sets A(s) and s-completeness are defined only for nonneg-

ative nonzero sign vectors s. Notice that A(s) = {x ∈ R
n
+ | xi = 0 whenever si = 0}.

Further, to apply the algorithm in this case, we have to adapt the concepts of an
almost s-complete simplex and an s-complete facet. For some sign vector s with t
positive components, denote {h1, . . . , hn−t} = {h | sh = 0}, and let σ = 〈x1, . . . , xt+1〉
be a t-simplex of the triangulation in A(s). Then σ is almost s-complete if there is an
(n + 2) × (n + 1) matrix W being a solution to system[

1 · · · 1 0 · · · 0 0
f(x1) · · · f(xt+1) −e(h1) · · · −e(hn−t) s

]
W = I(5.1)

and having rows w1, . . . , wn+2 such that wh � 0n+1 for 1 ≤ h ≤ t + 1, wn+2 � −wi

for t+ 1 < i ≤ n+ 1, and wn+2 � 0n+1. If wn+2
1 = 0, then we say that the simplex σ

is complete. For τ a facet of σ, without loss of generality, letting τ = 〈x1, . . . , xt〉, τ
is s-complete if there is an (n + 1) × (n + 1) matrix W being a solution to system[

1 · · · 1 0 · · · 0 0
f(x1) · · · f(xt) −e(h1) · · · −e(hn−t) s

]
W = I(5.2)

and having rows w1, . . . , wn+1 such that wh � 0n+1 for 1 ≤ h ≤ t, wn+1 � −wi for
t + 1 ≤ i ≤ n, wn+1 � 0n+1. If wn+1

1 = 0, then we say that τ is complete.
With respect to the starting point 0n, let α = minh fh(0n), and let s0 be the

sign vector with s0
k = 1, where k is the smallest index h such that fh(0n) = α, and

s0
j = 0 for j 
= k. To avoid triviality, we may assume that f(0n) 
≥ 0n. Similarly as in

section 2, it can be shown that the simplex 〈0n〉 is an s0-complete facet of the unique
one-dimensional simplex σ0 in A(s0) having 〈0n〉 as one of its facets. Furthermore σ0

is almost s0-complete.
We now apply the algorithm as described in section 2. Starting with σ0, by ap-

plying the steps as given in section 2 with the system (5.1) the algorithm generates
a unique sequence of adjacent almost s-complete simplices in A(s) with s-complete
common facets for varying positive sign vectors s. The algorithm stops with a com-
plete simplex in a finite number of steps under the assumption stated in the theorem.
As shown below, a complete simplex gives a solution to the problem. Recall that f̄
stands for the piecewise linear extension of the function f with respect to T . Let
Cn = {x ∈ R

n | 0n ≤ x ≤ M}.
Lemma 5.3. For some nonnegative sign vector s, let σ be a simplex in A(s) with

an s-complete facet τ on the upper boundary of Cn. Then τ is a complete simplex.
Proof. From system (5.2) it follows that there exist λ1 ≥ 0, . . . , λt ≥ 0 with sum

equal to 1, β ≥ 0, and μi ≥ −β for si = 0, such that f̄i(z) = −β when si = 1 and
f̄i(z) = μi when si = 0, where z =

∑t
i=1 λix

i. Since τ lies on the upper boundary

of Cn, there exists an index h such that xj
h = Mh for all j. But then we must have

sh = 1 and therefore f̄h(z) = −β ≤ 0. On the other hand, by assumption, we have
fh(xj) ≥ 0 for all j. Hence, we obtain f̄h(z) ≥ 0. As a result, β = 0, which implies
that τ is a complete simplex by definition.

Lemma 5.4. For some nonnegative sign vector s, let σ be a complete simplex in
A(s). Then σ contains a solution to the nonlinear complementarity problem for f̄ .

Proof. Let x1, . . . , xk+1 be the vertices of the complete simplex σ in A(s), and let
t be the number of nonzeros in s. Note that k = t− 1 or k = t depending on whether
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σ is a t-simplex in A(s) or a facet of a t-simplex in A(s). It follows from the system
(5.1) or (5.2) that there exist λ1 ≥ 0, . . . , λk+1 ≥ 0 with sum equal to 1 and μi ≥ 0 for

si = 0 such that f̄i(z) = 0 if si = 1, and f̄i(z) = μi if si = 0, where z =
∑k+1

i=1 λix
i.

Since z ∈ A(s), we also have zi = 0 if si = 0 and zi ≥ 0 if si = 1. So, f̄i(z) ≥ 0 if
zi = 0 and f̄i(z) = 0 if zi > 0; i.e., z solves the nonlinear complementarity problem
with respect to f̄ .

The next lemma says that, for any complete simplex σ, at least one of its vertices
is a solution to DCP(f).

Lemma 5.5. Let σ be a complete simplex of T in A(s) for some sign vector s.
Then σ contains a vertex being a solution to DCP(f).

Proof. Because σ is a complete simplex in A(s), as shown in Lemma 5.4, there is a
point z in σ that is a solution to the nonlinear complementarity problem with respect
to f̄ . Now let ρ = 〈x1, . . . , xk〉 be the unique face of σ containing z in its relative
interior. Namely, there exist unique positive numbers λ1, . . . , λk summing up to 1
such that z =

∑k
j=1 λjx

j and f̄(z) =
∑k

j=1 λjf(xj). Take any j∗ between 1 and k.

Suppose first that zi = 0 and f̄i(z) > 0 for some i. Clearly, xj
i = 0 for all j = 1, . . . , k.

Since f̄i(z) =
∑k

j=1 λjfi(x
j) there exists h such that fi(x

h) > 0. Since xh and xj∗

are simplicially connected and xh
i = xj∗

i = 0, we have that fi(x
h)fi(x

j∗) ≥ 0, and

therefore xj∗

i = 0 and fi(x
j∗) ≥ 0. Suppose next that zi = 0 and f̄i(z) = 0 for some

i. Again, xj
i = 0 for all j = 1, . . . , k. Since f̄i(z) =

∑k
j=1 λjfi(x

j) and f̄i(z) = 0,

we obtain
∑k

j=1 λjfi(x
j) = 0 and therefore

∑k
j=1 λjfi(x

j)fi(x
j∗) = 0. Since for all

j it holds that xj and xj∗ are simplicially connected and xj
i = xj∗

i = 0, we have
fi(x

j)fi(x
j∗) ≥ 0, and so each term in the summation must be zero. In particular, it

holds that λj∗f
2
i (xj∗) = 0. Since λj∗ > 0, this implies fi(x

j∗) = 0.

Thus far we have shown that whenever zi = 0 both fi(x
j∗) ≥ 0 and xj∗

i = 0
must hold. It remains to show that whenever zi > 0 it holds that fi(x

j∗) = 0 and

hence that xj∗ is a solution to DCP(f). By construction, f̄i(z) =
∑k

j=1 λjfi(x
j) = 0

whenever zi > 0. Note that I(xj) ⊆ I(z) for any j = 1, . . . , k. Therefore,

∑
h∈I(z)

k∑
j=1

λjfh(xj)fh(xj∗) = 0

and so

k∑
j=1

⎛
⎝λj

∑
h∈I(z)

fh(xj)fh(xj∗)

⎞
⎠ = 0.

Since I(z) contains the set I(xj , xj∗) and xj and xj∗ are simplicially connected for all
j, by hypothesis we have that each of the k terms between brackets is nonnegative
and therefore must be zero. Hence,

λj∗

∑
h∈I(z)

f2
h(xj∗) = 0.

Since λj∗ > 0, we obtain fh(xj∗) = 0 for all h ∈ I(z). Therefore fi(x
j∗) = 0 if

zi > 0.
Theorem 5.2 now follows from the lemmas stated above by a combinatorial argu-

ment.
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Proof of Theorem 5.2. Due to the lexicographic pivoting rule, the algorithm will
never visit any simplex more than once. Since the number of simplices in Cn is finite,
the algorithm terminates in a finite number of steps with a complete simplex in A(s).
According to Lemma 5.5, the complete simplex gives a solution to DCP(f).

In what follows, we turn our attention to the linear complementarity problem
LCP(M, q). Recall that Lemke’s method [22] introduces an artificial variable z0 and
operates by moving from one basic solution of the following system of linear equations
to another:

Iz −Mx− z0e = q,
xj ≥ 0, zj ≥ 0, z0 ≥ 0 for j = 1, 2, . . . , n,

xjzj = 0 for j = 1, 2, . . . , n,
(5.3)

where e is the n-vector of all ones and I is the identity matrix of order n. The
algorithm starts with a ray at x = 0n and terminates in a finite number of pivot steps
when a solution is found or when another ray is encountered.

Lemke [22] shows that his method is guaranteed to find a solution of LCP(M, q)
if M is copositive-plus and the system of Mx + q ≥ 0n and x ≥ 0n is feasible.
Recall that a square matrix B is said to be copositive if x · Bx ≥ 0 for any x ∈ R

n
+.

Furthermore, B is said to be copositive-plus if B is copositive and in addition x ≥ 0n

and x ·Bx = 0 imply (B +Bt)x = 0, where Bt is the transpose of B. Of course, even
if an LCP(M, q) has a solution, it may have no integral solution at all. To guarantee
that an LCP(M, q) has an integral solution, we need to impose total unimodularity
on the matrix M . Recall that a matrix B is said to be totally unimodular if the
determinant of every subsquare matrix of B is −1, 0, or 1. Now we establish the
following theorem on the existence of an integral solution to LCP(M, q).

Theorem 5.6. Suppose that M is totally unimodular, copositive-plus, that q is
an integral vector, and that the system of Mx + q ≥ 0n and x ≥ 0n is feasible. Then
the algorithm defined by system (5.1) reduces to Lemke’s method and terminates at
an integral solution in a finite number of steps.

Proof. For the LCP(M, q), we first show that the algorithm defined by sys-
tem (5.1) reduces to Lemke’s method. We may assume that q 
≥ 0n. In the initial
step of Lemke’s method the system defined by (5.3) at x = 0n is put in a tableau
format, and a pivot step is made with the z0 column on row k, where k is such that
qk = min{qh | h ∈ N}. This corresponds exactly to the initial step of the algorithm
defined by system (5.1) at which 0n is the starting point and the algorithm moves
in the set A(s0), where s0 ∈ R

n
+ is the sign vector defined by s0

k = 1 and s0
j = 0 for

j 
= k with k being the smallest index h such that qh = min qj . Here the choice of the
smallest index is to avoid degeneracy.

In a general step, let σ = 〈x1, . . . , xt+1〉 be an almost s-complete simplex in A(s).
Let I0(s) = {h | sh = 0} and I+(s) = {h | sh = 1}. Now it follows from the system
(5.1) that there exist λh ≥ 0, h = 1, . . . , t + 1, μ0 ≥ 0, and μ0 ≥ −μh for every
h ∈ I0(s) such that

∑
j

λjf(xj) −
∑

h∈I0(s)

μhe(h) + μ0s = 0n(5.4)

and
∑

j λj = 1. Let β0 = μ0 and βh = −μh. Let x =
∑

j λjx
j for h ∈ I0(s). Since

x is a convex combination of points x1, . . . , xt+1 in A(s), x also lies in A(s). Further,
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f(x) = Mx + q =
∑

j λj(Mxj + q) =
∑

j λjf(xj). Thus equation (5.4) reduces to

Mx + q +
∑

h∈I0(s)

βhe(h) + β0s = 0n,

where β0 ≥ 0, β0 ≥ βh for every h ∈ I0(s), xh = 0 for sh = 0, and xh ≥ 0 for sh = 1.
We can rewrite the equation as follows:

−Mx +
∑

h∈I0(s)

(β0 − βh)e(h) − β0e = q,

Now let zh = β0 − βh for h ∈ I0(s), zh = 0 for h ∈ I+(s), and z0 = β0. Then we have

Iz −Mx− z0e = q,
z0 ≥ 0, zh ≥ 0 for h ∈ I0(s),

zh = 0 for h ∈ I+(s),
xh = 0 for h ∈ I0(s),
xh ≥ 0 for h ∈ I+(s).

(5.5)

For this system we have xhzh = 0 for every h = 1, . . . , n, and the algorithm finds
a solution as soon as z0 becomes zero. This shows that the system above coincides
with the system (5.3). As a result, we have proved that the algorithm defined by
system (5.1) indeed reduces to Lemke’s method. It is worth pointing out that for the
LCP(M, q), actually no triangulation is needed for the algorithm. In fact, for given
sign vector s, all pivot steps of the 2n-ray algorithm within the region A(s) reduce
to one pivot step in the Lemke algorithm because of the linearity of the function
f(x) = Mx + q.

Concerning the second statement of the Theorem 5.6 (the termination of the
algorithm), it follows from Lemke [22] that because M is copositive-plus and the
system of Mx + q ≥ 0n and x ≥ 0n is feasible, the algorithm must end up with a
solution x∗ in a finite number of steps. More precisely, the algorithm stops with a
solution x∗ ∈ A(s) for some sign vector s ∈ R

n
+ corresponding to the n × n regular

matrix B = [(−Mh, h ∈ I+(s)), (e(h), h ∈ I0(s))], where Mh denotes the hth column
of matrix M . Note that x∗ = B−1q. It remains to show that x∗ is integral. Because M
is totally unimodular, [−M, I] is totally unimodular and so is B (see Schrijver [29]).
Because B−1 exists and is also totally unimodular and q is integral, x∗ = B−1q
is integral. This shows that the algorithm indeed finds an integral solution of the
LCP(M, q).

Since a positive definite matrix M is copositive-plus and it holds that there exists
x ≥ 0n such that Mx+q ≥ 0n (see Cottle, Pang, and Stone [3, p. 140, Lemma 3.1.3]),
the next corollary follows immediately.

Corollary 5.7. Suppose that M is totally unimodular, positive definite, and
that q is an integral vector. Then the algorithm terminates at an integral solution in
a finite number of steps.

6. Applications. Discrete zero point (or fixed point) problems often occur in
economics. For instance, in an exchange economy with n commodities, one of the most
studied problems is the existence of a Walrasian equilibrium price system, in which a
price vector p ∈ R

n
+ solve the complementarity problem for the excess demand function

z defined from the price space R
n
+ into the commodity space R

n, where zj(p) is the
excess demand for commodity j at the (nonnegative) price system p, j = 1, . . . , n. In
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the literature the existence of an equilibrium price system p∗ ∈ R
n
+ has been studied

extensively; nevertheless, in almost all real-life situations prices are in some monetary
unit, implying that actually a price system belongs to Z

n
+ for appropriately chosen

units of the components of p. Hence, in fact an equilibrium price system should be a
solution to the DCP(z).

In this section we apply Theorem 3.2 to the supermodular games; see for instance
Fudenberg and Tirole [10]. A well-known example of such games is the Bertrand price
competition model. Here we consider the Cournot oligopoly model with complemen-
tary commodities; see Vives [35]. There are n firms, each firm producing its own
commodity. The goal of each firm is to choose an amount of product that maximizes
its own profit given the production levels chosen by other firms. Let qi ≥ 0 denote the
quantity of commodity i produced by firm i, and let q−i = (q1, . . . , qi−1, qi+1, . . . , qn)
denote the vector of amounts of commodities produced by all firms but firm i. The
price at which firm i can sell its product is decreasing in its own quantity qi, and due
to the complementarities, it is increasing in the quantities qj , j 
= i. It is standard to
assume that the price function of each firm i = 1, . . . , n, is linear, i.e.,

Pi(qi, q−i) = ai − biqi +
∑
j �=i

dijqj ,

where all parameters ai, bi, and dij are positive. Each firm i has a linear cost function
Ci(qi) = ciqi with ai > ci > 0. For quantities (q1, . . . , qn), the profit πi of firm i is
given by its quantity times price minus its cost of production, i.e.,

πi(qi, q−i) = qiPi(qi, q−i) − ciqi.

A tuple (q∗1 , q
∗
2 , . . . , q

∗
n) ∈ R

n
+ of nonnegative real numbers is a Cournot–Nash equilib-

rium if, for every firm i,

πi(q
∗
i , q

∗
−i) ≥ πi(qi, q

∗
−i) ∀ qi ∈ R+.

It is well known that there exists a Cournot–Nash equilibrium if 2bi >
∑

j �=i dij for
every firm i = 1, . . . , n. However, in reality, it is often the case that the commodities
are produced only in integer quantities. Here we will show that under the same condi-
tion a discrete Cournot–Nash equilibrium exists in this model. A tuple (q∗1 , q

∗
2 , . . . , q

∗
n)

of nonnegative integers is a discrete Cournot–Nash equilibrium if

πi(q
∗
i , q

∗
−i) ≥ πi(qi, q

∗
−i) ∀ qi ∈ Z+, i = 1, . . . , n.

That is, given the quantities chosen by other firms, each firm chooses an integer
quantity that yields a profit which is at least as high as any other integer quantity
could give.

For a real number x, the symbol [x] denotes the greatest nearest integer to x.
Given nonnegative integer quantities q−i of all other firms, firm i maximizes its own
profit πi(qi, q−i) over all nonnegative integers qi, and its optimal or reaction integer
quantity is given by

ri(q−i) =

⎡
⎣ai − ci

2bi
+
∑
j �=i

dij
2bi

qj

⎤
⎦ .
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Observe that ri(q−i) ≥ 0 for all q ∈ Z
n
+, because ai > ci > 0. Define the function

f : Z
n
+ → Z

n by

fi(qi, q−i) = ri(q−i) − qi, i = 1, . . . , n.

Clearly, a discrete zero point of f is a discrete Cournot–Nash equilibrium.
Theorem 6.1. Suppose that 2bi >

∑
j �=i dij, i = 1, . . . , n. Then there exists a

discrete Cournot–Nash equilibrium in the above Cournot oligopoly competition model.
Proof. We show that the function f satisfies the conditions of Corollary 3.3.

First, we show that f satisfies the boundary condition. As a natural lower bound,
take m = 0n, and as an upper bound take, for all i, Mi = M , i = 1, . . . , n, with
M > 1 an integer satisfying M > maxi{(ai − ci)/(2bi −

∑
j �=i dij)}. Then for any i

and any q ∈ Z
n
+, qi = 0 implies fi(q) = ri(q−i) ≥ 0. Further, qi = M and qj ≤ M

imply

fi(q) =

⎡
⎣ai − ci

2bi
+
∑
j �=i

dij
2bi

qj − qi

⎤
⎦ ≤

⎡
⎣ai − ci

2bi
+
∑
j �=i

dij
2bi

M −M

⎤
⎦

≤
[
ai − ci − (2bi −

∑
j �=i dij)M

2bi

]
≤ 0,

where the last inequality follows from the fact that M > (ai − ci)/(2bi −
∑

j �=i dij).
Second, we show that f is simplicially local gross direction-preserving with respect

to the K-triangulation as described in section 2. Since the K-triangulation is given
by integral simplices σ(y, π) with vertices y1, . . . , yn+1, with y1 = y and yi+1 =
yi + e(π(i)), i = 1, . . . , n, for given y ∈ Z

n and π = (π(1), . . . , π(n)) a permutation
of the elements 1, 2, . . . , n, we have to check that f(x) · f(y) ≥ 0 for any pair x ∈ Z

n
+

and y = x +
∑k

h=1 e(π(h)) for k = 1, . . . , n and any permutation π. Observe that
for any such pair it holds that yi ∈ {xi, xi + 1} for all i = 1, . . . , n. For some
pair x, y and i ∈ {1, . . . , n}, define Si(x, y) = {j 
= i|yj = xj + 1}. Then ri(y) =

[ai−ci
2bi

+
∑

j �=i
dij

2bi
yj ] = [ai−ci

2bi
+

∑
j �=i

dij

2bi
xj +

∑
j∈Si(x,y)

dij

2bi
]. Since

∑
j �=i

dij

2bi
< 1, it

follows that ri(y) ∈ {ri(x), ri(x) + 1}. Hence, since yi ∈ {xi, xi + 1}, it follows that
fi(y) ∈ {fi(x) − 1, fi(x), fi(x) + 1}. So, when fi(x) ≥ 1, then fi(y) ≥ fi(x) − 1 ≥ 0,
and when fi(x) ≤ −1, then fi(y) ≤ fi(x) + 1 ≤ 0. So, fi(x)fi(y) ≥ 0 for all i and
thus f(x) · f(y) ≥ 0.

We have shown that f satisfies all the conditions of Corollary 3.3 and thus has a
discrete zero point. As a result, there is a discrete Cournot–Nash equilibrium.

It is worth mentioning that f may not be simplicially local gross direction-
preserving with respect to other triangulations, as shown by the following example
with n = 2. Let the parameters be given by a1 = 4, c1 = 2.5, b1 = 0.5, d1 = d12 = 3/4,
a2 = 5, c2 = 4, b2 = 1/3, and d2 = d21 = 1/12. These parameters satisfy the stated
condition for the model, and therefore there is a discrete Cournot–Nash equilibrium.
In fact, the quantities (3, 2) form the unique discrete Cournot–Nash equilibrium for
this example. As shown above, the function f is simplicially local gross direction-
preserving with respect to the K-triangulation. However, this function is not sim-
plicially local gross direction-preserving with respect to the H-triangulation of Saigal
[27]. For R

2, this triangulation is given by the simplices 〈y1, y2, y3〉, with y1 ∈ Z
2,

y2 = y1 + p(π(1)), y3 = y2 + p(π(2)), where p(1) = (1, 0) and p(2) = (−1, 1). Now
take π = (2, 1), x = y1 = (3, 1), and y = y2 = y1 + p(2) = (2, 2). Since f(x) = (−1, 1)
and f(y) = (1, 0), we have that f(x) · f(y) = −1 < 0, and so the function is not
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simplicially local direction-preserving with respect to the H-triangulation. Note that
x and y do not belong to a same simplex of the K-triangulation.
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[25] J. J. Moré, Classes of functions and feasibility conditions in nonlinear complementarity prob-
lem, Math. Program., 6 (1974), pp. 327–338.



308 GERARD VAN DER LAAN, DOLF TALMAN, AND ZAIFU YANG

[26] P. M. Reiser, A modified integer labeling for complementarity algorithms, Math. Oper. Res.,
6 (1981), pp. 129–139.

[27] R. Saigal, Investigations into the efficiency of fixed point algorithms, in Fixed Points: Algo-
rithms and Applications, S. Karamardian, ed., Academic Press, New York, 1977, pp. 203–
223.

[28] H. Scarf, The approximation of fixed points of a continuous mapping, SIAM J. Appl. Math.,
15 (1967), pp. 1328–1343.

[29] A. Schrijver, Theory of Linear and Integer Programming, John Wiley and Sons, Chichester,
1986.

[30] M. J. Todd, Computation of Fixed Points and Applications, Springer, Berlin, 1976.
[31] M. J. Todd, Improving the convergence of fixed point algorithms, Math. Program. Stud., 7

(1978), pp. 151–179.
[32] M. J. Todd, Global and local convergence and monotonicity results for a recent variable-

dimension simplicial algorithm, in Numerical Solution of Highly Nonlinear Problems,
W. Forster, ed., North–Holland, Amsterdam, 1980.

[33] M. J. Todd and A. H. Wright, A variable dimension simplicial algorithm for antipodal fixed
point theorems, Numer. Funct. Anal. Optim., 2 (1980), pp. 155–186.

[34] A. W. Tucker, Some topological properties of disk and sphere, in Proceedings of the First
Canadian Mathematical Congress (Montreal, 1945), University of Toronto Press, Toronto,
1946, pp. 285–309.

[35] X. Vives, Complementarities and games: new developments, J. Econom. Lit., 43 (2005),
pp. 437-479.

[36] Z. Yang, Computing Equilibria and Fixed Points, Kluwer, Boston, 1999.
[37] Z. Yang, Discrete Nonlinear Complementarity Problems, Math. Oper. Res., to appear.
[38] Z. Yang, Discrete Fixed Point Analysis and Its Applications, FBA working paper 210, Yoko-

hama National University, Yokohama, 2004.



SIAM J. OPTIM. c© 2007 Society for Industrial and Applied Mathematics
Vol. 18, No. 1, pp. 309–321

CHARACTERIZATIONS OF LOCAL AND GLOBAL ERROR
BOUNDS FOR CONVEX INEQUALITIES IN BANACH SPACES∗

HUI HU†

Abstract. This paper studies local and global error bounds for a convex inequality defined
by a proper convex function in a Banach space. The concept of weak basic constraint qualification
(weak BCQ) is introduced to control the normal directions at a boundary point of the solution set.
Local and global error bounds are characterized by a direction-length decomposition condition, which
provides a way to independently verify the weak BCQ and the length control of the subdifferential.
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1. Introduction. Let X be a Banach space, let R be the set of real numbers,
and let f : X → R ∪ {∞} be a proper convex function. For the convex inequality

f(x) ≤ 0,(1.1)

let S = {x ∈ X : f(x) ≤ 0} denote the solution set and bd(S) the boundary of S.
Throughout this paper, it is assumed that S is closed and ∅ �= S �= X. The study
of a closed convex set defined by a non–lower-semicontinuous function arose from a
broad class of outer approximation methods for convex optimization (see [3] and the
references therein).

For any P ⊆ X and x ∈ X, let dP (x) = inf{‖x− p‖ : p ∈ P} if P �= ∅; otherwise,
dP (x) = ∞ by convention. Let f+(x) = max{f(x), 0} and R+ = {r ∈ R : r ≥ 0}.

Let x ∈ bd(S). Inequality (1.1) is said to have a local error bound τ [8, 16, 19]
at x if there exist τ, δ ∈ (0,∞) such that

dS(z) ≤ τf+(z) ∀z ∈ B(x, δ),

where B(x, δ) denotes the open ball centered at x with radius δ.
Inequality (1.1) is said to have a global error bound τ [12] if there exists τ ∈ (0,∞)

such that

dS(z) ≤ τf+(z) ∀z ∈ X.

In recent years, local and global error bounds and their relations with other key
concepts in optimization have been actively studied by many researchers (see, e.g.,
[7, 8, 9, 10, 12, 16, 19] and the references therein).
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This paper studies local and global error bounds for a convex inequality defined by
a single-valued proper convex function in a Banach space. In section 2, some useful re-
sults for dealing with discontinuity on bd(S) and nonclosed epigraphs are presented.
In section 3, the concept of weak basic constraint qualification (weak BCQ) is in-
troduced to control the normal directions at a boundary point of S without lower
semicontinuity assumption on f . Local and global error bounds are characterized by
a general direction-length decomposition condition, which provides a way to indepen-
dently verify the direction control by the weak BCQ and the length control of the
intersection of the normal cone and the end set of the subdifferential. This decompo-
sition condition can reduce the verification difficulty. In addition, the length control
provides a way to compute the error bounds. In section 4, the segment extension
property is proposed and studied. It is shown that the verification of the direction-
length condition for global error bounds can be sufficiently carried out on any subset
having the segment extension property instead of the entire boundary. This leads to
a simple formula for computing the smallest global error bound. In the Euclidean
space, the verification of the condition and the computation of the smallest global
error bound can be carried out on the set of extreme points.

The notation used in this paper is standard. For P ⊆ X, let P , conv(P ), cone(P ),
int(P ) denote the closure, convex hull, convex cone, and interior of P . If P is convex,
let ext(P ) denote the set of extreme points of P , and P∞ the recession cone of P .

For a convex set C in X and x ∈ C, let

NC(x) = {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ 0 ∀y ∈ C}

denote the normal cone of C at x, where X∗ is the dual space of X and 〈x∗, y − x〉
denotes the value of linear functional x∗ at y − x.

For x ∈ bd(S), let

TS(x) = ∪t>0 t(S − x)

denote the tangent cone of S at x.
Let domf = {x ∈ X : f(x) < ∞} and epif = {(x, y) ∈ X ×R : f(x) ≤ y}. The

subdifferential and singular subdifferential of f at x ∈ domf are (cf. [5, 19])

∂f(x) = {x∗ ∈ X∗ : (x∗,−1) ∈ Nepif (x, f(x))},

∂∞f(x) = {x∗ ∈ X∗ : (x∗, 0) ∈ Nepif (x, f(x))}.

It is easy to verify that

∂f(x) = {x∗ ∈ X∗ : f(y) ≥ f(x) + 〈x∗, y − x〉 ∀y ∈ X},

∂∞f(x) = Ndomf (x),(1.2)

and if ∂f(x) �= ∅, then

∂f(x) = ∂f(x) + λ∂∞f(x) ∀λ ∈ [0,∞).(1.3)

Let f ′(x;h) denote the classical directional derivative of f at x in the direction
h, i.e.,

f ′(x;h) = lim
t→0+

f(x + th) − f(x)

t
.
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For a nonempty interval [α, β] and a convex set C, if C �= ∅, then [α, β]C = {tc :
t ∈ [α, β], c ∈ C}; otherwise, [α, β]C = {0} by convention. It is easy to verify that
[0, 1]C = conv({0} ∪ C).

For a convex set C, the end set of C is defined as

E[C] = {z ∈ [0, 1]C : tz �∈ [0, 1]C ∀t > 1}.

Note that 0 �∈ E[C] and E[C] ∩ int(C) = ∅. The end set was first introduced in [19]
and was further studied in [6]. A referee of the present paper pointed out that the
definition of the end set is equivalent to the following.

Lemma 1.1. For a convex set C, let Ẽ[C] = {z ∈ C : tz �∈ C for all t > 1}.
Then E[C] = Ẽ[C].

Proof. First, we show that E[C] ⊆ Ẽ[C]. If z ∈ E[C], then z ∈ [0, 1]C and
tz �∈ [0, 1]C for all t > 1. In particular, tz �∈ C for all t > 1. It remains to show that
z ∈ C. There exist sequences τn ∈ [0, 1] and cn ∈ C such that τncn → z. By passing to
a subsequence if necessary, one may assume that τn → τ ∈ [0, 1]. By the convexity of
[0, 1]C, τncn +(1−τn)z ∈ [0, 1]C. Thus, limn→∞ τncn +(1−τn)z = (2−τ)z ∈ [0, 1]C.
By the definition of E[C], 2 − τ ≤ 1. Therefore, one mast have τ = 1. Consequently,
z = (limn→∞

1
τn

)(limn→∞ τncn) = limn→∞ cn ∈ C.

Next, we show that Ẽ[C] ⊆ E[C]. Let z ∈ Ẽ[C]. Since z ∈ C ⊆ [0, 1]C, we
only need to show that tz �∈ [0, 1]C for all t > 1. Suppose, on the contrary, that
there exists t∗ > 1 such that t∗z ∈ [0, 1]C. Then there exist sequences τn ∈ [0, 1] and
cn ∈ C satisfying τncn → t∗z. By passing to a subsequence if necessary, one may
assume that τn → τ ∈ [0, 1]. By the convexity of C, τncn + (1 − τn)z ∈ C. Thus,
limn→∞ τncn + (1 − τn)z = t∗z + (1 − τ)z = (t∗ + 1 − τ)z ∈ C. But t∗ + 1 − τ > 1,
which is a contradiction to tz �∈ C for all t > 1. Therefore, Ẽ[C] ⊆ E[C].

2. Analysis without lower semicontinuity. Note that (1.1) is only defined
by a proper convex function. Without a lower semicontinuity assumption, epif is
not necessarily closed; therefore, some standard results cannot be applied directly.
Also, it is possible that f(x) < 0 for some x ∈ bd(S). In this section, we present
several useful results for dealing with such cases. First, we state some facts that are
frequently used in the rest of this paper. Throughout this paper, f is a proper convex
function on X.

Fact 2.1. For each h ∈ X, the quotient f(x+th)−f(x)
t is a nondecreasing function

of t > 0. Thus, f ′(x;h) exists (+∞ and −∞ being allowed as limits) and

f ′(x;h) = inf
{f(x + th) − f(x)

t
: t > 0

}
≤ f(x + h) − f(x).

Fact 2.2. (i) x∗∂f(x) ⇔ 〈x∗, h〉 ≤ f ′(x;h) for all h ∈ X. (ii) If f is contin-
uous at x ∈ domf , then f ′(x;h) = max{〈x∗, h〉 : x∗∂f(x)} for all h ∈ X (cf. [18,
Theorem 2.4.9]).

Fact 2.3. If x ∈ bd(S), then NS(x) = Nx+TS(x)(x) = NTS(x)(0).
Fact 2.4. If x ∈ domf and ∂f(x) �= ∅, then (see, e.g., [19, pp. 761–762])

∂∞f(x) ⊆ [0, 1]∂f(x) = [0, 1]∂f(x) + ∂∞f(x).
Note that if f(x) = 0, then ∂f(x) ⊆ NS(x) holds. When (1.1) is defined by

a proper convex function f that is not continuous, it is possible that f(x) < 0 for
x ∈ bd(S). In such a case, ∂f(x) ⊆ NS(x) may fail to hold (see Example 3.1). The
following two lemmas are useful in dealing with such discontinuity.
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Lemma 2.1. If x ∈ bd(S) and f(x) < 0, then (i) domf ⊆ x + TS(x), (ii)
f ′(x;h) = ∞ for all h �∈ TS(x).

Proof. Given y �∈ x + TS(x), let h = y − x �∈ TS(x). By the definition of tangent
cone, x+ th �∈ S for all t > 0, which implies that f(x+ th) > 0 for all t > 0. By Fact
2.1,

f(y) − f(x) ≥ f ′(x;h) = lim
t→0+

f(x + th) − f(x)

t
≥ lim

t→0+

−f(x)

t
= ∞.

Therefore, y �∈ domf and f ′(x;h) = ∞.
Lemma 2.2. If x ∈ bd(S) and f(x) < 0, then

NS(x) = ∂∞f(x) = ∂∞f+(x) = ∂f+(x).

Proof. By Lemma 2.1, S ⊆ domf = domf+ ⊆ x + TS(x). Hence,

NS(x) ⊇ Ndomf (x) = Ndomf+
(x) ⊇ Nx+TS(x)(x).

It follows from (1.2) and Fact 2.3 that

NS(x) = ∂∞f(x) = ∂∞f+(x).(2.1)

Since f+(x) = 0 and f+(z) ≥ 0 for all z ∈ X, x minimizes f+ and thus 0 ∈ ∂f+(x). By
(1.3), ∂∞f+(x) ⊆ ∂f+(x) ⊆ NS(x). It follows from (2.1) that ∂∞f+(x) = ∂f+(x) =
NS(x).

Without lower semicontinuity, the epigraph of f may not be closed, and some
standard results for closed convex sets cannot be applied directly. Lemma 2.3 sum-
marizes two results for dealing with epigraphs that are not closed.

Lemma 2.3. Let f1 = f and f2 = 0.
(i) epif1 ∩ epif2 = epif1 ∩ epif2.
(ii) If domf1 ∩domf2 �= ∅, then cone(domf1 −domf2)×R = cone(epif1 − epif2).
Proof. (i) Let z = (y, r) ∈ epif1 ∩ epif2 ⊆ X × R+, where y ∈ X and r ∈

R+. Choose zn = (yn, rn) ∈ epif1 satisfying yn → y and rn → r. Let z̃n =
(yn,max{rn, 0}). We have z̃n ∈ epif1 ∩ epif2 and z̃n → (y, r) ∈ epif1 ∩ epif2. On
the other hand, since epif2 = X ×R+ is closed, epif1 ∩ epif2 ⊆ epif2 = epif2. Thus,
epif1 ∩ epif2 ⊆ epif1 ∩ epif2.

(ii) Given λ((x1, r1) − (x2, r2)) ∈ cone(epif1 − epif2), where λ ≥ 0, f(x1) ≤ r1,
and f(x2) ≤ r2, one has

λ((x1, r1) − (x2, r2)) = (λ(x1 − x2), λ(r1 − r2)) ∈ cone(domf1 − domf2) ×R.

On the other hand, for a given (λ(x1 − x2), r) ∈ cone(domf1 − domf2) × R, where
λ ≥ 0, x1 ∈ domf1, and x2 ∈ domf2, we consider two cases: λ > 0 and λ = 0. If
λ > 0, then

(λ(x1 − x2), r) = (λx1, 2r) − (λx2, r)

= λ
[
(x1, 2r/λ) − (x2, r/λ)

]
= λ

[
(x1, 2r/λ + M) − (x2, r/λ + M)

]
∈ cone(epif1 − epif2),

where M is sufficiently large such that (x1, 2r/λ + M) ∈ epif1 and (x2, r/λ + M) ∈
epif2. In the case of λ = 0, for x ∈ domf1 ∩domf2, we have (0, r) = (x, 2r)− (x, r) =
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(x, 2r+M)− (x, r+M) ∈ cone(epif1 − epif2), where M is sufficiently large such that
(x, 2r + M) ∈ epif1 and (x, r + M) ∈ epif2.

The following two lemmas are contained in Volle [15, p. 848]. They are needed
for obtaining the subdifferential formula for f+ = max{f, 0} in Lemma 2.6.

Lemma 2.4 (see [15, p. 848]). Let C1 and C2 be closed convex sets in X and
C1 ∩ C2 �= ∅. If cone(C1 − C2) is a closed subspace, then for all x ∈ C1 ∩ C2,
NC1∩C2

(x) = NC1(x) + NC2
(x).

Lemma 2.5 (see [15, p. 848]). Let f1 and f2 be proper convex functions on
X, g = max{f1, f2}, and a ∈ domf1 ∩ domf2. If f1(a) = f2(a), ∂g(a) �= ∅,
and Nepig(a, g(a)) = Nepif1(a, f1(a)) + Nepif2(a, f2(a)), then ∂g(a) = conv(∂f1(a) ∪
∂f2(a)) + Ndomf1(a) + Ndomf2(a).

In the next lemma, we express ∂f+(x) in terms of ∂f(x) and ∂∞f(x) when f(x) =
0. Note that because f is not necessarily lower semicontinuous, epif may not be closed.

Lemma 2.6. If f(x) = 0, then ∂f+(x) = [0, 1]∂f(x) + ∂∞f(x).
Proof. Let f1 = f , f2 = 0, and g(z) = max{f(z), 0} = f+(z). Then domf2 = X,

cone(domf1 − domf2) = X, and epif2 = X ×R+. It follows from Lemma 2.3(ii) that

X ×R = cone(domf1 − domf2) ×R

= cone(epif1 − epif2)

⊆ cone(epif1 − epif2)

⊆ X ×R.

Therefore, cone(epif1 − epif2) = X × R is a closed subspace of X × R. Because
f(x) = 0, (x, 0) ∈ epif1 ∩ epif2. From Lemma 2.4,

Nepif1∩epif2
(x, 0) = Nepif1

(x, 0) + Nepif2
(x, 0).(2.2)

From Lemma 2.3(i), epif1 ∩ epif2 = epif1 ∩ epif2. Because (x, 0) ∈ epif1 ∩ epif2, we
have

Nepif1∩epif2
(x, 0) = Nepif1∩epif2

(x, 0) and Nepif1
(x, 0) = Nepif1

(x, 0).

Consequently, (2.2) is reduced to

Nepif1∩epif2
(x, 0) = Nepif1(x, 0) + Nepif2(x, 0).(2.3)

Because f1(x) = f2(x) = 0, 0 ∈ ∂g(x) �= ∅, and (2.3) holds, from Lemma 2.5 one has
that

∂g(x) = conv(∂f1(x) ∪ ∂f2(x)) + Ndomf1(x) + Ndomf2(x)

= conv(∂f1(x) ∪ {0}) + Ndomf1(x) + NX(x)

= [0, 1]∂f(x) + ∂∞f(x).

3. Weak BCQ and direction-length characterization of error bounds.
In this section, we characterize local and global error bounds in terms of normal cones,
subdifferentials, and the end set of subdifferentials.

It is well known that for a continuous convex function f , (1.1) is said to satisfy the
basic constraint qualification (BCQ) at x ∈ bd(S) if NS(x) = [0,∞)∂f(x) (see, e.g.,
[5, 8, 9]). As defined in [19], (1.1) is said to satisfy the extended BCQ at x ∈ bd(S)
if NS(x) = [0,∞)∂f(x) + ∂∞f(x), and (1.1) is said to satisfy the strong BCQ at
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x ∈ bd(S) if there exists τ ∈ (0,∞) such that NS(x) ∩ B∗ ⊆ [0, τ ]∂f(x) + ∂∞f(x),
where B∗ denotes the closed unit ball of X∗.

Definition 3.1. Inequality (1.1) is said to satisfy the weak BCQ at x ∈ S if

NS(x) ⊆ [0,∞)∂f(x) + ∂∞f(x).

Note that the nontrivial case is when the point x is on the boundary. For any
x ∈ intS, NS(x) = {0} and the weak BCQ always holds. If x ∈ bd(S) and f(x) = 0,
then ∂f(x) ⊆ NS(x). Under this condition, the weak BCQ is equivalent to the
extended BCQ.

Example 3.1. Consider the following proper convex function on R1:

f(x) =

{
−x− 1 if |x| ≤ 1;

∞ otherwise.
(3.1)

It is not difficult to verify that S = [−1, 1], f(1) < 0,

NS(1) = {x∗ : x∗(y − 1) ≤ 0 ∀y ∈ [−1, 1]} = [0,∞) = ∂∞f(1),

∂f(1) = {x∗ : −y − 1 ≥ −2 + x∗(y − 1) ∀y ∈ [−1, 1]} = [−1,∞),

E[∂f(1)] = {−1}, and dE[∂f(1)]∩NS(1)(0) = ∞.

In this case, the extended BCQ does not hold at x = 1. It is also interesting to
observe that ∂f(1) �⊆ NS(1). However, we still have NS(1) ⊂ [0,∞)∂f(1) + ∂∞f(1)
and dE[∂f(1)]∩NS(1)(0) = ∞ ≥ 1/τ for all τ > 0. It is obvious (also confirmed by
Theorem 3.1 and [1, 4, 16, 17, 18]) that f(x) ≤ 0 has a local error bound τ at x = 1
for any τ > 0. This is a case not covered by [6, 19].

Example 3.1 illustrates that the weak BCQ is weaker than the extended BCQ.
It requires only that all normal directions are controlled by the cone [0,∞)∂f(x) +
∂∞f(x). We are going to use the weak BCQ plus the length control of E[∂f(x)] ∩
NS(x) to characterize local error bounds. The following fact is useful for computing
E[∂f(x)] ∩NS(x).

Fact 3.1. E[∂f(x)] ∩ NS(x) = {x∗ ∈ [0, 1]∂f(x) ∩ NS(x) : tx∗ �∈ [0, 1]∂f(x) ∩
NS(x) for all t > 1}. Indeed, if x∗ ∈ E[∂f(x)]∩NS(x), then x∗ ∈ [0, 1]∂f(x)∩NS(x).
As x∗ ∈ E[∂f(x)], tx∗ �∈ [0, 1]∂f(x) for all t > 1, which implies tx∗ �∈ [0, 1]∂f(x) ∩
NS(x) for all t > 1. On the other hand, given x∗ ∈ [0, 1]∂f(x) ∩ NS(x) and tx∗ �∈
[0, 1]∂f(x) ∩NS(x) for all t > 1, since tx∗ ∈ NS(x), one has tx∗ �∈ [0, 1]∂f(x) for all
t > 1. Thus, x∗ ∈ E[∂f(x)] ∩NS(x).

Theorem 3.1. Let a ∈ bd(S) and τ ∈ (0,∞). Then (1.1) has a local error bound
τ at a if and only if there exists r ∈ (0,∞) such that for all x ∈ B(a, r) ∩ bd(S), (A)
the weak BCQ holds at x, and (B) dE[∂f(x)]∩NS(x)(0) ≥ τ−1.

Proof. “ ⇒ ” If (1.1) has a local error bound τ at a, there exists r > 0 such that
dS(x) ≤ τf+(x) for all x ∈ B(a, r). For any x ∈ B(a, r)∩bd(S), we discuss two cases:
f(x) = 0 and f(x) < 0. In the first case of f(x) = 0, let x∗ ∈ ∂dS(x). Because dS(·) is
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a continuous convex function, by Fact 2.2 and x ∈ B(a, r), one has that for all h ∈ X,

〈x∗, h〉 ≤ sup{〈y∗, h〉 : y∗ ∈ ∂dS(x)}

= lim
t→0+

dS(x + th) − dS(x)

t

≤ lim
t→0+

τf+(x + th) − τf+(x)

t

= τf ′
+(x;h).

It follows from Fact 2.2 that x∗ ∈ τ∂f+(x), and thus ∂dS(x) ⊆ τ∂f+(x). By Lemma
2.6,

NS(x) ∩B∗ = ∂dS(x) ⊆ τ([0, 1]∂f(x) + ∂∞f(x)) = [0, τ ]∂f(x) + ∂∞f(x),(3.2)

which implies (A). Now we prove (B). Without loss of generality we may assume that
E[∂f(x)] ∩ NS(x) �= ∅, i.e., dE[∂f(x)]∩NS(x)(0) < ∞. Given x∗ ∈ E[∂f(x)] ∩ NS(x),
by the definition of the end set, we have x∗ �= 0. By (3.2), there exist μ ∈ [0, τ ],
y∗ ∈ ∂f(x), and z∗ ∈ ∂∞f(x) satisfying x∗

‖x∗‖ = μy∗ + z∗. If μ = 0, then x∗ =

‖x∗‖z∗ ∈ ∂∞f(x). By Fact 2.4 and the fact that ∂∞f(x) is a cone, [0,∞)x∗ ⊆
∂∞f(x) ⊆ [0, 1]∂f(x), which contradicts x∗ ∈ E[∂f(x)]. Hence, μ > 0 and

x∗

μ‖x∗‖ = y∗ + μ−1z∗ ∈ ∂f(x) + μ−1∂∞f(x) = ∂f(x) ⊆ [0, 1]∂f(x).

Since x∗ ∈ E[∂f(x)], by the definition of the end set, we must have 1
μ‖x∗‖ ≤ 1, which

implies that ‖x∗‖ ≥ μ−1 ≥ τ−1. Therefore, dE[∂f(x)]∩NS(x)(0) ≥ τ−1, which is (B).
In the second case of f(x) < 0, by Lemma 2.2, NS(x) = ∂∞f(x) ⊆ [0,∞)∂f(x)+

∂∞f(x), and thus (A) holds. We show that dE[∂f(x)]∩NS(x)(0) = ∞, i.e., E[∂f(x)] ∩
NS(x) = ∅. Indeed, if ∂f(x) = ∅, then E[∂f(x)] = ∅ and thus E[∂f(x)] ∩NS(x) = ∅.
If ∂f(x) �= ∅ and f(x) < 0, from Lemma 2.2 and Fact 2.4, NS(x) = ∂∞f(x) ⊆
[0, 1]∂f(x), which implies [0, 1]∂f(x) ∩ NS(x) = NS(x). By Fact 3.1, one has that
E[∂f(x)] ∩ NS(x) = {x∗ ∈ NS(x) : tx∗ �∈ NS(x) for all t > 1} = ∅, which implies
dE[∂f(x)]∩NS(x)(0) = ∞.

“ ⇐ ” We show that dS(x) ≤ τf+(x) for all x ∈ B(a, r/2). If x ∈ S or f+(x) = ∞,
then dS(x) ≤ τf+(x) holds. Now suppose that x �∈ S and f+(x) < ∞. Given
x ∈ B(a, r/2), dS(x) ≤ ‖x − a‖ < r/2. Choose t ∈ (0, 1) such that dS(x) < t(r/2).
By [10, Lemma 1.1 and Proposition 1.3], for this t there exist xt ∈ bd(S) and x∗

t ∈
NS(xt)∩B∗ = ∂dS(xt) satisfying t‖x−xt‖ ≤ 〈x∗

t , x−xt〉. Because x∗
t ∈ ∂dS(xt) and

xt ∈ bd(S), one has

t‖x− xt‖ ≤ 〈x∗
t , x− xt〉 ≤ dS(x) − dS(xt) = dS(x) < t(r/2).(3.3)

Hence, ‖xt − a‖ ≤ ‖xt − x‖+ ‖x− a‖ < r/2 + r/2 = r, and xt ∈ B(a, r)∩ bd(S). We
claim that

∂dS(x) ⊆ τ∂f+(x) ∀x ∈ B(a, r) ∩ bd(S).(3.4)

Indeed, let x ∈ B(a, r) ∩ bd(S) and x∗ ∈ ∂dS(x) = NS(x) ∩B∗. Since f+(x) = 0 and
x minimizes f+, 0 ∈ τ∂f+(x). Thus we only need to show x∗ ∈ τ∂f+(x) for x∗ �= 0.
If f(x) < 0, by Lemma 2.2, x∗ ∈ NS(x) = ∂f+(x) = τ∂f+(x). If f(x) = 0 and
∂f(x) = ∅, by (A) and Lemma 2.6, x∗ ∈ NS(x) ⊆ ∂∞f(x) = [0, τ ]∂f(x) + ∂∞f(x) =
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τ∂f+(x). If f(x) = 0 and ∂f(x) �= ∅, by (A), there exist λ ≥ 0, u∗ ∈ ∂f(x), and
v∗ ∈ ∂∞f(x) satisfying x∗ = λu∗ + v∗. If λ = 0, then by Lemma 2.6, x∗ = v∗ ∈
∂∞f(x) ⊆ [0, τ ]∂f(x) + ∂∞f(x) = τ∂f+(x). Otherwise,

λ−1x∗ = u∗ + λ−1v∗ ∈ ∂f(x) + λ−1∂∞f(x) = ∂f(x) ⊆ [0, 1]∂f(x).

Let M = sup{α ≥ 0 : αx∗ ∈ [0, 1]∂f(x)} ≥ λ−1. If M < ∞, there exists an increasing
sequence {tn} such that limn→∞ tn = M , tnx

∗ ∈ [0, 1]∂f(x), and limn→∞ tnx
∗ =

Mx∗ ∈ [0, 1]∂f(x). By the definition of M , for all t > 1, tMx∗ �∈ [0, 1]∂f(x). There-
fore, Mx∗ ∈ E[∂f(x)]. By (B),

M ≥ ‖Mx∗‖ ≥ dE[∂f(x)]∩NS(x)(0) ≥ 1

τ
.

Consequently, by Fact 2.4 and Lemma 2.6,

x∗ = M−1Mx∗ ∈ M−1[0, 1]∂f(x)

= M−1([0, 1]∂f(x) + ∂∞f(x))

⊆ [0, τ ]∂f(x) + ∂∞f(x)

= τ∂f+(x).

If M = ∞, then by the convexity of [0, 1]∂f(x) and Fact 2.4,

[0,∞)x∗ ⊆ [0, 1]∂f(x) = [0, 1]∂f(x) + ∂∞f(x).

By Lemma 2.6,

x∗ = ττ−1x∗ ∈ [0, τ ][0,∞)x∗ ⊆ [0, τ ]∂f(x) + ∂∞f(x) = τ∂f+(x).

Thus (3.4) is proved, and we have x∗
t ∈ ∂dS(xt) ⊆ τ∂f+(xt). It follows from (3.3)

and x∗
t ∈ τ∂f+(xt) that

tdS(x) ≤ t‖x− xt‖ ≤ 〈x∗
t , x− xt〉 ≤ τf+(x) − τf+(xt) = τf+(x).(3.5)

Since (3.5) holds for all t sufficiently close to 1, one has dS(x) ≤ τf+(x).
Remark 3.1. (i) For x ∈ int(S), NS(x) = {0} and E[∂f(x)] ∩NS(x) = ∅. Thus,

(A), (B), and the strong BCQ hold. For x ∈ bd(S) and f(x) < 0, as indicated in the
proof of Theorem 3.1, (A), (B), and the strong BCQ hold by Lemma 2.2. For x ∈
bd(S) and f(x) = 0, the strong BCQ (3.2) implies (A) and (B), and (A) and (B) imply
(3.4), which is the strong BCQ. Therefore, the strong BCQ is pointwise equivalent to
(A) and (B), and it characterizes local error bounds without the boundary restriction
bd(S) ⊆ f−1(0) and lower semicontinuity. This extends [6, Corollary 4.1] and [19,
Theorem 2.2]. For a discontinuous function, the removal of the boundary restriction
bd(S) ⊆ f−1(0) is nontrivial.

(ii) When x ∈ bd(S) and f(x) = 0, the weak BCQ is equivalent to the extended
BCQ and E[∂f(x)] ∩ NS(x) = E[∂f(x)]. Under this condition, (A) and (B) recover
the decomposition of the strong BCQ in [6, Theorem 4.1].

(iii) When f is lower semicontinuous, the sufficient part of Theorem 3.1 can be
derived from [19, Theorem 2.2], [6, Theorem 4.1], [13].

Theorem 3.1 explains that the nonexistence of a local error bound is possibly
caused by either of the following: the cone [0,∞)∂f(x)+∂∞f(x) fails to represent all
normal directions or the set E[∂f(x)]∩NS(x) is not separated from the origin. When
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(A) and (B) hold uniformly on the entire boundary, we obtain a direction-length
characterization for global error bounds.

Theorem 3.2. Let τ ∈ (0,∞). Then dS(x) ≤ τf+(x) for all x ∈ X if and only
if the weak BCQ and dE[∂f(x)]∩NS(x)(0) ≥ τ−1 hold on bd(S).

Proof. If dS(x) ≤ τf+(x) for all x ∈ X, then (1.1) has a local error bound τ at
every point of bd(S). By Theorem 3.1, the weak BCQ and dE[∂f(x)]∩NS(x)(0) ≥ 1

τ hold
for all x ∈ bd(S). Conversely, for any z ∈ X, there exist a ∈ bd(S) and r ∈ (0,∞)
such that z ∈ B(a, r

2 ). Since the weak BCQ and dE[∂f(x)]∩NS(x)(0) ≥ 1
τ hold for all

x ∈ B(a, r)∩bd(S), by the proof of Theorem 3.1, dS(x) ≤ τf+(x) for all x ∈ B(a, r
2 ),

and thus dS(z) ≤ τf+(z).
Note that the Slater condition implies the existence of a local error bound for any

x ∈ bd(S) [13]. We have the following corollary.
Corollary 3.1. If (1.1) satisfies the Slater condition, then for any a ∈ bd(S)

there exist r, τ ∈ (0,∞) such that for all x ∈ B(a, r) ∩ bd(S),

NS(x) ⊆ [0,∞)∂f(x) + ∂∞f(x) and dE[∂f(x)]∩NS(x)(0) ≥ τ−1.

In the following examples, we use Theorems 3.1 and 3.2 to determine the existence
or nonexistence of error bounds and to compute the smallest error bound if it exists.

Example 3.2. Let α > 1, let xi denote the ith component of x ∈ Rn, and let
g(x) = 1

αx1, h(x) = ‖x‖ = (x2
1 + · · · + x2

n)
1
2 , and f(x) = g(x) + h(x). It is easy to

verify that S = {0} and NS(0) = Rn. Since ri(dom(g)) ∩ ri(dom(h)) �= ∅, we have
[14, Theorem 23.8]

∂f(0) = ∂g(0) + ∂h(0)

= {(α−1, 0, . . . , 0)} + B(0, 1)

= {x ∈ Rn : (x1 − α−1)2 + x2
2 + · · · + x2

n ≤ 1}.

Thus, E[∂f(0)] = {x ∈ Rn : (x1 −α−1)2 + x2
2 + · · ·+ x2

n = 1} = E[∂f(0)]∩NS(0). In
this case, the weak BCQ holds at 0 and dE[∂f(0)]∩NS(0)(0) = 1 − α−1. By Theorem
3.2 (or by [1, 4, 17, 18]), τ = α

α−1 is the smallest global error bound.
Example 3.3. Let g(x) = x1, h(x) = ‖x‖, and f(x) = g(x)+h(x). One can verify

that S = {(t, 0, . . . , 0) ∈ Rn : t ≤ 0}, NS(0) = {(x1, x2, . . . , xn) ∈ Rn : x1 ≥ 0}, and
∂f(0) = ∂g(0) + ∂h(0) = {x ∈ Rn : (x1 − 1)2 + x2

2 + · · · + x2
n ≤ 1}. In this case,

[0,∞)∂f(0)+∂∞f(0) fails to represent all normal directions. In addition, E[∂f(0)] =
{x �= 0 : (x1 − 1)2 + x2

2 + · · ·+ x2
n = 1}, and thus dE[∂f(0)]∩NS(0)(0) = 0. By Theorem

3.1, f(x) ≤ 0 does not have a local error bound at 0. Note that this example (for
n = 2) was first used in [7] to illustrate the nonexistence of a global error bound. The
nonexistence a local error bound at 0 can be derived from [2].

Example 3.4. Let D = {(x, y) : 0 < x ≤ 1, 0 ≤ y ≤ 1} ∪ {(0, y) : 0 ≤ y ≤ 1
2}, and

define f(x, y) = ID(x, y)+x, where ID(x, y) is the indicator function of D. Note that
D is convex but not closed, and f is proper convex but not lower semicontinuous. It
is not difficult to verify that

S = {(x, y) : f(x, y) ≤ 0} =

{
(0, y) : 0 ≤ y ≤ 1

2

}
,

NS

(
0,

1

2

)
= {(x, y) : y ≥ 0},
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∂∞f

(
0,

1

2

)
= Ndomf

(
0,

1

2

)
= ND

(
0,

1

2

)
= {(x, 0) : x ≤ 0},

∂f

(
0,

1

2

)
= ∂ID

(
0,

1

2

)
+ {(1, 0)} = ND

(
0,

1

2

)
+ {(1, 0)} = {(x, 0) : x ≤ 1}.

Hence, [0,∞)∂f(0, 1
2 ) + ∂∞f(0, 1

2 ) = {(x, 0) : x ∈ R}, and the weak BCQ does not
hold at (0, 1

2 ). By Theorem 3.1, f(x, y) ≤ 0 does not have a local error bound at
(0, 1

2 ).

4. Segment extension property and global error bounds. In section 3
we have seen that (1.1) has a local error bound at a if (A) and (B) uniformly hold
in a boundary neighborhood of a. When (A) and (B) uniformly hold in the entire
boundary of S, we immediately obtain a characterization of global error bounds. In
this section, we study global error bounds from a new aspect. We show that the
verification of the direction-length decomposition can be sufficiently carried out on a
small subset instead of the entire boundary. For this purpose, we introduce a useful
new concept, the segment extension property.

Definition 4.1. Let C �= ∅ be a convex set in X and P ⊆ C. Then P is said to
have the segment extension property with respect to C (property SE) if for any x ∈ C
there exist p ∈ P and t > 1 such that p + t(x− p) ∈ C.

Note that the definition of property SE is equivalent to the following: For any
x ∈ C, there exist p ∈ P , c ∈ C, and λ ∈ (0, 1) such that x = (1 − λ)p + λc.

Example 4.1. Given a convex set C �= ∅, if there exists P ⊆ C satisfying property
R, i.e., C = P +C∞, then P has property SE. In particular, C has property SE with
respect to itself. This was first introduced in [11, 20].

Example 4.2. If P has property SE with respect to C, then P contains all extreme
points of C (if there are any). Indeed, if e ∈ ext(C) but e �∈ P , then there exist p ∈ P
and t > 1 such that x = p+ t(e−p) ∈ C. Hence, e = (1− 1

t )p+ 1
tx, which contradicts

the definition of extreme point.

Example 4.3. If C is closed and ∅ �= C �= X, then bd(C) �= ∅ has property SE.

In many cases a set having property SE could be much smaller than the entire
boundary, as illustrated by the following examples.

Example 4.4. If C is a cone, then P = {0} has property SE.

Example 4.5. Let C = {(x, y) : −∞ < x < ∞,−1 ≤ y ≤ 1}. Then P =
{(0, 1), (0,−1)} has property SE.

Note that the convex set C in Example 4.5 has no extreme point. In general,
let L = C∞ ∩ (−C∞); then the set P = ext(C ∩ L⊥) has property SE, as proved in
Lemma 4.1.

Lemma 4.1. Let ∅ �= C ⊂ Rn be a closed convex set and L = C∞ ∩ (−C∞).
Then ext(C ∩L⊥) �= ∅ has property SE. In particular, if ext(C) �= ∅, then ext(C) has
property SE.

Proof. First assume that C contains no lines. Then L = {0}, L⊥ = Rn, C =
C ∩ L⊥, ext(C) �= ∅, and C = conv(ext(C)) + C∞ [14, pp. 166–167]. Given x ∈ C,

there exist ei ∈ ext(C) and λi > 0, i = 1, . . . , k,
∑k

i=1 λi = 1, and h ∈ C∞ satisfying

x =
∑k

i=1 λiei + h. If k = 1, then e1 + 2h = e1 + 2(x − e1) ∈ C. If k > 1, let

μ =
∑k

i=2 λi and y =
∑k

i=2 λiei + h. Then λ1 = 1− μ, 1
μ > 1, x = (1− μ)e1 + y, and
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μe1 + x− e1 = y. It follows that

e1 +
1

μ
(x− e1) =

1

μ
y =

k∑
i=2

λi

μ
ei +

1

μ
h ∈ C.

Therefore, ext(C ∩ L⊥) = ext(C) has property SE.
In the case when C contains lines, the set M = C∩L⊥ contains no lines, ext(M) �=

∅, and C = M + L = conv(ext(M)) + M∞ + L [14, p. 65]. The rest of the proof is
similar to that of the first case and is omitted.

In order to utilize property SE to reduce the verification of the weak BCQ and
the length control of the subdifferential, we first study the relations between normal
cones/subdifferentials at a point p and a point that can be extended from p.

Lemma 4.2. If C is a convex set in X, a, b ∈ C, λ ∈ (0, 1), and x = (1−λ)a+λb,
then NC(x) ⊆ NC(a).

Proof. Let c = λ(b − a); then x = a + c and b = a + 1
λc. For any x∗ ∈ NC(x),

〈x∗, a−x〉 = 〈x∗,−c〉 ≤ 0, which implies 〈x∗, c〉 ≥ 0. On the other hand, 〈x∗, b−x〉 =
〈x∗, ( 1

λ − 1)c〉 ≤ 0, which implies 〈x∗, c〉 ≤ 0. Therefore, 〈x∗, c〉 = 0. It follows that
for all u ∈ C,

〈x∗, u− a〉 = 〈x∗, u− x + c〉 = 〈x∗, u− x〉 + 〈x∗, c〉 = 〈x∗, u− x〉 ≤ 0.

Hence, x∗ ∈ NC(a).
Lemma 4.3. If a, b ∈ S, λ ∈ (0, 1), x = (1−λ)a+λb, and f(x) = f(a) = 0, then

∂f(x) = ∂f(a) ∩NS(x).
Proof. For any x∗ ∈ ∂f(x), 〈x∗, u− x〉 ≤ f(u) − f(x) for all u ∈ X. By f(x) = 0

and Lemma 4.2, ∂f(x) ⊆ NS(x) ⊆ NS(a), which implies 〈x∗, x− a〉 ≤ 0. Thus,

〈x∗, u− a〉 = 〈x∗, u− x〉 + 〈x∗, x− a〉 ≤ 〈x∗, u− x〉 ≤ f(u) − f(x) = f(u) − f(a).

Therefore, x∗ ∈ ∂f(a) and thus ∂f(x) ⊆ ∂f(a)∩NS(x). On the other hand, for x∗ ∈
∂f(a) ∩NS(x) ⊆ NS(x), by the proof of Lemma 4.2, 〈x∗, c〉 = 0, where c = λ(b− a).
Thus,

〈x∗, u− x〉 = 〈x∗, u− x〉 + 〈x∗, c〉
= 〈x∗, u− x + c〉
= 〈x∗, u− a〉
≤ f(u) − f(a)

= f(u) − f(x).

Hence, x∗ ∈ ∂f(x) and ∂f(a) ∩NS(x) ⊆ ∂f(x).
By using the above lemmas, we are ready to show that the weak BCQ and the

length control of the subdifferential can be segment extended on S.
Theorem 4.1. Let a, b ∈ S, λ ∈ (0, 1), and x = (1 − λ)a + λb.
(i) If the weak BCQ holds at a, then it holds at x.
(ii) E[∂f(x)]∩NS(x) ⊆ E[∂f(a)]∩NS(a), which implies that dE[∂f(x)]∩NS(x)(0) ≥

dE[∂f(a)]∩NS(a)(0).
Proof. (i) If x �∈ bd(S), then NS(x) = {0} ⊆ [0,∞)∂f(x) + ∂∞f(x). If x ∈ bd(S)

and f(x) < 0, then by Lemma 2.2, NS(x) = ∂∞f(x) ⊆ [0,∞)∂f(x) + ∂∞f(x). If
x ∈ bd(S) and f(x) = 0, then by the convexity of f , we must have f(a) = 0. Since
∂∞f(a) is a cone, by Lemma 2.6 we have

NS(a) ⊆ [0,∞)∂f(a) + ∂∞f(a) = [0,∞)([0, 1]∂f(a) + ∂∞f(a)) = [0,∞)∂f+(a).
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It follows that

NS(x) = NS(a) ∩NS(x) (by Lemma 4.2)

⊆ [0,∞)∂f+(a) ∩NS(x)

= [0,∞)(∂f+(a) ∩NS(x))

= [0,∞)∂f+(x) (by Lemma 4.3)

= [0,∞)∂f(x) + ∂∞f(x) (by Lemma 2.6).

It remains to prove (ii). Without loss of generality, we may assume that ∂f(x) �= ∅.
If x �∈ bd(S), then NS(x) = {0}. Because an end set cannot contain 0, E[∂f(x)] ∩
NS(x) = ∅ and dE[∂f(x)]∩NS(x)(0) = ∞. If x ∈ bd(S) and f(x) < 0, then, as in the
proof of Theorem 3.1, E[∂f(x)]∩NS(x) = ∅ and dE[∂f(x)]∩NS(x)(0) = ∞. If x ∈ bd(S)
and f(x) = 0, then by the convexity of f , we must have f(a) = 0. We claim that

E[∂f(x)] ⊆ E[∂f(a)].(4.1)

Indeed, since f(x) = 0 and f(a) = 0, by Fact 2.4 and Lemma 2.6, [0, 1]∂f(x) = ∂f+(x)
and [0, 1]∂f(a) = ∂f+(a). For any u∗ ∈ E[∂f(x)], u∗ ∈ [0, 1]∂f(x) = ∂f+(x) and
tu∗ �∈ [0, 1]∂f(x) = ∂f+(x) for all t > 1. By Lemma 4.3,

u∗ ∈ ∂f+(x) = ∂f+(a) ∩NS(x) ⊆ ∂f+(a) = [0, 1]∂f(a)

and

tu∗ �∈ ∂f+(x) = ∂f+(a) ∩NS(x) ∀t > 1.

Note that tu∗ ∈ NS(x); we must have tu∗ �∈ ∂f+(a) = [0, 1]∂f(a) for all t > 1.
Consequently, u∗ ∈ E[∂f(a)] by the definition of the end set, and (4.1) is proven. It
follows from (4.1) and Lemma 4.2 that

E[∂f(x)] ∩NS(x) ⊆ E[∂f(a)] ∩NS(a),

which implies that

dE[∂f(x)]∩NS(x)(0) ≥ dE[∂f(a)]∩NS(a)(0).

By Theorem 4.1 and the equivalent definition of a set with property SE, we
immediately have the following theorem.

Theorem 4.2. Let P ⊆ S have property SE with respect to S.
(i) The weak BCQ holds for all x ∈ S if and only if it holds for all x ∈ P .
(ii) dE[∂f(x)]∩NS(x)(0) ≥ 1

τ holds for all x ∈ S if and only if it holds for all x ∈ P .
Combining Theorems 4.2 and 3.2, we immediately obtain a characterization of

global error bounds on any set P ⊆ bd(S) having property SE with respect to S.
Theorem 4.3. Let τ ∈ (0,+∞) and P ⊆ bd(S) have property SE with re-

spect to S. Then dS(x) ≤ τf+(x) for all x ∈ X if and only if the weak BCQ and
dE[∂f(x)]∩NS(x)(0) ≥ 1

τ hold on P .
Note that when x ∈ bd(S) ∩ f−1(0), ∂f(x) ⊆ NS(x). Therefore, E[∂f(x)] ⊆

NS(x) and dE[∂f(x)]∩NS(x)(0) = dE[∂f(x)](0). When x ∈ bd(S) and f(x) < 0,
dE[∂f(x)]∩NS(x)(0) = ∞. Therefore, we obtain the following formula for the small-
est global error bound.

Corollary 4.1. Let P ⊆ bd(S) have property SE and γ = inf{dE[∂f(x)](0) : x ∈
P ∩ f−1(0)}. If the weak BCQ holds on P and γ ∈ (0,∞), then τ = 1

γ is the smallest
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global error bound. If the weak BCQ holds on P and γ = ∞, then every τ ∈ (0,∞) is
a global error bound.

Finally, for the important special case of X = Rn, by Lemma 4.1, we obtain a
characterization of global error bounds by conditions on extreme points.

Theorem 4.4. Let τ ∈ (0,+∞), X = Rn, L = S∞ ∩ (−S∞), and γ =
inf{dE[∂f(x)](0) : x ∈ ext(S ∩ L⊥) ∩ f−1(0)}. Then dS(x) ≤ τf+(x) for all x ∈ X if

and only if the weak BCQ and dE[∂f(x)]∩NS(x)(0) ≥ 1
τ hold on ext(S∩L⊥). If a global

error bound exists and γ ∈ (0,∞), then τ = 1
γ is the smallest global error bound.
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[1] D. Azé and J.-N. Corvellec, On the sensitivity analysis of Hoffman constants for systems
of linear inequalities, SIAM J. Optim., 12 (2002), pp. 913–927.
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STABILITY AND SENSITIVITY OF OPTIMIZATION PROBLEMS
WITH FIRST ORDER STOCHASTIC DOMINANCE CONSTRAINTS∗
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Abstract. We analyze the stability and sensitivity of stochastic optimization problems with
stochastic dominance constraints of first order. We consider general perturbations of the underlying
probability measures in the space of regular measures equipped with a suitable discrepancy distance.
We show that the graph of the feasible set mapping is closed under rather general assumptions. We
obtain conditions for the continuity of the optimal value and upper-semicontinuity of the optimal
solutions, as well as quantitative stability estimates of Lipschitz type. Furthermore, we analyze the
sensitivity of the optimal value and obtain upper and lower bounds for the directional derivatives
of the optimal value. The estimates are formulated in terms of the dual utility functions associated
with the dominance constraints.
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constraints, Lipschitz stability, metric regularity, directional differentiability
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1. Introduction. The notion of stochastic ordering (or stochastic dominance of
first order) was introduced in statistics in [14, 13] and further applied and developed
in economics [17, 7, 6]. It is defined as follows. For a random variable X we consider
its distribution function, F (X; η) = P [X ≤ η], η ∈ R. We say that a random variable
X dominates in the first order a random variable Y if

F (X; η) ≤ F (Y ; η) ∀ η ∈ R.(1.1)

We denote this relation X �(1) Y . For a modern perspective on stochastic orders, see
[15, 25].

Let g : Rn × Rs → R be continuous with respect to both arguments, and let V
be an s-dimensional random vector, defined on a certain probability space (Ω,F , P ).
For every z ∈ Rn

Xz(ω) = g(z, V (ω)), ω ∈ Ω,

is a random variable. Given a benchmark random variable Y (defined on the same
probability space), an optimization model with first order stochastic dominance con-
straint is formulated as follows:

min f(z)

s.t. Xz �(1) Y,

z ∈ Z,

(1.2)
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where f : Rn → R and Z ⊂ Rn. Using definition (1.1), we can express the dominance
constraint as a continuum of probabilistic constraints:

P
[
g(z, V ) ≥ η

]
≥ P

[
Y ≥ η

]
, η ∈ R.

In [5] optimality conditions for a relaxation of problem (1.2) were investigated, in
which the dominance constraint was enforced on an interval [a, b] rather than on the
entire real line:

min f(z)

s.t. P
[
g(z, V ) ≥ η

]
≥ P

[
Y ≥ η

]
, η ∈ [a, b],

z ∈ Z.

(1.3)

The restriction of the range of η to a compact interval is motivated by the need to
satisfy a constraint qualification condition for the problem (see Definition 2.4). Both
probability functions in problem (1.3) converge to 0 when η → ∞ and to 1 when
η → ∞, which precludes Robinson-type conditions on the whole real line.

From now on, we shall assume that f is continuous and Z is a nonempty closed
convex set. Our objective is to investigate the stability and sensitivity of the optimal
value, the feasible set, and solution set, respectively, of problem (1.3) when the random
variables V and Y are subject to perturbations.

For the purpose of our analysis it is convenient to formulate the dominance con-
straint with the use of “≥” inequalities, as in (1.3). When the distributions are
continuous, this formulation is equivalent to the formulation used in [5].

Problems with stochastic dominance constraints are new optimization models in-
volving risk aversion (see [3, 4, 5]). As problems with a continuum of constraints on
probability, they pose specific analytical and computational challenges. The proba-
bilistic nature of the problem prevents the direct application of the theory of semi-
infinite optimization. On the other hand, the specific structure of dominance con-
straints is significantly different from the structure of finitely many probabilistic con-
straints. Our stability analysis follows similar patterns to those in [8, 22, 23], where
the focus was on probabilistic constraints. However, a straightforward application of
those results (a recent overview of which can be found in [21]) is not possible due to
the specific structure of problem (1.3). First, in (1.3) we deal with two separate prob-
ability terms due to the consideration of a benchmark variable. Second, and more
importantly, problem (1.3) has a continuum of constraints which requires a more
sophisticated analysis than the case of a finite family of constraints.

In section 2, we establish the closedness of the feasible set mapping, and we obtain
stability results for the optimal value, for the feasible set, and for the solution set.
In section 3, we analyze the sensitivity of the optimal value function, and we obtain
bounds for its directional derivatives.

2. Stability. It is obvious from the formulation of the dominance constraint
that only the distribution laws of V and Y matter there. Therefore, we introduce the
measures μ0 on Rs and ν0 on R induced by V and Y . For all Borel sets A ⊂ Rs and
B ⊂ R,

μ0(A) = P [V ∈ A],

ν0(B) = P [Y ∈ B].

We denote the set of probability measures on Rm by P(Rm).
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Furthermore, we introduce the multifunction H : Rn × R ⇒ Rs defined by

H(z, η) := {v ∈ Rs : g(z, v) ≥ η}.

We consider the following parametric optimization problem:

min f(z)

s.t. μ(H(z, η)) − ν([η,∞)) ≥ 0 ∀η ∈ [a, b],

z ∈ Z,

(2.1)

with parameters μ ∈ P(Rs) and ν ∈ P(R). The original problem (1.3) is obtained
when (μ, ν) = (μ0, ν0). Our aim is to study the stability of solutions and of the
optimal value to (2.1) under small perturbations of the underlying distributions μ0

and ν0.
For this purpose we equip the space P(R) with the Kolmogorov distance function:

α1(ν1, ν2) = sup
η∈R

|ν1([η,∞)) − ν2([η,∞))| .

To introduce a distance function on P(Rs), which is appropriate for our problem, we
define the family of sets:

B := {H(z, η) : z ∈ Z, η ∈ [a, b]} ∪ {v + Rs
− : v ∈ Rs}.

The distance function on P(Rs) is defined as the discrepancy

αB (μ1, μ2) := sup
B∈B

|μ1(B) − μ2(B)| .

On the product space P(Rs) × P(R) we introduce the natural distance:

α((μ1, ν1), (μ2, ν2)) := max{αB (μ1, μ2), α1(ν1, ν2)}.(2.2)

Note that α is a metric, because the measures are compared, in particular, on all the
cells of form z + Rs

− and (−∞, η), respectively.
We consider the constraint set mapping Φ : P(Rs) × P(R) ⇒ Rn, which assigns

to every parameter (μ, ν) the feasible set of problem (2.1), i.e.,

Φ(μ, ν) :=
{
z ∈ Z : μ(H(z, η)) − ν([η,∞)) ≥ 0 ∀η ∈ [a, b]

}
.

Given any open subset U ⊆ Rn, we define the U -localized optimal value function,
ϕU : P(Rs) × P(R) → R, of problem (2.1) as follows:

ϕU (μ, ν) := inf
{
f(z) : z ∈ Φ(μ, ν) ∩ clU

}
.

The U -localized solution set mapping ΨU : P(Rs) × P(R) ⇒ Rn of problem (2.1) is
defined by

ΨU (μ, ν) :=
{
z ∈ Φ(μ, ν) ∩ clU : f(z) = ϕU (μ, ν)

}
.

When U = Rn we simply write ϕ(μ, ν) and Ψ(μ, ν).
The reason to consider localized mappings is that we allow general perturbations

of the probability distributions. Then, without additional compactness conditions, no
reasonable constraint qualification formulated at the solution points of the original
problem (1.3) could guarantee stability of the global solution set mapping Ψ := ΨRn .

We recall a general stability result from [10, Proposition 1 and Theorem 1] in a
version adapted to our setting. In the theorem below, the symbol B(z, r) denotes the
ball about z of radius r.
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Theorem 2.1. Let the following assumptions be satisfied in (2.1):
1. The original solution set Ψ(μ0, ν0) is nonempty and bounded.
2. The graph of the constraint set mapping Φ is closed.
3. At every solution z0 ∈ Ψ(μ0, ν0) of the original problem, there exist ε > 0

and L > 0 such that for all (μ, ν) ∈ B((μ0, ν0); ε) the constraint set mapping
satisfies the following two Lipschitz-like estimates:

d(z, Φ(μ0, ν0)) ≤ Lα((μ, ν), (μ0, ν0)) ∀z ∈ Φ(μ, ν) ∩ B(z0; ε),(2.3)

d(z, Φ(μ, ν)) ≤ Lα((μ, ν), (μ0, ν0)) ∀z ∈ Φ(μ0, ν0) ∩ B(z0; ε).(2.4)

4. f is locally Lipschitz.
Then, for any bounded and open set Q containing the original solution set, the fol-
lowing stability properties hold true:

• ∃δ′ > 0 : ΨQ(μ, ν) �= ∅ for all (μ, ν) ∈ B((μ0, ν0); δ
′).

• ΨQ is upper semicontinuous at (μ0, ν0) in the sense of Berge; i.e., for all open
V ⊇ Ψ(μ0, ν0) = ΨQ(μ0, ν0) there exists some δV > 0 such that

ΨQ(μ, ν) ⊆ V ∀(μ, ν) ∈ B((μ0, ν0); δV ).

• ϕQ is continuous at (μ0, ν0) and satisfies the following Lipschitz-like estimate
for some constants δ∗, L∗ > 0:

|ϕQ(μ, ν) − ϕQ(μ0, ν0)| ≤ L∗α((μ, ν), (μ0, ν0)) ∀(μ, ν) ∈ B((μ0, ν0); δ
∗).

We note that the first two assertions of the theorem already follow from [19,
Theorem 4.3]. In the following we want to provide verifiable conditions for the
assumptions of Theorem 2.1. As far as assumption 1 is concerned, it is of a purely
technical nature and may be difficult to verify in the general setting. If, however, the
abstract part Z of the constraint set in (2.1) happens to be compact, as is the case in
many applied problems, then, of course, the boundedness assumption 1 in Theorem
2.1 is trivially satisfied. In this situation, one can even drop the localizations ϕQ and
ΨQ in the statement of Theorem 2.1 and formulate the corresponding conclusions for
the global optimal value function ϕ and the global solution set mapping Ψ . Indeed, as
one may choose Q in Theorem 2.1 by compactness of Z such that Q ⊇ Z ⊇ Ψ(μ0, ν0),
it follows that

ΨQ(μ, ν) = Ψ(μ, ν) (⊂ Z ⊂ Q) and ϕQ(μ, ν) = ϕ(μ, ν) ∀(μ, ν).

Passing to assumption 2 in Theorem 2.1, this is generally satisfied under the data
assumptions made for problem (1.3). To show this, we first adapt a result of [22].

Lemma 2.2. Assume that a multifunction S : Rn ⇒ Rs has a closed graph. Let
x̄ ∈ Rn be such that S(x̄) �= ∅. Then for every nonnegative regular measure μ on Rs

and for every ε > 0 there exists δ > 0 such that

μ
(
S(x)

)
≤ μ

(
S(x̄)

)
+ ε, whenever ‖x− x̄‖ ≤ δ.(2.5)

Proof. By the closedness of the graph,

S(x̄) =
⋂
δ>0

cl
( ⋃

‖x−x̄‖≤δ

S(x)
)
.
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Therefore, for every regular measure μ,

μ
(
S(x̄)

)
= inf

δ>0
μ

(
cl
( ⋃

‖x−x̄‖≤δ

S(x)
))

.

Consequently, for every ε > 0 there exists δ > 0 such that

μ
(
S(x̄)

)
+ ε ≥ μ

(
cl
( ⋃

‖x−x̄‖≤δ

S(x)
))

.

This implies the result.
Theorem 2.3. The graph of the feasible set mapping Φ is closed.
Proof. Consider a sequence (μn, νn, zn) of the elements of the graph, which is

convergent to some (μ̄, ν̄, z̄) in the space P(Rs) × P(R) × Rn. Since zn ∈ Φ(μn, νn),
then zn ∈ Z and

μn(H(zn, η)) − νn([η,∞)) ≥ 0 ∀η ∈ [a, b].(2.6)

As Z is closed, z̄ ∈ Z. By the definition of α1(·, ·), it follows that

νn([η,∞)) → ν̄([η,∞)) ∀ η ∈ [a, b].(2.7)

Let us consider the first term in (2.6). For a fixed η ∈ [a, b] we have the inequality

μn(H(zn, η)) − μ̄(H(z̄, η))(2.8)

=
[
μn(H(zn, η)) − μ̄(H(zn, η))

]
+
[
μ̄(H(zn, η)) − μ̄(H(z̄, η))

]
≤ αB (μn, μ̄) +

[
μ̄(H(zn, η)) − μ̄(H(z̄, η))

]
.

By assumption, αB (μn, μ̄) → 0, and we can focus on the term in brackets. By the
continuity of g, the multifunction H(·, η) has a closed graph. We now apply Lemma
2.2 to conclude that for every ε > 0 there exists δ > 0 such that

μ̄
(
H(z, η)

)
≤ μ̄

(
H(z̄, η)

)
+ ε, whenever ‖z − z̄‖ ≤ δ.

For all sufficiently large n one has ‖zn − z̄‖ ≤ δ and therefore

μ̄
(
H(zn, η)

)
≤ μ̄

(
H(z̄, η)

)
+ ε.

Passing to the limit with n → ∞ and noting that ε > 0 was arbitrary, we obtain

lim sup
n→∞

μ̄
(
H(zn, η)

)
≤ μ̄

(
H(z̄, η)

)
.(2.9)

Combining relations (2.8) and (2.9), we conclude that

lim sup
n→∞

μn(H(zn, η)) ≤ μ̄(H(z̄, η)).

Using this in (2.6), with a view to (2.7), we obtain

μ̄(H(z̄, η)) − ν̄(η,∞)) ≥ lim sup
n→∞

μn(H(zn, η)) − lim
n→∞

νn([η,∞))

= lim sup
n→∞

[
μn(H(zn, η)) − νn([η,∞))

]
≥ 0.
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Since η was arbitrary, we obtain the relation

μ̄(H(z̄, η)) − ν̄(η,∞)) ≥ 0 ∀ η ∈ [a, b].

This amounts to z̄ ∈ Φ(μ̄, ν̄), as desired.
Remark 1. Let us observe that we did not use the compactness of the set [a, b] in

the proof, and therefore Theorem 2.3 holds true for the dominance relation enforced
on the whole real line.

The verification of assumption 3 in Theorem 2.1 is less direct and will be based
on an appropriate constraint qualification for problem (2.1) at the original parameter
(μ0, ν0). To formulate this constraint qualification, we assume the following differen-
tial uniform dominance condition introduced in [5].

Definition 2.4. Problem (2.1) for μ = μ0 and ν = ν0 satisfies the differential
uniform dominance condition at the point z0 ∈ Z if

(i) μ0(H(z, η)) is continuous with respect to η in [a, b], differentiable with respect
to z in a neighborhood of z0 for all η ∈ [a, b], and its derivative is jointly
continuous with respect to both arguments;

(ii) ν0([·,∞)) is continuous;
(iii) there exists z1 ∈ Z such that

min
a≤η≤b

{
μ0

(
H(z0, η)

)
+ ∇zμ0

(
H(z0, η)

)
(z1 − z0) − ν0

(
[η,∞)

)}
> 0.

The differentiability assumptions on μ0(H(·, η)) can be guaranteed by assuming
continuous differentiability of the function g with respect to both arguments, the
existence of the probability density of the random vector V , and by mild regularity
conditions (see [9]). Then

∇zμ0

(
H(z, η)

)
=

∫
∂H(z,η)

ϕ(v)

‖∇vg(z, v)‖
∇zg(z, v)λ(dv),

where ∂H(z, η) is the surface of the set H(z, η) and λ is the surface Lebesgue measure.
The regularity conditions mentioned require that the gradient ∇vg(z, v) be nonzero
and that the integrand above be uniformly bounded (in a neighborhood of z) by an
integrable function.

For example, if g(z, V ) = 〈z, V 〉 and V has a nondegenerate multivariate normal
distribution N (v̄, Σ), then

μ0(H(z, η)) = 1 − Φ
( η − 〈z, v̄〉√

〈z,Σz〉

)
,

where Φ(·) is the distribution function of the standard normal variable. In this case
condition (i) of Definition 2.4 is satisfied at every z �= 0.

The differential uniform dominance condition has substantial consequences. Let
C be the Banach space of continuous functions on [a, b]. Consider the mapping
Γ : Rn → C defined as

Γ(z)(η) = μ0(H(z, η)) − ν0([η,∞)), η ∈ [a, b],

where ν0([·,∞)) ∈ C . Denote by K the nonnegative cone in C .
Lemma 2.5. Assume that μ0(H(z, η)) is continuously differentiable with respect

to z in a neighborhood of z0 ∈ Z and for all η ∈ [a, b], μ0(H(z, ·)) is continuous in
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[a, b], and Γ(z0) ∈ K. The differential uniform dominance condition is satisfied at z0

if and only if the multifunction

z �→
{

Γ(z) −K if z ∈ Z,

∅ otherwise
(2.10)

is metrically regular at (z0, 0).
Proof. We observe that the differential uniform dominance condition is equivalent

to Robinson’s constraint qualification condition (see [18])

0 ∈ int
{

Γ(z0) + ∇zΓ(z0)(Z − z0) −K
}
.(2.11)

Indeed, it is easy to see that the uniform dominance condition implies Robinson’s
condition. On the other hand, if Robinson’s condition holds true, then there exists
ε > 0 such that the function identically equal to ε is an element of the set on the
right-hand side of (2.11). Then we can find z1 such that

Γ(z0)(η) +
[
∇zΓ(z0)(η)

]
(z1 − z0) ≥ ε ∀ η ∈ [a, b].

Consequently, the uniform dominance condition is satisfied. On the other hand,
Robinson’s constraint qualification at z0 is equivalent to the metric regularity of (2.10)
at (z0, 0) (see [2]).

The next proposition shows that the verification of assumption 3 in Theorem 2.1
can be reduced to the differential uniform dominance condition.

Proposition 2.6. Let the differential uniform dominance condition be satisfied
at some z0 ∈ Φ(μ0, ν0). Then relations (2.3) and (2.4) of Theorem 2.1 hold true at
z0.

Proof. We introduce the multifunction M : C ⇒ Rn as the following parameter
dependent constraint set mapping:

M(w) :=
{
z ∈ Z : μ0(H(z, η)) − w(η) ≥ 0 ∀ η ∈ [a, b]

}
.

(The relation between M and Φ is given by Φ(μ0, ν) = M
(
ν([·,∞))

)
for all continuous

distributions ν ∈ P(R).) Define w0(·) = ν0([·,∞)). By assumption, w0 ∈ C .
By Lemma 2.5, the differential uniform dominance condition is equivalent to

metric regularity of (2.10) at (z0, 0), which, upon passing to the inverse multifunction,
is equivalent to the pseudo-Lipschitz property of M at (w0, z0) (see, e.g., [12, Lemma
1.12] and [20, Theorem 9.43]). Accordingly, there exist ε̃ > 0 and L̃ > 0 such that

d(z,M(w2)) ≤ L̃d(w1, w2) ∀z ∈ M(w1) ∩ B(z0; ε̃) ∀w1, w2 ∈ B(w0; ε̃),(2.12)

where the last ball is taken in the metric of C . First, we verify the following chain of
inclusions for all (μ, ν) ∈ P(Rs) × P(R):

M(w0 + 2α((μ, ν), (μ0, ν0)) · 1) ⊆ Φ(μ, ν) ⊆ M(w0 − 2α((μ, ν), (μ0, ν0)) · 1),(2.13)

where 1 is the function on [a, b] taking the constant value 1. Note that M is applied
to continuous functions as required. Now, if

z ∈ M(w0 + 2αB ((μ, ν), (μ0, ν0)) · 1),
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then z ∈ Z and, by definition of α,

0 ≤ μ0(H(z, η)) − (w0(η) + 2α((μ, ν), (μ0, ν0)))

= μ0(H(z, η)) − ν0([η,∞)) − 2α((μ, ν), (μ0, ν0)))

≤ μ(H(z, η)) − ν([η,∞)) ∀η ∈ [a, b] .

This establishes the first inclusion of (2.13), and the second one is completely analo-
gous.

In order to check (2.3), let (μ, ν) ∈ B((μ0, ν0); ε̃/2) and z ∈ Φ(μ, ν) ∩ B(z0; ε̃/2)
be arbitrary. Define w1 ∈ C by w1 := w0 − 2α((μ, ν), (μ0, ν0)) · 1. Then the second
inclusion of (2.13) entails that z ∈ M(w1). Furthermore,

d(w1, w0) = 2α((μ, ν), (μ0, ν0)) ≤ ε̃.

Consequently, we may apply (2.12) to w1 and to w2 := w0 ∈ C :

d(z, Φ(μ0, ν0)) = d(z,M(w0)) ≤ L̃d(w1, w0) = 2L̃α((μ, ν), (μ0, ν0)).

Therefore, (2.3) holds true with L := 2L̃ and ε := ε̃/2. As for (2.4), take arbitrary
(μ, ν) ∈ B((μ0, ν0); ε̃/2) and z ∈ Φ(μ0, ν0) ∩ B(z0; ε̃/2). Define w2 ∈ C by w2 :=
w0 + 2α((μ, ν), (μ0, ν0)) · 1. Then

d(w2, w0) = 2α((μ, ν), (μ0, ν0)) ≤ ε̃,

and we may apply (2.12) to w1 := w0 and to w2. Further taking into account the first
inclusion of (2.13), one arrives at

d(z, Φ(μ, ν)) ≤ d(z,M(w2) ≤ L̃d(w0, w2) = 2L̃α((μ, ν), (μ0, ν0)),

which is (2.4) with the same values L := 2L̃ and ε := ε̃/2 as for (2.3).

3. Sensitivity of the optimal value.

3.1. Optimality conditions. In order to analyze the sensitivity of the optimal
value function, we need to briefly recall optimality conditions for problem (1.3). From
now on we assume that f is continuously differentiable.

We define the set U ([a, b]) of functions u(·) satisfying the following conditions:

u(·) is nondecreasing and right continuous;

u(t) = 0 ∀ t ≤ a;

u(t) = u(b) ∀ t ≥ b.

It is evident that U ([a, b]) is a convex cone. The slight difference from the definition
of the set U introduced in [5] is due to the fact that we formulate the stochastic
dominance constraint in (1.3) via the ≥ inequality.

We introduce the functional L : Rn × U ([a, b]) × P(Rs) × P(R) → R associated
with problem (1.3):

L(z, u;μ, ν) := f(z) −
∫

u(g(z, v))μ(dv) +

∫
u(y) ν(dy).(3.1)

As shown in [5], the functional L plays a similar role to that of a Lagrangian of the
problem.
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Theorem 3.1. Assume that the differential uniform dominance condition is
satisfied at a local minimum ẑ of problem (1.3). Then there exists a function û ∈
U ([a, b]) such that

−∇zL(ẑ, û;μ0, ν0) ∈ NZ(ẑ),(3.2) ∫
û(g(ẑ, v))μ0(dv) =

∫
û(y) ν0(dy).(3.3)

The proof follows the same line of argument as the proof in [5] and is omitted
here. It uses the correspondence between a nonnegative measure λ on [a, b] and a
function u ∈ U ([a, b]):

u(η) = λ([a, η]), η ∈ [a, b].(3.4)

Remark 2. The set Û(ẑ) of functions in U ([a, b]) satisfying (3.2)–(3.3) for the
local minimum ẑ is convex, bounded, and weakly∗ closed in the following sense: if a
sequence of functions uk ∈ Û(ẑ) and u ∈ U ([a, b]) are such that

lim
k→∞

∫ b

a

c(η) duk(η) =

∫ b

a

c(η) du(η) ∀ c ∈ C ,

then u ∈ Û(ẑ). This follows from [1, Theorem 3.6] and the application of (3.4).
If the function g(·, ·) is quasi-concave and μ has an r-concave probability density

function, with r ≥ −1/s, then the feasible set of problem (1.3) is convex (see [16]).
Therefore we can formulate the following sufficient conditions of optimality, as in [5].

Theorem 3.2. Assume that a point ẑ is feasible for problem (1.3). Suppose that
there exists a function û ∈ U ([a, b]) such that conditions (3.2)–(3.3) are satisfied. If
the function f is convex, the function g(·, ·) is quasi-concave, and V has an r-concave
probability density function, with r ≥ −1/s, then ẑ is an optimal solution of problem
(1.3).

Let us observe that under the assumptions of Theorem 3.2 the functional (3.1) is,
in general, not a quasi-convex function of z.

3.2. Upper bound. Consider the measures

μt = μ0 + tγ,

νt = ν0 + tσ,

where γ and σ are regular signed measures on Rs and R, respectively, and t > 0. We
shall bound the optimal value ϕ(μt, νt) of the perturbed problem

min f(z)

s.t. μt(H(z, η)) − νt([η,∞)) ≥ 0 ∀η ∈ [a, b],

z ∈ Z.

(3.5)

Our objective is to develop bounds for the limit of the quotients
[
ϕ(μt, νt)−ϕ(μ0, ν0)

]
/t,

when t ↓ 0.
Theorem 3.3. Let Ẑ be the set of optimal solutions of problem (1.3). Assume

the following conditions:
(i) The differential uniform dominance condition is satisfied at each point ẑ ∈ Ẑ.
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(ii) γ(H(z, η)) is continuous with respect to both arguments at (ẑ, η) for all η ∈
[a, b], is differentiable with respect to z in a neighborhood of each ẑ ∈ Ẑ for
every value of η ∈ [a, b], and its derivative is jointly continuous with respect
to both arguments.

(iii) σ([η,∞)) is a continuous function of η.
Then

lim sup
t↓0

1

t
[ϕ(μt, νt) − ϕ(μ0, ν0)]

≤ inf
ẑ∈Ẑ

sup
û∈Û(ẑ)

{∫
û(g(ẑ, v)) γ(dv) +

∫
û(y)σ(dy)

}
,

(3.6)

where Û(ẑ) is the set of functions in U ([a, b]) satisfying (3.2)–(3.3) at the minimum
ẑ.

Proof. Our result is close in spirit to that of [1, Proposition 4.22], but we work
with weaker assumptions by exploiting the structure of the problem.

Fix ẑ ∈ Ẑ. We shall construct feasible points of the perturbed problem of the
form

z̃t = ẑ + th + o(t).(3.7)

Define the set

A =
{
η ∈ [a, b] : μ0(H(ẑ, η)) = ν0([η,∞))

}
,

and let TZ(ẑ) denote the tangent cone to Z at ẑ.
We assume that the direction h in (3.7) is an element of the tangent cone TZ(ẑ)

and satisfies the infinite system of linear inequalities:

〈∇zμ0(H(ẑ, η)), h〉 + γ(H(ẑ, η)) − σ([η,∞)) ≥ 0 ∀ η ∈ A .(3.8)

It follows from the uniform dominance condition that there exists ε > 0 such that

〈∇zμ0(H(ẑ, η)), z1 − ẑ〉 > ε

for all η ∈ A . Therefore inequalities (3.8) can be satisfied by choosing h = τ(z1 − ẑ)
with a sufficiently large τ .

Let zt = ẑ + th. The uniform dominance condition implies that

μt(H(zt, η)) = μ0(H(zt, η)) + tγ(H(zt, η))

= μ0(H(ẑ, η)) + t〈∇zμ0(H(ẑ, η)), h〉 + tγ(H(zt, η)) + o(t, η),
(3.9)

where o(t, η)/t → 0 as t → 0, uniformly over η ∈ [a, b].
We shall estimate the term γ(H(zt, η)) from below. Choose any η̂ ∈ [a, b]. By the

continuity of γ(H(z, η)) around the point (ẑ, η̂), for every ε > 0 there exists δ(ε, η̂) > 0
such that

γ(H(z, η)) ≥ γ(H(ẑ, η̂)) − ε(3.10)

for all (z, η) such that ‖z − ẑ‖ ≤ δ(ε, η̂) and |η− η̂| ≤ δ(ε, η̂). For each ε the intervals
|η−η̂| ≤ δ(ε, η̂), where η̂ runs through [a, b], cover [a, b]. Choosing a finite subcovering,
we conclude that there exists δ(ε) > 0 such that (3.10) holds true for all z satisfying
‖z − ẑ‖ ≤ δ(ε) and for all η ∈ [a, b].



332 D. DENTCHEVA, R. HENRION, AND A. RUSZCZYŃSKI

Define r(t) = inf
{
ε > 0 : δ(ε) ≥ t‖h‖

}
. Observe that r(t) → 0 as t ↓ 0. It follows

from (3.10) that

γ(H(zt, η)) ≥ γ(H(ẑ, η)) − r(t).

Substituting this estimate into (3.9), we obtain

μt(H(zt, η)) ≥ μ0(H(ẑ, η)) + t〈∇zμ0(H(ẑ, η)), h〉 + tγ(H(ẑ, η)) + o(t, η) − tr(t).

Using condition (3.8) and the feasibility of ẑ, we conclude that

μt(H(zt, η)) − νt([η,∞)) =
[
μ0(H(ẑ, η)) − ν0([η,∞))

]
+ t

[
〈∇zμ0(H(ẑ, η)), h〉 + γ(H(ẑ, η)) − σ([η,∞))

]
+ o(t, η) − tr(t)

≥ o(t, η) − tr(t) ∀ η ∈ [a, b].

(3.11)

Consequently, the point zt may violate the constraints of the perturbed problem only
by quantities which are infinitely smaller than t. Define the mapping Γ : Rn ×R → C
as follows:

Γ(z, t)(η) = μt(H(z, η)) − νt([η,∞)), η ∈ [a, b].

The system

Γ(z, t) ∈ K,

z ∈ Z,

is stable about (ẑ, 0) (see, e.g., [1, Theorem 2.87]). Therefore, for all sufficiently small
t > 0, we can slightly modify zt to get a point z̃t such that

Γ(z̃t, t) ∈ K,

z̃t ∈ Z,

‖z̃t − zt‖ ≤ C
[
dist(Γ(zt, t),K) + dist(zt, Z)

]
,

where C is some constant. Using (3.11) and the fact that h is tangent to Z, we obtain
that

lim
t↓0

1

t

(
z̃t − ẑ

)
= h.

As z̃t is feasible,

ϕ(μt, νt) ≤ f(z̃t).

Subtracting ϕ(μ0, ν0), dividing by t, and passing to the limit, we obtain

lim sup
t↓0

1

t
[ϕ(μt, νt) − ϕ(μ0, ν0)] ≤ lim sup

t↓0

1

t
[f(z̃t) − f(ẑ)] = 〈∇f(ẑ), h〉.(3.12)

It follows that the limit on the left-hand side of (3.12) is bounded from above by the
optimal value of the problem

min 〈∇f(ẑ), h〉
s.t. 〈∇zμ0(H(ẑ, η)), h〉 ≥ −γ(H(ẑ, η)) + σ([η,∞)) ∀ η ∈ A ,

h ∈ TZ(ẑ).

(3.13)
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The optimal value of the linear-conic problem (3.13) is equal to the optimal value of
the following dual problem (see, e.g., [1, Theorem 5.106]):

max
λ

∫ b

a

[
− γ(H(ẑ, η)) + σ([η,∞))

]
λ(dη)

s.t. −∇f(ẑ) −
∫ b

a

∇zμ0(H(ẑ, η))λ(dη) ∈ NZ(ẑ),

λ ≥ 0.

(3.14)

Here λ is a regular measure on A . Moreover, it is sufficient to consider atomic
measures λ with at most n + 1 atoms.

Extending λ to [a, b], associating with it a function u(·) = λ([a, ·]), and changing
the order of integration, we obtain the identity

∫ b

a

γ(H(ẑ, η))λ(dη) =

∫ b

a

∫
v∈H(ẑ,η)

γ(dv)λ(dη) =

∫ b

a

∫
{v:g(ẑ,v)≥η}

γ(dv)λ(dη)

=

∫ ∫ g(ẑ,v)

a

λ(dη) γ(dv) =

∫
u(g(ẑ, v)) γ(dv).

(3.15)

In a similar way we transform other integrals in (3.14) to obtain the following form
of the dual problem:

max
u(·)

−
∫

u(g(ẑ, v)) γ(dv) +

∫
u(y)σ(dy)

s.t. −∇f(ẑ) −∇z

∫
u(g(ẑ, v))μ0(dv) ∈ NZ(ẑ),

u(·) ∈ U ([a, b]),

u(·) satisfies (3.3).

(3.16)

We observe that the feasible set of this problem is the set Û given by (3.2)–(3.3). Now
we continue the estimate (3.12) as follows:

lim sup
t↓0

1

t
[ϕ(μt, νt) − ϕ(μ0, ν0)] ≤ sup

û∈Û(ẑ)

{
−
∫

û(g(ẑ, v)) γ(dv) +

∫
û(y)σ(dy)

}
.

As ẑ ∈ Ẑ was arbitrary, we conclude that

lim sup
t↓0

1

t
[ϕ(μt, νt) − ϕ(μ0, ν0)] ≤ inf

ẑ∈Ẑ
sup

û∈Û(ẑ)

{
−
∫

û(g(ẑ, v)) γ(dv) +

∫
û(y)σ(dy)

}
,

which was what we set out to prove.
As discussed in the proof, it is sufficient to consider the supremum over piecewise

constant functions û ∈ Û having at most n + 1 jumps.
Corollary 3.4. Suppose that μ1 = μ0 + γ is a nonnegative measure and let

ν1 = ν0 + σ. Then

lim sup
t↓0

1

t
[ϕ(μt, νt) − ϕ(μ0, ν0)] ≤ inf

ẑ∈Ẑ
sup

û∈Û(ẑ)

∫
û(y) ν1(dy).
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Proof. We can rewrite the estimate (3.6) as follows:

lim sup
t↓0

1

t
[ϕ(μt, νt) − ϕ(μ0, ν0)] ≤ inf

ẑ∈Ẑ
sup

û∈Û(ẑ)

{∫
û(g(ẑ, v))μ0(dv)

−
∫

û(g(ẑ, v))μ1(dv) +

∫
û(y) ν1(dy) −

∫
û(y) ν0(dy)

}
.

As the function û(·) is nonnegative, we can skip the second term on the right-hand
side. Using the complementarity condition (3.3), we get the required inequality.

3.3. Lower bound. Let us start from the following observation.
Lemma 3.5. Consider any measures μ ∈ P(Rs) and ν ∈ P(R) and a point z ∈ Z

such that

μ(H(z, η)) ≥ ν([η,∞)), η ∈ [a, b].(3.17)

Then for every u ∈ U ([a, b]) we have∫
u(g(z, v))μ(dv) ≥

∫
u(y) ν(dy).

Proof. For a function u ∈ U ([a, b]) we define a nonnegative measure λ on [a, b]
by the relation u(·) = λ([a, ·]). Integrating the inequalities (3.17), changing the order
of integration as in (3.15), we obtain the postulated inequality.

Suppose that u ∈ U ([a, b]). Employing Lemma 3.5, we obtain

ϕ(μ, ν) ≥ inf
z∈Z

{
f(z) −

∫
u(g(z, v))μ(dv)

}
+

∫
u(y) ν(dy).

We get the general dual lower bound

ϕ(μ, ν) ≥ sup
u∈U ([a,b])

inf
z∈Z

{
f(z) −

∫
u(g(z, v))μ(dv) +

∫
u(y) ν(dy)

}
.

In order to obtain tighter bounds we consider the perturbations in directions

μt = μ0 + tγ,

νt = ν0 + tσ.

We shall develop lower bounds for the differential quotients
[
ϕ(μt, νt) − ϕ(μ0, ν0)

]
/t

when t ↓ 0. Our result is similar to the standard approach employed in [1, Theorem
4.24]. However, it is unrealistic to assume that the Lagrangian is convex (even under
the assumptions of Theorem 3.2), and that is why we need Lipschitz stability of
optimal solutions.

Theorem 3.6. Assume that ẑ is the unique optimal solution of problem (1.3)
and that the differential uniform dominance condition is satisfied at ẑ. Furthermore,
assume that the perturbed problems (3.5) have solutions zt such that ‖zt − ẑ‖ ≤ Lt
with some constant L. Let Û be the set of functions û(·) satisfying the optimality
conditions (3.2)–(3.3). Then

lim inf
t→0

1

t

[
ϕ(μt, νt) − ϕ(μ0, ν0)

]
≥ sup

û∈Û

{
−
∫

û
(
g(ẑ, v)

)
γ(dv) +

∫
û(y)σ(dy)

}
.

(3.18)
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Proof. Consider problem (2.1) and its Lagrangian

Λ(z, λ;μ, ν) = f(z) −
∫ b

a

[
μ(H(z, η)) − ν([η,∞))

]
λ(dη),

where λ is a nonnegative regular measure on [a, b]. Fix μ = μ0 and ν = ν0. As in
[5], owing to the differential uniform dominance condition at ẑ, there exists a measure

λ̂ ≥ 0 such that

〈∇zΛ(ẑ, λ̂;μ0, ν0), z − ẑ〉 ≥ 0 ∀ z ∈ Z

and ∫ b

a

[
μ0(H(ẑ, η)) − ν0([η,∞))

]
λ̂(dη) = 0.

Using the nonnegativity of λ̂ and the complementarity condition, we can write the
chain of inequalities

ϕ(μt, νt) − ϕ(μ0, ν0) ≥ f(zt) −
∫ b

a

[
μt(H(zt, η)) − νt([η,∞))

]
λ̂(dη) − f(ẑ)

≥ f(zt) −
∫ b

a

[
μt(H(zt, η)) − νt([η,∞))

]
λ̂(dη)

− f(ẑ) +

∫ b

a

[
μ0(H(ẑ, η)) − ν0([η,∞))

]
λ̂(dη)

= Λ(zt, λ̂;μ0, ν0) − Λ(ẑ, λ̂;μ0, ν0) − t

∫ b

a

[
γ(H(zt, η)) − σ([η,∞))

]
λ̂(dη)

= 〈∇zΛ(ẑ, λ̂;μ0, ν0), zt − ẑ〉 + o(zt, ẑ) − t

∫ b

a

[
γ(H(zt, η)) − σ([η,∞))

]
λ̂(dη),

where o(zt, ẑ)/‖zt − ẑ‖ → 0 as t → 0. By the optimality condition and by the
assumption that ‖zt − ẑ‖ ≤ Lt, we conclude that

lim inf
t→0

1

t

[
ϕ(μt, νt) − ϕ(μ0, ν0)

]
≥ −

∫ b

a

[
γ(H(ẑ, η)) − σ([η,∞))

]
λ̂(dη).(3.19)

Now we use the correspondence between a nonnegative measure λ̂ on [a, b] and a
function û ∈ U ([a, b]) defined as follows:

û(η) = λ̂([a, η]), η ∈ [a, b].

Changing the order of integration, as in (3.15), we obtain∫ b

a

γ(H(ẑ, η)) λ̂(dη) =

∫
û(g(ẑ, v)) γ(dv),

∫ b

a

σ([η,∞)) λ̂(dη) =

∫
û(y))σ(y).

Using the last two equations, we can rewrite (3.19) as follows:

lim inf
t→0

1

t

[
ϕ(μt, νt) − ϕ(μ0, ν0)

]
≥ −

∫
û(g(ẑ, v)) γ(dv) +

∫
û(y))σ(y).
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As λ̂ was an arbitrary optimal multiplier, we can take the supremum of the right-hand
side over û ∈ Û to obtain (3.18).

We point out that the assumption of Lipschitz stability of optimal solutions,
‖zt − ẑ‖ ≤ Lt, has an implicit character. In general stability studies, its fulfillment
involves appropriate second order sufficient optimality conditions. In our case, due to
the nature of the probability distribution functions, such an analysis is very difficult.

Finally, we obtain the directional differentiability result.
Corollary 3.7. Under the assumptions of Theorems 3.3 and 3.6 the optimal

value function is directionally differentiable in the direction (γ, σ) with the derivative

ϕ′((μ0, ν0); (γ, σ)) = sup
û∈Û

{
−
∫

û
(
g(ẑ, v)

)
γ(dv) +

∫
û(y)σ(dy)

}
.

The assumptions simplify considerably if we allow perturbations of the benchmark
distribution only.
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A. Ruszczyński and A. Shapiro, eds., Elsevier, Amsterdam, 2003, pp. 483–554.

[22] W. Römisch and R. Schultz, Stability analysis for stochastic programs, Ann. Oper. Res., 30
(1991), pp. 241–266.

[23] W. Römisch and R. Schultz, Distribution sensitivity for certain classes of chance-constrained
models with application to power dispatch, J. Optim. Theory Appl., 71 (1991), pp. 569–588.
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EFFICIENT LINE SEARCH METHODS FOR CONVEX FUNCTIONS∗
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Abstract. In this paper we propose two new line search methods for convex functions. These
new methods exploit the convexity property of the function, contrary to existing methods. The first
method is an improved version of the golden section method. For the second method it is proven that
after two evaluations the objective gap is at least halved. The practical efficiency of the methods is
shown by applying our methods to a real-life bus and buffer size optimization problem and to several
classes of convex functions.
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1. Introduction. Line searching is an important step for many optimization
methods. In practice both exact and approximate line search methods are used.
Well-known line search methods are quadratic and cubic interpolation, the golden
section method, and backtracking, often combined with clever stopping criteria. For
a general overview on line searches we refer to the books by Gill, Murray, and Wright
[11], Hiriart-Urruty and Lemarechal [13], and Bazaraa, Sherali, and Shetty [3]. Line
search is also an important issue in interior point methods for both linear programming
[19] and convex programming [5], [9]. For a good survey on line search techniques
within trust-region methods, see Conn, Gould, and Toint [6]. Recent papers on line
search techniques in general or on a specific optimization method, like [1], [2], [4], [7],
[14], [15], [16], [17], [18], [20], and [21], show that developing and analyzing efficient
line search techniques is still an important issue.

The aim in such line search methods is to find a good or a (near) optimal solution
w.r.t. an objective or merit function, along a given direction using a minimal number
of function evaluations. Especially in the case of black-box functions, where often
time-consuming simulation runs, i.e., function evaluations, have to be done, it is
desirable to perform as few function evaluations as possible.

Now suppose the (black-box) function is known to be convex (or concave). Note
that in practice it happens often that this information is available. For an example
see the in-home network problem in section 4. If the function is convex, it has exactly
one optimum1 on a closed domain. This fact is used by the above mentioned methods.
However, convexity of a function gives more information. For example, if a function
is convex, then using the performed function evaluations, an upper and lower bound
can be constructed for the function values. This information can be used to obtain
better information on the location of the optimum.
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In this paper we will show how this convexity information can be used. We will
show that existing methods propose new candidates which may a priori be detected
as not optimal or even as nonimproving (w.r.t. the current best point) by using the
information of the previous iterations and the convexity property. This means that
methods for convex problems that use line searches can be easily improved by adding
this simple check for nonimprovement, thereby avoiding unnecessary evaluations.

We will also describe two new methods: the improved golden section method and
the triangle section method. We will show that the improved golden section method
is theoretically at least as good as the regular golden section method. For the triangle
section method we will show that the objective gap or range of uncertainty, i.e., the
difference between the current best known objective value and the lower bound for
the optimal value, is at least halved after two function evaluations. It is significant
that this result is related to the objective of the optimization, namely, the function
values, in contrast to the convergence result of the golden section method, which
is related to the function domain values. We also describe the application of our
methods to a real-life bus and buffer size optimization problem and to several classes
of convex functions. Note that in practice it is much better to have a guarantee for
the reduction factor for the function value gap than for the domain gap. We compare
the performance of our methods with the performance of the golden section method.

During the revision of this paper we discovered a recent paper written by Gúerin,
Marcotte, and Savard [12], in which they describe a method to approximate a univari-
ate convex function. Several elements in their analysis resemble our analysis, although
they use derivative information. It is straightforward to extend all our methods for
the case in which you also get derivative (or subdifferential) information. In fact then
the improvement w.r.t. the golden section is even better. Note, however, that there
are many cases in which you do not get derivative information; see, e.g., our practical
example in section 4.

In section 2 we show how convexity of a function can be used to reduce the interval
in which an optimal solution can be found. For a concave function similar methods can
be used. We continue with deriving performance guarantees on the interval reduction
in section 3. In section 4 we describe an application involving bus and buffer size
optimization in which a nondifferentiable function with computationally expensive
function evaluations has to be optimized. We describe experimental results for this
application and for other classes of convex functions in section 5. Finally, in section 6
we give our conclusions.

2. Interval reduction using convexity. In this section we describe how to
use the convexity of a function to obtain upper and lower bounds for the function
values. We show how they can be used to reduce the interval in the function domain
in which the minimum can be found, which is called the interval of uncertainty. For
concave functions a similar method can be used.

Let f(x) be a continuous, univariate, convex function on a closed domain D.
Assume that for a given set of points X = {x1, . . . , xn} in D the function values of f
are known.

Figure 1(a) gives an example of a convex function f of which six function evalu-
ations are known. As f is convex, αf(xi) + (1 − α)f(xj) ≥ f(αxi + (1 − α)xj) with
α ∈ [0, 1] for each xi, xj ∈ X . Using this property we obtain the piecewise-linear
upper bound fu of f with fu(x) ≥ f(x) for all x ∈ D and fu(x) = f(x) if x ∈ X ;
cf. Figure 1(b). Now we consider the line segments BC and DE and extend them
until they intersect at point K, as shown in Figure 1(c). Then, the lines CK and
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Fig. 1. (a) Example of a convex function f with six function evaluations. (b) A piecewise-
linear upper bound based on the convexity property. (c) A piecewise-linear lower bound based on the
convexity property. (d) (Magnified in comparison with (a)–(c).) The optimum lies somewhere in
the gray areas, the areas of uncertainty. The interval of uncertainty based on the convexity property
is given by [L,U ].

convexity based
interval

golden section
point

golden section
based interval

A

C

D

E

B

F

Function
evaluations:

A: (0,300)
B: (262,600)
C: (100,100)
D: (162,0)
E: (200,150)
F: (138,?)

Fig. 2. Example where the golden section method chooses a point outside the interval of un-
certainty for function evaluation. Five function evaluations have already been made following the
sequence A, . . . , E. The sixth point for evaluation proposed by golden section is point F . However,
the interval of uncertainty comprising the two small gray triangles is located to the right of F .

KD give a lower bound for the function f between x3 and x4. This can be done for
any four consecutive points, resulting in the lower bound f l on f given in Figure 1(c)
by the dashed line. Now let xk ∈ X be a point with the lowest determined function
evaluation, i.e., f(xk) ≤ f(x) for all x ∈ X . Then the minimum function value of
f must lie between f(xk) and the minimum of f l(x). The possible locations of the
minimum are given in Figure 1(d) by the gray areas, the areas of uncertainty. The
interval of uncertainty is [L,U ].

This shows how the interval of uncertainty can be decreased using the convexity
property. The next step in finding the minimum of f is to choose a point for evaluation.
Naturally, this should be a point in the interval of uncertainty. Taking one of the
existing methods to choose a point, however, does not always give a point in the
interval of uncertainty. Figures 2, 3, and 4 show three examples where the golden
section method, unit search, and quadratic interpolation, respectively, would evaluate
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1

1/2

0
xc xc+2−(i−1)

s xc+2−(i−2)
s

1/3

xc+2−i
s

Fig. 3. Example where unit search chooses a point outside the interval of uncertainty for
function evaluation. The known function evaluations are f(xc) = 0 and f(xc + 2−(i−2)s) = 1.
Furthermore, we know f(xc+2−(i−1)s). For the next iteration, unit search would evaluate xc+2−is.
However, if 1

3
≤ f(xc + 2−(i−1)s) ≤ 1

2
holds, then using convexity we know that f(xc + 2−is) ≥ 0

and therefore will not lead to a new minimum. Unit search can be improved by choosing each time
the point in the middle of the interval of uncertainty based on convexity.

a b cd c’
0

1

2

3

Fig. 4. Example where quadratic interpolation chooses a point outside the interval of uncer-
tainty for function evaluation. The points with known function evaluations are a = 0, b = 1

10
, and

c = 1, with f(a) = f(c) = 1 and f(b) = 0. Furthermore, we know f(c′). Quadratic interpolation
would take d = 1

2
as the point for a new function evaluation. However, if 2 1

9
≤ f(c′) ≤ 3 holds,

then using convexity it is clear that f(d) ≥ 0 and therefore will not lead to a new minimum.

the function at a point that is outside the interval of uncertainty. In section 3 we
discuss some strategies for choosing a new point. Finally, the interval of uncertainty
may even be further decreased if, for an evaluated point, the gradient of the function
is known. However, we leave this for future research.

3. Function evaluation strategies. In this section we discuss two strategies
for choosing a new point that use the convexity property. In section 3.1 we show
how to choose a new point for evaluation when the focus lies on the reduction of the
interval of uncertainty. In section 3.2 we show how to choose a new point such that
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Fig. 5. Starting the golden section method. (a) First two points, x0
1 and x0

2, are chosen in the
interior of the starting interval of uncertainty, [L0, U0]. Next, the function is evaluated at these
points, and depending on which one is lower, the interval of uncertainty is adjusted; see (b) and (c).

the range of uncertainty, i.e., the interval consisting of all possible function values for
the minimum, is at least halved for each two new function evaluations. Finally, in
section 3.3 we shortly describe how known piecewise linearity of a function can be
used to terminate the search procedure.

3.1. Function domain reduction. For the reduction of the interval of uncer-
tainty in the function domain we have taken the golden section method and improved
it with the reduction that follows from the convexity property, as described in the
previous section. The golden section method chooses new points for function evalu-
ation in such a way that the interval of uncertainty can be decreased by a constant
factor τ = (

√
5 − 1)/2 in each iteration. Figure 5 shows an example. Let [L0, U0]

be the initial interval of uncertainty. Then golden section method chooses the fol-
lowing two interior points x0

1 and x0
2 for evaluation: x0

1 = U0 − τ(U0 − L0) and
x0

2 = L0 + τ(U0 − L0). Now, suppose x0
1 has the lowest function evaluation. Then

the new interval of uncertainty [L1, U1] is equal to [L0, x0
2]. Furthermore, the new

interior points to be evaluated are x1
1 = U1 − τ(U1 − L1) and x1

2 = L1 + τ(U1 − L1).
However, as the interior points are chosen using the golden section factor τ , it follows
that x1

2 = x0
1. Therefore, only x1

1 has to be evaluated for the next step. Similarly, if
x0

2 has the lowest function evaluation, then L1 = x0
1 and x1

1 = x0
2.

The improved golden section method, shown in Algorithm 1, now works as follows.
It starts in the same way as the regular golden section method. Let [L,U ] be the
interval of uncertainty with two interior points x1 and x2 such that x2−L = U−x1 =
τ(U−L). We first consider the case in which the minimum function evaluation occurs
at one of the interval boundaries, e.g., at L, so f(L) = min{f(L), f(x1), f(x2), f(U)}.
Then the new interval of uncertainty according to the golden section method is given
by [L, x1]. However, using the convexity property we can obtain a smaller interval
of uncertainty [L,U ′] with U ′ ≤ x1 for which two new interior points are selected.
If f(U) = min{f(L), f(x1), f(x2), f(U)}, then similarly a new interval [L′, U ] can be
obtained. Note that the minimum function evaluation can occur only at L or U if it
has not occurred yet at an internal point of the interval of uncertainty. Furthermore,
by evaluating the function f first at the boundaries L and U and then at the interior
point closest to the boundary with the lowest function value, e.g., x1 if f(L) < f(U),
the function does not need to be evaluated at the other interior point if the lowest
function value is not improved by the new evaluation; see Figure 6 for an example
and Algorithm 2 for a description of the algorithm loop during initialization.

Now we assume that x1 has the lowest function value, i.e., f(x1) ≤ f(x2); if
f(x2) < f(x1) holds, then we can follow a strategy analogous to what we describe
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Algorithm 1. The improved golden section method.

Input: Interval of uncertainty [L,U ], stop criterion ε,

Output: Interval of uncertainty [L,U ] with U − L < ε,

Parameter: Golden section τ =
√

5−1
2

.

Initialization:

Perform initialization loop of Algorithm 2 to obtain a new interval [L,U ] with interior

point x;

Loop:

while U − L > ε do

if x = U − τ(U − L) then

x1 := x, x2 := L + τ(U − L);

Determine f(x2);

else (x = L + τ(U − L))

x1 := U − τ(U − L), x2 := x;

Determine f(x1);

endif

Determine new interval of uncertainty [L′, U ′] using convexity property;

Stretch [L′, U ′] to [L̃, Ũ ] according to (1) and (2) to maintain golden section

property;

Take as new interval of uncertainty [L,U ] := [L̃, Ũ ];

If x1 ∈ (L,U), then x := x1, else if x2 ∈ (L,U), then x := x2;

endwhile

L Ux1 x2

f(x)

Fig. 6. Initialization of improved golden section method where the minimum still lies at L after
evaluation at x1. As x2 lies outside the new interval of uncertainty, it does not need to be evaluated
anymore.

here. The new interval of uncertainty using the golden section method is now given by
[L, x2]. Using the convexity property we can obtain a smaller interval of uncertainty
[L′, U ′] for which L′ ≥ L and U ′ ≤ x2 holds. For now we assume that x1 is an interior
point of [L′, U ′]; the possibility that x1 is not an interior point is handled later in this
section.
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Algorithm 2. Loop at initialization of the improved golden section method to obtain
the lowest function evaluation at an interior point of the interval of uncertainty.

Input: Interval of uncertainty [L,U ], stop criterion ε,

Output: Interval of uncertainty [L,U ] with minimum at interior point x or U − L < ε,

Parameter: Golden section τ =
√

5−1
2

.

Initialization:

Determine f(L) and f(U);

Loop:

repeat

if f(L) < f(U) then

x := U − τ(U − L);

else

x := L + τ(U − L);

Determine f(x);

Determine new interval of uncertainty [L,U ] using convexity property;

until U − L < ε or f(x) ≤ f(L) and f(x) ≤ f(U);

The golden section method would choose a new point x3 = x2 − τ(x2 − L) so
that x2 − x3 = x1 − L. However, if we replace [L, x2] by [L′, U ′] and then choose
x3 = U ′ − τ(U ′ −L′), U ′ − x3 is generally not equal to x1 −L′, meaning that the two
interior points x1 and x3 do not satisfy the golden section property w.r.t. the interval
of uncertainty [L′, U ′]. Therefore, we will stretch the interval [L′, U ′] to a new interval
[L̃, Ũ ] such that the golden section property can be maintained for the new point to
be evaluated. We distinguish four possibilities for this:

(a) x1 ≤ U ′ − τ(U ′ − L′),
(b) U ′ − τ(U ′ − L′) < x1 < 1

2 (U ′ + L′),
(c) 1

2 (U ′ + L′) ≤ x1 < L′ + τ(U ′ − L′),
(d) x1 ≥ L′ + τ(U ′ − L′).

(1)

Figure 7 shows an example of these four possibilities. The corresponding stretched
intervals are the following:

(a) L̃ = U ′ − 1
τ (U ′ − x1), Ũ = U ′,

(b) L̃ = L′, Ũ = 1
1−τ (x1 − τL′),

(c) L̃ = 1
1−τ (x1 − τU ′), Ũ = U ′,

(d) L̃ = L′, Ũ = L′ + 1
τ (x1 − L′).

(2)

The next lemma states that the obtained stretched interval is not larger than the
interval of uncertainty obtained with the regular golden section method.

Lemma 1. The stretched interval, [L̃, Ũ ], is not larger than the interval of uncer-
tainty of the regular golden section method, [L, x2], i.e.,

Ũ − L̃ ≤ x2 − L .

Proof. For (a),(c), and (d) we prove that Ũ − L̃ ≤ x2 − L holds by showing that
L̃ ≥ L and Ũ ≤ x2. For (b) it is possible that Ũ > x2. In the following derivations
we use the fact that 1−τ

τ = τ .
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Fig. 7. Stretching the interval of uncertainty obtained with the convexity property such that the
golden section property is maintained for the new function evaluation. The four figures correspond
to the four different possibilities.

(a) As Ũ = U ′ it follows that Ũ ≤ x2. For L̃ we can derive

L̃ = U ′ − 1

τ
(U ′ − x1)

=

(
1 − 1

τ

)
U ′ +

1

τ
(L + τ(x2 − L))

= x2 −
1 − τ

τ
(U ′ − L)

= x2 − τ(U ′ − L)

≥ x2 − τ(x2 − L)

> x2 − (x2 − L)

= L.

(b) From x1 ≤ 1
2 (L′ + U ′) it follows that 1

2 (x1 − L′) ≤ 1
2 (U ′ − x1), and therefore

x1 − L′ ≤ U ′ − x1 ≤ x2 − x1. We can now make the following derivation:

Ũ − L̃ =
x1 − τL′

1 − τ
− L′

=
x1 − L′

1 − τ

≤ x2 − x1

1 − τ

=
x2 − (L + τ(x2 − L))

1 − τ
= x2 − L.



346 EDGAR DEN BOEF AND DICK DEN HERTOG

(c) As Ũ = U ′ it follows that Ũ ≤ x2. For L̃ we can derive

L̃ =
1

1 − τ
(x1 − τU ′)

=
1

1 − τ
(L + τ(x2 − L)) − τ

1 − τ
U ′

= L +
1

τ
(x2 − U ′)

≥ L.

(d) As L̃ = L′ it follows that L̃ ≥ L. For Ũ we can derive

Ũ = L′ +
1

τ
(x1 − L′)

=

(
1 − 1

τ

)
L′ +

1

τ
(L + τ(x2 − L))

= x2 −
(

1 − τ

τ

)
(L′ − L)

= x2 − τ(L′ − L)

≤ x2.

This leads to the following strategy for choosing a new point for evaluation.
Improved golden section strategy, f(x1) ≤ f(x2). Determine the stretched

interval [L̃, Ũ ] as described above. Choose the new point x3 for function evaluation
as follows for the four previously distinguished possibilities:

(a) x1 ≤ U ′ − τ(U ′ − L′), x3 = L̃+ τ(Ũ − L̃) = U ′ − τ(U ′ − x1).
(b) U ′ − τ(U ′ − L′) < x1 < 1

2 (L′ + U ′), x3 = L̃ + τ(Ũ − L̃) = 1
τ x1 − τL′.

(c) 1
2 (L′ + U ′) ≤ x1 < L′ + τ(U ′ − L′), x3 = Ũ − τ(Ũ − L̃) = 1

τ x1 − τU ′.

(d) x1 ≥ L′ + τ(U ′ − L′), x3 = Ũ − τ(Ũ − L̃) = L′ + τ(x1 −L′).
In the following theorem we show that the improved golden section strategy per-

forms at least as well as the regular golden section method, while ensuring that the
new point chosen for function evaluation lies in the interval of uncertainty.

Theorem 1. Let [L,U ] be the interval of uncertainty, and let x1, x2 ∈ [L,U ] such
that U − x1 = x2 − L = τ(U − L), i.e., x1 and x2 satisfy the golden section property.
Without loss of generality (w.l.o.g.) assume that f(x1) ≤ f(x2). Then the following
hold:

(a) The stretched interval of uncertainty [L̃, Ũ ] obtained by the improved golden
section method is at least a factor τ smaller than the starting interval of
uncertainty [L,U ], i.e.,

Ũ − L̃ ≤ τ(U − L) .

(b) Let x3 be the new point for function evaluation chosen according to the im-
proved golden section strategy. Then, x3 lies in the interval of uncertainty,
i.e.,

x3 ∈ [L′, U ′] .

Proof. (a) Using the golden section method, the interval of uncertainty [L,U ]
with function evaluations at x1 = U − τ(U − L) and x2 = L + τ(U − L) reduces to
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interval [L, x2] of size τ(U − L). The new point for function evaluation x3 is then
chosen such that the golden section property is maintained, i.e., x3 = x2 − τ(x2 −L).

Using the improved golden section strategy, the new point for function evaluation
is chosen to be either x3 = Ũ − τ(Ũ − L̃) or x3 = L̃ + τ(Ũ − L̃). Expressing the
other internal point x1 in L̃ and Ũ by rewriting the expressions for L̃ and Ũ given
in (1) and (2) gives x1 = L̃ + τ(Ũ − L̃) for (c) and (d) and x1 = Ũ − τ(Ũ − L̃) for
(a) and (b). So for the improved golden section strategy, the golden section property
is maintained for the interval [L̃, Ũ ]. Lemma 1 states that Ũ − L̃ ≤ x2 − L and thus
Ũ − L̃ ≤ τ(U − L). Therefore, the starting interval of uncertainty is reduced by at
least a factor of τ . Furthermore, as the new interval of uncertainty has the golden
section property, the same reduction factor is guaranteed for the following function
evaluations.

(b) Now we show that x3 ∈ [L′, U ′]. For (a), x3 = U ′ − τ(U ′ − x1), so x3 < U ′ is
obvious. Furthermore, using τ < 1 and x1 > L′ it follows that x3 > L′. Likewise, for
(d) x3 ∈ [L′, U ′] holds. For (b) we can make the following derivations:

x3 =
1

τ
x1 − τL′

≤ L′ + U ′

2τ
− τL′

=
U ′

τ
− (U ′ − L′)

2τ
− τU ′ + τ(U ′ − L′)

= U ′ − 1 − 2τ2

2τ
(U ′ − L′)

< U ′,

x3 =
1

τ
x1 − τL′

>
1

τ
(U ′ − τ(U ′ − L′)) − τL′

=
1 − τ

τ
U ′ + (1 − τ)L′

= τU ′ + (1 − τ)L′

> L′.

In a symmetrical manner it can be shown for (c) that x3 ∈ [L′, U ′].
For completeness, we give the formula for the new point x3 for evaluation in case

f(x2) < f(x1).
Improved golden section strategy, f(x2) < f(x1). Determine the stretched

interval [L̃, Ũ ]. Choose the new point x3 for function evaluation as follows:
(a) x2 ≥ L′ + τ(U ′ − L′), x3 = L′ + τ(x2 − L′).
(b) 1

2 (L′ + U ′) ≤ x2 < L′ + τ(U ′ − L′), x3 = 1
τ x2 − τU ′.

(c) U ′ − τ(U ′ − L′) < x2 < 1
2 (L′ + U ′), x3 = 1

τ x2 − τL′.
(d) x2 ≤ U ′ − τ(U ′ − L′), x3 = U ′ − τ(U ′ − x2).

In a way analogous to the above, we can show that this reduces the interval of uncer-
tainty by at least a factor of τ .

Finally, we consider the possibility in which [L′, U ′] does not have one of the
previous interior points x1, x2 as an interior point. This can happen when f(x1) =



348 EDGAR DEN BOEF AND DICK DEN HERTOG

(a) (b)

Fig. 8. Two examples when the improved golden section method leads to an interval of uncer-
tainty without an interior point. In (a) the two interior points of the previous interval of uncertainty
both have the same function value. In (b) the lowest function evaluation lies on one line with two
other function evaluations.

f(x2) or when at least three consecutive points that have already been evaluated lie on
one line (see Figure 8); in the latter case the function f is at least partially piecewise
linear. Then the interval [L′, U ′] lies between x1 and x2, i.e., [L′, U ′] ⊆ [x1, x2] with
either L′ = x1 or U ′ = x2 or both. Two new function evaluations are now required to
decrease the interval further by at least a factor of τ . However, as x2−x1 = τ2(U−L),
the previous function evaluation results in a reduction of τ2. Therefore, the combined
reduction of the previous function evaluation and the new function evaluation will also
be at least τ2, giving an average reduction of at least a factor of τ for each function
evaluation.

We now choose one new point using the golden section property, i.e., either x3 =
x2 − τ(x2 − x1) or x3 = x1 + τ(x2 − x1), which ensures that a reduction of at least
τ can be guaranteed for the following function evaluations. The resulting function
evaluation of x3 is used to update the interval of uncertainty, and we choose another
point according to the described improved golden section strategy.

Now we have shown how the convexity property can be used to choose new points
for evaluation such that the interval of uncertainty is reduced by at least the same
factor as for the golden section method. However, in practice the reduction will be
larger as we show with empirical results in section 5. In this section we continue with
a method that decreases the range of uncertainty by at least a factor of 1/2 after two
new function evaluations.

3.2. Function range reduction. As is shown in Figure 1(d) the convexity
property can be used to obtain upper and lower bounds for the function value of each
point in the interval of uncertainty. As these upper and lower bounds tighten for each
new function evaluation, they can be used for a strategy that guarantees a reduction
of the range of uncertainty instead of the interval of uncertainty. Figure 9 depicts the
area in which the optimum can be found, together with the points corresponding to
the function evaluations and the interval of uncertainty.

Let M be the point with the lowest function evaluation so far, f(M). Then
L′ ≤ M ≤ U ′. Now we define Δfk

1 as the height of the triangle in the area of
uncertainty between L′ and M after k function evaluations, and we define Δfk

2 as the
height of the triangle between M and U ′. We can express Δfk

1 and Δfk
2 using known
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L L’ U’ UM

f(M)

f(L)

f(U)

x

Δf
 k
1

Δf
 k
2

Fig. 9. The areas of uncertainty. The three points with their function evaluations are given by
L, M , and U . The interval of uncertainty in the function domain begins at L′ and ends at U ′. The
height of the two areas after k function evaluations is given by Δfk

1 and Δfk
2 . The new point for

function evaluation is x.

function values and the interval of uncertainty, as derived in Appendix A, which gives
the following formulas:

Δfk
1 =

(M − L′)(f(L) − f(M))(f(U) − f(M))

(f(L) − f(M))(U −M) + (f(U) − f(M))(L′ − L)
,(3)

Δfk
2 =

(U ′ −M)(f(L) − f(M))(f(U) − f(M))

(f(L) − f(M))(U − U ′) + (f(U) − f(M))(M − L)
.(4)

The range of uncertainty is now given by the maximum height of the area of uncer-
tainty, i.e., max{Δfk

1 ,Δfk
2 }. The point x we choose for function evaluation now lies

in the middle of the area with the largest height, i.e.,

x =

{
1
2 (L′ + M) if Δfk

1 ≥ Δfk
2 ,

1
2 (M + U ′) if Δfk

1 < Δfk
2 .

(5)

We refer to the method that chooses a new point for function evaluation according
to (5) as the triangle section method; see also Algorithm 3 for an overview of the
method. A greedy strategy is to take the point where the lower bound is minimal.
However, it can be easily shown that the performance bounds for this greedy strategy
are worse than the performance bounds for the triangle section strategy which we give
in this paper.

In the remainder of this section we normalize, w.l.o.g., the function values, the
size of the interval of uncertainty, and the range of uncertainty in the following way:

M = 0, f(M) = 0, Δfk
1 = 1, L′ = −1.

After substituting these values into the expression for Δfk
1 , it follows that f(U) =

f(L)U
1+L+f(L) if 1 + L + f(L) �= 0. The values of L, f(L), U, and U ′ then determine

the exact situation. For the ease of notation we make the following substitutions, as
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Algorithm 3. The triangle section method.

Input: Interval of uncertainty [L,U ], stop criterion ε,

Output: Interval of uncertainty [L,U ] with size of range of uncertainty

max{Δfk
1 ,Δfk

2 } < ε;

Initialization: Take x = (U − L)/2 and k := 0,

Loop:

repeat

k := k + 1;

Determine f(x);

Determine new interval of uncertainty [L′, U ′] using convexity property;

Determine Δfk
1 ,Δfk

2 ;

Take as new interval of uncertainty [L,U ] := [L′, U ′];

Determine new point x according to (5)

until max{Δfk
1 ,Δfk

2 } < ε

A −1 C D0

−1

B

f(D)

−1/2

Δf
 k
1  =1

Δf
 k
2

f(−1/2)=E

Fig. 10. The areas of uncertainty with normalization of the function and interval values. The
point 0 has the lowest function evaluation of 0. The size of the range of uncertainty is given by
Δfk

1 , which is set to 1. The lower bound of the interval of uncertainty in the function domain is

equal to −1; thus, the new point for function evaluation is − 1
2
.

shown in Figure 10:

A = L,

B = f(L),

C = U ′,

D = U,

E = f(x).

Furthermore, w.l.o.g. we assume that Δfk
1 ≥ Δfk

2 . The new point for evaluation then
is x = − 1

2 .
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For the values of A,B,C,D, and E we can derive the following properties:
(i) The lower corner of the left area should be to the left of M , i.e., −D/f(D) ≤

0. As f(D) = f(U) = f(L)U/[1+L+f(L)] = BD/[1+A+B], if 1+A+B �= 0,
we have −[1+A+B]/B ≤ 0 and D �= 0. Since B = f(L) > 0, it follows that
1 + A + B ≥ 0.

(ii) L ≤ L′, i.e., A ≤ −1 or −1 −A ≥ 0 or 1 + A ≤ 0.
(iii) U ≥ U ′ ≥ 0, i.e., D ≥ C ≥ 0.
(iv) Δfk

2 ≤ Δfk
1 = 1. Substitution of Δfk

2 gives Δfk
2 = BCD

(D−C)(1+A+B)−AD . So

BCD ≤ (D − C)(1 + A + B) −AD.
(v) Let fu(x) denote the upper bound for point x, i.e., the line (A,B) − (0, 0).

Then f(x) ≤ fu(x) should hold, i.e., E ≤ − B
2A or −2AE ≤ B.

(vi) Let f l(x) denote the lower bound for point x, i.e., the line parts below the
y = 0 line of the lines (A,B)–(−1, 0) and (0, 0)–(D, f(D)). Then f(x) ≥ f l(x)
should hold. The value of f l(x) depends on whether the lowest corner of the
left area lies to the left or to the right of x, i.e., f l(x) = max{− B

2(1+A+B) ,

− B
2(−1−A)}. This gives B ≥ −2E(1+A+B) and B ≥ −2E(−1−A). Notice

that this also holds if 1 + A + B = 0 or −1 −A = 0.
We now show in Lemma 2 that in the special case the area of uncertainty consists

of one triangle, i.e., Δfk
1 = 0 or Δfk

2 = 0; the triangle section method at least halves
the range of uncertainty for a new function evaluation.

Lemma 2. Let a new function evaluation xk+1 be chosen according to (5), and
let either Δfk

1 = 0 or Δfk
2 = 0. Then the range of uncertainty decreases by at least a

factor of 1
2 after the function evaluation f(xk+1) is known, i.e.,

max{Δfk+1
1 ,Δfk+1

2 } ≤ 1

2
max{Δfk

1 ,Δfk
2 } .

Proof. W.l.o.g. we assume that Δfk
2 = 0. We distinguish four possibilities for

f(xk+1); cf. Figure 11(a).
1. f(xk+1) = fu(xk+1); see Figure 11(b). Then the upper bound is equal to the

lower bound for all points in [L,U ], and M = 0 is the optimum with function
value f(M) = 0. Thus Δfk+1

1 = 0.
2. fu(xk+1) > f(xk+1) ≥ 0; see Figure 11(c). If we write Δfk+1

1 as an expression
of A,B,C,D, and E, we get

Δfk+1
1 =

B( 1
2B + AE)

B(− 1
2 −A) + (B − E)(1 + A + B)

.(6)

Now we need to show that Δfk+1
1 ≤ 1

2 or 1
2 −Δfk+1

1 ≥ 0. From properties (i),
(ii), and (v) it follows that B(− 1

2 −A)+(B−E)(1+A+B) > 0. So we need to
show that 1

2B(− 1
2 −A) + 1

2 (B−E)(1 +A+B)−B( 1
2B +AE) ≥ 0. Rewriting

the left part of this inequality gives 1
4B + 1

2E((−1 − A)(1 + B) − AB). Since

B,E, (−1 −A) ≥ 0 the inequality holds, and Δfk+1
1 ≤ 1

2 .

3. 0 > f(xk+1) > f l(xk+1); see Figure 11(d). Then both Δfk+1
1 > 0 and Δfk+1

2 >
0 will hold. If we write Δfk+1

1 as an expression of A,B,C,D, and E, we get

Δfk+1
1 =

−E( 1
2B + E(−1 −A))

1
2B − E(−1 −A)

.(7)

Now we show that 1
2 −Δfk+1

1 ≥ 0. As B > 0, E < 0, and −1−A > 0, this can
be done by showing that 1

2 ( 1
2B − E(−1 − A)) − (−E( 1

2B + E(−1 − A))) ≥ 0.
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xk+1

f u

f l

{

{

case 1

case 2

case 3

case 4

Δf k
1

(a)

xk+1

Δf k+1
1 = 0

case 1: f(xk+1)=f u(xk+1)

(b)

xk+1

Δf k+1
1

case 2: f u(xk+1) > f(xk+1) ≥ 0

(c)

xk+1

Δf k+1
2Δf k+1

1

case 3: 0 > f(xk+1) > f l(xk+1)

(d)

xk+1Δf k+1
1

case 4: f(xk+1) = f l(xk+1)

(e)

Fig. 11. Decrease of range of uncertainty when Δfk
2 = 0. (a) Four possibilities are distinguished

for the new function evaluation f(xk+1). (b) f(xk+1) = fu(xk+1). (c) fu(xk+1) > f(xk+1) ≥ 0.
(d) 0 > f(xk+1) > f l(xk+1). (e) f(xk+1) = f l(xk+1).

Rewriting the left part of this inequality and using B ≥ −2E(1 +A+B) from
property (vi) gives (−1 −A)E2 + 1

2E(1 + A + B) + 1
4B ≥ (−1 −A)E2 ≥ 0.

If we write Δfk+1
2 as an expression of A,B,C,D, and E, we get

Δfk+1
2 =

E(B − E)(1 + A + B) + 1
2B(B − E)

(B − E)(1 + A + B) + B(− 1
2 −A)

.(8)
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As B > E, 1+A+B > 0, B > 0, and − 1
2 −A > −1−A ≥ 0, it suffices to show

that 1
2 ((B−E)(1+A+B)+B(− 1

2−A))−(E(B−E)(1+A+B)+ 1
2B(B−E)) ≥ 0.

Rewriting the left part of this inequality and using B ≥ −2E(−1 − A) from
property (vi) gives − 1

2E(1+A)+ 1
4B−E(B−E)(1+A+B) ≥ −1

2E(1+A)+
1
4 (−2E(−1 −A)) − E(B − E)(1 + A + B) = −E(B − E)(1 + A + B) ≥ 0.

4. f(xk+1) = f l(xk+1); see Figure 11(e). Then Δfk+1
2 = 0, and Δfk+1

1 = Δfk
1 −

(f(M) − f l(xk+1)) = Δfk
1 + f l(xk+1). So, for Δfk+1

1 ≤ 1
2Δfk

1 = 1
2 we need

to show that −f l(xk+1) − 1
2 ≥ 0. The lower bound is given by f l(xk+1) =

max{− B
2(1+A+B) ,−

B
2(−1−A)}. If f l(xk+1) = − B

2(1+A+B) we have

B

2(1 + A + B)
− 1

2
=

B − (1 + A + B)

2(1 + A + B)
=

−1 −A

2(1 + A + B)
≥ 0.

If f l(xk+1) = − B
2(−1−A) we have

B

2(−1 −A)
− 1

2
=

B − (−1 −A)

2(−1 −A)
=

1 + A + B

2(−1 −A)
≥ 0.

We use Lemma 2 to show that the triangle section method at least halves the
range of uncertainty after two new function evaluations.

Theorem 2. Let each new function evaluation xk+1 be chosen according to (5).
Then the range of uncertainty is at least halved after two function evaluations, i.e.,
for all k,

max{Δfk+2
1 ,Δfk+2

2 } ≤ 1

2
max{Δfk

1 ,Δfk
2 } .

Proof. W.l.o.g. we assume that Δfk
1 ≥ Δfk

2 . We distinguish three possibilities
for the function value f(xk+1).

1. f(xk+1) = fu(xk+1); see Figure 12(b). Then for all y ∈ [L,M ] we have fu(y) =
f l(y) and Δfk+1

1 = 0. Furthermore, Δfk+1
2 = Δfk

2 . Now it follows from
Lemma 2 that max{Δfk+2

1 ,Δfk+2
2 } ≤ 1

2Δfk+1
2 ≤ 1

2 max{Δfk
1 ,Δfk

2 }.
2. 0 ≥ f(xk+1) ≥ f l(xk+1); see Figure 12(c). Then Δfk+1

1 and Δfk+1
2 are iden-

tical to those given in the proof of Lemma 2 for the corresponding value of
f(xk+1). It follows that max{Δfk+1

1 ,Δfk+1
2 } ≤ 1

2 max{Δfk
1 ,Δfk

2 } and thus

max{Δfk+2
1 ,Δfk+2

2 } ≤ 1
2 max{Δfk

1 ,Δfk
2 }.

3. fu(xk+1) > f(xk+1) > 0; see Figure 12(d). The expression for Δfk+1
1 is

identical to the one given in the proof of Lemma 2, and it follows that Δfk+1
1 ≤

1
2Δfk

1 . For Δfk+1
2 we distinguish two possibilities.

• Δfk+1
2 ≤ 1

2Δfk
1 , as shown in Figure 12(d). Then max{Δfk+1

1 ,Δfk+1
2 } ≤

1
2 max{Δfk

1 ,Δfk
2 } and thus max{Δfk+2

1 ,Δfk+2
2 } ≤ 1

2 max{Δfk
1 ,Δfk

2 }.
• Δfk+1

2 > 1
2Δfk

1 , as shown in Figure 13(b). Then also Δfk+1
2 > Δfk+1

1 .
A new point xk+2 is now chosen for function evaluation according to (5).
For the function value f(xk+2), we can also distinguish three possibilities.

– f(xk+2) = fu(xk+2); see Figure 13(c). As Δfk+1
2 > Δfk+1

1 , it follows
that Δfk+2

2 = 0. Thus,

max{Δfk+2
1 ,Δfk+2

2 } ≤ Δfk+1
1 ≤ 1

2
max{Δfk

1 ,Δfk
2 }.
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xk+1

f u

f l

{

{
case 1

case 3

case 2

Δf k
2Δf k

1

(a)

case 1: f(x
k+1

) = f u(xk+1)

Δf k+1
2

xk+1

Δf k+1
1  = 0

(b)

xk+1

case 2: 0 ≥ f(xK+1) ≥ f l(xk+1)

Δf k+1
2Δf k+1

1

(c)

xk+1

case 3: f u(xk+1) > f(xk+1) > 0

Δf k+1
2Δf k+1

1

Δf k+1
2  ≤ 1/2 Δf k

1

(d)

Fig. 12. Decrease of range of uncertainty when Δfk
1 ≥ Δfk

2 > 0. (a) Three possibilities are
distinguished for the new function evaluation f(xk+1). (b) f(xk+1) = fu(xk+1). (c) 0 ≥ f(xk+1) ≥
f l(xk+1). (d) fu(xk+1) > f(xk+1) > 0.

– 0 ≥ f(xk+2) ≥ f l(xk+2); see Figure 13(d). Then,

max{Δfk+2
1 ,Δfk+2

2 } ≤ 1

2
Δfk+1

2 ≤ 1

2
max{Δfk

1 ,Δfk
2 }.

– fu(xk+2) > f(xk+2) > 0; see Figure 13(e). As Δfk+1
2 > Δfk+1

1 , it
follows that Δfk+2

2 ≤ 1
2Δfk+1

2 ≤ 1
2 max{Δfk

1 ,Δfk
2 }. Furthermore,

Δfk+2
1 ≤ Δfk+1

1 ≤ 1
2 max{Δfk

1 ,Δfk
2 }.

Corollary 1. Using the triangle section method, the decrease of the range of
uncertainty is exponential in the number of function evaluations.

Proof. Let the initial range of uncertainty be given by max{Δf0
1 ,Δf0

2 }, and let
the range of uncertainty after k new function evaluations be given by max{Δfk

1 ,Δfk
2 }.

Then max{Δfk
1 ,Δfk

2 } ≤ 1
2 max{Δfk−2

1 ,Δfk−2
2 } ≤

(
1
2

)� k
2 � max{Δf0

1 ,Δf0
2 }.

So we have shown that the range of uncertainty is at least halved for each two
new function evaluations. However, the average reduction of the range of uncertainty
generally is considerably larger, which is backed up by the empirical results that we
present in section 5.

3.3. Piecewise-linear functions. We now consider the case in which the func-
tion f is also known to be piecewise linear besides convex or concave. An example of
such a function is given in section 4.
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xk+1

case 3: f u(xk+1) > f(xk+1) > 0

Δf k
2

Δf k+1
2  > 1/2 Δf k

1
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(a)

xk+1

case 3: f u(xk+1) > f(xk+1) > 0

Δf k+1
2

Δf k+1
1

Δf k+1
2  > 1/2 Δf k

1

xk+2

(b)

xk+1

case 3: f u(xk+1) > f(xk+1) > 0

Δf k+2
2 =0

Δf k+2
1

Δf k+1
2  > 1/2 Δf k

1

xk+2

f(xk+2) = f u(xk+2)

(c)

xk+1

case 3: f u(xk+1) > f(xk+1) > 0

Δf k+2
2Δf k+2

1

Δf k+1
2  > 1/2 Δf k

1

xk+2

0 ≥ f(xk+2) ≥ f l(xk+2)

(d)

xk+1

case 3: f u(xk+1) > f(xk+1) > 0

Δf k+2
2Δf k+2

1

Δf k+1
2  > 1/2 Δf k

1

xk+2

f u(xk+2) > f(xk+2) > 0

(e)

Fig. 13. Decrease of range of uncertainty when Δfk
1 ≥ Δfk

2 > 0 and Δfk+1
2 > 1

2
Δfk

1 . (a)
Initial situation when determining the new function evaluation f(xk+1). (b) fu(xk+1) > f(xk+1) >

0 and Δfk+1
2 > 1

2
Δfk

1 . (c) f(xk+2) = fu(xk+2). (d) 0 ≥ f(xk+2) ≥ f l(xk+2). (e) fu(xk+2) >
f(xk+2) > 0.

The piecewise-linear property of f can be used as follows to terminate the im-
proved golden section method or the triangle section method with the exact minimum.
For a piecewise-linear function the slope of a line segment will be identified as soon
as three function evaluations are made of points on the segment. Furthermore, the
optimum lies at the intersection of two segments. When these two line segments have
been identified, the exact minimum can be obtained by determining the intersection
of the two line segments.

When dealing with piecewise-linear functions, we use this fact as follows. When
a line segment containing the point with the lowest function evaluation so far has
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xk

Fig. 14. A line segment containing the point with the lowest function evaluation so far has
been identified by three adjacent function evaluations. The next point xk that is chosen for function
evaluation is the point with the lowest lower bound value.

been identified, then we evaluate the point xk with the lowest lower bound value,
i.e., xk = arg min f l(x); see Figure 14 for an example. For the improved golden
section method this means that before each new function evaluation we check whether
the point with the lowest function evaluation lies on one line segment with the two
preceding or succeeding points. For the triangle section method, we check if either
Δfk

1 = 0 or Δfk
2 = 0 holds. Note that Δfk

1 = 0 or Δfk
2 = 0 also holds when there

are two points with the lowest function evaluation. If f(xk) = f l(xk), then xk is the
point with the minimum function value, and we can stop. Otherwise, we continue
with new function evaluations, also using the latest function evaluation f(xk).

4. Application to a practical problem: Bandwidth and buffer mini-
mization. In previous sections we described how we can find the optimum for a
concave or convex function of one variable with computationally expensive function
evaluations. In this section we give a real-life example of such a function, stemming
from resource management in an in-home network. For an elaborate description of
the problem from which this example originates, we refer to Den Boef, Verhaegh, and
Korst [8].

Consider a sender and a receiver of data and a network or data transportation
device to which both the sender and receiver are connected. At the connections of
the sender and the receiver to the network, buffers are placed. Time is discretized
into time units t; for each time unit t, the amount of data supplied at the sender is
given by s(t), and the amount of data consumed at the receiver is given by d(t). All
data are supplied into the buffer at the sender and are consumed from the buffer at
the receiver. Reservations of the buffers and the transportation device are based on
the maximum usage during the time horizon. Costs of the buffers are given by cs and
cr per unit buffer size, and cost of the transportation device is given by cb per unit
transportation capacity.

The problem is to determine reservations b of the transportation device, ms and
mr of the buffers, and a feasible transmission schedule of the data given by x(t) for
each time unit t such that total costs are minimized. The transmission schedule has
to be such that, whenever data is taken from a buffer, it also is available in the buffer
(no buffer underflow) and such that, whenever data is put into a buffer, the buffer
reservation is not exceeded. Also, the amount transmitted during a time unit may not
exceed the transportation capacity reservation. This can be formulated as a linear
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program as follows:

minimize cbb + csms + crmr

subject to x (t) ≤ b ∀t,∑t
k=1 s(k) −

∑t
k=1 x (k) ≥ 0 ∀t,∑t

k=1 s(k) −
∑t−1

k=1 x (k) ≤ ms ∀t,∑t
k=1 x (k) −

∑t
k=1 d(k) ≥ 0 ∀t,∑t

k=1 x (k) −
∑t−1

k=1 d(k) ≤ mr ∀t.

(9)

In this linear program (LP) all constraints must hold for every time unit t. A typ-
ical video stream has a time horizon that is split up into more than 100,000 time units.
This leads to an LP that consists of more than 100, 000 variables and 500, 000 con-
straints, which requires a relatively long calculation time when standard LP-methods
are used. However, we can obtain the solution in only a few seconds not by using LP
but by using a line search method of this paper together with the following problem-
specific method which has complexity O(|T |), where T denotes the set of time units.

Given a transportation capacity, we can minimize the total buffer costs by first
minimizing the buffer with the highest cost coefficient and then minimizing the buffer
with the lowest cost coefficient. Minimizing one buffer for a given bandwidth can be
done in O(|T |) time using a specific algorithm [10]. So for a given value of b, optimal
values of ms and mr can be determined quickly but without any information on the
derivative. This leads to the following reformulation of the problem.

Let f be a function of transportation capacity b with function values that represent
the minimum total costs. So, for input b, the function f determines optimal values
of ms and mr given the cost coefficients cs and cr and then calculates the total costs
cbb + csms + crmr which are returned as output. The problem now is to find the
minimum of the function f . Since the original problem is an LP-problem with b
appearing in the right-hand sides of the constraints, f is a continuous, piecewise-
linear, convex function. So, the method described in this paper can be used to find an
optimum. In section 5, we show some results of the improved golden section method
and the triangle section method applied to this problem.

5. Numerical test results. In this section we present numerical test results for
the improved golden section method and the triangle section method. These results
are obtained by using these methods on the bandwidth-buffer application described
in section 4 and on numerous mathematical functions, which can be divided into two
types. Functions of type 1 are polynomial functions, given by f(x) = a(x− b)2c, with
a = 0.5, 1, 1.5, . . . , 9.5, 10, b = 1, 2, . . . , 10, and c = 1, 2, . . . , 5. This gives a total of
1000 functions of type 1. Note that type 1 functions are symmetrical with a steep
grade. A function f of type 2 is given by f(x) = aeb(x−c) − dx, with a = 1, 2, . . . , 10,
b = 1, 2, . . . , 5, c = −5,−4, . . . , 5, and d = 0.01, 0.05, 0.25, 1.25, 6.25, 31.25, 156.25,
781.25, 3906.25. This gives a total of 4950 functions of type 2. Note that type 2
functions are nonsymmetrical and have a steep grade on one side of the minimum and
a weak grade on the other side of the minimum. For both functions of type 1 and
functions of type 2 the objective was to find the minimum on the interval [−10, 10].
Finally, for the bandwidth-buffer application discussed in the previous section, we used
16 different video traces, each combined with a number of different cost coefficients
cb, cs, and cr, which resulted in 283 problem instances.

In Table 5.1 results are given for comparing the regular golden section, improved
golden section, and triangle section methods using (a) the 1000 functions of type 1,
(b) the 4950 functions of type 2, and (c) the 283 application instances. The results
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Table 5.1

Results after 5–10 function evaluations for the golden section method (gs), the improved golden
section method (igs), and the triangle section method (ts). (a), (b), and (c) give the results for the
functions of types 1 and 2, and for the bandwidth-buffer application, respectively. In each table,
the leftmost column gives the number of function evaluations. The next three columns give for
each method and number of function evaluations the average over all functions or bandwidth-buffer
instances of the difference between the function value of the best found solution and the optimal
function value. The three rightmost columns give for each method the average over all functions or
bandwidth-buffer instances of the resulting interval of uncertainty after the given number of function
evaluations. Finally, improved golden section and triangle section methods were stopped when for
a function the range of uncertainty was less than 0.01. When this happened for a function, the last
calculated result of the best found solution and the interval of uncertainty was also used as a result
for the higher number of function evaluations in this table. For example, if the triangle section
method was stopped after eight function evaluations with best found solution value 2.5 and interval
of uncertainty size 0.5, then these values were also used for nine and ten function evaluations
to compute the results in this table. This explains why, e.g., the average size of the interval of
uncertainty for type 1 functions using the triangle section method is the largest, compared to regular
and improved golden section methods, for ten function evaluations, while it is the smallest for fewer
function evaluations.

(a) Type 1 Avg. deviation from optimum Avg. int. of uncertainty
# func.eval. gs igs ts gs igs ts
5 7,126.103 8.087 2.054 6.111 5.733 5.638
6 3.649 3.137 0.163 3.708 3.404 2.993
7 0.200 0.192 0.008 2.265 2.076 1.678
8 0.068 0.041 0.003 1.390 1.264 1.069
9 0.030 0.013 0.001 0.855 0.770 0.799
10 0.005 0.002 0.000 0.527 0.470 0.765

(b) Type 2 Avg. deviation from optimum Avg. int. of uncertainty
# func.eval. gs igs ts gs igs ts
5 605.264 531.365 727.436 6.912 4.606 5.098
6 283.096 229.274 272.258 4.262 2.408 2.736
7 145.214 87.939 89.639 2.631 1.368 1.528
8 68.755 31.416 32.209 1.625 0.784 0.906
9 32.362 15.685 16.408 1.004 0.447 0.575
10 17.983 12.590 12.595 0.620 0.255 0.409

(c) Bw.-buf. Avg. deviation from optimum Avg. int. of uncertainty
# func.eval. gs igs ts gs igs ts
5 112,082 81,744 70,924 5,079 3,990 3,362
6 40,726 28,890 23,090 3,100 1,803 1,831
7 19,950 11,894 10,123 1,900 839 1,017
8 11,651 7,053 5,585 1,168 391 610
9 7,301 3,857 2,902 719 182 407
10 4,255 1,945 1,712 444 78 325

consist of the average difference between the best found solution and the optimal
solution and the average size of the interval of uncertainty after a given number
of function evaluations, with both averages over all functions or instances. These
results show that for functions of type 1 and bandwidth-buffer instances, the triangle
section method on average gets closest to the optimal function value. For functions of
type 2, however, it is outperformed by the improved golden section method, possibly
due to the largely asymmetrical shape of these functions. Regarding the interval of
uncertainty, we notice that the improved golden section method improves upon the
results of the regular golden section method especially for functions of type 2 and
for the bandwidth-buffer instances. For functions of type 1, it also returns better
results than the regular golden section method, but here the improvement is not so



EFFICIENT LINE SEARCH METHODS FOR CONVEX FUNCTIONS 359

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 50 100 150 200 250 300
instance

re
la

tiv
e 

de
cr

ea
se

(a)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 50 100 150 200 250 300
instance

re
la

tiv
e 

de
cr

ea
se

(b)

Fig. 15. In these two graphs the number of function evaluations that two of the three methods
require are compared. (a) compares the improved golden section method with the regular golden
section method for the 283 bandwidth-buffer instances. Both methods were stopped when the in-
terval of uncertainty was less than 1. The graph gives for all 283 instances the relative decrease
in the number of function evaluations required by the improved golden section method compared to
the regular golden section method, i.e., for each application instance (igs − gs)/gs is given, where
igs and gs denote the number of function evaluations required for the improved golden section and
regular golden section methods, respectively. The instances are sorted on the horizontal axis in the
order of nondecreasing relative decrease. (b) compares the triangle section method to the improved
golden section method, both using the procedure that uses piecewise linearity to determine the exact
optimum. The graph gives for all 283 instances the relative decrease in the number of function
evaluations required by the triangle section method compared to the improved golden section method,
i.e., for each bandwidth-buffer instance (ts − igs)/igs is given, where ts and igs denote the num-
ber of function evaluations required for the triangle section and improved golden section methods,
respectively.

impressive. This can be explained by the relatively steep slopes of the functions of
type 1 surrounding both sides of the optimum.

Figure 15(a) compares the improved golden section method with the regular
golden section method using the bandwidth-buffer instances and as stopping crite-
rion the size of interval of uncertainty being less than 1. It shows that the reduction
in the number of function evaluations can be as high as 80%, and on average around
40%. Figure 15(b) compares the triangle section method with the improved golden
section method using the application instances and the piecewise-linear property, thus
obtaining the exact optimum. For about one-half of the instances the triangle sec-
tion method requires fewer function evaluations than the improved golden section
method. However, for about one-quarter of the instances it requires more function
evaluations. Still, the average number of function evaluations is lower for the triangle
section method than for the improved golden section method.

Figure 16 shows the reduction factors of the interval of uncertainty after a function
evaluation, which were observed when applying the improved golden section method
on all functions and instances. It shows that the reduction factor is often close to the
golden section (≈ 0.618) for functions of type 1. However, for functions of type 2 and
bandwidth-buffer instances, the reduction is much more significant, i.e., we get much
smaller intervals of uncertainty.

Figure 17 shows again the reduction factors of the interval of uncertainty using the
improved golden section method for functions of type 1, but now split into quadratic
functions (c = 1) and functions of higher degree (c ≥ 2). It shows that the reduction
factors for quadratic functions are distributed evenly between 0.45 and 0.6 in contrast
with the reduction factors for higher-degree functions, of which approximately 90%
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Fig. 16. These graphs show on the vertical axis the observed reduction factors of the interval
of uncertainty after a function evaluation using the improved golden section method, where the
function evaluations are sorted in the order of increasing reduction factor. Note that the number
of performed function evaluations may vary for different functions and bandwidth-buffer instances.
Also note that a smaller reduction factor leads to a smaller new interval of uncertainty and thus is
better. (a) gives the reduction factors for all 11,397 function evaluations that were performed for
the 1,000 type 1 functions, (b) for all 67,570 evaluations of the 4,950 type 2 functions, and (c) for
all 1,119 evaluations of the 283 application instances.
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Fig. 17. These graphs show on the vertical axis the observed reduction factors of the interval
of uncertainty after a function evaluation using the improved golden section method, where the
function evaluations are again sorted in the order of increasing reduction factor. (a) gives the
reduction factors for all 2,820 function evaluations that were performed for the 200 quadratic type
1 functions, (b) for all 8,577 function evaluations of the 800 other type 1 functions.

are close to 0.6. As the gradient of functions of higher degree at the evaluated points is
larger than the gradient of quadratic functions, the lower bounds for the functions of
higher degree have a steeper slope and thus lead to a smaller reduction of the interval
of uncertainty.

Figure 18 shows the reduction factors of the range of uncertainty after a single
function evaluation, which were observed when applying the triangle section method
on all functions and instances. It shows that more than 90% of the recorded reduction
factors are spread out over the interval [0, 0.5], and only a small fraction of the recorded
reduction factors are between 0.5 and 1. Figure 19 shows the reduction factors of the
range of uncertainty after two consecutive function evaluations; cf. Theorem 2. It
shows a similar distribution, with most of the observed reduction factors between 0
and 0.25 and only a small fraction between 0.25 and 0.5.

6. Conclusion. In this paper we have considered the line search problem for
convex functions. We have shown how the convexity property can be used to obtain
upper and lower bounds on the function using the performed function evaluations.
For some well-known line search methods we have shown, using these upper and
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Fig. 18. These graphs show on the vertical axis the observed reduction factors of the range of
uncertainty after a single function evaluation using the triangle section method, where the evalua-
tions are sorted in the order of increasing reduction factor. These reduction factors were observed
after at least three functions evaluations were made for a specific function or bandwidth-buffer in-
stance. Note that also for the triangle section method the number of performed function evaluations
can vary between different functions and bandwidth-buffer instances. (a) gives the reduction factors
for all 7,214 evaluations that were performed for the 1,000 type 1 functions, (b) for all 45,525 eval-
uations of the 4,950 type 2 functions, and (c) for all 1,911 evaluations of the 283 bandwidth-buffer
instances.
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Fig. 19. These graphs show on the vertical axis the observed reduction factors of the range
of uncertainty after two consecutive function evaluations using the triangle section method, where
the evaluations are sorted in the order of increasing reduction factor. These reduction factors were
observed after at least three functions evaluations were made for a specific function or bandwidth-
buffer instance. (a) gives the reduction factors for all 6,114 pairs of consecutive function evaluations
that were performed for the 1,000 type 1 functions, (b) for all 40,576 pairs of consecutive evaluations
of the 4,950 type 2 functions, and (c) for all 1,634 pairs of consecutive evaluations of the 283
bandwidth-buffer instances.

lower bounds, that they may propose a candidate which is not optimal. We have
presented two new line search methods which use the convexity property. The first
method, the improved golden section method, uses the upper and lower bounds to
improve upon the regular golden section method and always proposes a candidate
which can be optimal. The second method, the triangle section method, focuses on
minimizing the interval for possible objective values, the range of uncertainty, and we
have shown that it at least halves the range of uncertainty after every two function
evaluations.

Both methods were tested using a real-life example and two classes of convex
functions. It was shown that the new methods give better approximations of the
optimum than the regular golden section method after a fixed number of function
evaluations. This also translated into a sometimes heavily reduced number of function
evaluations that was required to obtain the optimum. A direct comparison of the new
methods did not show a clear winner; depending on the instance either the improved
golden section or the triangle section method gave the best results.

There are several possibilities for future research in line search methods for convex
functions. The upper and lower bounds based on the convexity property can be used
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to adapt other well-known line search methods. They can also be used to try to
estimate the complete function as efficiently as possible instead of only the optimum.
When information on the derivative in an evaluated point is known, it can be used
to further improve the interval and range of uncertainty. This will also improve the
performance of the methods presented in this paper. Finally, it would be interesting
to see how the work presented in this paper extends to multivariate, convex functions.

Appendix A. Height of a triangle in the area of uncertainty. For the
explanation of the triangle section method to obtain a guaranteed range reduction,
the heights of the triangles in the area of uncertainty, Δfk

1 and Δfk
2 , need to be

determined. The expressions of Δfk
1 and Δfk

2 in points L,M, and U with their
function evaluations f(L), f(M), and f(U) and the interval of uncertainty [L′, U ′] can
be obtained by determining the intersection of two appropriate lines and subtracting
this from the smallest function evaluation so far. We first give a general expression
of the intersection of two lines both determined by two points. Then we indicate for
(3), (4), (6), (7), and (8) how they can be obtained.

Let (a, f(a)) and (b, f(b)) define a line l1, and let (c, f(c)) and (d, f(d)) define a
line l2. So, l1(x) is given by

f(b) − f(a)

b− a
x +

f(a)b− f(b)a

b− a
,

and l2(x) is given by

f(d) − f(c)

d− c
x +

f(c)d− f(d)c

d− c
.

Let line l1 and line l2 intersect at (y, f(y)). Then using the above line equations with
x = y, we derive from l1(y) = l2(y) that

y =

f(c)d−f(d)c
d−c − f(a)b−f(b)a

b−a

f(b)−f(a)
b−a − f(d)−f(c)

d−c

.

Simplifying the above equation gives

y =
(f(c)d− f(d)c)(b− a) − (f(a)b− f(b)a)(d− c)

(f(b) − f(a))(d− c) − (f(d) − f(c))(b− a)
.

Substituting the above equation for y into l1(y) or l2(y) gives for f(y)

f(y) =
(f(c)d− f(d)c)(f(b) − f(a)) − (f(a)b− f(b)a)(f(d) − f(c))

(f(b) − f(a))(d− c) − (f(d) − f(c))(b− a)
.

Equation (3):
(a, f(a)) = (L, f(L)), (b, f(b)) = (L′, f(M)), (c, f(c)) = (M,f(M)), and (d, f(d)) =
(U, f(U)).
Δfk

1 = f(M) − f(y).
Equation (4):

(a, f(a)) = (L, f(L)), (b, f(b)) = (M,f(M)), (c, f(c)) = (U ′, f(M)), and (d, f(d)) =
(U, f(U)).
Δfk

1 = f(M) − f(y).
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Equation (6):
(a, f(a)) = (A,B), (b, f(b)) = (− 1

2 , E), (c, f(c)) = (0, 0), and (d, f(d)) = (D, f(D)).

Δfk+1
1 = 0 − f(y).
Equation (7):

(a, f(a)) = (A,B), (b, f(b)) = (−1, 0), (c, f(c)) = (− 1
2 , E), and (d, f(d)) = (0, 0).

Δfk+1
1 = E − f(y).
Equation (8):

(a, f(a)) = (A,B), (b, f(b)) = (− 1
2 , E), (c, f(c)) = (0, 0), and (d, f(d)) = (D, f(D)).

Δfk+1
1 = E − f(y).
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NEW KORKIN–ZOLOTAREV INEQUALITIES∗
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Abstract. Korkin and Zolotarev showed that if∑
i

Ai

(
xi −

∑
j>i

αijxj

)2

is the Lagrange expansion of a Korkin–Zolotarev (KZ-) reduced positive definite quadratic form,
then Ai+1 ≥ 3

4
Ai and Ai+2 ≥ 2

3
Ai. They showed that the implied bound A5 ≥ 4

9
A1 is not attained

by any KZ-reduced form. We propose a method to optimize numerically over the set of Lagrange
expansions of KZ-reduced quadratic forms using a semidefinite relaxation combined with a branch
and bound process. We use a rounding technique to derive exact results from the numerical data.
Applying these methods, we prove several new linear inequalities on the Ai of any KZ-reduced form,
one of them being Ai+4 ≥ ( 15

32
− 2 · 10−5)Ai. We also give a form with A5 = 15

32
A1. These new

inequalities are then used to study the cone of outer coefficients of KZ-reduced forms, to find bounds
on Hermite’s constant, and to give better estimates on the quality of k-block KZ-reduced lattice
bases.

Key words. lattice, quadratic form, semidefinite programming, Korkin–Zolotarev reduction,
Hermite’s constant, sphere packing

AMS subject classifications. 11H55, 52C17, 90C22, 11H50

DOI. 10.1137/060658795

1. Preliminaries and overview. The Geometry of Numbers is a field of math-
ematics initiated and named by Minkowski. The main objects studied are lattices,
discrete subgroups of R

n. Good introductions to the subject are the book by Cas-
sels [2] and the excellent survey paper by Ryškov and Baranovskĭı [13]. Typical
problems are the search for a shortest vector within a given lattice and the search
for a lattice with a dense sphere packing. Hermite’s constant γn is a measure for
the density of the densest lattice sphere packing in dimension n. This constant has
been determined exactly for n ≤ 8 and n = 24. Since Blichfeldt [1] determined γn
for n = 6, 7, 8, no further low-dimensional cases have been computed. For example,
the best known bounds for n = 9 are 512 ≤ γ9

9 < 913, where the lower bound is
the density of a specific lattice (see, for example, [4]), and the upper bound is the
Cohn–Elkies bound [3].

Most of the early research in this subject was not in terms of lattices but in terms
of quadratic forms. This approach proved very useful for our research, so in all but
the last section we will talk exclusively about positive definite quadratic forms.

An n-ary positive definite quadratic form q can be written uniquely as

(1.1) q(x1, . . . , xn) =

n∑
i=1

Ai

(
xi −
∑
j>i

αijxj

)2
.

This is the Lagrange expansion of q; the numbers Ai are the outer coefficients and
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http://www.siam.org/journals/siopt/18-1/65879.html
†Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands (rudi@

win.tue.nl, svzwam@win.tue.nl).

364



NEW KORKIN–ZOLOTAREV INEQUALITIES 365

the αij the inner coefficients. We write

(1.2) qk(xk, . . . , xn) :=

n∑
i=k

Ai

(
xi −
∑
j>i

αijxj

)2
.

A positive definite quadratic form q in n variables with Lagrange expansion (1.1)
is Korkin–Zolotarev (KZ-)1 reduced if

|αij | ≤
1

2
for all i, j, and αi,i+1 ≥ 0 for all i;(S)

and

Ak ≤ qk(x) for all nonzero x ∈ Z
n−k+1, k = 1, . . . , n− 1.(M)

We say that two forms q, q′ are equivalent if there is a unimodular matrix U , i.e.,
U ∈ GLn(Z), such that q′(x) = q(Ux). It can be shown that any form is equivalent
to a KZ-reduced form (see, for example, [13]).

Korkin and Zolotarev proved that the outer coefficients of a KZ-reduced form sat-
isfy A2 ≥ 3

4A1 (the first KZ-inequality) and A3 ≥ 2
3A1 (the second KZ-inequality) [7].

If q is KZ-reduced, then so is the quadratic form qk for k ≥ 1, and hence the inequal-
ities

(1.3) Ak+1 ≥ 3

4
Ak and Ak+2 ≥ 2

3
Ak, k = 1, 2, . . . ,

hold for the outer coefficients of any KZ-reduced form.

For each n ∈ N, Hermite’s constant is defined as

(1.4) γn := max

{
m(q)

det(q)
1
n

| q is an n-ary positive definite quadratic form

}
,

where m(q) := min{q(x) | x ∈ Z
n, x �= 0} is the minimum of the form q and det(q) :=

det(Q), where Q is the symmetric matrix such that q(x) = xtQx. Equivalent forms
have the same minimum and the same determinant, so we may as well restrict the
feasible set of (1.4) to KZ-reduced forms. Also, if A1, . . . , An are the outer coefficients
of a form q, then det(q) =

∏
i Ai, and if q is KZ-reduced, then m(q) = f(1, 0, . . . , 0) =

A1. Hence

(1.5) γn
n = max

{
An

1∏
i Ai

| (A1, . . . , An) = A(q) for some KZ-reduced form q

}
,

where A(q) := (A1, . . . , An) denotes the sequence of outer coefficients of the quadratic
form q. Using (1.3), this implies the bound

(1.6) γn
n ≤ max

{
An

1∏n
i=1 Ai

| Ai+1 ≥ 3

4
Ai, Ai+2 ≥ 2

3
Ai, A1 = 1

}
,

1In the literature one encounters several different ways of writing the names of Korkin and
Zolotarev. We decided to follow some of the more recent publications (notably [5]) and have kept
the original spelling in the references to facilitate the search for these papers.
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which is tight for n = 2, 3, 4, as was shown in [6, 7]. In the right-hand side of (1.6) we
have removed the scale invariance by requiring A1 = 1. The right-hand side is equal
to the inverse of

(1.7) min

{
n∏

i=1

Ai | Ai+1 ≥ 3

4
Ai, Ai+2 ≥ 2

3
Ai, A1 = 1

}
,

which is the minimum of a concave function on a polyhedron. It is a basic fact of
convex optimization that this minimum is attained at one of the vertices. Enumerating
all vertices now suffices to determine the bound.

The proof of the first KZ-inequality is elementary. The proof of the second KZ-
inequality also uses elementary techniques but is already quite involved. To prove
an upper bound on γ5, Korkin and Zolotarev developed other techniques [8]: they
characterized the local optima of the objective function of (1.4), which enabled them
to enumerate all local optima for n = 5. This line of investigation has been continued
and is still actively pursued [10].

In this paper, we return to the first approach and focus on the feasible set of (1.5).
We develop a method to prove linear inequalities that hold for the outer coefficients of
KZ-reduced forms. Our method is numerical and uses recently developed polynomial
optimization techniques. We apply our method in particular to forms in five variables
and obtain inequalities (Theorems 6.1 and 6.2) that imply, through (1.5), an upper
bound on γn that is very close to the known value for n = 5, 6, 7, 8.

The structure of the paper is as follows. In the next section, we give prelimi-
naries on KZ-reduced forms. In particular, we describe results of Novikova [11] that
imply that the set of KZ-reduced forms can be defined by finitely many polynomial
inequalities. Proving that a linear inequality on the outer coefficients holds for KZ-
reduced forms thus amounts to minimizing the value of a polynomial under finitely
many polynomial constraints.

Through recent developments in convex optimization it is possible to find lower
bounds for such polynomial optimization problems using semidefinite optimization
methods. We describe such a semidefinite relaxation in section 3.

We improve on the lower bound that results from simply computing the semidef-
inite relaxation by performing a branch and bound procedure, which is familiar from
integer programming. By splitting the semialgebraic set over which we are optimizing
we obtain a number of problems on smaller sets. The relaxation for each of these
smaller problems is stronger than the original relaxation and will yield a higher lower
bound. Then the smallest of these lower bounds is again a lower bound for the original
problem. The branch and bound procedure is described in section 4.

Although we use a numerical method, our final results are exact in the sense
that their validity does not depend on the accuracy with which the floating point
computations were performed. Each of the many lower bounds we have computed is
determined by a convex optimization problem which has a well-defined convex dual.
By rounding each optimal dual solution to a nearby rational and feasible solution, an
exact lower bound is obtained. Its validity can be verified independently, using only
elementary rational arithmetic. The rounding method is described in section 5.

In section 6 we derive, using these tools, several new linear inequalities on the
outer coefficients of KZ-reduced forms. We study the relation between these inequali-
ties and the cone of outer coefficients of KZ-reduced forms. The most striking result is
that only three of these new inequalities suffice to give very good bounds on Hermite’s
constant up to dimension 8.
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Finally, in section 7 we show how our new inequalities on the outer coefficients
lead to better quality estimates for the block KZ-reduction algorithm.

The implementation and verification of our numerical method is worked out in
detail in [17].

2. A finite characterization of KZ-reduced forms. A positive definite qua-
dratic form q of two or more variables is KZ-reduced if (S) holds, if q2 is KZ-reduced,
and if

A1 ≤ q(x) for all nonzero x ∈ Z
n.(2.1)

In [11], Novikova stated the following.
Theorem 2.1. For each n ≥ 2, there is a finite set Xn ⊆ Z

n such that an n-ary
form with Lagrange expansion (1.1) is KZ-reduced if and only if q2 is KZ-reduced, (S)
holds, and

A1 ≤ q(x) for all x ∈ Xn.(2.2)

The proof boils down to the fact that if q2 is KZ-reduced, q(0, 1, 0, . . . , 0) ≥ A1,
and (S) holds, then q(x) ≥ A1 is implied for all but finitely many x ∈ Z

n. This
argument yields highly redundant sets Xn. But the theorem implies the existence
of a unique irredundant set Xn, which we will denote by X∗

n. In [11], Novikova
gives finite sets Xn for n ≤ 8 and claims irredundancy of these sets for n ≤ 5. It
is unfortunate that the proofs were omitted from her paper, as it appears to be a
significant challenge to determine these irredundant sets. We were only able to verify
her claims for n ≤ 4. For n ∈ {5, 6} we find sufficient sets that are slightly larger, and
for larger n the sets we compute are much smaller [16]. We have proven necessity for
all vectors up to dimension 4 and all of Novikova’s vectors in dimension 5.

It is easy to see that X∗
n = {x ∈ Z

n | (x, 0) ∈ X∗
n+1} for any n ≥ 2. Let

X̄ := {(x, 0) | x ∈ X}. One has

(2.3) X∗
2 =

{[
0
1

]}
,

(2.4) X∗
3 \ X̄∗

2 =

⎧⎨
⎩
⎡
⎣00

1

⎤
⎦ ,
⎡
⎣01

1

⎤
⎦ ,
⎡
⎣11

1

⎤
⎦
⎫⎬
⎭ .

Moreover, X∗
4 \ X̄∗

3 is a set of 12 vectors, and according to Novikova X∗
5 \ X̄∗

4 is a set
of 52 vectors [11].

Using Theorem 2.1 we find that in the definition of KZ-reducedness, the require-
ment (M) is equivalent to

Ak ≤ qk(x) for all x ∈ X∗
n−k+1, k = 1, . . . , n− 1.(N)

Thus (A1, . . . , An, α12, . . . , αn−1,n) are the outer and inner coefficients of a KZ-reduced
form if and only if they satisfy finitely many linear inequalities (S) and finitely many
cubic inequalities (N). The number of inequalities of the second kind seems to grow
much faster than that of the first kind as n increases.

It is possible to characterize the KZ-reduced forms using only linear and quadratic
inequalities by using a different parametrization of the set of quadratic forms. Let Q
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be a positive definite n×n matrix and let q(x) := xtQx. Then the Lagrange expansion
(1.1) yields a decomposition

(2.5) Q =

n∑
i=1

atiai = CtC,

where

(2.6) ai =
√
Ai(0, . . . , 0, 1,−αi,i+1, . . . ,−αin)

is a row vector for i = 1, . . . , n and C is the matrix whose ith row is ai.
Thus C is upper triangular, and Q = CtC is the Cholesky decomposition of Q.
Let Si := [0, 1

2 ] × [− 1
2 ,

1
2 ]n−i−1. Then

(2.7)
{√

Ai(0, . . . , 0, 1,−αi,i+1, . . . ,−αin) | Ai ≥ 0, (αi,i+1, . . . , αin) ∈ Si
}

is a polyhedral cone, so there is a finite set of column vectors, which we call Di, such
that (2.7) equals

(2.8) {a ∈ R
n | ad ≥ 0 for all d ∈ Di} .

For x ∈ Z
m, m ≤ n, we write x̃ := (0, . . . , 0, x1, . . . , xm) ∈ Z

n. Now q(x) = xtQx is
KZ-reduced if and only if there are row vectors ai ∈ R

n such that Q =
∑

i a
t
iai and

akd ≥ 0 for all d ∈ Dk for k = 1, . . . , n;(S’)

and

n∑
i=k

(aix̃)2 ≥ a2
kk for all x ∈ X∗

n−k+1, k = 1, . . . , n− 1.(N’)

3. A semidefinite relaxation. The characterizations above describe the coeffi-
cient domain of KZ-reduced forms as a semialgebraic set. There is by now a standard
machinery for constructing semidefinite relaxations for the problem of minimizing a
polynomial over a semialgebraic set; see [9, 12]. We describe a semidefinite formu-
lation that has the virtue of yielding a reasonable lower bound while using only a
moderate number of variables and constraints.

Theorem 3.1. Let Q be an n × n positive definite matrix and let q(x) = xtQx.
Then q is KZ-reduced if and only if there are n × n matrices B1, . . . , Bn such that
Q = B1 + · · · + Bn and

Bk has rank 1 for k = 1, . . . , n;(r)

Bk is positive semidefinite for k = 1, . . . , n;(p)

dt1B
kd2 ≥ 0 for all d1, d2 ∈ Dk, for k = 1, . . . , n; and(s)

n∑
i=k

x̃tBix̃ ≥ Bk
kk for all x ∈ X∗

n−k+1, for k = 1, . . . , n− 1.(n)

Proof. To see necessity, let q be KZ-reduced and let Ai, αij be its outer and inner
coefficients. Put

(3.1) ai =
√
Ai(0, . . . , 0, 1,−αi,i+1, . . . ,−αin).
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Then a1, . . . , an ∈ R
n are row vectors satisfying (S’) and (N’), and such that Q =∑n

i=1 a
t
iai. Let

(3.2) Bi = atiai = Ai

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0
0 1 −αi,i+1 · · · −αin

0 −αi,i+1 αi,i+1αi,i+1 · · · αi,i+1αin

...
...

...
. . .

...
0 −αin αinαi,i+1 · · · αinαin

⎤
⎥⎥⎥⎥⎥⎦ .

(Here the 0’s are zero matrices and vectors of appropriate sizes.) Then (B1, . . . , Bn)
satisfies (r), (p), (s), and (n).

For sufficiency, let B1, . . . , Bn be such that Q = B1 + · · ·+Bn and such that (r),
(p), (s), and (n) hold. As B′ has rank 1, we may write Bi = atiai, where aii ≥ 0.
Then ai satisfies (N’). To see that ai satisfies (S’), let ei be the ith unit vector in
R

n. Note that ei ∈ coneDi and that hence

(3.3) eid
t ∈ cone{d1d

t
2 | d1, d2 ∈ Di}

for any d ∈ Di. From the fact that Bi satisfies (s) it follows that (atiai) ·D ≥ 0 for
all D ∈ cone{d1d

t
2 | d1, d2 ∈ Di}, and in particular that (aiei)(aid) ≥ 0 for all d ∈ Di.

Thus aid ≥ 0 for all d ∈ Di.
So, for (c1, . . . , cn) ∈ R

n, the minimum

(3.4) min

{ n∑
i=1

ciAi |
∑
i

Ai(xi −
∑
j>i

αijxj)
2 is KZ-reduced for some αij , An = 1

}

equals

(3.5) min

{∑
k

ckB
k
kk | (B1, . . . , Bn) satisfies (r), (p), (s), (n), and Bn

nn = 1

}
.

Here the extra condition at the end is added to remove scale invariance from the
problem. Dropping the rank-1 constraint (r) yields a lower bound that is a semidefinite
optimization problem:

(3.6) z(c) := min

{ n∑
k=1

ckB
k
kk | (B1, . . . , Bn) satisfies (p), (s), (n), and Bn

nn = 1

}
.

Note that it is possible to determine the value of (3.6) without knowing the
Novikova sets X∗

i in advance, by using a cutting plane algorithm as follows. Replace
in (3.6) the constraints (n) by the following for certain small sets Xi (for example,
take X2 = X∗

2 and the other Xi empty):

n∑
i=k

x̃tBix̃ ≥ Bk
kk for all x ∈ Xn−k+1, for k = 1, . . . , n− 1.(n’)

Repeatedly refine these constraints by solving the relaxation and finding, for some
k, a nonzero vector x ∈ Z

n−k+1 with
∑n

i=k x̃
tBix̃ < Bk

kk for the optimal solution to
the relaxation. Add this x to Xn−k+1. Eventually no such x will be found, and then
the optimal solution to this relaxation will be equal to the optimal solution to (3.6).
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One can use the techniques in the proof of Theorem 2.1 to bound the search space
for these vectors.

A cutting plane algorithm may even be the only practical way to solve the re-
laxation for n > 5, since the cardinality of X∗

n seems to increase very rapidly with
n. The following theorem, similar to Theorem 2.1, implies that such a cutting plane
algorithm will finish.

Theorem 3.2. Let (B1, . . . , Bn) satisfy (p), (s), and suppose that

n∑
i=1

et2B
ie2 ≥ B1

11,(3.7)

n∑
i=k

x̃tBix̃ ≥ Bk
kk for all nonzero x ∈ Z

n−k+1, k = 2, . . . , n− 1.(3.8)

Then there are only finitely many x ∈ Z
n \ {0} such that

∑n
i=1 x

tBix < B1
11.

Compared to the method of Lasserre [9], in particular to a second-order moment
relaxation of our polynomial optimization problem, our relaxation contains variables
Bk

ij corresponding to products akiakj but no variables corresponding to products
akialj when k �= l. Accordingly, we do not take products of linear inequalities akd1 ≥
0, ald2 ≥ 0 into account.

4. Branch and bound. In this section we give an overview of the branching
process. We refer to [17] for further details and a full implementation. In the definition
of KZ-reducedness, the size-reduction requirement (S) asks that for i = 1, . . . , n − 1
we have

(4.1) (αi,i+1, . . . , αin) ∈ Si :=
[
0,

1

2

]
×
[
− 1

2
,
1

2

]n−i−1

.

There is nothing particular about the polyhedra Si that makes the semidefinite relax-
ation (3.6) possible. Taking any set of polyhedra P i instead of the Si, a semidefinite
lower bound z(c, P 1, . . . , Pn−1) analogous to (3.6) for

min

{∑
ciAi |

∑
i

Ai(xi −
∑
j>i

αijxj)
2 satisfies (N),(4.2)

(αi,i+1, . . . , αin) ∈ P i for i = 1, . . . , n− 1, and An = 1

}

may be constructed. This new relaxation differs from (3.6) in the constraints (s). If
the diameter of these polyhedra P i is small, then the matrix Bi is close to a rank-1
matrix in the following sense. Suppose the width of P i is small, i.e., for all j,

(4.3) max{αij | (αi,i+1, . . . , αin) ∈ P i} − min{αij | (αi,i+1, . . . , αin) ∈ P i} < ε,

where we assume ε < 1 and max{αij | (αi,i+1, . . . , αin) ∈ P i} ≤ 1/2. Let (B1, . . . , Bn)

be any feasible solution corresponding to z(c, P 1, . . . , Pn−1). Let (B̃1, . . . , B̃n) be any

feasible solution corresponding to z(c, P 1, . . . , Pn−1) such that B̃i has rank 1. Then
for all j, k ∈ {i, . . . , n},

(4.4) |Bi
jk/B

i
ii − B̃i

jk/B̃
i
ii| ≤ 2ε.
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If we have a set of (n−1)-tuples of polyhedra N = {(P 1
s , . . . , P

n−1
s ) | s = 1, . . . , t}

so that

(4.5) S1 × · · · × Sn−1 =
⋃

(P 1,...,Pn−1)∈N

P 1 × · · · × Pn−1,

then

(4.6) min{z(c, P 1, . . . , Pn−1) | (P 1, . . . , Pn−1) ∈ N}

is again a lower bound for (3.4). If we partition S1 × · · · × Sn−1 so that in each part
the diameter of each of the P i is small, then we would obtain a good lower bound.
However, this would make the cardinality of N very large, even for moderately small ε.
Therefore, we take an iterative approach. Initially we choose N = {(S1, . . . , Sn−1)}.
Then we repeat the following. Suppose that the minimum of (4.6) is attained at
(P 1, . . . , Pn−1) ∈ N . Then we choose an i ∈ {1, . . . , n−1} and replace (P 1, . . . , Pn−1)
in N by the two tuples

(4.7) (P 1, . . . , P i−1, Q, P i+1, . . . , Pn−1) and (P 1, . . . , P i−1, Q′, P i+1, . . . , Pn−1),

where Q,Q′ are polyhedra such that P i = Q∪Q′—so N retains property (4.5). This
process of refining N continues until (4.6) is sufficiently close to the desired value or
some other stopping criterion applies.

We choose i, Q,Q′ with the aim of reducing the “distance” of an optimal solution
to a rank-1 solution, as follows. If this optimal solution of the problem with optimum
z(c, P 1, . . . , Pn−1) is (B1, . . . , Bn), then we take i, j so that

(4.8)

n∑
k=i

1

Bi
ii

(Bi
iiB

i
jk −Bi

ijB
i
ik)

is maximal. Then we put

Q = {(αi,i+1, . . . , αin) ∈ P i | αij ≤ β},
Q′ = {(αi,i+1, . . . , αin) ∈ P i | αij ≥ β},

(4.9)

where β is (a rational number with modest denominator near) −Bi
ij/B

i
ii.

We have tried other methods for picking i, Q,Q′, but this turned out to work best
in practice, in the sense that the cardinality of N required to obtain a certain bound
was the smallest we could attain. Only by constructing N by hand did we achieve a
smaller set for one problem.

5. Rounding to obtain exact bounds. Every feasible solution y to the dual
of (3.6) gives a lower bound on z(c) and hence on the optimal solution to (3.4). A
dual solution is feasible if and only if a number of matrices, say, M1(y), . . . ,Mk(y), is
positive semidefinite. In fact, in our computations we work only with solutions y that
are strictly positive definite. This simplifies the verification of feasibility, but the cru-
cial advantage is that it helps to counter the imprecision inherent in the computation
with limited-precision floating point numbers.

In the dual of (3.6) such solutions can be obtained by replacing a dual constraint
Mi(y) � 0 with Mi(y) � εI, where I is an identity matrix of suitable dimension and
ε is a small positive constant. Bringing this matrix to the other side, we get the
perturbed constraint

(5.1) Mi(y) − εI � 0,
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which corresponds to a perturbation of the function that is being optimized in the
primal problem. Again we refer the reader to [17] for further details.

A floating-point solution y to the perturbed problem can be approximated by a
continued fraction expansion, a technique recently used in [15]. If this approximation
ỹ is sufficiently close to y, it might violate some of the perturbed dual constraints
slightly, but it will be strictly feasible for the original problem. Positive definiteness
can then be ascertained by evaluating

∑k
i=1 rank(Mi(ỹ)) determinants.

Note that this approach can also be applied to find feasible solutions of the primal
semidefinite problem but is quite useless when it comes to deriving an optimal solution
of the original problem (3.4) or (4.2), that is, a solution that also satisfies the rank-1
constraints (r). This is of no concern when one is interested in lower bounds, but it
is also interesting to find KZ-reduced forms that give a good upper bound. We do
not have a very reliable automated method to obtain such forms—not even from the
optimal solution of our branch and bound procedure, which is nonetheless close to
rank 1 in the sense that (4.8) is small for all i, j.

6. New linear inequalities on the outer coefficients of KZ-reduced qua-
dratic forms. We define

(6.1) Kn := cone{A(q) | q is an n-ary KZ-reduced form}.

We have

(6.2) Kn = {x ∈ R
n | (0, x) ∈ Kn+1}

and

(6.3) Kn = {x ∈ R
n | (x, y) ∈ Kn+1 for some y ∈ R}.

Table 6.1 gives several KZ-reduced forms, some of which come from [13], whereas
others were found by manually rounding and tweaking primal solutions to (4.2) for
suitably chosen c and polyhedra P i. The format is as follows: the columns labeled
“Outer” and “Inner” hold the vector and matrix

(6.4)

⎡
⎢⎣
A1

...
An

⎤
⎥⎦ ,
⎡
⎢⎢⎢⎢⎣

1 −α12 · · · −α1n

0 1
. . .

...
...

. . .
. . . −αn−1,n

0 · · · 0 1

⎤
⎥⎥⎥⎥⎦ ,

respectively.

By the first KZ-inequality, K2 is contained in

(6.5) K ′
2 :=

{
(A1, A2) ∈ R

2
+ | A2 ≥ 3

4
A1

}
.

It follows from Table 6.1 that K2 contains
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Table 6.1

Some KZ-reduced forms.

Name Outer Inner Form

E1
[
1
] [

1
] [

1
]

E2

[
1

3/4

] [
1 −1/2
0 1

]
1

2

[
2 1
1 2

]

E3a

⎡
⎣ 1
3/4
2/3

⎤
⎦

⎡
⎣1 −1/2 1/2
0 1 −1/3
0 0 1

⎤
⎦ 1

2

⎡
⎣ 2 −1 1
−1 2 −1
1 −1 2

⎤
⎦

E3b

⎡
⎣ 1
8/9
2/3

⎤
⎦

⎡
⎣1 −1/3 −1/3
0 1 −1/2
0 0 1

⎤
⎦ 1

3

⎡
⎣ 3 −1 −1
−1 3 −1
−1 −1 3

⎤
⎦

E4a

⎡
⎢⎢⎣

1
3/4
2/3
1/2

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1 −1/2 1/2 1/2
0 1 −1/3 −1/3
0 0 1 −1/2
0 0 0 1

⎤
⎥⎥⎦ 1

2

⎡
⎢⎢⎣

2 −1 1 1
−1 2 −1 −1
1 −1 2 0
1 −1 0 2

⎤
⎥⎥⎦

E4b

⎡
⎢⎢⎣

1
8/9
2/3
5/8

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1 −1/3 −1/3 1/3
0 1 −1/2 1/2
0 0 1 −1/4
0 0 0 1

⎤
⎥⎥⎦ 1

6

⎡
⎢⎢⎣

6 −2 −2 2
−2 6 −2 2
−2 −2 6 −3
2 2 −3 6

⎤
⎥⎥⎦

E4c

⎡
⎢⎢⎣

1
15/16
45/64
5/8

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1 −1/4 −1/4 −1/4
0 1 −1/2 −1/2
0 0 1 −1/3
0 0 0 1

⎤
⎥⎥⎦ 1

32

⎡
⎢⎢⎣

32 −8 −8 −8
−8 32 −13 −13
−8 −13 32 2
−8 −13 2 32

⎤
⎥⎥⎦

E5a

⎡
⎢⎢⎢⎣

1
3/4
2/3
1/2
1/2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
1 −1/2 1/2 1/2 1/2
0 1 −1/3 −1/3 −1/3
0 0 1 −1/2 1/4
0 0 0 1 −1/2
0 0 0 0 1

⎤
⎥⎥⎥⎦ 1

2

⎡
⎢⎢⎢⎣

2 −1 1 1 1
−1 2 −1 −1 −1
1 −1 2 0 1
1 −1 0 2 0
1 −1 1 0 2

⎤
⎥⎥⎥⎦

E5b

⎡
⎢⎢⎢⎣

1
8/9
2/3
5/8

15/32

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
1 −1/3 −1/3 −1/3 −1/3
0 1 −1/2 7/16 −1/2
0 0 1 −3/8 −1/4
0 0 0 1 −1/2
0 0 0 0 1

⎤
⎥⎥⎥⎦ 1

6

⎡
⎢⎢⎢⎣

6 −2 −2 −2 −2
−2 6 −2 3 −2
−2 −2 6 −2 1
−2 3 −2 6 −2
−2 −2 1 −2 6

⎤
⎥⎥⎥⎦

E5c

⎡
⎢⎢⎢⎣

1
3/4
2/3
5/8

15/32

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
1 −1/2 1/2 −1/2 −1/2
0 1 −1/3 1/3 1/3
0 0 1 −1/4 −1/4
0 0 0 1 −1/2
0 0 0 0 1

⎤
⎥⎥⎥⎦ 1

16

⎡
⎢⎢⎢⎣

16 −8 8 −8 −8
−8 16 −8 8 8
8 −8 16 −8 −8
−8 8 −8 16 1
−8 8 −8 1 16

⎤
⎥⎥⎥⎦

E5d

⎡
⎢⎢⎢⎣

1
3/4
3/4
9/16
1/2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
1 −1/2 1/4 −1/4 1/2
0 1 −1/2 −1/2 0
0 0 1 −1/2 1/2
0 0 0 1 −1/3
0 0 0 0 1

⎤
⎥⎥⎥⎦ 1

4

⎡
⎢⎢⎢⎣

4 −2 1 −1 2
−2 4 −2 −1 −1
2 −2 4 −1 2
−1 −1 −1 4 −2
2 −1 2 −2 4

⎤
⎥⎥⎥⎦

(6.6) K ′′
2 := cone

{[
0
1

]
,

[
1

3/4

]}
.

Since K ′
2 = K ′′

2 , we have equality throughout in K ′
2 ⊇ K2 ⊇ K ′′

2 .

Also, K3 is contained in

(6.7) K ′
3 :=

{
(A1, A2, A3) ∈ R

3
+ | A2 ≥ 3

4
A1, A3 ≥ 3

4
A2, A3 ≥ 2

3
A1

}
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by the first and second KZ-inequalities, and K3 contains

(6.8) K ′′
3 := cone

⎧⎨
⎩
⎡
⎣00

1

⎤
⎦ ,
⎡
⎣ 0

1
3/4

⎤
⎦ ,
⎡
⎣ 1

3/4
2/3

⎤
⎦ ,
⎡
⎣ 1

8/9
2/3

⎤
⎦
⎫⎬
⎭ .

Again we have equality throughout in K ′
3 ⊇ K3 ⊇ K ′′

3 , as K ′
3 = K ′′

3 .
For n = 4 the classical KZ-inequalities no longer suffice to determine Kn. By the

first and second KZ-inequalities, K4 is contained in

(6.9)

{
(A1, A2, A3, A4) ∈ R

4
+ | Ai+1 ≥ 3

4
Ai, Ai+2 ≥ 2

3
Ai

}
.

But the extremal vector (1, 8
9 ,

2
3 ,

16
27 ) of this cone cannot be realized as the sequence

of outer coefficients of a KZ-reduced form.
Theorem 6.1. Let A1, . . . , A4 be the outer coefficients of a KZ-reduced form in

four variables. Then

(6.10) −25A1 − 36A2 + 48A3 + 40A4 ≥ −7 · 10−6A4.

This theorem was proven by the branch-and-bound and rounding processes de-
scribed in the previous sections. The data required to verify this theorem can be
found in [17].

Thus K4 ⊆ K ′
4, where

(6.11) K ′
4 :=

{
(A1, A2, A3, A4) ∈ R

4
+ | Ai+1 ≥ 3

4
Ai, Ai+2 ≥ 2

3
Ai, (6.10)

}
.

We conjecture that in the above theorem we even have

(6.12) −25A1 − 36A2 + 48A3 + 40A4 ≥ 0.

By Table 6.1, K4 contains the cone

(6.13) K ′′
4 := cone

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ ,
⎡
⎢⎢⎣

0
0
1

3/4

⎤
⎥⎥⎦ ,
⎡
⎢⎢⎣

0
1

3/4
2/3

⎤
⎥⎥⎦ ,
⎡
⎢⎢⎣

0
1

8/9
2/3

⎤
⎥⎥⎦ ,
⎡
⎢⎢⎣

1
3/4
2/3
1/2

⎤
⎥⎥⎦ ,
⎡
⎢⎢⎣

1
8/9
2/3
5/8

⎤
⎥⎥⎦ ,
⎡
⎢⎢⎣

1
15/16
45/64
5/8

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭ ,

and we have

(6.14) K ′′
4 =

{
(A1, A2, A3, A4) ∈ R

4
+ | Ai+1 ≥ 3

4
Ai, Ai+2 ≥ 2

3
Ai, (6.12)

}
.

Hence K4 is nearly determined by K ′′
4 ⊇ K4 ⊇ K ′

4, and our conjecture would imply
K4 = K ′′

4 .
In dimension 5, we prove the following linear bounds.
Theorem 6.2. Let A1, . . . , A5 be the outer coefficients of a KZ-reduced form in

five variables. Then

(6.15) −5A1 + 2A4 + 8A5 ≥ −3 · 10−4A5

and

(6.16) −4A1 − 3A3 + 4A4 + 8A5 ≥ −5 · 10−5A5.
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Table 6.2

Incidences between some inequalities and elements of K5. The rightmost column gives the
dimension of the face of K5 defined by the inequality.

Inequality “Tight” forms Rank

−3A1 + 4A2 ≥ 0 E1, E2, E3a, E3b 4
−3A2 + 4A3 ≥ 0 E1, E2, E4a, E5b 4
−3A3 + 4A4 ≥ 0 E1, E3a, E4b, E4c 4
−3A4 + 4A5 ≥ 0 E2, E3b, E4a, E5b 4

−2A1 + 3A3 ≥ 0 E1, E2, E5a, E5b 4
−2A2 + 3A4 ≥ 0 E1, E4a, E4b, E5a 4
−2A3 + 3A5 ≥ 0 E3a, E3b, E5b ≥ 3

−25A1 − 36A2 + 48A3 + 40A4 ≥ 0 E1, E5a, E5b ≥ 3
−25A2 − 36A3 + 48A4 + 40A5 ≥ 0 E4a, E4b, E4c ≥ 3

−5A1 + 2A4 + 8A5 ≥ 0 E5a, E5b, E5c ≥ 3
−4A1 − 3A3 + 4A4 + 8A5 ≥ 0 E5a, E5d ≥ 2

Of course, we conjecture

(6.17) −5A1 + 2A4 + 8A5 ≥ 0

and

(6.18) −4A1 − 3A3 + 4A4 + 8A5 ≥ 0.

As before, these inequalities describe a superset K ′
5 of K5, and the forms of Table

6.1 generate a subset K ′′
5 of K5. But there is now a fundamental discrepancy between

K ′
5 and K ′′

5 . Table 6.2 lists the known and conjectured inequalities for K5 and with
each inequality gives the forms of Table 6.1 that satisfy these inequalities with equality.
Experimentation suggests that both inclusions in K ′′

5 ⊆ K5 ⊆ K ′
5 are strict (even if

we replace, in the definition of K ′
5, the inequalities proven in Theorem 6.2 by their

conjectured counterparts).
As an example, the four forms E5a, E5b, E5c, and E5d satisfy the following

inequality:

(6.19) −8A1 − 3A3 + 4A4 + 16A5 ≥ 0.

One could conjecture that this is a facet of K5. This is false, however; it is violated
by the KZ-reduced form

(6.20)

⎡
⎢⎢⎢⎢⎣

134 −54 −40 −54 54
−54 134 −40 67 −67
−40 −40 134 −40 −27
−54 67 −40 134 −67
54 −67 −27 −67 134

⎤
⎥⎥⎥⎥⎦ .

We could obtain several other extreme forms in five variables and more valid inequal-
ities, but we never reached a close approximation of K5. Therefore, we publish only
the two inequalities that seemed most relevant to the applications here. We maintain
a list of certified inequalities at our website,2 where our software [17] can also be
found.

2http://www.win.tue.nl/kz/
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Table 6.3

Relation between Hermite’s constant and the approximation found. The first row gives the exact
value of γn

n for n ≤ 8, and the best known lower bound for n = 9. The second row gives the upper
bound found using our approximation of Kn.

Dimension 1 2 3 4 5 6 7 8 9

(Lower bound on) γn
n 1 4/3 2 4 8 64/3 64 256 512

Upper bound 1 4/3 2 4 8.00005 21.3336 64.0012 256.008 1024.11

Even though we do not have a close approximation of K5, we do have enough
inequalities on the outer coefficients to bound Hermite’s constant for n ≤ 8 very well.
Assuming the conjectured inequalities (6.12), (6.17), and (6.18), the upper bound on
γn
n that would follow from the corresponding strengthening of (1.6) is exact for n ≤ 8.

Table 6.3 gives for n = 1, . . . , 8 the known values of γn
n , and the upper bound on γn

n

that follows from the proven inequalities (6.10), (6.15), and (6.16). In dimension 9
there is suddenly a huge gap between our upper bound and the best known lower
bound. This gap is also larger than the gap obtained by the Cohn–Elkies bound. One
or more new inequalities are needed to close this gap.

Blichfeldt observed in [1] that a tight upper bound on γn would follow for n =
6, 7, 8 from the two KZ-inequalities and “a certain inequality that we would reasonably
expect to be true, namely, Ai+4 ≥ 1

2Ai.” But he immediately exhibits a set of forms
showing that this inequality is false (the forms E5b and E5c of Table 6.1 are also
counterexamples). Note that the inequalities we conjecture/approximate come near
to this key inequality Blichfeldt suggests: (6.18) would imply that if A4 = 3

4A3, then
A5 ≥ 1

2A1, and (6.17) would imply that if A5 ≤ ( 1
2 − ε)A1, then A4 ≥ ( 1

2 + 4ε)A1.

7. The quality of block KZ-reduced lattice bases. If L ⊆ R
n is a full-

dimensional lattice and b1, . . . , bn ∈ L are linearly independent vectors such that

(7.1) L = {x1b1 + · · · + xnbn | x1, . . . , xn ∈ Z},

then b1, . . . , bn is a basis of L. A basis of a lattice determines a positive definite
quadratic form

(7.2) q(x1, . . . , xn) := ‖x1b1 + · · · + xnbn‖2.

A lattice basis b1, . . . , bn is said to be KZ-reduced if the associated form (7.2) is KZ-
reduced.

Let b∗1, . . . , b
∗
n be the Gram–Schmidt orthogonalization of b1, . . . , bn; that is, let

b∗1, . . . , b
∗
n be pairwise orthogonal vectors so that

(7.3) bk = b∗k −
k−1∑
i=1

αikb
∗
i for k = 1, . . . , n,

for some αij . Then these αij are exactly the inner coefficients of the associated form
(7.2); and the outer coefficients of (7.2) satisfy

(7.4) Ak = ‖b∗k‖2.

So the classical KZ-inequalities and Theorems 6.1 and 6.2 can be read as inequalities
relating the ‖b∗i ‖2 of a KZ-reduced lattice basis.
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Block KZ-reduced lattice bases were introduced in [14] as a generalization of
Lenstra–Lenstra–Lovasz (LLL-) reduced lattice bases. Such a basis gives a better
estimate of the length of the shortest lattice vector and can still be computed in
polynomial time when k is fixed. We say that a form

(7.5) q(x1, . . . , xn) =

n∑
i=1

Ai

(
xi −
∑
j>i

αijxj

)2
,

is k-block KZ-reduced (k-BKZ-reduced) if the derived forms

(7.6) qm+k−1
m (xm, . . . , xm+k−1) :=

k+m−1∑
i=k

Ai

(
xi −

k+m−1∑
j=i+1

αijxj

)2

are KZ-reduced for m = 1, . . . , n − k + 1. Then a lattice basis is k-BKZ-reduced if
the associated form is. In the remainder of this paper we will give some improved
bounds on constants used in [14] for the analysis of the quality of k-BKZ-reduced
lattice bases.

Let

(7.7) βk,n := max
‖b∗1‖2

‖b∗n‖2
,

where the maximum ranges over all k-BKZ-reduced lattice bases. Many of the useful
properties of k-BKZ-reduced lattice bases are derived through upper bounds on βk,n.
As k increases toward n, βk,n is expected to decrease. Schnorr [14] defines αk := βk,k

and shows that

(7.8) βk,1+m(k−1) ≤ αm
k .

In terms of quadratic forms, one has

(7.9) βk,n = max

{
A1

An
| (A1, . . . , An) = A(q), q a k-BKZ-reduced form

}

and

(7.10) αk = max

{
A1

Ak
| (A1, . . . , Ak) = A(q), q a KZ-reduced form

}
.

It is immediate from the first KZ-inequality that α2 = 4
3 and from the second KZ-

inequality that α3 = 3
2 . A nonnegative combination of the inequalities (6.15) and

− 3
4A4 + A5 ≥ 0 (the first KZ-inequality) is

(7.11) −15A1 + 32A5 ≥ −9 · 10−4A5,

which implies

(7.12) α5 ≤ 32

15
+ 6 · 10−5.

Since there exist KZ-reduced forms with A1/A5 = 32/15, we also have α5 ≥ 32
15 . For

k = 4, 5, the bounds on βk,n that follow from (7.8) are only slightly weaker than those
that follow directly from Theorems 6.1 and 6.2 by linear programming.
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The limit

(7.13) β̃k := lim
n→∞

β
1

n−1

k,n

also gives an indication of the relative effectiveness of k-BKZ-reduction. Observe
that if an inequality c1Ai + · · · + ckAi+k−1 ≥ 0 with c1 < 0 holds for the outer

coefficients of a KZ-reduced form in k variables, then β̃k is bounded from above by
the largest root of the polynomial c1x

k−1 + · · · + ck. Thus the first KZ-inequality
implies β̃2 ≤ 4/3 ≈ 1.3333, the second KZ-inequality implies β̃3 ≤

√
3/2 ≈ 1.2247,

Theorem 6.1 implies β̃4 ≤ 1.2172, and Theorem 6.2 (in particular (6.15)) implies

β̃5 ≤ 1.2010.

Acknowledgments. We thank Achill Schürmann and two anonymous referees
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CONVERGENCE OF THE GRADIENT SAMPLING ALGORITHM
FOR NONSMOOTH NONCONVEX OPTIMIZATION∗

KRZYSZTOF C. KIWIEL†

Abstract. We study the gradient sampling algorithm of Burke, Lewis, and Overton for minimiz-
ing a locally Lipschitz function f on R

n that is continuously differentiable on an open dense subset.
We strengthen the existing convergence results for this algorithm and introduce a slightly revised
version for which stronger results are established without requiring compactness of the level sets of
f . In particular, we show that with probability 1 the revised algorithm either drives the f -values to
−∞, or each of its cluster points is Clarke stationary for f . We also consider a simplified variant in
which the differentiability check is skipped and the user can control the number of f -evaluations per
iteration.

Key words. generalized gradient, nonsmooth optimization, subgradient, gradient sampling,
nonconvex

AMS subject classifications. 65K10, 90C26

DOI. 10.1137/050639673

1. Introduction. In two recent papers [BLO02b, BLO05], Burke, Lewis, and
Overton introduced and established convergence of the gradient sampling (GS) algo-
rithm for minimizing a locally Lipschitz function f : R

n → R which is continuously
differentiable on an open dense subset D of R

n and has bounded level sets.
At each iteration, the GS algorithm computes the gradient of f at the current

iterate and at m ≥ n+1 randomly generated nearby points. This bundle of gradients
is used to find an approximate ε-steepest descent direction, where ε is the sampling
radius, as the solution of a quadratic program. A standard Armijo line search along
this direction produces a candidate for the next iterate, which is obtained by per-
turbing the candidate, if necessary, to stay in the set D where f is differentiable; the
perturbation is random and small enough to maintain the Armijo sufficient descent
property. The sampling radius ε may be fixed for all iterations or may be reduced
dynamically. For ε fixed, the main convergence result of [BLO05, Theorem 3.4] estab-
lished that, with probability 1, the GS algorithm generates a sequence with a cluster
point that is ε-stationary for f (as defined in section 2). For ε reduced dynamically,
the result of [BLO05, Theorem 3.8] established that if the GS algorithm converges to
a point, this limit point is stationary for f with probability 1.

The GS algorithm is not only very interesting in theory (especially due to its
ingenious use of gradients instead of subgradients [BLO02a]) but also widely applicable
and robust in practice [BHLO06, BLO04, BLO05, Lew05].

This paper provides stronger convergence results for the GS algorithm. For ε
fixed, we show that with probability 1 every cluster point of the GS algorithm is
ε-stationary for f (see Theorem 3.6). For ε reduced dynamically, we show that with
probability 1 every cluster point of a well-defined subsequence is stationary for f (see
Theorem 3.4), without assuming that the whole sequence converges. In both cases,
we show that suitable stopping criteria ensure with probability 1 that the algorithm

∗Received by the editors September 6, 2005; accepted for publication (in revised form) October 20,
2006; published electronically May 7, 2007.
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terminates with the required “optimality certificate” of [BLO05, p. 768]; this practical
aspect was not analyzed in [BLO05, section 3].

We also introduce a slight revision of the GS algorithm, in which the perturbation
of the Armijo candidate is controlled by the current step size (instead of ε as in the
original method; see (2.6)). This tiny modification enables us to derive much stronger
convergence results; in particular, we can dispense with the assumption of [BLO05]
that f has compact level sets. For ε fixed, we show that with probability 1 either
the algorithm drives the f -values to −∞, or every cluster point of a well-defined
subsequence of its iterates is ε-stationary for f (see Theorem 3.5). For ε reduced
dynamically, we show that with probability 1 the algorithm either drives the f -values
to −∞, or each of its cluster points is stationary for f (see Theorem 3.3); in a sense,
this is the best result one can hope for. If inf f > −∞, in both cases suitable stopping
criteria ensure with probability 1 that the algorithm terminates with the required
“optimality certificate.”

Our further modifications of the GS algorithm are intended to improve its perfor-
mance in practice. Since the GS algorithm employs search directions of unit 2-norm,
the number of f -evaluations per Armijo’s line search can grow to infinity as the algo-
rithm converges. To mitigate this drawback, we consider using an “unscaled” search
direction, i.e., the negative of the convex combination of the gradients in the bundle
whose norm is minimized. (This direction was used in [BLO02b, section 3] for a dif-
ferent line search.) The third alternative is to scale the direction so that its length
equals ε and the Armijo line search is made within the ball in which gradient sampling
occurs.

Finally, we introduce a lower bound on step sizes tested by the Armijo search,
accepting a null step size when this bound is reached. Here the idea is simple: when
the search direction is good enough, a step size close to our lower bound should work,
whereas if the search direction is poor, the Armijo search will produce a tiny step
size anyway. In our limited Armijo line search (see Procedure 4.3), the number of
f -evaluations can be controlled by the choice of an initial step size; in an extreme
version, just one evaluation occurs. Further, for our limited line search there is no
longer any need for keeping the iterates in the set D where f is differentiable. Skipping
the differentiability check makes life easier for the user who provides gradient values
and brings the simplified algorithm closer to the version implemented and tested in
[BLO05, section 4].

Among other algorithms for minimizing locally Lipschitz functions, we should
mention bundle methods (see the references in [BLO05, Kiw96]). Bundle methods
require the computation of a single subgradient at each trial point in addition to the
objective value. They generate search directions by solving quadratic programs based
on accumulated subgradients and employ line searches which either produce descent
or find a new subgradient that modifies the next search direction. At first sight, they
have little in common with the GS algorithm, which does not accumulate gradients.
We believe, however, that deeper understanding of their similarities and differences
should lead to new variants. The first step in this direction is made here: the proof
technique of section 3 is borrowed from [Kiw96, section 3], and the limited line search
of section 4.3 is inspired by null steps of bundle methods. We defer consideration
of gradient sampling in bundle methods, as well as numerical comparisons, to future
work.

The paper is organized as follows. A slightly revised version of the GS algorithm
is presented in section 2. A convergence analysis of the original and revised versions
is given in section 3. Various modifications are discussed in section 4.
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2. The GS algorithm. As in [BLO05], we assume that the objective function
f : R

n → R is locally Lipschitz continuous and continuously differentiable on an open
dense subset D of R

n. The Clarke subdifferential [Cla83] of f at any point x is given
by

∂̄f(x) = co
{

limj ∇f(yj) : yj → x, yj ∈ D
}
,

where co denotes the convex hull, and the Clarke ε-subdifferential [Gol77] by

(2.1) ∂̄εf(x) := co ∂̄f(B(x, ε)),

where B(x, ε) := {y : |y − x| ≤ ε} is the ball centered at x with radius ε ≥ 0 and
| · | is the 2-norm. The Clarke ε-subdifferential ∂̄εf(x) is approximated by the set of
[BLO05]

(2.2) Gε(x) := cl co∇f(B(x, ε) ∩D),

since Gε(x) ⊂ ∂̄εf(x), and ∂̄ε1f(x) ⊂ Gε2(x) for 0 ≤ ε1 < ε2. We say that a point x
is stationary for f if 0 ∈ ∂̄f(x); x is called ε-stationary for f if 0 ∈ ∂̄εf(x).

We now state a slightly revised version of the GS algorithm [BLO05, section 2].
In particular, we do not require that the starting point x1 ∈ D is such that the level
set {x : f(x) ≤ f(x1)} is compact. For a closed convex set G, Proj(0 |G) is its
minimum-norm element.

Algorithm 2.1 (revised GS algorithm).

Step 0 (initialization). Select an initial point x1 ∈ D, optimality tolerances
νopt, εopt ≥ 0, line search parameters β, γ in (0, 1), reduction factors μ, θ in (0, 1],
a sampling radius ε1 > 0, a stationarity target ν1 ≥ 0, and a sample size m ≥ n + 1.
Set k := 1.

Step 1 (approximate the Clarke ε-subdifferential by gradient sampling). Let
{xki}mi=1 be sampled independently and uniformly from B(xk, εk). If {xki}mi=1 
⊂ D,
then stop; otherwise, set

(2.3) Gk := co
{
∇f(xk),∇f(xk1), . . . ,∇f(xkm)

}
.

Step 2 (direction finding). Set gk := Proj(0 |Gk).
Step 3 (stopping criterion). If |gk| ≤ νopt and εk ≤ εopt, terminate.
Step 4 (sampling radius update). If |gk| ≤ νk, set νk+1 := θνk, εk+1 := μεk,

tk := 0, and xk+1 := xk and go to Step 7. Otherwise, set νk+1 := νk, εk+1 := εk, and

(2.4) dk := −gk/|gk|.

Step 5 (line search). Set the step size

(2.5) tk := max
{
t : f(xk + tdk) < f(xk) − βt|gk|, t ∈ {1, γ, γ2, . . . }

}
.

Step 6 (updating). If xk + tkd
k ∈ D, set xk+1 := xk + tkd

k. Otherwise, let xk+1

be any point in D satisfying

f(xk+1) < f(xk) − βtk|gk|,(2.6a)

|xk + tkd
k − xk+1| ≤ min{tk, εk}.(2.6b)

Step 7. Increase k by 1 and go to Step 1.
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The algorithm keeps every iterate xk in the set D. At Step 2, gk is characterized
by gk ∈ Gk and 〈g, gk〉 ≥ |gk|2 for all g ∈ Gk; since ∇f(xk) ∈ Gk by (2.3), (2.4) yields
〈∇f(xk), dk〉 ≤ −|gk|. Hence the Armijo line search (2.5) is well defined, because
there is t̄ > 0 such that f(xk + tdk) < f(xk) − βt|gk| for all t ∈ (0, t̄).

The only significant difference between Algorithm 2.1 and the original GS algo-
rithm [BLO05, section 2] lies in the slightly stronger requirement (2.6). Namely, if
xk+tkd

k /∈ D, xk+1 can be found as follows. For i = 1, 2, . . . , sample xk+1 from a uni-
form distribution on B(xk + tkd

k,min{tk, εk}/i) until xk+1 ∈ D and (2.6a) holds. By
(2.5) and the continuity of f , this procedure terminates with probability 1. In contrast,
the original GS algorithm requires finding x̂k in B(xk, εk) such that x̂k + tkd

k ∈ D
and (2.6a) holds for xk+1 := x̂k + tkd

k; to this end, one can sample x̂k from a uniform
distribution on B(xk, εk/i) until these requirements are met. Further, if (2.6) holds,
then x̂k := xk+1 − tkd

k satisfies the requirements of the original GS algorithm. This
is the only reason for including εk in (2.6b). On the other hand, the presence of tk in
(2.6b) yields |xk+1 − xk| ≤ 2tk (using |dk| = 1 by (2.4)) and hence the highly useful
consequence of (2.6a)

(2.7) f(xk+1) ≤ f(xk) − β 1
2 |x

k+1 − xk||gk|.

Note that this key inequality (2.7) holds also when xk+1 := xk+tkd
k at Step 6 (thanks

to (2.5)) or when xk+1 := xk at Step 4.
The stopping criterion of Step 3 delivers the “optimality certificate” of [BLO05,

p. 768]: the final values of |gk| and εk provide an estimate of nearness to Clarke
stationarity.

3. Convergence analysis. We start with two technical lemmas. The first
lemma on approximate least-norm elements is a simplified version of [BLO05, Lemma
3.1].

Lemma 3.1. Let ∅ 
= C ⊂ R
n be compact convex and β ∈ (0, 1). If 0 /∈ C, there

exists δ > 0 such that u, v ∈ C and |u| ≤ dist(0 |C) + δ imply 〈v, u〉 > β|u|2.
Proof. If the assertion were false, we could pick two sequences {ui}, {vi} ⊂ C

satisfying |ui| ≤ dist(0 |C) + 1/i and 〈vi, ui〉 ≤ β|ui|2. By compactness, we may
assume ui → ū ∈ C, vi → v̄ ∈ C; thus 〈v̄, ū〉 ≤ β|ū|2. However, ū = Proj(0 |C) 
= 0
satisfies 〈v, ū〉 ≥ |ū|2 for all v ∈ C, a contradiction.

The next lemma recalls from [BLO05, Lemma 3.2] basic properties of the set of
points close to a given point x̄ that can be used to provide a δ-approximation to the
least-norm element of Gε(x̄); its second part summarizes some useful ideas from the
proof of [BLO05, Theorem 3.4]. For ε, δ > 0 and x̄, x ∈ R

n, using the measure of
proximity to ε-stationarity

(3.1) ρε(x̄) := dist(0 |Gε(x̄)),

let

(3.2) Dm
ε (x) :=

m∏
1

(B(x, ε) ∩D) ⊂
m∏
1

R
n

and

(3.3) Vε(x̄, x, δ) :=
{

(y1, . . . , ym) ∈ Dm
ε (x) : dist(0 | co{∇f(yi)}mi=1) ≤ ρε(x̄) + δ

}
.

Lemma 3.2. Let ε > 0 and x̄ ∈ R
n.
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(i) For any δ > 0, there is τ > 0 and a nonempty open set V̄ satisfying
V̄ ⊂ Vε(x̄, x, δ) for all x ∈ B(x̄, τ), and dist(0 | co{∇f(yi)}mi=1) ≤ ρε(x̄) + δ for
all (y1, . . . , ym) ∈ V̄ .

(ii) Assuming 0 /∈ Gε(x̄), pick δ > 0 as in Lemma 3.1 for C := Gε(x̄), and
then τ and V̄ as in statement (i). Suppose at iteration k of Algorithm 2.1, Step 5
is reached with xk ∈ B(x̄,min{τ, ε/3}), εk = ε, and (xk1, . . . , xkm) ∈ V̄ . Then
tk ≥ min{1, γε/3}.

(iii) If limk max{|xk − x̄|, |gk|, εk} = 0 with gk ∈ ∂̄εkf(xk) for all k, then 0 ∈
∂̄f(x̄).

Proof. (i) Let u ∈ co∇f(B(x̄, ε) ∩ D) be such that |u| < ρε(x̄) + δ. Then
Carathéodory’s theorem [Roc70] implies the existence of (x̄1, . . . , x̄m) ∈ Dm

ε (x̄) and
λ̄ ∈ R

m
+ with

∑m
i=1 λ̄i = 1 such that u =

∑m
i=1 λ̄i∇f(x̄i). Since f is continuously dif-

ferentiable on the open set D, there is ε̄ ∈ (0, ε) such that the set V̄ :=
∏m

i=1 intB(x̄i, ε̄)
lies in Dm

ε−ε̄(x̄) and |
∑m

i=1 λ̄i∇f(yi)| < ρε(x̄) + δ for all (y1, . . . , ym) ∈ V̄ . Hence for
all x ∈ B(x̄, τ) with τ := ε̄, the fact that B(x̄, ε − ε̄) ⊂ B(x, ε) yields V̄ ⊂ Vε(x̄, x, δ)
by the definitions (3.2)–(3.3).

(ii) Let Ĝk := co{∇f(xki)}mi=1. Since (xk1, . . . , xkm) ∈ V̄ ⊂ Vε(x̄, x̄, δ) in state-

ment (i), we get dist(0 | Ĝk) ≤ ρε(x̄) + δ and Ĝk ⊂ Gε(x̄) from (3.3), (3.2), and (2.2).
We also have ∇f(xk) ∈ Gε(x̄) from xk ∈ B(x̄, ε/3) ∩ D. Thus, by (2.3) and the
construction of gk at Step 2, gk ∈ Gε(x̄) and |gk| ≤ ρε(x̄)+ δ. Hence by (3.1) and the
choice of δ in Lemma 3.1,

(3.4) 〈v, gk〉 > β|gk|2 for all v ∈ Gε(x̄).

Suppose for contradiction that tk < min{1, γε/3}. Then by construction (cf. (2.5))

−βγ−1tk|gk| ≤ f(xk + γ−1tkd
k) − f(xk),

whereas Lebourg’s mean value theorem (cf. [Cla83, Theorem 2.3.7]) yields the exis-
tence of x̃k ∈ [xk + γ−1tkd

k, xk] and vk ∈ ∂̄f(x̃k) such that

f(xk + γ−1tkd
k) − f(xk) = γ−1tk〈vk, dk〉.

Hence using dk := −gk/|gk| gives 〈vk, gk〉 ≤ β|gk|2, and so vk /∈ Gε(x̄) by (3.4). But
γ−1tk|dk| < ε/3 and |xk − x̄| ≤ ε/3 imply x̃k ∈ B(x̄, 2ε/3) and thus vk ∈ Gε(x̄), a
contradiction.

(iii) Note that gk ∈ ∂̄εkf(xk) at Step 2 by (2.1), whereas ∂̄·f(·) is closed.
As discussed in section 2, Algorithm 2.1 is a special case of the GS algorithm,

which in turn corresponds to removing tk in the right-hand side of (2.6b) and requiring
that the level set {x : f(x) ≤ f(x1)} be bounded. Therefore, we give convergence
results separately for Algorithm 2.1 and the original GS algorithm. We start with the
case where εk and νk are allowed to decrease.

Theorem 3.3. Let {xk} be a sequence generated by Algorithm 2.1 with ν1 >
νopt = εopt = 0 and μ, θ < 1. With probability 1 the algorithm does not stop, and
either f(xk) ↓ −∞, or νk ↓ 0, εk ↓ 0 and every cluster point of {xk} is stationary
for f .

Proof. (i) Since termination in Step 1 has zero probability, we may assume it
does not occur. Similarly, if f(xk) ↓ −∞, there is nothing to prove, and so assume
infk f(xk) > −∞. Then summing βtk|gk| ≤ f(xk)− f(xk+1) (cf. (2.6a)) and relation
(2.7) gives

(3.5)

∞∑
k=1

tk|gk| < ∞,
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(3.6)

∞∑
k=1

|xk+1 − xk||gk| < ∞.

(ii) Suppose there is k1, ν̄ > 0, and ε̄ > 0 such that νk = ν̄ and εk = ε̄ for
all k ≥ k1. Using |gk| ≥ ν̄ in (3.5)–(3.6) yields tk → 0,

∑
k |xk+1 − xk| < ∞, and

hence the existence of a point x̄ such that xk → x̄. Let ε := ε̄. First, suppose
0 /∈ Gε(x̄). For δ, τ , and V̄ chosen as in Lemma 3.2(ii), we can pick k2 ≥ k1 such
that xk ∈ B(x̄,min{τ, ε/3}) and tk < min{1, γε/3} yield (xk1, . . . , xkm) /∈ V̄ for all
k ≥ k2. This event has probability 0, since for each k ≥ k2, (xk1, . . . , xkm) is sampled
independently and uniformly from Dm

ε (xk), which contains the open set V̄ 
= ∅.
Second, suppose 0 ∈ Gε(x̄). For δ := ν̄/2 and τ, V̄ chosen as in Lemma 3.2(i), we
can pick k3 ≥ k1 such that xk ∈ B(x̄, τ), ν̄ ≤ |gk| ≤ dist(0 | co{∇f(xki)}mi=1), and
ρε(x̄) = 0 imply (xk1, . . . , xkm) /∈ V̄ for all k ≥ k3. This event has probability 0 as
well.

(iii) Consider the event where νk ↓ 0, εk ↓ 0, and {xk} has a cluster point x̄. If
xk → x̄, 0 ∈ ∂̄f(x̄) by Lemma 3.2(iii). If xk 
→ x̄, we claim that limk max{|xk − x̄|,
|gk|} = 0. Otherwise, there exist ν̄ > 0, k̄, and an infinite set K := {k : k ≥ k̄,
|xk−x̄| ≤ ν̄} such that |gk| > ν̄ for all k ∈ K, and so (3.6) gives

∑
k∈K |xk+1−xk| < ∞.

Since xk 
→ x̄, there is ε > 0 such that for each k ∈ K with |xk − x̄| ≤ ν̄/2 there exists
k′ > k satisfying |xk′ − xk| > ε and |xi − x̄| ≤ ν̄ for all k ≤ i < k′. Therefore, by the

triangle inequality, we have ε < |xk′ − xk| ≤
∑k′−1

i=k |xi+1 − xi| with the right-hand
side being less than ε for large k ∈ K from

∑
k∈K |xk+1 − xk| < ∞, a contradiction.

Therefore, limk max{|xk − x̄|, |gk|} = 0 yields 0 ∈ ∂̄f(x̄) by Lemma 3.2(iii).
Theorem 3.4. Let {xk} be a sequence generated by the original GS algorithm

with ν1 > νopt = εopt = 0 and μ, θ < 1. Suppose the level set {x : f(x) ≤ f(x1)} is
bounded. Then with probability 1 the algorithm does not stop, νk ↓ 0, εk ↓ 0, there is

a subsequence K ⊂ {1, 2, . . . } such that gk
K−→ 0, and every cluster point of {xk}k∈K

is stationary for f .
Proof. It suffices to reconsider part (ii) of the proof of Theorem 3.3 (since, for

νk ↓ 0, we can take K := {k : νk+1 < νk}).
Thus suppose there is k1, ν̄ > 0, and ε̄ > 0 such that νk = ν̄ and εk = ε̄ for

all k ≥ k1. Using |gk| ≥ ν̄ in (3.5) yields tk → 0. Since {f(xk)} is decreasing and
the set {x : f(x) ≤ f(x1)} is compact, there are a set J ⊂ {1, 2, . . . } and a point

x̄ such that xk J−→ x̄. Since tk
J−→ 0 as well, arguing as in part (ii) of the proof

of Theorem 3.3 we deduce the existence of k4 and an open set V̄ 
= ∅ such that
(xk1, . . . , xkm) /∈ V̄ ⊂ Dm

ε (xk) for all k ≥ k4, k ∈ J , and again conclude that this
event has probability 0.

Our convergence results for fixed sampling radius follow.
Theorem 3.5. Let {xk} be a sequence generated by Algorithm 2.1 with ν1 =

νopt = 0, ε1 = εopt = ε > 0, and μ = 1. With probability 1 either the algorithm termi-
nates at some iteration k with 0 ∈ Gε(x

k), or f(xk) ↓ −∞, or there is a subsequence

K ⊂ {1, 2, . . . } such that gk
K−→ 0 and every cluster point x̄ of {xk}k∈K satisfies

0 ∈ ∂̄εf(x̄).
Proof. If the algorithm terminates at iteration k, then with probability 1 it does

so at Step 3 with 0 = gk ∈ Gε(x
k). Hence we may assume that no termination occurs

and infk f(xk) > −∞.
By the proof of Theorem 3.3, the event ν̄ := infk |gk| > 0 has probability 0.

In the remaining case of infk |gk| = 0, the conclusion follows from the closedness of
∂̄εf(·).
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Theorem 3.6. Let {xk} be a sequence generated by the original GS algorithm
with ν1 = νopt = 0, ε1 = εopt = ε > 0, and μ = 1. Suppose the set {x : f(x) ≤ f(x1)}
is bounded. With probability 1 either the algorithm terminates at some iteration k
with 0 ∈ Gε(x

k), or gk → 0 and every cluster point x̄ of {xk} satisfies 0 ∈ ∂̄εf(x̄).
Proof. Arguing by contradiction, it suffices to consider the case where there are

a set J ⊂ {1, 2, . . . } and ν̄ > 0 such that infk∈J |gk| ≥ ν̄. Since {f(xk)} is decreasing
and the set {x : f(x) ≤ f(x1)} is compact, we may assume with no loss of generality

that there is a point x̄ such that xk J−→ x̄. Since (3.5) gives tk
J−→ 0, arguing as in

part (ii) of the proof of Theorem 3.3 we deduce the existence of k5 and an open set
V̄ 
= ∅ such that (xk1, . . . , xkm) /∈ V̄ ⊂ Dm

ε (xk) for all k ≥ k5, k ∈ J . This event has
probability 0, since for each k, (xk1, . . . , xkm) is sampled independently and uniformly
from Dm

ε (xk).
A few comments and comparisons with the results of [BLO05, section 3] are in

order.
Remark 3.7.

(i) Since the framework of [BLO05, section 3] requires compactness of the level
set {x : f(x) ≤ f(x1)}, it has no results comparable to our Theorems 3.3 and 3.5.

(ii) Theorem 3.3 is essentially the best one can hope for. In particular, it implies
that for positive optimality tolerances νopt and εopt, with probability 1 either f(xk) ↓
−∞, or the algorithm terminates with the required “optimality certificate” of [BLO05,
p. 768].

(iii) Theorem 3.3 is stronger than Theorem 3.4. Of course, Theorem 3.3 relies
on our inclusion of tk in the right-hand side of (2.6b), but this should be cheap in
practice. With this fairly mild qualification, Theorem 3.3 gives a positive answer to
the final open question of [BLO05, section 3] on whether all cluster points of the
algorithm are stationary.

(iv) Theorem 3.4 subsumes [BLO05, Theorem 3.8], which assumes that {xk}
converges.

(v) Theorem 3.6 subsumes [BLO05, Theorem 3.4], which asserts only the exis-

tence of a subsequence K ⊂ {1, 2, . . . } such that ρε(x
k)

K−→ 0 and every cluster point
x̄ of {xk}k∈K satisfies 0 ∈ ∂̄εf(x̄), without showing that infk |gk| = 0. In contrast,
Theorem 3.6 implies that for a positive optimality tolerance νopt, with probability 1
the algorithm terminates when the required “optimality certificate” is reached (sim-
ilarly for Theorem 3.5 if inf f > −∞). A result similar to Theorem 3.6 is given in
[BLO05, part 1 of Corollary 3.5] only for the case where the objective f is continuously
differentiable everywhere. Finally, Theorem 3.6 disproves the conjecture raised in the
open question number 2 at the end of [BLO05, section 3] that a counterexample with
limk∈K |gk| > 0 should exist.

4. Modifications. Although our revision of Step 6 yields stronger theoretical
results, it makes no difference to its implementation in practice when, as explained in
[BLO05, section 4], it is not possible or practical to check whether the iterates lie in
the set D where f is differentiable. Further, the implementation of [BLO05, section 4]
obtained best results for the Armijo parameter β = 0 (although β > 0 is required in
theory). Thus there is still the need for further study of line searches. In this section
we propose several themes, supported by theory, that might prove useful in improving
the practical performance of the method.

4.1. Nonnormalized search directions. Since the GS algorithm employs
search directions dk := −gk/|gk| of unit norm, the number of f -evaluations per
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Armijo’s line search (cf. (2.5)) can grow to infinity. This will happen in the generic
case where xk+1 = xk + tkd

k for almost all k and tk = |xk+1 − xk| → 0 (e.g., {xk}
converges). To mitigate this drawback, let us consider using dk := −gk as in the
steepest descent method with dk = −∇f(xk) in the smooth case.

Formally, suppose relations (2.4)–(2.6) in Algorithm 2.1 are replaced by

dk := −gk,(4.1)

tk := max
{
t : f(xk + tdk) < f(xk) − βt|gk|2, t ∈ {1, γ, γ2, . . . }

}
,(4.2)

f(xk+1) < f(xk) − βtk|gk|2,(4.3a)

|xk + tkd
k − xk+1| ≤ min{tk, εk}|dk|.(4.3b)

Then (2.7) still holds, since |xk+1−xk| ≤ 2tk|dk| = 2tk|gk|. Lemma 3.2(ii) is replaced
by the following.

Lemma 4.1. Let ε > 0 and x̄ ∈ R
n. Assuming 0 /∈ Gε(x̄), pick δ > 0 as

in Lemma 3.1 for C := Gε(x̄), and then τ and V̄ as in Lemma 3.2(i). Suppose
xk ∈ B(x̄,min{τ, ε/3}), εk = ε, and (xk1, . . . , xkm) ∈ V̄ . Then tk ≥ min{1, γε/3κ̄},
where κ̄ is the Lipschitz constant of f on B(x̄, 2ε).

Proof. In the proof of Lemma 3.2(ii), assuming tk < min{1, γε/3κ̄}, use dk := −gk

to get 〈vk, gk〉 ≤ β|gk|2 as before. Since γ−1tk|dk| < ε/3 yields vk ∈ Gε(x̄) as before,
note that |dk| = |gk| ≤ κ̄, since |xk − x̄| ≤ ε/3 implies gk ∈ Gε(x

k) ⊂ G1.5ε(x̄) and
hence |gk| ≤ κ̄.

With the above replacements, the proofs of section 3 are modified in obvious ways.
For instance, in the proof of Theorem 3.3, using (4.3a), we can replace (3.5) by

(4.4)

∞∑
k=1

tk|gk|2 < ∞,

and in its part (ii) we can consider tk < min{1, γε/3κ̄}. In effect, Theorems 3.3–3.6
hold for this variant as well.

Although dk := −gk may be better than dk := −gk/|gk| asymptotically, it can be
worse initially when |gk| is still “large” (this, of course, depends on problem scaling).
In general, we may wish to scale dk so that the first trial point xk + dk is at a
“reasonable” distance from xk; using the sampling radius εk as this distance gives the
variant analyzed below.

4.2. Searching within the trust region. To restrict the Armijo line search
to the sampled trust region B(xk, εk), suppose relations (2.4)–(2.6) in Algorithm 2.1
are replaced by

dk := −εkg
k/|gk|,(4.5)

tk := max
{
t : f(xk + tdk) < f(xk) − βtεk|gk|, t ∈ {1, γ, γ2, . . . }

}
,(4.6)

f(xk+1) < f(xk) − βtkεk|gk|,(4.7a)

|xk + tkd
k − xk+1| ≤ min{tk, εk}|dk|.(4.7b)

Then (2.7) still holds, since |xk+1 − xk| ≤ 2tk|dk| = 2tkεk. Lemma 3.2(ii) is replaced
by the following.
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Lemma 4.2. Let ε > 0 and x̄ ∈ R
n. Assuming 0 /∈ Gε(x̄), pick δ > 0 as

in Lemma 3.1 for C := Gε(x̄), and then τ and V̄ as in Lemma 3.2(i). Suppose
xk ∈ B(x̄,min{τ, ε/3}), εk = ε, and (xk1, . . . , xkm) ∈ V̄ . Then tk ≥ γ/3.

Proof. In the proof of Lemma 3.2(ii), for tk < γ/3, use dk := −εkg
k/|gk| to

get 〈vk, gk〉 ≤ β|gk|2 as before, and then vk ∈ Gε(x̄) from γ−1tk|dk| < ε/3 with
|dk| = εk = ε.

As in section 4.1, we deduce that Theorems 3.3–3.6 hold for this variant as well,
since in the proof of Theorem 3.3, using (4.7a), we can replace (3.5) by

(4.8)

∞∑
k=1

tkεk|gk| < ∞.

4.3. Limiting the line search. Note that relations (2.4)–(2.6), (4.1)–(4.3), and
(4.5)–(4.7) have the form

dk := −αkg
k with αk > 0,(4.9)

tk := max
{
t : f(xk + tdk) < f(xk) − βt|dk||gk|, t ∈ {1, γ, γ2, . . . }

}
,(4.10)

f(xk+1) < f(xk) − βtk|dk||gk|,(4.11a)

|xk + tkd
k − xk+1| ≤ min{tk, εk}|dk|,(4.11b)

where αk := 1/|gk| in sections 2–3, αk := 1 in section 4.1, and αk := εk/|gk| in
section 4.2. The corresponding lower bounds on tk produced by Lemmas 3.2(ii), 4.1,
and 4.2 have the form tk ≥ min{1, γε/3|dk|}. Procedure 4.3 tests only step sizes that
satisfy this bound. It finds tk ≥ min{1, γε/3|dk|} when the search direction is good
enough (see Lemma 4.4). Otherwise, a null step with tk := 0 occurs; then Step 1
resamples (most of) the gradient bundle Gk, so that eventually the search direction
is improved sufficiently (unless xk is already stationary). It will be seen that this
null step/resampling mechanism obviates the need for the iterates to be in the set D
where f is differentiable.

Procedure 4.3 (limited Armijo line search).

(i) Choose an initial step size t ≥ min{1, γεk/3|dk|}.
(ii) If f(xk + tdk) < f(xk) − βt|dk||gk|, return tk := t.
(iii) If t ≤ min{1/γ, εk/3|dk|}, return tk := 0.
(iv) Set t := γt and go to (ii).
Lemma 4.4. Let ε > 0 and x̄ ∈ R

n. Assuming 0 /∈ Gε(x̄), pick δ > 0 as
in Lemma 3.1 for C := Gε(x̄), and then τ and V̄ as in Lemma 3.2(i). Suppose
xk ∈ B(x̄,min{τ, ε/3}), εk = ε, (xk1, . . . , xkm) ∈ V̄ , and dk := −αkg

k with αk > 0.
Then Procedure 4.3 finds a step size tk ≥ min{1, γε/3|dk|}, and the conclusions of
Lemmas 3.2(ii), 4.1, and 4.2 hold for αk = 1/|gk|, 1, and εk/|gk|, respectively.

Proof. As in the proof of Lemma 3.2(ii), using relation (3.4) and the form of
dk := −αkg

k, we obtain 〈v, dk〉 < −β|dk||gk| for all v ∈ Gε(x̄). Let t ∈ (0, ε/3|dk|].
By Lebourg’s mean value theorem, f(xk + tdk)− f(xk) = t〈v, dk〉 for some v ∈ ∂̄f(x)
with x ∈ [xk + tdk, xk]. Then t|dk| ≤ ε/3 and |xk − x̄| ≤ ε/3 imply x ∈ B(x̄, 2ε/3) and
hence v ∈ Gε(x̄). Therefore, f(xk + tdk) < f(xk) − βt|dk||gk| for all t ∈ (0, ε/3|dk|],
and the conclusion follows from the rules of Procedure 4.3.

Remark 4.5.

(i) We conclude from Lemma 4.4 that Theorems 3.3–3.6 remain valid for step
sizes tk produced by Procedure 4.3 instead of the standard Armijo searches (2.5),
(4.2), and (4.6). This follows easily from the proofs of section 3 and the remarks in
sections 4.1–4.2.
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(ii) The number of f -evaluations made by Procedure 4.3 can be controlled via
the choice of the initial step size t at step (i). For instance, if t := min{1, εk/3|dk|},
then only one evaluation occurs, and the procedure returns either tk := t or tk := 0. If
the initial step size t looks “too small,” e.g., f(xk + tdk) < f(xk)−0.5t|dk||gk|, we can
try expansion by setting t := t/γ until f(xk + tdk) ≥ f(xk)−βt|dk||gk|, in which case
tk := γt is returned. Further, step (iii) of Procedure 4.3 can use a smaller threshold 0 <
t < min{1/γ, εk/3|dk|}, returning tk := 0 if t ≤ t. Alternatively, the stopping criterion
of step (iii) can be ignored until a given number of f -evaluations is reached. Such
variations do not impair Lemma 4.4. Note that the theoretical guidelines above leave
much freedom for implementations. For instance, choosing a smaller t involves the
trade-off between the cost of additional f -evaluations during the line search versus the
cost of evaluating m gradients at Step 1. On the other hand, using a positive t is essen-
tial in practice because otherwise an infinite loop might occur due to rounding errors.

(iii) Once Procedure 4.3 replaces the standard Armijo searches (2.5), (4.2), and
(4.6), there is no longer any need for keeping xk in D and including ∇f(xk) in Gk

at Step 1. This leads to the following simplified variant of Algorithm 2.1. At Step 0,
select any x1 ∈ R

n. At Step 1, set Gk := co{∇f(xki)}mi=1. At Step 5, find tk via
Procedure 4.3. Finally, at Step 6, set xk+1 := xk + tkd

k. Then the requirements
of (4.11) are met if tk > 0, whereas the key inequality (2.7) always holds. In effect,
Theorems 3.3–3.6 remain valid for this variant. Further, Theorems 3.3–3.6 still hold if
the differentiability check of Step 1 is skipped, since {xki}mi=1 ⊂ D with probability 1.
In other words, we may skip the differentiability check of Steps 1 and 6 as in the
implementation of [BLO05, section 4], assuming that the user provides reasonable
replacements for the gradient at points where it is not defined or that such points are
not encountered. In this setting, we may also include ∇f(xk) in Gk: although we can
not show that the event xk /∈ D has probability zero, it is unlikely to occur in practice.

Acknowledgments. I would like to thank the Associate Editor and the two
anonymous referees for their help in improving the exposition of the main results of
this paper.
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Abstract. We study equilibrium models governed by parameter-dependent quasi-variational
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coderivative calculus for structural settings involved in our models. The results obtained are illus-
trated by applications to some optimization and equilibrium models related to parameterized Nash
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1. Introduction. This paper is devoted to the study of optimization and equi-
librium problems involving the so-called parameterized quasi-variational inequalities
(QVIs) of the following type: given a parameter x ∈ R

n, find a decision vector
y ∈ Γ(x, y) ⊂ R

m such that

(1.1) 〈g(x, y), v − y〉 ≥ 0 for all v ∈ Γ(x, y),

where g : R
n × R

m → R
m is a single-valued continuously differentiable vector func-

tion, while Γ: R
n × R

m →→ R
m is a set-valued mapping (multifunction) between the

corresponding finite-dimensional spaces. We always assume in this paper that the
mapping Γ is of closed graph and takes convex values Γ(x, y).

QVIs were introduced by Bensoussan and Lions in a series of papers (see, e.g.,
[3]) in connection with impulse optimal control problems. They have been exten-
sively studied in numerous publications, mainly from the viewpoints of existence of
solutions and numerical methods; cf. [2, 5, 7, 10, 19, 29], among others. Besides the
original motivation, models in the form of QVIs and their special subclass, implicit
complementarity problems, were particularly used, e.g., in

• continuum mechanics (filtration through porous media [2], contact problems
with compliant obstacles [33], contact problems with Coulomb friction [15, 4]);
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• economics (noncooperative games [14, 11], oligopolistic markets [33], and net-
work and traffic equilibria [7]); and

• biology (competition between different species or within a species [13]).
Much less attention has been paid to the study of parameter-dependent QVIs,

especially those where both mappings g and Γ in (1.1) depend on parameters. The
primary goal of this paper is to undertake such a study concentrating mainly on
sensitivity/stability of solution maps to (1.1) defined by

S(x) :=
{
y ∈ R

m
∣∣ 〈g(x, y), v − y〉 ≥ 0 whenever v ∈ Γ(x, y)

}
, x ∈ R

n,

and necessary optimality conditions for local optimal solutions to mathematical pro-
grams with equilibrium constraints governed by QVIs of type (1.1).

Let us mention previous developments and results known in these directions for
QVIs. The papers [18, 31] concern stability issues for QVIs and contain conditions
ensuring the existence of a single-valued Lipschitzian localization of S(·) around a
reference point. This localization is then described via generalized Jacobians [6] for
Lipschitzian mappings. The same type of analysis can also be found in [4], where the
authors consider a parameterized QVI describing a contact problem with Coulomb
friction. QVIs typically have, however, rather complicated solution sets, and so the
results of [4, 18, 31] can be applied only in problems of a special kind. A general
study of sensitivity and optimality aspects for parameterized variational systems is
given in [27], but the results obtained therein are not specified for QVIs and do
not imply those derived in this paper. It is worth emphasizing that QVIs, even in
rather simple settings, are significantly different from standard variational inequalities
and complementarity problems, demanding therefore new devices and tools for their
variational analysis. One of the most crucial characteristic features of QVIs is their
intrinsic nonsmoothness, which unavoidably requires the usage of appropriate tools of
generalized differentiation. In this paper we apply to the study of QVIs the generalized
differential constructions and their calculus mainly developed by the first author (see,
e.g., [22, 24, 26] and also [37] and the references therein). However, for our purposes
we need new calculus results of generalized differentiation specified for applications
to QVIs, which are developed in what follows.

Using the standard definition of the normal cone to convex sets, we can rewrite
the QVI (1.1) in Robinson’s form of the generalized equation (GE)

(1.2) 0 ∈ g(x, y) + NΓ(x,y)(y), y ∈ Γ(x, y),

where NΓ(x,y)(y) stands for the usual normal cone to the set Γ(x, y) at y. Note that
(1.2) is different from the conventional form of GEs introduced in [34] for the case
of constant convex sets Γ(x, y) ≡ Γ when (1.2) reduces to the classical variational
inequality. The case of variable sets that is characteristic for QVIs (even with no
dependence on parameters) happens to be significantly more involved.

The solution map S(x) to the QVI (1.1) written in the GE form (1.2) is given by

S(x) =
{
y ∈ R

m
∣∣ 0 ∈ g(x, y) + NΓ(x,y)(y)

}
.(1.3)

One of the primary goals of local sensitivity analysis conducted in this paper is to
find verifiable conditions ensuring robust Lipschitzian stability of the solution map
(1.3) with respect to parameter perturbations. This can be done on the basic of the
coderivative criterion for robust Lipschitzian behavior of multifunctions established
in [22, 23] via the coderivative construction for set-valued mappings that reduces to
the adjoint derivative operator in the smooth single-valued case.
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In order to apply this criterion to QVIs, we need to derive efficient upper esti-
mates of the coderivative for the solution map (1.3). This is one of the major technical
achievements of the paper, obtained on the base of new rules of coderivative calculus.
Furthermore, the established coderivative estimates are employed in the paper for
deriving new optimality conditions for mathematical programs with QVI constraints.
The results obtained are illustrated by applications to certain optimization and equi-
librium models related to parameterized Nash games of two players and to oligopolistic
market equilibria.

The outline of the paper is as follows. In section 2 we present and briefly discuss
some basic definitions and preliminaries from variational analysis and generalized
differentiation needed for formulating the main results. Section 3 is devoted to the
study of coderivatives of the multivalued term in (1.2), which is done by deriving new
coderivative calculus rules that take into account the specific amenable structure of the
composition in (1.2). Observe that the obtained calculus rules involve new calmness
assumptions on multifunctions, which are not conventional for subdifferential and
coderivative calculus and are significantly weaker than those in known results. In
section 4 we apply the new calculus rules to establish efficient upper estimates of the
coderivative for the solution map (1.3) to the QVI (1.1) derived under appropriate
calmness assumptions and constraint qualifications.

Section 5 is devoted to deriving verifiable conditions ensuring robust Lipschitzian
stability of solutions maps to QVIs established on the base on the aforementioned
coderivative criterion and calculus rules. We also present new upper estimates of
the exact Lipschitzian bound for solution maps, which is certainly of interest for both
qualitative and numerical analysis. The results obtained are illustrated by establishing
Lipschitzian stability of the QVI corresponding to the parameterized Nash games
studied in [14].

In the concluding section 6 we consider a class of mathematical programs with
QVI constraints, which can be treated as a subclass of mathematical programs with
equilibrium constraints (MPECs) intensively studied and used in modern optimization
theory and its numerous applications; see, e.g., the books [10, 21, 27, 33] and the
references therein. However, we are not familiar with any results that can be applied to
optimization problems with equilibrium constraints governed by the QVIs (1.1) under
consideration. The new necessary optimality conditions for such problems obtained in
section 6 strongly employ the coderivative analysis developed in sections 3 and 4. The
results obtained are illustrated by the applications to an MPEC with QVI constraints
corresponding to the parameterized Nash games considered in section 5 and to an
oligopolistic market equilibrium model in the vein of [11, 30].

Our notation is basically standard; see, e.g., [26, 37]. Recall that xi stands for
the ith component of a vector x ∈ R

n always considered as a vector-column, E is the
unit matrix, B is the closed unit ball of the space in question, N := {1, 2, . . . }, and
AT (= A∗) signifies the transposition of (the adjoint operator to) the matrix A with
the vector-row xT corresponding to the vector-column x ∈ R

n; thus xT y = 〈x, y〉
connotes the inner product of the vectors x and y. Given a differentiable vector
function f : R

n×R
m → R

l of two variables, say x and y, the symbol ∇xf(x, y) stands
for the partial Jacobian (or gradient in the scalar case of l = 1) with respect to x. In
a special case of x = y, we use the notation ∇1f(y, y) to prevent confusion. Similarly,
if ϕ : R

n × R
m → R := (−∞,∞] is a nondifferentiable extended-real-valued function

of x and y, then ∂xϕ(x, y) signifies its partial subdifferential with respect to x. As
usual, δ(x; Ω) = δΩ(x) denotes the indicator function of the set Ω equal 0 for x ∈ Ω
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and ∞ for x /∈ Ω. The graph of a set-valued mapping F : R
n →→ R

m is

gphF :=
{
(x, y) ∈ R

n × R
m
∣∣ y ∈ F (x)

}
.

2. Some concepts and tools of variational analysis. In this section we
review certain preliminary material from variational analysis and generalized differ-
entiation that is extensively used throughout the paper; see [22, 24, 26, 37] for more
details and references. Given a set Ω ⊂ R

n locally closed around x̄ ∈ Ω, define the
(basic, limiting) normal cone to Ω at x̄ by

NΩ(x̄) = N(x̄; Ω) :=
{
v ∈ Ω

∣∣∣ ∃ xk → x̄, ∃ wk ∈ ΠΩ(xk), ∃ αk ≥ 0

with αk(xk − wk) → v as k → ∞
}
,

(2.1)

where ΠΩ(x) stands for the Euclidean projector of x on Ω. There are several equivalent
representations of the normal cone that can be found in the aforementioned references.
For convex sets Ω, the normal cone (2.1) reduces to the normal cone of convex analysis,
while it is generally nonconvex even for simple sets on the plane, e.g., for Ω = gph |x|
at 0 ∈ R

2. Moreover, the convexification (taking the closed convex hull) of NΩ, which
reduces to Clarke’s normal cone [6], often gives the whole space (as for Ω = gph |x|) or
at least a linear subspace of the maximal dimension. In particular, this always happens
for the so-called graphically Lipschitzian sets around x̄, i.e., those which are locally
homeomorphic to the graph of a locally Lipschitzian vector function. The latter is
automatically the case for graphs of monotone operators and subdifferential mappings
generated by “nice” (e.g., convex, saddle, amenable, etc.) functions; see [26, 37] for
precise results and discussions.

The normal cone (2.1) to graphical sets generates the following derivative-like
construction for set-valued (and single-valued) mappings that plays the crucial role in
the variational analysis for QVIs conducted in this paper. Given a set-valued mapping
F : R

n →→ R
m, we define its coderivative at (x̄, ȳ) ∈ gphF as a positive homogeneous

multifunction D∗F (x̄, ȳ) : R
m →→ R

n with the values

D∗F (x̄, ȳ)(u) =
{
v ∈ R

n
∣∣ (v,−u) ∈ N

(
(x̄, ȳ); gphF

)}
,(2.2)

where ȳ = f(x̄) is omitted if F = f : R
n → R

m is single-valued. If f : R
n → R

m is
smooth (continuously differentiable) around x̄, then

D∗f(x̄)(u) =
{
∇f(x̄)Tu

}
for all u ∈ R

m;(2.3)

the latter holds when f is merely strictly differentiable at x̄.
Given an extended-real-valued function ϕ : R

n → R finite at x̄ and lower semi-
continuous around this point, define the (basic, limiting) subdifferential of ϕ at x̄
by

∂ϕ(x̄) :=
{
v ∈ R

n
∣∣ (v,−1) ∈ N((x̄, ϕ(x̄)); epiϕ

)}
(2.4)

via the normal cone (2.1) to the epigraph

epiϕ :=
{
(x, μ) ∈ R

n+1
∣∣ μ ≥ ϕ(x)

}
.

There are well-known analytic representations of ∂ϕ(x̄) via limits of Fréchet, proximal,
viscosity subgradients, etc. Note the useful scalarization formula

D∗f(x̄)(u) = ∂〈u, f〉(x̄) whenever u ∈ R
m,
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which relates the coderivative (2.2) of the mapping f : R
n → R

m locally Lipschitzian
around x̄ with the subdifferential (2.4) of its Lagrange scalarization

〈u, f〉(x) := 〈u, f(x)〉, u ∈ R
m, x ∈ R

n.

Observe also the subdifferential representation

N(x̄; Ω) = ∂δ(x̄; Ω), x̄ ∈ Ω,(2.5)

of the normal cone (2.1) via the subdifferential of the set indicator function.
In spite of (actually due to) the nonconvexity of our basic generalized differential

constructions (2.1), (2.2), and (2.4), they possess full calculus (various rules for inter-
sections of sets, compositions of mappings, mean and marginal values of functions,
etc.), which happens to be significantly better than for their convex-valued coun-
terparts. The fundamental fact behind this generalized differential calculus is the
extremal principle of variational analysis that can be treated as a variational coun-
terpart of the classical separation theorem in nonconvex settings and plays a crucial
role in variational analysis in the absence (and also in the presence) of convexity; see
[26, 27] for all the details.

As mentioned, one of the primary goals of the paper is to provide a local sen-
sitivity analysis for solution maps to QVIs. In what follows, we focus our attention
on robust Lipschitzian stability generated by the so-called Aubin’s Lipschitz-like (or
“pseudo-Lipschitzian” [1]) property, which happens to be the most natural extension
of the classical local Lipschitz continuity to set-valued mappings; see [26, 37] for more
discussions. Recall that F : R

n →→ R
m has the (Aubin) Lipschitz-like property around

(x̄, ȳ) ∈ gphF with modulus � ≥ 0 if there are neighborhoods U of x̄ and V of ȳ such
that

F (x) ∩ V ⊂ F (u) + �‖x− u‖B whenever x, u ∈ U.(2.6)

The infimum of all the moduli �, for which (2.6) holds with some neighborhoods U
and V , is called the exact Lipschitzian bound of F around (x̄, ȳ) and is denoted by
lipF (x̄, ȳ).

When V = R
m in (2.6), this property reduces to the (Hausdorff) local Lipschitzian

property of F around the point of the domain

x̄ ∈ domF := {x ∈ R
n| F (x) �= ∅}

extending the classical local Lipschitzian behavior to the case of set-valued map-
pings. From this viewpoint, the main difference between Aubin’s and Hausdorff’s
Lipschitzian properties is that the former is a localization of the latter around the
point of the graph (x̄, ȳ) ∈ gphF versus that of merely the domain x̄ ∈ domF . The
graph localization allows us to study efficiently Lipschitzian stability of unbounded
multifunctions, which cannot be covered by the Hausdorff property. Furthermore,
the Aubin property (2.6) of F around (x̄, ȳ) happens to be equivalent to the well-
recognized metric regularity and linear openness properties of the inverse mapping
F−1 around (ȳ, x̄); see [26, 37].

A great advantage of the coderivative (2.2) is the possibility to fully characterize
in its terms the robust Lipschitzian (and metric regularity/linear openness) behavior
of set-valued mappings that has been done in [22, 23]. The following coderivative
criterion (or Mordukhovich criterion as in [37, Theorem 9.40]) holds true: a mapping
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F : R
n →→ R

m locally closed-graph around (x̄, ȳ) is Lipschitz-like around this point if
and only if

D∗F (x̄, ȳ)(0) = {0}.(2.7)

Moreover, the exact Lipschitzian bound of F around (x̄, ȳ) is computed by

lipF (x̄, ȳ) = ‖D∗F (x̄, ȳ)‖ = sup
{
‖v‖

∣∣∣ v ∈ D∗F (x̄, ȳ)(u), ‖u‖ ≤ 1
}

(2.8)

via the norm of D∗F (x̄, ȳ) : R
m →→ R

n as a positive homogeneous mapping.
In this paper we extensively use one more property of set-valued mappings, which

is weaker than (2.6) and relates to linear rate/Lipschitzian behavior of F at the point
in question. Following [37], we say that F : R

n →→ R
m is calm at (x̄, ȳ) ∈ gphF with

modulus � ≥ 0 if there are neighborhoods U of x̄ and V of ȳ such that

F (x) ∩ V ⊂ F (x̄) + �‖x− x̄‖B for all x ∈ U.(2.9)

If V = R
m in (2.9), then the calmness property defined in (2.9) reduces to Robinson’s

upper Lipschitzian property of F at x̄ ∈ domF ; see [34].
The principal difference between properties (2.6) and (2.9) is that the former

involves all pairs of independent domain vectors (x, u) around x̄, while the latter fixes
u = x̄. By this, the calmness property does not get back the classical local Lipschitzian
behavior for single-valued mappings; furthermore, it does not exclude that F (x) �= ∅
for x near x̄. On the other hand, the calmness/upper Lipschitzian property always
holds [35] for piecewise polyhedral set-valued mappings, i.e., those whose graph can be
represented as a union of finitely many convex polyhedral sets.

3. New rules of coderivative calculus. Throughout the paper, we assume
that the set-valued mapping Γ generating the QVI in (1.1) admits the representation

(3.1) Γ(x, y) := {z ∈ R
m| q(x, y, z) ∈ Θ},

where q : R
n × R

m × R
m → R

s is a vector function twice continuously differentiable
around the points in question, and where Θ is a closed convex subset of R

s. Ad-
ditionally, q and Θ have to satisfy certain requirements ensuring that Γ in (3.1) is
convex-valued, which is essential to ensure the strong amenable structure in the repre-
sentation of NΓ(x, y)(z); see below. The convex-valuedness property of Γ(x, y) holds,
e.g., if Θ is a convex cone with vertex at 0 and if q(x, y, ·) is Θ-convex (in the stan-
dard sense) for all (x, y) ∈ R

n × R
m. Furthermore, we impose the basic constraint

qualification (CQ) condition:

(3.2)
(∇q(x̄, ȳ, ȳ))Tu = 0

u ∈ NΘ(q(x̄, ȳ, ȳ))

}
=⇒ u = 0.

The main goal of this section is to study the coderivative (2.2) of the set-valued
mapping (x, y) →→ NΓ(x,y)(y) in the generalized equation form (1.2) of the QVI under
consideration. As mentioned in section 1, the coderivative of this mapping plays a
significant role in what follows. We intend to derive efficient upper estimates of this
coderivative for Γ defined in (3.1), which provide new rules of coderivative calculus
for set-valued mappings of a special structure that is characteristic for QVIs.
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It follows from formula (2.5) and the structure of Γ in (3.1) that NΓ(x,y) admits
the composite subdifferential representation

NΓ(x,y)(z) = ∂zψ(x, y, z) with ψ := δΘ ◦ q.

Since the basic CQ (3.2) is persistent in a neighborhood, by the robustness (closed-
graph) property of the normal cone (2.1), the composite function ψ is strongly amenable
around (x̄, ȳ, ȳ) in the sense of [37], and we have by [37, Theorem 10.49] that

NΓ(x,y)(z) = (∇zq(x, y, z))
TNΘ(q(x, y, z))

whenever (x, y, z) is sufficiently close to (x̄, ȳ, ȳ). This means that, for the purpose of
our local analysis, we can replace the GE (1.2) by

(3.3) 0 ∈ g(x, y) + (∇3q(x, y, y))
TNΘ(q(x, y, y))

considered for all (x, y, z) around (x̄, ȳ, ȳ), where ∇3q(x, y, y) signifies, according to
our notation in section 1, the partial derivative of q(x, y, z) with respect to z at
(x, y, y).

In this section we focus our attention on deriving upper estimates for the coderiva-
tive of the multivalued term in (3.3) denoted by

(3.4) Q(x, y) := (∇3q(x, y, y))
TNΘ(q(x, y, y)).

This set-valued mapping Q : R
n × R

m →→ R
m is closed-graph around (x̄, ȳ, ȳ) due to

the robustness of the normal cone and the continuity of q. To unburden the notation,
put

r(x, y) := q(x, y, y) and p(x, y) := ∇3q(x, y, y).(3.5)

We clearly have the representation

∇yr(x, y) = ∇2q(x, y, y) + ∇3q(x, y, y).

The next theorem on coderivative calculus for multifunction of the special type
(3.4) consists of two parts providing the corresponding upper estimates for the coderiva-
tive D∗Q(x̄, ȳ, v̄) of the set-valued term Q in (3.3) with some v̄ ∈ Q(x̄, ȳ). The first
estimate valid under a partial modification of the basic first-order qualification condi-
tion (3.2) ends up with an expression containing the coderivative of the composition
NΘ ◦ r, while the second one elaborates the coderivative of the latter composition
under an additional calmness assumption, which plays a role of some second-order
qualification condition.

Theorem 3.1 (coderivative calculus for special compositions). Under the stand-
ing assumptions above, suppose that the basic CQ (3.2) is strengthened as

(3.6)
(p(x̄, ȳ))Tu = 0

u ∈ NΘ(r(x̄, ȳ))

}
=⇒ u = 0,

and let v̄ ∈ Q(x̄, ȳ). Then the following assertions hold:
(i) For all u ∈ R

m we have the coderivative upper estimate

D∗Q(x̄, ȳ, v̄)(u) ⊂
⋃

d∈NΘ(r(x̄,ȳ))

(p(x̄,ȳ))T d=v̄

[
(∇x,y((p(x̄, ȳ))

T d))Tu + D∗(NΘ ◦ r)(x̄, ȳ, d)(p(x̄, ȳ)u)
]
.
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(ii) Define the set-valued mapping M : Rs × R
s →→ R

n × R
m × R

s by

(3.7) M(ϑ) :=

{
(x, y, d) ∈ R

n × R
m × R

s

∣∣∣∣
[
r(x, y)

d

]
+ ϑ ∈ gphNΘ

}
,

and assume that it is calm at the points (0, x̄, ȳ, d) satisfying

d ∈ NΘ(r(x̄, ȳ)) and (p(x̄, ȳ))T d = v̄.

Then for all u ∈ R
m we have the inclusion

(3.8)

D∗Q(x̄, ȳ, v̄)(u) ⊂
⋃

d∈NΘ(r(x̄,ȳ))

(p(x̄,ȳ))T d=v̄

[
(∇x,y((p(x̄, ȳ))

T d))Tu

+ (∇r(x̄, ȳ))TD∗NΘ(r(x̄, ȳ), d)(p(x̄, ȳ)u)
]
.

Proof. To justify assertion (i), we represent the multifunction Q under consider-
ation (3.4) as the composition

Q(x, y) = (f ◦ F )(x, y)(3.9)

of the single-valued mapping f : R
n × R

m × R
s → R

m defined by

f(c, e, d) := (p(c, e))T d

and the set-valued mapping F : R
n × R

m →→ R
n × R

m × R
s defined by

F (x, y) :=

⎡
⎣xy
NΘ(r(x, y))

⎤
⎦ .

Observe that the mapping f in (3.9) is single-valued and smooth under the assump-
tions made, while F is always set-valued. The coderivative chain rule most appropriate
in this setting is given in [24, Corollary 5.3]. To apply it, we denote

G(x, y, v) := F (x, y) ∩ f−1(v) =
{

(c, e, d) ∈ R
n × R

m × R
s
∣∣∣ c = x, e = y,

d ∈ NΘ(r(x, y)), (p(x, y))T d = v
}

and show that this mapping is uniformly bounded around (x̄, ȳ, v̄) under the CQ (3.6).
Arguing by contradiction, suppose that there are sequences

xk → x̄, yk → ȳ, dk ∈ NΘ(r(xk, yk)), vk = (p(xk, yk))
T dk, and vk → v̄

such that ‖dk‖ ≥ k for all k ∈ N. By passing to a subsequence if necessary, we find
d ∈ R

s satisfying the relationships

dk
‖dk‖

→ d as k → ∞ with ‖d‖ = 1.

By continuity of r and p in (3.5) and robustness of the normal cone NΘ(·), we get

d ∈ NΘ(r(x̄, ȳ)) and (p(x̄, ȳ))T d = 0,
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which contradicts (3.6). Hence, by the aforementioned coderivative chain rule from
[24], we arrive at the inclusion

(3.10) D∗Q(x̄, ȳ, v̄)(u) ⊂
⋃

d∈NΘ(r(x̄,ȳ))

(p(x̄,ȳ))T d=v̄

D∗F (x̄, ȳ, x̄, ȳ, d) ◦D∗f(x̄, ȳ, d)(u).

Furthermore, since p in (3.5) is smooth around (x̄, ȳ) due to the twice continuously
differentiability of q, we get by (2.3) that

D∗f(x̄, ȳ, d)(u) =

[
(∇x,y((p(x̄, ȳ))

T d))T

p(x̄, ȳ)

]
u.

To justify the coderivative upper estimate in (i), it remains to observe by the above
relationships that for all u = (x∗, y∗, d∗) one has the equality

D∗F (x̄, ȳ, x̄, ȳ, d)(u) =

[
x∗

y∗

]
+ D∗(NΘ ◦ r)(x̄, ȳ, d)(d∗)

due to the coderivative sum rule from [26, Theorem 1.62].
Next we show that the coderivative upper estimate in (i) implies the one in (ii)

under the additional calmness assumption made in (ii). The difference between these
two estimates is that instead of the coderivative D∗(NΘ ◦r) of the composition NΘ ◦r
in (i) we obtain the estimate in (3.8) via the gradient of r and the coderivative of
NΘ separately, which is much more convenient for further applications. To proceed,
consider the set-valued mapping T := NΘ ◦ r and observe that

gphT =

{
(x, y, d) ∈ R

n × R
m × R

s

∣∣∣∣
[
r(x, y)

d

]
∈ gphNΘ

}
.

Since gphT = M(0) for the mapping M(·) in (3.7), we apply [16, Theorem 4.1] under
the aforementioned calmness assumption and get

NgphT (x̄, ȳ, d) ⊂
[
(∇r(x̄, ȳ))T 0

0 E

]
NgphNΘ

(r(x̄, ȳ), d),

which is equivalent to the inclusion

D∗(NΘ ◦ r)(x̄, ȳ, d)(d∗) ⊂ (∇r(x̄, ȳ))TD∗NΘ(r(x̄, ȳ), d)(d∗), d∗ ∈ R
s.(3.11)

Substituting (3.11) into the one in (i), we arrive at the coderivative upper estimate
(3.8) and complete the proof of the theorem.

Observe that the expression D∗NΘ = D∗∂δΘ stands for the second-order sub-
differential of the indicator function of Θ, according to the general definition of the
second-order subdifferential for extended-real-valued functions ϕ as the coderivative
of the first-order subdifferential of ϕ; see [24, 26, 28] for more details and second-order
subdifferential calculus. Hence, the final upper estimate (3.8) of Theorem 3.1 contains
second-order information on the data involved. Furthermore, the calmness assumption
in Theorem 3.1(ii) automatically holds, by the coderivative criterion (2.7), under the
second-order CQ condition imposed in the following corollary. Note that the second
part of this corollary realizes another possibility to ensure the aforementioned calmness
property: the polyhedral structure of the initial data of the QVI under consideration.
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Corollary 3.2 (coderivative calculus under second-order CQ and polyhedrality
assumptions). In addition to first-order qualification condition (3.6), suppose that
either

(a) the second-order CQ

D∗NΘ(r(x̄, ȳ, d)(0) ∩ ker (∇r(x̄, ȳ))T = {0}(3.12)

is fulfilled for all d ∈ NΘ(r(x̄, ȳ)) with (p(x̄, ȳ))T d = v̄; or
(b) the set Θ in (3.1) is polyhedral and the mapping p in (3.5) is affine.

Then the coderivative upper estimate (3.8) is satisfied.
Proof. To justify (3.8) under the assumptions made, we need to check (by as-

sertion (ii) of Theorem 3.1) that the fulfillment of either (a) or (b) in the corollary
implies the calmness requirement of the theorem. As mentioned in section 2, the
calmness property of a set-valued mapping at a reference point is automatic when the
mapping is Lipschitz-like (2.6) around this point. The latter property is characterized
via the coderivative criterion (2.7). Thus it is sufficient to compute the coderiva-
tive of the mapping M(·) given in (3.7). Mappings of this type have been done in
[26, Theorem 4.31]. This gives us, by the specific structure of M(·) in (3.7), that
the relationship (2.7) is equivalent to the second-order CQ (3.12). This justifies the
coderivative upper estimate (3.8) in case (a).

To proceed in case (b), recall from section 2 that M(·) in (3.7) is also calm at
(0, x̄, ȳ, d) if it is upper Lipschitzian at ϑ = 0. By [35, Proposition 3], this is always
the case for polyhedral multifunctions. But the latter property is ensured, due to [35,
Proposition 1], by the assumptions made in (b). This completes the proof of the
corollary.

Efficient applications of the coderivative estimate (3.8) largely depend on comput-
ing/estimating the second-order term D∗NΘ. This has been done in various important
settings in [9, 17, 20, 27, 28, 32, 38]; see also the references therein.

In numerous situations we have Θ = R
s
−, the nonpositive orthant of R

s. This case
corresponds to complementarity conditions and was first analyzed in [9]. To express
the coderivative D∗NRs

−(c, d) at any point (c, d) ∈ gphNRs
− , consider the index sets:

L(c) := {i ∈ {1, . . . , s} | ci < 0},

I+(d) := {i ∈ {1, . . . , s} | di > 0},

I0(c, d) := {i ∈ {1, . . . , s} | ci = 0, di = 0}.

Clearly, these sets form a partition of {1, . . . , s}. Then the coderivative formula for
precisely computing D∗NRs

−(c, d)(u) whenever u ∈ R
s is

D∗NRs
−(c, d)(u) =

⎧⎨
⎩v ∈ R

s

∣∣∣∣∣∣ vi
〈= 0 if i ∈ L(c), or i ∈ I0(c, d) and ui < 0
∈ R if i ∈ I+(d) ∪ I0(c, d) and ui = 0
∈ R+ if i ∈ I0(c, d) and ui ≥ 0

⎫⎬
⎭ .

Let us employ this formula in the following illustrative example, which is actually
a part of some applied models considered below in this paper.

Example 3.3 (computing the coderivative of the normal cone mapping). Consider
the mapping Q(x, y) from (3.4) with n = 1, m = 2, s = 2, Θ = R

2
−, and

q1(x, y, z) := y1 + z2 − 15 − x, q2(x, y, z) := y2 + z1 − 15 − x.
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Using our notation in (3.5), we have in this case

r(x, y) =

[
y1 + y2 − 15 − x
y2 + y1 − 15 − x

]
and p(x, y) =

[
0 1
1 0

]
.

Pick the point (x̄, ȳ) = (0, 9, 6) and put v̄ = (0, 1). It is easy to see that d = (1, 0)T is
the only vector satisfying the equation (p(x̄, ȳ))T d = v̄. Clearly

r(x̄, ȳ) =

[
0
0

]
and thus (r(x̄, ȳ), d) ∈ gphNR2

−
.

Furthermore, all the assumptions in case (b) of Corollary 3.2 are satisfied and we have

I+(d) = {1}, I0(r(x̄, ȳ), d) = {2}

in the coderivative formula above. Taking into account that the first term on the
right-hand side of (3.8) vanishes, we arrive at the coderivative upper estimate

D∗Q(x̄, ȳ, v̄)(u)

⊂

⎧⎨
⎩
⎡
⎣−v1 − v2

v1 + v2

v1 + v2

⎤
⎦
∣∣∣∣∣∣ v1 ∈ R, v2

〈= 0 if u1 < 0
∈ R if u1 = 0
∈ R+ if u1 > 0

⎫⎬
⎭ = {(−a, a, a) ∈ R

3| a ∈ R}

whenever u2 = 0. Otherwise D∗Q(x̄, ȳ, v̄)(u) = ∅.
4. Coderivatives of solutions maps to QVIs. The main goal of this section

is to derive upper estimates for the coderivative of the solution map (1.3) to the
initial QVI (1.2) with Γ(x, y) given in (3.1). The results obtained in what follows are
largely based on the coderivative estimates for the multivalued term (3.4) of this QVI
established in section 3 via coderivative calculus.

To begin, we consider the parameter-dependent GE

0 ∈ g(x, y) + Q(x, y)(4.1)

with both single-valued term g : R
n × R

m → R
m and set-valued term Q : R

n ×
R

m →→ R
m depending on the parameter x ∈ R

n, where g is smooth as in section 1,
while Q : R

n × R
m →→ R

m is an arbitrary set-valued mapping, which may not be in
the special form (3.4). The following lemma provides a coderivative upper estimate
for the solution map to the parameter-dependent GE (4.1) via the adjoint Jacobian
of g and the coderivative of Q under the appropriate calmness assumption.

Lemma 4.1 (coderivatives of solution maps to parameter-dependent GEs). Let
(x̄, ȳ) satisfy the GE (4.1), and let

S(x) := {y ∈ R
m| 0 ∈ g(x, y) + Q(x, y)}

be the solution map to this GE. Assume that g is continuously differentiable around
(x̄, ȳ), that Q is locally closed-graph around this point, and that the set-valued mapping
Ξ: R

n × R
m × R

m →→ R
n × R

m defined by

(4.2) Ξ(ϑ) :=

⎧⎨
⎩(x, y) ∈ R

n × R
m

∣∣∣∣∣∣
⎡
⎣xy
−g(x, y)

⎤
⎦+ ϑ ∈ gphQ

⎫⎬
⎭
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is calm at (0, x̄, ȳ). Then for all u ∈ R
m one has the estimate

D∗S(x̄, ȳ)(u) ⊂
{
v ∈ R

n

∣∣∣∣ ∃w ∈ R
m with

[
v

−u

]
∈ (∇g(x̄, ȳ))Tw

+ D∗Q(x̄, ȳ,−g(x̄, ȳ))(w)

}
.

(4.3)

Proof. Under the imposed calmness assumption, it holds by [16, Theorem 4.1]
that

NΞ(0)(x̄, ȳ) ⊂
[
E 0 −(∇xg(x̄, ȳ))

T

0 E −(∇yg(x̄, ȳ))
T

]
◦NgphQ

(x̄, ȳ,−g(x̄, ȳ)).

Since gphS = Ξ(0) for the solution map to the GE (4.1), we arrive at the coderivative
upper estimate (4.3).

Remark 4.2 (more on coderivatives of solution maps to GEs). As above, we can
present efficient conditions ensuring the fulfillment of the calmness requirement of
Lemma 4.1. First it is automatic under the polyhedrality assumptions (in finite di-
mensions). Furthermore, the stronger Lipschitz-like property holds by the coderivative
criterion (2.7) applied to the mapping Ξ in (4.2) in both finite and infinite dimensions,
even for nonsmooth mappings g with replacing the adjoint Jacobian ∇g(x̄, ȳ)Tw by
the coderivative D∗g(x̄, ȳ)(w) of g or its scalarization ∂〈w, g〉(x̄, ȳ). In the framework
of (4.2), the latter criterion amounts to saying (similarly to the Fredholm alternative)
that the adjoint GE

0 ∈ ∇g(x̄, ȳ)Tw + D∗Q(x̄, ȳ,−g(x̄, ȳ))(w)

has only the trivial solution w = 0; see [26, Theorem 4.46]. Observe also that there are
certain conditions given in [26, Theorem 4.44 and Corollary 4.45] ensuring the equality
in (4.3). Unfortunately, the efficient realization of these conditions for parameter-
dependent mappings Q = Q(x, y) in (4.1) requires the graph-convexity of Q, which
is not often the case for mappings (3.4) arising in QVIs. For parameter-independent
Q = Q(y) in (4.1), the equality in (4.3) is achieved under the surjectivity (full rank)
requirement of the Jacobian matrix ∇g(x̄, ȳ).

Now we proceed by studying the solution map (1.3) to the QVI (1.1) generated
by the parameterized set Γ from (3.1). To simplify formulas of type (4.3) in what
follows, we omit the text corresponding to “∃w ∈ R

m with.” By the same reason we
introduce the Lagrangian mapping L : R

n × R
m × R

s → R
m defined by

L(x, y, d) := g(x, y) + (p(x, y))T d.(4.4)

Therefore the adjoint Lagrangian partial derivative is represented as

(∇x,yL(x, y, d))T = (∇g(x, y))T + (∇x,y((p(x, y))
T d))T .

To formulate the main result of this section, define the mapping Λ: R
n × R

m →→ R
s

by

Λ(x, y) := {d ∈ R
s| L(x, y, d) = 0}.(4.5)

Theorem 4.3 (coderivative estimate for solution maps to QVIs). Let S : R
n →→ R

m

be the solution map (1.3) to the original QVI represented by (3.3) around the reference
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point (x̄, ȳ) ∈ gphS with the Lagrangian L defined in (4.4). Assume that the CQ (3.6)
holds and that the multifunction M given by (3.7) is calm at all the points (0, x̄, ȳ, d)
with d ∈ Λ(x̄, ȳ). We also suppose that the multifunction P : R

m × R
s × R

s →→ R
n ×

R
m × R

s defined by

P (z, ϑ) :=
{

(x, y, d) ∈ R
n × R

m × R
s
∣∣∣ L(x, y, d) + z = 0

}
∩M(ϑ)(4.6)

is calm at the points (0, 0, x̄, ȳ, d) with d ∈ Λ(x̄, ȳ). Then for all u ∈ R
m we have

(4.7)

D∗S(x̄, ȳ)(u) ⊂
⋃

d∈Λ(x̄,ȳ)

{
(∇xL(x̄, ȳ, d))T v + (∇xr(x̄, ȳ, d))

Tw
∣∣∣ 0 = u

+ (∇yL(x̄, ȳ, d))T v + (∇yr(x̄, ȳ))
Tw, w ∈ D∗NΘ(r(x̄, ȳ), d)(p(x̄, ȳ)v)

}
.

If, furthermore, the mappings g(·) and r(·) are affine and the set Θ is polyhedral, then
the above calmness requirements are automatic, and it suffices to assume only the CQ
(3.6).

Proof. First observe, similarly to the proof of Corollary 3.2 in case (b), that
both calmness conditions imposed in the theorem are automatically fulfilled when the
mappings g and r are affine and the set Θ is polyhedral. It remains to justify (4.7)
under the calmness assumptions made.

We can easily see that inclusion (4.7) follows from assertion (ii) of Theorem 3.1
and Lemma 4.1 provided that the multifunction Ξ from (4.2) with Q given by (3.4) is
calm at (0, x̄, ȳ). This can be ensured by requiring that the expanded multifunction
P : R

n × R
m × R

m →→ R
n × R

m × R
s defined by

P (ϑ1, ϑ2, ϑ3) :=
{

(x, y, d) ∈ R
n × R

m × R
s
∣∣∣ − g(x, y) + ϑ3

= (p(x + ϑ1, y + ϑ2))
T d, d ∈ NΘ(r(x + ϑ1, y + ϑ2))

}
is calm at all the points (0, 0, 0, x̄, ȳ, d) with d ∈ Λ(x̄, ȳ). Indeed, in the case under
consideration we have the representation

Ξ(ϑ1, ϑ2, ϑ3) =
{

(x, y) ∈ R
n × R

m
∣∣∣ ∃ d ∈ NΘ(r(x + ϑ1, y + ϑ2))

with − g(x, y) + ϑ3 = (p(x + ϑ1, y + ϑ2))
T d
}
,

which implies the relationship

Ξ(ϑ1, ϑ2, ϑ3) = proj x,yP (ϑ1, ϑ2, ϑ3).

Invoking now the result of [17, Lemma 1], we conclude that the required calmness
property of the mapping P is implied by the calmness of the (only canonically per-

turbed) mapping P̂ : Rm × R
s × R

s →→ R
n × R

m × R
s defined by

P̂ (w1, w2, w3)

:=

{
(x, y, d) ∈ R

n × R
m × R

s

∣∣∣∣ L(x, y, d) + w1 = 0,

[
r(x, y) + w2

d + w3

]
∈ gphNΘ

}

at the points (0, 0, 0, x̄, ȳ, d) with d ∈ Λ(x̄, ȳ). It remains to observe that

P (z, ϑ) = P̂ (w1, w2, w3)
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for z = w1 and ϑ = (w2, w3), which completes the proof of the theorem.
Similarly to the proof of Corollary 3.2 in case (a), we can get, on the basis of the

coderivative criterion for the Lipschitz-like property (2.7), a second-order CQ ensuring
the calmness property of the mapping P in (4.6). This will be done in the next section
as a part of deriving a unified condition that implies both calmness properties assumed
in Theorem 4.3 and simultaneously yields robust Lipschitzian stability of the solution
map to the QVI under consideration.

It is clear that the above results can be used also in the case of

(4.8) Γ(x) := {y ∈ R
m| q(x, y) ∈ Θ}

in (3.1) when (1.2) reduces to the parameter-dependent variational inequality

0 ∈ g(x, y) + NΓ(x)(y), y ∈ Γ(x),

which has been intensively investigated in many publications; see, e.g., [10] with
the references therein and also [20] for the coderivative analysis of such variational
inequalities and its application to parametric optimization. As a special case of such
a variational inequality we can consider the projection mapping π : R

m × R
n → R

m

defined by

π(z, x) := proj Γ(x)(z),(4.9)

with Γ(x) given in (4.8); see, e.g., [10, 20] for the importance of the projection mapping
(4.9) and its coderivative in various applications. Observe that the projection mapping
(4.9) happens to be single-valued due to the convexity of the sets Γ(x). On the basis
of Theorem 4.3 we now derive an upper estimate of the coderivative of π.

Theorem 4.4 (coderivatives of projection mappings in variational inequalities).
Given x̄ ∈ dom Γ and z̄ ∈ R

m, put ȳ := π(z̄, x̄) and impose the CQ

(∇yq(x̄, ȳ))
Tu = 0

u ∈ NΘ(q(x̄, ȳ))

}
=⇒ u = 0.

Define the mappings r : R
n×R

m → R
s, p : R

n×R
m → R

m+s, and Q : R
n×R

m →→ R
m

by

r(x, y) := q(x, y), p(x, y) := ∇yq(x, y), Q(x, y) := (∇yq(x, y))
TNΘ(q(x, y))

and assume that the multifunction M(ϑ) given by (3.7) via this mappings r is calm
at every point (x̄, ȳ, d) with d ∈ NΘ(r(x̄, ȳ)) and (p(x̄, ȳ))T d = z̄ − ȳ. Then for all
u ∈ R

m we have the coderivative upper estimate

(4.10)

D∗π(z̄, x̄, ȳ, )(u) ⊂
⋃

d∈NΘ(q(x̄,ȳ))

(∇yq(x̄,ȳ))T d=z̄−ȳ

{
(t, v) ∈ R

m × R
n

∣∣∣∣∣ t = −w,

[
v

−u− w

]
∈ D∗Q(x̄, ȳ, z̄ − ȳ)(w)

}
,

where the coderivative D∗Q is in turn estimated by (3.8).
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Proof. It is easy to observe from the construction of (4.9) and the normal cone def-
inition in convex analysis that the projection relation y = π(z, x) can be equivalently
written as the parameterized GE

(4.11) 0 ∈ y − z + NΓ(x)(y),

where besides x there is an additional parameter z. Thus we can apply the results
of Lemma 4.1 and Theorem 4.3 to estimate the coderivative of the solution map to
(4.11). To proceed, we need to check the two calmness requirements of Theorem 4.3
in the case of (4.11). Note that the presence of the additional parameter z has no
influence on the first calmness requirement. The second one reduces for (4.11) to the
calmness of the multifunction P : R

n × R
m × R

m →→ R
m × R

n × R
m defined by

(4.12) P (ϑ) :=

⎧⎨
⎩(z, x, y) ∈ R

m × R
n × R

m

∣∣∣∣∣∣
⎡
⎣ x

y
z − y

⎤
⎦ + ϑ ∈ gphQ

⎫⎬
⎭

at the point (0, z̄, x̄, ȳ). The latter holds, however, automatically due to the inclusion

D∗P (0, z̄, x̄, ȳ)(0) ⊂
{
v = (v1, v2, v3) ∈ R

n × R
m × R

m

∣∣∣∣∣∣ 0 =

⎡
⎣0 0 E
E 0 0
0 E −E

⎤
⎦
⎡
⎣v1

v2

v3

⎤
⎦ ,

v ∈ NgphQ(x̄, ȳ, z̄ − ȳ)

}
= {0},

which ensures the Lipschitz-like property of the mapping (4.12) around (0, z̄, x̄, ȳ) by
the coderivative criterion (2.7). The coderivative estimate (4.10) follows now from
the modified inclusion (4.3) in the case of (4.11).

5. Robust Lipschitzian stability of QVIs. By robust Lipschitzian stability
of QVIs we understand in this paper the fulfillment of the Lipschitz-like property
of the solution map (1.3) to the QVI (1.2) with the generating sets Γ(x, y) given
by (3.1) around the reference point (x̄, ȳ). This type of Lipschitzian behavior has
been well recognized as an appropriate stability property of local sensitivity analysis,
which is robust (i.e., preserved) under small parameter perturbations. As mentioned
in section 2, the Lipschitz-like property can be viewed as a graph localization of
the classical local Lipschitzian behavior being closely related to the two other major
well-posedness properties of nonlinear analysis known as metric regularity and linear
openness; see [26, 37] for more details, discussions, and references.

To derive efficient conditions for robust Lipschitzian stability of the QVIs un-
der consideration, we utilize in what follows the coderivative criterion (2.7) for the
Lipschitz-like property combined with the constructive coderivative estimate for the
solution map (1.3) established in the previous section on the base of new rules of
coderivative calculus. Furthermore, the coderivative results developed above allow us
to conduct not only qualitative but also quantitative analysis of robust Lipschitzian
stability for QVIs by providing an estimate of the exact Lipschitzian bound. The sec-
ond assertion of the following theorem contains efficient conditions, which simultane-
ously ensure the desired Lipschitzian stability and the calmness requirements needed
for the validity of the crucial coderivative estimate established in Theorem 4.3.

Theorem 5.1 (Lipschitzian stability of solution maps). Let S be the solution map
(1.3) to the QVI under consideration, with Γ given by (3.1) and with (x̄, ȳ) ∈ gphS.
The following assertions hold:
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(i) Suppose that all the assumptions of Theorem 4.3 are satisfied. Then the solu-
tion map S is Lipschitz-like around (x̄, ȳ) provided that

0 = (∇yL(x̄, ȳ, d))T v + (∇yr(x̄, ȳ))
Tw

d ∈ Λ(x̄, ȳ)

w ∈ D∗NΘ(r(x̄, ȳ), d)(p(x̄, ȳ)v)

⎫⎪⎪⎬
⎪⎪⎭ =⇒ (∇xL(x̄, ȳ, d))T v + (∇xr(x̄, ȳ))

Tw = 0.

Furthermore, we have the upper estimate

lipS(x̄, ȳ) ≤ sup
{
‖(∇xL(x̄, ȳ, d))T v + (∇xr(x̄, ȳ, d))

Tw‖
∣∣∣

d ∈ Λ(x̄, ȳ), 0 ∈ u + (∇yL(x̄, ȳ, d))T v + (∇yr(x̄, ȳ))
Tw,

w ∈ D∗NΘ(r(x̄, ȳ), d)(p(x̄, ȳ)v), ‖u‖ ≤ 1
}(5.1)

for the exact Lipschitzian bound (2.8) of the solution map in (1.3), (3.1).
(ii) Suppose that the CQ (3.6) is satisfied and that

(5.2)

0 = (∇yL(x̄, ȳ, d))T v + (∇yr(x̄, ȳ))
Tw

d ∈ Λ(x̄, ȳ)

w ∈ D∗NΘ(r(x̄, ȳ), d)(p(x̄, ȳ)v)

⎫⎪⎪⎬
⎪⎪⎭ =⇒ v = 0, w = 0.

Then the solution map S is Lipschitz-like around (x̄, ȳ) with the bound estimate (5.1).
Proof. To justify both statements in (i), recall that under the assumptions of

Theorem 4.3 we have the coderivative estimate (4.7). Substituting the set on the
right-hand side of (4.7) into the coderivative criterion (2.7) and the exact bound
formula (2.8), we arrive at the sufficient condition for the Lipschitz-like property in
(i) and the bound estimate (5.1).

To justify (ii), we first apply the coderivative criterion (2.7) to the mapping P
in (4.6) and observe that the Lipschitz-like property of P around (0, 0, x̄, ȳ, d), d ∈
Λ(x̄, ȳ), and hence its calmness at this point required by Theorem 4.3, is ensured by
the implication

0 = (∇x,yL(x̄, ȳ, d))T v + (∇r(x̄, ȳ))Tw

w ∈ D∗NΘ(r(x̄, ȳ), d)(p(x̄, ȳ)v)

}
=⇒ v = 0, w = 0.(5.3)

This condition ensures simultaneously also the CQ (3.12) with (p(x̄, ȳ))T d = −g(x̄, ȳ).
It is now easy to conclude that implication (5.2) together with the CQ (3.6) imply
the fulfillment of all requirements posed in assertion (i) of this theorem. Thus we
arrive at both statements in (i) under (3.6) and (5.2) and complete the proof of the
theorem.

Let us illustrate the application of Theorem 5.1 to the study of robust Lipschitzian
stability of the solution map to a QVI arising in Nash equilibrium modeling.

Example 5.2 (Lipschitzian stability in parameterized Nash games). Consider the
parameter-dependent QVI of type (1.2) given as

0 ∈
[
−34 + 2y1 + 8

3y
2

− 97
4 + 5

4y
1 + 2y2

]
+ NΓ(x,y)(y), x ∈ R, y = (y1, y2) ∈ R

2,(5.4)
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S(x)

x

17

9

15

0 2

y

15

6

y

y  +y  =15
y  =15+x

y  =6−3x

1

2

2

21

1

Fig. 1. Local behavior of gphS around (0, 9, 6).

with Γ(x, y) = Γ(x, y1, y2) defined by

Γ(x, y1, y2) :=
{
(z1, z2) ∈ R

2
∣∣ y1 + z2 − 15 − x ≤ 0, y2 + z1 − 15 − x ≤ 0

}
.

This QVI is taken from [14] and corresponds to a parameterized Nash game of two
players with the parameter-independent objectives

(y1)2 − 34y1 +
8

3
y2,

5

4
y1 − 97

4
y2 + (y2)2

subject to the parameter-dependent inequality constraint

y1 + y2 ≤ 15 + x;

see [14] for more details and economic descriptions. Observe that the correspond-
ing set-valued mapping Q(x, y) from (3.4) is fully considered in Example 3.3 with
constructively estimating its coderivative by Theorem 3.1.

Take the reference point (x̄, ȳ) = (0, 9, 6) (which is actually a local optimal solution
to an MPEC involving the QVI constraint (5.4); see Example 6.3 for more details)
and investigate the robust Lipschitzian stability of the solution map S to the QVI
(5.4) around this point by employing the results of Theorem 5.1. S is depicted in
Figure 1. We have g(x̄, ȳ) =

[
0
−1

]
for the single-valued term of (5.4), which is affine

together with the function q(x, y, z) describing the generating sets Γ(x, y) in (5.4)
via the polyhedral set Θ = R

2
−. By Theorem 5.1, the Lipschitz-like property of the

solution map to (5.4) around the reference point (x̄, ȳ) is ensured by the implication
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in assertion (i). It reduces to

0 = 2v1 + 5
4v

2 + w

0 = 8
3v

1 + 2v2 + w

0 = v2

⎫⎪⎪⎬
⎪⎪⎭ =⇒ −w = 0,

which is trivially satisfied, and thus we have the desired stability.
Remark 5.3 (extensions and modifications of stability results for QVIs). Let us

discuss some directions of possible extensions and modifications of the Lipschitzian
stability results for QVIs obtained in this section.

(i) Based on the coderivative representations/estimates for solution maps to gen-
eralized equations of type (4.1) derived in [26, subsection 4.4.1], on the new results of
this paper for coderivative estimates of the multivalued term in the QVI (1.2), and
on the coderivative characterization (2.7) and (2.8) of the Lipschitz-like property, we
can extend the Lipschitzian stability results obtained above to the case of nonsmooth
mappings g in (1.2). Results in this direction involve the coderivative of g (or its
subdifferential scalarization) replacing the adjoint Jacobian.

(ii) Another approach to robust Lipschitzian stability, generally independent of the
one used above, can be developed in the framework of QVIs under consideration. This
approach, which is the most efficient in the case of canonical perturbations, involves a
preliminary strong approximation (in Robinson’s sense [36]) of the single-valued term
in the GE (1.2) and then employs the coderivative calculus for the multivalued term of
(1.2) established in section 3. We refer the reader to [25] and [26, subsection 4.4.3] for
more details in the case of GEs (4.1) and some of their specifications and emphasize
that the efficient implementation of this approach (as well as the one developed in
this paper) is based on the new coderivative calculus results for the multivalued term
in (1.2) obtained in section 3.

(iii) The reader can observe that the calmness property of the corresponding map-
pings plays a significant role in the main results of the paper. The efficient realization
of this property comes into play via either a kind of the generalized Mangasarian–
Fromovitz CQ or via polyhedrality. They are indeed the two major cases of calmness;
some other examples and related discussions can be found in [16, 17, 32]. It should
be noted in this respect that the calmness property definitely requires further inves-
tigation, which should address first of all calculus issues for this property ensuring its
preservation under various operations performed on set-valued mappings.

6. Optimality conditions for mathematical programs with QVI con-
straints. In this section we study a class of parametric optimization problems of the
special type

(6.1)

⎧⎨
⎩

minimize ϕ(x, y)
subject to
0 ∈ g(x, y) + NΓ(x,y)(y), (x, y) ∈ Ω,

where ϕ : R
n × R

m → R is an objective/cost function, and where Ω ⊂ R
n × R

m is
an nonempty, closed set imposing the so-called geometric constraints in (6.1). The
moving set Γ(x, y) under the normal cone operation in (6.1) is taken from (3.1). It gen-
erates the most crucial QVI constraints in (6.1), which incorporate the optimization
problem (6.1) into a broad class of MPECs, whose importance has been well recog-
nized in optimization theory and applications; see, e.g., the books [10, 21, 27, 33] with
many references, examples, and discussions therein.
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The underlying feature if the QVI constraints in (6.1) is that they are given in
the form of parametric GEs

0 ∈ g(x, y) + Q(x, y) with (x, y) ∈ Ω,(6.2)

where not only the single-valued term g but also the set-valued term Q depend on the
parameter x ∈ R

n. The latter class of MPECs has not attracted much attention in the
literature; see [27] for quite recent results and commentaries. Furthermore, the results
of [27, section 5.2] concerning necessary optimality conditions for MPECs governed by
parameter-dependent generalized equations of type (6.2) cannot be directly applied
to the QVI problem (6.1) without new coderivative calculus rules taking into account
the specific nature of mappings Q(x, y) = NΓ(x,y)(y) under consideration, which are
in fact the main thrust of this paper.

In what follows we pay the main attention to deriving necessary optimality condi-
tions for local minimizers to problem (6.1), assuming, for brevity and simplicity, that
the cost function ϕ is continuously differentiable around the reference point. There
is plenty of room for extending the results obtained below to the case of nonsmooth
cost functions ϕ (as well as nonsmooth mappings g in the QVI constraints of this
problem); see Remark 6.2(iii) for more discussions.

In the following theorem we use the notation for the QVI data in the constraints
of (6.1) introduced in sections 3 and 4.

Theorem 6.1 (necessary conditions for optimal solutions to MPECs with QVI
constraints). Let (x̄, ȳ) be a local optimal solution to problem (6.1). Assume that the
partial Jacobian matrix ∇3g(x̄, ȳ, ȳ) has the maximal/full row rank, and let d̄ ∈ R

s be
the unique vector satisfying the equation

L(x̄, ȳ, d) = 0,(6.3)

with the Lagrangian L defined in (4.4). Suppose further that the multifunction M

from (3.7) is calm at (0, x̄, ȳ, d̄) and that the multifunction P̃ defined by

P̃ (z, ϑ) :=
{

(x, y, d) ∈ Ω × R
s
∣∣∣ L(x, y, d) + z = 0

}
∩M(ϑ)

is calm at (0, 0, x̄, ȳ, d̄). Then there exist multipliers v ∈ R
m and u ∈ R

s such that

(6.4)
0 ∈ ∇ϕ(x̄, ȳ) + (∇L(x̄, ȳ, d̄))T v + (∇r(x̄, ȳ))Tu + NΩ(x̄, ȳ),

0 ∈ −u + D∗NΘ(r(x̄, ȳ), d̄)(p(x̄, ȳ)v).

If, moreover, the mappings g, r are affine and the sets Θ,Ω are polyhedral, then both
calmness assumptions above hold automatically.

Proof. Let Σ be the set of feasible solutions to (6.1) given by

Σ :=

⎧⎨
⎩(x, y) ∈ Ω

∣∣∣∣∣∣
⎡
⎣ x

y
−g(x, y)

⎤
⎦ ∈ gphQ

⎫⎬
⎭ with Q(x, y) = NΓ(x,y))(y).(6.5)

We obviously have Σ = Ω∩Ξ(0), where the mapping Ξ(ϑ) is defined by (4.2). Follow-
ing the proof of Theorem 4.3 (based on Lemma 4.1 and Theorem 3.1) and employing
[16, Theorem 4.1], which ensures the required calculus rules under the imposed calm-
ness assumptions, we arrive at the normal cone upper estimate

NΣ(x̄, ȳ) ⊂
{

(∇L(x̄, ȳ, d̄))T v + (∇r(x̄, ȳ))Tu
∣∣∣

u ∈ D∗NΘ(r(x̄, ȳ), d̄)(p(x̄, ȳ)v)
}

+ NΩ(x̄, ȳ).
(6.6)
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Observe that the MPEC (6.1) can be equivalently written as the optimization problem

minimize ϕ(x, y) subject to (x, y) ∈ Σ,(6.7)

with only the geometric constraint defined by (6.5). By [27, Proposition 5.1] one has
the necessary optimality condition

0 ∈ ∇ϕ(x̄, ȳ) + NΣ(x̄, ȳ)(6.8)

for the local solution (x̄, ȳ) to the latter (and the original) problem. Substituting (6.6)
into (6.8), we arrive at (6.4). The fulfillment of the imposed calmness requirements
under the linearity/polyhedrality assumptions in the last statement of the theorem is
justified similarly to the proof of Corollary 3.2 in case (b).

Remark 6.2 (discussions on optimality conditions for problems with QVI con-
straints). Let us discuss some specific features and possible extensions of the necessary
conditions for MPECs with QVI constraints obtained in Theorem 6.1.

(i) By now it has been well recognized that the calmness assumptions play an
important role as CQs for MPECs. Necessary conditions of type (6.4) with a calm-
ness CQ were derived for the first time in [38] in the case of MPECs with variational
inequality constraints. Observe that if Θ is a cone with vertex at the origin, the
relation d ∈ NΘ(r(x, y)) can be replaced by r(x, y) ∈ NΘ∗(d) via the conjugate/dual
(or negative polar) cone Θ∗ to Θ. This enables us to derive, following the approach
in [32], the optimality conditions in the above theorem, which hold without the first
calmness assumption in this case. We refer the reader to [27, subsection 5.2.3] for
recent necessary optimality conditions in general MPECs with parameter-dependent
constraints (6.2) under calmness CQs whose implementation in the case of QVI con-
straints requires the coderivative calculus rules developed in this paper.

(ii) The full row rank requirement imposed in Theorem 6.1 obviously ensures the
fulfillment of the CQ (3.6) and the unique solvability of the Lagrangian equation
(6.3) for d ∈ R

s. If Γ = Γ(x) and Θ = R
s
−, the latter reduces to the classical strict

Mangasarian–Fromovitz CQ. In principal, we can proceed in the proof of Theorem 6.1
without the above full rank assumption for general set-valued mappings Q; see, e.g.,
[26, subsection 3.1.1] for computing/estimating the normal cone (2.1) to arbitrary
closed sets of type (6.5). It happens, however, that the upper estimate (3.8) of the
coderivative of Q arising in the QVI constraint of (6.1) may be very poor in the absence
of the full rank condition. This phenomenon can be observed not only in the case
of QVIs but also for standard variational inequalities with Γ(x) given by (4.8) with
n = m = 1, s = 2, Θ = R

2
−, and

q(x, y) =

[
y − x
y + x− 2

]
.

One can check that in this case the right-hand side of the coderivative estimate (3.8)
for Q is all R, although the required assumptions (except the full rank one) are
satisfied; cf. [8].

(iii) Following the MPEC developments in [27, section 5.2] and having in hand the
new calculus results obtained in this paper, we do not have any difficulties extending
the necessary optimality conditions of Theorem 6.1 for QVI optimization problems
of type (6.1) to the case of nonsmooth cost functions ϕ (as well as to the case of
nonsmooth constraint functions g in (6.1); see the discussions in Remark 4.2 for the
latter case). Indeed, the proof of Theorem 6.1 reduces the matter to deriving necessary
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optimality conditions for the optimization problem (6.7) with merely geometric con-
straints of the special type handled by the calculus rules of this paper. Concerning the
geometric constrained problem (6.7) per se, two major types of necessary optimality
conditions are derived in [27] for this problem in general nonsmooth frameworks: the
so-called lower subdifferential and upper subdifferential optimality conditions. These
results allow us to replace (6.8) by its far-reaching extensions to nonsmooth cost func-
tions, which are formulated via lower and upper subgradients of ϕ at the reference
local minimizer; see [27, sections 5.1 and 5.2] for precise formulations and discussions.
In this way we can readily extend Theorem 6.1 to nonsmooth problems with QVI
constraints.

We conclude this paper by applications of Theorem 6.1 to two optimization models
with parameter-dependent QVI constraints arising in practical situations. The first
model concerns an MPEC with QVI constraints describing the Nash game of two
players [14] considered in Example 5.2 from the viewpoint of robust Lipschitzian
stability.

Example 6.3 (optimality conditions for MPEC with Nash equilibrium constraints).
Consider the MPEC (6.1) with the cost function

ϕ(x, y) := x− 3y1 − 11

3
y2 +

1

2
(y1 − 9)2, x ∈ R, y = (y1, y2) ∈ R

2,

the equilibrium constraint governed by the QVI (5.4) from Example 5.2, and the
geometric constraint (x, y) ∈ [−1, 1] × R

2. The numerical approach developed in
[12] and the corresponding SQP code SNOPT allow us to compute the local optimal
solution (x̄, ȳ) = (0, 9, 6) to the MPEC under consideration. Since all the assumptions
of Theorem 6.1 are clearly fulfilled, we can verify the application of the necessary
optimality conditions (6.4) in this setting. We have

L(x, y, d) =

[
−34 + 2y1 + 8

3y
2 + d2

− 97
4 + 5

4y
1 + 2y2 + d1

]
, ∇xL(x, y, d) =

[
0
0

]
,

(∇yL(x, y, d))T =

[
2 5

4
8
3 2

]
, (∇xr(x, y))

T = [−1,−1], (∇yr(x, y))
T =

[
1 1
1 1

]
.

Taking into account that NΩ(x̄, ȳ) = {0} due to Ω = [−1, 1] × R
2 and the choice of

(x̄, ȳ), we easily compute from the first inclusion in (6.4) that

v1 = 1, v2 = 0, u1 + u2 = 1.

The second line of (6.4) gives the relationships

0 ∈ −u1 + D∗NR−(0, 1)v2,

0 ∈ −u2 + D∗NR−(0, 0)v1,

and so we can put u1 = 1 and u2 = 0. Thus the reference point (x̄, ȳ) satisfies the
necessary optimality conditions of Theorem 6.1.

The final example concerns an MPEC with QVI constraints related to oligopolistic
market equilibrium; cf. [11, 30] for more detailed descriptions of this and related
models.

Example 6.4 (optimization model for determining oligopolistic market equilib-
rium). Consider two firms sharing the same resource of input commodity (e.g., row
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material) and an authority determining the amount of this commodity x available for
the next time period. Let x0 be a certain reasonable consumption of x, and let (y1

0 , y
2
0)

be target productions of the firms announced in advance. The authority, playing the
role of the Leader, may look for a reasonable trade-off between the consumption ex-
cess max{0, x − x0} and the production differences yi − yi0, i = 1, 2, where yi is the
actual production of the ith firm. The firms, being Followers in this game, behave
noncooperatively and compute their productions y1, y2 by solving the QVI

0 =

[
k1 − (a− b(y1 + y2)) + y1b

k2 − (a− b(y1 + y2)) + y2b

]
+ NΓ(x,y)(y),(6.9)

where the positive numbers ki specify the linear production costs of the firms, and
where a− b(y1 + y2) is the inverse demand curve that assigns to the quantity y1 + y2

available on the market the corresponding price at which consumers are willing to
demand [30].

Let us specify the initial data of (6.9) by k1 = 24, k2 = 28, a = 100, b = 1, and

Γ(x, y) := {(y1, y2) ∈ R
2
+ | y1 + y2 ≤ 0.333x},

and let the Leader’s objective be given by

ϕ(x, y1, y2) := [max{0, x− x0}]2 + γ[(y1 − y1
0)2 + (y2 − y2

0)2],

with x0 = 135, γ = 0.6, y1
0 = 34, and y2

0 = 16.
Thus we arrive at the optimization problem of MPEC type (6.1) without any

nonequilibrium (geometric) constraints. Using the numerical approach and SQP code
mentioned in Example 6.3, compute the optimal solution

x̄ = 135.15, ȳ1 = 30.95, ȳ2 = 14.1

to the MPEC under consideration. Now applying Theorem 6.1, we have

r(x, y) =

[
y1 + y2 − 0.333x

y1 + y2 − 0.333x

]
, p(x, y) =

[
0 1
1 0

]
,

L(x, y, d) =

[
−76 + 2y1 + y2

−72 + y1 + 2y2

]
+

[
d2

d1

]
,

and then compute d̄ = (12.85, 0) from (6.3). All the assumptions of Theorem 6.1 are
clearly satisfied, and we can check that both relationships in (6.4) are fulfilled with
v = (1.38, 0) and u = (0.3, 0.6). Indeed, the first relationship in (6.4) reduced to the
system of linear equations

(6.10)

0.333(−u1 − u2) = −2(x− x0),

2v1 + v2 + u1 + u2 = −2γ(y1 − y1
0),

v1 + 2v2 + u1 + u2 = −2γ(y2 − y2
0),

while the second one gives

(6.11) u1 ∈ D∗NR−(0, 12.86)(v2), u2 ∈ D∗NR−(0, 0)(v1).
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From the first relationship in (6.11) we immediately get that v2 = 0 and u1 is free.
The multipliers v1, u1, u2 can be computed from the linear system (6.10). Since they
fulfill the second relationship in (6.11), the optimality conditions have been verified.

Similarly we can consider oligopolistic market models with more realistic produc-
tion costs and inverse demand curves taken, e.g., from [30]. This, however, requires
more work for computing and verifications.
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Abstract. The ultimate goal of this paper is to demonstrate that abstract convexity provides
a natural language and a suitable framework for the examination of zero duality gap properties and
exact multipliers of augmented Lagrangians. We study augmented Lagrangians in a very general
setting and formulate the main definitions and facts describing the augmented Lagrangian theory in
terms of abstract convexity tools. We illustrate our duality scheme with an application to stochastic
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1. Introduction. The classical augmented Lagrangian is defined by means of
two addends; one of them is a classical Lagrangian, the other is a penalty term. Due
to the term “augmented Lagrangian” the first addend is considered the main one and
the second term is considered as something auxiliary. This is true from the numerical
point of view. However, the penalty term is crucial for the examination of theoretical
issues such as the existence of an exact penalty representation and/or the calmness
of the perturbation function.

In [13, Chapter 11], an augmented Lagrangian with a convex augmenting term
was introduced for the primal problem of minimizing an extended real-valued function,
and, under mild assumptions, strong duality and exact penalty representation were
established [13, Theorems 11.59 and 11.61].

Augmented Lagrangians with a nonconvex augmenting function have been inten-
sively studied as well (see [9, 17, 8, 19, 6, 23, 24, 25] and the references therein). Some
of these references (e.g., [9, 17, 6, 19]) use abstract convexity tools in their analysis.

Our aim is (i) to present a unified analysis for the examination of nonconvex
augmented Lagrangians for a wider family of augmenting terms, and (ii) to express
the main definitions and facts describing the augmented Lagrangian theory in terms
of abstract convexity tools.

We extend to our general setting main theoretical facts such as the criterion for
exact penalty representation based on local growth properties of the perturbation
function (Theorem 6.2), the equivalence between calmness and existence of Lagrange
multipliers (Corollary 4.1), and the connection between calmness and existence of
exact penalty parameters (Proposition 5.3).

In order to deal with our more general augmenting terms, we translate these main
theoretical facts into the language of abstract convexity. Our approach is inspired by
the works [13, 17, 8, 23, 25, 10].
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Recall that a function f is called abstract convex with respect to a set of elementary
functions H if f is represented as the upper envelope of a subset of H. For example,
if H is the set of all continuous affine functions, then a function is abstract convex
if and only if this function is convex, proper, and lower semicontinuous. In order to
apply abstract convexity to the problem at hand we need to define a convenient set
H of elementary functions. Since we want to study augmented Lagrangians, we need
to consider a set of elementary functions that explicitly depend on a parameter r > 0;
this parameter is to be identified with a penalty parameter.

Our set of elementary functions is constructed by combining two families of func-
tions. One of these families consists of the “linear” or “ordinary” augmenting terms,
and the other provides the “penalty” terms. Our resulting augmenting term includes,
as a particular case, the ones studied in [13, 17, 8, 23, 25].

First we prove, in Proposition 4.1, that our augmented Lagrangian scheme has no
duality gap. Second, in Proposition 4.2, we establish existence of abstract subgradi-
ents of the perturbation function, assuming a local validity of the (abstract) subgra-
dient inequality. Third, we extend the notion of calmness (see Definition 4.1) to our
setting and prove in Corollary 4.1 that this new concept is equivalent to the existence
of abstract subgradients of the perturbation function at 0. Fourth, we introduce a
level boundedness assumption on the problem, which guarantees lower semicontinuity
of the perturbation function. We apply these results to the constrained optimization
problem and we prove that our concept of calmness implies the existence of an exact
penalty parameter. Fifth, we express all previous results in terms of the Lagrangian
scheme. More precisely, we prove in Theorem 6.1 the well-definedness of the cen-
tral path associated with the problem, and we prove optimality of all primal weak
accumulation points. The latter result is an extension of [8, Theorem 2.1] and [23,
Theorem 3.1] to our general family of augmenting terms. In Theorem 6.2 we establish
a criterion for exact penalty representation based on a local behavior of the pertur-
bation function, extending to our setting [8, Theorem 3.1] and [23, Theorem 4.1].

The structure of the paper is as follows: Section 2 contains some preliminar-
ies from abstract convexity and abstract Lagrangians. Generalized augmented La-
grangians are defined in section 3. Abstract subdifferential and approximate abstract
subdifferentials of a lower semicontinuous function are discussed in section 4, where
we prove zero duality gap and analyze existence of (abstract) subgradients of the per-
turbation function. Also in this section we establish equivalence between existence of
Lagrange multipliers and calmness of the problem. In section 5 we prove that a level-
bounded problem guarantees lower semicontinuity of the perturbation function. Also
in this section we apply our results to a general constrained optimization problem. In
section 6 our previous results (which are expressed in terms of abstract convexity tools)
are applied to our augmented Lagrangian scheme. Finally, in section 7 we discuss the
application of our duality scheme to a semi-infinite stochastic programming problem.

We use the following notation: R = (−∞,+∞) is the real line; R̄ = [−∞,+∞] is
the extended real line; R+∞ = R ∪ {+∞}.

Let f : X → R̄, g : X → R̄ be functions defined on a set X. Then the inequality
f ≤ g means that f(x) ≤ g(x) for all x ∈ X.

2. Preliminaries.

2.1. Abstract convexity and generalized conjugation. All definitions and
statements from this subsection can be found in [18, 21].

Let X be a set and let H be a set of functions h : X → R̄. Let f : X → R̄. The
set supp (f,H) = {h ∈ H | h ≤ f} is called the support set of f with respect to H.
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The function coHf : X → R̄ defined by coHf(x) = sup{h(x) | h ∈ supp (f,H)} is
called the H-convex hull of f . A function f : X → R̄ is called abstract convex with
respect to H (H-convex) at a point x ∈ X if there exists a set U ⊆ supp (f,H) such
that f(x) = sup{h(x) | h ∈ U}. It is clear that f is H-convex at x if and only if
f(x) = coHf(x). If f is H-convex at each point x ∈ X, then f is called H-convex
on X. Classical convexity is equivalent to abstract convexity with respect to the
set A of continuous affine functions. More exactly, if X is a Banach space, then a
lower semicontinuous function f : X → R+∞ is convex if and only if f is A-convex.
Similarly we can define abstract concave with respect to H (H-concave) functions.

Let L be a set of functions defined on a set X. Functions hl,γ of the form
hl,γ(x) = l(x) − γ, x ∈ X, with l ∈ L and γ ∈ R are called L-affine. Denote by HL

the set of all L-affine functions.
Let (X,L) be a pair of sets with a coupling function ρ : X×L :→ R. The function

ρ allows us to consider X as a set of functions x(·) defined on L and L as a set of
functions l(·) defined on X. Here

x(l) = ρ(x, l) (l ∈ L), l(x) = ρ(x, l) (x ∈ X).

Denote by FX the union of the set of all functions f : X → R+∞ and the function
−∞, where −∞(x) = −∞ for all x ∈ X. Let f ∈ FX . The function

fρ(l) = sup
x∈X

(ρ(x, l) − f(x)), l ∈ L,

is called the Fenchel–Moreau conjugate of f . This function is HX -convex. It is easy
to check that fρ ∈ FL. The function

fρρ(x) = sup
l∈L

(ρ(x, l) − fρ(l))

is called the Fenchel–Moreau biconjugate to f . This function is HL-convex.
The classical result of abstract convex analysis (the Fenchel–Moreau theorem)

states that f ∈ FX is abstract convex with respect to HL at a point x if and only if
f(x) = fρρ(x).

Let (X,L) be a pair of sets with a finite coupling function ρ. Let f be HL convex
and x0 ∈ dom f := {x ∈ X | f(x) < +∞}. The set

∂ρf(x0) = {l ∈ L | f(x) ≥ f(x0) − l(x0) + l(x), x ∈ X}

= {l ∈ L | f(x) ≥ f(x0) − ρ(x0, l) + ρ(x, l), x ∈ X}

is called the ρ-subdifferential of f at a point x0. The ρ-subdifferential ∂ρf(x0) is
nonempty if and only if f(x0) = max{h(x0) | h ∈ supp (f,HL)}. Elements of ∂ρf(x0)
are called ρ-subgradients (abstract subgradients) of f at x0.

The approximate abstract subgradients are inspired by the concept of ε-subgra-
dients introduced in [2]. Fix ε ≥ 0. We say that l ∈ ∂ρ,εf(x0) whenever

f(x) ≥ f(x0) − ρ(x0, l) + ρ(x, l) + ε for all x ∈ X.

2.2. Abstract Lagrangians. Definitions and results presented in this subsec-
tion are found in [21, 19] (see also the references therein). Let X,Z be reflexive
Banach spaces. We consider the optimization problem

(P) minimize ϕ(x) subject to x in X,
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where the function ϕ : X → R+∞ is an extended real-valued function. We will assume
that the function ϕ is proper, that is, domϕ 	= ∅.

A function f : X ×Z → R̄ is called a dualizing parameterization function for ϕ if
f(x, 0) = ϕ(x) for all x ∈ X. This parameterization induces the perturbation function
given by

β(z) := inf
x∈X

f(x, z).

Our assumption on ϕ forces β(0) < +∞.

We introduce duality for problem (P) in the following way. Let Ω be a set of
parameters (or dual variables) and consider a coupling function ρ : Z × Ω → R.
The Lagrangian-type function for problem (P) induced by this coupling function ρ is
defined as

(2.1) l(x, ω) := inf
z∈Z

{f(x, z) − ρ(z, ω)}.

Let fx(z) = f(x, z). We have

l(x, ω) = − sup
z∈Z

{ρ(z, ω) − fx(z)} = −fρ
x (ω).

The above expression establishes a relationship between the Lagrangian and the
Fenchel–Moreau conjugate to f . This relationship is the key to using conjugations to
study duality.

Associated with the Lagrangian function above, we define the generalized dual
function q : Ω → R̄ in a canonical way:

(2.2) q(ω) := inf
x∈X

l(x, ω) = inf
x∈X

(−fρ
x (ω)).

With these definitions, the generalized dual problem becomes

sup
ω∈Ω

q(ω).

Assume in what follows that the coupling function ρ verifies ρ(0, ω) = 0 for all ω ∈ Ω.
Then by (2.1) and (2.2) we get

(2.3) sup
ω

q(ω) ≤ inf
x

ϕ(x),

which is known as the weak duality property. When also the opposite inequality holds
in (2.3), we say that the zero duality gap property holds for the Lagrangian l. The
definitions give supω q(ω) = βρ ρ(0), where βρ ρ is the biconjugate to β with respect
to ρ. Altogether, we can write the zero duality gap property as

β(0) = βρ ρ(0).

An element ω̄ ∈ Ω is called an exact Lagrange multiplier if β(0) = q(ω̄) =
maxω∈Ω q(ω). The following result is well known (see, e.g., [19, Theorem 5.2]).

Proposition 2.1. An element ω̄ ∈ Ω is an exact Lagrange multiplier if and only
if ω̄ is a ρ-subgradient of β at zero.
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3. Generalized augmented Lagrangians. An abstract Lagrangian is called
augmented Lagrangian if Ω = Y ×R+, where Y = Z∗ is a conjugate to Z space and for
ω = (y, r) ∈ Ω we have ρ(z, (y, r)) = y(z) − rσ(z). Here σ is an augmenting function.
It is assumed that σ enjoys some properties; in particular σ(0) = 0 and σ(z) > 0
for z 	= 0. From the numerical point of view the presence of the linear term y(z),
which can be considered as a coupling function generating the classical Lagrangian,
is important. However, the role of this term is not essential in the examination of
some important theoretical questions, such as the zero duality gap property or the
existence of exact penalty parameters. We show that the key role in the study of
these questions is played by the penalty term rσ(z). In order to underline this key
role, we consider a generalized augmented Lagrangian, which contains the augmented
Lagrangian described above as a very special case. In order to introduce this gen-
eralized augmented Lagrangian we need a function p : R

2 → R which possesses the
following properties:

(a) p(0, 0) = 0;
(b) there exists a strictly increasing function ψ : R+ → R+ such that ψ(0) = 0

and for each a ∈ R and b1, b2 ∈ R with b1 ≥ b2 it holds that

(3.1) p(a, b1) − p(a, b2) ≥ ψ(b1 − b2).

We will always assume that p verifies conditions (a) and (b).
The simplest example of a function p with such properties is p(a, b) = a+b. More

generally, we can have p(a, b) = g(a) + h(b) with g(0) = h(0) = 0 and h a strictly
increasing function. We now give a less trivial example. Let p(a, b) = g(a)h(b), where
g(a) ≥ 1 for all a ∈ R, and let h : R → R be a differentiable function such that
h′(x) ≥ γ > 0 for all x and h(0) = 0. Let b1 > b2. Then

p(a, b1) − p(a, b2) = g(a)(h(b1) − h(b2)) ≥ h(b1) − h(b2) ≥ γ(b1 − b2),

so (3.1) holds with ψ(b) = γb.
We need to have two sets U, Y and two families of real-valued functions indexed

by these sets: {σu}u∈U and {νy}y∈Y . We assume that the family {σu}u∈U verifies
the following properties:

(U1) σu : Z → R+∞ are proper, weakly lower semicontinuous for all u ∈ U .
(U2) σu(0) = 0 and σu(z) > 0 for all z 	= 0.
(U3) For all u ∈ U there exists Ku > 0 such that the level set {z | σu(z) ≤ Ku} is

bounded.
(U4) For each neighborhood V ⊂ Z of 0 and for each u ∈ U we have that

inf
z �∈V

σu(z) > 0.

Remark 3.1. The function μu = −σu, where σu enjoys U2, U4 and is continuous,
is usually called a peak at zero (see [19]). Penot [10] used the term potential for
functions similar to σ. In [24], a function that verifies properties U1, U2, and U4 is
said to be a valley at 0 in X.

We assume that the family {νy}y∈Y verifies
(Y1) νy(0) = 0 for all y ∈ Y ;
(Y2) νy : Z → R is weakly upper semicontinuous.
Remark 3.2. Each member of the family {σu}u∈U represents a “penalty” term

in the augmented Lagrangian, while the family {νy}y∈Y consists of the “linear” or
“ordinary” augmenting terms.
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We now introduce a set of dual variables Ω and a coupling function ρ : Z×Ω → R

which will allow us to combine the elements of both families by using the function p:

Ω := R+ × Y × U ;(3.2)

ρ(z, ω) = ρ(z, (r, y, u)) := p(νy(z),−rσu(z)).(3.3)

Example 3.1. Let ‖ · ‖ be a norm in the Banach space Z. Take Y := Z∗ and
U = (0,+∞). Consider the families {σu}u∈U and {νy}y∈Y defined as νy(z) := y(z)
and σu(z) = ‖z‖u. It is clear from the definitions that these families verify conditions
U1–U4. Assume now that U = (0, 1) and consider the family {σu}u∈U given by
σu(z) = ‖z‖u for all z with ‖z‖ ≤ 1 and σu(z) = 1 otherwise. It has been proved in
[24, Lemma 2.1] that the family {σu}u∈U verifies U1–U4.

Remark 3.3. Assume that U consists of one element u and call σu =: σ. Then Ω
consists of vectors ω = (r, y) with r ∈ R+ and y ∈ Y . Let β be a function defined on
Z. Then supp (β,HΩ) 	= ∅ means that there exists c ∈ R and (r, y) ∈ R+ × Y such
that β(z) ≥ νy(z) − rσ(z) − c for all z ∈ Z. This property is related to the concept
of growth condition studied in [10]. In [25] this inequality is considered when it holds
outside some neighborhood of zero, and it is also called a growth condition.

Remark 3.4. Let p(a, b) = a+ b and let Y = Z∗ be the dual of the Banach space
Z. Assume that U consists of one element u and call σu =: σ. Then the augmented
Lagrangian l(x, ω) with ω = (r, y) has the form

l(x, ω) = inf
z∈Z

{f(x, z) − y(z) + rσ(z)},

so the Lagrangian obtained above reduces to the classical augmented Lagrangian
defined by the augmenting function σ (see [13, Chapter 11]).

Remark 3.5. Assume that Y consists of one element y and νy = 0. Then Ω
consists of vectors ω = (r, u) with r ∈ R+ and u ∈ U . In such a case the so-obtained
Lagrangian l(x, ω) = infz∈Z{f(x, z) + rσu(z)} is interpreted as a generalized penalty
function.

4. Abstract subdifferential and approximate subdifferentials. In this sec-
tion we examine abstract subdifferential and approximate subdifferential of a lower
semicontinuous function β with respect to a coupling function defined by (3.3). Let
Ω be a set defined by (3.2). Recall that the set of Ω-affine functions HΩ consists
of functions h of the form h(z) = ρ(z, (r, y, u)) − c = p(νy(z),−rσu(z)) − c, where
ω = (r, y, u) ∈ Ω and c ∈ R.

We consider only functions β such that the support set supp (β,HΩ) 	= ∅. This
means that there exist ω = (r, y, u) ∈ Ω and c ∈ R such that β(z) ≥ p(νy(z),−rσu(z))−
c for all z ∈ Z. By definition of βρ, the latter inequality holds if and only if
ω = (r, y, u) ∈ domβρ. So our basic assumption supp (β,HΩ) 	= ∅ is equivalent
to domβρ 	= ∅.

Theorem 4.1. Let X,Z be reflexive Banach spaces. Take ρ : Z × Ω → R

as in (3.3) for families of functions verifying U1–U3 and Y1–Y2. Assume also that
p(νy(·),−rσu(·)) is upper semicontinuous for every (r, y, u) ∈ Ω. Let β : Z → R+∞ be
a lower semicontinuous function such that β(0) < +∞ and supp (β,HΩ) 	= ∅. Then
there exists r0 > 0 and (ū, ȳ) ∈ U × Y such that for all r > r0 the following hold:

(i) there exists zr ∈ Z such that (r, ȳ, ū) ∈ ∂ρβ(zr);
(ii) (r, ȳ, ū) ∈ ∂ρ,εrβ(0),
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where εr := β(0) − β(zr) + p(νȳ(zr),−rσū(zr)) ≥ 0. Furthermore, limr→∞ εr = 0.
Proof. Since supp (β,HΩ) 	= ∅, there exist ω̄ := (r, ȳ, ū) ∈ Ω and c̄ ∈ R such that

p(νȳ(z),−r̄σū(z)) − c̄ ≤ β(z) for all z ∈ Z.

For any r ≥ 0 call m(r) := infz∈Z{β(z) − p(νȳ(z),−rσū(z))}. The equalities
νȳ(0) = σū(0) = 0 and p(0, 0) = 0 imply m(r) ≤ β(0). Fix r > r̄ > 0. Since p is
increasing on the second argument and σu ≥ 0 it follows that

−∞ < m(r̄) = infz∈Z{β(z) − p(νȳ(z),−r̄σū(z))}

≤ infz∈Z{β(z) − p(νȳ(z),−rσū(z))} = m(r) ≤ β(0).

Take a sequence {zn} such that limn→∞ β(zn) − p(νȳ(zn),−rσū(zn)) = m(r). Call
θn := β(zn) − p(νȳ(zn),−rσū(zn)). There exists n0 such that θn < β(0) + 1 for all
n ≥ n0. We can write for n ≥ n0

m(r̄) ≤ β(zn) − p(νȳ(zn),−r̄σū(zn))

= β(zn) − p(νȳ(zn),−rσū(zn)) + p(νȳ(zn),−rσū(zn)) − p(νȳ(zn),−r̄σū(zn))

= θn + (p(νȳ(zn),−rσū(zn)) − p(νȳ(zn),−r̄σū(zn))).

Let d1 = −rσū(zn), d2 = −rσū(zn). Then d1 ≥ d2. Due to (3.1), we have

p(νȳ(zn), d1) − p(νȳ(zn), d2) ≥ ψ(d1 − d2) = ψ((r − r)σū(zn)).

Hence for n ≥ n0 we can write

m(r) ≤ θn − ψ((r − r)σū(zn)) ≤ β(0) + 1 − ψ((r − r)σū(zn)).

Rearranging the above expression we get for n ≥ n0

ψ((r − r̄)σū(zn)) ≤ β(0) + 1 −m(r),

so it holds that

σū(zn) ≤ ψ−1(β(0) + 1 −m(r̄))

r − r̄

for n ≥ n0. Let Kū be as in condition U3. Take

r0 := r̄ +
ψ−1(β(0) + 1 −m(r̄))

Kū
.

Then for all r > r0 and all n ≥ n0 we get σū(zn) ≤ Kū. By condition U3, this implies
that {zn}n≥n0 is bounded. Therefore there exists a subsequence {znj} of {zn} weakly
converging to some zr. By lower semicontinuity of all functions involved, we can write

β(zr) − p(νȳ(zr),−rσū(zr)) ≤ lim inf
j

β(znj
) − p(νȳ(znj

),−rσū(znj
))

= lim inf
j

θnj
= m(r).

By definition of m(r), the above inequality implies that for all r > r0 and for all z we
have

β(zr) − p(νȳ(zr),−rσū(zr)) ≤ β(z) − p(νȳ(z),−rσū(z))
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or, equivalently,

(4.1) β(z) ≥ β(zr) + ρ(z, (r, ȳ, ū)) − ρ(zr, (r, ȳ, ū)).

This means that ω̄ = (r, ȳ, ū) ∈ ∂ρβ(zr). This completes the proof of (i).
Let us prove (ii). The fact that εr ≥ 0 follows readily from (4.1) for z = 0. Since

ρ(0, ω) = 0, the inclusion in condition (ii) is equivalent to checking that

(4.2) β(z) − β(0) − p(νȳ(z),−rσū(z)) + εr ≥ 0 for all z ∈ Z.

Indeed, since ω̄ ∈ ∂ρβ(zr) we have

0 ≤ β(z) − p(νȳ(z),−rσū(z)) − β(zr) + p(νȳ(zr),−rσū(zr))

= β(z) − β(0) − p(νȳ(z),−rσū(z)) − β(zr) + β(0) + p(νȳ(zr),−rσū(zr))

= β(z) − β(0) − p(νȳ(z),−rσū(z)) + εr,

which establishes (4.2). For proving that limr→∞ εr = 0 we need to establish the
following fact.

Fact 1. The function r → zr (r > r0) is bounded and converges weakly to 0 as
r → +∞.

Indeed, assume Fact 1 is true. Without loss of generality we can assume that
r0 ≥ 1. Since p is increasing on the second argument and νȳ(0) = σū(0) = 0 it follows
from (4.1) with z = 0 that

β(0) ≥ lim supr→+∞(β(zr) − p(νȳ(zr),−rσū(zr)))

≥ lim infr→+∞(β(zr) − p(νȳ(zr),−rσū(zr)))

≥ lim infr→+∞ β(zr) + lim infr→+∞ −p(νȳ(zr),−rσū(zr)) ≥ β(0),

where we used the upper semicontinuity assumption on p and lower semicontinuity of
β. Therefore β(0) = limr→+∞(β(zr) − p(νȳ(zr),−rσū(zr)). Now the definition of εr
shows that limr→∞ εr = 0. So let us prove Fact 1.

Proof of Fact 1. From the definition of m(r) we can write for every r > r0

m(r) ≤ β(zr) − p(νȳ(zr),−rσū(zr))

= β(zr) − p(νȳ(zr),−rσū(zr)) + p(νȳ(zr),−rσū(zr)) − p(νȳ(zr),−rσū(zr)).

Since r > r it follows that

p(νȳ(zr),−rσū(zr)) − p(νȳ(zr),−rσū(zr)) ≥ ψ((r − r)σū(zr)),

so

m(r) ≤ β(zr) − p(νȳ(zr),−rσū(zr)) − ψ((r − r)σū(zr)).

We also have

β(zr) − p(νȳ(zr),−rσū(zr)) = m(r) ≤ β(0).

Therefore

ψ((r − r)σū(zr)) ≤ β(zr) − p(νȳ(zr),−rσū(zr)) −m(r) ≤ β(0) −m(r).
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It follows from this inequality that

(4.3) σū(zr) ≤
ψ−1(β(0) −m(r))

r − r
.

Using the definition of r0 and the fact that r > r0 we conclude that

σū(zr) ≤ Kū
ψ−1(β(0) −m(r))

ψ−1(β(0) + 1 −m(r))
≤ Kū.

So the function r → zr (r ≥ r0) is bounded. Now let z be a weak accumulation point
of this function as r → +∞. Expression (4.3) yields

0 ≤ σū(z) ≤ lim infr→∞ σū(zr)

≤ lim infr→∞
ψ−1(β(0) −m(r))

r − r
= 0.

Hence z = 0. Since this is the unique possible accumulation point, the function
converges weakly to 0 as r → +∞. The proof of (ii) is now complete.

Now we use the previous result to prove that the function β is abstract convex
with respect to HΩ at zero. In other words, our duality scheme has zero duality gap.

Proposition 4.1. The equality

β(0) = βρ ρ(0)

holds under the assumptions of Theorem 4.1.
Proof. Since ρ(0, ω) = 0 for all ω ∈ Ω, it is enough to prove that β(0) ≤ βρ ρ(0).

With the notation of Theorem 4.1(i), there exists r0 > 0 such that for all r ≥ r0 we
have (r, ȳ, ū) ∈ ∂ρβ(zr). It is easy to see from the definition of abstract subdifferential
that this inclusion implies βρ(r, ȳ, ū) = p(νȳ(zr),−rσū(zr))− β(zr). By Fact 1 in the
proof of Theorem 4.1, {zr} weakly converges to zero as r → +∞. Hence,

βρ ρ(0) = sup
ω∈Ω

ρ(ω, 0) − βρ(ω) ≥ −βρ(r, ȳ, ū) = −p(νȳ(zr),−rσū(zr)) + β(zr).

Altogether we have

βρ ρ(0) ≥ lim inf
r→∞

β(zr) − p(νȳ(zr),−rσū(zr)) ≥ β(0).

The proof is complete.
The definition of abstract subdifferential shows that an abstract subgradient has

a global nature in the sense that we need to check a certain inequality for all points
z ∈ Z in order to check that an element ω ∈ Ω is a subgradient of a function β defined
on Z at a point z0 ∈ Z. It is interesting to establish conditions under which we can
check the required inequality only in a certain neighborhood of a point z. The next
statement shows that this local property is valid for the coupling function ρ defined
by (3.3) for large enough r.

Proposition 4.2. Assume all hypotheses of Theorem 4.1 hold (in particular,
domβρ 	= ∅). Take (r, ȳ, ū) ∈ domβρ and assume that condition U4 is satisfied by σu.
If there exists a neighborhood V of 0 and r′ > 0 such that for all z ∈ V it holds that

(4.4) β(z) ≥ β(0) + p(νȳ(z),−r′σū(z)),
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then there exists r∗ ≥ r′ such that (r, ȳ, ū) ∈ ∂ρβ(0) for all r > r∗.
Proof. Take r0 as in Theorem 4.1. By Theorem 4.1(ii) we have that (r, ȳ, ū) ∈

∂ρ,εrβ(0) for all r > r0, with limr→∞ εr = 0. Fix ε0 > 0. Since εr tends to 0,
there exists r1 > r0 such that ε0 ≥ εr for all r > r1. By condition U4, there exists
c(V, ū) > 0 such that

c(V, ū) < inf
z �∈V

σū(z).

Fix r2 > r1 and choose

(4.5) r∗ > max

{
r′,

ψ−1(ε0)

c(V, ū)
+ r2

}
.

Since r∗ > r′ we have by assumption (4.4) and condition (b) on p that the inequality

β(z) ≥ β(0) + p(νȳ(z),−rσū(z))

holds for all z ∈ V and all r > r∗. Assume now that z 	∈ V and r > r∗. Because
r2 > r0 we have that (r2, ȳ, ū) ∈ ∂ρ,εr2β(0). Hence

β(0) − εr2 ≤ β(z) − p(νȳ(z),−r2σū(z))

= β(z) − p(νȳ(z),−r∗σū(z)) + p(νȳ(z),−r∗σū(z)) − p(νȳ(z),−r2σū(z)).

Since r∗ ≥ r2, it follows that

p(νȳ(z),−r2σū(z)) − p(νȳ(z),−r∗σū(z)) ≥ ψ((r∗ − r2)σū(z)),

so

β(0) − εr2 ≤ β(z) − p(νȳ(z),−r∗σū(z)) − ψ((r∗ − r2)σū(z)).

Since σū(z) > c(V, ū) and ψ is increasing we have

(4.6) β(0) − εr2 ≤ β(z) − p(νȳ(z),−r∗σū(z)) − ψ((r∗ − r2)c(V, ū)).

According to (4.5) we have ε0 < ψ((r∗ − r2)c(V, ū)); therefore −ψ((r∗ − r2)c(V, ū)) ≤
−ε0 ≤ −εr2 , which combined with (4.6) gives

β(0) − εr2 ≤ β(z) − p(νȳ(z),−r∗σū(z)) − εr2 .

Hence we get

β(0) ≤ β(z) − p(νȳ(z),−r∗σū(z))

for all z 	∈ V . By condition (b) in the definition of p, the inequality holds for all
r > r∗. The proof is complete.

We quoted in Proposition 2.1 the equivalence between the existence of an exact
penalty parameter and nonemptiness of the subgradient of the perturbation function β
at zero. In the classical framework another equivalent property holds. This property
is known as calmness at zero of the perturbation function. Under some constraint
qualifications (see, e.g., [13, Proposition 8.32]), calmness at zero of β is equivalent to
nonemptiness of the subdifferential of β at 0. In our context, we need to introduce a
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concept of calmness which is related to the family {σu}. This concept reduces to the
classical one when σu = ‖ · ‖ for all u ∈ U .

Definition 4.1. Fix u ∈ U and let h : Z → R̄. We say that h is σu-calm at 0
when

lim inf
z→0, z �=0

h(z) − h(0)

σu(z)
> −∞.

In order to establish the relation between calmness at zero and abstract subdif-
ferentiability, we need to assume a growth condition on p. Our definition was inspired
from [10, Definition 2.6].

Definition 4.2. Fix u ∈ U and y ∈ Y . We say that p verifies a growth condition
with respect to the functions νy and σu when there exists r = r(y, u) > 0 such that

(i) lim inf
z→0, z �=0

p(νy(z),−rσu(z))

σu(z)
> −∞.

We say that σu is a penalty function for p and νy when

(ii) lim sup
z→0, z �=0, r→+∞

p(νy(z),−rσu(z))

σu(z)
= −∞.

Example 4.1. Let p(a, b) = a + b and let the families {νy}y and {σu}u be as in
Example 3.1 with U = (0, 1]. Then both (i) and (ii) of Definition 4.2 hold for every
pair σu, νy.

The proposition below relates Definition 4.2 with nonemptiness of ∂ρβ(0).
Proposition 4.3.

(a) Assume ∂ρβ(0) is nonempty and take (r̄, ȳ, ū) ∈ ∂ρβ(0). If p verifies a growth
condition with respect to the functions νy and σu, then β is σū-calm at 0.

(b) Assume all hypotheses of Theorem 4.1 hold, and fix (r̄, ȳ, ū) ∈ domβρ. If β is
σū-calm at 0 and σu is a penalty function for p and νy, then the subdifferential
∂ρβ(0) is nonempty.

Proof. (a) We have that ∂ρβ(0) 	= ∅ and (r, y, u) ∈ ∂ρβ(0). Then β(z) ≥ β(0) +
p(νy(z),−rσu(z)). This gives

lim inf
z→0

β(z) − β(0)

σū(z)
≥ lim inf

z→0

p(νy(z),−rσū(z))

σū(z)
> −∞,

which implies the σū-calmness at 0.
(b) Assume now that there exists ū ∈ U such that β is σū-calm at 0. Hence there

exists L > 0 and a neighborhood W of 0 such that for all z ∈ W \ {0} we have

β(z) − β(0)

σū(z)
> −L.

On the other hand, by condition (ii) in Definition 4.2 we have that for the given ū
there exists ȳ ∈ Y such that

lim sup
z→0, z �=0, r→+∞

p(νy(z),−rσū(z))

σū(z)
< −L.

In other words, there exists r0 > 0 and a neighborhood W0 of 0 such that for all
r > r0 and all z ∈ W0 \ {0} we have

p(νy(z),−rσū(z))

σū(z)
< −L.
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Altogether, for all z ∈ W ∩W0 \ {0} and all r > r0 we can write

β(z) − β(0) > −Lσū(z) > p(νy(z),−rσū(z)).

So inequality (4.4) holds for a neighborhood of 0. By Proposition 4.2 we conclude that
the inequality holds globally, and hence (r, y, u) ∈ ∂ρβ(0) for all r > r0. In particular,
∂ρβ(0) 	= ∅.

The result below combines both items of the last proposition.
Corollary 4.1. Assume the hypotheses of Theorem 4.1 hold with (r̄, ȳ, ū) ∈

domβρ. Suppose also that p, νy, and σu verify conditions (i)–(ii) of Definition 4.2.
Then the subdifferential ∂ρβ(0) is nonempty if and only if β is σū-calm at 0.

5. Lower semicontinuity of abstract concave functions. Let H be a set of
functions defined on a topological space Z and let β : Z → R−∞ be an H-concave
function; that is, there is a set U ⊂ H such that β(z) = infh∈U h(z). If H consists
of continuous functions, then β is upper semicontinuous. On the other hand, a basic
assumption in Theorem 4.1 is lower semicontinuity of β. Therefore, we are interested
in assumptions which guarantee the latter property, assuming that H consists of lower
semicontinuous functions.

Let f : X × Z → R+∞ be a function and

(5.1) β(z) = inf
x∈X

f(x, z).

We can consider β as an abstract concave function with respect to a set H of elemen-
tary functions which contains all functions (fx)x∈X , where fx(z) = f(x, z). We will
apply Theorem 4.1 for the function β defined by (5.1). For this we need to describe
functions f such that the function β is weakly lower semicontinuous. The following
definition will be used.

Definition 5.1. A function f : X × Z → R̄ is said to be weakly level-compact
if for every z ∈ Z there exists a weak neighborhood W ⊂ Z of z such that, for every
α ∈ R, the set

{x ∈ X | f(x, z) ≤ α} ⊂ B̄ for all z ∈ W,

where B̄ ⊂ X is weakly compact.
Remark 5.1. If in Definition 5.1 we require B̄ to be a bounded set, then we

recover the definition of uniform level boundedness given in [13, Definition 1.16].
Remark 5.2. Since X is a reflexive Banach space, Alaoglu’s theorem implies that

a set is weakly compact if and only if it is bounded and weakly closed. Moreover,
every bounded sequence has a weakly convergent subsequence.

Proposition 5.1. Let f : X×Z → R̄ be weakly lower semicontinuous and weakly
level-compact. Then the function β defined by (5.1) is weakly lower semicontinuous.

Proof. Assume that β is not weakly lower semicontinuous, which means that there
exist a point z, a net {zi}i∈I , and ε > 0 such that

(i) z = (w) − limi zi;
(ii) lim infi β(zi) < β(z) − ε.

By Definition 5.1, there exists a weak neighborhood W of z such that the set

{x ∈ X : f(x, z) ≤ β(z) − ε} ⊂ B for all z ∈ W,

where B is weakly compact. Item (i) means that there exists a terminal subset J of I
(J ⊂ I is terminal when there exists i0 ∈ I such that whenever j ≥ i0 we must have
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j ∈ J) such that zj ∈ W for all j ∈ J . Using this fact in (ii) we get

β(z) − ε > sup
I′⊂I, I′ terminal

inf
j∈I′

β(zj) ≥ inf
j∈J

β(zj).

Now take k0 ∈ N such that for all k ≥ k0 we have

β(z) − ε− 1/k > inf
j∈J

β(zj) = inf
j∈J

inf
x∈X

f(x, zj).

For every fixed k ≥ k0, we can choose xk ∈ X, jk ∈ J such that f(xk, zjk) < β(z) −
ε − 1/k. Because B is weakly compact and the sequence {xk} ⊂ B, there exists
a subsequence {xkl

}l∈N weakly converging to some x. Altogether, the subsequence
{(xkl

, zjkl
)}l weakly converges to (x, z) and by weak lower semicontinuity of f we get

β(z) ≤ f(x, z) ≤ lim inf
l

f(xkl
, zjkl

) ≤ lim inf
l

β(z) − ε− 1/kl = β(z) − ε,

which is impossible. We conclude that β must be weakly lower semicontinuous.

5.1. Application to constrained minimization and exact penalization.
We propose now a duality scheme for a general constrained problem. Given X,Z
reflexive Banach spaces, consider the constrained problem

(5.2) (P) min
x∈C

h(x),

where C ⊂ X and ϕ : X → R+∞. Denote by δA the indicator function of the
set A, i.e., δA(x) = 0 if x ∈ A and δA(x) = +∞ if x /∈ A. Problem (5.2) can be
reformulated as our original problem (P) with ϕ(x) := h(x) + δC(x). In order to
define the perturbed problems, we consider a point to set mapping D : Z ⇒ X such
that D(0) = C. This induces a duality parameterization f(x, z) := h(x) + δD(z)(x),
so the perturbed problems become

(Pz) min
x∈X

f(x, z) = min
x∈D(z)

h(x).

Remark 5.3. Assume the original problem is a classical nonlinear programming
problem with constraint set C = {x ∈ X : gi(x) ≤ 0, i = 1, . . . ,m}, where gi : X →
R+∞. We can define perturbed problems using the point-to-set mapping D : R

m ⇒ X
given by

D(v) := {x ∈ X : gi(x) ≤ vi, i = 1, . . . ,m}.

This choice of D corresponds to the canonical perturbations given in [11, Example 1,
eq. (2.8)] or [12, section 6].

We will make the following basic assumptions on problem (P) and its perturba-
tions (Pz).

(H0) D is weakly outer semicontinuous (i.e., the graph of D is weakly closed).
(H1) h : X → R+∞ is weakly lower semicontinuous.

Remark 5.4. Note that the mapping D defined in Remark 5.3 verifies (H0) when
the constraint functions gi are weakly lower semicontinuous.

Our first step is to guarantee weak lower semicontinuity of β.
Proposition 5.2. Let (H0)–(H1) hold. Assume that h is coercive, i.e., lim‖x‖→∞

h(x) = +∞. Consider f(x, z) := h(x) + δD(z)(x). Then β(z) := infx∈X f(x, z) is
weakly lower semicontinuous.
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Proof. Our first step is to prove that f is weakly level-compact. Indeed, for every
z̄ ∈ Z and every W ⊂ Z such that z̄ ∈ W we can write

∪z∈WAα(z) = ∪z∈W {x ∈ X : f(x, z) ≤ α}

= ∪z∈W {x ∈ X : h(x) ≤ α and x ∈ D(z)}

⊂ h−1((−∞, α]).

By (H1) and the coercivity assumption, the set h−1((−∞, α]) is bounded and weakly
closed, and therefore weakly compact. Hence, f is weakly level-compact. Let us prove
now that f is weakly lower semicontinuous at every (x, z) ∈ X × Z. Let {(xi, zi)}i∈I

be a net converging weakly to (x, z). Denote by J ⊂T I the fact that J ⊂ I and J is
terminal. We can write

lim inf
i∈I

f(xi, zi) = supJ⊂T I inf
j∈J

f(xj , zj)

= supJ⊂T I inf
j∈J, xj∈D(zj)

h(xj)

≥ supJ⊂T I inf
j∈J

h(xj) ≥ h(x̄),

where we used assumption (H1) in the last inequality. On the other hand, by (H0)
we have that x̄ ∈ D(z̄) and therefore f(x̄, z̄) = h(x̄). The latter fact and the above
expression yield the weak lower semicontinuity of f . The conclusion of the proposition
now follows from Proposition 5.1.

The concept of calmness is related with exact penalization (see, e.g., [3, Propo-
sition 6.4.3]). Indeed, we establish next a connection between σu-calmness and the
existence of an exact penalty parameter. More precisely, we prove that under σu-
calmness of the perturbation function, every solution of problem (5.2) is also a local
solution of the penalized problem, as long as the penalty parameter r is large enough.
In other words, σu is an exact penalty function for problem (5.2). We need extra
assumptions on our Lagrangian function.

(H2) The function ψ in (3.1) verifies

lim inf
t→0+

ψ(t)

t
≥ δ > 0

for some δ > 0.
(H3) The function ψ in (3.1) verifies

lim inf
r→+∞

ψ(r) = +∞.

Remark 5.5. For instance, ψ(t) = tα with 0 < α ≤ 1 verifies (H2) and (H3). In
particular, the choice p(a, b) = a + b corresponds to ψ(t) = t for every t ≥ 0.

Proposition 5.3. Assume that (H0)–(H2) hold. Let σu satisfy U1–U3 and let Y
be such that 0 ∈ Y and ν0(z) = 0 for every z ∈ Z. Suppose also that either of the
following two assumptions holds:

(i) ψ in (3.1) verifies (H3).
(ii) h is continuous on every solution of problem (5.2).

If β is σu-calm at 0, then for every solution x∗ of problem (5.2), there exists M > 0
such that x∗ is a local (with respect to the strong topology in X) solution of

(5.3) min
x∈X

l̃(x, (M,u)),
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where l̃(x, (M,u)) := l(x, (M, 0, u)).
Proof. As in Proposition 5.2, we take f(x, z) = h(x) + δD(z)(x). Note that

ρ(z, (r, 0, u)) = p(ν0(z),−rσu(z)) = p(0,−rσu(z)), so the augmented Lagrangian cor-
responding to ρ in the element (x, (r, 0, u)) has the form

(5.4)
l(x, (r, 0, u)) = infz∈Z{f(x, z) − ρ(z, (r, 0, u))}

= h(x) + infz∈D−1(x) [−p(0,−rσu(z))] .

Note that 0 ∈ D−1(x∗) because x∗ ∈ C = D(0). Using this fact in the above
expression for x = x∗ yields

(5.5) l(x∗, (r, 0, u)) ≤ h(x∗).

By (3.1) for a = b1 = 0 and b2 = −rσu(z) ≤ 0 we have that

(5.6) −p(0,−rσu(z)) ≥ ψ(rσu(z)) ≥ 0.

Combining (5.6) with (5.4) we get

(5.7)
l(x, (r, 0, u)) = h(x) + infz∈D−1(x) [−p(0,−rσu(z))]

≥ h(x) + infz∈D−1(x) ψ(rσu(z)) ≥ h(x).

From (5.7) and (5.5) we obtain l(x∗, (r, 0, u)) = h(x∗). Assume that the conclusion
of the proposition is not true. This implies that for every k ∈ N there exists xk ∈ X
such that ‖xk − x∗‖ < 1/k and

(5.8) l̃(xk, (k, u)) = h(xk) + inf
z∈D−1(xk)

[−p(0,−kσu(z))] < l̃(x∗, (k, u)) = h(x∗).

Call ak := infz∈D−1(xk) [−p(0,−kσu(z))]. We claim that ak > 0 for all k. In-
deed, if there exists k0 such that ak0 = 0, then we can find a sequence {zj} ⊂
D−1(xk0) such that limj→∞ −p(0,−k0σu(zj)) = 0. But the latter can hold only when
limj→∞ σu(zj) = 0. Indeed, suppose that for some b > 0 there is a subsequence
{zjl}l such that σu(zjl) > b for all l ∈ N. Using (5.6) and the fact that ψ is strictly
increasing we get

0 = lim
l→∞

−p(0,−k0σu(zjl)) ≥ lim
l→∞

ψ(k0σu(zjl)) ≥ ψ(b) > 0,

where we also used ψ(0) = 0 in the last inequality. The above expression entails a
contradiction, and hence we must have limj→∞ σu(zj) = 0. Take j0 large enough
such that σu(zj) ≤ Ku for all j ≥ j0, where Ku > 0 is as in condition U3. Then
{zj}j≥j0 is bounded and hence it has a weak accumulation point z̃. By (H0) we
have that z̃ ∈ D−1(xk0

). Because σu is weakly lower semicontinuous we also have
σu(z̃) ≤ limj→∞ σu(zj) = 0 so z̃ = 0 ∈ D−1(xk0

). This yields xk0
feasible for the

problem and hence h(xk0) ≥ h(x∗), a contradiction with (5.8) for k = k0. This implies
that our claim is true and ak > 0 for every k. By (5.8) we have

0 < ak < h(x∗) − h(xk) = β(0) − h(xk).

By definition of ak this implies the existence of zk ∈ D−1(xk) with −p(0,−kσu(zk)) <
β(0) − h(xk). Using (5.6) we can write

(5.9) 0 ≤ ψ(kσu(zk)) ≤ −p(0,−kσu(zk)) < β(0) − h(xk) = h(x∗) − h(xk).
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Note that h is weakly lower semicontinuous and {xk} is bounded (because it converges
to x∗). Therefore, there exists L > 0 such that h(xk) ≥ −L for every k. Using also
(5.9) we get

ψ(kσu(zk)) ≤ β(0) + L.

If (i) holds, the above implies that limk→∞ σu(zk) = 0. On the other hand, if (ii) holds,
the rightmost expression in (5.9) must tend to zero, and because ψ(0) = 0 we must
have limk→∞ σu(zk) = 0. Therefore, either under (i) or (ii) we have limk→∞ σu(zk) =
0. By an argument similar to the one used above (which uses condition U3) we
conclude again that {zk} converges weakly to 0. Because zk ∈ D−1(xk) we get
β(zk) = infx∈D(zk) h(x) ≤ h(xk) and (5.9) yields

β(zk) − β(0)

σu(zk)
≤ h(xk) − h(x∗)

σu(zk)
≤ p(0,−kσu(zk))

σu(zk)
≤ −ψ(kσu(zk))

σu(zk)
.

Using the above expression and the σu-calmness of β at 0 we get

−∞ < lim infk
β(zk)−β(0)

σu(zk) ≤ lim infk
p(0,−kσu(zk))

σu(zk) ≤ lim infk
−ψ(kσu(zk))

σu(zk)

= lim infk(−k)ψ(kσu(zk))
(kσu(zk)) ≤ lim infk(−k)δ = −∞,

where we used (H2) in the last inequality. The above expression entails a contradic-
tion, and hence x∗ must be a local minimizer of problem (5.3).

6. Application to Lagrangian scheme. In this section we apply the abstract
convexity results in order to analyze the properties of our augmented Lagrangian
scheme. We start by defining exact penalty representation.

Definition 6.1. We say that (ū, ȳ) ∈ U × Y supports an exact penalty repre-
sentation for problem (P) if there exists r̄ > 0 such that, for all r ≥ r̄, the original
problem (P) is equivalent to minimizing l(·, (r, ȳ, ū)) in the sense that

(6.1)
(a) β(0) = infx∈X l(x, (r, ȳ, ū)), and

(b) argmin x∈Xh(x) = argmin x∈X l(x, (r, ȳ, ū))

for all r ≥ r̄. In this situation, the value r̄ is said to be an exact penalty parameter.
Remark 6.1. In the particular case in which the Lagrangian is the generalized

penalty function (see Remark 3.5), the value of r̄ reduces to the classical exact penalty
parameter.

The previous definitions readily give the following characterization of (6.1)(a).
Lemma 6.1. With the notation of Definition 6.1, the following statements are

equivalent:
(i) (ū, ȳ) verifies (6.1)(a) for the threshold r′ > 0.
(ii) (r, ȳ, ū) ∈ ∂ρβ(0) for all r ≥ r′.
Proof. Using the definition of Lagrangian and perturbation function we can re-

write (6.1)(a) as

β(0) = infx∈X infz∈Z f(x, z) − p(νȳ(z),−rσū(z))

= infz∈Z infx∈X f(x, z) − p(νȳ(z),−rσū(z))

= infz∈Z β(z) − p(νȳ(z),−rσū(z))

≤ β(z) − p(νȳ(z),−rσū(z))
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for all z ∈ Z and all r ≥ r′. Since σū(0) = νȳ(0) = 0 this yields (r, ȳ, ū) ∈ ∂ρβ(0) for
all r ≥ r′.

Remark 6.2. Proposition 4.3(b) provides conditions under which σū-calmness at
0 implies that ∂ρβ(0) 	= ∅. Applying also Lemma 6.1, we conclude that σū-calmness
at 0 implies the existence of ȳ ∈ Y and r′ > 0 such that (ū, ȳ) verifies (6.1)(a) for the
threshold r′ > 0.

Remark 6.3. Under the assumptions of Proposition 5.1, problem (P) has solu-
tions. Indeed, because f : X×Z → R̄ is weakly lower semicontinuous and weakly level-
compact, ϕ must be weakly lower semicontinuous and level-bounded, which clearly
yields the nonemptiness and boundedness of the solution set.

Combining (6.1) with the definition of l we see that the exact penalty represen-
tation is connected with the optimal value and solution set of the family of problems
given by

(6.2) P (r, y, u) inf
(x,z)∈X×Z

{f(x, z) − p(νȳ(z),−rσū(z))}.

Fix (u, y) ∈ U × Y and consider all values of r > 0. The set

∪r>0{(xr, zr) | (xr, zr) solves P (r, y, u)}

is called an optimal path for problem (P). Let us define the primal optimal path as the
set

∪r>0{xr | (xr, zr) solves P (r, y, u)}.

Our next step is to establish conditions under which every weak accumulation
point of the primal optimal path is a solution of the original problem.

Theorem 6.1. Assume all hypotheses of Theorem 4.1 hold and consider in (6.2)
a duality parameterization f : X × Z → R̄ which is weakly lower semicontinuous and
weakly level-compact. Then the following hold:

(1) There exists r0 > 0 such that (xr, zr) solves problem P (r, ȳ, ū) for all r > r0.
In other words, the optimal path

Qr0 := ∪r≥r0{(xr, zr) | (xr, zr) solves P (r, ȳ, ū)}

is well defined.
(2) The sequence {zr} converges weakly to 0, and every weak accumulation point

of {xr} is a solution of problem (P).
Proof. Let us prove (1). Our assumptions on f and Proposition 5.1 imply that β

is weakly lower semicontinuous. By Theorem 4.1(i) we have that for some r0 > 0 and
for every r > r0 there exists zr ∈ Z such that (r, ȳ, ū) ∈ ∂ρβ(zr). This means that for
all r > r0 we can write

β(zr) − p(νȳ(zr),−rσū(zr)) ≤ β(z) − p(νȳ(z),−rσū(z))

for all z ∈ Z. The above inequality implies that zr ∈ argmin {β(z)−p(νȳ(z),−rσū(z))}
for all r > r0, and taking z = 0 we get β(zr) ≤ β(0). Fix r > r0. By definition of β
we can find a sequence {xk} such that

f(xk, zr) < β(zr) +
1

k
≤ β(0) + 1.
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By Theorem 4.1, {zr} converges weakly to 0. By the weak-level-compactness assump-
tion on f we know that there exists a weak neighborhood W of 0 such that for all
z ∈ W we have

{x ∈ X : f(x, z) ≤ β(0) + 1} ⊂ B̃,

where B̃ is weakly compact. Without restriction, we can assume that zr ∈ W for all
r > r0. Therefore, {xk} ⊂ B̃, and hence it has a weak accumulation point, which we
call xr. By weak lower semicontinuity of f , we can write

f(xr, zr) ≤ lim inf
k

f(xk, zr) ≤ lim inf
k

β(zr) +
1

k
= β(zr).

Hence f(xr, zr) = β(zr). Altogether,

(6.3)
infx,z{f(x, z) − p(νȳ(z),−rσū(z))} = infz{β(z) − p(νȳ(z),−rσū(z))}

= β(zr) − p(νȳ(zr),−rσū(zr)) = f(xr, zr) − p(νȳ(zr),−rσū(zr)),

so (xr, zr) solves P (r, ȳ, ū) for all r > r0. This proves (1).
From (6.3) we have for every x ∈ X

(6.4) f(xr, zr) − p(νȳ(zr),−rσū(zr)) ≤ f(x, 0).

The upper semicontinuity of p and the fact that {zr} converges weakly to 0 allow us
to write

0 ≤ lim inf
r→∞

−p(νȳ(zr),−rσū(zr)).

Therefore there exists r1 ≥ r0 such that

p(νȳ(zr),−rσū(zr)) ≤ 1

for all r > r1. Now fix x ∈ X. Using (6.4) and the above inequality for r > r1 we get

f(xr, zr) ≤ f(x, 0) + 1.

Using again the weak-level-compactness assumption we conclude that {xr}r>r1 has
weak accumulation points. Let us prove now that every weak accumulation point of
{xr} is a solution of problem (P). Take x∗ a weak accumulation point of {xr} and
{xrj} a subnet weakly converging to x∗. By (6.4) and weak lower semicontinuity,

f(x∗, 0) ≤ lim inf
j

f(xrj , zrj ) − p(νȳ(zrj ),−rσū(zrj )) ≤ f(x, 0),

where we also used the fact that {zr} converges weakly to 0. Now taking infx∈X

we conclude that f(x∗, 0) ≤ β(0), which implies that x∗ solves (P). This estab-
lishes (2).

Remark 6.4. Assume there exists (ū, ȳ) supporting an exact penalty represen-
tation for problem (P) with threshold r′ > 0. Then by Lemma 6.1 we will have
(r, ȳ, ū) ∈ ∂ρβ(0) for all r ≥ r′. In this case inequality (4.4) holds for all z ∈ Z.
An application of Proposition 4.2 allows us to obtain a converse of this fact, where
it is enough to check (4.4) in some neighborhood of 0. The result below, which is
a criterion for the existence of exact penalty representation, has been established in
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[13, Theorem 11.61] for a convex augmenting term (i.e., where σu = σ for all u ∈ U
and σ is proper, lower semicontinuous, and convex) in finite dimensions. Theorem 6.2
extends analogous results recently proved in [23, 25, 8].

Theorem 6.2 (criterion for exact penalty representation). Assume all hypotheses
of Theorem 4.1 hold (in particular, domβρ 	= ∅). Let (r, ȳ, ū) ∈ domβρ be such
that the function σū verifies condition U4. Then (ū, ȳ) supports an exact penalty
representation for problem (P) if there exists r′ > 0 and a neighborhood V ⊂ Z of 0
such that for all z ∈ V the following inequality holds:

(6.5) β(0) ≤ β(z) − p(νȳ(z),−r′σū(z)).

Proof. We are in conditions of Proposition 4.2, which, together with (6.5), yields
the existence of an r∗ > r′ such that (r, ȳ, ū) ∈ ∂ρβ(0) for all r ≥ r∗. Using now
Lemma 6.1 we conclude that (6.1)(a) holds, or, equivalently,

(6.6) β(0) ≤ β(z) − p(νȳ(z),−r∗σū(z)) for all z ∈ Z.

An important consequence of the above inequality and condition U4 is that

(6.7) argmin z∈Zβ(z) − p(νȳ(z),−rσū(z)) = {0}

for all r > r∗. Indeed, fix z′ 	= 0. Take r > r∗ and choose W a neighborhood of 0
such that z′ 	∈ W . Call c(W ) := infz �∈W σū(z). We know by U4 that c(W ) > 0. We
can write

β(z′) − p(νȳ(z
′),−rσū(z′)) = β(z′) − p(νȳ(z

′),−r∗σū(z′))

+ p(νȳ(z
′),−r∗σū(z′)) − p(νȳ(z

′),−rσū(z′))

≥ β(0) + ψ((r − r∗)σū(z′))

≥ β(0) + ψ((r − r∗)σū(z′)) > β(0),

where we used (6.6) and assumption (b) on p. Now we proceed to establish (6.1)(b),
i.e., that there exists r1 ≥ r∗ such that for all r > r1 we have

(6.8) argmin x∈Xϕ(x) = argmin x∈X l(x, (r, ȳ, ū)).

Define the function h(x, z) := f(x, z)− p(νȳ(z),−rσū(z)). It is directly checked from
the definitions that

(6.9)

(a) argmin (x,z)∈X×Zh(x, z) = {(x′, z′) | x′ ∈ argmin x∈Xh(x, z′) and

z′ ∈ argmin z∈Zβ(z) − p(νȳ(z),−rσū(z))}

(b) = {(x′, z′) | x′ ∈ argmin x∈X l(x, (r, ȳ, ū)) and

z′ ∈ argmin z∈Zh(x′, z)}.

Let us start the proof of (6.8) by taking x̄ ∈ argmin x∈X l(x, (ū, ȳ, r)). We claim that
there exists r1 > r∗ such that for all r > r1 we have

(6.10) argmin z∈Zh(x̄, z) = {0}.

By the definition of Lagrangian, the definition of x̄, and (6.6) we can write

(6.11)

infz∈Z h(x̄, z) = l(x̄, (r, ȳ, ū)) = infx∈X l(x, (r, ȳ, ū))

= infx∈X infz∈Z h(x, z) = infz∈Z infx∈X h(x, z)

= infz∈Z β(z) − p(νȳ(z),−rσū(z)) = β(0).
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Inequality (6.6) yields infz∈Z f(x, z) − p(νȳ(z),−r∗σū(z)) ≥ infz∈Z β(z) − p(νȳ(z),
−r∗σū(z)) ≥ β(0) > −∞. Thus the optimal value of P (r∗, ȳ, ū) is greater than −∞.
Fix r > r∗. Using (6.11) and an argument similar to that in the proof of Theorem 4.1,
we can find a sequence {zn} ⊂ Z such that limn→∞ β(zn)−p(νȳ(zn),−rσū(zn)) = β(0)
and

σū(zn) ≤ ψ−1(β(0) + 1 −m(r∗))

r − r∗

for all n ≥ n0. Take now r1 > r∗ + ψ−1(β(0)+1−m(r∗))
Kū

, where Kū is as in U3. This
yields σū(zn) ≤ Kū, and hence by U3 the sequence {zn} ⊂ Z is bounded. Take a weak
accumulation point zr along with a subsequence {znj} ⊂ {zn} weakly converging to
it. Then by lower semicontinuity of the functions and (6.11), we get

f(x̄, zr) − p(νȳ(zr),−rσū(zr)) ≤ lim inf
j→∞

f(x̄, znj ) − p(νȳ(znj ),−rσū(znj )) = β(0).

By definition of β we always have f(x̄, zr) ≥ β(zr). Combining the last two facts and
(6.6) we get

β(0) ≤ β(zr) − p(νȳ(zr),−rσū(zr)) ≤ β(0),

so by (6.11) we must have zr ∈ argmin z∈Zβ(z) − p(νȳ(z),−rσū(z)) for all r >
r1 and by (6.7) this means that zr = 0. This establishes (6.10). As a conse-
quence of (6.10), we have that the pair (x̄, 0) ∈ X × Z verifies the conditions x̄ ∈
argmin x∈X l(x, (r, ȳ, ū)) and 0 ∈ argmin z∈Zh(x̄, z). Now using (6.9)(b) we conclude
that (x̄, 0) ∈ argmin (x,z)∈X×Zh(x, z). Using the latter fact in (6.11) we obtain

inf
z∈Z

h(x̄, z) = inf
x∈X

inf
z∈Z

h(x, z) = h(x̄, 0) = f(x̄, 0).

Hence, for all x ∈ X we have that

ϕ(x̄) = f(x̄, 0) = h(x̄, 0) ≤ h(x, 0) = f(x, 0) = ϕ(x),

which yields x̄ ∈ argmin x∈Xϕ(x).
Conversely, now take x̄ ∈ argmin x∈Xϕ(x) and r > r1. For all x ∈ X we have

that

h(x̄, 0) = ϕ(x̄) ≤ ϕ(x) = f(x, 0) = h(x, 0),

so that x̄ ∈ infx∈X h(x, 0). Since r1 > r∗ we can use (6.7), and hence we have that 0 ∈
argmin z∈Zβ(z)− p(νȳ(z),−rσū(z)), so the pair (x̄, 0) belongs to the set on the right-
hand side of (6.9)(a). We then conclude again that (x̄, 0) ∈ argmin (x,z)∈X×Zh(x, z).
Use now (6.9)(b) to get x̄ ∈ argmin x∈X l(x, (r, ȳ, ū)), as we wanted.

Hence we conclude that argmin x∈Xϕ(x) = argmin x∈X l(x, (r, ȳ, ū)) for all r > r1,
where r1 > r∗.

7. Semi-infinite programming. Consider semi-infinite stochastic program-
ming problems of the form

(7.1) minimize h(x) subject to g(x, ξ) ≤ 0 a.e. ξ ∈ Ξ,

where h : R
n → R+∞ is a lower semicontinuous function, and Ξ is a set equipped

with a σ-algebra M and a finite measure μ defined on M. In the above formulation,



ABSTRACT CONVEXITY AND AUGMENTED LAGRANGIANS 433

a feasible point x verifies the inequalities g(x, ξ) ≤ 0 a.e. ξ ∈ Ξ if and only if there
is a subset A ∈ M such that μ(A) = 0 and the inequality g(x, ξ) ≤ 0 holds for
every ξ ∈ Ξ \ A. This kind of formulation is relevant, for example, in stochastic
programming (cf. [14, 15, 16]). Semi-infinite programming problems are studied in
detail in [1, 7, 22, 20]. We assume that

(H4) h is coercive, i.e., lim‖x‖→∞ h(x) = +∞;
(G1) for every fixed x ∈ R

n the function g(x, ·) : Ξ → R is measurable;
(G2) g(·, ξ) : R

n → R is lower semicontinuous in R
n.

Call C := {x ∈ R
n | g(x, ξ) ≤ 0 a.e. ξ ∈ Ξ} the feasible set of problem (7.1). Denote

by h∗ the optimal value of problem (7.1). Let X = R
n and Z = Lp. Fix a function

η : Lp → Lp such that
(A0) the function η(·)(ξ) : Lp → R is weakly lower semicontinuous a.e. in Ξ and

η(0) = 0.
Define the point-to-set mapping D : Lp ⇒ X as

(7.2) D(z) := {x ∈ R
n | g(x, ξ) + η(z)(ξ) ≤ 0 a.e. ξ ∈ Ξ}.

Note that the assumption η(0) = 0 yields D(0) = C. We can formulate problem
(7.1) in terms of a dualizing parameterization f which verifies the assumptions of
Theorem 4.1. Indeed, let

ϕ(x) := h(x) + δC(x) and f(x, z) := h(x) + δD(z)(x).

Then it is direct to check that f is a dualizing parametrization for ϕ.
Lemma 7.1. If h is lower semicontinuous and assumptions (H4), (G1), (G2),

and (A0) hold, then f is weakly level-compact and weakly lower semicontinuous. Con-
sequently, the perturbation function β : Lp → R ∪ {−∞} is weakly lower semicontin-
uous.

Proof. By Proposition 5.2 and (H4), it is enough to check assumptions (H0) and
(H1). Condition (H1) is the lower semicontinuity of h. Condition (H0) follows from
conditions (G2) and (A0).

Remark 7.1. Let us note that the coercivity assumption (H4) and lower semicon-
tinuity of h directly yield nonemptiness and boundedness of the solution set.

Let us now construct the Lagrangian scheme. Let Y and U be two sets and
define Ω := R+ × Y × U . We use p(a, b) = a + b in (3.3) to get ρ(z, (r, y, u)) =
νy(z) − rσu(z), where the families {νy}y∈Y and {σu}u∈U are functions from Z to R

verifying properties Y1–Y2 and U1–U4, respectively (for instance, as in Remark 3.4,
we can take Y = Lq(Ξ,M, μ) with 1/p + 1/q = 1 and νy(z) = 〈y, z〉; and we recover
a classical augmented Lagrangian). The definition of f yields

β(z) = inf
x∈X

f(x, z) = inf
x∈D(z)

h(x).

Recall that x ∈ D(z) if and only if z ∈ D−1(x) := {z′ | x ∈ D(z′)}. Then the
augmented Lagrangian corresponding to ρ in a fixed element (x, (r, y, u)) has the
form

(7.3)
l(x, (r, y, u)) = infz∈Z{f(x, z) − ρ(z, ω)} = infz∈D−1(x) h(x) − νy(z) + rσu(z)

= h(x) + infz∈D−1(x){−νy(z) + rσu(z)}.

From the expression for the Lagrangian we obtain the family of problems P (r, y, u)
given by

(7.4) min
(x,z)∈Rn×Lp

f(x, z) − νy(z) + rσu(z).
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The optimal path associated with a fixed pair (y, ū) ∈ Y × U is defined as the set

∪r>0{(xr, zr) | (xr, zr) solves P (r, y, ū)}.

We state below conditions guaranteeing existence of the optimal path for r large
enough.

Theorem 7.1. Under the assumptions of Lemma 7.1 and Theorem 4.1 we have
that

(a) there exist r0 > 0 and ȳ ∈Y such that (xr, zr) solves P (r, y, ū) for all r > r0;
(b) the sequence {zr} converges weakly to 0, and every accumulation point of {xr}

is a solution of problem (7.1).
Proof. Note that the assumptions of Theorem 6.1 hold, and the conclusions of

the latter theorem are precisely conclusions (a) and (b).
Next we apply Proposition 5.3 in order to prove that calmness of the perturbation

function implies the existence of an exact penalty parameter.
Proposition 7.1. Consider the Lagrangian scheme defined in (7.3)–(7.4). As-

sume that h is lower semicontinuous and suppose also that (H4), (G2), and (A0) hold.
Let σu satisfy U1–U3 and let Y be such that 0 ∈ Y and ν0(z) = 0 for every z ∈ Z.
If β is σu-calm at 0, then for every solution x∗ of problem (7.1), there exists M > 0
such that x∗ is a local solution of

min
x∈X

l̃(x, (M,u)),

where l̃(x, (M,u)) := l(x, (M, 0, u)).
Proof. By Proposition 5.3, it is enough to check that assumptions (H0)–(H3) hold

for our Lagrangian scheme. Note first that our choice p(a, b) = a + b entails ψ(t) = t
for all t ≥ 0, yielding (H2)–(H3). As noted before, (H0) is a consequence of (G2) and
(A0). Finally, (H1) is our basic assumption of lower semicontinuity of h.

The following result is a direct consequence of Theorem 6.2.
Theorem 7.2. Assume all hypotheses of Theorem 4.1 hold, where (r̄, y, ū) ∈

domβρ. Then (r̄, y, ū) supports an exact penalty representation for problem (7.1) if
there exist r′ > 0 and a neighborhood V of 0 in Lp such that for all z ∈ V we have

h∗ ≤ [ inf
x∈D(z)

h(x)] − νy(z) + r′σu(z).

Combining the above result with Example 4.1, we can characterize nonemptiness
∂ρβ(0). The proof of this result follows readily from Corollary 4.1 and the fact that
p and the functions νy and σu verify conditions (i) and (ii) of Definition 4.2.

Corollary 7.1. Let the families of functions {νy, σu} be given as in Example 4.1.
Assume all hypotheses of Theorem 4.1 hold, where (r̄, y, ū) ∈ domβρ. Then ∂ρβ(0) 	=
∅ if and only if the perturbation function β is σu-calm at 0.

Remark 7.2. We apply the result above to the augmented Lagrangians con-
structed in [13, Chapter 11], where the family {νy} is the dual of Z (i.e., νy(z) =
〈y, z〉 for all z ∈ Z) and the family {σu} has a single element σ with σ(0) = 0.
The function p is given by p(a, b) = a + b so that the coupling function becomes
ρ(z, ω) = ρ(z, (r, y)) = 〈y, z〉 − rσ(z). We have that νy, p, and σ verify conditions (i)

and (ii) of Definition 4.2 when lim supz→0,z �=0
‖z‖
σ(z) < +∞. When σ(·) := ‖ · ‖ then

the latter condition trivially holds.
An important particular case of problem (7.1) is the semi-infinite programming

problem, stated as

(7.5) minimize h(x) subject to g(x, t) ≤ 0, t ∈ T,
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where T ⊂ R
p is a compact set, h : R

n → R+∞ is lower semicontinuous, and g(·, t) :
R

n → R, g(x, ·) : R
p → R are also lower semicontinuous for every (x, t) ∈ R

n × R
p.

A popular choice of penalty function for these problems is the standard L∞-penalty
function (see, e.g., [4, 5]), given by

l̃(x, r) := h(x) + rmax
t∈T

|[g(x, t)]+|,

where [a]+ = max{a, 0} for every a ∈ R. In the following example, we show that our
setting includes this kind of penalty function as a particular case.

Example 7.1. Consider the semi-infinite programming problem (7.5) and take
Z := L∞(T ) with the norm ‖z‖∞ := supt∈T |z(t)|. Assume also that g(x, ·) ∈ L∞(T )
for every x ∈ R

n (in other words, g(x, ·) is bounded above on the set T for every x).
Let η : L∞(T ) → L∞(T ) be defined as η(z) = z. Our perturbed problems become

minimize h(x) subject to g(x, t) + z(t) ≤ 0, t ∈ T.

As in (7.2), consider the set

D(z) := {x ∈ R
n : g(x, t) + z(t) ≤ 0, t ∈ T}

and the duality parameterization f(x, z) := h(x) + δD(z)(x). If we take νy = 0 for
every y ∈ Y and σu = ‖ · ‖∞ for every u ∈ U , then (7.3) gives

l̃(x, r) = h(x) + r inf
z∈D−1(x)

‖z‖∞.

We claim that infz∈D−1(x) ‖z‖∞ = ‖ [g(x, ·)]+ ‖∞. Indeed, define z̄(t) := min{−g(x, t),
0} for all t ∈ T . It can be checked that (i) z̄ ∈ D−1(x), (ii) ‖z̄‖∞ = ‖ [g(x, ·)]+ ‖∞,
and (iii) ‖z‖∞ ≥ ‖z̄‖∞ for every z ∈ D−1(x). Items (i) and (ii) follow directly from
the definitions, so let us prove (iii). Assume there exist z ∈ D−1(x) and a ∈ R with
‖z‖∞ < a < ‖z̄‖∞ = ‖ [g(x, ·)]+ ‖∞. This implies that there exists t̄ ∈ T such that

(7.6) |z(t)| < a < [g(x, t̄)]+

for every t ∈ T . The above inequality can hold only if g(x, t̄) > 0. Now using the
fact that z ∈ D−1(x) we have that z(t̄) ≤ −g(x, t̄) < 0. By (7.6) for t = t̄ we get
−z(t̄) = |z(t̄)| < a < [g(x, t̄)]+ = g(x, t̄), which yields z(t̄)+g(x, t̄) > 0, a contradiction
to the fact that z ∈ D−1(x). Hence the claim is true and the Lagrangian simplifies to

l̃(x, r) = h(x) + rmax
t∈T

|[g(x, t)]+|,

which is the classical L∞-penalty function. We point out that a similar analysis to
the one in Lemma 7.1 can be carried out in order to prove lower semicontinuity of
the perturbation function, so that the subsequent theoretical results, such as well-
definedness of the central path and the criterion for exact penalty representation, can
also be established for this problem with this kind of augmenting term.

Acknowledgment. The authors are very grateful to the two referees for their
helpful and valuable suggestions, which greatly improved earlier versions of the manu-
script.
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Abstract. Several notions of constraint qualifications are generalized from the setting of convex
inequality systems to that of convex generalized equations. This is done and investigated in terms
of the coderivatives and the normal cones, and thereby we provide some characterizations for convex
generalized equations to have the metric subregularity. As applications, we establish formulas of the
modulus of calmness and provide several characterizations of the calmness. Extending the classical
concept of extreme boundary, we introduce a notion of recession cores of closed convex sets. Using this
concept, we establish global metric subregularity (i.e., error bound) results for generalized equations.
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1. Introduction. Let X and Y be Banach spaces and F : X → 2Y a closed
multifunction. Following Dontchev and Rockafellar [7], the multifunction F is said to
be metrically subregular at a for b ∈ F (a) if there exists τ ∈ [0, +∞) such that

(1.1) d(x, F−1(b)) ≤ τd(b, F (x)) ∀x close to a.

The metric subregularity has already been studied by many authors under various
names (cf. [2, 15, 21, 26, 32]).

Let A be a closed subset of X and b be a given point in Y . Consider the generalized
equation with constraint

(GEC) b ∈ F (x) subject to x ∈ A,

which includes most of the systems in optimization. Let S denote the solution set of
(GEC), that is, S = {x ∈ A : b ∈ F (x)}.

We say that (GEC) is metrically subregular at a ∈ S if there exists τ ∈ (0, ∞)
such that

(1.2) d(x, S) ≤ τ(d(b, F (x)) + d(x,A)) ∀x close to a.

When F (x) = [f(x), +∞), b = 0, and A = X, (GEC) reduces to the inequality
system f(x) ≤ 0 and (1.2) means that this inequality has a local error bound at a.
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Another special case is when F (x) = [f(x), +∞) and b = inf{f(x) : x ∈ A}. In this
case, (GEC) reduces to the following optimization problem:

(OP) min f(x) subject to x ∈ A

and (1.2) means that a is a weak sharp minimum of (OP). Error bounds and weak
sharp minima have important applications in mathematical programming and have
been extensively studied (cf. [3, 18, 19, 21, 34, 35]). In this paper, we mainly study
the metric subregularity of (GEC) in the case when F and A are convex.

The notion of the basic constraint qualification (BCQ) of systems of continuous
convex inequalities plays an important role in convex optimization and has been stud-
ied by many researchers (see, e.g., [11, 307–309 and 19, 20]). Dropping the continuity
assumption and adopting the singular subdifferential, the authors [36] introduced and
discussed the generalized BCQ and strong BCQ. Very recently, Hu [12] further stud-
ied the generalized BCQ and strong BCQ. In section 3, in terms of the coderivative,
we extend the concept of the generalized BCQ and strong BCQ to cover the case of
a generalized equation with constraint (GEC). Using the BCQ and strong BCQ, we
provide several characterizations of the metric subregularity of (GEC).

A stronger condition is the metric regularity of a multifunction that has been
well studied in variational analysis (see [13, 15, 22, 24, 30] and references therein).
Explicitly, F is metrically regular at a for b ∈ F (a) if there exists τ ∈ (0, +∞) such
that

(1.3) d(x, F−1(y)) ≤ τd(y, F (x)) ∀(x, y) close to (a, b).

It is well known (as the Robinson–Ursescu theorem) that (1.3) holds if F is a closed
convex multifunction and b ∈ int(F (X)). Under the assumption that both X and Y
are finite dimensional, Mordukhovich [22] proved that F is metrically regular at a for
b ∈ F (a) if and only if D∗F (a, b)−1(0) = {0}; moreover,

(1.4) inf{τ : (1.3) holds} = ‖D∗F (a, b)−1‖+ = lim sup

(x,y)
Gr(F )−→ (a,b)

‖D∗F (x, y)−1‖+,

where D∗F (a, b) is the coderivative of F at (a, b) and

‖D∗F (a, b)−1‖+ = sup
x∗∈BX∗

sup
y∗∈D∗F (a,b)−1(x∗)

‖y∗‖.

When X and Y are infinite dimensional, some sufficient and necessary conditions for
the metric regularity were also established (see [17, 23], Mordukhovich’s recent books
[24, 25], and references therein). To the best of our knowledge, no one has considered
duality formulas similar to (1.4) for the modulus of the metric subregularity. In section
3, we provide such formulas under the convexity assumption.

Similar to the relationship between Aubin’s pseudo-Lipschitz property and the
metric regularity, the calmness is related very closely to the metric subregularity. In
section 4, as applications of results obtained in section 3, we consider the calmness
of convex multifunctions. We establish formulas of the modulus of the calmness and
present several characterizations of the calmness in terms of the normal cone and the
coderivative. In this section, we also provide characterizations of the strong calmness.
Reducing to special kinds of convex multifunctions such as that recently considered
by Henrion and Jourani in [8], our approach sheds light on some existing results on
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the calmness; in fact Corollary 4.2 provides a version that is sharper than the main
result in [8].

The notion of the extreme point set of a convex set is very useful in convex
analysis. In section 5, as an extension of an extreme point set, we introduce and
discuss the notion of a recession core. In terms of recession cores, we study the
global metric subregularity. In particular, we show that (GEC) is globally metrically
subregular if and only if (GEC) has the τ -strong BCQ at each point of some recession
core of the solution set S for some τ ∈ (0, +∞). When the solution set S is a
polyhedron, we obtain a sharp result that (GEC) is globally metrically subregular if
and only if (GEC) has the BCQ at each point of some recession core of S. This implies
in particular that if the graph of F is a polyhedron, then (GEC) is always globally
metrically subregular; thus the classical Hoffman result on the error bound for linear
inequality systems are extended and improved to cover some nonlinear inequality
systems without the Slater condition.

2. Preliminaries. Throughout this paper, we assume that X and Y are Banach
spaces. We denote by BX and BY the closed unit balls of X and Y , respectively. For
a ∈ X and δ > 0, let B(a, δ) denote the open ball with center a and radius δ.

For a closed convex subset A of X and a ∈ A, we use T (A, a) to denote the
tangent cone of A at a in Bouligand’s sense. Thus v ∈ T (A, a) if and only if there
exist a sequence {an} in A and a sequence {tn} of positive numbers convergent to 0
such that an−a

tn
converges to v.

We denote by N(A, a) the normal cone of A at a, that is,

N(A, a) := {x∗ ∈ X∗ : 〈x∗, x− a〉 ≤ 0 ∀x ∈ A}.

Let F : X → 2Y be a multifunction and denote by Gr(F ) the graph of F , that is,

Gr(F ) := {(x, y) ∈ X × Y : y ∈ F (x)}.

As usual, F is said to be closed (resp., convex) if Gr(F ) is a closed (resp., convex)
subset of X × Y . It is known that F is convex if and only if

tF (x1) + (1 − t)F (x2) ⊂ F (tx1 + (1 − t)x2) ∀x1, x2 ∈ X and ∀t ∈ [0, 1].

For a closed convex multifunction F and (x, y) ∈ Gr(F ), the tangent derivative
DF (x, y) of F at (x, y) is defined by

(2.1) DF (x, y)(u) = {v ∈ Y : (u, v) ∈ T (Gr(F ), (x, y))} ∀u ∈ X

(cf. [1]).
Let D∗F (x, y) denote the coderivative of F at (x, y), which is defined by

(2.2) D∗F (x, y)(y∗) := {x∗ ∈ X∗ : (x∗,−y∗) ∈ N(Gr(F ), (x, y))} ∀y∗ ∈ Y ∗

(cf. [22, 26, 32]).
Let G : X → 2Y be a sublinear multifunction (i.e., Gr(G) is a convex cone in

X × Y ). As in Dontchev, Lewis, and Rockafellar [6], the outer norm and inner norm
of G are, respectively, defined as

‖G‖+ = sup
x∈BX

sup
y∈Gx

‖y‖ and ‖G‖− := sup
x∈BX

inf
y∈Gx

‖y‖,
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where the infimum and supremum over an empty set are understood as +∞ and 0,
respectively. For a convex cone C in X, let ‖G|C‖+ and ‖G|C‖− be, respectively,
defined by

(2.3) ‖G|C‖+ := sup
x∈BX∩C

sup
y∈Gx

‖y‖ and ‖G|C‖− := sup
x∈BX∩C

inf
y∈Gx

‖y‖.

We denote by bd(A) the topological boundary of a subset A of X. The following
lemma is known (cf. [27, Proposition 1.3] or [28, Lemma 2.1]) and useful for us.

Lemma 2.1. Let X be a Banach space and A a closed convex nonempty subset
of X. Then, for any β ∈ (0, 1) and any x ∈ X \ A there exist z ∈ bd(A) and
x∗ ∈ N(A, z) with ‖x∗‖ = 1 such that

β‖x− z‖ < d(x,A) and β‖x− z‖ < 〈x∗, x− z〉.

3. BCQ, strong BCQ, and metric subregularity. Throughout this section,
we assume that F : X → 2Y is a closed convex multifunction, A is a closed convex
subset of X, and b is a given point in Y . Recall that S = {x ∈ A : b ∈ F (x)} is the
solution set of the corresponding generalized equation with constraint (GEC).

Recently, in dealing with the inequality defined by a proper lower semicontinuous
convex function, the authors [36] introduced and discussed the generalized BCQ and
strong BCQ.

In terms of the coderivative replacing the subdifferential and the singular subdif-
ferential, we can extend the concept of the generalized BCQ and strong BCQ to the
case of a generalized equation with constraint (GEC). Explicitly, we say that (GEC)
has the BCQ at a ∈ S if

(3.1) N(S, a) = D∗F (a, b)(Y ∗) + N(A, a)

and (GEC) has the strong BCQ at a ∈ S if there exists τ ∈ (0, +∞) such that

(3.2) N(S, a) ∩BX∗ ⊂ τ(D∗F (a, b)(BY ∗) + N(A, a)) ∩BX∗ .

The following theorem establishes the relationship between the metric subregu-
larity and strong BCQ.

Theorem 3.1. Let a ∈ S. Then, the generalized equation (GEC) is metrically
subregular at a if and only if there exist τ, δ ∈ (0, +∞) such that (GEC) has the
strong BCQ at all points in bd(S) ∩B(a, δ) with the same constant.

Proof. Suppose that (GEC) is metrically subregular at a. Then there exist τ, δ ∈
(0, +∞) such that (1.2) holds. For any (x, y) ∈ X×Y , let ‖(x, y)‖τ := τ+1

τ ‖x‖+‖y‖.
Then ‖ · ‖τ is a norm on X × Y inducing the product topology, and the unit ball of
the dual space of (X × Y, ‖ · ‖τ ) is ( τ

τ+1BX∗) ×BY ∗ . We claim that

(3.3) d(x, S) ≤ τ(d‖·‖τ
((x, y),Gr(F ))+‖y−b‖+d(x,A)) ∀(x, y) ∈ B

(
a,

δ

2

)
×Y,

where the distance d‖·‖τ
is with respect to the norm ‖ · ‖τ . Suppose to the contrary

that (3.3) does not hold. Then there exists (x0, y0) ∈ B(a, δ
2 ) × Y such that

d(x0, S) > τ [d‖·‖τ
((x0, y0),Gr(F )) + ‖y0 − b‖ + d(x0, A)].

It follows that there exists u ∈ X such that

d(x0, S) > τ

(
τ + 1

τ
‖u− x0‖ + d(y0, Fu) + ‖y0 − b‖ + d(x0, A)

)
,
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and hence

d(x0, S) > ‖u− x0‖ + τ(d(b, Fu) + d(u,A)).

Noting that

‖u− a‖ ≤ ‖u− x0‖ + ‖x0 − a‖ < d(x0, S) + ‖x0 − a‖ ≤ 2‖x0 − a‖ < δ,

it follows from (1.2) and the triangle inequality that

d(x0, S) > ‖u− x0‖ + d(u, S) ≥ d(x0, S),

which is a contradiction. Hence (3.3) holds.
We will establish the necessary part by showing that

(3.4) N(S, z) ∩BX∗ ⊂ τ(D∗F (z, b)(BY ∗) + N(A, z) ∩BX∗) ∀z ∈ B

(
a,

δ

2

)
∩ S.

To do this, let z ∈ S ∩B(a, δ
2 ) and x∗ ∈ N(S, z) ∩BX∗ . Since A is convex, N(S, z) ∩

BX∗ = ∂d(·, S)(z) (cf. [4, Theorem 1]). Thus,

〈x∗, x− z〉 ≤ d(x, S) − d(z, S) = d(x, S) ∀x ∈ X.

It follows from (3.3) that

〈x∗, x−z〉 ≤ τ(d‖·‖τ
((x, y),Gr(F ))+‖y−b‖+d(x,A)) ∀(x, y) ∈ B

(
z,

δ

2
− ‖z − a‖

)
×Y.

Together with the convexity of F and A, this implies that (x
∗

τ , 0) ∈ ∂φ(z, b), where φ
is the convex function defined by

φ(x, y) := d‖·‖τ
((x, y),Gr(F )) + ‖y − b‖ + d(x,A) ∀(x, y) ∈ X × Y.

Noting that

∂d‖·‖τ
(·,Gr(F ))(z, b) ⊂ N(Gr(F ), (z, b)),

it follows from [5, Proposition 2.3.2] that(
x∗

τ
, 0

)
∈ N(Gr(F ), (z, b)) + {0} ×BY ∗ + (N(A, z) ∩BX∗) × {0}.

This implies that x∗ ∈ τ(D∗F (z, b)(BY ∗) + N(A, z) ∩ BX∗), and hence that (3.4)
holds, as is required to show.

Conversely, suppose that there exist τ ′, δ′ ∈ (0, +∞) such that (GEC) has the

strong BCQ at each point of bd(S)∩B(a, δ′) with the constant τ ′. Let x ∈ B(a, δ′

2 )\S.

Then, d(x, S) ≤ ‖x− a‖ < δ′

2 . Let β ∈ ( 2d(x,S)
δ′ , 1). Then, by Lemma 2.1 there exists

u ∈ bd(S) and x∗ ∈ N(S, u) with ‖x∗‖ = 1 such that β‖x− u‖ ≤ d(x, S) and

(3.5) β‖x− u‖ ≤ 〈x∗, x− u〉.

Thus, ‖x − u‖ < δ′

2 . Hence ‖u − a‖ ≤ ‖u − x‖ + ‖x − a‖ < δ′, and so (GEC)
has the strong BCQ at u with the constant τ . Therefore, there exists y∗ ∈ BY ∗ ,
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x∗
1 ∈ D∗F (u, b)(y∗), and x∗

2 ∈ N(A, u) ∩ BX∗ = ∂d(·, A)(u) (by [4, Theorem 1]) such
that x∗ = τ ′(x∗

1 + x∗
2). By the convexity of F and A, one has

〈x∗
1, x− u〉 ≤ 〈y∗, y − b〉 ∀y ∈ F (x) and 〈x∗

2, x− u〉 ≤ d(x,A) − d(u,A) = d(x,A).

Hence,

〈x∗, x− u〉 ≤ τ ′(〈y∗, y − b〉 + d(x,A)) ≤ τ ′(‖y − b‖ + d(x,A)) ∀y ∈ F (x).

This and (3.5) imply that β‖x − u‖ ≤ τ ′(d(b, F (x)) + d(x,A)). It follows from u ∈
S that βd(x, S) ≤ τ ′(d(b, F (x)) + d(x,A)). Since β can be arbitrarily close to 1,
d(x, S) ≤ τ ′(d(b, F (x)) + d(x,A)). This shows that (GEC) is metrically subregular at
a. This completes the proof.

Theorem 3.1 recaptures some earlier results dealing only with numerical valued
functions. Let f : X → R∪{+∞} be a proper lower semicontinuous convex function.
When F (x) = [f(x), +∞), b = 0, and A = X, then Theorem 3.1 is obtained in [36].
A slightly earlier result is due to Burke and Deng who showed in [3, Theorem 5.2]
that if X is a Hilbert space, F (x) = [f(x), +∞), b = infx∈X f(x), and A = X, then
(GEC) is metrically subregular at a if and only if there exists τ ∈ [0, +∞) such that

N(S, x) ∩BX∗ ⊂ τcl∗(∂f(a)),

where cl∗ denotes the weak∗ closure.
Remark 3.1. Let τ(F, a, b;A) := inf{τ > 0 : (1.2) holds}. For u ∈ S, let

γ(F, u, b;A) := inf{τ > 0 : (GEC) has the strong BCQ at u with the constant τ}.

By the proof of Theorem 3.1, one can see that

(3.6) τ(F, a, b;A) = lim sup

u
bd(S)−→ a

γ(F, u, b;A) ≥ γ(F, a, b;A).

In general, (GEC) is not necessarily metrically subregular at a if (GEC) has the
strong BCQ only at a (see [36, Example 2]). But, when S is assumed to be “locally
conical” at a, Theorem 3.1 and (3.6) can be sharpened. To do this, we need the
following lemma.

Lemma 3.1. Let s1, s2 ∈ S be such that 〈u∗, s1〉 = 〈u∗, s2〉. Then,

u∗ ∈ D∗F (s1, b)(BY ∗) + N(A, s1) ∩BX∗ ⇔ u∗ ∈ D∗F (s2, b)(BY ∗) + N(A, s2) ∩BX∗ .

Proof. Obviously we need only prove one direction of the implications, say “ ⇒.”
Let

ψ(x, y) := ‖y − b‖ + d(x,A) + δGr(F )(x, y) ∀(x, y) ∈ X × Y,

where δGr(F ) denotes the indicator function of Gr(F ). It follows from [4, Theorem 1]
and [5, Proposition 2.3.2] that

(3.7) ∂ψ(s, b) = {0}×BY ∗ +(N(A, s)∩BX∗)×{0}+N(Gr(F ), (s, b)) ∀s ∈ S.

Suppose that u∗ ∈ D∗F (s1, b)(BY ∗) + N(A, s1) ∩ BX∗ . Then, by (3.7), one has
(u∗, 0) ∈ ∂ψ(s1, b). Hence,

〈u∗, x− s1〉 ≤ ψ(x, y) − ψ(s1, b) ∀(x, y) ∈ X × Y.
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Since 〈u∗, s1〉 = 〈u∗, s2〉 and ψ(s1, b) = ψ(s2, b) = 0,

〈u∗, x− s2〉 ≤ ψ(x, y) − ψ(s2, b) ∀(x, y) ∈ X × Y.

Therefore, (u∗, 0) ∈ ∂ψ(s2, b). It follows from (3.7) that u∗ ∈ D∗F (s2, b)(BY ∗) +
N(A, s2) ∩ BX∗ . This shows that the implication “ ⇒ ” holds. Hence, the proof is
completed.

Theorem 3.2. Let a ∈ S. Suppose that there exist a cone C and a neighborhood
V of a such that S ∩ V = (a + C) ∩ V . Then

τ(F, a, b;A) = γ(F, a, b;A).

Consequently, (GEC) is metrically subregular at a if and only if (GEC) has the strong
BCQ at a.

Proof. In view of (3.6), we need only show that

(3.8) lim sup

u
bd(S)−→ a

γ(F, u, b;A) ≤ γ(F, a, b;A).

Let δ > 0 be such that B(a, δ) ⊂ V . To prove (3.8), it suffices to show that for any
u ∈ S ∩B(a, δ),

(3.9) γ(F, u, b;A) ≤ γ(F, a, b;A).

We first show that

(3.10) N(S, u) ⊂ N(S, a) ∀u ∈ S ∩B(a, δ).

To do this, let u ∈ S ∩B(a, δ) and x∗ ∈ N(S, u). Noting that V is a neighborhood of
u, we have

N(S, u) = N(S ∩ V, u) = N((a + C) ∩ V, u) = N(a + C, u).

Choosing cu ∈ C such that u = a + cu, it follows that

〈x∗, a + cu〉 = sup{〈x∗, a + c〉 : c ∈ C}.

Since C is a cone, it follows that 〈x∗, cu〉 = 0 and hence

(3.11) 〈x∗, u〉 = 〈x∗, a〉 = sup{〈x∗, a + c〉 : c ∈ C}.

This implies that x∗ ∈ N(a + C, a) = N(S, a). Therefore, (3.10) holds. Since (3.9)
trivially holds if γ(F, a, b;A) = +∞, we assume henceforth that γ(F, a, b;A) < +∞.
Let r ∈ (γ(F, a, b;A), +∞). Then,

N(S, a) ∩BX∗ ⊂ r(D∗F (a, b)(BY ∗) + N(A, a) ∩BX∗).

Let u ∈ S ∩B(a, δ) and x∗ ∈ N(S, u) ∩BX∗ . By (3.10), one has

x∗ ∈ r(D∗F (a, b)(BY ∗) + N(A, a) ∩BX∗).

It follows from (3.11) and Lemma 3.1 that x∗ ∈ r(D∗F (u, b)(BY ∗) +N(A, u)∩BX∗).
Therefore,

N(S, u) ∩BX∗ ⊂ r(D∗F (u, b)(BY ∗) + N(A, u) ∩BX∗).
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This implies that γ(F, u, b;A) ≤ r. Letting r → γ(F, a, b;A), one sees that (3.9) holds.
Hence, the proof is completed.

Remark 3.2. If the solution set S is a polyhedron, then for each a ∈ S there exist
a cone C and a neighborhood V of a such that S ∩ V = (a + C) ∩ V ; in fact, in this
case we can choose C to be the tangent cone of S at a.

Theorem 3.3. Let a ∈ S,

τ1 := inf{τ > 0 : d(x, a + T (S, a)) ≤ τ(d(b, F (x)) + d(x,A)) ∀x close to a},

and

τ2 := inf{τ > 0 : d(h, T (S, a)) ≤ τ(d(0, DF (a, b)(h)) + d(h, T (A, a))) ∀h ∈ X}.

Then

τ1 = τ2 = γ(F, a, b;A).

Moreover,

(3.12) τ2 < +∞ =⇒ T (S, a) = T (A, a) ∩DF (a, b)−1(0).

Consequently, (GEC) has the strong BCQ at a if and only if the sublinear generalized
equation (with constraint)

0 ∈ DF (a, b)(x) subject to x ∈ T (A, a)

is metrically subregular at 0.
Proof. We first show that τ1 = τ2. Let h ∈ X, y ∈ DF (a, b)(h), u ∈ T (A, a), and

ε > 0. Then, there exists t > 0 small enough that

(h, y) ∈ Gr(F ) − (a, b)

t
+ εBX × εBY and u ∈ A− a

t
+ εBX .

Therefore, there exists z ∈ BX such that

b + ty ∈ F (a + th + tεz) + tεBY and a + tu ∈ A + tεBX .

This implies that

d(b, F (a + th + tεz)) ≤ t‖y‖ + tε and d(a + th + tεz, A) ≤ t‖h− u‖ + 2tε.

Considering an arbitrary τ > τ1 and noting that t > 0 is small enough, it follows that

τt(‖y‖ + ‖h− u‖ + 3ε) ≥ d(a + th + tεz, a + T (S, a))

≥ d(th, T (S, a)) − tε

= td(h, T (S, a)) − tε,

where the last equality holds because T (S, a) is a cone. Therefore,

d(h, T (S, a)) ≤ τ(d(0, DF (a, b)(h)) + d(h, T (A, a))) + (3τ + 1)ε.

Letting ε → 0 and τ → τ1, one has

d(h, T (S, a)) ≤ τ1(d(0, DF (a, b)(h)) + d(h, T (A, a))).
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Hence, τ2 ≤ τ1. Conversely, by the convexity of F , one has

Gr(F ) − (a, b) ⊂ T (Gr(F ), (a, b)) = Gr(DF (a, b)).

Then, for any x ∈ X, F (x) − b ⊂ DF (a, b)(x− a), and so

d(0, DF (a, b)(x− a)) ≤ d(b, F (x)).

On the other hand, the convexity of A implies that

d(x− a, T (A, a)) ≤ d(x− a,A− a) ≤ d(x,A).

Hence, for any x ∈ X,

d(x−a, T (S, a)) ≤ τ2(d(0, DF (a, b)(x−a))+d(x−a, T (A, a))) ≤ τ2(d(b, F (x))+d(x,A)).

Therefore τ1 ≤ τ2 and so τ1 = τ2 is shown. Next, we show that γ(F, a, b;A) = τ2. By
the definition of τ2, we have

d(x, T (S, a)) ≤ τ2(d(0, DF (a, b)(x)) + d(x, T (A, a))) ∀x ∈ X.

In the case when τ2 < +∞, this implies that T (A, a) ∩DF (a, b)−1(0) ⊂ T (S, a) and
hence (3.12) is seen to hold, as the converse inclusion is easy to verify by the convexity
of F and A. From (3.12) it is straightforward to verify that

γ(F, a, b;A) = γ(DF (a, b), 0, 0;T (A, a)) and τ2 = τ(DF (a, b), 0, 0;T (A, a)).

This and Theorem 3.2 imply that τ2 = γ(F, a, b;A). In the case when τ2 = +∞,
suppose to the contrary that τ2 �= γ(F, a, b;A). Then, γ(F, a, b;A) < +∞. Let
x ∈ X \ T (S, a) and β ∈ (0, 1). By Lemma 2.1 there exist u ∈ T (S, a) and x∗ ∈
N(T (S, a), u) such that

(3.13) ‖x∗‖ = 1 and 〈x∗, x− u〉 ≥ β‖x− u‖.

Noting that N(T (S, a), u) ⊂ N(T (S, a), 0) (because T (S, a) is a closed convex cone),
it follows that x∗ ∈ N(T (S, a), 0) = N(S, a) and 〈x∗, u〉 = 0. Take a fixed η in
(γ(F, a, b;A),∞). Then there exist y∗ ∈ ηBY ∗ , x∗

1 ∈ D∗F (a, b)(y∗), and x∗
2 ∈

ηN(A, a) ∩ BX∗ such that x∗ = x∗
1 + x∗

2. Equipping the product space X × Y with
norm ‖(x, y)‖η = η

1+η‖x‖ + ‖y‖ for all (x, y) ∈ X × Y and noting that the unit ball

of the dual space of (X × Y, ‖ · ‖η) is (η+1
η BX∗) ×BY ∗ , it follows from (2.1) and the

convexity of DF (a, b) and A that

1

η
(x∗

1,−y∗) ∈ N(Gr(F ), (a, b)) ∩
((

η + 1

η
BX∗

)
×BY ∗

)

= N(Gr(DF (a, b)), (0, 0)) ∩
((

η + 1

η
BX∗

)
×BY ∗

)
= ∂d‖·‖η

(·,Gr(DF (a, b)))(0, 0)

and

1

η
x∗

2 ∈ N(A, a) ∩BX∗ = N(T (A, a), 0) ∩BX∗ = ∂d(·, T (A, a))(0).
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Therefore,

1

η
〈x∗

1, x〉 ≤ d‖·‖η
((x, 0),Gr(DF (a, b)) ≤ d(0, DF (a, b)(x))

and 1
η 〈x∗

2, x〉 ≤ d(x, T (A, a)). Noting that 〈x∗, u〉 = 0, it follows from (3.13) that

β‖u− x‖
η

≤ d(0, DF (a, b)(x)) + d(x, T (A, a)).

Therefore, βd(x,T (S,a))
η ≤ d(0, DF (a, b)(x)) + d(x, T (A, a)). Letting β → 1, one has

d(x, T (S, a)) ≤ η(d(0, DF (a, b)(x)) + d(x, T (A, a))).

This contradicts τ2 = +∞. Hence, the proof is completed.
Let φ : X → R ∪ {+∞} be a proper lower semicontinuous convex function.

Consider the special case when A = X and F (x) = [φ(x), +∞) for all x ∈ X. In this
case, N(A, x) = {0} for any x ∈ A. For a ∈ dom(φ), let ∂∞φ(a) denote the singular
subdifferential of φ at a, namely ∂∞φ(a) = D∗F (a, φ(a))(0). It is easy to verify from
the convexity of φ that dom(D∗F (a, φ(a))) ⊂ R+. Thus, noting that

D∗F (a, φ(a))(1) = ∂φ(a) and ∂φ(a) = ∂φ(a) + ∂∞φ(a)

and adopting the convention that R+∂φ(a) and [0, 1]∂φ(a) are {0} if ∂φ(a) = ∅, one
has

D∗F (a, φ(a))(R) = D∗F (a, φ(a))(0)
⋃

D∗F (a, φ(a))(R+ \ {0})

= D∗F (a, φ(a))(0)
⋃

R+D
∗F (a, φ(a))(1)

= ∂∞φ(a) + R+∂φ(a)

and

D∗F (a, φ(a))([−1, 1]) = ∂∞φ(a) + [0, 1]∂φ(a).

Therefore, our definitions of the BCQ and strong BCQ for generalized equations are,
respectively, natural generalizations of the BCQ and strong BCQ of a convex inequal-
ity system (cf. [18, 19, 20, 36]). Thus, Theorems 3.1 and 3.3 extend Theorems 2.2
and 2.3 in [36] from the setting of a convex inequality to that of a convex generalized
equation with constraint.

Since the strong BCQ implies the BCQ, the following proposition shows that the
converse also holds in some interesting cases.

Proposition 3.4. Let a ∈ S and suppose that N(S, a) is a polyhedron in a finite
dimensional subspace of X∗. Then (GEC) has the BCQ at a if and only if it has the
strong BCQ at a.

Proof. We need only show the necessity part. Suppose that (GEC) has the BCQ
at a. It suffices to show that there exists τ > 0 such that

(3.14) N(S, a) ∩BX∗ ⊂ τ(D∗F (a, b)(BY ∗) + N(A, a) ∩BX∗).

Let E be a finite dimensional subspace of X∗ such that N(S, a) ⊂ E. Let

L := N(S, a) ∩ −N(S, a),
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namely L is the largest subspace contained in N(S, a). Take a subspace L⊥ of E such
that

(3.15) L ∩ L⊥ = {0} and E = L + L⊥.

Since N(S, a) is a polyhedral cone in E, by [31, Theorem 19.1] there exists a polyhe-
dron cone C ⊂ L⊥ containing no lines such that

(3.16) N(S, a) = C + L.

On the other hand, dim(E) < ∞ and (3.15) imply that there exists δ ∈ (0, +∞) such
that (C + L) ∩BX∗ ⊂ δ(C ∩BX∗ + L ∩BX∗). It follows from (3.16) that

(3.17) N(S, a) ∩BX∗ ⊂ δ(C ∩BX∗ + L ∩BX∗).

Since L is a finite dimensional space, there exist l1, . . . , lm ∈ L such that

(3.18) BX∗ ∩ L ⊂ co(l1, . . . , lm).

Take c1, . . . , cn ∈ C such that C = R+co(c1, . . . , cn) and 0 �∈ co(c1, . . . , cn) (because C
is a finite dimensional polyhedron cone containing no lines). Without loss of generality,
we assume that co(c1, . . . , cn) ∩BX∗ = ∅. We note that

(3.19) C ∩BX∗ ⊂ co(0, c1, . . . , cn).

By (3.16) and the BCQ assumption, there exist

{y∗1 , . . . , y∗n, ỹ∗1 , . . . , ỹ∗m} ⊂ Y ∗ and {a∗1, . . . , a∗n, ã∗1, . . . , ã∗m} ⊂ N(A, a)

such that

ci ∈ D∗F (a, b)(y∗i ) + a∗i , 1 ≤ i ≤ n and lj ∈ D∗F (a, b)(ỹ∗j ) + ã∗j , 1 ≤ j ≤ m.

Let κ := max1≤i≤n,1≤j≤m ‖y∗i ‖+‖a∗i ‖+‖ỹ∗j ‖+‖ã∗j‖. It follows from (3.18) and (3.19)
that

C ∩BX∗ + L ∩BX∗ ⊂ κ(D∗F (a, b)(BY ∗) + N(A, a) ∩BX∗).

This and (3.17) imply that (3.14) holds with τ = δκ.
Corollary 3.5. Let f1, . . . , fn : X → R∪{+∞} be proper lower semicontinuous

convex functions and consider generalized equation (GEC) with A = X, Y = Rn,
b = (b1, . . . , bn) ∈ Rn, and F being defined by

F (x) = (f1(x), . . . , fn(x)) + Rn
+ ∀x ∈ X.

Suppose that each fi is differentiable at a ∈ S. Then, for the said generalized equation,
the BCQ and strong BCQ are equivalent at a.

Proof. In view of Proposition 3.4, it suffices to show that

(3.20) D∗F (a, b)(Rn) = R+co{f ′
i(a) : i ∈ J(a)},

where J(a) := {1 ≤ i ≤ n : fi(a) = bi}. To do this, we first note that dom(D∗F (a, b))
= Rn

+ (because each convex function fi is differentiable at a). Let (r1, . . . , rn) ∈
Rn

+ \ {0} and x∗ ∈ D∗F (a, b)(r1, . . . , rn). Then

〈x∗, x〉 −
n∑

i=1

ri(fi(x) + ti) ≤ 〈x∗, a〉 −
n∑

i=1

ribi
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for any x ∈ X and (t1, . . . , tn) ∈ Rn
+. Noting that fi(a) = bi for any i ∈ J(a),

fi(a) < bi for any i �∈ J(a), and a ∈ int(dom(fi)) for 1 ≤ i ≤ n, it follows that ri = 0
for any i �∈ J(a) and

〈x∗, x− a〉 ≤
∑

i∈J(a)

rif(x) −
∑

i∈J(a)

rifi(a)

for all x ∈ X. This implies that x∗ =
∑

i∈J(a) rif
′
i(a). Thus, x∗ ∈ R+co{f ′

i(a) : i ∈
J(a)}. This shows that D∗F (a, b)(Rn) ⊂ R+co{f ′

i(a) : i ∈ J(a)}. Conversely, let
x∗ ∈ R+co{f ′

i(a) : i ∈ J(a)}. Then there exists (c1, . . . , cn) ∈ Rn
+ with ci = 0 for all

i �∈ J(a) such that x∗ =
∑n

i=1 cif
′
i(a). Noting that for each i,

〈cif ′
i(a), x− a〉 ≤ ci(fi(x) + ti − bi) ∀x ∈ X and ∀ti ≥ 0,

it follows that x∗ ∈ D∗F (a, b)(c1, . . . , cn). This shows that

R+co{f ′
i(a) : i ∈ J(a)} ⊂ D∗F (a, b)(Rn).

Hence, (3.20) holds.

4. Calmness of convex multifunctions. Throughout this section, let M :
Y → 2X be a closed convex multifunction and A be a closed convex subset of X. Let
ȳ ∈ Y and x̄ ∈ M(ȳ) ∩A.

Recall (cf. [8, 9, 10] and [15]) that M is said to be calm at (ȳ, x̄) if there exists a
constant �L > 0 such that

(4.1) d(x,M(ȳ)) ≤ L‖y − ȳ‖ ∀(y, x) ∈ Gr(M) close to (ȳ, x̄).

More generally, M is said to be calm at (ȳ, x̄) over A if there exists a constant
�L > 0 such that

(4.2) d(x,M(ȳ) ∩A) ≤ L(‖y − ȳ‖ + d(x,A)) ∀(y, x) ∈ Gr(M) close to (ȳ, x̄).

Let M̃ : Y ×X → 2X be defined by

M̃(y, z) = M(y) ∩ (−z + A) for any (y, z) ∈ Y ×X

and Y ×X be equipped with the norm ‖(y, z)‖ = ‖y‖ + ‖z‖ for any (y, z) ∈ Y ×X.
Then, as observed by one of the referees, (4.2) holds if and only if

d(x, M̃(ȳ, 0)) ≤ L‖(y, z) − (ȳ, 0)‖ ∀(y, z;x) ∈ Gr(M̃) close to (ȳ, 0; x̄).

Hence, M is calm at (ȳ, x̄) over A if and only if M̃ is calm at (ȳ, 0; x̄). A more general
intersection map has been studied by Klatte and Kummer [16].

Since d(x, ∅) = +∞ and d(x,M(ȳ)) ≤ ‖x− x̄‖, it is easy to verify that (4.2) holds
if and only if

(4.3) d(x,M(ȳ) ∩A) ≤ L(d(ȳ,M−1(x)) + d(x,A)) ∀x close to x̄.

Letting b = ȳ and F (x) = M−1(x), it follows that (GEC) is metrically subregular at
x̄ if and only if M is calm at (ȳ, x̄) over A. Thus, by Theorems 3.1 and 3.3, we have
the following results.

Theorem 4.1. The following statements are equivalent.
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(i) M is calm at (ȳ, x̄) over A.
(ii) There exist τ, δ ∈ (0, +∞) such that for all u ∈ B(x̄, δ) ∩ bd(M(ȳ) ∩A),

N(M(ȳ) ∩A, u) ∩BX∗ ⊂ τ(D∗M−1(x̄, ȳ)(BY ∗) + N(A, u) ∩BX∗).

(iii) There exists δ ∈ (0, +∞) such that for all u ∈ bd(M(ȳ) ∩A) close to x̄, the
tangent derivative DM(ȳ, u) is calm at (0, 0) over T (A, u) with the same constant.

Using Theorem 4.1, we can establish some characterization of the strong calmness:
M is called strongly calm at (ȳ, x̄) over A if there exists L ∈ [0, +∞) such that

(4.4) ‖x− x̄‖ ≤ L(‖y − ȳ‖ + d(x,A)) ∀(y, x) ∈ Gr(M) close to (ȳ, x̄).

When A = X, the strong calmness means the local upper Lipschitz property presented
in [15, p. 6]. From the convexity of M(ȳ) ∩ A, it is clear that M is strongly calm at
(ȳ, x̄) over A if and only if M(ȳ) ∩A = {x̄} and M is calm at (ȳ, x̄) over A.

Corollary 4.2. The following statements are equivalent.
(i) M is strongly calm at (ȳ, x̄) over A.
(ii) There exists L ∈ [0, +∞) such that

‖x− x̄‖ ≤ L(‖y − ȳ‖ + d(x,A)) ∀(y, x) ∈ Gr(M).

(iii) The tangent derivative DM(ȳ, x̄) is strongly calm at (0, 0) over T (A, x̄).
(iv) 0 ∈ int(D∗M−1(x̄, ȳ)(Y ∗) + N(A, x̄)).
(v) There exists r > 0 such that

rBX∗ ⊂ D∗M−1(x̄, ȳ)(BY ∗) + N(A, x̄) ∩BX∗ .

Proof. First, we show that (i)⇔(v). By the evident fact N({x̄}, x̄) = X∗ and
by Theorem 4.1, we need only show that (v)⇒M(ȳ) ∩ A = {x̄}. Take an arbitrary
x ∈ M(ȳ) ∩ A and x∗ ∈ BX∗ such that ‖x − x̄‖ = 〈x∗, x − x̄〉. By (v), there exist
y∗ ∈ BY ∗ , x∗

1 ∈ D∗M−1(x̄, ȳ)(y∗) and x∗
2 ∈ N(A, x̄) ∩ BX∗ such that rx∗ = x∗

1 + x∗
2.

Hence,

r‖x− x̄‖ = 〈x∗
1, x− x̄〉 + 〈x∗

2, x− x̄〉.

Noting that 〈x∗
1, x−x̄〉 ≤ 〈y∗, ȳ−ȳ〉 = 0 and 〈x∗

2, x−x̄〉 ≤ 0, it follows that r‖x−x̄‖ ≤ 0
for any x ∈ M(ȳ) ∩A. This shows that M(ȳ) ∩A = {x̄}.

Noting that D∗M−1(x̄, ȳ) = D∗(DM(ȳ, x̄))−1(0, 0), (iii)⇔(v) is immediate from
(i)⇔(v).

It is clear that (ii)=⇒(i) and (v)=⇒(iv).
Suppose that (i) holds. Then there exists L ∈ [0, +∞) such that (4.4) holds. Let

(y, x) be an arbitrary element in Gr(M) and t ∈ (0, 1) be small enough such that
(ty + (1− t)ȳ, tx+ (1− t)x̄) close enough to (ȳ, x̄). By (4.4) and the convexity of M ,
one has

‖tx + (1 − t)x̄− x̄‖ ≤ L(‖ty + (1 − t)ȳ − ȳ‖ + d(tx + (1 − t)x̄, A)).

It follows from the convexity of A and x̄ ∈ A that ‖x − x̄‖ ≤ L(‖y − ȳ‖ + d(x,A)).
This shows that (i)=⇒(ii).

It remains to show that (iv)⇒(v). Suppose that (iv) holds. Since N(A, x) and
D∗M−1(x, ȳ)(Y ∗) are cones,

X∗ = D∗M−1(x̄, ȳ)(Y ∗) + N(A, x̄) =

∞⋃
n=1

(D∗M−1(x̄, ȳ)(nBY ∗) + N(A, x̄) ∩ nBX∗).
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Noting that, by the Alaoglu theorem, each set D∗M−1(x̄, ȳ)(nBY ∗)+N(A, x̄)∩nBX∗

is weak∗ closed, it follows from the well known Baire category theorem and (iv) that

0 ∈ int(D∗M−1(x̄, ȳ)(BY ∗) + N(A, x̄) ∩BX∗).

Hence there exists r > 0 such that (v) holds. Hence, the proof is completed.
Remark. In a recent paper [8], Henrion and Jourani considered the calmness of

the convex multifunction M0 of the following type:

(4.5) M0(y) = {x ∈ C : f(x) ≤ y} ∀y ∈ R,

where C is a closed convex subset of X and f : X → R ∪ {+∞} is a proper lower
semicontinuous convex function. In particular, as a main result, they established the
following result.

Theorem HJ (see [8, Theorem 3.3]). Let M0 be defined by (4.5). Then M0 is
calm at (0, x̄) ∈ Gr(M0) if one of the following conditions is satisfied:

(C1) f(x̄) < 0,
(C2) bd∂f(x̄) ∩ bdN(C, x̄) �= ∂f(x̄) ∩N(C, x̄),
(C3) bd∂f(x̄) ∩ bdN(C, x̄) = ∅ and (CD∗) (see [8] for the definition of condition

(CD∗)).
As observed by Henrion and Jourani [8], (C3)=⇒either (C2) or (C1) and

(C2) =⇒ int∂f(x̄) ∩ −N(C, x̄) �= ∅ or ∂f(x̄) ∩ −intN(C, x̄) �= ∅.

Considering that (C1)=⇒the calmness of M0 at (0, x̄) is an immediate consequence
of the Robinson–Ursescu theorem (cf. [29, 33]), the main part of Theorem HJ can be
rewritten as follows: M0 is calm at (0, x̄) ∈ Gr(M0) if

(4.6) int(∂f(x̄)) ∩ −N(C, x̄) �= ∅ or ∂f(x̄) ∩ −intN(C, x̄) �= ∅.

Let A = C, Y = R and M(y) = {x ∈ X : f(x) ≤ y} for all y ∈ Y . It is clear that
M0 is calm at (0, x̄) if M is calm at (0, x̄) over A. Since

∂f(x̄) = D∗M−1(x̄, f(x̄))(1) ⊂ D∗M−1(x̄, f(x̄))(Y ∗),

we see immediately that (iv) in Corollary 4.2 holds whenever (4.6) holds. On the other
hand, below is a simple example for which Corollary 4.2 is applicable but Theorem
HJ is not.

Let X = R2, C = R × {0}, x̄ = (0, 0), and f(x1, x2) = |x1| for all (x1, x2) ∈ R2.
Then (4.6) is not satisfied because

M0(0) = {x̄}, ∂f(x̄) = [−1, 1] × {0} and N(C, x̄) = {0} ×R.

However, Corollary 4.2 is applicable because (iv) holds as D∗M−1(x̄, f(x̄))(Y ∗) =
R× {0} and so D∗M−1(x̄, f(x̄))(Y ∗) + N(C, x̄) = R2.

The calmness modulus of M at (ȳ, x̄) is denoted by η(M ; ȳ, x̄) and is defined by

η(M ; ȳ, x̄) := inf{L ∈ (0, +∞) : (4.1) holds}.

As applications of Theorems 3.1 and 3.2, we establish formulas representing
η(M ; ȳ, x̄).

Theorem 4.3. η(M ; ȳ, x̄) = lim sup
u

bd(M(ȳ))−→ x̄
‖D∗M(ȳ, u)|−N(M(ȳ),u)‖−.
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Proof. Let F = M−1 and A = X. Since (4.2)⇔(4.3), η(M ; ȳ, x̄) = τ(F, x̄, ȳ;A).
By (3.6), it suffices to show that

(4.7) γ(F, u, ȳ;A) = ‖D∗M(ȳ, u)|−N(M(ȳ),u)‖− ∀u ∈ F−1(ȳ) = M(ȳ).

Let u ∈ F−1(ȳ) = M(ȳ). By definitions, it is clear that

x∗ ∈ D∗F (u, ȳ)(y∗) ⇐⇒ −y∗ ∈ D∗M(ȳ, u)(−x∗).

Let τ > γ(F, u, ȳ;A). Noting that N(A, u) = N(X,u) = {0}, one has

N(M(ȳ), u) ∩BX∗ ⊂ D∗F (u, ȳ)(τBY ∗).

Hence, for any x∗ ∈ N(M(ȳ), u) ∩ BX∗ there exists y∗ ∈ BY ∗ such that x∗ ∈
D∗F (u, ȳ)(τy∗), that is, −τy∗ ∈ D∗M(ȳ, u)(−x∗). It follows that

‖D∗M(ȳ, u)|−N(M(ȳ),u)‖− ≤ τ.

Therefore, ‖D∗M(ȳ, u)|−N(M(ȳ),u)‖− ≤ γ(F, u, ȳ;A). To prove the converse inequal-
ity, let τ > ‖D∗M(ȳ, u)|−N(M(ȳ),u)‖− and take x∗ ∈ N(F−1(ȳ), u) = N(M(ȳ), u).
Then, there exists y∗ ∈ D∗M(ȳ, u)(−x∗) such that ‖y∗‖ < τ ; this means x∗ ∈
D∗F (u, ȳ)(τBY ∗). Hence, N(F−1(ȳ), u) ∩ BX∗ ⊂ D∗F (u, ȳ)(τBY ∗). It follows that
γ(F, u, ȳ;A) ≤ τ . Therefore, γ(F, u, ȳ;A) ≤ ‖D∗M(ȳ, u)|−N(M(ȳ),u)‖−. This shows
that (4.7) holds.

Remark. In contrast to formula (1.4) of the modulus of the metric regularity,
η(M ; ȳ, x̄) is not necessarily equivalent to ‖D∗M(ȳ, x̄)|−N(M(ȳ),x̄)‖− even when Y =
R2 and X = R (cf. [36, p. 763, Example 2]). Nevertheless, the following theorem
shows an interesting case for which the equality holds.

Theorem 4.4. Suppose that there exist a cone C and a neighborhood V of x̄ such
that M(ȳ) ∩ V = (x̄ + C) ∩ V . Then η(M ; ȳ, x̄) = ‖D∗M(ȳ, x̄)|−N(M(ȳ),x̄)‖−.

The proof of Theorem 4.4 is similar to that of Theorem 4.3 but using Theorem
3.2 in place of Theorem 3.1.

5. Recession core and global metric subregularity. Let K be a closed
convex subset of X.

Recall that e ∈ K is called an extreme point of K if x1 = x2 whenever e =
tx1 + (1 − t)x2 with x1, x2 ∈ K and t ∈ (0, 1). We denote by ext(K) the set of all
extreme points of K (usually ext(K) is called the extreme boundary of K).

Let K∞ denote the recession cone of K, that is,

K∞ := {h ∈ X : K + th ⊂ K ∀t ≥ 0}.

It is known that K∞ is a closed convex cone, and

K∞ = {h ∈ X : x + R+h ⊂ K for some x ∈ K}
= {h ∈ X : ∃xn ∈ K and ∃tn > 0 such that tn → 0 and tnxn → h}.

Clearly, K + K∞ = K. It is well known that if K is a closed convex subset of Rn

containing no lines, then K = co(ext(K)) + K∞.
As a generalization of co(ext(K)), the authors [28] introduced the concept of

recession property: a convex subset A of K is said to have the recession property if
K = A + K∞.
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Simplifying the recession property, we can now give a generalization of ext(K): a
subset C of K is said to be a recession core of K if

(5.1) K = co(C) + K∞.

Thus, C is a recession core of K if and only if co(C) is a subset of K with recession
property.

Let “≤K∞” denote the order induced by the cone K∞, that is, x1 ≤K∞ x2 if and
only if x2 − x1 ∈ K∞.

Let A be a subset of X. We say that a ∈ A is a minimal element of A with respect
to “≤K∞” if a ≤K∞ x whenever x ∈ A and x ≤K∞ a. We denote by Min(A,K∞) the
set of all minimal elements of A.

Let

Lin(K) := K∞ ∩ −K∞.

Then

Lin(K) = {h ∈ X : K + Rh ⊂ K} = {h ∈ X : x + Rh ⊂ K for some x ∈ K}.

Moreover, K = K + Lin(K) and L ⊂ Lin(K) whenever L is a subspace of X such
that K = K + L. Therefore, K contains no lines if and only if Lin(K) = {0}.

Proposition 5.1. Let X be a reflexive Banach space and K a closed convex
nonempty subset of X. Suppose that there exists a closed convex bounded set Θ such
that

(5.2) Lin(K) ∩ Θ = ∅ and K∞ = Lin(K) + R+Θ.

Then

(5.3) K = Min(K,K∞) + K∞.

In particular, Min(K,K∞) is a recession core of K.
Proof. By the reflexivity of X, the bounded closed convex set Θ is weakly compact.

Letting K0 := R+Θ, it follows that K0 is a closed convex pointed cone. Let x be an
arbitrary point in K. We claim that K ∩ (x−K0) is bounded. If this is not the case,
then there exist a sequence {sn} in R+ and a sequence {θn} in Θ such that sn → ∞
and x− snθn ∈ K for all n. Thus, for any t > 0,

x− tθn =

(
1 − t

sn

)
x +

t

sn
(x− snθn) ∈ K ∀n large enough.

By the weak compactness of Θ, without loss of generality we can assume that {θn}
converges weakly to some θ ∈ Θ. Therefore, x − tθ ∈ K for any t ≥ 0. This
implies that −θ ∈ K∞. On the other hand, by the second equality in (5.2), one has
θ ∈ K∞ and so θ ∈ Lin(K). This contradicts the first equality in (5.2) and therefore
K ∩ (x − K0) must be bounded (and hence weakly compact). It follows from [14,
Corollary 3.1.16]) that Min(K ∩ (x−K0),K0) �= ∅. Take x′ ∈ Min(K ∩ (x−K0),K0).
Then x′ ∈ Min(K,K0) and x ∈ x′ +K0. Hence K ⊂ Min(K,K0) +K0. Now to show
(5.3), it suffices to show that Min(K,K0) ⊂ Min(K,K∞). Let z ∈ Min(K,K0) and
y ∈ K with y ≤K∞ z. Then z− y ∈ K∞. By the second equality of (5.2), there exists
e ∈ Lin(K) such that z − y − e ∈ K0, that is, y + e ≤K0 z. Noting that y + e ∈ K,
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one has that y + e− z ∈ K0 and hence y − z ∈ Lin(K) +K0 = K∞. This shows that
z ∈ Min(K,K∞). Hence, the proof is completed.

In the case when X is finite dimensional, the assumption made in (5.2) automat-
ically holds (by K = Lin(K) + C and Klee’s Theorem (cf. [14]), where C is a closed
convex pointed cone). The following example shows that the reflexivity of X cannot
be removed in Proposition 5.1.

Example. Let X = l1 and K = {x = (t1, t2, · · · ) ∈ l1 : tn ≥ −n for all n}. It is
easy to verify that Lin(K) = {0} and K∞ = {x = (t1, t2, · · · ) ∈ l1 : tn ≥ 0 for all n}.
Let Θ := {x = (t1, t2, · · · ) ∈ K∞ :

∑∞
n=1 tn = 1}. Then, Θ is a bounded closed

convex set, Lin(K) ∩ Θ = ∅ and K∞ = R+Θ. But Min(K,K∞) = ∅, and hence
K �= Min(K,K∞) +K∞. Indeed, let x = (t1, t2, · · · ) be any point in K. Noting that∑∞

n=1 |tn| < ∞, there exists a natural number n0 such that |tn| < n0 for all n ≥ n0.
Take x0 = (s1, s2, · · · ) to satisfy sn = tn for any n �= n0 and sn0

= −n0. It is clear
that x0 ∈ K \ {x} and x − x0 ∈ K∞. It follows that x �∈ Min(K,K∞). This shows
that Min(K,K∞) = ∅.

It is clear that K has no extreme points if K contains lines. This motivates us
to introduce a new concept—what we shall refer to as “generalized extreme points.”
Let X be a Hilbert space. For a closed convex subset K of X, let

Lin(K)⊥ := {x ∈ X : 〈x, y〉 = 0 ∀y ∈ Lin(K)}.

We say that e is a generalized extreme point of K if e ∈ K ∩ Lin(K)⊥ and

(5.4) x1, x2 ∈ K and e =
x1 + x2

2
=⇒ x1 − x2 ∈ Lin(K).

We denote by extE(K) the set of all generalized extreme points of K. Clearly,
extE(K) = ext(K) if K contains no lines (i.e., Lin(K) = {0}). Moreover, one has
that

(5.5) extE(K) ⊂ Min(K,K∞).

To see this, let e ∈ extE(K) and x ∈ K with x ≤K∞ e. Then e− x ∈ K∞ and hence

2e−x = e+(e−x) ∈ K. Since e = x+(2e−x)
2 , it follows that 2(e−x) ∈ Lin(K), which

means x − e ∈ Lin(K) ⊂ K∞. Hence e ≤K∞ x. This shows that e ∈ Min(K,K∞).
Thus (5.5) is true.

Proposition 5.2. Let X be a Hilbert space and K a closed convex subset of X.
Then

(5.6) extE(K) = ext(K ∩ Lin(K)⊥).

Proof. By definition it is clear that extE(K) ⊂ ext(K ∩ Lin(K)⊥). Conversely,
let e ∈ ext(K ∩ Lin(K)⊥) and x1, x2 ∈ K satisfy e = x1+x2

2 . Noting that for each
x ∈ X there exists a unique pair (u, v) ∈ Lin(K) × Lin(K)⊥ such that x = u + v,
take (u1, v1), (u2, v2) ∈ Lin(K) × Lin(K)⊥ such that x1 = u1 + v1 and x2 = u2 + v2.
Then e = u1+u2

2 + v1+v2

2 . It follows from e ∈ ext(K ∩ Lin(K)⊥) that u1 + u2 = 0 and
e = v1 = v2. Thus, x1 − x2 = u1 − u2 ∈ Lin(K) and hence e ∈ extE(K). This shows
that extE(K) ⊃ ext(K ∩ Lin(K)⊥) and (5.6) is proved.

Proposition 5.3. Let K be a closed convex subset of a Hilbert space X and
∏

be the project operator to Lin(K)⊥. Suppose that C is a recession core of K. Then
extE(K) ⊂

∏
(C).
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Proof. Let e ∈ extE(K). Then, by (5.1) there exist x1, . . . , xn ∈ C, t1, . . . , tn ∈
[0, 1] with

∑n
i=1 ti = 1, and h ∈ K∞ such that e =

∑n
i=1 tixi + h. Then,

e =

(
n∑

i=1

tixi + 1
2h

)
+

(
n∑

i=1

tixi + 3
2h

)
2

.

Thus, by (5.4), one has h ∈ Lin(K). It follows from the linearity of
∏

that

e =
∏

(e) =
∏(

n∑
i=1

tixi + h

)
=

n∑
i=1

ti
∏

(xi) ∈
∏

(C).

This shows that extE(K) ⊂
∏

(C).
The following proposition shows that extE(K) is a recession core of K when X

is finite dimensional.
Proposition 5.4. Let K be a closed convex nonempty subset of Rn. Then

(5.7) K = co(extE(K)) + K∞.

Proof. Let h ∈ Rn be such that x + Rh ⊂ K ∩ Lin(K)⊥ for some x ∈ Rn.
Then h ∈ Lin(K), and hence 〈x + th, h〉 = 0 for all t ∈ R. It follows that h = 0.
Therefore K ∩ Lin(K)⊥ is a closed convex subset containing no lines. It follows from
[31, Theorem 18.5] that

K ∩ Lin(K)⊥ = co(ext(K ∩ Lin(K)⊥)) + (K ∩ Lin(K)⊥)∞.

This and Proposition 5.2 imply that K ∩Lin(K)⊥ ⊂ co(extE(K))+K∞. Noting that
K∞ + Lin(K) = K∞, one then has

(5.8) K ∩ Lin(K)⊥ + Lin(K) ⊂ co(extE(K)) + K∞.

Let x ∈ K and take x1 ∈ Lin(K) and x2 ∈ Lin(K)⊥ such that x = x1+x2. Hence x2 ∈
x + Lin(K) ⊂ K and so x2 ∈ K ∩ Lin(K)⊥. Therefore, K ⊂ Lin(K) + K ∩ Lin(K)⊥.
It follows from (5.8) that

K ⊂ co(extE(K)) + K∞.

Thus (5.7) holds as the converse inclusion is obvious.
Remark. Proposition 5.4 shows that extE(K) is a recession core of K and has the

minimality property “up to Lin(K)” in the sense as indicated in Proposition 5.3. In
particular, if K contains no lines, then extE(K) = ext(K) is the least recession core
of K.

In terms of recession cores and the BCQs, we now study the global metric sub-
regularity of generalized equation (GEC). Hoffman, in his pioneering work, proved
that (GEC) has an error bound (or equivalently, is globally metrically subregular) if
A = X = Rn and F (x) := Qx+Rn

+ for all x ∈ Rn, where Q is an m× n matrix. The
research on error bounds, especially for inequality systems, has attracted the interest
of many researchers and there are a vast number of publications reporting progress
in this area. For more details, see [18, 19, 21, 27, 28, 33, 34] and a special issue
of Mathematical Programming (Vol. 88, No. 2, 2000). In what follows, we assume
that X,Y are general Banach spaces (except when explicitly stated otherwise), F is
a closed convex multifunction from X to Y , and A is a closed convex subset of X. In



METRIC SUBREGULARITY AND CONSTRAINT QUALIFICATIONS 455

the case when A = X, while the equivalence of (iv) with (v) in the following result is
[28, Theorem 3.1], we can now sharpen the result by considering recession cores of S.
In what follows, we assume that the solution set S is nonempty.

Theorem 5.5. Let C be a recession core of the solution set S of (GEC) and
τ ∈ [0, +∞). Then the following statements are equivalent.

(i) (GEC) has the strong BCQ at each x ∈ C with the constant τ .
(ii) (GEC) has the strong BCQ at each x ∈ S with the constant τ .
(iii) (GEC) is metrically subregular at each point in C with the constant τ .
(iv) (GEC) is metrically subregular at each point in S with the constant τ .
(v) (GEC) is globally metrically subregular with the constant τ .
Proof. (i)⇒(ii) Let x ∈ S. Since C is a recession cone of S, there exist x1, . . . , xn ∈

C, t1, . . . , tn ∈ [0, +∞), and e ∈ S∞ such that

(5.9)

n∑
i=1

ti = 1 and x =

n∑
i=1

tixi + e.

Let x∗ ∈ N(S, x) ∩ BX∗ . Then 〈x∗,
∑n

i=1 tixi + e〉 = max{〈x∗, z〉 : z ∈ S}. Noting
that

∑n
i=1 tixi + R+e ⊂ S, it follows that

〈x∗, e〉 = 0 and

〈
x∗,

n∑
i=1

tixi

〉
= max{〈x∗, z〉 : z ∈ S}.

This implies that for each integer i ∈ [1, n],

〈x∗, x〉 = 〈x∗, xi〉 = max{〈x∗, z〉 : z ∈ S},

and hence x∗ ∈ N(S, xi) ∩BX∗ . By (i), one has

x∗ ∈ τ(D∗F (xi, b)(BY ∗) + N(A, xi) ∩BX∗), i = 1, . . . , n.

It follows from Lemma 3.1 that x∗ ∈ τ(D∗F (x, b)(BY ∗)+N(A, x)∩BX∗). Therefore,

N(S, x) ∩BX∗ ⊂ τ(D∗F (x, b)(BY ∗) + N(A, x) ∩BX∗).

This shows that (ii) holds. (ii)⇒(i), (iv)⇒(iii), and (v)⇒(iv) are trivial. (iii)⇒(i) and
(ii)⇒(iv) are consequences of formula (3.6) in Remark 3.1. The proof of (iv)⇒(v) is
similar to that of [28, Theorem 3.1]. Hence, the proof is completed.

In the special case when A = X, Y = R, F (x) = [f(x), +∞) for all x ∈ X, and
b = inf{f(x) : x ∈ X} with f being a proper lower semicontinuous convex function
from X to R∪{+∞}, Burke and Deng [3, Theorem 2.3] proved that (GEC) is globally
τ -metrically subregular if and only if

N(S, z) ∩BX∗ ⊂ cl∗(∂f(z)) ∀z ∈ S.

Since extE(S) is a recession core of S if X = Rn, the following corollary is a
consequence of Theorem 5.5.

Corollary 5.6. Let X = Rn. Then (GEC) is globally metrically subregular if
and only if there exists τ ∈ (0, +∞) such that (GEC) has the strong BCQ at each
generalized extreme point of S with the constant τ .

Similar to the proof of the equivalent relation (i)⇔(ii) in Theorem 5.5, one can
prove the following result.
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Proposition 5.7. Let C be a recession core of S. Then (GEC) has the BCQ at
each point in C if and only if (GEC) has the BCQ at each point in S.

As in the finite dimensional case, let us say that a subset P of X is a polyhedron
if there exist x∗

n, . . . , x
∗
n ∈ X∗ and c1, . . . , cn ∈ R such that

P = {x ∈ X : 〈x∗
i , x〉 ≤ ci, i = 1, . . . , n}.

It is known that

(5.10) N(P, x) =

⎧⎨
⎩

∑
i∈I(x)

tix
∗
i : ti ≥ 0, i ∈ I(x)

⎫⎬
⎭ ∀x ∈ P,

where I(x) := {1 ≤ i ≤ n : 〈x∗
i , x〉 = ci}. We say that a multifunction F : X → 2Y

is polyhedral if its graph is a polyhedron in X × Y . If F is polyhedral, it is easy to
verify from (5.10) that

(5.11) N(F−1(b), x) = D∗F (x, b)(Y ∗) ∀x ∈ F−1(b).

Theorem 5.8. Let C be a recession core of the solution set S of (GEC). Suppose
that S is a polyhedron in X. Then (GEC) is globally metrically subregular if and only
if (GEC) has the BCQ at each point in C.

Proof. By Theorem 5.5, it suffices to prove the sufficiency. Suppose that (GEC)
has the BCQ at each point in C. Then, (GEC) has the BCQ at each point of S (by
Proposition 5.7). Since S is a polyhedron, there exist x∗

n, . . . , x
∗
n and c1, . . . , cn ∈ R

such that

S = {x ∈ X : 〈x∗
i , x〉 ≤ ci, i = 1, . . . , n}.

Let X1 := {x ∈ X : 〈x∗
i , x〉 = 0, i = 1, . . . , n}. Then X1 is a closed subspace of

X with finite codimension. Thus, there exists a finite dimensional subspace X2 of X
such that X = X1 + X2 and X1 ∩X2 = {0}. Let

P := {z ∈ X2 : 〈x∗
i , z〉 ≤ ci, i = 1, . . . , n}.

It is easy to verify that S = P+X1 and P is a polyhedron containing no lines in X2. By
[31, Theorems 18.5 and 19.1], P = co(ext(P ))+P∞. Hence S = co(ext(P ))+P∞+X1.
Noting that P∞ + X1 ⊂ (S)∞, it follows that ext(P ) is a recession core of S. Let
e ∈ ext(P ). Then, by (5.10), N(S, e) is a polyhedron in a finite dimensional subspace
of X∗. It follows from Proposition 3.4 that there exists τe ∈ (0, +∞) such that
(GEC) has the strong BCQ with the constant τe. Do this for each e in ext(P ) and
let τ := max{τe : e ∈ ext(P )}. Then τ < +∞ because ext(P ) is a finite set (cf. [31,
Theorem 19.1]). Hence, (GEC) has the strong BCQ at each point of ext(P ) with the
constant τ . Since ext(P ) is a recession core of S, it follows from Theorem 5.5 that
(GEC) is globally metrically subregular. Hence, the proof is completed.

In view of the proof of Theorem 5.8, one sees that any polyhedron in a Banach
space has a recession core consisting of finitely many elements.

Robinson [30] studied the continuity properties of polyhedral multifunctions. In
particular, under the finite dimension assumption, he [30, Corollary] proved that if
the graph of F is the union of finitely many polyhedra and b ∈ F (X), then there
exists ε, τ ∈ [0, +∞) such that

d(x, F−1(b)) ≤ τd(b, F (x)) ∀x ∈ X with d(b, F (x)) < ε.
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This result can be regarded as a generalization of Hoffman’s classical error bound
theorem. In the setting of Theorem 5.8, F is not required to be polyhedral but
merely the solution set S is required to be polyhedral. When F is a convex polyhedral
multifunction and A = X, (5.11) implies that generalized equation (GEC) has the
BCQ at each x ∈ S = F−1(b). Hence, in this case, Theorem 5.8 improves the above
Robinson’s result. But, in the nonconvex case, one cannot use Theorem 5.8 to deduce
Robinson’s result.

Let Γ(X) denote the family of all functions f each of which satisfies the follow-
ing property: There exist x∗

i ∈ X∗ and continuous convex functions φi : R → R
with inft∈R φi(t) < 0 (1 ≤ i ≤ n ) such that f(x) = max1≤i≤n φi(〈x∗

i , x〉) for all
x ∈ X. By taking φi to be affine or quadratic convex functions, we see that Γ(X)
properly contains the family of all piecewise affine convex functions on X and so
the following corollary can be regarded as another generalization of Hoffman’s error
bound theorem.

Corollary 5.9. Let X be finite dimensional, A be a polyhedron in X, Y = R,
and b = 0. Suppose that there exists f ∈ Γ(X) such that F (x) = [f(x), +∞) for all
x ∈ X. Then (GEC) is globally metrically subregular.

Proof. Let x∗
i ∈ X∗ and φi : R → R be a continuous convex function with

inft∈R φi(t) < 0 (1 ≤ i ≤ n) such that f(x) = max1≤i≤n φi(〈x∗
i , x〉) for all x ∈ X. Let

Pi = {x ∈ X : 〈x∗
i , x〉 ∈ φ−1

i (−∞, 0]}. Since each φ−1
i (−∞, 0] is an interval in R, Pi

is a polyhedron in X. Hence S =
⋂n

i=1 A ∩ Pi is a polyhedron. Let e ∈ extE(S) and
I(e) := {1 ≤ i ≤ n : φi(〈x∗

i , e〉) = f(e)}. Then

(5.12) N(S, e) = N(A, e) +

n∑
i=1

N(Pi, e) = N(A, e) +
∑

i∈I(e)

N(Pi, e).

Let i ∈ I(e). Then, φi(〈xi, e〉) = f(e) = 0 (because extE(S) ⊂ bd(S)). It follows from
inft∈R φi(t) < 0 that 0 �∈ ∂φi(〈x∗

i , e〉). By the definition of Pi, there exists e∗i ∈ X∗

such that R+∂φi(〈x∗
i , e〉)x∗

i ⊂ N(Pi, e) = R+e
∗
i . Hence, N(Pi, e) = R+∂φi(〈x∗

i , e〉)x∗
i

when x∗
i �= 0. Noting that x∗

i = 0 implies that N(Pi, e) = N(X, e) = {0}, it follows
from (5.12) that

(5.13) N(S, e) = N(A, e) +
∑

i∈I(e)

R+∂φi(〈x∗
i , e〉)x∗

i .

On the other hand, by the definition of F , it is easy to verify that

D∗F (e, 0)(R) = D∗F (e, 0)(R+) = R+co

⎛
⎝ ⋃

i∈I(e)

∂φi(〈x∗
i , e〉)x∗

i

⎞
⎠ .

Since D∗F (e, 0)(R+) is a convex cone, D∗F (e, 0)(R) =
∑

i∈I(e) R+∂φi(〈x∗
i , e〉)x∗

i .

This and (5.13) implies that (GEC) has the BCQ at e. It follows from Proposition
5.4 and Theorem 5.8 that (GEC) is globally metrically subregular. The proof is
completed.

Let X = R and f(x) = max{(x − 1)2 − 1, (x + 1)2 − 1} for all x ∈ R. Then
f ∈ Γ(R) is not a piecewise affine function and the inequality f(x) ≤ 0 does not
satisfy the Slater condition. Examples of this kind provide some interesting cases
covered by Corollary 5.9 but neither by Hoffman’s error bound theorem nor by the
Robinson–Ursescu theorem.
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Remark. Let M : Y → 2X be a closed convex multifunction and with (ȳ, x̄) ∈
Gr(M). We say that M is globally calm at ȳ over A if there exists τ ∈ (0, +∞) such
that

d(x,M(ȳ) ∩A) ≤ τ(‖y − ȳ‖ + d(x,A)) ∀(x, y) ∈ Gr(M).

Let C be a recession core of M(ȳ) ∩A. Theorem 5.5 implies that M is globally calm
at ȳ over A if and only if there exists τ ∈ (0, +∞) such that

N(M(ȳ) ∩A, u) ∩BX∗ ⊂ τ(D∗M−1(u, ȳ)(BY ∗) + N(A, u) ∩BX∗) ∀u ∈ C.

In the case when M(ȳ) ∩ A is a polyhedron, Theorem 5.8 implies that M is globally
calm at ȳ over A if and only if

N(M(ȳ) ∩A, u) = D∗M−1(u, ȳ)(Y ∗) + N(A, u) ∀u ∈ C.

To end this paper, we provide a procedure to find the generalized extreme points
of a polyhedron in a finite dimensional space. Let a1, . . . , am ∈ Rn, c1, . . . , cm ∈ R,
and let P denote the polyhedron determined by ai and ci (i = 1, . . . ,m), that is,

P = {x ∈ Rn : 〈ai, x〉 ≤ ci, i = 1, . . . ,m}.

For convenience, let I := {1, . . . ,m} and I(x) = {i ∈ I : 〈ai, x〉 = ci} for x ∈ P . Let
M(I) denote the family of all subsets D of I with the property that {ai : i ∈ D} is
a maximal linearly independent subset of {ai : i ∈ I}. Thus elements of M(I) can
be obtained by the Gram–Schmidt process. For each D ∈ M(I), the linear equation
system ∑

j∈D

〈ai, aj〉tj = ci ∀i ∈ D

has a unique solution which will be denoted by (t̄j)j∈D; we shall also write eD for∑
j∈D t̄jaj . Let

E(I) = {D ∈ M(I) : 〈ai, eD〉 ≤ ci, i ∈ I \D}.

Theorem 5.10. extE(P ) = {eD : D ∈ E(I)}.
Proof. Note that Lin(P ) = {x ∈ Rn : 〈ai, x〉 = 0, i ∈ I}. Hence,

(5.14) Lin(P )⊥ = span{ai : i ∈ I} = span{ai : i ∈ D} ∀D ∈ M(I),

where spanA denotes the linear hull of A. Let e ∈ extE(P ) and pick a D0 ⊂ I(e)
such that {ai : i ∈ D0} is a maximal linearly independent subset of {ai : i ∈ I(e)}.
We claim that D0 ∈ M(I). Indeed, if this is not the case, then span{ai : i ∈ I(e)}
is a proper subspace of span{ai : i ∈ I}. It follows from the first equality of (5.14)
that there exists h ∈ Lin(P )⊥ \ {0} such that 〈ai, h〉 = 0 for all i ∈ I(e). Since
〈ai, e〉 < ci for all i ∈ I \ I(e), there exists ε > 0 small enough such that e± εh ∈ P .

Since e = e+εh+(e−εh)
2 , it follows from (5.4) that 2εh ∈ Lin(P ). This contradicts

h ∈ Lin(P )⊥ \{0}. Hence D0 ∈ M(I). Noting that e ∈ Lin(P )⊥ (by Proposition 5.2),
it follows from (5.14) that there exists (t̄j)j∈D0 ∈ R|D0| such that e =

∑
j∈D0

t̄jaj ,
where |D0| denotes the number of elements of D0. It follows from e ∈ P and D0 ⊂ I(e)
that D0 ∈ E(I) and e = eD0 . Therefore, extE(P ) ⊂ {eD : D ∈ E(I)}. It remains
to be seen whether {eD : D ∈ E(I)} ⊂ extE(P ). To do this, let D ∈ E(I). Then
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eD ∈ P ∩ Lin(P )⊥ (by (5.14) and the definition of eD). Let x1, x1 ∈ P satisfy
eD = x1+x2

2 . It follows that 〈ai, x1〉 = 〈ai, x2〉 = ci for all i ∈ D and so 〈ai, x1−x2〉 = 0
for all i ∈ D. Since {ai : i ∈ D} is a maximal linearly independent subset of
{ai : i ∈ I}, 〈ai, x1 − x2〉 = 0 for all i ∈ I. Hence x1 − x2 ∈ Lin(P ). This shows that
eD ∈ extE(P ). Hence, the proof is completed.
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SOME GLOBAL UNIQUENESS AND SOLVABILITY RESULTS
FOR LINEAR COMPLEMENTARITY PROBLEMS

OVER SYMMETRIC CONES∗
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Abstract. This article deals with linear complementarity problems over symmetric cones. Our
objective here is to characterize global uniqueness and solvability properties for linear transformations
that leave the symmetric cone invariant. Specifically, we show that, for algebra automorphisms on
the Lorentz space Ln and for quadratic representations on any Euclidean Jordan algebra, global
uniqueness, global solvability, and the R0-properties are equivalent. We also show that for Lyapunov-
like transformations, the global uniqueness property is equivalent to the transformation being positive
stable and positive semidefinite.
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property, Q-property, GUS-property
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1. Introduction. Given a finite dimensional real inner product space H, a
closed convex set K in H, a continuous function f : K → H, and a vector q ∈ H, the
variational inequality problem VI(f,K, q) is to find an x∗ ∈ K such that

〈f(x∗) + q, x− x∗〉 ≥ 0 ∀ x ∈ K.

There is an extensive literature associated with this problem covering theory, appli-
cations, and computation of solutions; see, e.g., [7]. When K is a closed convex cone,
this problem reduces to the cone complementarity problem CP(f,K, q), which fur-
ther reduces to the linear complementarity problem LCP(f,K, q) when f is linear.
In particular, when H = Rn (with the usual inner product), f (= M) is linear, and
K = Rn

+, this reduces to the standard linear complementarity problem LCP(M,Rn
+, q)

[3].
An unsolved problem in the variational inequality theory is the characterization

of the global uniqueness property: Given H and K, find a necessary and sufficient
condition on f so that for all q ∈ H, VI(f,K, q) has a unique solution. This is related
to the question of global invertibility of the normal map F (x) := f(ΠK(x))+x−ΠK(x)
on H; see [7]. When K is polyhedral and f is linear, there is a well-known result of
Robinson [20] that describes the invertibility of this map in terms of the determinants
of a certain collection of matrices. This result, when specialized to the standard linear
complementarity problem, says that for a square real matrix M , the standard linear
complementarity problem LCP(M,Rn

+, q) has a unique solution for all q if and only
if M is a P-matrix (which means that all principal minors of M are positive). The
result of Robinson motivated researchers to consider the (more general) question of
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global invertibility of piecewise affine functions; see [24], [8] for necessary and sufficient
conditions.

Moving away from the polyhedral settings (where the underlying cone is the
nonnegative orthant in Rn) and inspired by the recent interest in conic programming,
various researchers have started looking at cone linear complementarity problems,
particularly on semidefinite and second-order cones, and more generally on symmetric
cones. While symmetric cones are, in general, nonpolyhedral, they have a lot of
structure. In spite of this, even in this special case (of a linear transformation on a
symmetric cone) the global uniqueness problem remains unsolved. At present, various
authors have studied this problem by restricting the symmetric cone and the linear
transformation to specific classes. Here are some such results:

(1) Given a matrix A ∈ Rn×n, consider the Lyapunov transformation LA defined
on the space Sn of all n× n real symmetric matrices by

LA(X) := AX + XAT .

Then it has been shown by Gowda and Song [10] that LA has the global uniqueness
property on the semidefinite cone Sn

+ (i.e., for all q ∈ Sn, LCP(LA,Sn
+, q) has a unique

solution) if and only if A is both positive stable (i.e., all of its eigenvalues have positive
real parts) and positive semidefinite.

(2) Given a matrix A ∈ Rn×n, define the multiplication transformation MA de-
fined on Sn by

MA(X) := AXAT .

Then it has been shown by Bhimasankaram et al. [2] and Gowda, Song, and Ravindran
[11] that MA has the global uniqueness property on the semidefinite cone if and only
if ±A is positive definite.

(3) On the Lorentz space Ln (see section 2 for the definition), consider the
quadratic representation Pa of an element a ∈ Ln:

Pa(x) := 2a ◦ (a ◦ x) − a2 ◦ x.

In this setting, Malik and Mohan [17] have shown that Pa has the global uniqueness
property on the Lorentz cone if and only if ±a is in the interior of that cone.

Another issue in the variational inequality/complementarity theory is the global
solvability: Given H and K, find a necessary and sufficient condition on f so that
VI(f,K, q) has a solution for all q ∈ H. We note that this remains unsolved even in
the setting of the standard linear complementarity problem. So, as in the uniqueness
issue, one has to work within a class of cones/transformations to get meaningful
results. Our motivation for this part comes from the following:

(a) For a nonnegative matrix M , Murty [18] has shown that M has the global
solvability property with respect to the nonnegative orthant Rn

+ (i.e., LCP(M,Rn
+, q)

has a solution for all q ∈ Rn) if and only if the diagonal of M is positive.
(b) The Lyapunov transformation LA (defined earlier) has the global solvability

property with respect to Sn
+ if and only if A is positive stable [10].

(c) For matrix A ∈ Rn×n, consider the Stein transformation SA defined on the
space Sn by

SA(X) := X −AXAT .

Then SA has the global solvability property on Sn
+ if and only if A is Schur stable

(that is, all eigenvalues of A lie in the open unit disk of the complex plane) [9].
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(d) Given a real matrix A, consider the multiplication transformation MA (defined
earlier) on Sn. In [21] [19], Sampangi Raman, has shown that when A is symmetric
MA has the global solvability property with respect to the semidefinite cone in Sn

+ if
and only if ±A is positive definite.

(e) In [17], Malik and Mohan have shown that Pa on Ln has the global solvability
property with respect to the Lorentz cone if and only if ±a is in the interior of the
Lorentz cone.

In keeping with the above global uniqueness/solvability issues, we consider linear
complementarity problems over symmetric cones in Euclidean Jordan algebras. With
the observation (elaborated in various sections of the paper) that all of the trans-
formations considered in items (1)–(3) and (a)–(e) either leave the symmetric cone
invariant or are related to one such, we characterize global uniqueness/solvability
properties for algebra automorphisms, quadratic representations, and Lyapunov-like
transformations.

Here is a brief description/outline of our paper. Let V be a Euclidean Jordan
algebra V with the corresponding symmetric cone K. For a linear transformation
L : V → V and a q ∈ V , we define the (cone) linear complementarity problem
LCP(L,K, q) as the problem of finding x ∈ V such that

x ∈ K, L(x) + q ∈ K, and 〈L(x) + q, x〉 = 0.

Given L, we consider the following statements:
(α) For all q ∈ V , LCP(L,K, q) has a unique solution.
(β) For all q ∈ V , LCP(L,K, q) has a solution.
(γ) LCP(L,K, 0) has zero as the only solution.
• In section 4, we show that for algebra automorphisms on Ln (these are invertible

linear transformations satisfying L(x ◦ y) = L(x) ◦ L(y) ∀ x, y) the above three
properties are equivalent; this result may be regarded as an analog of item (2) above
for algebra automorphisms on Ln.

• In section 5, we show that the above three properties are equivalent for any
quadratic representation (given by Pa(x) = 2a ◦ (a ◦ x) − a2 ◦ x) on any Euclidean
Jordan algebra, thereby extending Malik–Mohan’s result (items (3) and (e) above) to
arbitrary Euclidean Jordan algebras.

• In section 6, we show that if L is Lyapunov-like, that is, if it satisfies the
condition

x, y ∈ K, and 〈x, y〉 = 0 ⇒ 〈L(x), y〉 = 0,

then the global uniqueness property (α) holds if and only if L is positive stable and
positive semidefinite, thereby extending the result of item (1) above to general Eu-
clidean Jordan algebras.

2. Preliminaries.

2.1. Euclidean Jordan algebras. In this paper we deal with Euclidean Jordan
algebras. For the sake of completeness, we provide a short introduction (as in [22]);
for full details, see [6].

A Euclidean Jordan algebra is a triple (V, ◦, 〈·, ·〉), where (V, 〈·, ·〉) is a finite di-
mensional inner product space over R and (x, y) 
→ x ◦ y : V × V → V is a bilinear
mapping satisfying the following conditions:

(i) x ◦ y = y ◦ x for all x, y ∈ V ;
(ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ V , where x2 := x ◦ x; and
(iii) 〈x ◦ y, z〉 = 〈y, x ◦ z〉 for all x, y, z ∈ V.
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We also assume that there is an element e ∈ V (called the unit element) such that
x ◦ e = x for all x ∈ V .

In a Euclidean Jordan algebra V , the set of squares

K := {x ◦ x : x ∈ V }

is a symmetric cone (see p. 46, Faraut and Korányi [6]). This means that K is
a self-dual closed convex cone (i.e., K = K∗ := {x ∈ V : 〈x, y〉 ≥ 0 ∀y ∈ K})
and for any two elements x, y ∈ K◦( = interior(K)), there exists an invertible linear
transformation Γ : V → V such that Γ(K) = K and Γ(x) = y. We use the notation

x ≥ 0 and x > 0

when x ∈ K and x ∈ K◦, respectively.
An element c ∈ V is an idempotent if c2 = c; it is a primitive idempotent if it is

nonzero and cannot be written as a sum of two nonzero idempotents.
We say that a finite set {e1, e2, . . . , em} of idempotents in V is a a complete system

of orthogonal idempotents if

ei ◦ ej = 0 for i �= j, and

m∑
1

ei = e.

(Note that 〈ei, ej〉 = 〈ei ◦ ej , e〉 = 0 whenever i �= j.) Further, if each ei is also
primitive, we say that the system is a Jordan frame.

Theorem 2.1 (the spectral decomposition theorem) (Thms. III.1.1 and III.1.2,
Faraut and Korányi [6]). Let V be a Euclidean Jordan algebra. Then there is a
number r (called the rank of V ) such that for every x ∈ V , there exists a Jordan
frame {e1, . . . , er} and real numbers λ1, . . . , λr, with

x = λ1e1 + · · · + λrer.(2.1)

Also, for each x ∈ V , there exists a unique set of distinct real numbers {μ1, μ2, . . . , μk}
and a unique complete system of orthogonal idempotents {f1, f2, . . . , fk} such that

x = μ1f1 + μ2f2 + · · · + μkfk.

For an x given by (2.1), the numbers λ1, λ2, . . . , λr are called the eigenvalues of
x. We say that x is invertible if every λi is nonzero. Corresponding to (2.1), we define

trace(x) := λ1 + λ2 + · · · + λr.

In addition, when x ≥ 0 (or, equivalently, every λi is nonnegative), we define

√
x :=

√
λ1e1 + · · · +

√
λrer.

In a Euclidean Jordan algebra V , for a given x ∈ V , we define the corresponding
Lyapunov transformation Lx : V → V by

Lx(z) = x ◦ z.

We say that elements x and y operator commute if LxLy = LyLx. It is known that
x and y operator commute if and only if x and y have their spectral decompositions
with respect to a common Jordan frame (Lem. X.2.2, Faraut and Korányi [6]).
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Here are some standard examples.
Example 1. Rn is a Euclidean Jordan algebra with the inner product and the

Jordan product defined, respectively, by

〈x, y〉 =

n∑
i=1

xiyi and x ◦ y := (xiyi).

Here Rn
+ is the corresponding symmetric cone.

Example 2. Sn, the set of all n×n real symmetric matrices, is a Euclidean Jordan
algebra with the inner and Jordan products given by

〈X,Y 〉 := trace(XY ) and X ◦ Y :=
1

2
(XY + Y X).

In this setting, the symmetric cone Sn
+ is the set of all positive semidefinite matrices

in Sn. Also, X and Y operator commute if and only if XY = Y X.
Example 3. Consider Rn (n > 1) where any element x is written as

x =

[
x0

x

]
,

with x0 ∈ R and x ∈ Rn−1. The inner product in Rn is the usual inner product. The
Jordan product x ◦ y in Rn is defined by

x ◦ y =

[
x0

x

]
◦
[

y0

y

]
:=

[
〈x, y〉

x0y + y0x

]
.

We shall denote this Euclidean Jordan algebra (Rn, ◦, 〈·, ·〉) by Ln. In this algebra,
the cone of squares, denoted by Ln

+, is called the Lorentz cone (or the second-order
cone). It is given by

Ln
+ = {x : x0 ≥ ||x||},

in which case interior(Ln
+) = {x : x0 > ||x||}.

We note the spectral decomposition of any x with x �= 0:

x = λ1e1 + λ2e2,

where

λ1 := x0 + ||x||, λ2 := x0 − ||x||,

and

e1 :=
1

2

[
1
x

||x||

]
, e2 :=

1

2

[
1

− x
||x||

]
.

In Ln, elements x and y operator commute if and only if either x is a multiple of
y or y is a multiple of x.

We recall the following from Gowda, Sznajder, and Tao [12] (with the notation
x ≥ 0 when x ∈ K).

Proposition 2.2. For x, y ∈ V , the following conditions are equivalent:
1. x ≥ 0, y ≥ 0, and 〈x, y〉 = 0.
2. x ≥ 0, y ≥ 0, and x ◦ y = 0.

In each case, elements x and y operator commute.



466 M. SEETHARAMA GOWDA AND R. SZNAJDER

The Peirce decomposition. Fix a Jordan frame {e1, e2, . . . , er} in a Euclidean
Jordan algebra V . For i, j ∈ {1, 2, . . . , r}, define the eigenspaces

Vii := {x ∈ V : x ◦ ei = x} = Rei,

and when i �= j,

Vij :=

{
x ∈ V : x ◦ ei =

1

2
x = x ◦ ej

}
.

Then we have the following result.
Theorem 2.3 (Thm. IV.2.1, Faraut and Korányi [6]). The space V is the or-

thogonal direct sum of spaces Vij (i ≤ j). Furthermore,

Vij ◦ Vij ⊂ Vii + Vjj ,
Vij ◦ Vjk ⊂ Vik if i �= k,
Vij ◦ Vkl = {0} if {i, j} ∩ {k, l} = ∅.

Thus, given any Jordan frame {e1, e2, . . . , er}, we have the Peirce decomposition
of x ∈ V :

x =

r∑
i=1

xii +
∑
i<j

xij =

r∑
i=1

xiei +
∑
i<j

xij ,

where xi ∈ R and xij ∈ Vij .
A Euclidean Jordan algebra is said to be simple if it is not a direct sum of two

Euclidean Jordan algebras. The classification theorem (Chap. V, Faraut and Korányi
[6]) says that every simple Euclidean Jordan algebra is isomorphic to one of the
following:

(1) the algebra Sn of n× n real symmetric matrices,
(2) the algebra Ln,
(3) the algebra Hn of all n × n complex Hermitian matrices with a trace inner

product and X ◦ Y = 1
2 (XY + Y X),

(4) the algebra Qn of all n×n quaternion Hermitian matrices with a (real) trace
inner product and X ◦ Y = 1

2 (XY + Y X), and
(5) the algebra O3 of all 3 × 3 octonion Hermitian matrices with a (real) trace

inner product and X ◦ Y = 1
2 (XY + Y X).

The following result characterizes all Euclidean Jordan algebras.
Theorem 2.4 (Props. III.4.4 and III.4.5 and Thm. V.3.7, Faraut and Korányi

[6]). Any Euclidean Jordan algebra is, in a unique way, a direct sum of simple
Euclidean Jordan algebras. Moreover, the symmetric cone in a given Euclidean Jordan
algebra is, in a unique way, a direct sum of symmetric cones in the constituent simple
Euclidean Jordan algebras.

2.2. Complementarity concepts. Let V be a Euclidean Jordan algebra with
the corresponding symmetric cone K. Recall that for a linear transformation L : V →
V and q ∈ V , the linear complementarity problem LCP(L,K, q) is to find an x ∈ V
such that

x ∈ K, L(x) + q ∈ K, and 〈L(x) + q, x〉 = 0.

As mentioned previously, this is a particular instance of a variational inequality prob-
lem. The standard linear complementarity problem (over the nonnegative orthant
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in Rn), the semidefinite linear complementarity problem, and the Lorentz cone (also
known as the second-order cone) linear complementarity problem are some of the
special cases and have been well studied in the literature. Given L on V , we say that
L has the

(i) positive definite property if 〈L(x), x〉 > 0 for all x �= 0;
(ii) GUS (globally uniquely solvable)-property if for all q ∈ V , LCP(L,K, q) has

a unique solution;
(iii) P-property if

x and L(x) operator commute and x ◦ L(x) ≤ 0 ⇒ x = 0;

(iv) R0-property if zero is the only solution of LCP(L,K, 0);
(v) Q-property if for all q ∈ V , LCP(L,K, q) has a solution;
(vi) S-property if there exists a d > 0 such that L(d) > 0.
Henceforth, we will use P, R0, Q, S, etc., to denote the set of maps L that satisfy

the respective property.
The above properties have been well studied. In particular (see Thms. 17, 14, and

12, [12]), we always have the implications (i) ⇒ (ii) ⇒ (iii) ⇒ (iv). That (v) ⇒ (vi)
follows from perturbing a solution of LCP(L,K,−e), where e is the unit element of
V .

The following well-known result shows that under an additional assumption,
(iv) ⇒ (v).

Theorem 2.5 (Karamardian [15]). Suppose that L : V → V is a linear transfor-
mation such that for some d > 0, zero is the only solution of the problems LCP(L,K, 0)
and LCP(L,K, d). Then L has the Q-property with respect to K.

2.3. Automorphisms. Let V be a Euclidean Jordan algebra and K be the
corresponding cone of squares. We consider the following sets of transformations:

• Aut(V )—set of all invertible linear transformations L : V → V such that

L(x ◦ y) = L(x) ◦ L(y) ∀x, y ∈ V,

• Aut(K)—set of all (invertible) linear transformations L : V → V such that
L(K) = K,

• Aut(K)—closure of Aut(K) (with respect to the operator norm), and
• Π(K)—set of all linear transformations L : V → V such that L(K) ⊆ K.

We note that

Aut(V ) ⊆ Aut(K) ⊆ Aut(K) ⊆ Π(K).

Also, if V is simple or if the inner product in V is given by 〈x, y〉 = c trace(x ◦ y)
(for some fixed c), then every L in Aut(V ) is orthogonal (that is, it preserves the inner
product); see p. 57, [6].

3. Cone invariant transformations. Recall that Π(K) is the set of all linear
transformations on V that leave K invariant; for properties, see [1]. We begin by
describing some complementarity properties of Π(K) and Aut(K).

Proposition 3.1. For L ∈ Π(K), the following are equivalent:
(a) L has the R0-property.
(b) For any primitive idempotent u ∈ V , 〈L(u), u〉 > 0.
(c) L is strictly copositive on K; i.e., 〈L(x), x〉 > 0 for all 0 �= x ≥ 0.

In particular, if L has the R0-property, then it has the Q-property.
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Proof. From L ∈ Π(K), we see that L is copositive on K; that is, 〈L(x), x〉 ≥ 0 for
all x ≥ 0. Now assume (a). For any primitive idempotent u, we have L(u) ∈ K, and
so 〈L(u), u〉 ≥ 0. If 〈L(u), u〉 = 0, then u will be a nonzero solution of LCP(L,K, 0)
contradicting condition (a). Hence (b) holds. Now suppose (b) holds. We know that
L is copositive on K. Suppose, if possible, 〈L(x), x〉 = 0 for some nonzero x ∈ K.
Let x =

∑
λiei be the spectral decomposition of x with some eigenvalue, say, λk �= 0.

As λi ≥ 0 for all i, 〈L(x), x〉 =
∑

i,j λi λj〈L(ei), ej〉 ≥ λ2
k〈L(ek), ek〉 > 0 by condition

(b). This is a contradiction. Hence (c) holds. Finally, the implication (c) ⇒ (a) is
obvious.

Now assume that (a) holds. Then L is strictly copositive on K, and so the prob-
lems LCP(L,K, 0) and LCP(L,K, e) have zero as the only solution. By Karamardian’s
theorem, LCP(L,K, q) has a solution for all q ∈ V . Thus L has the Q-property.

Proposition 3.2. If L ∈ Aut(K) is invertible, then L ∈ Aut(K).
Proof. Let Lk ∈ Aut(K) such that Lk → L (with respect to the operator norm)

on V with L invertible. From Lk(K) ⊆ K, we get L(K) ⊆ K. Also, L−1
k → L−1.

From (Lk)
−1(K) ⊆ K, we get L−1(K) ⊆ K. Thus we have L(K) = K.

Proposition 3.3. Aut(K) ∩ S = Aut(K).
Proof. Recall that L ∈ S if there exists a p > 0 such that L(p) > 0. Then,

clearly, Aut(K) is contained in Aut(K) ∩ S. Now suppose that L ∈ Aut(K) ∩ S. Let
L = lim Lk, where Lk ∈ Aut(K). As LT

k ∈ Aut(K) (See Prop. I.1.7, [6]) and LT =

lim LT
k , we have LT ∈ Aut(K). We show that LT is invertible (or, equivalently, L is

invertible) and then conclude (thanks to the previous proposition) that L ∈ Aut(K).
Now to show that LT is invertible, we show that for each d > 0 there is an x ∈ K
such that LT (x) = d. This then shows that the range of LT contains the open set
K◦, thus proving the invertibility of LT . Now fix a d > 0. Since LT

k ∈ Aut(K) for
each k, there exists a sequence xk ∈ K such that LT

k (xk) = d for all k. Assume, if
possible, that the sequence xk is unbounded, say, ||xk|| → ∞. As xk is nonzero, we
can let xk

||xk|| → y ∈ K with LT (y) = 0. Now because L has the S-property, there

exists a p > 0 such that L(p) > 0. If u is a suitable multiple of p, then u ≥ 0 and
v = L(u) − d ≥ 0. Then

0 ≤ 〈y, v〉 = 〈y, L(u) − d〉 = 〈LT (y), u〉 − 〈y, d〉 = −〈y, d〉 ≤ 0.

Thus, 〈y, d〉 = 0. Since y ≥ 0 and d > 0, we must have y = 0, which is a contradiction.
Hence the sequence xk is bounded. Letting xk → x ∈ K, we have LT (x) = d.

Corollary 3.4.

Aut(K) ∩ R0 ⊆ Aut(K) ∩ Q ⊆ Aut(K) ∩ S = Aut(K).

Proof. The first inclusion comes from Proposition 3.1. The second inclusion
follows from the fact that the Q-property implies the S-property; see section 2.2. The
last equality comes from the previous proposition.

This corollary shows that

Aut(K) ∩ Q = Aut(K) ∩ R0 ⇒ Aut(K) ∩ Q = Aut(K) ∩ R0.

This means that, to show the equivalence of R0- and Q-properties in Aut(K), it is
enough to prove such an equivalence in Aut(K).

Motivated by Murty’s result—item (a) in the introduction—we may ask if R0-
and Q-properties are equivalent when L ∈ Π(K). While the resolution of this question
is our ultimate goal (or a road map), for lack of results describing objects of Π(K), in
the next two sections we deal with a subset of Π(K), namely, Aut(K). In particular,
we deal with algebra automorphisms and quadratic representations.
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4. Algebra automorphisms. Recall that L is an algebra automorphism on V
if L is invertible and

L(x ◦ y) = L(x) ◦ L(y)

for all x and y. In this section, we describe complementarity properties of such
transformations.

To motivate our results, we first consider some examples.
Example 4. Consider V = Rn with the usual inner product and Jordan product

(= componentwise product). In this setting, every algebra automorphism of V is
given by a permutation matrix. Then Murty’s result (see item (a) of the introduction)
shows that such an automorphism has the R0-property if and only if the matrix is
the identity matrix; thus GUS-, Q-, and R0-properties are equivalent for algebra
automorphisms on Rn.

Example 5. Consider V = Sn with the trace inner product and the usual Jordan
product. Then it is known (as a consequence of Schneider’s result in [23]) that every
algebra automorphism on Sn is given by

L(X) = UXUT ,

where U is a (real) orthogonal matrix. In this setting it is known ([2], [11]) that
GUS-, Q-, and R0-properties are equivalent (to ±U being positive definite).

Example 6. Consider the Lorentz space Ln. Since the underlying space is Rn, we
think of a transformation L on Ln as given by a matrix

L =

[
a bT

c D

]
,

where a ∈ R, b, c ∈ Rn−1, and D ∈ R(n−1)×(n−1).
Now suppose that L ∈ Aut(Ln). Since L preserves the unit element in Ln, we

must have [
a bT

c D

] [
1
0

]
=

[
1
0

]
,

proving a = 1 and c = 0. As L ∈ Aut(Ln) ⊂ Aut(Ln
+), by a result of Loewy and

Schneider [16], there exists a μ > 0 such that

LTJnL = μJn,

where Jn = diag(1,−1,−1, . . . ,−1). A direct calculation shows that b = 0, μ = 1,
and DTD = I, and so

L =

[
1 0
0 D

]
,(4.1)

where D is an orthogonal matrix. (We note that D = I and D = −I are likely
candidates.) In this section, we show that for such an automorphism, GUS-, Q-, and
R0-properties are equivalent.

First we describe the real eigenvalues of an algebra automorphism and a necessary
condition for the R0-property. In what follows, σ(L) denotes the spectrum of a linear
transformation L.
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Proposition 4.1. Let V be a Euclidean Jordan algebra. If L ∈ Aut(V ), then

σ(L) ∩R ⊆ {−1, 1}.

In particular, σ(L) ∩R = {1} if and only if −1 �∈ σ(L).
Proof. As L(x◦y) = L(x)◦L(y) for all x, y ∈ V , we have L(e) = e, where e is the

unit element in V . Thus 1 ∈ σ(L) ∩R. Now suppose that λ is a real eigenvalue of L
(which is nonzero since L is invertible), so that for some nonzero x ∈ V , L(x) = λx. It
follows that L(x2) = λ2 x2, and more generally, L(xk) = λk xk for all natural numbers
k. Since x �= 0 ⇒ xk �= 0 (this can be seen by considering the spectral decomposition
of x), λk is an eigenvalue of L for all k. As V is finite dimensional, σ(L) is finite, and
so two distinct powers of λ are equal; that is, λm = 1 for some natural number m.
As λ is real, we must have λ = ±1. Thus we have σ(L) ∩ R ⊆ {−1, 1}. The second
statement in the proposition is obvious.

Remark. The above proposition can also be seen as follows. Given any Euclidean
Jordan algebra (V, 〈·, ·〉, ◦), it is well known that [x, y] := trace(x ◦ y) induces another
inner product on V that is compatible with the Jordan product. With respect to this
inner product, any algebra automorphism is an orthogonal (i.e., LTL = I). Working
with the complexifications of (V, 〈·, ·〉), (V, [·, ·]), and L, we see that the spectrum of
L (which is independent of the inner product on V ) is contained in the unit circle.
The above proposition follows immediately from this.

Theorem 4.2. Let V be a Euclidean Jordan algebra, L ∈ Aut(V ), and L ∈ R0.
Then −1 �∈ σ(L).

Proof. Suppose −1 ∈ σ(L). Then there exists a vector 0 �= x ∈ V such that
L(x) = −x. By Theorem 2.1, there exist unique real numbers μ1, . . . , μk, all distinct,
and a unique complete system of orthogonal idempotents f1, . . . , fk such that

x = μ1f1 + · · · + μkfk.

Without loss of generality assume that μ1 �= 0. Then

−(μ1f1 + · · · + μkfk) = −x = L(x) = μ1L(f1) + · · · + μkL(fk).

Because L ∈ Aut(V ), {L(f1), . . . , L(fk)} is also a complete system of orthogonal
idempotents. Since μ1 �= −μ1, by the uniqueness property, −μ1 = μi and f1 = L(fi)
for some 1 < i ≤ k. Then fi is a solution of LCP(L,K, 0), contradicting the R0-
property of L. This completes the proof.

Corollary 4.3. Let L ∈ Aut(V ), L ∈ R0, and L = LT . Then L = I.
Proof. Since L = LT , σ(L) ⊆ R. As {1} ⊆ σ(L) ∩ R ⊆ {−1, 1} and −1 �∈ σ(L),

we have σ(L) = {1}. By the spectral theorem (for operators), L = I.
The following examples show that the converse in the above theorem need not

hold.
Example 7. Consider the Euclidean Jordan algebra R3 with the usual inner

product and the Jordan product. Define L : R3 → R3 by the matrix

L =

⎡
⎣ 0 1 0

0 0 1
1 0 0

⎤
⎦ .

Certainly, L ∈ Aut(R3) and σ(L) = {1, e 2πi
3 , e−

2πi
3 }, so σ(L) ∩ R = {1}. For x =

(1, 0, 0)T , L(x) = (0, 0, 1)T and 〈L(x), x〉 = 0; thus, L /∈ R0. Note that R3 is not a
simple Jordan algebra.
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Example 8. On the simple algebra S3, let

U =

⎡
⎣ 0 1 0

0 0 1
1 0 0

⎤
⎦ ,

and define the transformation L on S3 by L(X) = UXUT . As U is orthogonal, a
simple argument shows that UX +XU = 0 ⇒ X = 0. Hence −1 is not an eigenvalue
of L. By Proposition 4.1, σ(L) ∩R = {1}. As ±U is not positive definite, a result of
Bhimasankaram et al. [2] (see also [11]) shows that L cannot have the R0-property.

5. A characterization of the global uniqueness property of an algebra
automorphism on Ln. In this section, we establish the equivalence of the global
uniqueness property and the R0-property for an automorphism on Ln.

Theorem 5.1. For L ∈ Aut(Ln), the following are equivalent:
(i) L has the GUS-property.
(ii) L has the P-property.
(iii) L has the R0-property.
(iv) L has the Q-property.
(v) −1 �∈ σ(L) (or, equivalently, −1 �∈ σ(D) with D given in (4.1)).
Proof. The implications (i) ⇒ (ii) ⇒ (iii) follow from Theorem 14 in [12] and the

definitions. The implication (iii) ⇒ (iv) follows from Proposition 3.1. We show that
(iv) ⇒ (v). Now write L as in (4.1). Suppose L has the Q-property and −1 is an
eigenvalue of L (as well as that of D), so that for some nonzero u ∈ Rn−1

Du = −u.

Now let x be a solution of LCP(L,Ln
+, q), where

q =

[
0
u

]
and x =

[
x0

x

]
.

Then

x ∈ Ln
+, L(x) + q ∈ Ln

+, and 〈x, L(x) + q〉 = 0,

and so

x0 ≥ ||x||, x0 ≥ ||Dx + u||, and x2
0 + 〈x,Dx + u〉 = 0.

Now, in view of the Cauchy–Schwarz inequality, we have

x2
0 = 〈−x,Dx + u〉 ≤ ||x|| ||Dx + u|| ≤ x2

0.

As q �∈ Ln
+, x cannot be zero; hence x0, x, and Dx+ u are all nonzero. Consequently,

Dx + u = −θx, x0 = ||x||, and x0 = ||Dx + u||

for some positive θ. From these, we get θ = 1 and

Dx + u = −x.

As D is orthogonal, Du = −u ⇒ DTu = −u. Thus,

−〈x, u〉 = 〈Dx + u, u〉 = 〈Dx, u〉 + ||u||2 = 〈x,DTu〉 + ||u||2 = −〈x, u〉 + ||u||2.

This leads to ||u||2 = 0, which is a contradiction. Hence L satisfies (v).
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Now for the last implication (v) ⇒ (i).
First we show that (v) implies (ii). So assume (v).
Let x be a vector such that x and L(x) operator commute, with x◦L(x) ≤ 0. For

x =

[
x0

x̄

]
and L(x) =

[
x0

Dx̄

]

we have

x ◦ L(x) =

[
x2

0 + 〈Dx̄, x̄〉
x0Dx̄ + x0x̄

]
≤ 0.

Case (i). Dx̄ = 0 or, equivalently, x̄ = 0 (as D is nonsingular). Then
[
x2
0
0

]
≤ 0, so

x = 0.
Case (ii). Dx̄ �= 0. Hence, x̄ �= 0 and, by the operator commutativity, Dx̄ = μx̄

for some μ. Since μ ∈ σ(L) ∩ R = {1}, μ = 1; thus, Dx̄ = x̄. Consequently,
x2

0 + ||x̄||2 ≤ 0, so x = 0.
Hence, L has the P-property.
Now to show (i). Take any q ∈ Ln, and let x and u be two solutions of

LCP(L,Ln
+, q) so that

x ≥ 0, y = L(x) + q ≥ 0, and 〈x, y〉 = 0

and

u ≥ 0, v = L(u) + q ≥ 0, and 〈u, v〉 = 0.

We know that x and y operator commute and u and v operator commute (see Propo-
sition 2.2). If we can show that x and v operator commute and u and y operator
commute then x− u operator commutes with y − v. In this situation,

(x− u) ◦ L(x− u) = (x− u) ◦ (y − v) = −(x ◦ v + u ◦ y) ≤ 0,

where the last inequality follows from the fact that if two vectors in K operator
commute, then their Jordan product is also in K. At this stage, we can apply the
P-property (item (ii)) and get x = u. Thus (i) is proved provided the following claim
can be proved.

Claim. u and y, as well as x and v, operator commute. (Equivalently, u and y
are proportional and x and v are proportional.) We now proceed to prove the claim.
Let

x =

[
x0

x̄

]
, u =

[
u0

ū

]
, L(x) + q =

[
x0 + q0
Dx̄ + q̄

]
, and L(u) + q =

[
u0 + q0
Dū + q̄

]
.

We have

x0 ≥ ||x̄||, u0 ≥ ||ū||, x0 + q0 ≥ ||Dx̄ + q̄||, and u0 + q0 ≥ ||Dū + q̄||,

and, moreover,

x0(x0 + q0) + 〈Dx̄ + q̄, x̄〉 = 0 = u0(u0 + q0) + 〈Dū + q̄, ū〉.

If both x and u are positive, then L(x) + q = 0 = L(u) + q and, by invertibility
of L, x = u. In this case, the claim is true (because x and y operator commute).



LINEAR COMPLEMENTARITY PROBLEMS OVER SYMMETRIC CONES 473

Suppose that (exactly) one of x or u is on the boundary of Ln
+, say, x > 0 and

u ∈ ∂Ln
+. Then x0 > 0 and 0 = y = L(x) + q. If v > 0, then u = 0, in which case

q > 0. But then [
x0

Dx̄

]
= L(x) = −q < 0

implies that x0 < 0, which is a contradiction.
On the other hand, if v ∈ ∂Ln

+, then

u0 + q0 = ||Dū + q̄|| = ||D(ū− x̄)|| = ||ū− x̄|| ≥ ||ū|| − ||x̄||.

As x0 = −q0, we have u0 − x0 ≥ ||ū|| − ||x̄||. Thus, u0 − ||ū|| ≥ x0 − ||x̄|| > 0, so
u > 0, contradicting our assumption that u ∈ ∂Ln

+.
Hence we may assume that both x and u are on the boundary of Ln

+. Similarly,
by considering L−1, we may assume that both y and v are on the boundary of Ln

+.
(Note that L−1 ∈ Aut(Ln), y, and v are solutions of LCP(L−1,K, L−1q).)

So at this stage, x, u, y, v ∈ ∂Ln
+. Thus,

x0 = ||x̄||, x0 + q0 = ||Dx̄ + q̄||, u0 = ||ū||, and u0 + q0 = ||Dū + q̄||.

Case 1. x̄ = 0. Then x = 0 and q0 = ||q̄||.
Subcase 1.1. ū = 0. Then u = 0, so x = u = 0, and the claim holds.
Subcase 1.2. ū �= 0. Since u and v operator commute,

v̄ = Dū + q̄ = βū for some β ∈ R.(5.1)

Also, u0+q0 = ||Dū+ q̄|| ≤ ||ū||+q0 ≤ u0+q0. The equality in the triangle inequality
gives, along with u �= 0,

Dū = θq̄ for some θ > 0.(5.2)

Now, by (5.2),

v = L(u) + q =

[
u0 + q0
Dū + q̄

]
=

[
u0 + ||q||
θq̄ + q̄

]

and

y = L(x) + q = 0 + q =

[
q0
q̄

]
.

Combining (5.1) and (5.2), we get θq̄ + q̄ = βū. Hence, q̄ = 1
θ+1βū (θ > 0), so q̄ and

ū are proportional, and u and q operator commute. Thus, u and y (= q) operator
commute. Also, x = 0 and v operator commute. Therefore, in Case 1, the claim
holds.

Case 2. x̄ �= 0.
Subcase 2.1. ū = 0. This is analogous to Subcase 1.2.
Subcase 2.2. ū �= 0. Now we have x, u, y, v ∈ ∂Ln

+, and x̄ �= 0, ū �= 0. Again, the
complementarity property, hence operator commutativity, gives

Dx̄ + q̄ = αx̄ and Dū + q̄ = γū
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for some α, γ ∈ R. Also,

x0 + q0 = ||Dx̄ + q̄|| = |α| · ||x̄|| and u0 + q0 = ||Dū + q̄|| = |γ| · ||ū||.

Since y = L(x) + q =
[
x0+q0
αx̄

]
and 0 = 〈x, y〉 = x0(x0 + q0) + α||x̄||2, we have α ≤ 0.

Similarly, γ ≤ 0. Since x0 + q0 = |α| · ||x̄|| and x ∈ ∂Ln
+, q0 = |α| · ||x̄|| − x0 =

(|α| − 1)||x̄||; likewise, q0 = (|γ| − 1)||ū||. Also, q̄ = αx̄−Dx̄ = γū−Dū. Then

D(x̄− ū) = αx̄− γū.

Since D is orthogonal, ||x̄−ū|| = ||αx̄−γū|| and q0 = (|α|−1)||x̄|| = (|γ|−1)||ū||,
α, γ ≤ 0. Put λ := −α and μ := −γ, so λ, μ ≥ 0,

D(x− u) = μu− λx, ||x̄− ū|| = ||μū− λx̄||, and (λ− 1)||x̄|| = (μ− 1)||ū||.

If x and u are proportional, then so are y (= αx) and u, and x and v (= γu). In this
setting, the claim holds. Suppose x and u are not proportional. Then, as the signs of
λ− 1 and μ− 1 are the same, two-dimensional (Euclidean) geometric considerations
show that the quadrilateral with vertices x̄, λx̄, μū, and ū (which is part of a triangle)
can be a parallelogram only when λ = 1 and μ = 1 (see the appendix for an algebraic
proof). In this situation,

D(x̄− ū) = −(x̄− ū),

violating the condition (v) that −1 �∈ σ(D). Thus we have the claim in Subcase 2.2.
This shows that the claim is proved for Case 2. Hence (v) ⇒ (i).

Remark. One may wonder if the above result (Theorem 5.1) is true for algebra
automorphisms on a direct sum of Ln’s. To address this, let V := Ln1⊕Ln2⊕· · ·⊕Lnk

and L ∈ Aut(V ). If L is “diagonal,” that is, if L = L1 ⊕ L2 ⊕ · · · ⊕ Lk, where
Li : Lni → Lni , then Li ∈ Aut(Lni) for all i. In this situation, Theorem 5.1 extends
to L on V . On the other hand, if L is not “diagonal,” Theorem 5.1 may not extend
to L. This can be seen by modifying Example 7:

Put V = Ln⊕Ln⊕Ln and L(x, y, z) = (y, z, x). It is easily seen that L ∈ Aut(V )
and −1 �∈ σ(L), yet L �∈ R0 (because (e, 0, 0) is a solution of LCP(L,K, 0)).

6. Quadratic representations. The algebra automorphisms of a Euclidean
Jordan algebra, studied in the previous section, form an important subclass of Aut(K).
In this section, we consider another important subclass of Aut(K), namely, quadratic
representations. Given any element a in the Euclidean Jordan algebra V , the quadratic
representation of a is defined by

Pa(x) := 2a ◦ (a ◦ x) − a2 ◦ x.

It is known that Pa is a self-adjoint linear transformation on V and belongs to Aut(K)
when a is invertible. Our main result below establishes the equivalence of global
uniqueness, global solvability, and the R0-properties for such transformations. Our
motivation comes from the following.

Consider V = Sn and K = Sn
+. Then a linear transformation L on V belongs to

Aut(Sn
+) if and only if there exists an invertible matrix A ∈ Rn×n such that

L(X) = AXAT (X ∈ Sn);

see [23]. For such transformations, it has been shown in [2] (see also [11]) that global
uniqueness and R0-properties are equivalent and that these properties hold if and
only if ±A is positive definite.
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Now when A ∈ Sn, the above transformation coincides with PA given by:

PA(X) = AXA.

In [21], Sampangi Raman considers PA on Sn and shows that the global solvability
and the R0-properties are equivalent and that these properties hold if and only if ±A
is positive definite. Working on Ln, Malik and Mohan [17] prove a similar result for
quadratic representations on Ln.

In our main result below, we extend these two results to arbitrary Euclidean
Jordan algebras. We remark that the crucial idea of our analysis comes from [21].

We recall the following from [6] (see Props. II.3.1, II.3.2, and III.2.2).
Proposition 6.1. Let a ∈ V . Then the following statements hold:
(i) a is invertible if and only if Pa is invertible.
(ii) PPa(x) = PaPxPa.
(iii) If a is invertible, then Pa(K) = K. Hence Pa(K) ⊆ K for all a ∈ V .
(iv) If for some x, Pa(x) is invertible, then a is invertible.
The following lemmas are needed to prove our main theorem. These lemmas and

their proofs are somewhat similar, except for technical details, to those in [21], [17].
Lemma 6.2. Let V be any Euclidean Jordan algebra. Let a be invertible in V

with spectral decomposition given by

a = a1e1 + a2e2 + · · · + arer.

Define |a| := |a1|e1 + |a2|e2 + · · · + |ar|er and s = ε1e1 + ε2e2 + · · · + εrer, where
εi = sign (ai). If Pa has the Q-property, then so does Ps.

Proof. Let b :=
√

|a|. Then Pb(s) = a (by using the definition) and Pa = PbPsPb

using item (ii) in the previous lemma. Assume that Pa has the Q-property, and
let q ∈ V . Let x be a solution of LCP(Pa,K, r), where r = Pb(q). Then x ≥ 0,
y := Pa(x) + r ≥ 0, and 〈x, y〉 = 0. From Pa = PPb(s) = PbPsPb, we have P−1

b y =
Ps(Pb(x)) + q. Using item (iii) in the above lemma and the self-adjointness of Pb, we
have u := Pb(x) ≥ 0, v := P−1

b y ≥ 0, and 〈u, v〉 = 〈Pb(x), P−1
b y〉 = 〈x, y〉 = 0. This

means that LCP(Ps,K, q) has a solution, proving the result.
Lemma 6.3. Let {e1, e2, . . . , er} be a Jordan frame in V and x =

∑r
1 xiei +∑

i<j xij be the Peirce decomposition of an element x ∈ V with respect to this Jordan
frame. Let

s = e1 + e2 + · · · + ek − (ek+1 + · · · + er)

for some k, with 1 ≤ k < r and 0 �= qk k+1 ∈ Vk k+1. Then the following hold:
(a) Ps(x) =

∑r
1 xiei +

∑
β xij −

∑
α xij , where

α := {(i, j) : 1 ≤ i ≤ k, k + 1 ≤ j ≤ r} and β := {(i, j) : 1 ≤ i < j ≤ r} \ α.
(b) The (k k + 1)-term in the Peirce decomposition of x ◦ Ps(x) is zero.
(c) The (k k+1)-term in the Peirce decomposition of x◦qk k+1 is 1

2 (xk+xk+1)qk k+1.
(d) If x ≥ 0, then xkek + xk+1ek+1 + xk k+1 ≥ 0.
Proof. Let f = e1 + e2 + · · · + ek so that s = 2f − e, where e is the unit element

in V . Then Ps(x) = 2s ◦ (s ◦ x) − s2 ◦ x. Since s2 = e and s = 2f − e, simplification
leads to Ps(x) = 8f ◦ (f ◦ x) − 8f ◦ x + x. Using the properties

el ◦ ei = δilel and el ◦ xij =
1

2
xij if l ∈ {i, j}, or 0 if l �∈ {i, j},
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we get

f ◦ x = x1e1 +
1

2
(x12 + x13 + · · · + x1r)

+ x2e2 +
1

2
(x12 + x23 + x24 + · · · + x2r)

+ x3e3 +
1

2
(x13 + x23 + x34 + · · · + x3r)

+ · · ·+
+ xkek +

1

2
(x1k + x2k + · · · + xk−1 k + xk k+1 · · · + xkr).

We note that, in the above expression, the term xij for 1 ≤ i ≤ k and k + 1 ≤ j ≤ r
appears only once and the term xij for 1 ≤ i < j ≤ k appears twice. Hence

f ◦ x =

k∑
1

xiei +
∑

1≤i<j≤k

xij +
1

2

∑
1≤i≤k,k+1≤j≤r

xij .

From this, we get f ◦ (f ◦ x) =
∑k

1 xiei +
∑

1≤i<j≤k xij + 1
4

∑
α xij . Using Ps(x) =

8f ◦ (f ◦ x) − 8f ◦ x + x, a simple calculation leads to item (a).
We now prove item (b). Consider any element y with its Peirce decomposition:

y =
r∑
1

yiei +
∑
m<n

ymn.

Then, in view of the properties of the spaces Vij , the (k k + 1)-term in the Peirce
decomposition of x ◦ y is obtained by adding all terms of the form xij ◦ ymn and
xmn ◦ yij , where

k ∈ {i, j}, k + 1 ∈ {m,n}, and |{i, j} ∩ {m,n}| = 1.

This sum reduces to ∑
1≤i<k

xik ◦ yi k+1 +
∑

1≤i<k

yik ◦ xi k+1

+xkk ◦ yk k+1 + ykk ◦ xk k+1

+xk k+1 ◦ yk+1 k+1 + yk k+1 ◦ xk+1 k+1

+
∑

k+1<i≤r

xki ◦ yk+1 i +
∑

k+1<i≤r

yki ◦ xk+1 i.

Now, when y = Ps(x), we have yij = −xij for (i, j) ∈ α and yij = xij for (i, j) �∈ α.
Putting these in the above sum and simplifying, we get item (b).

Upon putting y = qk k+1, we see that the (k k + 1)-term in the Peirce decomposi-
tion of x ◦ y is

xkk ◦ qk k+1 + xk+1 k+1 ◦ qk k+1 =
1

2
(xk + xk+1)qk k+1,

which is item (c).
Now we prove item (d). Suppose x ≥ 0. Let

V{ek,ek+1} = {x ∈ V : x ◦ (ek + ek+1) = x}.
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It is known (see Prop. IV.1.1 in [6]) that this is a Euclidean Jordan algebra and its
corresponding symmetric cone is given by (Thm. 3.1, [13])

V +
{ek,ek+1} := {x ∈ K : x ◦ (ek + ek+1) = x}.

Let y belong to this (sub)cone. Then its Peirce decomposition in V with respect
to {e1, e2, . . . , er} is given by (see Lem. 20, [12])

y = ykek + yk+1ek+1 + yk k+1.

Then, using the orthogonality properties of spaces Vij , we have

0 ≤ 〈x, y〉 = 〈xkek + xk+1ek+1 + xk k+1, y〉.

As y is arbitrary, we see from the self-duality of V +
{ek,ek+1} that xkek + xk+1ek+1 +

xk k+1 ∈ V +
{ek,ek+1} and, in particular, belongs to K.

Proposition 6.4. Suppose V is simple. Let {e1, e2, . . . , er} be a Jordan frame
in V . Let s = e1 + e2 + · · ·+ ek − (ek+1 + · · ·+ er) for some k, with 1 ≤ k < r. Then
Ps does not have the Q-property.

Proof. As V is simple, Vk k+1 is nontrivial (see Prop. IV.2.3, [6]). Let 0 �=
qk k+1 ∈ Vk k+1. We claim that LCP(Ps,K, qk k+1) has no solution. If possible, let x
be a solution of this problem. Then x ≥ 0, y := Ps(x) + qk k+1 ≥ 0, and x ◦ y = 0.
Applying the previous lemma to this setting, we get

0 = (x ◦ y)k k+1 = (x ◦ Ps(x))k k+1 + (x ◦ qk k+1)k k+1 =
1

2
(xk + xk+1)qk k+1.

As qk k+1 �= 0, we must have xk +xk+1 = 0. But x ≥ 0 implies that xkek +xk+1ek+1 +
xk k+1 ≥ 0. So xk and xk+1 are both nonnegative, and hence xk = xk+1 = 0. By Prop.
3.2 in [13], xk k+1 = 0. Now y ≥ 0 implies that ykek + yk+1ek+1 + yk k+1 ≥ 0. From
y = Ps(x)+qk k+1 and the above lemma, we get xkek+xk+1ek+1−xk k+1+qk k+1 ≥ 0.
As 0 = xk = xk+1 and xk k+1 = 0, we have (by Prop. 3.2 in [13]) qk k+1 = 0, which is
a contradiction. Hence LCP(Ps,K, qk k+1) has no solution.

Theorem 6.5. Let V be any Euclidean Jordan algebra and a ∈ V . Then the
following are equivalent:

(1) Pa is positive definite on V .
(2) Pa has the GUS-property.
(3) Pa has the P-property.
(4) Pa has the R0-property.
(5) Pa has the Q-property.

If, in addition, V is simple, then the above conditions are further equivalent to
(6) ±a ∈ K◦.
Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) hold for any linear transformation

on V ; see [12]. Now suppose that (4) holds. Since Pa(K) ⊆ K, by Prop. 3.1, Pa has
the Q-property. Hence (5) holds. Now suppose that (5) holds. If x is a solution of
LCP(Pa,K,−e), then Pa(x)−e ≥ 0, and hence Pa(x) > 0. By Item (iv) in Proposition
6.1, a is invertible. Let a = a1e1 + a2e2 + · · · + arer be the spectral decomposition
of a. Note that each ai is nonzero. By Lemma 6.2, Ps has the Q-property where
s = ε1e1 +ε2e2 + · · ·+εrer, with si = sign (ai). First suppose that V is simple. Then
by Proposition 6.4, si = 1 for all i or si = −1 for all i. This means that ±a ∈ K◦.
Since Pa = P−a, we may assume that a > 0. Then Pa = PP√

ae = P√
aPeP√

a = P 2√
a
,
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and so Pa is positive semidefinite on V . As Pa is invertible and symmetric (recall
that a is invertible), Pa must be positive definite on V . Thus in the case of simple
V , conditions (1)–(6) are equivalent. When V is not simple, we show that (5) is
equivalent to (1) by decomposing V as a product of simple Euclidean Jordan algebras
(cf. Theorem 2.4). Write V = V (1) × V (2) × · · · × V (m), where each V (k) is simple.
Let a = (a(1), a(2), . . . , a(m)) in this product. As Pa = Pa(1) × Pa(2) × · · · × Pa(m) , we
see that each Pa(k) has the Q-property in V (k). By what has been proved, ±a(k) > 0
in V (k) and Pa(k) is positive definite on V (k). It follows that Pa is positive definite on
V . This completes the proof.

7. Lyapunov-like transformations. A real square matrix A is said to be a Z-
matrix if all its off-diagonal entries are nonpositive. If A ∈ Rn×n, then this property
is equivalent to

x, y ∈ Rn
+, 〈x, y〉 = 0 ⇒ 〈Ax, y〉 ≤ 0.

This concept can be extended to symmetric cones: Following [14], we say a linear
transformation L : V → V has the Z-property if

x, y ∈ K, 〈x, y〉 = 0 ⇒ 〈L(x), y〉 ≤ 0.

It has been shown (see [25], [5]) that this property is equivalent to e−tL ∈ Π(K) for
all t ≥ 0.

The recent article [14] contains properties of such transformations; in particular,
it is shown in that paper that L has the global solvability property (item (β) of
the introduction) if and only if L is positive stable. Examples of Z-transformations
include both Lyapunov and Stein transformations on Sn. We now say that a linear
transformation L on V is a Lyapunov-like transformation if both L and −L have the
Z-property; that is,

x, y ∈ K, 〈x, y〉 = 0 ⇒ 〈L(x), y〉 = 0.

Recently, Damm [4] has shown that for Sn and Hn (the space of all n× n Hermitian
matrices over complex numbers) L has the above property if and only if it is a Lya-
punov transformation (that is, it is of the form LA for some square matrix A). While
the form of a Lyapunov-like transformation on a general Euclidean Jordan algebra is
not known, it can be easily shown [26] that, on Ln, a matrix is Lyapunov-like if and
only if it is of the form [

a bT

b D

]
,

where a ∈ R, D ∈ R(n−1)×(n−1), with D + DT = 2aI. For any Euclidean Jordan
algebra V and a ∈ V , the transformation La (called a Lyapunov transformation)
defined by

La(x) = a ◦ x

is also a Lyapunov-like transformation.
Extending the result in item (1) of the introduction, we present the following

global uniqueness result.
Theorem 7.1. Let L : V → V be a Lyapunov-like transformation. Then L has

the GUS-property if and only if L is positive stable (that is, all its eigenvalues have
positive real parts) and positive semidefinite.
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Proof. Suppose L has the GUS-property. Then it has the global solvability
property and so by Thm. 7 in [14], L is positive stable. Also, by Thm. 4.1 in [27],

〈L(c), c〉 ≥ 0

for any primitive idempotent c in V . Now for any x ∈ V , we have the spectral
decomposition

x =
r∑
1

λiei,

where {e1, e2, . . . , er} is a Jordan frame. Since L is a Lyapunov-like transformation,
we have 〈L(ei), ej〉 = 0 for all i �= j, and so

〈L(x), x〉 =
∑
i,j

λiλj〈L(ei), ej〉 =
∑
i

λ2
i 〈L(ei), ei〉 ≥ 0.

This proves that L is positive semidefinite.
Now assume that L is positive stable and positive semidefinite. Because of positive

stability, for every q, LCP(L,K, q) has a solution; see Thms. 6 and 7 in [14]. We now
prove uniqueness. Fix q, and suppose that x and u are two solutions of LCP(L,K, q)
so that

x ≥ 0, y := L(x) + q ≥ 0, and 〈x, y〉 = 0

and

u ≥ 0, v := L(u) + q ≥ 0, and 〈u, v〉 = 0.

Now, as L is positive semidefinite, the solution set of LCP(L,K, q) is convex (Thm.
2.3.5, [7]). So for any t ∈ [0, 1], tx+(1−t)u is also a solution of LCP(L,K, q). Writing
out the complementarity conditions, we see that

〈x, v〉 = 0 = 〈u, y〉.

We conclude (by Proposition 2.2) that x and u operator commute with both y and
v, and x ◦ v = 0 = u ◦ y; hence z := x− u operator commutes with y − v = L(z), and
z ◦L(z) = 0. In this situation, there exists a Jordan frame {e1, e2, . . . , er} and scalars
μi such that

z = μ1e1 + μ2e2 + · · · + μlel and L(z) = μl+1el+1 + μl+2el+2 + · · · + μrer

for some l between 1 and r. We then have

L(z) = μ1L(e1) + μ2L(e2) + · · · + μlL(el) = μl+1el+1 + μl+2el+2 + · · · + μrer.(7.1)

Now for any i between l + 1 and r, and k between 1 and l, we have 〈ek, ei〉 = 0
and 〈L(ek), ei〉 = 0. From (7.1), we get

μi||ei||2 = 0.

This implies that L(z) = 0. Since L is positive stable, it is invertible, and so z = 0,
thus proving the the uniqueness of solution for LCP(L,K, q). Hence L has the GUS-
property.
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Concluding remarks. In this article, we have proved that global uniqueness,
global solvability, and the R0-properties are equivalent for algebra automorphisms
over Ln and for quadratic representations over any Euclidean Jordan algebra. We
have given a characterization of the global uniqueness property for Lyapunov-like
transformations. All of the transformations considered in this paper are related to
symmetric-cone-invariant transformations. Motivated by our results, we pose the
following problems:

(1) Do global uniqueness and R0-properties coincide for algebra automorphisms
on general Euclidean Jordan algebras?

(2) Do global solvability (i.e., the Q-property) and R0-properties coincide for a
cone automorphism? For an element of Π(K)?

8. Appendix. Here we justify an assertion made in the proof of Theorem 5.1.
Lemma 8.1. Let x̄ and ū be two nonzero vectors in a real inner product space

that are not proportional. Assume that, for some nonnegative scalars λ and μ,

||x̄− ū|| = ||μū− λx̄|| and (λ− 1)||x̄|| = (μ− 1)||ū||.

Then λ = μ = 1.
Proof. The second equality shows that (λ − 1)(μ − 1) ≥ 0. Assume now that

(λ− 1)(μ− 1) > 0.
Case 1. λ > 1 and μ > 1. Expanding the first equality above, applying the

Cauchy–Schwarz inequality, and using the second equality, we get

0 = (μ2 − 1)||ū||2 + (λ2 − 1)||x̄||2 + 2(λμ− 1)〈−x̄, ū〉
≥ (μ2 − 1)||ū||2 + (λ2 − 1)||x̄||2 − 2(λμ− 1)||ū|| · ||x̄||

= (μ2 − 1)||ū||2 + (λ2 − 1)
(μ− 1)2

(λ− 1)2
||ū||2 − 2

(λμ− 1)

(λ− 1)
(μ− 1)||ū||2.

(8.1)

Simplifying (8.1), we get

0 ≥ (μ2 − 1)(λ− 1)2 + (λ2 − 1)(μ− 1)2 − 2(λμ− 1)(μ− 1)(λ− 1) = 0.

Since λμ > 1, we have equality in the Cauchy–Schwarz inequality 〈x̄, ū〉 ≤ ||x̄|| · ||ū||.
This means that the vectors x̄ and ū are proportional, which is a contradiction.

Case 2. 0 ≤ λ < 1 and 0 ≤ μ < 1.
We omit the proof as it is similar to Case 1.
Contradictions obtained in both cases imply that λ = μ = 1.
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Abstract. We consider the expected residual minimization formulation of the stochastic R0

matrix linear complementarity problem. We show that the involved matrix being a stochastic R0

matrix is a necessary and sufficient condition for the solution set of the expected residual minimization
problem to be nonempty and bounded. Moreover, local and global error bounds are given for the
stochastic R0 matrix linear complementarity problem. A stochastic approximation method with
acceleration by averaging is applied to solve the expected residual minimization problem. Numerical
examples and applications of traffic equilibrium and system control are given.
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1. Introduction. Let (Ω,F , P ) be a probability space, where Ω is a subset of
R

m, and F is a σ-algebra generated by {Ω∩U : U is an open set in R
m}. We consider

the stochastic linear complementarity problem (SLCP):

x ≥ 0, M(ω)x + q(ω) ≥ 0, xT (M(ω)x + q(ω)) = 0,

where M(ω) ∈ R
n×n and q(ω) ∈ R

n for ω ∈ Ω. We denote this problem by
SLCP(M(ω), q(ω)) for short. Throughout this paper, we assume that M(ω) and
q(ω) are measurable functions of ω with the following property:

E{‖M(ω)TM(ω)‖} < ∞ and E{‖q(ω)‖2} < ∞,

where E stands for the expectation. If Ω only contains a single realization, then the
SLCP reduces to the standard LCP. For the standard LCP, much effort has been made
in developing theoretical analysis for the existence of a solution, numerical methods for
finding a solution, and applications in engineering and economics [5,7,9]. On the other
hand, in many practical applications, some data in the LCP cannot be known with
certainty. The SLCP is aimed at a practical treatment of the LCP under uncertainty.
However, only a little attention has been paid to the SLCP in the literature.

In general, there is no x satisfying the SLCP(M(ω), q(ω)) for almost all ω ∈ Ω.
A deterministic formulation for the SLCP provides a decision vector which is optimal
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in a certain sense. Different deterministic formulations may yield different solutions
that are optimal in different senses.

Gürkan, Özge, and Robinson [12] considered the sample-path approach for stochas-
tic variational inequalities and provided convergence theory and applications for the
approach. When applied to the SLCP(M(ω), q(ω)), the approach is the same as the
expected value (EV) method, which uses the expected function of the random function
M(ω)x + q(ω) and solves the deterministic problem

x ≥ 0, E{M(ω)x + q(ω)} ≥ 0, xTE{M(ω)x + q(ω)} = 0.

Using a simulation-based algorithm in [12], we can find a solution of this problem.
Recently, Chen and Fukushima [3] proposed a new deterministic formulation

called the expected residual minimization (ERM) method, which is to find a vector
x ∈ R

n
+ that minimizes the expected residual of the SLCP(M(ω), q(ω)), i.e.,

(1.1) min
x∈Rn

+

E{‖Φ(x, ω)‖2},

where Φ : R
n × Ω → R

n is defined by

Φ(x, ω) =

⎛
⎜⎝

φ([M(ω)x]1 + q1(ω), x1)
...

φ([M(ω)x]n + qn(ω), xn)

⎞
⎟⎠ ,

and [x]i denotes the ith component of the vector x. Here φ : R
2 → R is an NCP

function which has the property

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

Various NCP functions have been studied for solving complementarity problems [7].
In this paper, we will concentrate on the “min” function

φ(a, b) = min(a, b).

Similar results can be obtained for other NCP functions, such as the Fischer–Burmei-
ster (FB) function [10], which have the same growth behavior as the “min” function.

Let ERM(M(·), q(·)) denote problem (1.1) and define

(1.2) G(x) =

∫
Ω

‖Φ(x, ω)‖2dF (ω),

where F (ω) is the distribution function of ω. Then ERM(M(·), q(·)) is rewritten as

(1.3) min G(x) s.t. x ≥ 0.

Recall that an n× n matrix A is called an R0 matrix if

x ≥ 0, Ax ≥ 0, xTAx = 0 =⇒ x = 0.

It is known [5, Theorem 3.9.23] that the solution set of the standard LCP(A, b)

x ≥ 0, Ax + b ≥ 0, xT (Ax + b) = 0
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is bounded for every b ∈ R
n, if and only if A is an R0 matrix. In addition, when

A is a P0 matrix, the LCP(A, b) has a nonempty solution set if and only if A is
an R0 matrix [5, Theorem 3.9.22]. Example 1 in [3] shows that the solution set
of LCP(M(ω̄), q(ω̄)) being nonempty and bounded for some ω̄ ∈ Ω does not imply
that the ERM(M(·), q(·)) has a solution. The following results on the existence of a
solution of ERM(M(·), q(·)) are given in [3].

(i) If M(·) is continuous in ω and there is an ω̄ ∈ Ω such that M(ω̄) is an R0

matrix, then the solution set of ERM(M(·), q(·)) is nonempty and bounded.
(ii) When M(ω) ≡ M , the solution set of ERM(M(·), q(·)) is nonempty and

bounded for any q(·) if and only if M is an R0 matrix.
In this paper, we substantially extend and refine the results established in [3]. In

particular, we introduce the concept of a stochastic R0 matrix and show that M(·)
being a stochastic R0 matrix is a necessary and sufficient condition for the solution
set of ERM(M(·), q(·)) to be nonempty and bounded. Moreover, we will extend the
local and global error bound results for the R0 matrix LCP given by Mangasarian
and Ren [16] to the stochastic R0 matrix LCP in the ERM formulation.

Throughout the paper, the norm ‖ · ‖ denotes the Euclidean norm and R
n
+ =

{x ∈ R
n : x ≥ 0}. For a given vector x ∈ R

n, we denote I(x) = {i : xi = 0}
and J(x) = {i : xi �= 0}. For vectors x, y ∈ R

n, min(x, y) denotes the vector with
components min(xi, yi), i = 1, . . . , n.

The remainder of the paper is organized as follows: In section 2, the definition
and some properties of a stochastic R0 matrix are given. In section 3, we show a nec-
essary and sufficient condition for the existence of a minimizer of the ERM problem
with an arbitrary q(·) is that M(·) is a stochastic R0 matrix. In section 4, the dif-
ferentiability of G is considered. Some optimality conditions and error bounds of the
ERM problem are given in section 5. In section 6, we use a stochastic approximation
method [2,14] with acceleration by averaging [18] to solve the general ERM problem,
and use a Newton-type method to solve the ERM problem with M(ω) ≡ M . Further-
more, applications to traffic equilibrium and system control are provided. Preliminary
numerical results show that the ERM formulation has various advantages.

2. Stochastic R0 matrix. A stochastic R0 matrix is formally defined as follows.
Definition 2.1. M(·) is called a stochastic R0 matrix if

x ≥ 0, M(ω)x ≥ 0, xTM(ω)x = 0, a.e. =⇒ x = 0.

If Ω only contains a single realization, then the definition of a stochastic R0 matrix
reduces to that of an R0 matrix.

Let G be defined by (1.2). We call x∗ ∈ R
n
+ a local solution of the ERM(M(·), q(·)),

if there is γ > 0 such that G(x) ≥ G(x∗) for all x ∈ R
n
+ ∩B(x∗, γ) := {x : ‖x− x∗‖ ≤

γ}, and call x∗ a global solution of ERM(M(·), q(·)), if G(x) ≥ G(x∗) for all x ∈ R
n
+.

Theorem 2.2. The following statements are equivalent.
(i) M(·) is a stochastic R0 matrix.
(ii) For any x ≥ 0 (x �= 0), at least one of the following two conditions is satisfied:

(a) P{ω : [M(ω)x]i �= 0 } > 0 for some i ∈ J(x);
(b) P{ω : [M(ω)x]i < 0} > 0 for some i ∈ I(x).

(iii) ERM(M(·), q(·)) with q(ω) ≡ 0 has zero as its unique global solution.
Proof. The proof is given in the order (i) ⇒ (iii) ⇒ (ii) ⇒ (i).
(i) ⇒ (iii): It is easy to see that zero is a global solution of ERM(M(·), q(·)) with

q(ω) ≡ 0, since G(x) ≥ 0 for all x ∈ R
n
+ and G(0) = 0. Now we show the uniqueness of
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the solution. Let x̄ ∈ R
n
+ be an arbitrary vector such that G(x̄) = 0. By the definition

of G, we have

Φ(x̄, ω) = min(M(ω)x̄, x̄) = 0, a.e.,

which implies

x̄ ≥ 0, M(ω)x̄ ≥ 0, x̄TM(ω)x̄ = 0, a.e.

By the definition of a stochastic R0 matrix, we deduce x̄ = 0.
(iii) ⇒ (ii): Suppose (ii) does not hold, that is, there exists a nonzero x0 ≥ 0 such

that

P{ω : [M(ω)x0]i = 0} = 1 for all i ∈ J(x0),

P{ω : [M(ω)x0]i ≥ 0} = 1 for all i ∈ I(x0).

Then it follows from q(ω) ≡ 0 that G(x0) = 0. Moreover, it is easy to see that for
any λ > 0, λx0 is a solution of ERM(M(·), 0), i.e., zero is not the unique solution of
ERM(M(·), 0).

(ii) ⇒ (i): Assume that there exists x �= 0 such that x ≥ 0, M(ω)x ≥ 0, and
xTM(ω)x = 0, a.e. Then, since xTM(ω)x = 0, we have for almost all ω, [M(ω)x]i = 0
for all i ∈ J(x) and [M(ω)x]i ≥ 0 for all i ∈ I(x). This contradicts (ii).

For ν > 0, let us denote BΩ(ω̄, ν) := {ω : ‖ω − ω̄‖ < ν} and

suppΩ :=

{
ω̄ ∈ Ω :

∫
BΩ(ω̄,ν)∩Ω

dF (ω) > 0 for any ν > 0

}
.

Here suppΩ is called the support set of Ω. When Ω consists of countable discrete
points, i.e., Ω = {ω1, . . . , ωi, . . . } and P (ωi) = pi > 0 for all i, we have suppΩ = Ω.
In the case that there is a density function ρ such that dF (ω) = ρ(ω)dω, we have
suppΩ = S̄, where S̄ is the closure of set S = {ω ∈ Ω : ρ(ω) > 0}.

Corollary 2.3. Suppose that M(ω) is a continuous function of ω. Then M(·)
is a stochastic R0 matrix if and only if for any x ≥ 0 (x �= 0), at least one of the
following two conditions is satisfied:

(a) there exists ω̄ ∈ suppΩ such that [M(ω̄)x]i �= 0 for some i ∈ J(x);
(b) there exists ω̄ ∈ suppΩ such that [M(ω̄)x]i < 0 for some i ∈ I(x).
Proof. By the continuity of M(ω) and the definition of suppΩ, conditions (a) and

(b) in this corollary imply (a) and (b) in Theorem 2.2 (ii), respectively.
Corollary 2.4. Suppose that M(ω) is a continuous function of ω and M(ω̄) is

an R0 matrix for some ω̄ ∈ suppΩ. Then M(·) is a stochastic R0 matrix.
The following example shows that the condition that M(·) is a stochastic R0

matrix is weaker than the condition that M(ω) is continuous in ω and there is an
ω̄ ∈ suppΩ such that M(ω̄) is an R0 matrix.

Example 2.1. Let

M(ω) =

⎛
⎝−2ω ω − |ω| 0

0 ω + |ω| −2ω
0 0 0

⎞
⎠ ,

where ω ∈ Ω = [−0.5, 0.5] and ω is uniformly distributed on Ω. Clearly, for ω < 0,

M(ω) =
(

−2ω 2ω 0
0 0 −2ω
0 0 0

)
. Then x = (1, 1, 0)T satisfies M(ω)x = 0. On the other hand,
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for ω > 0, M(ω) =
(

−2ω 0 0
0 2ω −2ω
0 0 0

)
. Then x = (0, 1, 1)T satisfies M(ω)x = 0. In this

example, there is no ω ∈ Ω such that M(ω) is an R0 matrix. However, M(·) is a
stochastic R0 matrix as verified by Theorem 2.2 (ii). For any x ≥ 0 with x �= 0,
if x1 �= 0, then for any ω > 0, [M(ω)x]1 = −2ωx1 < 0. If x1 = 0 but x2 �= 0,
then for any ω < 0, [M(ω)x]1 = 2ωx2 < 0. If only x3 �= 0, then for any ω > 0,
[M(ω)x]2 = −2ωx3 < 0.

The following proposition shows a relation between M(·) and M̄ := E{M(ω)}.
Proposition 2.5. If M̄ is an R0 matrix, then M(·) is a stochastic R0 matrix.
Proof. If M(·) were not a stochastic R0 matrix, then by Theorem 2.2 (ii), there

exists x ≥ 0 such that x �= 0 and, for almost all ω, [M(ω)x]i = 0 for i ∈ J(x) and
[M(ω)x]i ≥ 0 for i ∈ I(x). Therefore, [M̄x]i = 0 for i ∈ J(x) and [M̄x]i ≥ 0 for
i ∈ I(x). This is impossible, since M̄ is an R0 matrix.

This proposition implies that for any given M̃, if M̃ is an R0 matrix, then M(·) =
M̃ + M0(·) with E{M0(ω)} = 0 is a stochastic R0 matrix. The converse of this
proposition is not true. The next proposition gives a way to construct a stochastic
R0 matrix M(·) from a given M̃ which is not necessarily an R0 matrix. Let

(2.1) Ξ(M) := {x : x ≥ 0, x �= 0, [Mx]i = 0, i ∈ J(x) and [Mx]i ≥ 0, i ∈ I(x)}.

Obviously, if Ξ(M̃) = ∅, then M̃ is an R0 matrix, and hence, by Proposition 2.5,
M(·) = M̃ + M0(·) with E{M0(ω)} = 0 is a stochastic R0 matrix.

Proposition 2.6. Let M̃ and M0(·) be such that Ξ(M̃) �= ∅ and E{M0(ω)} = 0.
Suppose that for any x ∈ Ξ(M̃), at least one of the following two conditions is satisfied:

(1) For some i ∈ J(x), E{([M0(ω)x]i)
2} > 0;

(2) For some i ∈ I(x), P{ω : [M0(ω)x]i < −b} > 0 for any b > 0.
Then M(·) = M̃ + M0(·) is a stochastic R0 matrix.

Proof. For x ∈ Ξ(M̃), these two conditions imply that the conditions in Theo-
rem 2.2 (ii) hold for M(·). For x �∈ Ξ(M̃), the same conditions also hold trivially. So
M(·) is a stochastic R0 matrix.

This proposition suggests a way to obtain a stochastic R0 matrix M(·) from an
arbitrary matrix M̃ . Specifically, we can construct a simple stochastic matrix M0(·)
such that M̃ +M0(·) is a stochastic R0 matrix, as illustrated in the following example.

Example 2.2. We consider the following matrix [3]:

M̃ =

⎛
⎜⎜⎜⎜⎝

0 0 1 −2 −3
0 0 1 −6 −3
−1 −1 0 0 0
2 6 0 0 0
3 3 0 0 0

⎞
⎟⎟⎟⎟⎠ ,

which arises from a linear programming problem in [13]. Clearly, M̃ is not an R0

matrix, and Ξ(M̃) = {x : x = (0, 0, λ, α, β)T , λ > 0, α, β ≥ 0, λ − 6α − 3β ≥ 0}. Let
ω0 be a random variable whose distribution is N (0, 1). Let

M0(ω0) =

⎛
⎜⎜⎜⎜⎝

0 0 0.5ω0 0 0
0 0 0 0 0

−0.5ω0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ .

Then for any b > 0, P{ω0 : [M0(ω0)x]1 < −b} > 0 holds for any x ∈ Ξ(M̃). Hence,
by Proposition 2.6, M̃ + M0(·) is a stochastic R0 matrix.
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The following proposition shows that the sum of a stochastic R0 matrix M(·) and
a matrix M1(·) with E{M1(ω1)} = 0 yields a stochastic R0 matrix.

Proposition 2.7. Let ω = (ω0, ω1) and M̂(ω) = M(ω0) + M1(ω1), where M(·)
is a stochastic R0 matrix, E{M1(ω1)} = 0, and M(ω0) is independent of M1(ω1).
Then M̂(·) is a stochastic R0 matrix.

Proof. If M̃ := E{M(ω0)} is an R0 matrix, then from E{M1(ω1)} = 0 and Propo-
sition 2.5, M(·)+M1(·) is a stochastic R0 matrix. Otherwise, let M0(ω0) = M(ω0)−M̃
and choose any x ∈ Ξ(M̃). Suppose that the first condition of Proposition 2.6 holds
for M0(ω0). Since M(ω0) is independent of M1(ω1), we have

E{([(M0(ω0) + M1(ω1))x]i)
2} = E{([M0(ω0)x]i)

2} + E{([M1(ω1)x]i)
2} > 0

for some i ∈ J(x). Now, suppose that the second condition of Proposition 2.6 holds
for M0(ω0), i.e., P{ω0 : [M0(ω0)x]i < −b} > 0 for some i ∈ I(x). Note that

P{ω : [(M0(ω0) + M1(ω1))x]i < −b}

≥ P{(ω0, ω1) : [M0(ω0)x]i < −b and [M1(ω1)x]i ≤ 0}

= P{ω0 : [M0(ω0)x]i < −b}P{ω1 : [M1(ω1)x]i ≤ 0}.

Since E{[M1(ω1)x]i} = 0, we have P{ω1 : [M1(ω1)x]i ≤ 0} > 0. Thus, we have

P{ω : [(M0(ω0) + M1(ω1))x]i < −b} > 0,

i.e., the second condition of Proposition 2.6 also holds for M0(ω0) + M1(ω1). Since

M̂(ω) = M(ω0) + M1(ω1) = M̃ + M0(ω0) + M1(ω1),

Proposition 2.6 ensures that M̂(·) is a stochastic R0 matrix.

3. Boundedness of solution set. In this section, the boundedness of the so-
lution set of the ERM problem (1.3) is studied.

Theorem 3.1. Let q(·) be arbitrary. Then G(x) → ∞ as ‖x‖ → ∞ with x ∈ R
n
+

if and only if M(·) is a stochastic R0 matrix.
Proof. First, we prove the “if” part. For simplicity, we denote |x| = (|x1|, . . . , |xn|)T

and sign(x) = (sign(x1), . . . , sign (xn))T for a vector x, where

sign(xi) =

⎧⎨
⎩

1, xi > 0,
0, xi = 0,
−1, xi < 0.

Note that for any a, b ∈ R, we have

2 min(a, b) = a + b− sign(a− b)(a− b)

= (1 − sign(a− b))a + (1 + sign(a− b))b

and

4(min(a, b))2 = a(1 − sign(a− b))2a + b(1 + sign(a− b))2b + 2b(1 − sign2(a− b))a

= 2a(1 − sign(a− b))a + 2b(1 + sign(a− b))b.
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For any x ∈ R
n and ω ∈ Ω, we define the diagonal matrix

D(x, ω) = diag(sign(M(ω)x + q(ω) − x)).

Then we have

‖Φ(x, ω)‖2 =
1

2
[(M(ω)x + q(ω))T (I −D(x, ω))(M(ω)x + q(ω))

+ xT (I + D(x, ω))x].(3.1)

Consider an arbitrary x ≥ 0 with ‖x‖ = 1. Suppose condition (a) in Theo-
rem 2.2 (ii) holds. Choose i ∈ J(x) such that P{ω : [M(ω)x]i �= 0} > 0. Then there
exists a sufficiently large K > 0 such that P{ω : [M(ω)x]i �= 0, |qi(ω)| ≤ K} > 0.

First, consider the case where P{ω : [M(ω)x]i < xi, |qi(ω)| ≤ K} > 0. Let

Ω1 := {ω : [M(ω)x]i < (1 − δ)xi, |qi(ω)| ≤ K},

where δ > 0. Then we have P{Ω1} > 0 whenever δ is sufficiently small. Moreover,
for any sufficiently large λ > 0, sign(λ[M(ω)x]i + qi(ω) − λxi) = −1 for any ω ∈ Ω1.
Therefore, by (1.2) and (3.1), we have

(3.2) G(λx) ≥
∫

Ω1

(λ[M(ω)x]i + qi(ω))2dF (ω) → ∞ as λ → ∞.

Next, consider the case where P{ω : [M(ω)x]i > xi, |qi(ω)| ≤ K} > 0. Let

Ω2 := {ω : [M(ω)x]i > (1 + δ)xi, |qi(ω)| ≤ K}.

Then we have P (Ω2) > 0 for a sufficiently small δ > 0. Moreover, for any sufficiently
large λ > 0, sign(λ[M(ω)x]i + qi(ω) − λxi) = 1 for ω ∈ Ω2. Hence we have

(3.3) G(λx) ≥
∫

Ω2

(λxi)
2dF (ω) → ∞ as λ → ∞.

Finally, consider the case where P{ω : [M(ω)x]i = xi, |qi(ω)| ≤ K} > 0. Let

Ω3 := {ω : [M(ω)x]i = xi, |qi(ω)| ≤ K}.

Then we have
(3.4)

G(λx) ≥
∫

Ω3

{(λxi + qi(ω))21{qi(ω)<0} + (λxi)
21{qi(ω)≥0}}dF (ω) → ∞ as λ → ∞.

Combining (3.2)–(3.4), we see that G(λx) → ∞ as λ → ∞.
Now, suppose condition (b) in Theorem 2.2 (ii) holds. Choose i ∈ I(x) such that

P{ω : [M(ω)x]i < 0} > 0. Let

Ω4 := {ω : [M(ω)x]i < −δ, |qi(ω)| < K}.

Then we have P{Ω4} > 0 for any sufficiently small δ > 0 and sufficiently large K > 0.
Moreover, for any λ > 0 large enough, λ[M(ω)x]i + qi(ω) < 0 for ω ∈ Ω4. Thus we
have

(1 − sign(λ[M(ω)x]i + qi(ω)))(λ[M(ω)x]i + qi(ω))2 = 2(λ[M(ω)x]i + qi(ω))2,



STOCHASTIC LINEAR COMPLEMENTARITY PROBLEM 489

which yields

G(λx) ≥
∫

Ω4

(λ[M(ω)x]i + qi(ω))2dF (ω) → ∞ as λ → ∞.

Since x is an arbitrary nonzero vector such that x ≥ 0, we deduce from the above
arguments that G(x) → ∞ as ‖x‖ → ∞ with x ≥ 0, provided the statement (ii) in
Theorem 2.2 holds.

Let us turn to proving the “only if” part. Suppose that M(·) is not a stochastic
R0 matrix, i.e., there exists x ≥ 0 with x �= 0 such that [M(ω)x]i = 0 for all i ∈ J(x)
and [M(ω)x]i ≥ 0 for all i ∈ I(x), a.e. For any λ > 0, from (1.2) and (3.1), we have

G(λx) =
1

2

n∑
i=1

E{(1 − sign(λ[M(ω)x]i + qi(ω) − λxi))(λ[M(ω)x]i + qi(ω))2

+ (1 + sign(λ[M(ω)x]i + qi(ω) − λxi))(λxi)
2}.(3.5)

The ith term of the right-hand side of (3.5) with xi �= 0 equals

E{(1 − sign(qi(ω) − λxi))qi(ω)2 + (1 + sign(qi(ω) − λxi))(λxi)
2}

= 2E{qi(ω)21{qi(ω}≤λxi} + (λxi)
21{qi(ω)>λxi}} ≤ 2E{qi(ω)2},

while the ith term of the right-hand side of (3.5) with xi = 0 equals

E{(1 − sign(λ[M(ω)x]i + qi(ω)))(λ[M(ω)x]i + qi(ω))2}

= 2E{(λ[M(ω)x]i + qi(ω))21{λ[M(ω)x]i<−qi(ω)}} ≤ 2E{qi(ω)2},

where the last inequality follows from 0 > λ[M(ω)x]i + qi(ω) ≥ qi(ω), implying
(λ[M(ω)x]i + qi(ω))2 ≤ qi(ω)2. So, we obtain

G(λx) ≤ E{‖q(ω)‖2} for any λ > 0.

Since x ≥ 0 with x �= 0, this particularly implies that G is bounded above on a
nonnegative ray in R

n
+. This completes the proof of the “only if” part.

The solution set of ERM(M(·), q(·)) may be bounded even if M(·) is not a stochas-
tic R0 matrix. It depends on the distribution of q(ω), as shown in the following two
propositions.

Proposition 3.2. If M(·) is not a stochastic R0 matrix, P{ω : qi(ω) > 0} > 0
for some i ∈ J(x), and P{ω : qi(ω) ≥ 0} = 1 for all i ∈ I(x), where x �= 0 is any
nonnegative vector at which the conditions (a) and (b) in Theorem 2.2 (ii) fail to hold,
then the solution set of ERM(M(·), q(·)) is bounded.

Proof. Note that

(3.6) G(0) = E{‖Φ(0, ω)‖2} =

n∑
i=1

E{qi(ω)21{qi(ω)<0}}.

For any nonnegative vector x �= 0 satisfying the conditions (a) and (b) in Theo-
rem 2.2 (ii), the proof of Theorem 3.1 indicates that

(3.7) G(λx) → ∞ as λ → 0.
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Let x �= 0 be any nonnegative vector which does not satisfy the conditions (a)
and (b) in Theorem 2.2 (ii), i.e., [M(ω)x]i = 0 for i ∈ J(x), and [M(ω)x]i ≥ 0 for
i ∈ I(x), a.e. Then by (3.1), we have

G(λx) =
∑

i∈J(x)

E{[(1 − sign(qi(ω) − λxi))qi(ω)2 + (1 + sign(qi(ω) − λxi))(λxi)
2]/2}

=
∑

i∈J(x)

{E{qi(ω)2} − E{1{qi(ω)−λxi>0}[qi(ω)2 − (λxi)
2]}},(3.8)

where the first equality follows from the assumption that P{ω : qi(ω) ≥ 0} = 1 for
i ∈ I(x) and hence [M(ω)x]i + qi(ω) ≥ 0, a.e., for i ∈ I(x). Note that

0 ≤ E{1{qi(ω)−λxi>0}[qi(ω)2 − (λxi)
2]} = E{1{qi(ω)>λxi}[qi(ω)2 − (λxi)

2]}

≤ E{1{qi(ω)>λxi}qi(ω)2} → 0 as λ → ∞,

which together with (3.8) implies

(3.9) lim
λ→∞

G(λx) =
∑

i∈J(x)

E{qi(ω)2}.

On the other hand, for any nonzero x ≥ 0, we have

(3.10)

n∑
i=1

E{qi(ω)21{qi(ω)<0}} =
∑

i∈J(x)

E{qi(ω)21{qi(ω)<0}} <
∑

i∈J(x)

E{qi(ω)2},

where the equality follows from the assumption that P{ω : qi(ω) ≥ 0} = 1 for all i ∈
I(x), and the strict inequality follows from the assumption that P{ω : qi(ω) > 0} > 0
for some i ∈ J(x). Combining (3.6), (3.9), and (3.10), we have

(3.11) G(0) < lim
λ→+∞

G(λx).

Let Λ := {x ∈ R
n
+ : G(x) ≤ G(0)}. From (3.7) and (3.11), we have supx∈Λ ‖x‖ < +∞.

Since any solution belongs to Λ, this implies that the solution set is bounded.

Proposition 3.3. If M(·) is not a stochastic R0 matrix and, for any i, P{ω :
−b ≤ qi(ω) < 0} = 1 for some b > 0 and P{ω : qi(ω) �= 0 and M(ω)x0]i = 0} =
0, where x0 �= 0 is any nonnegative vector at which the conditions (a) and (b) in
Theorem 2.2 (ii) fail to hold, then the solution set of ERM(M(·), q(·)) is empty or
unbounded.

Proof. Let x0 �= 0 be any nonnegative vector which does not satisfy the conditions
(a) and (b) in Theorem 2.2 (ii). From (1.2) and (3.1), we have

(3.12)

G(λx0) =

n∑
i=1

E{[(1 − sign(λ[M(ω)x0]i + qi(ω) − λx0
i ))(λ[M(ω)x0]i + qi(ω))2

+ (1 + sign(λ[M(ω)x0]i + qi(ω) − λxi))(λx
0
i )

2]/2}.
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For every i ∈ J(x0), we have [M(ω)x0]i = 0 and qi(ω) = 0, a.e., and hence the ith
term of the right-hand side of (3.12) is zero for any λ > 0. For every i ∈ I(x0), we
have [M(ω)x0]i ≥ 0 and qi(ω) < 0, a.e., which implies

E{(1 − sign(λ[M(ω)x0]i + qi(ω)))(λ[M(ω)x0]i + qi(ω))2}

= 2E{(λ[M(ω)x0]i + qi(ω))21{λ[M(ω)x0]i<−qi(ω),[M(ω)x0]i>0}}

+ 2E{q2
i (ω)1{[M(ω)x0]i=0}}.(3.13)

By assumption, the second term on the right-hand side of (3.13) is zero for any λ > 0,
and

E{(λ[M(ω)x0]i + qi(ω))21{λ[M(ω)x0]i<−qi(ω),[M(ω)x0]i>0}}

≤ b2P{ω : 0 < λ[M(ω)x0]i < b} → 0 as λ → ∞.

Therefore, we obtain

lim
λ→+∞

G(λx0) = 0,

but for any x ∈ R
n
+, G(x) ≥ 0. So for any γ > 0, the level set Λγ := {x : G(x) ≤ γ} is

unbounded, which means the solution set is unbounded if it is not empty.
From Theorem 3.1, we have the following necessary and sufficient condition for

the solution set of ERM(M(·), q(·)) to be bounded for any q(·).
Theorem 3.4. The solution set of ERM(M(·), q(·)) is nonempty and bounded

for any q(·) if and only if M(·) is a stochastic R0 matrix.

4. Differentiability of G. The objective function G of ERM(M(·), q(·)) is, in
general, not convex. If G is differentiable at x, then min(∇G(x), x) = 0 implies that
x is a stationary point of ERM(M(·), q(·)). The differentiability of G is studied in [3]
for the special case where M(ω) ≡ M , q(ω) = q̄ + Tω with M ∈ R

n×n, q̄ ∈ R
n,

T ∈ R
n×m being constants and T having at least one nonzero element in each row.

In this section, we will give a condition for the function G to be differentiable
under a general setting. The continuity of M(·) and q(·) is not assumed.

Definition 4.1. We say that the strict complementarity condition holds at x
with probability one if

P{ω : [M(ω)x]i + qi(ω) = xi} = 0, i = 1, . . . , n.

Obviously, this definition is a generalization of the strict complementarity condition for
the LCP. The proof for the differentiability of G at x under the strict complementarity
condition with probability one is not trivial.

For any fixed ω, if [M(ω)x]i + qi(ω)− xi �= 0 for all i, then ‖Φ(x, ω)‖2 is differen-
tiable at x and

∇x‖Φ(x, ω)‖2 = M(ω)T (I −D(x, ω))(M(ω)x + q(ω)) + (I + D(x, ω))x.

To simplify the notation, we define

(4.1) f(x, ω) := M(ω)T (I −D(x, ω))(M(ω)x + q(ω)) + (I + D(x, ω))x.

Theorem 4.2. The function g(x) :=
∫
Ω
f(x, ω)dF (ω) is continuous at x if the

strict complementarity condition holds at x with probability one.
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Proof. We will show that ‖g(x + h) − g(x)‖ → 0 as h → 0. Since

f(x, ω) − f(x + h, ω) = (M(ω)T (I −D(x, ω))M(ω) + I + D(x, ω))h

+ M(ω)T (D(x + h, ω) −D(x, ω))(M(ω)(x + h) + q(ω))

− (D(x + h, ω) −D(x, ω))(x + h),

there exist some constants c1, c2 > 0 such that

‖g(x + h) − g(x)‖ =

∥∥∥∥
∫

Ω

[f(x + h, ω) − f(x, ω)]dF (ω)

∥∥∥∥
≤ c1‖h‖ + c2

∫
Ω

‖D(x + h, ω) −D(x, ω)‖dF (ω).

Then we just need to show that∫
Ω

‖D(x + h, ω) −D(x, ω)‖dF (ω) → 0 as h → 0.

Note that

{ω : ‖D(x + h, ω) −D(x, ω)‖ �= 0} ⊂ ∪n
i=1{Ai ∪Bi},

where

Ai := {ω : [M(ω)x]i + qi(ω) − xi ≥ 0, [M(ω)(x + h)]i + qi(ω) − xi − hi ≤ 0},

Bi := {ω : [M(ω)x]i + qi(ω) − xi ≤ 0, [M(ω)(x + h)]i + qi(ω) − xi − hi ≥ 0}.

For any ε > 0, since the strict complementarity condition holds at x with probability
one, there is a δ > 0 such that

(4.2) P{ω : |[M(ω)x]i + qi(ω) − xi| < δ} < ε/2.

Let

Ci := {ω : [M(ω)x]i + qi(ω) − xi ≥ δ, [M(ω)(x + h)]i + qi(ω) − xi − hi ≤ 0}.

Then, we have

Ai ⊂ Ci ∪ {ω : |[M(ω)x]i + qi(ω) − xi| < δ},

Ci ⊂ {ω : [M(ω)h]i − hi ≤ −δ}.

Applying a similar procedure to Bi, we have

P{Ai ∪Bi} ≤ P{ω : |[M(ω)h]i − hi| ≥ δ} + P{ω : |[M(ω)x]i + qi(ω) − xi| < δ}.

By the Chebyshev inequality, there is an h0 > 0 such that for any h with ‖h‖ < h0,

P{ω : |[M(ω)h]i − hi| ≥ δ} < ε/2.

This together with (4.2) implies that g is continuous at x.
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Theorem 4.3. If the strict complementarity condition holds at any x in an open
set U ⊂ R

n with probability one, then G is Fréchet differentiable at x ∈ U and

(4.3) ∇G(x) =

∫
Ω

f(x, ω)dF (ω).

Proof. First, we will show that for almost all ω, μ{x ∈ U : [M(ω)x]i + qi(ω) =
xi} = 0 for any i, where μ is Lebesgue measure. If it were not true, then for some i

P{ω : μ{x ∈ U : [M(ω)x]i + qi(ω) = xi} > 0} > 0,

which implies

(4.4)

∫
Ω

∫
U

1{[M(ω)x]i+qi(ω)=xi}dxdF (ω) > 0.

But from the assumption and the Fubini theorem [11], we obtain∫
Ω

∫
U

1{[M(ω)x]i+qi(ω)=xi}dxdF (ω) =

∫
U

∫
Ω

1{[M(ω)x]i+qi(ω)=xi}dF (ω)dx = 0.

This contradicts (4.4), and hence for almost all ω, μ{x ∈ U : [M(ω)x]i + qi(ω) =
xi} = 0 for any i.

Note that, for any ω ∈ Ω, ‖Φ(x, ω)‖2 is locally Lipschitz and hence absolutely con-
tinuous with respect to x. For any (x, ω) such that [M(ω)x]i + qi(ω) �= xi, ‖Φ(x, ω)‖2

is differentiable with respect to x. Therefore, by the Fundamental Theorem of Calculus
for Lebesgue Integrals [11], for any x we have

(4.5) ‖Φ(x + hiei, ω)‖2 − ‖Φ(x, ω)‖2 =

∫ hi

0

[f(x + sei, ω)]ids

for almost all ω, where ei = (0, . . . , 0, 1
i
, 0, . . . , 0)T . Thus

G(x + h) − G(x)

=
n∑

i=1

∫
Ω

⎛
⎝
∥∥∥∥∥Φ

(
x +

n∑
k=i

hkek, ω

)∥∥∥∥∥
2

−
∥∥∥∥∥Φ

(
x +

n∑
k=i+1

hkek, ω

)∥∥∥∥∥
2
⎞
⎠ dF (ω).(4.6)

By (4.5), (4.6), and the Fubini theorem, we deduce that∫
Ω

∫ hi

0

[f(y + sei, ω)]idsdF (ω) =

∫ hi

0

∫
Ω

[f(y + sei, ω)]idF (ω)ds

for any i and y ∈ B(x, ‖h‖) ⊂ U, and hence

G (x + h) −G(x) − hT

∫
Ω

f(x, ω)dF (ω)

=

n∑
i=1

∫ hi

0

∫
Ω

[
f

(
x +

n∑
k=i+1

hkek + sei, ω

)]
i

dF (ω)ds−
n∑

i=1

∫ hi

0

∫
Ω

[f(x, ω)]idF (ω)ds

=

n∑
i=1

∫ hi

0

∫
Ω

⎛
⎝[

f

(
x +

n∑
k=i+1

hkek + sei, ω

)]
i

− [f(x, ω)]i

⎞
⎠ dF (ω)ds

=

n∑
i=1

∫ hi

0

(
gi

(
x +

n∑
k=i+1

hkek + sei

)
− gi(x)

)
ds,



494 HAITAO FANG, XIAOJUN CHEN, AND MASAO FUKUSHIMA

where g is defined in Theorem 4.2. From Theorem 4.2, for any ε > 0, there exists a
sufficiently small h0 > 0 such that for any h with ‖h‖ < h0,∣∣∣∣G(x + h) −G(x) − hT

∫
Ω

f(x, ω)dF (ω)

∣∣∣∣ < ε‖h‖,

which implies

|G(x + h) −G(x) − hT
∫
Ω
f(x, ω)dF (ω)|

‖h‖ → 0 as ‖h‖ → 0.

Therefore, G is Fréchet differentiable at x and (4.3) holds.
Remark. When M(ω) ≡ M and q(ω) = q̄+Tω, if [Tω]i has no mass at any point

for each i, i.e., P{ω : [Tω]i = a} = 0 for any a ∈ R, then P{ω : [M(ω)x]i + qi(ω) =
xi} = 0, i = 1, . . . , n. Therefore, if T has at least one nonzero element in each row [3],
then for all x ∈ R

n, the strict complementarity condition holds with probability one
and G is differentiable in R

n
+. This indicates that the result shown in Theorem 4.3

contains the results established in [3].
Let Fqi(s) be the distribution function of qi(ω), i.e., Fqi(s) = P{ω : qi(ω) ≤ s}.

Suppose M(ω) ≡ M . Then, we have

G(x) =

∫ +∞

−∞

n∑
i=1

(min([Mx]i + s, xi))
2dFqi(s)

=
n∑

i=1

∫ [(I−M)x]i

−∞
([Mx]i + s)2dFqi(s) +

n∑
i=1

x2
i (1 − Fqi([(I −M)x]i)).(4.7)

It is shown in [3] that for some special distribution functions, G(x) can be computed
without using discrete approximation. The following proposition shows that, under
some conditions, we can also compute ∇G(x) without using discrete approximation.

Proposition 4.4. If M(ω) ≡ M and Fqi(s) is a continuous function for all i,
then

(4.8) ∇G(x) = 2MTH(x)x + 2(I −H(x))x− 2MT v(x),

where

H(x) := diag(Fq1([(I −M)x]1), . . . , Fqn([(I −M)x]n),

v(x) :=

(∫ [(I−M)x]1

−∞
Fq1(s)ds, . . . ,

∫ [(I−M)x]n

−∞
Fqn(s)ds

)T

.

Proof. If M(ω) ≡ M and Fqi(s) is continuous for all i, then P{ω : qi(ω) = a} = 0
for any a ∈ R, and hence P{ω : [Mx]i + qi(ω) = xi} = 0 for each x ∈ R

n
+. Then, by

Theorem 4.3, G(x) is differentiable at any x ∈ R
n
+ and

∇G(x) =

∫
Ω

[MT (I −D(x, ω))(Mx + q(ω)) + (I + D(x, ω))x]dF (ω)

= MT

[∫
Ω

(I −D(x, ω))dF (ω)Mx +

∫
Ω

(I −D(x, ω))q(ω)dF (ω)

]

+

(∫
Ω

(I + D(x, ω))dF (ω)

)
x

= 2MTH(x)Mx + 2MTR(x) + 2(I −H(x))x,(4.9)
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where

R(x) :=

(∫ [(I−M)x]1

−∞
sdFq1(s), . . . ,

∫ [(I−M)x]n

−∞
sdFqn(s)

)T

.

By integration by parts, we have∫ [(I−M)x]i

−∞
sdFqi(s) = [(I −M)x]iFqi([(I −M)x]i) −

∫ [(I−M)x]i

−∞
Fqi(s)ds.

This implies that

R(x) =

(∫ [(I−M)x]1

−∞
sdFq1(s), . . . ,

∫ [(I−M)x]n

−∞
sdFqn(s)

)T

= H(x)(I −M)x− v(x).

Combining this with (4.9), we have the desired formula (4.8).
From (4.8), we see that the smoothness of G(·) depends on the smoothness of

Fqi(·), i = 1, . . . , n. If for all i, Fqi(·) is differentiable at [(I − M)x]i and ρi(·), the
derivative of Fqi(·) is continuous at [(I −M)x]i, then the Hessian matrix of G(x) can
be written as

∇2G(x) = 2MTH(x)M + 2(MTS(x) + S(x)M) − 2MTS(x)M + 2(I − S(x) −H(x))

= 2MTH(x)M + 2(I −H(x)) − 2(I −M)TS(x)(I −M),

(4.10)

where

S(x) := diag(x1ρ1([(I −M)x]1), . . . , xnρn([(I −M)x]n)).

5. Optimality conditions and error bounds. In numerical algorithms, resid-
ual functions play an important role in terminating iterations and verifying accuracy
of a computed solution. The following theorem shows the basic properties of the
residual function defined by

r(x) = ‖min(∇G(x), x)‖.

Theorem 5.1. Suppose that the strict complementarity condition holds at any x
in an open set U with probability one. Then the following statements are true.

(1) If x̄ ∈ U is a local solution of ERM(M(·), q(·)), then r(x̄) = 0.
(2) If G(·) is twice continuously differentiable at x̄ ∈ R

n
+, where r(x̄) = 0 and the

Hessian matrix ∇2G(x̄) is positive definite, then there are an open set Ū ⊂ U
and a constant τ > 0 such that x̄ is a unique local solution of ERM(M(·), q(·))
in Ū , and for all x ∈ Ū

(5.1) ‖x− x̄‖ ≤ τr(x).
Proof. From Theorem 4.3, we can write the first order optimality condition for the

ERM problem (1.3) as r(x) = 0. Now we show (5.1). Since G(·) is twice continuously
differentiable at x̄ and ∇2G(x̄) is positive definite, there is an open set Ū ⊂ U such
that ∇G(x) is a locally Lipschitz continuous and uniform P function in Ū . Applying
Proposition 6.3.1 in [7] to the nonsmooth equation min(x,∇G(x)) = 0, we obtain
(5.1).
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Corollary 5.2. If Ω = {ω1, . . . , ωN} and the strict complementarity condition
holds at x ∈ R

n
+ with probability one, then r(x) = 0 implies x is a local solution of

ERM(M(·), q(·)).
Proof. Since the strict complementarity condition holds at x ∈ R

n
+ with proba-

bility one, by (3.1), for each i, ‖Φ(x, ωi)‖2 is twice continuously differentiable and

∇2G(x) =

N∑
i=1

[M(ωi)
T (I −D(x, ωi))M(ωi) + (I + D(x, ωi))].

Since the Hessian matrix ∇2G(x) is positive semidefinite, and G(x) is a quadratic
function in B(x, ν) for a sufficiently small ν > 0, x is a local solution.

Now we consider error bounds for the case where G is not necessarily differentiable.
Let

s(x) = G(x) − min
x∈Rn

+

G(x).

When Ω = {ω1, . . . , ωN}, we can write

G(x) =
N∑
j=1

n∑
i=1

|min([M(ωj)x + q(ωj)]i, xi)|2p(ωj),

where p(ωj) is the probability of ωj . Clearly, there exist finitely many convex poly-
hedra such that G is a convex quadratic function on each polyhedron, i.e., G is a
piecewise convex quadratic function. By Theorem 2.5 in [15], we have the following
local error bound result.

Proposition 5.3. If Ω = {ω1, . . . , ωN}, then there exist constants τ > 0 and
ε > 0 such that for any x ∈ R

n
+ with s(x) ≤ ε

‖x− x∗(x)‖ ≤ τs(x)1/2,

where x∗(x) is a global solution of ERM(M(·), q(·)) closest to x under the norm ‖ · ‖.
Let us denote sγ(x) = s(x)γ for γ > 0. For a general continuous distribution of

ω, G may not be a piecewise convex function. The following example shows that the
function sγ provides a local error bound for the ERM(M(·), q(·)) with various values
of γ depending on the distribution of ω.

Example 5.1. Consider the SLCP(M(ω), q(ω)) with

M(ω) ≡

⎛
⎝1 1 1

1 1 −1
1 0 −1

⎞
⎠ , q(ω) =

⎛
⎝−1
−1
ω

⎞
⎠ ,

where ω is a random variable with suppΩ ⊂ [−1, 0]. It is easy to check that M(ω) is an
R0 matrix. For any ω, the solution set of LCP(M(ω), q(ω)) is {(x1, 1− x1, 0)T : x1 ∈
[−ω, 1]}∪{(− 1

2ω+ 1
2 , 0,

1
2ω+ 1

2 )T }. Let ρ(ω) be the density function of ω. We consider
the following two cases: ρ(ω) ≡ 1 and ρ(ω) = 2(ω + 1). Clearly, x∗ = (1, 0, 0)T is the
unique global solution of ERM(M(·), q(·)) and r(x∗) = 0 for these two cases. But for
any x = (x1, 1− x1, 0)T with x1 ∈ [0, 1], if ρ(ω) ≡ 1, then s(x) = (1− x1)

3/2/
√

3, but
if ρ(ω) = 2(ω + 1), then s(x) = (1 − x1)

2/
√

6. Noticing that ‖x− x∗‖ =
√

2(1 − x1),
we have ‖x− x∗‖ ≤ τsγ(x), where γ depends on the distribution of ω. So the general
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form of local error bound for ERM(M(·), q(·)) with continuous random variables is
difficult to obtain unless the information on the distribution of ω is known.

Theorem 5.4. Let M(·) be a stochastic R0 matrix. Then for any ε > 0, there
exists τ > 0 such that for each x ∈ R

n
+ with s(x) > ε

‖x− x∗(x)‖ ≤ τs(x)1/2,

where x∗(x) is a global solution of ERM(M(·), q(·)) closest to x under the norm ‖ · ‖.
Proof. If the assertion were not true, then for any positive integer k, there exists

xk with s(xk) > ε such that

‖xk − x∗(xk)‖ > ks(xk)1/2 > kε1/2.

Since M(·) is a stochastic R0 matrix, by Theorem 3.4 the global solution set of
ERM(M(·), q(·)) is nonempty and bounded. Therefore, ‖xk‖ → ∞ as k → ∞ and

(5.2)
s(xk)1/2

‖xk‖ ≤ ‖xk − x∗(xk)‖
k‖xk‖ → 0 as k → ∞.

Let {xnk/‖xnk‖} be a convergent subsequence of {xk/‖xk‖}. Note that

lim
k→∞

s(xnk)1/2

‖xnk‖ = lim
k→∞

(G(xnk) − minx∈Rn
+
G(x))1/2

‖xnk‖ = lim
k→∞

G(xnk)1/2

‖xnk‖

= lim
k→∞

(∫
Ω

n∑
i=1

∣∣∣∣min

(
[M(ω)xnk ]i + qi(ω)

‖xnk‖ ,
xnk
i

‖xnk‖

)∣∣∣∣
2

dF (ω)

)1/2

.

Since for any x with ‖x‖ = 1,

∫
Ω

n∑
i=1

|min([M(ω)x]i + qi(ω), xi)|2dF (ω) ≤
∫

Ω

(‖M(ω)‖2 + ‖q(ω)‖2)dF (ω) + 1 < ∞,

by the dominated convergence theorem, we obtain

lim
k→∞

s(xnk)1/2

‖xnk‖ =

(∫
Ω

n∑
i=1

|min([M(ω)x̂]i, x̂i)|2dF (ω)

)1/2

< ∞,

where x̂ is an accumulation point of {xnk/‖xnk‖}. This, together with (5.2) and
s(xnk)1/2/‖xnk‖ ≥ 0, yields

∫
Ω

n∑
i=1

|min([M(ω)x̂]i, x̂i)|2dF (ω) = 0,

which implies that x̂ is a solution of the ERM(M(·), 0). Since ‖x̂‖ = 1, this contradicts
the assumption that M(·) is a stochastic R0 matrix from Theorem 2.2 (iii).

Remark. If Ω contains only one element ω and LCP(M(ω), q(ω)) has a solution,
then error bounds in Theorems 5.1 and 5.4 reduce to the local and global error bounds
for the R0 matrix LCP given in [16]. Hence the two theorems are extensions of error
bounds for the R0 matrix LCP given in [16] to the stochastic R0 matrix LCP in the
ERM formulation.
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6. Examples and numerical results. In this section, we report numerical
results of four examples of the stochastic R0 matrix LCP in the ERM formulation.

Let the measure of feasibility of x ∈ R
n
+ with tolerance ε ≥ 0 be defined by

(6.1) relε(x) = P{ω : [M(ω)x]i + qi(ω) ≥ −ε, i = 1, . . . , n}.

This measure indicates how much we may expect that x satisfies the constraints
M(ω)x + q(ω) ≥ 0 (with some tolerance).

Example 6.1. We use M̃ and M0(ω0) given in Example 2.2, and

M1(ω
′) =

⎛
⎜⎜⎜⎜⎝

0 0 0 −ω1 0
0 0 0 0 −0.4 − 0.4 lnω2

0 0 0 0 0

ω1 0 0 −2
√

3ω3 −2
√

3ω3

0 0.4 + 0.4 lnω2 0 −3ω4 3ω4

⎞
⎟⎟⎟⎟⎠ ,

where ω′ = (ω1, . . . , ω4)
T with the distributions of ω1, ω2, ω3, ω4 being U [−0.8, 0.8],

U [0, 1], N (0, 1), and N (0, 1), respectively. Let ω = (ω0, ω1, . . . , ω4)
T and M(ω) =

M̃ +M0(ω0) +M1(ω
′). From Example 2.2, we know that M̃ +M0(ω0) is a stochastic

R0 matrix. It is easy to verify that E{M1(ω
′)} = 0. Hence by Proposition 2.7, M(·)

is a stochastic R0 matrix.
We set q(ω) = q̃ + q0(ω), where q̃ is a constant vector and E{q0(ω)} = 0. In this

example, we choose

q0(ω) = (0.1ω0, 0.1ω0, 0,−2
√

3ω3,−3ω4)
T

with three different cases for q̃,

q̃1 = (2, 3, 100,−180,−162)T , q̃2 = (−5,−5, 0, 10, 10)T , q̃3 = (−5,−5,−5,−5,−5)T .

The deterministic LCP(M̃, q̃i), i = 1, 2, 3, have a unique solution (36, 18, 0, 0.25, 0.5)T ,
multiple solutions (0, 0, λ, 0, 0)T with λ ≥ 5, and no feasible solution, respectively.

For all qi(ω), we can check that for any x = (x1, . . . , x5)
T ∈ R

5
+ with xi �= 0, i =

1, 2, the strict complementarity condition holds at x with probability one and so
∇G(x) exists at these points. Hence we can use a stochastic approximation algorithm
[2,14,18] to find a minimizer of G(x) in R

n
+. The iterative formula is given by

(6.2) xk+1 = max(xk − akf(xk, ωk), 0),

where f(x, ω) is defined by (4.1), ak is a stepsize satisfying
∑∞

k=1 ak = ∞ and ak → 0,
and ωk is the kth sample of ω. By the convergence theorems of stochastic approx-
imation algorithms (see [2, Theorem 2.2.1] and [14, Theorem 5.2.1]), the generated
sequence {xk} will converge to a connected set S such that every x̄ ∈ S satisfies
min(g(x̄), x̄) = 0 with g(x) defined in Theorem 4.2. If x̄i �= 0, i = 1, 2, then by
Theorem 4.3, ∇G(x̄) = g(x̄). In this example, ak is chosen as

ak =

⎧⎪⎪⎨
⎪⎪⎩

0.003, k ≤ 104,
0.0025, 104 < k ≤ 105,
0.002, 105 < k ≤ 5 × 105,

1
k0.6 , 5 × 105 < k ≤ 2 × 106.

When k ≥ 5× 105, we use the averaging technique proposed by [18] to accelerate the
convergence.
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Table 6.1

Simulation results for Example 6.1 where E{M(ω)} is not an R0 matrix.

x1 x2 x3 x4 x5 G(x) r(x)

q̃1 = (2, 3, 100, −180, −162)T

min 39.5439 23.298 0 0.2079 0.345 7.2405 0.0115

max 40.1396 23.5793 0.0096 0.3804 0.5413 7.5741 0.6486

average 39.7865 23.4563 0.0014 0.2610 0.4635 7.413 0.15826

x̃ 36 18 0 0.25 0.5 197.03 12025

q̃2 = (−5, −5, 0, 10, 10)T

min 0.0004 0.0044 11.4092 0 0 1.8518 0

max 0.0030 0.0154 11.6959 0 0 1.9037 0.002

average 0.0008 0.0068 11.5410 0 0 1.8747 4.44 × 10−5

x̃ 0 0 5 0 0 3.1428 0.5718

q̃3 = (−5, −5, −5, −5, −5)T

min 0.004 1.3915 5.7993 0.0005 0.1137 51.652 0.0440

max 0.0377 1.5017 5.896 0.0186 0.2343 51.943 5.2424

average 0.011 1.4347 5.8414 0.003 0.1555 51.734 1.2536

The stochastic approximation algorithm is a local optimization algorithm. To
avoid being trapped in a local minimum, for each q̃i, i = 1, 2, 3, we executed 36 times
simulation from different initial points x0 = (10l, 10l′, 0, 0, 0)T , l, l′ ∈ {0, 1, . . . , 5}.
The step size ak and initial points were chosen based on suggestions for stochastic
approximation algorithms in [14].

For each q̃i, the information on the last iterate xkmax, where kmax = 2 × 106,
obtained by (6.2) is shown in Table 6.1. The columns labeled as “G(x)” and “r(x)”
show the respective values obtained by the Monte Carlo method with 106 samples.
The row labeled as “average” shows the average of the values obtained from 36 dif-
ferent initial points. The rows labeled as “min” and “max” indicate the interval of
those values, which represents the variability of the values obtained from 36 different
initial points.

Recall that the EV method solves the deterministic LCP(M̃, q̃). Let x̃ be a
solution of LCP(M̃, q̃). For q̃2 = (−5,−5, 0, 10, 10)T , since there are multiple solutions
(0, 0, λ, 0, 0)T with λ ≥ 5, G(x), and r(x) are evaluated at x̃ = (0, 0, 5, 0, 0)T . There
is no feasible solution of LCP(M̃, q̃) with q̃3 = (−5,−5,−5,−5,−5)T .

By using the Monte Carlo method with 106 samples, we evaluated the measure
of feasibility relε defined by (6.1) for the case of q̃1 = (2, 3, 100,−180,−162)T , at
x̃ = (36, 18, 0, 0.25, 0.5)T and at the last iterates obtained by the iterative formula
(6.2) from 36 different initial points. The results are presented in Table 6.2. The row
labeled as “ave.relε” shows the average values of relε(x

kmax) obtained at the 36 last
iterates xkmax. For each q̃i and initial points, the computational time for obtaining
the values in Table 6.1 is about 185 seconds by MATLAB 7.0 with a computer with
a Pentium 4 3.06 GHz CPU.

Example 6.2. In this example, we consider the case where M(ω) ≡ M̃ is a
P matrix and q(ω) has continuous distribution. In this case, the EV formulation
LCP(M̃, q̃) has a unique solution x̃. The objective function G of the ERM formula-
tion is twice continuously differentiable and the values of G(x), ∇G(x), and ∇2G(x)
can be computed by (4.7), (4.8), (4.10), respectively, without resorting to stochastic
approximation.

Let q(ω) = q̃ + q0(ω), where q̃ = E{q(ω)}, q0(ω) = Bω, ω = (ω1, ω2, ω3)
T ∈
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Table 6.2

relε(x̃) and average of relε(xkmax) for Example 6.1 with q̃1 in Table 6.1.

ε 0.0 0.1 0.2 0.5 1

relε(x̃) 0.0018 0.0581 0.2971 0.3236 0.3417

ave.relε(x
kmax) 0.3084 0.7190 0.9007 0.9488 0.9518

Table 6.3

Simulation results for Example 6.2 where E{M(ω)} is a P matrix.

n = 20 n = 50 n = 100
r(x) G(x) r(x) G(x) r(x) G(x)

x̃ 97.39 180.77 168.04 427.58 307.42 823.8

x̄ 6.17 × 10−8 75.78 5.14 × 10−8 167.07 1.34 × 10−7 293.72
‖x̃− x̄‖ 7.51 21.03 38.18

Table 6.4

relε(x̃) and relε(x̄) for Example 6.2.

n = 20 n = 50 n = 100
ε 0 1 5 0 1 5 0 1 5
relε(x̃) 0.2507 0.3387 0.6615 0.2072 0.2930 0.6152 0.1856 0.2709 0.5934
relε(x̄) 0.3863 0.4955 0.8049 0.2712 0.3713 0.7225 0.2208 0.3193 0.6723

N (0, I), B ∈ R
n×3 is 100% dense, and the elements of B are randomly generated

with the uniform distribution U(0, 5). We use Example 4.4 of [4] to generate M̃ and
q̃. First, we randomly generate 100% dense A ∈ R

n×n and q̄ ∈ R
n whose elements

are uniformly distributed in (−5, 5). Then we use the QR decomposition of A to get
an upper triangular matrix N , and obtain a triangular matrix M̃ by replacing the
diagonal elements of N by their absolute values.

We first use Lemke’s method [8] to find a solution x̃ of LCP(M̃, q̃), and then take
x̃ as an initial point to find a local solution x̄ of the ERM formulation by applying
the semismooth Newton method [7] to the equation min(∇G(x), x) = 0.

The numerical experiments were carried out for n = 20, 50, and 100. For each n,
we generated 100 problems and solved them by the above-mentioned procedure. The
figures presented in Table 6.3 are the average of the results obtained in this manner.

The measures relε of feasibility at x̃ and x̄ obtained by the EV method and the
ERM method, respectively, are presented in Table 6.4.

Example 6.3. To illustrate the application of stochastic R0 matrix linear com-
plementarity problems, we use a simple transportation network shown in Figure 6.1,
which is based on an example of the deterministic traffic equilibrium network model
in [6].

In the network, two cities West and East are connected by two two-way roads
and one one-way road. More specifically, the network consists of five links, L1, L2,
L3, R1, R2, where L1, L2, L3 are directed from West to East, and R1 and R2 are
the returns of L1 and L2, respectively. L1-R1 is a mountain road, and L2-R2 and L3
are seaside roads. We are interested in the traffic flow between the two cities. The
Wardrop equilibrium principle states that each driver will choose the minimum cost
route between the origin-destination pair, and through this process the routes that
are used will have equal cost; routes with costs higher than the minimum will have
no flow. In a deterministic model, the parameters in the demand and cost function
are fixed, and the problem can be formulated as a (deterministic) LCP based on the
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Fig. 6.1. Road network.

Wardrop equilibrium principle.
In practice, however, the traffic condition will be significantly affected by some

uncertain factors such as weather. So we want to estimate the traffic flow and the
travel time that are most likely to occur, before we know such uncertain factors.1

We suppose that there are three possible uncertain weather conditions; sunny,
windy, and rainy. On a sunny day, the network is free from traffic congestion and
the travel times of all roads are constant, which are given as (c1, c2, c3, c4, c5)

T =
(1000, 950, 3000, 1000, 1300)T , where c1, c2, c3, c4, c5 denote the travel times of roads
L1, L2, L3, R1, R2, respectively. On a windy day, the seaside roads suffer from traffic
jams due to congestion, and the travel times of the roads in the whole network are
given by ⎛

⎜⎜⎜⎜⎝
c1
c2
c3
c4
c5

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 60 0 0 20
0 0 80 0 0
0 0 0 0 0
0 4 0 0 100

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
v1

v2

v3

v4

v5

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝

1000
950
3000
1000
1300

⎞
⎟⎟⎟⎟⎠ ,

where v1, v2, v3, v4, v5 denote the traffic volumes of roads L1, L2, L3, R1, R2, respec-
tively. On the other hand, on a rainy day the mountain roads suffer from traffic jams,
and the travel times of the roads in the whole network are given by⎛

⎜⎜⎜⎜⎝
c1
c2
c3
c4
c5

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

40 0 0 20 0
0 0 0 0 0
0 0 0 0 0
8 0 0 80 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
v1

v2

v3

v4

v5

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝

1000
950
3000
1000
1300

⎞
⎟⎟⎟⎟⎠ .

Moreover, trip demands between the two cities are higher on a sunny day than
on a windy or rainy day. Specifically, (d1, d2)

T = (260, 170)T on a sunny day and
(d1, d2)

T = (160, 70)T on a windy or rainy day, where d1 and d2 are trip demands
from West to East and from East to West, respectively.

It is convenient to represent the travel cost functions and trip demands in a unified

1It should be noted that we do not intend to construct a traffic equilibrium model in which the
drivers choose their routes under uncertainty.
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manner as follows:

c(v, ω) = H(ω)v + h,

where

c(v, ω) = (c1(v, ω), . . . , c5(v, ω))T ,

H(ω) =

⎛
⎜⎜⎜⎜⎝

40α(ω) 0 0 20α(ω) 0
0 60β(ω) 0 0 20β(ω)
0 0 80β(ω) 0 0

8α(ω) 0 0 80α(ω) 0
0 4β(ω) 0 0 100β(ω)

⎞
⎟⎟⎟⎟⎠ ,

α(ω) =
1

2
ω(ω − 1), β(ω) = ω(2 − ω), h = (1000, 950, 3000, 1000, 1300)T .

Here Ω = {ω1, ω2, ω3} with ω1 = 0, ω2 = 1, ω3 = 2 represents the set of uncertain
events of the weather, {sunny, windy, rainy}, with probabilities p1 = 1

2 , p2 = 1
4 ,

p3 = 1
4 , respectively. Also, the traffic flow v = (v1, v2, v3, v4, v5)

T should satisfy2

v ≥ 0, Bv ≥ d(ω),

where

B =

(
1 1 1 0 0
0 0 0 1 1

)
, d(ω) =

(
260 − 100(α(ω) + β(ω))
170 − 100(α(ω) + β(ω))

)
.

By Wardrop’s principle, for each event ω ∈ Ω, the traffic equilibrium problem can
be formulated as LCP(M(ω), q(ω)) with

M(ω) =

(
H(ω) −BT

B 0

)
, q(ω) =

(
h

−d(ω)

)
.

The solutions x(ωi) of LCP(M(ωi), q(ωi)), i = 1, 2, 3 express the equilibrium traffic
flow on each link as well as the minimum travel time between each origin-destination
pair, on a sunny day, a windy day, and a rainy day, respectively. The average traf-
fic flow is given by (E{x1(ω)}, . . . , E{x5(ω)}), and the average travel time on each
direction is given by (E{x6(ω)}, E{x7(ω)}).

On the other hand, the average travel costs and demands are given by

E{c(v, ω)} =

⎛
⎜⎜⎜⎜⎝

10 0 0 5 0
0 15 0 0 5
0 0 20 0 0
2 0 0 20 0
0 1 0 0 25

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
v1

v2

v3

v4

v5

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝

1000
950
3000
1000
1300

⎞
⎟⎟⎟⎟⎠ ,

E{d(ω)} =

(
210
120

)
,

2For the purpose of our presentation, we may replace the equality constraint Bv = d(ω) by the
inequality constraint. In practice, this change will not affect the solution of the problem.
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Table 6.5

Traffic flow and travel time for Example 6.3.

EV solution x̃ (120, 90, 0, 70, 50, 2550, 2640)
ERM solution x̄ (84, 84, 21, 80, 20, 975, 1000)

x(ω1 ) (0, 260, 0, 170, 0, 950, 1000)

x(ω2 ) (955/6, 5/6, 0, 70, 0, 1000, 1000)

x(ω3 ) (0, 160, 0, 3.75, 66.75, 950, 1300)
E{x(ω)} (39.8, 170.2, 0, 103.4, 16.6, 962.5, 1075)
E{||x(ω) − x̃||}, ‖E{x(ω)} − x̃|| 2239.66, 2232.60
E{||x(ω) − x̄||}, ‖E{x(ω)} − x̄|| 222.42, 127.16

which are exactly the same as those of the five-link example in [6].
Below we compare the estimates of the traffic flows and travel time obtained by

the EV formulation and the ERM formulation.
The solution of the EV formulation, LCP(E{M(ω)}, E{q(ω)}), is denoted by x̃.

The ERM formulation for this example is the problem of minimizing the function

G(x) =

3∑
i=1

pi||min(x,M(ωi)x + q)||2.

We denote the solution by x̄. In Table 6.5, we report numerical results.
It is observed from x̃3 = x(ωi) = 0, i = 1, 2, 3 in Table 6.5 that the user-optimal

load pattern estimated from the EV formulation has no flow on L3, which is the same
as the user-optimal traffic pattern estimated from the LCPs for a sunny day, a windy
day, and a rainy day, respectively. However, the estimated total travel time x̃6 + x̃7 =
5190 from the EV formulation is larger than the total travel time obtained from the
LCP for any day. On the other hand, the user-optimal traffic pattern estimated from
the ERM formulation has light flow on L3 and the total travel time x̄6 + x̄7 = 1975
is close to x6(ω

i) + x7(ω
i), i = 1, 2, 3.

The two formulations yield different estimates of the user-optimal traffic pattern
and travel time, and both solutions, x̄ and x̃, try to explain the phenomenon in the
real world. The EV formulation uses the average of data to estimate the user-optimal
traffic pattern. The ERM formulation uses the least square method to find a traffic
pattern which has minimum total error to each user-optimal traffic pattern for each
day. It is worth mentioning that, as far as this example is concerned, x̄ may be
considered closer to the realized traffic patterns than x̃ because E{‖x(ω) − x̃‖} >
E{‖x(ω) − x̄‖} and ‖E{x(ω)} − x̃‖ > ‖E{x(ω)} − x̄‖.

Now, we use this example to show that the theoretical results given in this paper
substantially extend the results in [3]. It is easy to verify that the matrix E{M(ω)}
is an R0 matrix. By Proposition 2.5, M(·) is a stochastic R0 matrix. Hence by
Theorem 3.1 the solution set of ERM(M(·), q(·)) is nonempty and bounded. However,
for each ωi, M(ωi) is not an R0 matrix. Hence the statement on the solution set cannot
be obtained by using the results in [3].

Example 6.4. The last example is a simplified control problem: Let ω̂ ∈ R
n be

the system parameter. Based on prior experience, we assume that ω̂ is generated from
N (a,B). At each time t, we have the following observer:

(6.3) yt+1 = Xtω̂ + Ftvt,

where Xt ∈ R
m×n is a known input, Ft ∈ R

m×r is a known matrix, and vt ∈ R
r

is an unknown noise which is independent identically and normally distributed with
E{vt} = 0, E{vtvTt } = I.
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Suppose B � 0 and FtF
T
t � 0. By the Kalman filter theory [1], we have the

following recursive estimation for the parameter ω̂:

ωt+1 = ωt + Kt+1(yt+1 −Xtωt),

Kt+1 = BtX
T
t (XtBtX

T
t + FtF

T
t )+,

Bt+1 = Bt −BtX
T
t K

T
t+1,(6.4)

ω0 = a, B0 = B,

where A+ denotes the pseudoinverse of matrix A. Then the posterior distribution of
ω̂ is given by N(ωt, Bt). The control law ut is obtained as a solution of the following
convex quadratic program:

min ct(ω̂)Tu +
1

2
uTQt(ω̂)u

s.t. At(ω̂)u ≤ bt(ω̂)(6.5)

u ≥ 0,

where Qt(ω̂), At(ω̂) are matrices and ct(ω̂), bt(ω̂) are vectors. The first order opti-
mality condition of (6.5) is equivalent to the LCP(Mt(ω̂), qt(ω̂)) with

Mt(ω̂) =

(
Qt(ω̂) At(ω̂)T

−At(ω̂) 0

)
, qt(ω̂) =

(
ct(ω̂)
bt(ω̂)

)
.

In traditional adaptive control, we replace the unknown parameter ω̂ by its estimate
ωt in the quadratic program (6.5) to obtain an approximation ǔt of the control law
ut for each t, that is, ǔt is the vector whose elements are the first n components of
the solution of the LCP(Mt(ωt), qt(ωt)).

If ωt is far away from the parameter ω̂, the error of ǔt is big and will cause
trouble in some situations. Hence we take the variance of the estimate into account
by using the solution ūt of the ERM formulation for SLCP(Mt(ω), qt(ω)) with ω ∼
N (ωt, Bt). Here we report numerical results for a tracking problem with the ARX
model yt+1 = ω̂(1)yt + ω̂(2)ut + vt. The controller ut would be designed so that yt+1

can track a given trajectory exp(0.5t). Let the performance function be p(ut, ω) :=
(ω(1)yt + ω(2)ut − exp(0.5t))2. Then, from

p(ut, ω) = (ω(2))2u2
t − 2(exp(0.5t) − ω(1)yt)ω

(2)ut + (exp(0.5t) − ω(1)yt)
2,

we have ct(ω) = −2(exp(0.5t) − ω(1)yt)ω
(2), Qt(ω) = 2(ω(2))2. We set Xt = (yt, ut)

and choose a = (0, 1)T , B =
(
0.25 0
0 4

)
, Ft = 1, At(ω) ≡ 1, bt(ω) = 4 + 2(ω(2))2.

For k ≥ 1, we generate a true parameter ω̂k from N (1, 1) and noise {vt} from
N (0, 1). We solve the ERM formulation for SLCP(Mt(ω), qt(ω)) with ω ∼ N (ωt, Bt)
to obtain ūk

t . We then set Xt = (ykt , ū
k
t ) and use (6.3) and (6.4) to obtain ykt+1, ωt+1,

and Bt+1. We also solve LCP(Mt(ωt), qt(ωt)) and the EV formulation of SLCP(Mt(ω),
qt(ω)) with ω ∼ N (ωt, Bt) to get ǔk

t and ũk
t , respectively.
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Table 6.6

Average performance for Example 6.4.

t 1 2 3 4 5
σ̄t 1.0103 1.9764 2.286 1.6755 1.8693
σ̌t 1.7053 3.0257 2.3345 1.7385 1.8918
σ̃t 1.2425 2.5505 2.3852 1.8015 2.0903

For the purpose of comparison, we define the average performance (for k =
1, 2, . . . , 100) of these formulations by

σ̄t :=
1

100

100∑
k=1

(ūk
t − u∗

t (ω̂
k))2, t = 1, 2, 3, 4, 5,

σ̌t :=
1

100

100∑
k=1

(ǔk
t − u∗

t (ω̂
k))2, t = 1, 2, 3, 4, 5,

σ̃t :=
1

100

100∑
k=1

(ũk
t − u∗

t (ω̂
k))2, t = 1, 2, 3, 4, 5,

where u∗
t (ω̂

k) is obtained by solving LCP(Mt(ω̂
k), qt(ω̂

k)) with true parameter ω̂k.
From the results shown in Table 6.6, we find that the ERM formulation has

better performance than LCP(Mt(ωt), qt(ωt)) and the EV formulation in the sense
that σ̄t < σ̌t and σ̄t < σ̃t hold for all t = 1, 2, 3, 4, 5. This suggests that ūk

t is a better
control law for ω̂k than ũk

t and ūk
t in all cases.

7. Final remark. This paper proves that a necessary and sufficient condition
for the ERM(M(·), q(·)) having a nonempty and bounded solution set is that M(·)
is a stochastic R0 matrix. Proposition 2.5 shows that if the matrix E{M(ω)} is an
R0 matrix, then M(·) is a stochastic R0 matrix. Moreover, Example 6.1 shows that
there are many cases where M(·) is a stochastic R0 matrix, but E{M(ω)} is not an
R0 matrix, and the EV formulation LCP(E{M(ω)}, E{q(ω)}) either has no solution
or has an unbounded solution set. Therefore, the condition for the ERM(M(·), q(·))
having a nonempty and bounded solution set is weaker than the condition for the
EV formulation having a nonempty and bounded solution set. Furthermore, when
ERM(M(·), q(·)) has a solution x̄ and LCP(E{M(ω)}, E{q(ω)}) has a solution x̃, the
residuals always satisfy

G(x̄) = E{‖min(M(ω)x̄ + q(ω), x̄)‖2} ≤ E{‖min(M(ω)x̃ + q(ω), x̃)‖2} = G(x̃).

Example 6.1 shows that G(x̄) can be much smaller than G(x̃). Moreover, the values
of relε shown in Table 6.2 reveal that, for each tolerance level ε ≥ 0, the number
of ωi at which M(ωi)x̄ + q(ωi) < −ε holds is much less than the number of ωi at
which M(ωi)x̃ + q(ωi) < −ε holds. Example 6.2 shows that a local solution x̄ of
ERM(M(·), q(·)) may conveniently be obtained from a solution x̃ of the EV formu-
lation. Examples 6.3 and 6.4 show that the EV formulation and ERM formulation
express different concerns in our real life. Solving the EV formulation is usually less
expensive computationally than solving the ERM formulation. Nevertheless, since x̄
is generally expected to have better reliability than x̃, we may recommend the ERM
method to those decision makers who do not want to take the high risk of violating
the conditions M(ω)x + q(ω) ≥ 0.
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PEELING OFF A NONCONVEX COVER OF AN ACTUAL CONVEX
PROBLEM: HIDDEN CONVEXITY∗
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Abstract. Convexity is, without a doubt, one of the most desirable features in optimization.
Many optimization problems that are nonconvex in their original settings may become convex after
performing certain equivalent transformations. This paper studies the conditions for such hidden
convexity. More specifically, some transformation-independent sufficient conditions have been derived
for identifying hidden convexity. The derived sufficient conditions are readily verifiable for quadratic
optimization problems. The global minimizer of a hidden convex programming problem can be
identified using a local search algorithm.

Key words. convexity, hidden convexity, hidden-convex function, hidden-convex programming
problem, global optimization
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1. Introduction. We consider the following optimization problem:

(P ) min g0(x)

s.t. gk(x) ≤ bk, k = 1, . . . ,m,

x ∈ X,

where gk : Rn → R, k = 0, 1, . . . ,m, are second-order continuously differentiable
functions and

(1.1) X = {x ∈ Rn | li ≤ xi ≤ ui, i = 1, . . . , n}.

Without loss of generality, we assume in this paper that 0 < li < ui for all i = 1, . . . , n.
When all of the functions gk, k = 0, 1, . . . , m, are convex, problem (P) is a convex

programming problem that can be solved efficiently with many existing algorithms.
Convexity plays a central role in optimization theory. In addition to the many

desirable properties that are enjoyed by convexity, convexity guarantees a local min-
imum to be a global solution at the same time. Observations and experiences of
optimization, however, often reveal that convexity in many situations is a property
that is associated with a given representation space. More specifically, an equivalent
transformation may convert a nonconvex problem in its original setting to a convex
problem in a transformed space. In this sense, convexity could be hidden, if the
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representation space is “inappropriate.” The purpose of this paper is to investigate
the conditions for identifying such seemingly nonconvex problems that are actually
hidden convex.

It is worth mentioning that convexity has been extended to various forms of gen-
eralized convexity in the literature [2], [3], [5], [10], [14], [15]. Examples of generalized
convexities include pseudoconvexity and quasiconvexity. For many years, researchers
have been exploring the situations in which the convexity condition can be relaxed to
a certain degree, while, at the same time, some desirable properties that are similar
to those enjoyed by convex functions are preserved.

Horst [8] discussed the concept of range and domain transformations that can con-
vexify some nonconvex functions. Li et al. [12] derived specific sufficient conditions
under which some nonconvex functions can be convexified by a domain transforma-
tion; especially, the relationship between monotonicity and domain transformation
has been recently discussed in [11], [12], [16]. This paper considers specific sufficient
conditions under which certain nonconvex functions can be convexified by using a
range transformation or using both domain and range transformations. The results
are then applied to the study of hidden-convex programming problems.

While the hidden convexity that can be identified by a domain transformation is
confined to monotone functions [12], the hidden convexity that can be identified by a
range transformation is limited to a subset of pseudoconvex functions. The most in-
teresting finding of this paper is that a combined domain and range transformation is
capable of identifying a general class of hidden-convex functions that goes beyond the
class of second order differentiable quasiconvex functions. It is also worth pointing out
that there is a significant difference between the methodologies involved in proving a
hidden convexity only by a domain transformation [12] and those used in revealing a
hidden convexity by a combined range and domain transformation. The identification
of a general class of hidden-convex functions that is reported in this paper is accom-
plished by introducing a new concept of the constrained minimum eigenvalue of the
Hessian of a transformed function, which requires a more complicated analysis than
does the traditional approach of checking the minimum eigenvalue of the Hessian of
a transformed function, as was used in [12] for a domain transformation.

This paper is organized as follows. In section 2, we derive some results on con-
strained minimum eigenvalues that are essential in later derivation for hidden convex-
ity. Hidden convexity is introduced in section 3, and sufficient conditions are devel-
oped to recognize hidden-convex functions. The relationships among hidden convexity,
pseudoconvexity, quasiconvexity, and monotonicity are discussed. Section 4 extends
the earlier investigation to sufficient conditions for hidden-convex programming prob-
lems. The most promising results of this paper appear in section 5, in which im-
plementable sufficient conditions are obtained for the identification of hidden-convex
quadratic optimization problems. The paper finally concludes in section 6 with some
discussion of future research topics.

2. Preliminaries.

2.1. Minimum eigenvalue and constrained minimum eigenvalue. Let
X ⊂ Rn be a compact set and Sn be the unit sphere in Rn, {d ∈ Rn | ‖d‖ = 1}.
Let A(x) = (ai,j(x))n×n be a symmetric matrix defined on X with each ai,j(x) being
assumed to be continuous and

b(x) = (b1(x), . . . , bn(x))T(2.1)



HIDDEN CONVEXITY 509

be an n-dimensional vector function defined on X with each bi(x) being assumed to
be continuous. We define the following for given matrix A(x), vector b(x), and a
positive number q:

λ = min
x∈X,d∈Sn

dTA(x)d,(2.2)

γ = min
x∈X,d∈Sn,bT (x)d=0

dTA(x)d,(2.3)

Bq(x) = qb(x)bT (x) + A(x),

μq = min
x∈X,d∈Sn

dTBq(x)d.

Lemma 2.1. For any q > 0,

λ ≤ μq ≤ γ

and

lim
q→+∞

μq = γ.

Proof. The first part of the lemma is obvious. Therefore,

(2.4) lim sup
q→+∞

μq ≤ γ.

For the second part of the lemma, we thus only need to prove that

(2.5) lim inf
q→+∞

μq ≥ γ.

Suppose that for any k, there exist qk > k, dk ∈ Sn, and xk ∈ X, such that

(2.6) dTk

(
qkb(xk)b

T (xk) + A(xk)
)
dk ≤ γ − α0,

where α0 is a positive number.
Because Sn and X are all compact sets, there must exist a subsequence {kj} of

{k}, such that

lim
j→∞

dkj = d0, lim
j→∞

xkj = x0,

where d0 ∈ Sn and x0 ∈ X. We thus have the following from (2.6):

(2.7) dT0 A(x0)d0 + lim sup
j→∞

qkjd
T
kj
b(xkj )b

T (xkj )dkj ≤ γ − α0.

Because kj → ∞ and qkj > kj for all j, we must have the following from (2.7):

(dT0 b(x0))
2 = 0.

Thus, (2.7) reduces to dT0 A(x0)d0 ≤ γ − α0 which contradicts (2.3). Thus, (2.5)
holds. Combining (2.5) with (2.4) yields limq→+∞ μq = γ.

We can conclude from Lemma 2.1 that γ > 0 if and only if there exists a positive
number q0 > 0 such that μq > 0 when q > q0.

Corollary 2.2. (1) If γ = λ, then for any q > 0, μq = λ = γ.
(2) If γ > λ, then for any q > 0, λ < μq ≤ γ.
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Proof. (1). It is obvious from Lemma 2.1.

(2). From λ = minx∈X,d∈Sn dTA(x)d, there exist x0 ∈ X and d0 ∈ Sn such that
λ = dT0 A(x0)d0. Next, we show that (dT0 b(x0))

2 > 0. If (dT0 b(x0))
2 = 0, then for any

q > 0, we have μq ≤ q(dT0 b(x0))
2 +dT0 A(x0)d0 = λ. Thus, we have γ = limq→+∞ μq ≤

λ. This contradicts γ > λ. Thus, we must have (dT0 b(x0))
2 > 0.

From μq = minx∈X,d∈Sn dT
(
A(x)+qb(x)bT (x)

)
d, there exist xq ∈ X and dq ∈ Sn,

such that μq = q(dTq b(xq))
2 + dTq A(xq)dq. Obviously, we have

dTq A(xq)dq ≥ dT0 A(x0)d0.

If dTq A(xq)dq = dT0 A(x0)d0, then, by the above proof, we have (dTq b(xq))
2 > 0. Thus,

μq > dTq A(xq)dq ≥ λ. If dTq A(xq)dq > dT0 A(x0)d0, then we must have μq > λ. In
conclusion, if γ > λ, then for any q > 0, we have λ < μq ≤ γ.

2.2. Positiveness of constrained minimum eigenvalue. Compared to the
minimum eigenvalue λ that is defined in (2.2), the exact value of the constrained
minimum eigenvalue γ that is defined in (2.3) could be much more difficult to calculate.
In certain cases, however, we only need to verify whether γ > 0 or not. Proposition 5
in [15] suggested a method to verify whether γ > 0 by working on an (n+1)× (n+1)-
bordered Hessian. In the following, we will give another method of verifying whether
γ > 0 by checking whether an (n− 1) × (n− 1) matrix is positive definite or not.

We partition symmetric matrix A into the following form:

A(x) =

(
A1(x) a(x)
aT (x) A2(x)

)
n×n

,

where

A1(x) =

⎛
⎝ a1,1(x) · · · a1,n−1(x)

· · · · · · · · ·
an−1,1(x) · · · an−1,n−1(x)

⎞
⎠ =

(
ai,j(x)

)
(n−1)×(n−1)

,

a(x) =
(
a1,n(x), . . . , an−1,n(x)

)T
, A2(x) =

(
an,n(x)

)
1×1

.

For vector b(x) = (b1(x), . . . , bn(x))T defined in (2.1), we assume that there exists
an i ∈ {1, . . . , n}, such that for any x ∈ X, bi(x) 	= 0. Without loss of generality, we
assume that bn(x) 	= 0 for all x ∈ X. Let

c(x) =

(
b1(x)

bn(x)
, . . . ,

bn−1(x)

bn(x)

)T

.

Define the following (n− 1) × (n− 1) matrix:

A0(x) = A1(x) − c(x)aT (x) − a(x)cT (x) + c(x)A2(x)cT (x).

Theorem 2.3. Assume that ai,j(x), i, j = 1, . . . , n, and bi(x), i = 1, . . . , n, are
continuous on X, and bn(x) 	= 0 for all x ∈ X. Then γ, as defined in (2.3), is strictly
positive if and only if A0(x) is positive definite for all x ∈ X.
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Proof. Because for any x ∈ X, bn(x) 	= 0, we have

(dT b(x))2 = 0 ⇔
(

n∑
i=1

bi(x)di

)2

= 0

⇔
n∑

i=1

bi(x)di = 0

⇔ dn = −
n−1∑
i=1

bi(x)

bn(x)
di

⇔ d =

(
d1, d2, . . . , dn−1,−

n−1∑
i=1

bi(x)

bn(x)
di

)T

,

=

(
d1, . . . , dn−1,−

n−1∑
i=1

ci(x)di

)T

for any di ∈ R, i = 1, . . . , n− 1.

Let Dn−1 = (d1, . . . , dn−1)
T . Then, if d satisfies (dT b(x))2 = 0, then we have

(2.8) d =
(
DT

n−1, −DT
n−1c(x)

)T
and

dTA(x)d =
(
DT

n−1, −DT
n−1c(x)

)( A1(x) a(x)
aT (x) A2(x)

)(
Dn−1

−cT (x)Dn−1

)

= DT
n−1

(
A1(x) − c(x)aT (x) − a(x)cT (x) + c(x)A2(x)cT (x)

)
Dn−1

= DT
n−1A0(x)Dn−1.

From (2.8), we have d 	= 0 if and only if Dn−1 	= 0 and dT d = DT
n−1

(
In−1 +

c(x)cT (x)
)
Dn−1. Thus, we have

γ = min
x∈X,d∈Sn,bT (x)d=0

dTA(x)d

= min
x∈X,DT

n−1(c(x)cT (x)+In−1)Dn−1=1
DT

n−1A0(x)Dn−1.

Because c(x)cT (x) + In−1 is a positive definite matrix, there exists a symmetric non-
singular (n− 1) × (n− 1) matrix E(x), such that

c(x)cT (x) + In−1 = ET (x)E(x).

Let d̃(x) = E(x)Dn−1. Then,

DT
n−1

(
c(x)cT (x) + In−1

)
Dn−1 = DT

n−1E
T (x)E(x)Dn−1 = d̃T (x)d̃(x).

Thus, we have

γ = min
x∈X,d̃∈Sn−1

d̃T (E−1(x))TA0(x)E−1(x)d̃.

Therefore, γ > 0 if and only if for any x ∈ X, A0(x) is positive definite.
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2.3. Linearly constrained minimum eigenvalue of a constant matrix.
In this subsection, we further investigate the relationship between λ and γ, when A
is a constant symmetric matrix and b(x) = Ax + b, b ∈ Rn. When A is a constant
symmetric matrix, all of its eigenvalues can be readily obtained, for example, by using
MATLAB programs. Let n eigenvalues of A be arranged as

λ1 ≤ λ2 ≤ · · · ≤ λn.

Clearly, we have

λ = min
d∈Sn

dTAd = λ1.

There exists an orthogonal matrix Ω such that ΩT = Ω−1 and

Ω−1AΩ = Λ = diag(λ1, . . . , λn).

The orthogonal matrix Ω can be readily found by using, for example, the eigenvalue
decomposition program in MATLAB. In general, we have

γ = min
(x,d)∈Γ

dTAd ≥ λ,

where Γ = {(x, d) | x ∈ X, d ∈ Sn, (Ax + b)T d = 0}. If we let d = Ωd̄, then the
expression of γ can be simplified to

γ = min
(x,d̄)∈Γ̄

n∑
k=1

λk(d̄k)
2,

where Γ̄ = {(x, d̄) | x ∈ X, d̄ ∈ Sn, (Ax + b)TΩd̄ = 0}. If we further let x = Ωx̃, then
the expression of γ can be further simplified to

γ = min
(x̃,d̄)∈Γ̃

n∑
k=1

λk(d̄k)
2,

where Γ̃ = {(x̃, d̄) | x̃ ∈ X̃, d̄ ∈ Sn,
∑n

i=1(λix̃id̄i + b̄id̄i) = 0}, X̃ = {x̃ ∈ Rn | L ≤
Ωx̃ ≤ U}, b̄ = ΩT b, L = (l1, . . . , ln)T , and U = (u1, . . . , un)T .

Let

O = {i | λi = 0, i = 1, . . . , n}

and Ō = {1, . . . , n} \O. Let ςi = b̄i
λi

if i ∈ Ō and ςi = 0 if i ∈ O. Let x̃ = x̄ - ς, where

ς = (ς1, . . . , ςn)T . Finally, the expression of γ can be written in the following form:

γ = min
(x̄,d̄)∈Γ̂

n∑
k=1

λk(d̄k)
2,

where Γ̂ = {(x̄, d̄) | x̄ ∈ X̄, d̄ ∈ Sn,
∑

i∈Ō λix̄id̄i +
∑

i∈O b̄id̄i = 0}, X̄ = {x̄ ∈ Rn |
L ≤ Ωx̄− Ως ≤ U}.

Proposition 2.4. (i) If λ1 = λ2, then γ = λ;
(ii) if 0 = λ1 < λ2, then

γ =
(b̄1)

2

(b̄1)2 + (λ2)2β2
λ2,
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where β2 = maxx∈X̄(x2)
2;

(iii) if λ1 < λ2, λ1 	= 0, and there exists a point x̄ ∈ X̄ such that x̄1 = 0, then
γ = λ;

(iv) if λ1 < λ2 = 0 and there does not exist any point x̄ ∈ X̄ such that x̄1 = 0,
then

γ =
(b̄2)

2

(b̄2)2 + (λ1)2β1
λ1,

where β1 = maxx∈X̄(x1)
2; and

(v) if 0 	= λ1 < λ2 	= 0 and there does not exist any point x̄ ∈ X̄ such that x̄1 = 0,
then

γ = λ1 +
λ2 − λ1

1 + (λ2

λ1
)2β12

,

where β12 = maxx∈X̄(x2

x1
)2.

Proof. (i) If λ1 = λ2 = λ, then, we have

γ = min
x̄∈X̄,d̄∈Sn,

∑
i∈Ō λix̄id̄i+

∑
i∈O b̄id̄i=0

n∑
k=1

λk(d̄k)
2

= min
x̄∈X̄,

∑
i∈Ō∩{1,2} λix̄id̄i+

∑
i∈O∩{1,2} b̄id̄i=0,d̄2

1+d̄2
2=1

2∑
k=1

λk(d̄k)
2

= λ.

(ii) If 0 = λ1 < λ2, then 1 	∈ Ō and 2 	∈ O. Thus,

γ = min
x̄∈X̄,

∑
i∈Ō∩{2} λix̄id̄i+

∑
i∈O∩{1} b̄id̄i=0,d̄2

1+d̄2
2=1

2∑
k=1

λk(d̄k)
2.

It is clear that if b̄1 = 0, then γ achieves its minimum of 0 by taking d̄1 = 1 and d̄2

= 0. Otherwise, if b̄1 	= 0, then

γ = min
x̄∈X̄,b̄1d̄1+λ2x̄2d̄2=0,d̄2

1+d̄2
2=1

λ2(d̄2)
2.

Because b̄1d̄1 + λ2x̄2d̄2 = 0 and d̄2
1 + d̄2

2 = 1 imply (d̄2)
2 = 1

1+(
λ2
b̄1

)2(x̄2)2
, then we have

that

γ = min
x̄∈X̄,b̄1d̄1+λ2x̄2d̄2=0,d̄2

1+d̄2
2=1

λ2(d̄2)
2

= min
x̄∈X̄

λ2

1 + (λ2

b̄1
)2(x̄2)2

=
λ2

1 + (λ2

b̄1
)2 · maxx̄∈X̄(x̄2)2

=
(b̄1)

2

(b̄1)2 + (λ2)2β2
λ2.
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Thus, item (ii) of Proposition 2.4 is satisfied for both situations of b̄1 = 0 and b̄1 	= 0.
(iii) If λ1 	= 0, then 1 	∈ O. Further, since there exists a point x̄ ∈ X̄, such that

x̄1 = 0, we have

γ = min
x̄∈X̄,

∑
i∈Ō∩{1,2} λix̄id̄i+

∑
i∈O∩{2} b̄id̄i=0,d̄2

1+d̄2
2=1

2∑
k=1

λk(d̄k)
2

≤ min
x̄∈{x|x∈X̄, x1=0},

∑
i∈Ō∩{2} λix̄id̄i+

∑
i∈O∩{2} b̄id̄i=0,d̄2

1+d̄2
2=1

2∑
k=1

λk(d̄k)
2

≤ λ1(where we take d̄1 = 1, d̄2 = 0).

Because γ ≥ λ1, we have γ = λ1 = λ.
(iv) Because λ1 < λ2 = 0, then 1 	∈ O and 2 	∈ Ō. We have

γ = min
x̄∈X̄,

∑
i∈Ō∩{1} λix̄id̄i+

∑
i∈O∩{2} b̄id̄i=0,d̄2

1+d̄2
2=1

2∑
k=1

λk(d̄k)
2

= min
x̄∈X̄,λ1x̄1d̄1+b̄2d̄2=0,d̄2

1+d̄2
2=1

λ1(d̄1)
2.

If b̄2 = 0, then we must have d̄1 = 0 because λ1 < 0, and there does not exist any
x̄ ∈ X̄, such that x̄1 = 0. Thus, γ = 0 when b̄2 = 0. Otherwise, when b̄2 	= 0,
λ1x̄1d̄1 + b̄2d̄2 = 0 and d̄2

1 + d̄2
2 = 1 imply (d̄1)

2 = 1

1+(
λ1
b̄2

)2x̄2
1

. We then have

γ = min
x̄∈X̄,λ1x̄1d̄1+b̄2d̄2=0,d̄2

1+d̄2
2=1

λ1(d̄1)
2

=
λ1

1 + (λ1

b̄2
)2 max

x̄∈X̄
(x̄1)

2

=
(b̄2)

2

(b̄2)2 + (λ1)2β1
λ1.

Thus, item (iv) of Proposition 2.4 is satisfied for both situations of b̄2 = 0 and b̄2 	=
0.

(v) Because both λ1 and λ2 are not equal to zero, neither 1 nor 2 belongs to O.
Then,

γ = min
x̄∈X̄,λ1x̄1d̄1+λ2x̄2d̄2=0,d̄2

1+d̄2
2=1

2∑
k=1

λk(d̄k)
2.

Because for any x̄ ∈ X̄, x̄1 	= 0, then λ1x̄1d̄1 +λ2x̄2d̄2 = 0 and d̄2
1 + d̄2

2 = 1 imply that
(d̄2)

2 = 1

1+(
λ2
λ1

)2(
x̄2
x̄1

)2
. Thus, we have

γ = min
x̄∈X̄,λ1x̄1d̄1+λ2x̄2d̄2=0,d̄2

1+d̄2
2=1

2∑
k=1

λk(d̄k)
2

= min
x̄∈X̄

[(
1 − 1

1+(
λ2
λ1

)2(
x̄2
x̄1

)2

)
λ1 + 1

1+(
λ2
λ1

)2(
x̄2
x̄1

)2
λ2

]
= λ1 + λ2−λ1

1+(
λ2
λ1

)2 maxx̄∈X̄(
x̄2
x̄1

)2

= λ1 + λ2−λ1

1+(
λ2
λ1

)2β12
.
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Remark 2.1. (i) To judge whether there exists a point x̄ ∈ X̄ such that x̄1

= 0, two linear programming problems can be constructed, {maxx1 | x ∈ X̄} and
{minx1 | x ∈ X̄}. If maxx∈X̄ x1 < 0 or minx∈X̄ x1 > 0, then there does not exist an
x̄ ∈ X̄, such that x̄1 = 0. Otherwise, there exists one.

(ii) For β1 in (iv) and β2 in (ii) of the above proposition, the convex maximization
(or, equivalently, concave minimization) problem of {max(xi)

2 | x ∈ X̄}, i = 1,
2, can be replaced by two linear programming problems, {maxxi | x ∈ X̄} and

{minxi | x ∈ X̄}, because maxx∈X̄(xi)
2 = max{(maxx∈X̄ xi)

2
, (minx∈X̄ xi)

2}.
(iii) Consider β12 in (v) of the above proposition. Let y1 = 1

x1
and yi = xi

x1
, i =

2, . . . , n. If for every x̄ ∈ X̄, x̄1 > 0, then problem {max(x2

x1
)2 | x ∈ X̄} is equivalent

to {max(y2)
2 | y ∈ Ȳ1}, where

Ȳ1 = {y ∈ Rn | y1L ≤ Ω(1, y2, . . . , yn)T − Ωςy1 ≤ y1U},

whereas convex maximization (or, equivalently, concave minimization) problem
{max(y2)

2 | y ∈ Ȳ1} can be replaced by two linear programming problems, {max y2 |
y ∈ Ȳ1) and (min y2 | y ∈ Ȳ1}, because maxy∈Ȳ1

(y2)
2 = max{

(
maxy∈Ȳ1

y2

)2
,(

miny∈Ȳ1
y2

)2}. Similarly, if for every x̄ ∈ X̄, x̄1 < 0, then maxx∈X̄(x2

x1
)2 =

max{
(
maxy∈Ȳ2

y2

)2
,
(
miny∈Ȳ2

y2

)2}, where

Ȳ2 = {y ∈ Rn | y1L ≥ Ω(1, y2, . . . , yn)T − Ωςy1 ≥ y1U}.

Based on the above proposition, the computation of the linearly constrained min-
imum eigenvalue of a constant matrix can be carried out by the following algorithm.

Algorithm I (Calculation of γ).
Step 1. Calculate an orthogonal matrix Ω such that

ΩTAΩ = diag(λ1, . . . , λn),

where λ1, . . . , λn are the eigenvalues of A satisfying λ1 ≤ · · · ≤ λn. Let b̄ =

(b̄1, . . . , b̄n)T := ΩT b and ς = (ς1, . . . , ςn)T , where ςi :=

{
b̄i
λi

if λi 	= 0,

0 if λi = 0.
Step 2. If λ1 = λ2, then γ = λ1 and stop; otherwise go to Step 3.
Step 3. If λ1 = 0, then solve the following linear programming problems:

(P1) maxx2

L ≤ Ω(x− ς) ≤ U

and

(P2) minx2

L ≤ Ω(x− ς) ≤ U.

Let v1 and v2 be the optimal values of problems (P1) and (P2), respectively. Let

β2 = max{v2
1 , v

2
2}. Then γ = (b̄1)

2λ2

(b̄1)2+(λ2)2β2
and stop. If λ1 	= 0, then go to Step 4.

Step 4. Solve the following linear programming problems:

(P3) maxx1

L ≤ Ω(x− ς) ≤ U
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and

(P4) minx1

L ≤ Ω(x− ς) ≤ U.

Let v3 and v4 be the optimal values of problems (P3) and (P4), respectively. If
v3 ≥ 0 ≥ v4, then γ = λ1 and stop; otherwise go to Step 5.

Step 5. If λ2 = 0, let β1 = max{v2
3 , v

2
4}, then γ = (b̄2)

2λ1

(b̄2)2+(λ1)2β1
and stop; otherwise

go to Step 6.
Step 6. If v4 > 0, then solve the following linear programming problems:

(P5) max y2

y1L ≤ Ω(1 − y1ς1, y2 − y1ς2, . . . , yn − y1ςn)T ≤ y1U

and

(P6) min y2

y1L ≤ Ω(1 − y1ς1, y2 − y1ς2, . . . , yn − y1ςn)T ≤ y1U.

Let v5 and v6 be the optimal values of problems (P5) and (P6), respectively. Let
β3 = max{v2

5 , v
2
6}. Then, γ = λ1 + λ2−λ1

1+
(

λ2
λ1

)2
β3

and stop; otherwise, solve the following

linear programming problems:

(P7) max y2

y1L ≥ Ω(1 − y1ς1, y2 − y1ς2, . . . , yn − y1ςn)T ≥ y1U

and

(P8) min y2

y1L ≥ Ω(1 − y1ς1, y2 − y1ς2, . . . , yn − y1ςn)T ≥ y1U.

Let v7 and v8 be the optimal values of problems (P7) and (P8), respectively. Let
β4 = max{v2

7 , v
2
8}. Then γ = λ1 + λ2−λ1

1+
(

λ2
λ1

)2
β4

and stop.

3. Hidden-convex function.
Definition 3.1 (see [11]). A function f : Rn → R is strictly increasing (decreas-

ing) on X with respect to xi if

f(x1, . . . , xi−1, x̃i, xi+1, . . . , xn) < (>) f(x1, . . . , xi−1, x̄i, xi+1, . . . , xn)

for any (x1, . . . , xi−1, x̃i, xi+1, . . . , xn)T , (x1, . . . , xi−1, x̄i, xi+1, . . . , xn)T ∈ X, and x̃i

< (>) x̄i.
Definition 3.2. A function f : Rn → R is said to be strictly monotone if for

any i = 1, . . . , n, f is either strictly increasing or strictly decreasing on X with respect
to xi.

Let function h be a second order continuously differentiable function that is de-
fined on the box X given in (1.1). Consider the following three transformations of
function h:

φ(y) = h(t(y)),

ϕ(x) = T (h(x)),

ψ(y) = T (h(t(y))),(3.1)
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where T : R1 → R1 is a real function and t : Rn → Rn is a separable mapping, i.e.,

t(y) =
(
t1(y1), . . . , tn(yn)

)T
for y = (y1, . . . , yn)T . We further assume that each ti, i

= 1, · · · , n, is a strictly monotone mapping. It is clear that the domain of φ and ψ is

Y = {y ∈ Rn | yi = t−1
i (xi), i = 1, . . . , n, x ∈ X}

=

{
y ∈ Rn

∣∣∣∣ t−1
i (li) ≤ yi ≤ t−1

i (ui), ti(yi) is strictly increasing,
t−1
i (ui) ≤ yi ≤ t−1

i (li), ti(yi) is strictly decreasing

}
.

Obviously, Y is also a box. For the purpose of convenience, let minx∈∅ x = +∞ and
maxx∈∅ x = −∞, where x ∈ R.

Definition 3.3. If there exists a separable strictly monotone mapping x = t(y),
such that φ(y) = h(t(y)) is a (strictly) convex function on Y , then h is called a
d-hidden (strictly) convex function on X.

Definition 3.4. If there exists a strictly increasing and second order continuously
differentiable function T (·) : h(X) → R satisfying T ′(y) > 0 for any y ∈ h(X), such
that ϕ(x) = T (h(x)) is a (strictly) convex function on X, then h is called an r-hidden
(strictly) convex function on X.

The r-hidden convex function is also called a G-convex function on X [4].
Definition 3.5. If there exist a strictly increasing and second order continuously

differentiable function T (·) satisfying T ′(y) > 0 for any y ∈ h(X) and a separable
strictly monotone mapping x = t(y), such that the function ψ(y) = T (h(t(y))) is
(strictly) convex on Y, then h is called a hidden (strictly) convex function on X.

Obviously, a convex function is also d-hidden convex, r-hidden convex, and hidden
convex. From Definitions 3.3, 3.4, and 3.5, we know that if function h is d-hidden
convex or r-hidden convex, then h is also hidden convex. From [1], we know that if
function h is r-hidden convex, then h must be pseudoconvex. Because the hidden-
convex function that is defined in Definition 3.5 confines its variable transformation
to being separable, the hidden-convex function is thus a special case of the (t, T )-
convex function that is defined in [8]. It is well known that any local minimizer of a
pseudoconvex function on a convex set is also a global minimizer. In this paper, we
will also show that any local minimizer of a hidden-convex function on a box set is
also a global minimizer.

3.1. Necessary and sufficient conditions for r-hidden convex functions.
Notice that

∂ϕ(x)

∂xi
= T ′(h(x))

∂h(x)

∂xi
, i = 1, . . . , n,

∂2ϕ(x)

∂x2
i

= T ′(h(x))

[
T ′′(h(x))

T ′(h(x))

(
∂h(x)

∂xi

)2

+
∂2h(x)

∂x2
i

]
, i = 1, . . . , n,

∂2ϕ(x)

∂xi∂xj
= T ′(h(x))

[
T ′′(h(x))

T ′(h(x))

∂h(x)

∂xi

∂h(x)

∂xj
+

∂2h(x)

∂xi∂xj

]
,

i, j = 1, . . . , n, i 	= j.

Let H(x) and H̄(x) be the Hessian of h and ϕ at x, respectively. Also let ah(x) =

∇h(x) =
(

∂h(x)
∂x1

, . . . , ∂h(x)
∂xn

)T
be the gradient of h(x) at x. Thus, we have

H̄(x) = T ′(h(x))

[
T ′′(h(x))

T ′(h(x))
ah(x)aTh (x) + H(x)

]
.
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Let

λh = min
x∈X,d∈Sn

dTH(x)d,

γh = min
x∈X,d∈Sn,aT

h (x)d=0
dTH(x)d,

Bh
q (x) = qah(x)aTh (x) + H(x),

μh
q = min

x∈X,d∈Sn
dTBh

q (x)d.

Theorem 3.6. Given a second order differentiable function h defined on the box
set X, the following statements hold:

(i) h is an r-hidden strictly convex function if γh > 0 and
(ii) γh ≥ 0 if h is an r-hidden convex function.
Proof. (i) Clearly, h is an r-hidden strictly convex function if for any x ∈ X,

H̄(x) is positive definite. Furthermore, because T ′(h(x)) > 0 for any x ∈ X, H̄(x) is

positive definite if and only if
T ′′(h(x))

T ′(h(x))
ah(x)aTh (x) + H(x) is positive definite.

If we take T (s) = exp(qs) with q > 0, then T satisfies the following conditions:

T ′(s) > 0,
T ′′(s)

T ′(s)
= q ∀s ∈ R.

Thus,

T ′′(h(x))

T ′(h(x))
ah(x)aTh (x) + H(x) = qah(x)aTh (x) + H(x).

By Lemma 2.1, if γh > 0, then there exists a positive number q > 0, such that μh
q > 0,

i.e., qah(x)aTh (x)+H(x) is positive definite on X. Thus, ϕ(x) is strictly convex when
T (s) is selected as exp(qs) with a large enough q. This implies that h is an r-hidden
strictly convex function on X.

(ii) If h(x) is an r-hidden convex function, then there must exist a second order
continuously differentiable function T , satisfying T ′(h(x)) > 0 for any x ∈ X, such

that
T ′′(h(x))

T ′(h(x))
ah(x)aTh (x) + H(x) is a positive semidefinite matrix, i.e.,

η = min
x∈X, d∈Sn

dT
(
T ′′(h(x))

T ′(h(x))
ah(x)aTh (x) + H(x)

)
d ≥ 0.

Because

γh = min
x∈X,d∈Sn,dT ah(x)=0

dTH(x)d

= min
x∈X,d∈Sn,dT ah(x)=0

dT
(
T ′′(h(x))

T ′(h(x))
ah(x)aTh (x) + H(x)

)
d

≥ η.

Thus, we have that γh ≥ 0.
Theorem 3.6 gives a sufficient condition under which a function h can be con-

verted into a strictly convex function only by a range transformation and a necessary
condition under which a function h can be converted into a convex function only by
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a range transformation. As is well known, these r-hidden convex functions must be
pseudoconvex. Notice that a sufficient condition for pseudoconvexity of a second or-
der differentiable function [5] is that for all x ∈ X, 1

2 [δ − h(x)]ah(x)aTh (x) + H(x) is
positive semidefinite for some δ > h(x).

In the following, we will give a condition under which a function can be converted
into a convex function using both a range transformation and a domain transforma-
tion.

3.2. Sufficient conditions for hidden-convex functions. Let index set NZ
⊂ {1, . . . , n} be defined as

NZ =

{
i ∈ {1, . . . , n} | ∂h(x)

∂xi
	= 0 for any x ∈ X

}
.(3.2)

If NZ 	= ∅, then we assume, without loss of generality, that NZ = {l+ 1, . . . , n},
where l ∈ {0, 1, . . . , n−1}; otherwise, we can appropriately rearrange xi, i = 1, . . . , n.
If NZ = ∅, then we let l = n. Note that l is the number of indices such that whenever

l > 0 there exists an x, such that ∂h(x)
∂xi

= 0 for 1 ≤ i ≤ l.
For a given second order differentiable function h, let

Hk(x) =

⎛
⎜⎜⎜⎜⎜⎝

∂2h(x)

∂x2
1

. . .
∂2h(x)

∂x1∂xk
...

...
...

∂2h(x)

∂xk∂x1
. . .

∂2h(x)

∂x2
k

⎞
⎟⎟⎟⎟⎟⎠ , k = 1, . . . , n,(3.3)

ah,k(x) =

(
∂h(x)

∂x1
, . . . ,

∂h(x)

∂xk

)T

, k = 1, . . . , n,(3.4)

λh
k = min

x∈X,d∈Sk
dT (Hk(x))d, k = 1, . . . , n,

γh
k = min

x∈X,d∈Sk,aT
h,k(x)d=0

dT (Hk(x))d, k = 1, . . . , n,(3.5)

Ξk(x) =

(
∂2h(x)

∂x1∂xk
, . . . ,

∂2h(x)

∂xk−1∂xk

)T

, k = 2, . . . , n,

Cp,k(x) = diag

(
p1

∂h(x)

∂x1
, . . . , pk

∂h(x)

∂xk

)
, k = 1, . . . , n,(3.6)

where pi ∈ R, i = 1, . . . , k,

νhk,p = min
x∈X,d∈Sk,aT

h,k(x)d=0
dT (Hk(x) + Cp,k(x))d, k = 1, . . . , n,

νhk = sup
p∈Rk

νhk,p.

If l < n, then let

ξk(x) =

(
∂h(x)

∂x1
/
∂h(x)

∂xk+1
, . . . ,

∂h(x)

∂xk
/
∂h(x)

∂xk+1

)T

, k = l, . . . , n− 1.

Notice Hn(x) = H(x), ah,n(x) = ah(x), λh
n = λh, and γh

n = γh.
Furthermore, define the following set:

Pk = {p = (p1, . . . , pk)
T | p is chosen such that νhk,p > 0}, k = 1, . . . , n.
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For given p1, . . . , pn ∈ R, let

ti,pi(yi) =

⎧⎨
⎩

yi pi = 0,

− 1

pi
ln yi pi 	= 0,

i = 1, . . . , n,

Yp = {y ∈ Rn | (t1,p1(y1), . . . , tn,pn(yn))T ∈ X},
Yi,p = {yi | ∃yj , j = 1, . . . , i− 1, i + 1, . . . , n such that (y1, . . . , yi−1, yi, yi+1, . . . , yn)T

∈ Yp}.

Then, ti,pi
(yi) is strictly monotone on Yi,p and satisfies

t′i,pi
(yi) 	= 0,

t′′i,pi
(yi)[

t′i,pi
(yi)

]2 = pi for any yi ∈ Yi,p, i = 1, . . . , n.

For given q > 0, let Tq(s) = exp(qs). Then Tq(s) satisfies

T ′
q(s) > 0,

T ′′
q (s)

T ′
q(s)

= q ∀s ∈ R.

Let x = tp(y) = (t1,p1
(y1), . . . , tn,pn(yn))

T
and ψq,p(y) = Tq(h(tp(y))) for all

y ∈ Yp. Then, we have

∂ψq,p(y)

∂yk
= T ′

q(h(x))
∂h(x)

∂xk
t′k,pk

(yk),

∂2ψq,p(y)

∂y2
k

= T ′′
q (h(x))

[
∂h(x)

∂xk
t′k,pk

(yk)

]2

+ T ′
q(h(x))

∂2h(x)

∂x2
k

[t′k,pk
(yk)]

2

+T ′
q(h(x))

∂h(x)

∂xk
t′′k,pk

(yk)

= T ′
q(h(x))[t′k,pk

(yk)]
2

×
[
T ′′
q (h(x))

T ′
q(h(x))

(
∂h(x)

∂xk

)2

+
∂2h(x)

∂x2
k

+
∂h(x)

∂xk

t′′k,pk
(yk)

[t′k,pk
(yk)]

2

]

= T ′
q(h(x))[t′k,pk

(yk)]
2

[
q

(
∂h(x)

∂xk

)2

+
∂2h(x)

∂x2
k

+ pk
∂h(x)

∂xk

]
,

∂2ψq,p(y)

∂yk∂yj
= T ′

q(h(x))t′k,pk
(yk)t

′
j,pj

(yj)

[
q
∂h(x)

∂xk

∂h(x)

∂xj
+

∂2h(x)

∂xk∂xj

]
,

for k 	= j.

Theorem 3.7. Given a second order continuously differentiable function h, if
l ≥ 1 and νhl > 0, i.e., Pl 	= ∅, then h is a hidden strictly convex function.

Proof. Let ψ(y) in (3.1) be ψq,p(y). Let Hq,p(y) be Hessian of ψq,p at y. Then,
we have

Hq,p(y) = T ′
q(h(x))S(x)[qah,n(x)aTh,n(x) + Hn(x) + Cp,n(x)]S(x),

where

S(x) = diag
(
t′1,p1

(y1), t
′
2,p2

(y2), . . . , t
′
n,pn

(yn)
)
,
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and Hn(x), ah,n(x) and Cp,n(x) are defined in (3.3), (3.4), and (3.6), respectively.

Obviously, Hq,p(y) is positive definite if and only if qah,n(x)aTh,n(x) + Hn(x) +
Cp,n(x) is positive definite. By Lemma 2.1, for a given vector p ∈ Rn, there exists a
positive number q0 such that q0ah,n(x)aTh,n(x) + Hn(x) + Cp,n(x) is positive definite

if and only if νhn,p > 0. Note that

Hn(x) + Cp,n(x) =

⎛
⎝ Hn−1(x) + Cp,n−1(x) Ξn(x)

ΞT
n (x)

∂2h(x)

∂x2
n

+ pn
∂h(x)

∂xn

⎞
⎠ .

If n ∈ NZ, then, by Theorem 2.3, νhn,p > 0 if and only if Hn−1(x) + Cp,n−1(x) −

Ξn(x)ξTn−1(x)−ξn−1(x)ΞT
n (x)+

(
∂2h(x)

∂x2
n

+ pn
∂h(x)

∂xn

)
ξn−1(x)ξTn−1(x) is positive def-

inite. Note that

Hn−1(x) + Cp,n−1(x) − Ξn(x)ξTn−1(x) − ξn−1(x)ΞT
n (x)

+

(
∂2h(x)

∂x2
n

+ pn
∂h(x)

∂xn

)
ξn−1(x)ξTn−1(x)

= Hn−1(x) + Cp,n−1(x) + (ξn−1(x) − Ξn(x))(ξn−1(x) − Ξn(x))T

− Ξn(x)ΞT
n (x) +

(
∂2h(x)

∂x2
n

+ pn
∂h(x)

∂xn
− 1

)
ξn−1(x)ξTn−1(x).

For any k ∈ NZ,
∂h(x)

∂xk
	= 0 for any x ∈ X, i.e.,

∣∣∣∂h(x)

∂xk

∣∣∣ > 0 for any x ∈ X. Let

mk = min
x∈X

∣∣∣∣∂h(x)

∂xk

∣∣∣∣ ,
αk = min

x∈X

∂2h(x)

∂x2
k

,

qk = |pk|mk + αk − 1,(3.7)

Wk,p(x) = Hk(x) + Cp,k(x) + (ξk(x) − Ξk+1(x))(ξk(x) − Ξk+1(x))T

−Ξk+1(x)ΞT
k+1(x).

For any k ∈ NZ, let pk satisfy

sign(pk) = sign

(
∂h(x)

∂xk

)
,(3.8)

where sign(t) =

⎧⎨
⎩

1 t > 0,
0 t = 0,
−1 t < 0.

Then, for any x ∈ X, we have
∂2h(x)

∂x2
k

+ pk
∂h(x)

∂xk
− 1 ≥ qk.

If qn and pn are selected according to (3.7) and (3.8), respectively, then for any x ∈
X: if Wn−1,p(x) + qnξn−1(x)ξTn−1(x) is a positive definite matrix, then Wn−1,p (x) +(
∂2h(x)

∂x2
n

+ pn
∂h(x)

∂xn
− 1

)
ξn−1(x)ξTn−1(x) must be positive definite.
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By Lemma 2.1, there exists a qn > 0, such that for any x ∈ X, Wn−1,p(x) +
qnξn−1(x)ξTn−1(x) is positive definite if and only if

min
x∈X,d∈Sn−1,dT ξn−1(x)=0

dTWn−1,p(x)d > 0.

Note that

min
x∈X,d∈Sn−1,dT ξn−1(x)=0

dTWn−1,p(x)d

= min
x∈X,d∈Sn−1,dT ξn−1(x)=0

[
dT
(
Hn−1(x) + Cp,n−1(x)

)
d− dTΞn(x)ΞT

n (x)d

+ dT
(
(ξn−1(x) − Ξn(x))(ξn−1(x) − Ξn(x))T

)
d
]

= min
x∈X,d∈Sn−1,dT ah,n−1(x)=0

dT
(
Hn−1(x) + Cp,n−1(x)

)
d

= νhn−1,p.

Thus, if νhn−1,p > 0, then there exists a q∗n > 0, such that for any x ∈ X,

Wn−1,p(x) + q∗nξn−1(x)ξTn−1(x) is positive definite. If we take pn satisfying (3.8), and
|pn| is large enough such that qn = |pn|mn + αn − 1 ≥ q∗n, then for any x ∈ X,

Wn−1,p(x) +

(
∂2h(x)

∂x2
n

+ pn
∂h(x)

∂xn
− 1

)
ξn−1(x)ξTn−1(x) is positive definite. Because

for any x ∈ X, Wn−1,p(x) +

(
∂2h(x)

∂x2
n

+ pn
∂h(x)

∂xn
− 1

)
ξn−1(x)ξTn−1(x) is positive

definite if and only if νhn,p > 0. Thus, we must have νhn > 0.

Similarly, we can prove that if n − 1 ∈ NZ and νhn−2 > 0, then we can properly
choose pn−1 such that νhn−1 > 0. Repeating this process, we can prove for all k = n−3,
n − 4, . . . , l, that if νhk > 0, then we can properly choose pk+1 such that νhk+1 > 0.

From the above discussion, we know that if l ≥ 1 and νhl > 0, i.e., Pl 	= ∅, then
we can properly choose pk, k = l + 1, . . . , n, such that νhn > 0. Note that νhn > 0 if
and only if there exist a positive number q0 > 0 and a vector p ∈ Rn, such that for
any x ∈ X, q0ah,n(x)aTh,n(x) +Hn(x) +Cp,n(x) is positive definite. Thus, Hq0,p(y) is
positive definite on Yp which implies that ψq0,p = Tq0(h(tp(y))) is strictly convex on
Yp. Thus, if l ≥ 1 and νhl > 0, i.e., Pl 	= ∅, then h(x) must be a hidden strictly convex
function on X.

Based on Theorem 3.7, we have the following corollary.
Corollary 3.8. If a second order continuously differentiable function h defined

on X is either strictly increasing or strictly decreasing for all xi, i = 1, . . . , n, and
satisfies for all i = 1, . . . , n,

∂h(x)

∂xi
	= 0 ∀x ∈ X,(3.9)

i.e., l = 0, then h is hidden strictly convex.
Proof. If a second order continuously differentiable function h satisfies (3.9), i.e.,

l = 0, then we know from Theorem 3.7 that h(x) is a hidden strictly convex function

on X if P1 	= ∅. Because 1 ∈ NZ, we can take p1, satisfying sign(p1) = sign

(
∂h(x)

∂x1

)
and |p1| large enough such that α1 + |p1|m1 > 0, resulting in νh1,p1

> 0. Thus, if l = 0,
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then we can have νh1 > 0, i.e., P1 	= ∅. Therefore, if l = 0, then h is hidden strictly
convex.

Corollary 3.8 reveals that if a second order continuously differentiable strictly
monotone function does not have any of its partial derivatives equal to zero at any
point on X, then the monotone function is hidden convex. Essentially, this result
was proved earlier in [12], which found that such a monotone function is a d-hidden
convex function on X.

Let the upper and lower bounds of
∂h(x)

∂xi
, ηi and ζi, be defined as follows:

ηi ≥ max
x∈X

∂h(x)

∂xi
,

ζi ≤ min
x∈X

∂h(x)

∂xi
.

Recall l as defined in the beginning of subsection 3.2 and γh
l as defined in (3.5). Let

Ai = {pi ∈ R | ζi · pi · s(pi) + ηi · pi · s(−pi) > −γh
l },(3.10)

A = {p = (p1, . . . , pl)
T | pi ∈ Ai, i = 1, . . . , l},

where

s(a) =

{
1 a ≥ 0,
0 a < 0.

Theorem 3.9. Assume that h is second order continuously differentiable on X.
If A 	= ∅, then h must be a hidden strictly convex function on X.

Proof. For d ∈ Sl and x ∈ X, we have

νhl,p = min
x∈X,d∈Sl,dT ah,l(x)=0

dT
(
Hl(x) + Cp,l(x)

)
d

≥ min
x∈X,d∈Sl,dT ah,l(x)=0

dTHl(x)d + min
x∈X,d∈Sl,dT ah,l(x)=0

l∑
i=1

pi
∂h(x)

∂xi
d2
i

≥ γh
l + min

d∈Sl

l∑
i=1

(
ζi · pi · s(pi) + ηi · pi · s(−pi)

)
d2
i

≥ γh
l + min

1≤i≤l

(
ζi · pi · s(pi) + ηi · pi · s(−pi)

)
.

If A 	= ∅, i.e., there exists (p1, . . . , pl)
T ∈ Rl, such that for any i = 1, . . . , l,

ζi ·pi ·s(pi)+ηi ·pi ·s(−pi) > −γh
l , i.e., γh

l +min1≤i≤l(ζi ·pi ·s(pi)+ηi ·pi ·s(−pi)) > 0.
Thus, there exists (p1, . . . , pl)

T ∈ Rl, such that νhl,p > 0, which implies that h is a
hidden strictly convex function based on Theorem 3.7. Thus, if A 	= ∅, then h must
be a hidden strictly convex function.

Remark 3.1. (i) Recall that a strictly positive γh gives an r-hidden strictly convex
function. At the same time, if γh > 0, then any Ai is nonempty, as evidenced by pi
= 0 ∈ Ai, i = 1, . . . , n. Thus, any function with γh > 0 is hidden strictly convex.
(ii) Recall that a function is d-hidden strictly convex if {pi | ζi · pi · s(pi) + ηi · pi ·
s(−pi) > −λh

l } is nonempty for all i = 1, . . . , n [12]. Because γh
l ≥ λh

l , a nonempty
{pi | ζi · pi · s(pi)+ ηi · pi · s(−pi) > −λh

l } is a subset of Ai. Thus, a function is hidden
strictly convex if {pi | ζi · pi · s(pi) + ηi · pi · s(−pi) > −λh

l } is nonempty for all i = 1,
. . . , n. In this regard, Theorem 3.9 includes r-hidden convex functions and d-hidden
convex function as its special cases.
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3.3. Relationship among hidden convexity, monotonicity, pseudocon-
vexity, and quasiconvexity. We have so far given some sufficient conditions to
identify a hidden-convex function. Recall that all convex functions, r-hidden convex
functions, d-hidden convex functions, and strictly monotone functions (with all par-
tial derivatives being nonzero at all points in its domain) are hidden-convex functions,
and any r-hidden convex function is a pseudoconvex function. We now explore the
relationships among these different generalized convex functions.

We first introduce the following notations.

C: Family of second order continuously differentiable convex functions on X.

P : Family of second order continuously differentiable pseudoconvex functions on
X.

Q: Family of second order continuously differentiable quasiconvex functions on
X.

DH: Family of second order continuously differentiable d-hidden convex functions
on X.

RH: Family of second order continuously differentiable r-hidden convex functions
on X.

M : Family of second order continuously differentiable strictly monotone functions
with all partial derivatives being nonzero at all points on X.

H: Family of second order continuously differentiable hidden-convex functions on
X.

The following conclusions can now be obtained.

(1) C ⊂ DH ⊂ H;

(2) C ⊂ RH ⊂ H;

(3) RH ⊂ P ⊂ Q;

(4) M ⊂ DH ⊂ H;

(5) M ∪RH is a strict subset of H; and

(6) P 	⊆ H, H 	⊆ P, and H 	⊆ Q.

The first four inclusion relationships are apparent from our earlier discussion and
from the literature. In the following, we will give some examples to show that M∪RH
is a strict subset of H and that H has no inclusion relationship with either P or Q.

Example 3.1. Let h(x) = x3
1 − 4x2

1 − x1x2 − 1
2x

2
2 − x1x3 − 1

2x
2
3 + 10x3 and

X = {(x1, x2, x3)
T | 1 ≤ x1 ≤ 5, 1 ≤ xi ≤ 2, i = 2, 3}. Obviously, we have

∂h(x)

∂x1
= 3x2

1 − 8x1 − x2 − x3,
∂h(x)

∂x2
= −x1 − x2,

∂h(x)

∂x3
= −x1 − x3 + 10.

It is easy to check that NZ = {2, 3}, where NZ is defined by (3.2). Because h is not
monotone with respect to x1, h 	∈ M . The Hessian of h(x) is

H(x) =

⎛
⎝ 6x1 − 8 −1 −1

−1 −1 0
−1 0 −1

⎞
⎠ ,



HIDDEN CONVEXITY 525

with eigenvalues

λ1 =
(6x1 − 7) +

√
(6x1 − 7)2 + 8

2
− 1, λ2 =

(6x1 − 7) −
√

(6x1 − 7)2 + 8

2
− 1

λ3 = −1.

It is clear that H(x) has two negative eigenvalues for any x ∈ X, which implies that
h is not a pseudoconvex function, as the Hessian of any pseudoconvex function has
at most one negative eigenvalue (see Corollary 3.18 in [1]). Thus, it is impossible for
h to be an RH function, i.e., h 	∈ RH.

We can prove, however, that h is a hidden strictly convex function. In fact,

because NZ = {2, 3}, l = 1, and γh
l = min

x∈X, ∂h(x)
∂x1

=0
(6x1 − 8) = minx∈X 2

(
4 +√

16 + 3(x2 + x3)
)
− 8 = 2

√
22 > 0. Setting p1 = 0 in (3.10) leads to A1 = A 	=

∅. Thus, based on Theorem 3.9, h is a hidden strictly convex function on X, i.e.,
h ∈ H. The above example gives concrete evidence that M ∪ RH is a strict subset
of H.

Example 3.2. Let h(x) =
x2

x1
and X = {(x1, x2)

T | 1 ≤ x1 ≤ 2,−1 ≤ x2 ≤ 1}.

Note that for any x̄ ∈ X,

(
∂h(x̄)

∂x

)T

(x− x̄) =

(
− x̄2

(x̄1)2
,

1

x̄1

)
(x1− x̄1, x2− x̄2)

T ≥ 0

implies
x2

x1
≥ x̄2

x̄1
, i.e., h(x) ≥ h(x̄). Thus, based on the definition of pseudoconvexity

given in section 3.1 of Chapter 9 of [10], h(x) is a pseudoconvex function on X, i.e.,
h(x) ∈ P . Because

−1 ≤ ∂h(x)

∂x1
= −x2

x2
1

≤ 1,

1

2
≤ ∂h(x)

∂x2
=

1

x1
≤ 1,

the index set defined in (3.2) is NZ = {2} and h /∈ M . As the Hessian H(x) of h(x)
is

H(x) =

⎛
⎜⎜⎝

2
x2

x3
1

− 1

x2
1

− 1

x2
1

0

⎞
⎟⎟⎠ ,

h is nonconvex. Note that l = 1, H1(x) =
2x2

x3
1

, p1 ∈ R, Cp,1(x) = −p1x2

x2
1

, ah,1(x) =

−x2

x2
1

,

γh
1 = min

x∈X,d∈S1,dT ah,1(x)=0
H1(x)d2 = 0,

νh1 = min
x∈X,d∈S1,dT ah,1(x)=0

(
H1(x) + Cp,1(x)

)
d2 = 0.

Thus, both P1 in Theorem 3.7 and A1 in Theorem 3.9 are empty sets. Neither
Theorem 3.7 nor Theorem 3.9 can be used as a sufficient condition to show the hidden
convexity of h.
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Example 3.3. Let h(x) = x2
1−3x1−x2

2−x2
3+5x2+x3−3 and X = {(x1, x2, x3)

T |
1 ≤ xi ≤ 2, i = 1, 2, 3}. Obviously, we have

−1 ≤ ∂h(x)

∂x1
= 2x1 − 3 ≤ 1 for any x ∈ X,

∂h(x)

∂x2
= −2x2 + 5 ≥ 1 for any x ∈ X,

∂h(x)

∂x3
= −2x3 + 1 ≤ −1 for any x ∈ X.

Thus, h /∈ M . Because the Hessian of h(x),

H(x) =

⎛
⎝ 2 0 0

0 −2 0
0 0 −2

⎞
⎠

has two negative eigenvalues, h is not a pseudoconvex function. Because RH ⊂ P ,
h /∈ RH.

We can prove, however, that h is a hidden strictly convex function. In fact,
because NZ = {2, 3}, l = 1 and γh

l = min
x∈X, ∂h(x)

∂x1
=0

2 = 2 > 0. Setting p1 = 0

in (3.10) leads to A1 = A 	= ∅. Thus, based on Theorem 3.9, h is a hidden strictly
convex function on X, i.e., h ∈ H.

Example 3.4. Let h(x) = −x2
1 − x2

2 and X = {(x1, x2)
T | 1 ≤ xi ≤ 2, i = 1, 2}.

Because the set {(x1, x2)
T ∈ X | h(x) ≤ −2} = {(x1, x2)

T ∈ X | x2
1 + x2

2 ≥ 2} is not
convex, h is not a quasiconvex function on X. Clearly, h is a monotone function on
X that satisfies (3.9). Thus, based on Corollary 3.8, h is a hidden-convex function.
In summary, h ∈ M ⊂ H, but h /∈ Q.

We note here that for quadratic functions, RH = P (see [14]). Thus, for quadratic
functions, we have P ⊆ H, and we can further conclude from Example 3.3 that P is
a strict subset of H. The hidden convexity is a real expansion of pseudoconvexity for
quadratic functions. In summary, we have the following relationships for quadratic
functions:

C ⊂ RH = P ⊂ H, M ⊂ DH ⊂ H, and M ∪ P is a strict subset of H.

The above inclusion relationship can be further extended as follows. Recall the
definition of parameter l for the index set NZ = {l + 1, . . . , n} in (3.2). Let us
introduce the following notations.

Cl: Family of second order continuously differentiable functions with 1 ≤ l < n
that satisfy the following condition: For any fixed (xl+1, . . . , xn), h is strictly convex
on X with respect to (x1, . . . , xl).

RHl: Family of second order continuously differentiable functions with 1 ≤ l < n
that satisfy the following condition: For any fixed (xl+1, . . . , xn), h is r-hidden convex
on X with respect to (x1, . . . , xl).

Pl: Family of second order continuously differentiable functions with 1 ≤ l < n
that satisfy the following condition: For any fixed (xl+1, . . . , xn), h is pseudoconvex
on X with respect to (x1, . . . , xl).

The following proposition is obvious, and we thus omit its proof.
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Proposition 3.10.

1◦ ∪l∈{1,...,n−1}Cl is a strict subset of H;

2◦ ∪l∈{1,...,n−1}RHl ⊂ H; and

3◦ ∪l∈{1,...,n−1}Pl ⊂ H for quadratic functions.

4. Hidden-convex programming problem. We consider the mathematical
programming problem (P) in this section. The original problem can be converted
into the following problem using the transformation in (3.1):

(E) min ψ0(y) = T0 (g0 (t(y)))

s.t. ψk(y) = Tk (gk (t(y))) ≤ Tk(bk), k = 1, . . . ,m,

y ∈ Y,

where Y = {y ∈ Rn | t(y) ∈ X}.
We have the following theorem for the equivalence between (P) and (E).

Theorem 4.1. If Tk : k = 0, 1, . . . ,m, are strictly increasing, t(y) is a one-to-one
mapping from Y to X, and both t and t−1 are continuous, then y∗ is a global (local)
minimizer of problem (E) if and only if x∗ = t(y∗) is a global (local) minimizer of
problem (P).

Proof. The proof can be found in Theorem 3.1 of [16].

Definition 4.2. If there exist strictly increasing functions T0(·), T1(·), . . . , Tm(·)
and domain transformation x = t(y) satisfying the conditions in Theorem 4.1 such
that the programming problem (E) is a (strictly) convex programming problem, then
the original problem (P) is called a hidden (strictly) convex programming problem.

Corollary 4.3. If problem (P) is a hidden-convex programming problem, then
any local minimizer of (P) must be a global minimizer.

Proof. By Definition 4.2, we know that problem (E) is a convex programming
problem if (P) is a hidden-convex programming problem. By Theorem 4.1, the local
optimality of x̄ of (P) implies the local optimality of ȳ = t−1(x̄) in (E). The convexity
of (E) further indicates the global optimality of ȳ = t−1(x̄) in (E), which finally
confirms the global optimality of x̄ in (P), again by Theorem 4.1.

Based on Corollary 4.3, if we identify problem (P) to be a hidden-convex pro-
gramming problem, then we can obtain its global minimizer by solving the original
problem (P) using local search methods. There is no need to actually implement a
transformation.

In the following, we discuss the conditions for identifying hidden-convex program-
ming problems.

Let ηki and ζki be the upper and lower bounds of
∂gk(x)

∂xi
on X, respectively,

k = 0, 1, . . . ,m, i = 1, . . . , n, i.e.,

ηki ≥ max
x∈X

∂gk(x)

∂xi
,

ζki ≤ min
x∈X

∂gk(x)

∂xi
.
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Let Gk(z) be the Hessian matrix of gk at z, k = 0, 1, . . . ,m. Define

ak(x) =
(∂gk(x)

∂x1
, . . . ,

∂gk(x)

∂xn

)T
,

λ(k) = min
x∈X,d∈Sn

dTGk(x)d,

γ(k) = min
x∈X,d∈Sn,aT

k (x)d=0
dTGk(x)d.

Theorem 4.4. Assume that in problem (P), all gk, k = 0, 1, . . . ,m, are second
order continuously differentiable on X. For any k = 0, 1, . . . ,m, i = 1, . . . , n, let

Ai
k = {pi ∈ R | ζki · pi · s(pi) + ηki · pi · s(−pi) > −γ(k)},

Ai = ∩m
k=0A

i
k,

A = {p = (p1, . . . , pn)T | pi ∈ Ai, i = 1, . . . , n}.

If A 	= ∅, then the original problem (P) is a hidden strictly convex programming
problem.

Proof. The condition A 	= ∅ implies Ai
k 	= ∅ for any i = 1, . . . , n, k = 0, 1, . . . ,m.

Thus, for any i = 1, . . . , n, k = 0, 1, . . . ,m, there exists a pi ∈ R such that ζki · pi ·
s(pi)+ηki ·pi · s(−pi) > −γ(k). If we take a p = (p1, . . . , pn)T from A and perform the

domain transformation ti,pi
(yi) =

{
yi pi = 0

− 1
pi

ln yi pi �= 0
and the range transformations

Tq,k(s) = exp(qs), k = 0, 1, . . . ,m, q > 0, then tp(y) satisfies

t′i,pi
(yi) 	= 0,

t′′i,pi
(yi)[

t′i,pi
(yi)

]2 = pi for any yi ∈ Yi,p, i = 1, . . . , n,

and Tq,k(s), k = 0, 1, . . . ,m, satisfy

T ′
q,k(s) > 0,

T ′′
q,k(s)

T ′
q,k(s)

= q ∀s ∈ R.

From the proof of Theorem 3.7, we know that when q is large enough, the functions
Tq,k(gk(tp(y))), k = 0, 1, . . . ,m, are all strictly convex functions on Y . Thus, prob-
lem (E) is a strictly convex programming problem on Y . Furthermore, the original
problem (P) is a hidden strictly convex programming problem.

Remark 4.1. Because for any k = 0, 1, . . . ,m, γ(k) ≥ λ(k), then for any k =
0, 1, . . . ,m, i = 1, . . . , n, we have

{pi ∈ R | ζki · pi · s(pi) + ηki · pi · s(−pi) > −λ(k)} ⊆ Ai
k.

Let

Ii = {k | ζki > 0, k ∈ {0, 1, . . . ,m}},
Ji = {k | ηki < 0, k ∈ {0, 1, . . . ,m}},
Īi = {0, 1, . . . ,m} \ Ii,
J̄i = {0, 1, . . . ,m} \ Ji.
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Without loss of generality, we assume that for any k = 0, 1, . . . ,m, i = 1, . . . , n,
ζki 	= 0, and ηki 	= 0. Then, for any i ∈ {1, . . . , n}, we have

Ai =

{
pi ∈ R

∣∣∣∣max
k∈Ii

{
−γ(k)

ζki

}
< pi < min

k∈Īi

{
−γ(k)

ζki

}
and pi ≥ 0

}

∪
{
pi ∈ R

∣∣∣∣max
k∈J̄i

{
−γ(k)

ηki

}
< pi < min

k∈Ji

{
−γ(k)

ηki

}
and pi < 0

}
.

From Theorem 4.4, we can obtain the following sufficient conditions for hidden-
convex programming problems.

Theorem 4.5. Assume that for all k = 0, 1, . . . ,m, gk are second order contin-
uously differentiable on X. If for any i = 1, . . . , n, one of the following conditions
hold:

max

{
0,max

k∈Ii

[
−γ(k)

ζki

]}
< min

k∈Īi

{
−γ(k)

ζki

}
(4.1)

or max
k∈J̄i

{
−γ(k)

ηki

}
< min

{
0,min

k∈Ji

[
−γ(k)

ηki

]}
,(4.2)

then the original problem (P) is a hidden strictly convex programming problem.
Proof. If for all i = 1, . . . , n, either (4.1) or (4.2) holds, then for any i = 1, . . . , n,

Ai 	= ∅, which implies A 	= ∅. Thus, from Theorem 4.4, the original problem (P) is a
hidden strictly convex programming problem.

Because γ(k) ≥ λ(k) for k = 0, 1, . . . ,m, condition

max

{
0,max

k∈Ii

[
−λ(k)

ζki

]}
< min

k∈Īi

{
−λ(k)

ζki

}

leads to the satisfaction of (4.1) and

max
k∈J̄i

{
−λ(k)

ηki

}
< min

{
0,min

k∈Ji

[
−λ(k)

ηki

]}

leads to the satisfaction of (4.2). Compared with Theorem 3.3 in [12], Theorem 4.5
includes d-hidden convexity as its special case.

Theorem 4.5 offers sufficient conditions to identify whether a programming prob-
lem is a hidden strictly convex programming problem or not. These conditions are
transformation free, i.e., they can be determined only by the parameters that are
derived from the original problem and are independent of the transformations Ti and
t. We need to emphasize that, when using Theorem 4.5, the task to estimate the
constrained minimum eigenvalue γ(k), in general, is very difficult. Without efficient
numerical algorithms to determine γ(k) for general programming problems, the above
results mainly serve as some promising theoretical findings at this stage. In the next
section, however, we will show that for quadratic programming problems, the condi-
tions for checking the hidden convexity are readily verifiable.

5. Hidden convex quadratic optimization problems. We consider the fol-
lowing general quadratic optimization problem:

(Q) min g0(x) =
1

2
xTA(0)x + [b(0)]Tx + c(0)

s.t. gk(x) =
1

2
xTA(k)x + [b(k)]Tx + c(k) ≤ 0, k = 1, . . . ,m,

x ∈ X = {(x1, . . . , xn) | li ≤ xi ≤ ui, i = 1, . . . , n},
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where for k = 0, 1, . . . , m, A(k) = {a(k)
ij }n×n is an n × n symmetric constant matrix

and b(k) = (b
(k)
1 , . . . , b

(k)
n )T is an n-dimensional constant vector. Obviously, matrix

A(k) is the Hessian matrix of g(k) and

∂gk(x)

∂x
= A(k)x + b(k), k = 0, 1, . . . ,m.

Let λ(k) be the minimal eigenvalue of A(k) and γ(k) the constrained minimum eigen-
value of A(k), i.e.,

γ(k) = min
x∈X,d∈Sn,(A(k)x+b(k))T d=0

dTA(k)d.

The constrained minimum eigenvalue γ(k) for a constant matrix A can be easily ob-
tained following the procedure suggested in subsection 2.3.

Let

ζki = min
x∈X

∂gk(x)

∂xi
= min

x∈X

⎡
⎣ n∑
j=1

a
(k)
ij xj + b

(k)
i

⎤
⎦ ,

ηki = max
x∈X

∂gk(x)

∂xi
= max

x∈X

⎡
⎣ n∑
j=1

a
(k)
ij xj + b

(k)
i

⎤
⎦ .

Note here that the minimum and maximum values of a linear function over a box, ζki
and ηki , are easy to calculate.

Define

Ii = {k | ζki > 0, k = 0, 1, . . . ,m},
Ĩi = {k | ζki < 0, k = 0, 1, . . . ,m},
I0
i = {k | ζki = 0, k = 0, 1, . . . ,m},
Ji = {k | ηki < 0, k = 0, 1, . . . ,m},
J̃i = {k | ηki > 0, k = 0, 1, . . . ,m},
J0
i = {k | ηki = 0, k = 0, 1, . . . ,m}.

From the results in the previous sections, the following lemma and theorem are
obvious. We omit their proofs.

Lemma 5.1. If γ(k) ≥ 0 for all k = 0, 1, . . . ,m, then the quadratic optimization
problem (Q) is hidden convex.

Theorem 5.2. If, for any i ∈ {1, . . . , n}, one of the following two conditions
hold:

min
k∈I0

i

γ(k) ≥ 0 and max

{
0,max

k∈Ii

[
−γ(k)

ζki

]}
≤ min

k∈Ĩi

{
−γ(k)

ζki

}
,

or

min
k∈J0

i

γ(k) ≥ 0 and max
k∈J̃i

{
−γ(k)

ηki

}
≤ min

{
0,min

k∈Ji

[
−γ(k)

ηki

]}
,

then the quadratic optimization problem (Q) is hidden convex.
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The following example illustrates how to check the hidden convexity of problem
(Q) step by step.

Example 5.1.

min g0(x) =
1

2
xTA(0)x + [b(0)]Tx,

s.t. g1(x) =
1

2
xTA(1)x + [b(1)]Tx− 4200 ≤ 0,

x ∈ X =

{
x ∈ R3 | 4 ≤ x1 ≤ 9

2
, 1 ≤ x2 ≤ 2, 1 ≤ x3 ≤ 2

}
,

where

A(0) =

⎛
⎜⎝ −2 0 0

0 7
2 −

√
3

2

0 −
√

3
2

5
2

⎞
⎟⎠ , A(1) =

⎛
⎜⎝ −2 0 0

0 1
4 − 3

√
3

4

0 − 3
√

3
4 − 5

4

⎞
⎟⎠ ,

and

b(0) = (0,−(4 −
√

3),−(3 −
√

3))T , b(1) = (1009,−100, 20)T .

Obviously, this problem is not convex.

By the eigenvalue decomposition software in MATLAB, we obtain

Ω0 =

⎛
⎝ 1 0 0

0 −0.5000 −0.8660
0 −0.8660 0.5000

⎞
⎠ , Ω1 =

⎛
⎝ 1 0 0

0 0.5000 −0.8660
0 0.8660 0.5000

⎞
⎠

such that

Ω−1
0 A(0)Ω0 =

⎛
⎝ −2 0 0

0 2 0
0 0 4

⎞
⎠

Ω−1
1 A(1)Ω1 =

⎛
⎝ −2 0 0

0 −2 0
0 0 1

⎞
⎠ .

Thus, the eigenvalues of A(0) are λ(0) = λ
(0)
1 = −2, λ

(0)
2 = 2, λ

(0)
3 = 4 and the

eigenvalues of A(1) are λ(1) = λ
(1)
1 = λ

(1)
2 = −2, λ

(1)
3 = 1.

In the following, we use Theorem 5.2 to prove that the above example problem is
hidden convex. First, we use Proposition 2.4 to obtain γ(k) for k = 0, 1, where

γ(k) = min
x∈X,d∈S3,[A(k)x+b(k)]T d=0

dTA(k)d.

It is clear from (i) of Proposition 2.4 that γ(1) = −2. The calculation of γ(0)
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involves several steps:

b̄(0) = ΩT
0

⎛
⎝ 0

−(4 −
√

3)

−(3 −
√

3)

⎞
⎠ =

⎛
⎝ 0

−2.232
1.330

⎞
⎠ ,

ς =

(
b̄
(0)
1

λ
(0)
1

,
b̄
(0)
2

λ
(0)
2

,
b̄
(0)
3

λ
(0)
3

)T

= (0,−1.116, 0.3325)T ,

X̄(0) =

⎧⎨
⎩x ∈ R3 |

⎛
⎝ 4

1
1

⎞
⎠ ≤ Ω0x− Ω0ς ≤

⎛
⎝ 9

2
2
2

⎞
⎠
⎫⎬
⎭ .

Solving {minx1 | x ∈ X̄(0)} yields v(minx1 | x ∈ X̄(0)) = 4 > 0. Thus, there does
not exist any x̄ ∈ X̄(0) such that x̄1 = 0. We further construct

Ȳ (0) =

⎧⎨
⎩y ∈ R3 |

⎛
⎝ 4

1
1

⎞
⎠ y1 ≤ Ω0

⎛
⎝ 1

y2

y3

⎞
⎠− Ω0ςy1 ≤

⎛
⎝ 9

2
2
2

⎞
⎠ y1

⎫⎬
⎭ .

The value of max{|v(max y2 | y ∈ Ȳ (0))|2, |v(min y2 | y ∈ Ȳ (0))|2} yields β
(0)
12 = 0.9255

in (v) of Proposition 2.4. From (v) of Proposition 2.4, we have

γ(0) = λ
(0)
1 +

λ
(0)
2 − λ

(0)
1

1 + β
(0)
12

(
λ

(0)
2

λ
(0)
1

)2 = 0.0774.

It is not difficult to verify the following:

ζ0
1 = −9 ≤ ∂g0(x)

∂x1
= −2x1 ≤ −8 = η0

1 ,

ζ0
2 = −1

2
≤ ∂g0(x)

∂x2
=

7

2
x2 −

√
3

2
x3 − (4 −

√
3) ≤ 3 +

√
3

2
= η0

2 ,

ζ0
3 = −1

2
≤ ∂g0(x)

∂x3
=

5

2
x3 −

√
3

2
x2 − (3 −

√
3) ≤ 2 +

√
3

2
= η0

3 ,

ζ1
1 = 1000 ≤ ∂g1(x)

∂x1
= −2x1 + 1009 ≤ 1001 = η1

1 ,

ζ1
2 = −399 + 6

√
3

4
≤ ∂g1(x)

∂x2
=

1

4
x2 −

3
√

3

4
x3 − 100 ≤ −398 + 3

√
3

4
= η1

2 ,

ζ1
3 =

35 − 3
√

3

2
≤ ∂g1(x)

∂x3
= −5

4
x3 −

3
√

3

4
x2 + 20 ≤ 75 − 3

√
3

4
= η1

3 .

It is clear that both functions g0(x) and g1(x) are not convex, g1(x) is not pseudo-
convex, and g0(x) is not monotone with respect to x2 and x3. Obviously, I1 = {1},
Ĩ1 = {0} and J2 = {1}, J̃2 = {0}, I3 = {1}, Ĩ3 = {0}. The conditions in Theorem
5.2 can be verified to satisfy for all i = 1, 2, 3.
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When i = 1,

max

{
0,max

k∈I1

[
−γ(k)

ζk1

]}

= max

{
0,−γ(1)

ζ1
1

}
= max

{
0,− −2

1000

}
= 0.0020

< 0.0086 = −0.0774

−9
= −

γ(0)

ζ0
1

= min
k∈Ĩ1

{
−γ(k)

ζk1

}
.

When i = 2,

max
k∈J̃2

{
−
γ(k)

ηk2

}

= −γ(0)

η0
2

= − 0.0774

3 +
√

3
2

= −0.0200

< = −0.0198 = − 8

398 + 3
√

3
= min

{
0,− −2

− 398+3
√

3
4

}
= min

{
0,−γ(1)

η1
2

}

= min

{
0, min

k∈J2

[
−γ(k)

ηk2

]}
.

When i = 3,

max

{
0,max

k∈I3

[
−γ(k)

ζk3

]}

= max

{
0,−γ(1)

ζ1
3

}
= max

{
0,− −2

35−3
√

3
2

}
= 0.1342

< 0.1548 = −0.0774

− 1
2

= −γ(0)

ζ0
3

= min
k∈Ĩ3

{
−γ(k)

ζk3

}
.

We can thus conclude by Theorem 5.2 that Example 5.1 is hidden convex. The
local minimizer of this problem, x∗ = (4.2760, 1.1421, 1.0000)T with objective value
f∗ = −19.5984, which is obtained by the constrained nonlinear minimization function
fmincon of the MATLAB optimization toolbox, must also be the global minimizer.

We present in the following an algorithm for checking the hidden convexity of
problem (Q).

Algorithm II (Verification of the hidden convexity of problem (Q)).
Step 1. Calculate γ(k) = minx∈X,d∈Sn,(A(k)x+b(k))T d=0 d

TA(k)d, k = 0, 1, . . . ,m,
by Algorithm I. Let i = 1.

Step 2. If i > n, then go to Step 5. Otherwise, for k = 0, 1, . . . ,m, calculate ζki
and ηki . Let Γi := mink∈I0

i
γ(k) and Υi := mink∈J0

i
γ(k) and go to Step 3.

Step 3. Let Λi := max{0,maxk∈Ii [−γ(k)

ζk
i

]}, Λ̄i := mink∈Ĩi
{−γ(k)

ζk
i
}. If Γi ≥ 0 and

Λi ≤ Λ̄i, then let i := i + 1 and go to Step 2. Otherwise, go to Step 4.
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Step 4. Let Λi := max
k∈J̃i

{−γ(k)

ηk
i
}, Λ̄i := min{0,mink∈Ji [−γ(k)

ηk
i

]}. If Υi ≥ 0 and

Λi ≤ Λ̄i, then let i := i + 1 and go to Step 2. Otherwise, stop, and the hidden
convexity of problem (Q) cannot be proved.

Step 5. Problem (Q) is hidden convex. Use an appropriate routine to find a local
optimal solution of problem (Q), which is also a global optimal solution.

Remark 5.1. Using Algorithms I and II, we can verify whether problem (Q) is a
hidden-convex programming problem by solving some linear programming problems.
Note that the calculation of ζki and ηki can be simply carried out by determining
whether xj , j = 1, . . . , n, takes its upper bound or its lower bound based on the

positiveness or negativeness of the corresponding coefficient a
(k)
ij , i = 1, . . . , n, k =

0, . . . , m. The largest number of actual linear programming problems that we need
to solve in Algorithms I and II is 4(m + 1) and each linear programming problem
involves n variables and 2n inequality constraints. The complexity analysis of linear
programming has been well established and can be applied to estimate the worst-
case complexity of the verification process for hidden convexity, given the size of the
problem under investigation.

Algorithms I and II are coded in MATLAB 7.0 with the Windows XP operating
system, and the Optimization Toolbox 3.0 is used in the coding. We demonstrate
in the following how to use Algorithms I and II to check the hidden convexity for a
10-dimensional quadratic optimization problem.

Example 5.2.

min g0(x) =
1

2
xTA(0)x + [b(0)]Tx

s.t. g1(x) =
1

2
xTA(1)x + [b(1)]Tx− 1800 ≤ 0,

x ∈ X = {x ∈ R3 | 4 ≤ x1 ≤ 9

2
, 1 ≤ xi ≤ 2, i = 2, . . . , 10},

where

A(0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 0 0 − 1
2 0 0 0 0 0 − 1

2

0 7
2 −

√
3

2 0 0 0 0 0 0 0

0 −
√

3
2

5
2 0 0 0 0 0 0 0

− 1
2 0 0 2 − 1

2 0 0 0 0 0
0 0 0 − 1

2 2 − 1
2 0 0 0 0

0 0 0 0 − 1
2 2 − 1

2 0 0 0
0 0 0 0 0 − 1

2 2 − 1
2 0 0

0 0 0 0 0 0 − 1
2 2 − 1

2 0
0 0 0 0 0 0 0 − 1

2 2 − 1
2

− 1
2 0 0 0 0 0 0 0 − 1

2 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A(1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 0 0 1 0 0 0 0 0 1

0 1
4 − 3

√
3

4 0 0 0 0 0 0 0

0 − 3
√

3
4 − 5

4 0 0 0 0 0 0 0
1 0 0 −1 1 0 0 0 0 0
0 0 0 1 −1 1 0 0 0 0
0 0 0 0 1 −1 1 0 0 0
0 0 0 0 0 1 −1 1 0 0
0 0 0 0 0 0 1 −1 1 0
0 0 0 0 0 0 0 1 −1 1
1 0 0 0 0 0 0 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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and

b(0) = (2,−(4 −
√

3),−(3 −
√

3),−1,−3,−3,−3,−3,−3,−1)T ,

b(1) = (300,−50, 50, 50, 40, 60, 40, 50, 60, 50)T .

Obviously, this problem is not convex. We first obtain γ(0) = 0.2328 and γ(1) =
−2.8659 by using Algorithm I. Implementing Algorithm II, we find out that for all
i = 1, . . . , 10, Γi = Υi = ∞, [Λ1, . . . ,Λ10]

T = [0.0098,−0.0602, 0.0638, 0.0541, 0.0716,
0.0478, 0.0716, 0.0573, 0.0478, 0.0541]T and [Λ̄1, . . . , Λ̄10]

T = [0.0259,−0.0564, 0.4657,
0.1035, 0.0776, 0.0776, 0.0776, 0.0776, 0.0776, 0.1035]T . Thus, we can conclude that
Example 5.2 is hidden convex. The global minimizer of this problem is x∗ = (4.3827,
1.2917, 1.0000, 1.2577, 1.6279, 1.4911, 1.7009, 1.5632, 1.3535, 1.1918)T with objective
value f∗ = −34.2711. The calculation is carried out on an Intel Pentium M with
1.60GHz and 512MB RAM and the total computational time is 2.053 seconds.

Remark 5.2. Let (QS) be a class of quadratic optimization problems with a single
constraint (m = 1) and X = Rn. The solution properties of (QS) were discussed in
[6] and [9] under an assumption that Slater’s constraint qualification is satisfied. Ap-
pendix B of [6] pointed out that the strong duality holds for (QS) and its Lagrangian
dual problem is a convex programming problem. Using the same notations as in (Q),
[9] pointed out that x̄ is a global minimizer of problem (QS) if and only if there exists
a λ ≥ 0 such that

A(0) + λA(1) � 0, b(0) + λb(1) + (A(0) + λA(1))x̄ = 0, λg1(x̄) = 0.

Although many instances of (QS) are not hidden convex, a global minimizer of any
problem (QS) that satisfies Slater’s condition can always be characterized by a con-
vex programming problem. A key point to be emphasized is that any nonconvex
optimization problem with multiple minima cannot be hidden convex. Note that if,
in (QS), X is bounded, as we are discussing in this paper, then the results that are
derived in [6] and [9] will not hold true.

6. Conclusion. Transformation-independent sufficient conditions have been de-
veloped in this paper to peel off a nonconvex cover of certain actual convex program-
ming problems. The reach of convex analysis can be thus extended to a class of
hidden-convex functions. Most promisingly, some implementable checking procedures
have been derived in this paper to identify hidden convex quadratic optimization
problems.

One future research subject is to integrate the checking procedure for hidden
convexity into a branch-and-bound framework to solve a class of global optimization
problems. Let us consider the following simple example.

Example 6.1.

(PE) min g0(x) =
1

2
x2 +

1

2
x

s.t. g1(x) = −1

2
x2 − 2x− 1

2
≤ 0,

x ∈ X = {x | −1 ≤ x ≤ 1}.

It is easy to check for this problem that γ(0) = 1, γ(1) = −1, ζ0 = minx∈X(x+ 1
2 ) =

− 1
2 , η0 = maxx∈X(x+ 1

2 ) = 3
2 , ζ1 = minx∈X(−x−2) = −3, and η1 = maxx∈X(−x−2)

= −1. We further have I = ∅, Ĩ = {0, 1}, J = {1}, and J̃ = {0}. Neither of the
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two conditions in Theorem 5.2 is satisfied and we are not able to verify the hidden
convexity of problem (PE).

We consider two subregions of X, X1 = {x | −1 ≤ x ≤ 0} and X2 = {x | − 1
4 ≤

x ≤ 1}, such that X = X1 ∪ X2. Consider two revised problems of (PE), (PE1),
and (PE2), by replacing X with X1 and X2, respectively. For (PE1), ζ

0 = − 1
2 , η0

= 1
2 , ζ1 = −2, η1 = −1, I = ∅, Ĩ = {0, 1}, J = {1}, and J̃ = {0}. For (PE2), ζ

0

= 1
4 , η0 = 3

2 , ζ1 = −3, η1 = − 7
4 , I = {0}, Ĩ = {1}, J = {1}, and J̃ = {0}. For

both problems (PE1) and (PE2), the second condition in Theorem 5.2 is satisfied and
both problems (PE1) and (PE2) are thus hidden convex. Comparing the minimizer of
problem (PE1), x

∗
1 = −0.2680 with g0(x

∗
1) = −0.0980, and the minimizer of problem

(PE2), x
∗
2 = − 1

4 with g0(x
∗
2) = −0.0938, we can conclude that x∗

1 = −0.2680 is the
global minimizer of problem (PE).

To extend the implementable computational procedure for checking hidden con-
vexity in nonquadratic optimization situations, we will explore some possibilities in
the near future for applying the results in the literature on eigenvalue bounds for
interval matrices (see [7], [13]) to calculate a lower bound of the minimum eigenvalue
or the constrained minimum eigenvalue for nonconstant matrices.

Acknowledgments. The authors are grateful to two anonymous referees for
their extremely valuable comments and suggestions, which have contributed to the
significant improvement of this paper.
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USING SAMPLING AND SIMPLEX DERIVATIVES IN PATTERN
SEARCH METHODS∗
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Abstract. In this paper, we introduce ways of making a pattern search more efficient by reusing
previous evaluations of the objective function, based on the computation of simplex derivatives (e.g.,
simplex gradients). At each iteration, one can attempt to compute an accurate simplex gradient
by identifying a sampling set of previously evaluated points with good geometrical properties. This
can be done using only past successful iterates or by considering all past function evaluations. The
simplex gradient can then be used to reorder the evaluations of the objective function associated with
the directions used in the poll step or to update the mesh size parameter according to a sufficient
decrease criterion, neither of which requires new function evaluations. We present these procedures
in detail and apply them to a set of problems from the CUTEr collection. Numerical results show
that these procedures can enhance significantly the practical performance of pattern search methods.

Key words. derivative-free optimization, pattern search methods, simplex gradient, poll order-
ing, multivariate polynomial interpolation, poisedness

AMS subject classifications. 65D05, 90C30, 90C56

DOI. 10.1137/050646706

1. Introduction. We are interested in this paper in designing efficient (de-
rivative-free) pattern search methods for nonlinear optimization problems. We fo-
cus our attention on unconstrained optimization problems of the form minx∈Rn f(x).

The curve representing the objective function value as a function of the number
of function evaluations frequently exhibits an L-shape for pattern search runs. This
class of methods, perhaps because of their directional features, is relatively good at
quickly decreasing the objective function from its initial value. However, they can be
slow thereafter and especially towards stationarity, when the frequency of unsuccessful
iterations tends to increase.

There has not been much effort in trying to develop efficient serial implemen-
tations of pattern search methods for the minimization of general functions. Some
attention has been paid to parallelization (see Hough, Kolda, and Torczon [14]). In
the context of generating set search methods, Frimannslund and Steihaug [12] rotated
the generating sets based on curvature information extracted from function values.
Other authors have considered particular instances where the problem structure can
be exploited efficiently. Price and Toint [20] examined how to take advantage of par-
tial separability. Alberto et al. [2] have shown ways of incorporating user-provided
function evaluations. Abramson, Audet, and Dennis [1] looked at the case where some
incomplete form of gradient information is available.
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538 A. L. CUSTÓDIO AND L. N. VICENTE

The goal of this paper is to develop strategies for improving the efficiency of the
current pattern search iteration, based on function evaluations obtained at previous
iterations. We make no use of or assumption about the structure of the objective
function, so that one can apply the techniques here to any functions (in particular,
those resulting from running black-box codes or performing physical experiments).
More importantly, these strategies (i) require no extra function evaluation and (ii) do
not interfere with existing requirements for global convergence.

The paper is organized as follows. Section 2 describes the pattern search frame-
work over which we introduce the material of this paper. Section 3 summarizes
geometrical features of sample sets (Λ–poisedness) and simplex derivatives, such as
simplex gradients and simplex Hessians.

The key ideas of this paper are reported in section 4, where we show how to
use sample sets of points previously evaluated in a pattern search to compute simplex
derivatives. The sample sets can be built by storing points where the function has been
evaluated or by storing only points which lead to a decrease. The main destination
of this computation is the efficient ordering of the directions used for polling. In fact,
a descent indicator direction (like a negative simplex gradient) can be used to order
the polling directions according to a simple angle criterion.

In section 5 we describe one way of ensuring sample sets with adequate geom-
etry at iterations succeeding unsuccessful ones. We study the pruning properties of
negative simplex gradients in section 6. Other uses of simplex derivatives in a pat-
tern search are suggested in section 7, namely, one way of updating the mesh size
parameter according to a sufficient decrease condition.

These ideas were tested in a set of CUTEr [13] unconstrained problems, collected
from papers on derivative-free optimization. The corresponding numerical results
are reported in section 8 and show the effectiveness of using sampling-based simplex
derivatives in pattern search. Section 9 states some concluding remarks and ideas for
future work. The default norms used in this paper are Euclidean.

2. Pattern search. Pattern search methods are directional methods that make
use of a finite number of directions with appropriate descent properties. In the un-
constrained case, these directions must positively span R

n. A positive spanning set is
guaranteed to contain one positive basis, but it can contain more. A positive basis is
a positive spanning set which has no proper subset positively spanning R

n. Positive
bases have between n+1 and 2n elements. Properties and examples of positive bases
can be found in [2, 10, 17]. If the objective function possesses certain smoothness
properties and the number of positive bases used remains finite, then the pattern
search is known to exhibit global convergence to stationary points in the lim inf sense
(see [3, 17]).

We present pattern search methods in the generalized format introduced by Audet
and Dennis [3]. The positive spanning set used is represented by D and its cardinality
by |D|. It is convenient to regard D as an n × |D| matrix whose columns are the
elements of D. A positive basis in D is denoted by B and is also viewed as a matrix
(an n× |B| column submatrix of D).

At each iteration k of a pattern search method, the next iterate xk+1 is selected
among the points of a mesh Mk, defined as

Mk = {xk + αkDz : z ∈ Z
|D|
+ },

where Z+ is the set of nonnegative integers. This mesh is centered at the current
iterate xk, and its fineness is defined by the mesh size (or step size) parameter αk > 0.
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Each direction d ∈ D must be of the form d = Gz̄, z̄ ∈ Z
n, where G is a nonsingular

(generating) matrix. This property is crucial for global convergence, ensuring that
the mesh has only a finite number of points in a compact set (provided that the mesh
size parameter is also updated according to some rationality requirements, as we will
point out later).

The process of finding a new iterate xk+1 ∈ Mk can be described in two phases
(the search step and the poll step). The search step is optional and unnecessary for the
convergence properties of the method. It consists of evaluating the objective function
at a finite number of points lying on the mesh Mk. The choice of points in Mk is totally
flexible as long as its number remains finite. The points could be chosen according to
specific application properties or following some heuristic algorithm. The search step
is declared successful if a new mesh point xk+1 is found such that f(xk+1) < f(xk).

The poll step is performed only if the search step has been unsuccessful. It
consists of a local search around the current iterate, exploring the points in the mesh
neighborhood defined by the parameter αk and a positive basis Bk ⊂ D:

Pk = {xk + αkb : b ∈ Bk} ⊂ Mk.

We call the points xk +αkb ∈ Pk the polling points and the vectors b ∈ Bk the polling
vectors or polling directions.

The purpose of the poll step is to ensure a decrease in the objective function for
sufficiently small mesh sizes. Provided that the function retains some differentiability
properties, one knows that the poll step must be eventually successful, unless the
current iterate is a stationary point. In fact, given any vector w in R

n, there exists
at least one vector b in Bk such that w�b > 0 (see [10]). For instance, if the function
f is continuously differentiable and one selects w = −∇f(xk), then one is guaranteed
the existence of a descent direction in Bk.

The polling vectors (or points) are ordered according to some criterion in the
poll step. The report [18] presents two distinct classes of pattern search algorithms,
namely, the rank ordering and the positive bases pattern search methods. In the con-
text of a rank ordering pattern search, it is suggested to order the simplex vertices but
with the single purpose of identifying the vertices with the best and the worst objec-
tive function values in order to compute a crude estimate of the direction of steepest
descent. The authors explicitly state in [18] that their intention was not reordering
the remaining vertices. Most papers do not address the issue of poll ordering at all
and, as a result, numerical testing is typically done using the ordering in which the
vectors are originally stored. Another ordering we discuss later consists of bringing
into the first column (in Bk+1) the polling vector bk associated with the most recent
successful polling iterate (f(xk + αkbk) < f(xk)). This ordering procedure has been
called dynamic polling (see Audet and Dennis [4]). Our presentation of a pattern
search assumes that poll ordering is specified before polling starts.

If the poll step also fails to produce a point with a lower objective function value
f(xk), then both the poll step and the iteration are declared unsuccessful. In this
situation the mesh size parameter is decreased. On the other hand, the mesh size is
held constant or increased if, in either the search or the poll step, a new iterate is
found yielding an objective function decrease.

The class of pattern search methods used in this paper is described in Figure 2.1.
Our description follows the one given in [3] for the generalized pattern search. We
leave three procedures undetermined in the statement of the method: the search
procedure in the search step, the order procedure that determines the order of the



540 A. L. CUSTÓDIO AND L. N. VICENTE

Pattern Search Method

Initialization
Choose x0 and α0 > 0. Choose a positive spanning set D. Select all constants needed
for procedures [search], [order], and [mesh]. Set k = 0.

Search step
Call [search] to try to compute a point x ∈ Mk with f(x) < f(xk) by evaluating the
function only at a finite number of points in Mk. If such a point is found, then set
xk+1 = x, declare the iteration as successful, and skip the poll step.

Poll step
Choose a positive basis Bk ⊂ D. Call [order] to order the polling set
Pk = {xk + αkb : b ∈ Bk}. Start evaluating f at the polling points following the order
determined. If a polling point xk +αkbk is found such that f(xk +αkbk) < f(xk), then
stop polling, set xk+1 = xk + αkbk, and declare the iteration as successful. Otherwise
declare the iteration as unsuccessful and set xk+1 = xk.

Updating the mesh size parameter
Call [mesh] to compute αk+1. Increment k by one and return to the search step.

Fig. 2.1. Class of pattern search methods used in this paper.

procedure mesh

The constant τ must satisfy τ ∈ Q and τ > 1 and should be initialized at iteration
k = 0 together with jmax ∈ Z, jmax ≥ 0, and jmin ∈ Z, jmin ≤ −1.

If the iteration was successful, then maintain or expand the mesh by taking

αk+1 = τ j+
k αk, with j+

k ∈ {0, 1, 2, . . . , jmax}. Otherwise, contract the mesh by

decreasing the mesh size parameter αk+1 = τ j−
k αk, with j−k ∈ {jmin, . . . ,−1}.

Fig. 2.2. Updating the mesh size parameter (for rational lattice requirements).

polling directions, and the mesh procedure that updates the mesh size parameter.
These procedures are called within squared brackets for better visibility.

The search and order routines are not asked to meet any requirements for global
convergence purposes (except for finiteness of the number of mesh points considered
in search).

The mesh procedure, however, must update the mesh size parameter as described
in Figure 2.2. The most common choice is to divide the parameter in half at unsuc-
cessful iterations and to keep it or double it at successful ones. As noted by Hough,
Kolda, and Torczon [14], increasing the mesh size parameter for all successful iter-
ations can result in an excessive number of later contractions, each one requiring a
complete polling, thus leading to an increase in the total number of function evalu-
ations required. A possible strategy to avoid this behavior (fitting the procedure of
Figure 2.2) has been suggested in [14] and consists of expanding the mesh only if two
consecutive successful iterates have been computed using the same direction.

The global convergence analysis for this class of pattern search methods is divided
into two parts. The first part establishes that a subsequence of mesh size parameters
goes to zero. This result was first proved by Torczon in [21], and it is stated here as
Theorem 2.1.
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Theorem 2.1. Consider a sequence {xk} of pattern search iterates. If L(x0) =
{x ∈ R

n : f(x) ≤ f(x0)} is compact, then the sequence of the mesh size parameters
satisfies lim infk→+∞ αk = 0.

The second part of the analysis requires some differentiability properties of the
objective function and can be found, for instance, in [3, 17]. We formalize it here for
unconstrained minimization.

Theorem 2.2. Consider a sequence {xk} of pattern search iterates. If L(x0) =
{x ∈ R

n : f(x) ≤ f(x0)} is compact, then there exists at least one convergent sub-
sequence {xk}k∈K (with limit point x∗) of unsuccessful iterates for which the corre-
sponding subsequence of the mesh size parameters {αk}k∈K converges to zero. If f is
strictly differentiable near x∗, then ∇f(x∗) = 0. If f is continuously differentiable in
an open set containing L(x0), then lim infk−→+∞ ‖∇f(xk)‖ = 0.

Pattern search and direct search methods for unconstrained optimization are sur-
veyed in the comprehensive paper of Kolda, Lewis, and Torczon [17].

3. Simplex derivatives. A simplex derivative of order one is known as a simplex
gradient. Simplex gradients were used by Bortz and Kelley [5] in their implicit filtering
method, which can be viewed as a line search method based on simplex gradients.
Tseng [22] developed a class of simplex-based direct search methods imposing sufficient
decrease conditions. He suggested the use of the norm of a simplex gradient in a
stopping criterion for his class of methods. No numerical results were reported with
this criterion, and no other use of the simplex gradient was suggested. In the context of
the Nelder–Mead simplex-based direct search algorithm, Kelley [15] used the simplex
gradient norm in a sufficient decrease-type condition to detect stagnation, and the
simplex gradient signs to orient the simplex restarts.

Calculation of a simplex gradient first requires the selection of a set of sample
points. The geometrical properties of the sample set determine the quality of the
corresponding simplex gradient as an approximation to the exact gradient of the
objective function. In this paper, we use (determined) simplex gradients as well as
underdetermined and overdetermined (or regression) simplex gradients.

In the determined case, a simplex gradient is computed by first sampling the
objective function at n+1 points. The convex hull of a set of n+1 affinely independent
points {y0, y1, . . . , yn} is called a simplex. The n+1 points are called the vertices of the
simplex. Since the points are affinely independent, the matrix S = [ y1−y0 . . . yn−y0 ]
is nonsingular. Given a simplex of vertices y0, y1, . . . , yn, the simplex gradient at y0 is
defined as ∇sf(y0) = S−�δ(f ;S), with δ(f ;S) = [ f(y1)−f(y0), . . . , f(yn)−f(y0) ]�.

The simplex gradient is intimately related to linear multivariate polynomial inter-
polation. In fact, it is easy to see that the linear model m(y) = f(y0)+∇sf(y0)�(y−
y0) centered at y0 interpolates f at the points y1, . . . , yn.

In practical instances, one might have q+1 �= n+1 points from which to compute a
simplex gradient. We say that a sample set is poised for a simplex gradient calculation
if S is full rank, i.e., if rank(S) = min{n, q}. (The notions of poisedness and affine
independence coincide for q ≤ n, but affine independence is not defined when q > n.)
Given the sample set {y0, y1, . . . , yq}, the simplex gradient ∇sf(y0) of f at y0 can be
defined as the “solution” g of the system

S�g = δ(f ;S),

where S = [ y1 − y0 . . . yq − y0 ] and δ(f ;S) = [ f(y1) − f(y0), . . . , f(yq) − f(y0) ]�.
This system is solved in the least-squares sense if q > n. A minimum norm solution
is computed if q < n. This definition includes the determined case (q = n) as a
particular case.
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The formulas for the nondetermined simplex gradients can be expressed using
the reduced singular value decomposition (SVD) of S�. However, to deal with the
geometrical properties of the poised sample set and to better express the error bound
for the corresponding gradient approximation, it is appropriate to take the reduced
SVD of a scaled form of S�. For this purpose, let

Δ = max
1≤i≤q

‖yi − y0‖,

which is the radius of the smallest enclosing ball of {y0, y1, . . . , yq} centered at y0. Now
we write the reduced SVD of the scaled matrix S�/Δ = UΣV �, which corresponds
to a sample set in a ball of radius one centered around y0. The underdetermined and
overdetermined simplex gradients are both given by ∇sf(y0) = V Σ−1U�δ(f ;S)/Δ.

The accuracy of simplex gradients is summarized in the following theorem. The
proof of the determined case (q = n) is given, for instance, by Kelley [16]. The
extension of the analysis to the nondetermined cases is developed by Conn, Scheinberg,
and Vicente [6].

Theorem 3.1. Let {y0, y1, . . . , yq} be a poised sample set for a simplex gradient
calculation in R

n. Consider the enclosing (closed) ball B(y0; Δ) of this sample set,
centered at y0, where Δ = max1≤i≤q ‖yi − y0‖. Let S = [ y1 − y0 . . . yq − y0 ], and
let UΣV � be the reduced SVD of S�/Δ.

Assume that ∇f is Lipschitz continuous in an open domain Ω containing B(y0; Δ)
with constant γ > 0.

Then the error of the simplex gradient at y0, as an approximation to ∇f(y0),
satisfies

‖V̂ �[∇f(y0) −∇sf(y0)]‖ ≤
(
q

1
2
γ

2
‖Σ−1‖

)
Δ,

where V̂ = I if q ≥ n and V̂ = V if q < n.
Notice that the error difference is projected over the null space of S�/Δ. Un-

less we have enough points (q + 1 ≥ n + 1), there is no guarantee of accuracy for
the simplex gradient. Despite this observation, underdetermined simplex gradients
contain relevant gradient information for q close to n and might be of some value in
computations where the number of sample points is relatively low.

The quality of the error bound of Theorem 3.1 depends on the size of the constant√
qγ‖Σ−1‖/2, which multiplies Δ. This constant, in turn, depends essentially on an

unknown Lipschitz constant γ and on ‖Σ−1‖, which is associated to the geometry of
the sample set.

Conn, Scheinberg, and Vicente [7] introduced an algorithmic framework for build-
ing and maintaining sample sets with good geometry. They have suggested the notion
of a Λ–poised sample set, where Λ is a positive constant. The notion of Λ–poisedness
is closely related to Lagrange interpolation [7, 6]. If a sample set {y0, y1, . . . , yq} is
Λ–poised in the sense of [7, 6], then one can prove that ‖Σ−1‖ is bounded by a multi-
ple of Λ. For the purpose of this paper, it is enough to consider ‖Σ−1‖ as a measure
of the well-poisedness (quality of the geometry) of our sample sets. We therefore say
that a poised sample set is Λ–poised if ‖Σ−1‖ ≤ Λ, for some positive constant Λ.

In a pattern search, we do not necessarily need an algorithm to build or maintain
Λ–poised sets. Rather, we are given a sample set at each iteration, and our goal is
just to identify a Λ–poised subset. The constant Λ > 0 is chosen at iteration k = 0.
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The notion of the simplex gradient can be extended to higher order derivatives [6].
One can consider the computation of a simplex Hessian by extending the linear system
S�g = δ(f ;S) to the following system in the variables g ∈ R

n and H ∈ R
n×n, with

H = H�:

(yi − y0)�g +
1

2
(yi − y0)�H(yi − y0) = f(yi) − f(y0), i = 1, . . . , p.(3.1)

The number of points in the sample set Y = {y0, y1, . . . , yp} must be equal to p+1 =
(n+ 1)(n+ 2)/2 if one wants to compute a full symmetric simplex Hessian. Similarly
to the linear case, the simplex gradient g = ∇sf(y0) and the simplex Hessian H =
∇2

sf(y0), computed from system (3.1) with p + 1 = (n + 1)(n + 2)/2 points, coincide
with the coefficients of the quadratic multivariate polynomial interpolation model
associated with Y . The notions of poisedness and Λ–poisedness and the derivation
of the error bounds for simplex Hessians in determined and nondetermined cases are
reported in [7, 6].

In our application to a pattern search we are interested in using sample sets
with a relatively low number of points. One alternative is to consider fewer points
than coefficients in the model and to compute solutions in the minimum norm sense.
Another option is to choose to approximate only some portions of the simplex Hessian.
For instance, if one is given 2n + 1 points one can compute the n components of a
simplex gradient and an approximation to the n diagonal terms of a simplex Hessian.
The system to be solved in this case is of the form

[
y1 − y0 · · · y2n − y0

(1/2)(y1 − y0).̂ 2 · · · (1/2)(y2n − y0).̂ 2

]� [
g

diag(H)

]
= δ(f ;S),

where δ(f ;S) = [ f(y1) − f(y0), . . . , f(y2n) − f(y0) ]� and the notation “.̂ 2” stands
for componentwise squaring. Once again, if the number of points is lower than 2n+1
a minimum norm solution can be computed.

4. Ordering the polling in a pattern search. A pattern search method
generates a number of function evaluations at each iteration. One can store some
of these points and corresponding objective function values during the course of the
iterations. Thus, at the beginning of each iteration, one can try to identify a subset
of these points with desirable geometrical properties (Λ–poisedness in our context).

If successful in such an attempt, we compute some form of simplex derivatives,
such as a simplex gradient. We can then compute, at no additional cost, a direction
of potential descent or of potential steepest descent (a negative simplex gradient, for
example). We call such a direction a descent indicator. There may be iterations
(especially at the beginning) in which we fail to compute a descent indicator, but
such failures cost no extra function evaluations either.

Our main goal is to use descent indicators based on simplex derivatives to order
the poll vectors efficiently in the poll step. We can also explore the use of simplex
derivatives in other components of a pattern search method such as the search step
or the mesh size parameter update.

We adapt the description of a pattern search to follow the approach described
above. The class of pattern search methods remains essentially the same and is
spelled out in Figure 4.1. All modifications to the algorithm reported in Figure 2.1
are marked in italics in Figure 4.1 for better identification.
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Pattern Search Method — Using Sampling and Simplex Derivatives

Initialization
Choose x0 and α0 > 0. Choose a positive spanning set D. Select all constants needed
for procedures [search], [order], and [mesh]. Set k = 0. Set X0 = [x0] to initialize
the list of points maintained by [store]. Choose a maximum number pmax of points
that can be stored. Choose also the minimum smin and the maximum smax number
of points involved in any simplex derivatives calculation (2 ≤ smin ≤ smax). Choose
Λ > 0 and σmax ≥ 1.

Identifying a Λ–poised sample set and computing simplex derivatives
Skip this step if there are not enough points, i.e., if |Xk| < smin. Set
Δk = σk αk−1 maxb∈Bk−1 ‖b‖, where σk ∈ [1, σmax]. Try to identify a set of
points Yk in Xk ∩ B(xk; Δk), with as many points as possible (up to smax) and such
that Yk is Λ–poised and includes the current iterate xk. If |Yk| ≥ smin, compute some
form of simplex derivatives based on Yk (and from that compute a descent indicator dk).

Search step
Call [search] to try to compute a point x ∈ Mk with f(x) < f(xk) by evaluating
the function only at a finite number of points in Mk and calling [store] each time a
point is evaluated. If such a point is found, then set xk+1 = x, declare the iteration as
successful, and skip the poll step.

Poll step
Choose a positive basis Bk ⊂ D. Call [order] to order the polling set
Pk = {xk + αkb : b ∈ Bk}. Start evaluating f at the polling points following
the order determined and calling [store] each time a point is evaluated. If a polling
point xk + αkbk is found such that f(xk + αkbk) < f(xk), then stop polling, set
xk+1 = xk + αkbk, and declare the iteration as successful. Otherwise declare the
iteration as unsuccessful and set xk+1 = xk.

Updating the mesh size parameter
Call [mesh] to compute αk+1. Increment k by one and return to the simplex derivatives
step.

Fig. 4.1. The class of pattern search methods used in this paper, adapted now for identifying
Λ–poised sample sets and computing simplex derivatives.

The algorithm maintains a list Xk of evaluated points with maximum size pmax.
Each time a new point is evaluated, the algorithm calls a new procedure store, which
controls the adding (and deleting) of points to Xk.

A new step is included at the beginning of each iteration for computing simplex
derivatives. In this step, the algorithm attempts first to extract from Xk a sample
set Yk with the appropriate size and desirable geometrical properties. The points in
Yk must be within a certain distance Δk to the current iterate:

Δk = σk αk−1 max
b∈Bk−1

‖b‖,

where σk ∈ [1, σmax], and σmax ≥ 1 is fixed a priori for all iterations. Note that Δk is
chosen such that B(xk; Δk) contains all of the points in Pk−1 = {xk−1 + αk−1b : b ∈
Bk−1} when k − 1 is an unsuccessful iteration. The dependence of Δk on αk−1 guar-
antees the asymptotic quality of the simplex derivatives computed at a subsequence
of unsuccessful iterates (see Theorems 3.1 and 5.1).
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procedure order

Compute cos(dk, b) for all b ∈ Bk. Order the columns in Bk according to decreasing
values of the corresponding cosines.

Fig. 4.2. Ordering the polling vectors according to their angle distance to the descent indicator.
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Fig. 4.3. Ordering the polling vectors using a descent indicator. The positive basis considered
is Bk = [ I −I ].

We consider two simple strategies for deciding whether or not to store a point,
once the function has been evaluated there:

• store-succ: keeps only the successful iterates xk+1 (for which f(xk+1) <
f(xk));

• store-all: keeps every evaluated point.
In both cases, points are added sequentially to Xk at the top of the list. In store-

succ, the points in the list Xk are ordered by increasing objective function values.
When (and if) Xk has reached its predetermined size pmax, we must first remove a
point before adding a new one. We assume that the points are removed from the
end of the list. Note that both variants store successful iterates xk+1 (for which
f(xk+1) < f(xk)). Clearly, the current iterate xk is always in Xk, when store-succ
is chosen. However, for store-all, xk could be removed from the list if a number of
consecutive unsuccessful iterates occur. We must therefore add a safeguard to prevent
this from happening.

Having a descent indicator dk at hand, we can order the polling vectors according
to increasing magnitudes of the angles between dk and the polling directions. So
the first polling point to be evaluated is the one corresponding to the polling vector
making the smallest angle with dk. We describe this procedure order in Figure 4.2
and illustrate it in Figure 4.3.

The descent indicator could be a negative simplex gradient dk = −∇sf(xk), where
Sk = [ y1

k − xk . . . yqkk − xk ] is formed from the sample set Yk = {y0
k, y

1
k, . . . , y

qk
k },

with qk + 1 = |Yk| and y0
k = xk. We designate this approach by sgradient. Another

possibility is to compute dk = −H−1
k gk, where gk is a simplex gradient and Hk

approximates a simplex Hessian. In section 8, we test numerically the diagonal simplex
Hessians described at the end of section 3. This approach is designated by shessian.

5. Geometry of the sample sets. If evaluated points are added to the list Xk

according to the store-all criterion, it is possible to guarantee the quality of the sample
sets Yk used to compute the simplex derivatives after the occurrence of unsuccessful
iterations.

Let us focus on the case where our goal is to compute simplex gradients. We
define

spb = min{|B| : B ⊂ D, B positive basis}.
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First we assume that smin ≤ spb, i.e., that simplex gradients can be computed
from spb points of Xk with appropriate geometry. If iteration k− 1 was unsuccessful,
then at least |Bk−1| points were added to Xk−1 (the polling points xk−1 + αk−1b for
all b ∈ Bk−1). Such points are part of Xk as well as the current iterate xk = xk−1. It
is shown in the next theorem that the sample set Yk = {xk} ∪ {xk−1 + αk−1b : b ∈
Bk−1} ⊂ Xk is poised for a simplex gradient calculation.

It is also shown that the sample set Yk ⊂ Xk formed by xk and by only |Bk−1|−1
of the points xk−1 +αk−1b, b ∈ Bk−1, is also poised for a simplex gradient calculation.
In this case, we set smin ≤ spb − 1.

Theorem 5.1. Let k − 1 be any unsuccessful iteration of the pattern search
method of Figure 4.1 using the store-all strategy.

• Suppose smin ≤ spb. There exists a positive constant Λ1 (independent of
k) such that the sample set Yk ⊂ Xk formed by xk = xk−1 and the points
xk−1+αk−1b, b ∈ Bk−1, is Λ1–poised for a (overdetermined) simplex gradient
calculation.

• Suppose smin ≤ spb − 1. There exists a positive constant Λ2 (independent
of k) such that the sample set Yk ⊂ Xk formed by xk = xk−1 and by only
|Bk−1|−1 of the points xk−1+αk−1b, b ∈ Bk−1, is Λ2–poised for a (determined
or overdetermined) simplex gradient calculation.

Proof. To simplify the notation we write B = Bk−1. To prove the first statement,
let Yk = {y0

k, y
1
k, . . . , y

qk
k }, with qk + 1 = |Yk| = |B| + 1 and y0

k = xk. Then

Sk = [ y1
k − xk . . . yqkk − xk ] = [αk−1b1 . . . αk−1b|B| ] = αk−1B.

The matrix B has rank n since it linearly spans R
n by definition. Thus,

1

Δk
Sk =

αk−1

σk αk−1 maxb∈B ‖b‖B =
1

σk

1

maxb∈B ‖b‖B,

and the geometry constant associated with this sample set Yk is given by

1

σk
‖Σ−1‖ with

1

maxb∈B ‖b‖B
� = UΣV �.

Since σk ≥ 1, if we choose the poisedness constant such that

Λ1 ≥ max
{
‖Σ−1‖ : 1

maxb∈B ‖b‖B
� = UΣV �

∀positive basesB ⊂ D} ,

then we are guaranteed to identify a Λ1–poised sample set after any unsuccessful
iteration.

In the second case, we have qk + 1 = |Yk| = |B| and

Sk = αk−1B|B|−1,

where B|B|−1 is some column submatrix of B with |B| − 1 columns. Since B is a
positive spanning set, B|B|−1 linearly spans R

n (see [10, Theorem 3.7]), and therefore
it has rank n. The difference now is that we must consider all submatrices B|B|−1 of
B. Thus, if we choose the poisedness constant such that

Λ2 ≥ max
{
‖Σ−1‖ : 1

maxb∈B ‖b‖B
�
|B|−1 = UΣV �

∀ B|B|−1 ⊂ B, ∀positive basesB ⊂ D
}
,

we are guaranteed to identify a Λ2–poised sample set after any unsuccessful iter-
ation.
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We point out that a result of this type is not necessarily restricted to unsuccessful
iterations. Other geometry scenarios can be explored at successful iterations.

6. Pruning the polling directions. Abramson, Audet, and Dennis [1] show
that, for a special choice of the positive spanning set D, rough approximations to the
gradient of the objective function can be used to reduce the polling step to a single
function evaluation. The gradient approximations considered were ε–approximations
to the large components of the gradient vector.

Let g be a nonzero vector in R
n and ε ≥ 0. Consider

Jε(g) = {i ∈ {1, . . . , n} : |gi| + ε ≥ ‖g‖∞} ,

and for every i ∈ {1, . . . , n} let

dε(g)i =

{
sign(gi) if i ∈ Jε(g),

0 otherwise.
(6.1)

The vector g is said to be an ε–approximation to the large components of a nonzero
vector v ∈ R

n if and only if i ∈ Jε(g) whenever |vi| = ‖v‖∞ and sign(gi) = sign(vi)
for every i ∈ Jε(g).

The question that arises now is whether a descent indicator dk, and, in particular,
a negative simplex gradient −∇sf(xk), is an ε–approximation to the large components
of −∇f(xk) for some ε > 0. We show in the next theorem that the answer is affir-
mative, provided that the mesh size parameter αk is sufficiently small, an issue we
readdress at the end of this section.

We will use the notation previously introduced in this paper. We consider a
sample set Yk and the corresponding matrix Sk. The set Yk is included in the ball
B(xk; Δk) centered at xk with radius Δk = σk αk−1 maxb∈Bk−1

‖b‖, where Bk−1 is
the positive basis used for polling at the previous iteration.

Theorem 6.1. Let Yk be a Λ–poised sample set (for simplex gradients) computed
at iteration k of a pattern search method, with qk + 1 ≥ n + 1 points.

Assume that ∇f is Lipschitz continuous in an open domain Ω containing
B(xk; Δk) with constant γ > 0.

Then, if

αk ≤ ‖∇f(xk)‖∞√
qkγΛσmax maxb∈Bk−1

‖b‖ ,(6.2)

the negative simplex gradient −∇sf(xk) is an εk–approximation to the large compo-
nents of −∇f(xk), where

εk =

(
q

1
2

k γΛσmax max
b∈Bk−1

‖b‖
)
αk.

Proof. For i in the index set

Ik = {i ∈ {1, . . . , n} : |∇f(xk)i| = ‖∇f(xk)‖∞},

we get from Theorem 3.1 that

‖∇sf(xk)‖∞ ≤ ‖∇f(xk) −∇sf(xk)‖∞ + |∇f(xk)i|
≤ 2‖∇f(xk) −∇sf(xk)‖ + |∇sf(xk)i|

≤ q
1
2

k γΛΔk + |∇sf(xk)i|
≤ εk + |∇sf(xk)i|.
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From Theorem 3.1 we also know that

−∇sf(xk)i = −∇f(xk)i + ξk,i, where |ξk,i| ≤ q
1
2

k

γ

2
ΛΔk.

If −∇f(xk)i and ξk,i are equally signed, so are −∇f(xk)i and −∇sf(xk)i. Otherwise,
they are equally signed if

|ξk,i| ≤ q
1
2

k

γ

2
ΛΔk ≤ 1

2
‖∇f(xk)‖∞ =

1

2
|∇f(xk)i|.

The proof is concluded using the expression for Δk and the bound for αk given in the
statement of the theorem.

Theorem 4 by Abramson, Audet, and Dennis [1] shows that an ε–approximation
prunes the set of the polling directions to a singleton, when considering

D = {−1, 0, 1}n

and the positive spanning set

Dk = {dε(gk)} ∪ A(−∇f(xk)),

where gk is an ε–approximation to −∇f(xk), d
ε(·) is defined in (6.1), and

A(−∇f(xk)) = {d ∈ D : −∇f(xk)
�d < 0}

represents the set of the ascent directions in D. The pruning is to the singleton
{dε(gk)}, meaning that dε(gk) is the only vector d in Dk such that −∇f(xk)

�d ≥ 0.
So, under the hypotheses of Theorem 6.1, it follows that the negative simplex

gradient −∇sf(xk) prunes the positive spanning set

Dk = {dεk(−∇sf(xk))} ∪ A(−∇f(xk))

to a singleton, namely, {dεk(−∇sf(xk))}, where εk is given in Theorem 6.1.
Now we analyze in more detail the role of condition (6.2). There is no guarantee

that this condition on αk can be satisfied asymptotically. Condition (6.2) gives us
only an indication of the pruning effect of the negative simplex gradient, and it is
more likely to be satisfied at points where the gradient is relatively large. What is
known is actually a condition that shows that αk dominates ‖∇f(xk)‖ at unsuccessful
iterations k:

‖∇f(xk)‖ ≤
(
γκ(Bk)

−1 max
b∈Bk

‖b‖
)
αk,

where

κ(Bk) = min
d∈Rn;d
=0

max
b∈Bk

d�b

‖d‖‖b‖ > 0

is the cosine measure of the positive basis Bk (see [17, Theorem 3.3]). Since only a
finite number of positive bases is used, κ(Bk)

−1 is uniformly bounded. So one can
be assured that at unsuccessful iterations the norm of the gradient is bounded by a
constant times αk.

However, it has been observed in [11] that, for some problems, αk goes to zero
faster than ‖∇f(xk)‖. Our numerical experience with pattern search has also pointed
us in this direction. It is more difficult, however, to sharply verify condition (6.2),
since it depends on the Lipschitz constant of ∇f . A detailed numerical study of these
asymptotic behaviors is beyond the scope of this paper.
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procedure mesh-sd

The constants τ and ξ must satisfy τ ∈ Q, τ > 1, and ξ > 0 and should be initialized
at iteration k = 0 together with jmax ∈ Z, jmax ≥ 0, and jmin ∈ Z, jmin ≤ −1. The
exponents satisfy j+

k ∈ {0, 1, 2, . . . , jmax} and j−k ∈ {jmin, . . . ,−1}.

If the iteration was successful, then compute

ρk =
f(xk) − f(xk+1)

mk(xk) −mk(xk+1)
.

If ρk > ξ, then αk+1 = τ j+
k αk,

If ρk ≤ ξ, then αk+1 = αk.

If the iteration was unsuccessful, then contract mesh by decreasing the mesh

size parameter αk+1 = τ j−
k αk.

Fig. 7.1. Updating the mesh size parameter (using a sufficient decrease but meeting rational
lattice requirements).

7. Other uses for simplex derivatives. Having computed before some form
of simplex derivatives, one can use the available information for purposes other than
ordering the polling vectors. In this section, we suggest two other uses for simplex
derivatives in pattern search: the update of the mesh size parameter and the compu-
tation of a search step.

When a simplex gradient ∇sf(xk) is computed, a linear model mk(y) = f(xk) +
∇sf(xk)

�(y − xk) can be used to update the mesh size parameter αk by imposing a
sufficient decrease condition. In this case, we set

ρk =
f(xk) − f(xk+1)

mk(xk) −mk(xk+1)
=

f(xk) − f(xk+1)

−∇sf(xk)�(xk+1 − xk)
.

If xk+1 is computed in a successful poll step, then xk+1−xk = αkbk for some bk ∈ Bk.
In the quadratic case, the model is replaced by mk(y) = f(xk)+g�k (y−xk)+(1/2)(y−
xk)

�Hk(y− xk). We call this procedure mesh-sd and describe it in Figure 7.1, where
the sufficient decrease is applied only to successful iterations.

Since the expansion and contraction parameters are restricted to integer powers
of τ and since the contraction rules match what was given in the mesh procedure
of Figure 2.2, the modification introduced in mesh-sd has no influence on the global
convergence properties of the underlying pattern search method.

There are many possibilities for a search step. One possibility is to first form a
surrogate model mk(y) based on some form of simplex derivatives computed using the
sample set Yk and then to minimize this model in B(xk; Δk), after which we would
project the minimizer onto the mesh Mk. We described above two examples of such
a model mk(y), but many others could be considered. The use of surrogate models
in the search step is the topic of separate research.

8. Implementation and numerical results. To serve as a baseline for numer-
ical comparisons, we have implemented a basic pattern search algorithm of the form
given in Figure 2.1. Specifically, no search step is used, the mesh size parameter is left
unchanged at successful iterations, and points in the poll step are always evaluated
in the same consecutive order as originally stored. We refer to this version of pattern
search as basic.
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Table 8.1

Test set and results for the basic version.

Positive basis

D = [−e I ] D = [ I −I ]
Problem Dimension fevals fvalue fevals fvalue
arwhead 10 1068 4.19e-09 361 0.00e+00
arwhead 20 3718 8.85e-09 721 0.00e+00
bdqrtic 10 2561 1.19e+01 948 1.19e+01
bdqrtic 20 19038 3.54e+01 4120 3.54e+01
bdvalue 10 36820 4.39e-07 33077 4.39e-07
bdvalue 20 255857 1.30e-05 245305 1.29e-05
biggs6 6 339840 6.50e-03 467886 9.58e-06
brownal 10 468150 1.84e+00 74922 2.02e-06
brownal 20 1073871 1.55e+01 284734 1.04e-05
broydn3d 10 2281 3.26e-08 1743 4.52e-09
broydn3d 20 17759 2.91e-07 6868 2.47e-08
integreq 10 2595 4.42e-09 1034 2.35e-10
integreq 20 20941 3.20e-08 4244 4.86e-10
penalty1 10 552357 7.33e-05 234274 7.09e-05
penalty1 20 999305 1.66e-04 535100 1.58e-04
penalty2 10 46696 4.09e-04 496275 4.04e-04
penalty2 20 366131 8.32e-03 1494751 8.30e-03
powellsg 12 192270 1.85e-04 58987 9.85e-07
powellsg 20 480158 3.08e-04 158591 1.64e-06
srosenbr 10 401321 6.83e-05 171061 6.83e-05
srosenbr 20 1076983 2.68e-02 649621 1.37e-04
tridia 10 1000805 5.95e-01 901720 5.85e-01
tridia 20 20483 6.24e-01 6635 6.24e-01
vardim 10 251599 2.23e-05 86316 6.64e-07
vardim 20 961697 1.76e+04 1230761 8.71e-04
woods 12 164675 1.02e-04 110662 3.78e-05
woods 20 435786 3.53e-04 300296 6.29e-05

We have tested a number of pattern search methods of the form described in
Figure 4.1. The strategies order (Figure 4.2) and mesh-sd (Figure 7.1) were run in
four different modes according to the way of storing points (store-succ or store-all)
and to the way of computing simplex derivatives and descent indicators (sgradient
or shessian). Moreover, we implemented the strategy suggested in [14] and described
in section 2 for updating the mesh size parameter (here named as mesh-HKT) and
the dynamic polling strategy suggested in [4] for changing the order of the polling
directions (see section 2). We tested a very crude search step based on taking a step
along the descent indicator with a step size of the order of αk (see [9] for the details).

The algorithms were coded in Matlab and ran on 27 unconstrained problems
belonging to the CUTEr collection [13], gathered mainly from papers on derivative-
free optimization. The objective functions of these problems are twice continuously
differentiable. Their dimensions are given in Table 8.1. The starting points used were
those reported in CUTEr. Problems bdvalue, integreq, and broydn3d were posed
as unconstrained optimization problems like originally in [19]. The stopping criterion
consisted of the mesh size parameter becoming lower than 10−5 or a maximum number
of 100000 iterations being reached.

The simplex derivatives were computed based on Λ-poised sets Yk, where Λ = 100.
The factor σk was chosen as 1 (k−1 unsuccessful), 2 (k−1 successful and αk = αk−1),
and 4 (k − 1 successful and αk > αk−1). The values for the parameters smin, smax,
and pmax are given in Table 8.2. We started all runs with the mesh size parameter

α0 = 1. In all versions, the contraction factor was set to τ j
−
k = 0.5, and the expansion
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Table 8.2

Sizes of the list Xk and of the set Yk.

sgradient shessian

Size store-succ store-all store-succ store-all

pmax 2(n + 1) 4(n + 1) 4(n + 1) 8(n + 1)
smin (n + 1)/2 n + 1 n 2n + 1
smax n + 1 n + 1 2n + 1 2n + 1

factor (when used) was set to τ j
+
k = 2. In the mesh-sd strategy of Figure 7.1, we set

ξ equal to 0.75.
We draw conclusions based on two positive bases: [ I −I ] and [−e I ]. The

maximal positive basis [ I −I ] corresponds to a coordinate search, and it provided
the best results for the basic version among a few positive bases stored in different
orders (which included [ I −I ], [−I I ], [−e I ], [ e −I ], [ I −e ], [−I e ], and a minimal
basis with angles between vectors of uniform amplitude). The positive basis stored as
[−e I ] was the minimal positive basis which behaved the best. In Table 8.1 we report
the results obtained by the basic version for these two positive bases.

By combining all possibilities, we tested a total of 120 versions, 112 involving
simplex derivatives. A summary of the complete numerical results is reported in [9].

8.1. Discussion based on complete results. First, we point out that 91% of
the versions involving simplex derivatives lead to an average decrease in the number
of function evaluations [9]. Moreover, 61 out of the 112 strategies tested provided a
negative 75% percentile for the variation in the number of function evaluations. This
means that for each of these 61 strategies, a reduction in the number of function
evaluations was achieved for 75% of the problems tested.

The overall results [9] showed a superiority of sgradient over shessian, which is
not surprising because the number of points required to identify Λ–poised sets in
sgradient is lower than in shessian. Also, another reason for sgradient being possibly
better than shessian is that, if the simplex gradient is sufficiently close to the true
gradient, then directions making a small angle with the negative simplex gradient will
be descent directions, while the same is not guaranteed when we use simplex Newton
directions. Some shessian versions, however, have behaved relatively well [9].

For the positive basis [ I −I ] there is a clear gain when using store-all compared to
store-succ [9]. However, for the positive basis [−e I ], the advantage of store-all over
store-succ is not as clear [9]. In general, the advantage of store-all may be explained by
the frequent number of unsuccessful iterations that tend to occur in the last iterations
of a pattern search run. The effect of the poll ordering is also more visible when using
the positive basis [ I −I ], due to the larger number of polling vectors.

Strategies mesh-sd and mesh-HKT made a clear positive impact when using the
smaller positive basis [−e I ] (see [9]). This effect was lost in the larger positive basis
[ I −I ], where the order procedure seems to perform well on its own for this test set.

8.2. Discussion based on best results. We report in Table 8.3 a summary
of the results for a number of versions based on [ I −I ]. Included in this restricted
set of versions are the ones that lead to the best results among all of the 120 versions
tested. (The results for the remaining versions are summarized in [9].)

An explanation about Table 8.3 is in order. For each strategy and for each prob-
lem, we calculated the percentage of iterations that used simplex descent indicators as
well as the variation in the number of function evaluations required relatively to the ba-
sic version. These percentages were grouped by strategy, and their average values are
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Table 8.3

Average percentage of iterations that used simplex descent indicators (second column), average
variation of function evaluations by comparison to the basic version (third column), and cumulative
percentages for the optimal gaps of the final iterates (fourth to sixth columns). Case sgradient and
D = [ I −I ].

Number of Optimal gap

Strategy % poised evaluations 10−7 10−4 10−1

basic — — 33.33% 81.48% 92.59%

mesh-HKT — +4.02% 40.74% 81.48% 92.59%

dynamic polling — -10.99% 33.33% 81.48% 92.59%

mesh-HKT,dynamic polling — -15.17% 48.15% 81.48% 92.59%

mesh-sd (store-succ) 14.40% -3.07% 33.33% 81.48% 92.59%

mesh-sd (store-all) 73.33% +0.45% 33.33% 81.48% 92.59%

order (store-all) 27.26% -51.16% 37.04% 85.19% 92.59%

mesh-sd,order (store-all) 28.56% -51.47% 37.04% 85.19% 92.59%

mesh-HKT,order (store-all) 58.51% -54.22% 51.85% 81.48% 88.89%

reported in the second and third columns of Table 8.3. The last three columns of the
table represent the cumulative percentages for the optimal gaps of the final iterates.

The quality of the final objective function values obtained for the versions included
in Table 8.3 is comparable to the basic version, as one see from the final cumulative
optimal gaps reported.

It is clear that none of the strategies for updating the step size parameter (mesh-
sd and mesh-HKT) made improvements on their one, the former being slightly better
than the latter.

The best result without using simplex derivatives was obtained by combining
dynamic polling and mesh-HKT (15% less function evaluations than the basic version).

Three versions that incorporated order reached a reduction of around 50% in the
number of function evaluations. The order procedure in the store-all mode leads, on
its own, to a 51% improvement, compared to 11% of dynamic polling.

The best version achieved a reduction of 54% in the number of evaluations by
combining order and mesh-HKT in the store-all mode. In Table 8.4 we report the
results obtained by this version as well as by the version that applies only the order
procedure in the store-all mode.

8.3. Additional tests. We picked some of these problems and ran several ver-
sions for n = 40 and n = 80. Our conclusions remain essentially the same. The ratios
of improvement in the number of function evaluations and the quality of the final
iterates do not change significantly with the increase of the dimension of the problem
but rather with the increase of the number of polling vectors in the positive spanning
set or with the increase in its cosine measure (both of which happen, for instance,
when going from [−e I ] to [ I −I ]).

We also tried to investigate how sensitive the different algorithmic versions are
to the choice of the parameter ξ used in the mesh-sd strategy. We tried other values
(for instance, 0.5 and 0.95), but the results did not improve.

We repeated these computational tests on a different set of test problems, consist-
ing of seven randomly generated quadratic functions, each one of dimension 10. The
quadratic functions were defined by f(x) = x�Ax, where A = B�B and B is a matrix
with random normal entries of mean 0 and standard deviation 1. We also randomly
generated the starting point for the algorithm, using the same normal distribution.
Once again, the conclusions for the different strategies remained essentially the same
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Table 8.4

Results for the best versions, using the positive basis D = [ I −I ].

Strategy
order order,mesh-HKT

Problem Dimension fevals fvalue fevals fvalue
arwhead 10 361 0.00e+00 361 0.00e+00
arwhead 20 721 0.00e+00 721 0.00e+00
bdqrtic 10 696 1.19e+01 696 1.19e+01
bdqrtic 20 2138 3.54e+01 2138 3.54e+01
bdvalue 10 34922 6.89e-07 28411 6.52e-07
bdvalue 20 255989 1.66e-05 213297 1.65e-05
biggs6 6 105592 4.50e-07 164168 4.53e-07
brownal 10 21045 1.88e-06 38398 2.44e-06
brownal 20 67152 6.16e-06 4227 1.00e+00
broydn3d 10 917 4.73e-09 917 4.73e-09
broydn3d 20 2940 2.35e-08 2940 2.35e-08
integreq 10 597 2.35e-10 597 2.35e-10
integreq 20 1573 4.86e-10 1573 4.86e-10
penalty1 10 126307 7.09e-05 177360 7.09e-05
penalty1 20 229825 1.58e-04 279491 1.58e-04
penalty2 10 55087 4.04e-04 93192 4.05e-04
penalty2 20 189446 8.29e-03 355154 8.29e-03
powellsg 12 594 0.00e+00 614 0.00e+00
powellsg 20 45258 1.31e-06 8702 2.81e-11
srosenbr 10 136327 6.83e-05 119830 6.83e-05
srosenbr 20 567937 1.37e-04 358656 1.36e-04
tridia 10 539119 5.85e-01 908097 5.89e-01
tridia 20 2724 6.24e-01 2828 6.24e-01
vardim 10 5382 2.29e-07 6550 9.15e-08
vardim 20 67487 9.27e-06 71692 1.68e-06
woods 12 59565 3.94e-05 577 0.00e+00
woods 20 106339 6.55e-05 1064 0.00e+00

(with improvement of the results for the minimal positive basis [−e I ]). We used
these examples to study the descent properties of the negative simplex gradient. In
our experiments, the simplex gradient made an acute angle with the true gradient
on average in 77% of the cases where it was computed. These occurrences tend to
happen more towards the end of the runs when the mesh size parameter gets smaller.

8.4. Pruning. To better understand the theoretical results derived in section 6,
we implemented a computational variant of the pruning strategy. We did not con-
sider the generating set D = {−1, 0, 1}n, as suggested by Abramson, Audet, and
Dennis [1], nor did we verify condition (6.2) (or some approximated form of it by
estimating the Lipschitz constant involved) before pruning the polling vectors. As a
result, we are violating the conditions required for the analysis of the pruning strat-
egy. We tested two different variants for pruning the positive bases [ I −I ] and
[−e I ]: (i) pruning to a single direction, namely, the one that makes the angle of
smallest amplitude with the descent indicator and (ii) pruning to all of the directions
that make an acute angle with the descent indicator.

To reach a final iterate of quality nearly similar to the one obtained by the basic
version, we had to use the positive basis [ I −I ] and prune with more than one direc-
tion. In this case, pruning achieved an average reduction in the number of function
evaluations of 10% and 42%, for the store-succ and store-all variants, respectively.
Pruning tends to generate less polling points, which in turn decreases the chances of
building well-poised sets.



554 A. L. CUSTÓDIO AND L. N. VICENTE

More research is needed in order to evaluate the potential of the negative simplex
gradient as an ε-approximation to the large components of the negative gradient
vector and its use for pruning the polling directions. The use of the generating set
D = {−1, 0, 1}n and the implementation of some form of the condition (6.2) might
have a positive impact.

9. Concluding remarks and future work. We have proposed the use of sim-
plex derivatives in pattern search methods in two ways: ordering the polling vectors
and updating the mesh size parameter. For the calculation of the simplex derivatives,
we considered sample sets constructed in two variants: storing only all recent success-
ful iterates or storing all recent points where the objective function was evaluated.
Finally, we studied two types of simplex derivatives: simplex gradients and diagonal
simplex Hessians. It is important to remark that the incorporation of these strategies
in a pattern search is done at no further expense in function evaluations.

The introduction of simplex derivatives in pattern search methods can lead to a
significant reduction in the number of function evaluations for the same quality of the
final iterates.

As a descent indicator, we recommend the use of the negative simplex gradient
over the simplex Newton direction. In fact, most of the iterations of a pattern search
run are performed for small values of the mesh size parameter. In such cases, the
negative gradient is better than the Newton direction as an indicator for descent, and
the same argument applies to their simplex counterparts.

For a coordinate search (D = [ I −I ]), ordering the polling directions according
to a simplex descent indicator (negative simplex gradient) made a significant impact
in the reduction of the number of function evaluations. For this type of positive basis,
storing all recent points where the objective function was evaluated seems to be the
best approach.

Our numerical findings showed that updating the mesh size parameter based on a
sufficient decrease condition can be worthwhile applying when using minimal positive
bases (such as D = [−e I ]). In such cases, storing only all recent successful iterates
may also be advantageous.

There are at least two natural generalizations of the ideas presented in this paper.
One is to apply simplex derivative-based strategies to improve parallel versions of a
pattern search. Another generalization consists of analyzing the properties of simplex
gradients when direct search methods are applied to nonsmooth functions [8]. The
use of simplex derivatives in the design of an efficient search step is also the subject
of future research.
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JÉRÔME BOLTE† , ARIS DANIILIDIS‡ , ADRIAN LEWIS§ , AND MASAHIRO SHIOTA¶

Abstract. We establish the following result: If the graph of a lower semicontinuous real-
extended-valued function f : R

n → R ∪ {+∞} admits a Whitney stratification (so in particular if f
is a semialgebraic function), then the norm of the gradient of f at x ∈ dom f relative to the stratum
containing x bounds from below all norms of Clarke subgradients of f at x. As a consequence, we
obtain a Morse–Sard type of theorem as well as a nonsmooth extension of the Kurdyka–�Lojasiewicz
inequality for functions definable in an arbitrary o-minimal structure. It is worthwhile pointing out
that, even in a smooth setting, this last result generalizes the one given in [K. Kurdyka, Ann. Inst.
Fourier (Grenoble), 48 (1998), pp. 769–783] by removing the boundedness assumption on the domain
of the function.
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1. Introduction. Nonsmoothness in optimization seldom occurs in an arbitrary
manner, but instead is often well-structured. Such structure can often be exploited
in sensitivity analysis and algorithm convergence: Examples include “amenability,”
“subsmoothness,” “prox-regularity” (see [32], for example), and more recently the
idea of a “partly smooth” function, where a naturally arising manifold M contains
the minimizer and the function is smooth along this manifold. We quote [24] for formal
definitions, examples, and more details. In the past two decades, several researchers
have tried to capture this intuitive idea in order to develop algorithms ensuring better
convergence results: See, for instance, the pioneer work [23] and also [26], [9] for recent
surveys.

In this work we shall be interested in a particular class of well-structured (nons-
mooth) functions, namely, functions admitting a Whitney stratification (see section 2
for definitions). Since this class contains in particular the semialgebraic and the sub-
analytic functions (more generally, functions that are definable in some o-minimal
structure over R), the derived results can directly be applied in several concrete opti-
mization problems involving such structures. Our central idea is to relate derivative
ideas from two distinct mathematical sources: Variational analysis and differential ge-
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ometry. Specifically, we derive a lower bound on the norms of Clarke subgradients at
a given point in terms of the “Riemannian” gradient with respect to the stratum con-
taining that point. This is a direct consequence of the “projection formula” given in
Proposition 4 and has as corollaries a Morse–Sard type of theorem for Clarke critical
points of lower semicontinuous Whitney stratifiable functions (Corollary 5(ii)) as well
as a global nonsmooth version of the Kurdyka–�Lojasiewicz inequality—which is hereby
extended to unbounded domains; see Theorem 11—for lower semicontinuous definable
functions (Theorem 14 and Corollary 15). Although these results seem natural, anal-
ogous ones fail for the (broader) convex-stable subdifferential (introduced and studied
in [4]), unless f is assumed to be locally Lipschitz continuous; see Remark 8 and [3].

Theorems of the Morse–Sard type are central in many areas of analysis, typically
describing the size of the set of ill-posed problem instances in a given class. Classical
results deal with smooth functions [33], [22], but recent advances deal with a variety
of nonsmooth settings [3], [13], [14], [15].

A further long-term motivation of this work is to understand the convergence of
minimization algorithms. As one example, in order to treat nonconvex (and non-
smooth) minimization problems, the authors of [4] introduced an algorithm called
the “gradient sampling algorithm.” The idea behind this algorithm was to sample
gradients of nearby points of the current iterate and to produce the next iterate by
following the vector of minimum norm in the convex hull generated by the sampled
negative gradients. In the case that the function is locally Lipschitz, the above method
can be viewed as a kind of ε-Clarke subgradient algorithm for which both theoretical
and numerical results are quite satisfactory; see [4]. The convergence of the whole
sequence of iterates remains, however, an open question, and this is also the case for
many classical subgradient methods for nonconvex minimization; see [19]. We hope
that, just as in the smooth case, the nonsmooth �Lojasiewicz inequality we develop (cf.
(22) in section 4) may help in understanding the global convergence of subgradient
methods.

As we outline above, we use a stratification approach to develop our results. Ioffe
[14] has recently announced an extension of the work described here, leading to a
remarkable and powerful Sard-type result for stratifiable multifunctions (see [15]).

2. Preliminaries. In this section we recall several definitions and results con-
cerning nonsmooth analysis (subgradients, generalized critical points) and stratifica-
tion theory. For nonsmooth analysis we refer to the comprehensive texts [5], [6], [28],
[29], [32].

In what follows the vector space R
n is endowed with its canonical scalar product

〈·, ·〉.
Nonsmooth analysis. Given an extended-real-valued function f : R

n → R ∪
{+∞} we denote its domain by dom f := {x ∈ R

n : f(x) < +∞}, its graph by

Graph f := {(x, f(x)) ∈ R
n×R : x ∈ dom f} ,

and its epigraph by

epi f := {(x, β) ∈ R
n×R : f(x) ≤ β}.

In this work we shall deal with lower semicontinuous functions, that is, functions for
which epi f is a closed subset of R

n×R. In this setting, we say that x∗ ∈ R
n is a

Fréchet subgradient of f at x ∈ dom f provided that

(1) lim inf
y→x,y �=x

f(y) − f(x) − 〈x∗, y − x〉
‖y − x‖ ≥ 0.
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The set of all Fréchet subgradients of f at x is called the Fréchet subdifferential of f
at x and is denoted by ∂̂f(x). If x /∈ dom f , then we set ∂̂f(x) = ∅.

Let us give a geometrical interpretation of the above definition: It is well known
that the gradient of a C1 function f : R

n → R at x ∈ R
n can be defined geometrically

as the vector ∇f(x) ∈ R
n such that (∇f(x),−1) is normal to the tangent space

T(x,f(x))Graph f of (the C1 manifold) Graph f at (x, f(x)), that is,

(∇f(x),−1) ⊥ T(x,f(x))Graph f.

A similar interpretation can be stated for Fréchet subgradients. Let us first define the
(Fréchet) normal cone of a subset C of R

n at x ∈ C by

(2) N̂C(x) =

⎧⎪⎨
⎪⎩v ∈ R

n : lim sup
y→x

y∈C\{x}

〈
v,

y − x

||x− y||

〉
≤ 0

⎫⎪⎬
⎪⎭ .

Then it can be proved (see [32, Theorem 8.9], for example) that for a nonsmooth
function f we have

(3) x∗ ∈ ∂̂f(x) if and only if (x∗,−1) ∈ N̂epi f (x, f(x)).

The Fréchet subdifferential extends the notion of a derivative in the sense that if f is
differentiable at x, then ∂̂f(x) = {∇f(x)}. However, it is not completely satisfactory

in optimization, since ∂̂f(x) might be empty-valued at points of particular interest
(think of the example of the function f(x) = −||x||, at x = 0). Moreover, the Fréchet
subdifferential is not a closed mapping, so it is unstable computationally. For this
reason we also consider (see [28], [32], for example):

(i) the limiting subdifferential ∂f(x) of f at x ∈ dom f :

(4) x∗ ∈ ∂f(x) ⇐⇒ ∃(xn, x
∗
n) ⊂ Graph ∂̂f :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lim
n→∞

xn = x,

lim
n→∞

f(xn) = f(x),

lim
n→∞

x∗
n = x∗,

where Graph ∂̂f := {(u, u∗) : u∗ ∈ ∂̂f(u)} ;
(ii) the singular limiting subdifferential ∂∞f(x) of f at x ∈ dom f :

(5)

y∗ ∈ ∂∞f(x) ⇐⇒ ∃(yn, y
∗
n) ⊂ Graph ∂̂f, ∃tn ↘ 0+ :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lim
n→∞

yn = x,

lim
n→∞

f(yn) = f(x),

lim
n→∞

tny
∗
n = y∗.

When x /∈ dom f we set ∂f(x) = ∂∞f(x) = ∅.
The Clarke subdifferential ∂◦f(x) of f at x ∈ dom f is the central notion of this

work. It can be defined in several (equivalent) ways; see [5]. The definition below
(see [16, Proposition 3.3], [17, Proposition 3.4], or [30, Theorem 8.11]) is the most
convenient for our purposes. (For any subset S of R

n we denote by coS the closed
convex hull of S.)



CLARKE SUBGRADIENTS OF STRATIFIABLE FUNCTIONS 559

Definition 1 (Clarke subdifferential). The Clarke subdifferential ∂◦f(x) of f
at x is the set

(6) ∂◦f(x) =

{
co {∂f(x) + ∂∞f(x)} if x ∈ dom f,

∅ if x /∈ dom f .

Remark 1. The construction (6) does not look very natural at first sight. How-
ever, it can be shown that an analogous to (3) formula holds also for the Clarke
subdifferential, if N̂epi f (x, f(x)) is replaced by the Clarke normal cone, which is the
closed convex hull of the limiting normal cone. The latter cone comes naturally from
the Fréchet normal cone by closing its graph; and see [32, pp. 305 and 336] for details.

From the above definitions it follows directly that for all x ∈ R
n, one has

(7) ∂̂f(x) ⊂ ∂f(x) ⊂ ∂◦f(x).

The elements of the limiting (respectively, Clarke) subdifferential are called limiting
(respectively, Clarke) subgradients.

The notion of a Clarke critical point (respectively, critical value, asymptotic crit-
ical value) is defined as follows.

Definition 2 (Clarke critical point). We say that x ∈ R
n is a Clarke critical

point of the function f if

∂◦f(x) � 0.

Definition 3 ((asymptotic) Clarke critical value). (i) We say that α ∈ R is a
Clarke critical value of f if the level set f−1({α}) contains a Clarke critical point.

(ii) We say that λ ∈ R ∪ {±∞} is an asymptotic Clarke critical value of f , if
there exists a sequence (xn, x

∗
n)n≥1 ⊂ Graph ∂◦f such that{

f(xn) → λ

(1 + ||xn||) ||x∗
n|| → 0.

Let us make some observations concerning the above definitions.
Remark 2. (i) Both limiting and Clarke subgradients are generalizations of the

usual gradient of smooth functions: Indeed, if f is C1 around x (or more generally,
strictly differentiable at x [32, Definition 9.17]), then we have

∂◦f(x) = ∂f(x) = {∇f(x)}.

It should be noted that if f is only Fréchet differentiable at x, then ∂◦f(x) ⊃ ∂f(x) ⊃
{∇f(x)}, where the inclusions might be strict.

(ii) The singular limiting subdifferential should not be thought as a set of sub-
gradients. Roughly speaking it is designed to detect “horizontal normals” to the
epigraph of f . For instance, for the (nonsmooth) function f(x) = x

1
3 (x ∈ R) we

have ∂∞f(0) = R+. Note that, since the domain of the Fréchet subdifferential is
dense in dom f , we always have ∂∞f(x) � 0 for all x ∈ dom f (see also [32, Corollary
8.10]); therefore, this latter relation cannot be regarded as a meaningful definition of
a critical point.

(iii) To illustrate the definition of the Clarke critical point (Definition 1), let us
consider the example of the function f : R → R defined by

f(x) =

{
x if x ≤ 0,

−
√
x if x > 0.
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Then ∂̂f(0) = ∅ and ∂f(0) = {1}. However, since ∂∞f(0) = R−, it follows from (6)
that ∂◦f(0) = (−∞, 1], so x = 0 is a Clarke critical point.

(iv) It follows from Definition 3 that every Clarke critical value α ∈ R is also
an asymptotic Clarke critical value (indeed, given x0 ∈ f−1({α}) with 0 ∈ ∂◦f(x0),
it is sufficient to take xn := x0 and x∗

n = 0). Note that in the case that f has a
bounded domain dom f , Definition 3(ii) can be simplified in the following way: The
value λ ∈ R ∪ {±∞} is asymptotically critical if and only if there exists a sequence
(xn, x

∗
n)n≥1 ⊂ Graph ∂◦f such that f(xn) → λ and x∗

n → 0.
Stratification results. By the term stratification we mean a locally finite parti-

tion of a given set into differentiable manifolds, which, roughly speaking, fit together
in a regular manner. Let us give a formal definition of a Cp stratification of a set.
For general facts about stratifications we quote [27]; more specific results concerning
tame geometry can be found in [34], [11], [18], [10], [21].

Let X be a nonempty subset of R
n and p a positive integer. A Cp stratification

X = (Xi)i∈I of X is a locally finite partition of X into Cp submanifolds Xi of R
n

such that for each i �= j

Xi ∩Xj �= ∅ =⇒ Xj ⊂ Xi \Xi.

The submanifolds Xi are called strata of X . Furthermore, given a finite collection
{A1, . . . , Aq} of subsets of X, a stratification X =(Xi)i∈I is said to be compatible with
the collection {A1, . . . , Aq} if each Ai is a locally finite union of strata Xj .

In this work we shall use a special type of stratification (called a Whitney strat-
ification) for which the strata are such that their tangent spaces also “fit regularly.”
To give a precise meaning to this statement, let us first define the distance (or gap)
of two vector subspaces V and W of R

n by the following standard formula:

D(V,W ) = max

{
sup

v∈V, ||v||=1

d(v,W ), sup
w∈W, ||w||=1

d(w, V )

}
.

Note that

sup
v∈V, ||v||=1

d(v,W ) = 0 ⇐⇒ V ⊂ W.

Further we say that a sequence {Vk}k∈N of subspaces of R
n converges to the subspace

V of R
n (in short, V = lim

k→+∞
Vk) provided

lim
k→+∞

D(Vk, V ) = 0.

Notice that in this case the subspaces Vk will eventually have the same dimension
(say, d); thus, the above convergence is essentially equivalent to the convergence in
the Grassmannian manifold Gn

d .
A Cp stratification X = (Xi)i∈I of X has the Whitney-(a) property, if for each

x ∈ Xi ∩Xj (with i �= j) and for each sequence {xk} ⊂ Xi we have

lim
k→∞

xk = x

and
lim
k→∞

Txk
Xi = T ,

⎫⎪⎬
⎪⎭ =⇒ TxXj ⊂ T ,

where TxXj (respectively, Txk
Xi) denotes the tangent space of the manifold Xj at x

(respectively, of Xi at xk). In what follows we shall use the term Whitney stratification
to refer to a C1 stratification with the Whitney-(a) property.
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3. Projection formulas for subgradients. In this section we make precise
the links between the Clarke subgradients of a lower semicontinuous function whose
graph admits a Whitney stratification and the gradients of f (with respect to the
strata). As a corollary we obtain a nonsmooth extension of the Morse–Sard theorem
for such functions (see Corollary 5).

Let f : R
n → R ∪ {+∞} be a lower semicontinuous function. We shall deal with

nonvertical Whitney stratifications S = (Si)i∈I of the graph Graph f of f , that is,
Whitney stratifications satisfying for all i ∈ I and u ∈ Si the transversality condition

en+1 /∈ TuSi (H),

where

en+1 = (0, . . . , 0, 1) ∈ R
n+1.

Remark 3. If f is locally Lipschitz continuous, then it is easy to check that
any stratification of Graph f is nonvertical. This might also happen for other func-
tions (think of the nonlocally Lipschitz function f(x) =

√
|x|: Every stratification

of Graph f should contain the stratum S0 = {(0, 0)}). However, the example of the
function f(x) = x1/3 shows that this is not the case for any (continuous stratifi-
able) function f and any stratification of its graph (consider the trivial stratification
consisting of the single stratum S = Graph f and take u = (0, 0)).

Let us denote by Π : R
n+1 → R

n the canonical projection on R
n, that is,

Π(x1, . . . , xn, t) = (x1, . . . , xn).

For each i ∈ I we set

(8) Xi = Π(Si) and fi = f |Xi .

Due to the assumption (H) (nonverticality) one has that for all i ∈ I:
(i) Xi is a C1 submanifold of R

n, and
(ii) fi : Xi → R is a C1 function.

If, in addition, the function f is continuous, then it can be easily seen that:
(iii) X = (Xi)i∈I is a Whitney stratification of dom f = Π(Graph f).
Notation. In what follows, for any x ∈ dom f, we shall denote by Xx (respec-

tively, Sx) the stratum of X (respectively, of S) containing x (respectively, (x, f(x))).
The manifolds Xi are here endowed with the metric induced by the canonical Eu-
clidean scalar product of R

n. Using the inherited Riemannian structure of each stra-
tum Xi of X for any x ∈ Xi, we denote by ∇Rf(x) the gradient of fi at x with respect
to the stratum Xi, 〈·, ·〉.

Proposition 4 (projection formula). Let f : R
n → R ∪ {+∞} be a lower semi-

continuous function, and assume that Graph f admits a nonvertical Whitney stratifi-
cation S = (Si)i∈I . Then for all x ∈ dom f we have

(9) Proj TxXx
∂f(x) ⊂ {∇Rf(x)}, Proj TxXx

∂∞f(x) = {0},

and

(10) Proj TxXx
∂◦f(x) ⊂ {∇Rf(x)},

where Proj V : R
n → V denotes the orthogonal projection on the vector subspace V of

R
n.
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Proof. We shall use the above notation (and in particular the notation of (8)).

Let us first describe the links between the Fréchet subdifferential ∂̂f(x) and the
gradient of f |Xx at a point x ∈ dom f . For any v ∈ TxXx and any continuously
differentiable curve c : (−ε, ε) → Xx (ε > 0) with c(0) = x and ċ(0) = v, the function

f ◦ c (:= fi ◦ c) : (−ε, ε) → R

is continuously differentiable. In view of [32, Theorem 10.6, p. 427], we have

{
〈x∗, v〉 : x∗ ∈ ∂̂f(x)

}
⊂

{
d

dt
f(c(t)) |t=0

}
.

Since d
dtf(c(t))|t=0 = 〈∇Rf(x), v〉 it follows that

(11) Proj TxXx
∂̂f(x) ⊂ {∇Rf(x)}.

In a second stage we prove successively that

(12) Proj TxXx
∂f(x) ⊂ {∇Rf(x)} and Proj TxXx

∂∞f(x) ⊂ {0}.

To this end, take p ∈ ∂f(x), and let {xk} ⊂ dom ∂̂f , x∗
k ∈ ∂̂f(xk) be such that

(xk, f(xk)) → (x, f(x)) and x∗
k → p. Due to the local finiteness property of S, we

may suppose that the sequence {uk := (xk, f(xk))} lies entirely in some stratum Si

of dimension d.
If Si = Sx, then by (11) we deduce that Proj TxXx

(x∗
k) = ∇Rf(xk); thus, using

the continuity of the projection and the fact that f |Xx
is C1 (so ∇Rf(xk) → ∇Rf(x)),

we obtain Proj TxXx
(p) = ∇Rf(x).

If Si �= Sx, then from the convergence (xk, f(xk)) → (x, f(x)) we deduce that
Si ∩Sx �= ∅ (thus d = dimSi > dimSx). Using the compactness of the Grassmannian
manifold Gn

d , we may assume that the sequence {Tuk
Si} converges to some vector

space T of dimension d. Then the Whitney-(a) property yields that T ⊃ T(x,f(x))Sx.
Recalling (3), for each k ≥ 1 we have that the vector (x∗

k,−1) is Fréchet normal to
the epigraph epi f of f at uk; hence, it is also normal (in the classical sense) to the
tangent space Tuk

Si. By a standard continuity argument the vector

(p,−1) = lim
k→∞

(x∗
k,−1)

must be normal to T and a fortiori to T(x,f(x))Sx. By projecting (p,−1) orthogonally
on TxXx + R en+1 ⊃ T(x,f(x))Sx, we notice that (Proj TxXx

(p),−1) is still normal to
T(x,f(x))Sx. We conclude that

(13) Proj TxXx
(p) = ∇Rf(x);

thus, the first part of (12) follows.

Let now any q ∈ ∂∞f(x). By definition there exist {yk} ⊂ dom ∂̂f , y∗k ∈ ∂̂f(yk),
and a positive sequence tk ↘ 0+ such that (yk, f(yk)) → (y, f(y)) and tky

∗
k → q. As

above we may assume that the sequence {yk} belongs to some stratum Si and that the
tangent spaces Tuk

Si = T(xk,f(xk))Si converge to some T . Since tk(y
∗
k,−1) is normal

to Tuk
Si we can similarly deduce that (Proj TxXx

(q), 0) is normal to T(x,f(x))Sx. Since
Proj Rn×{0}T(x,f(x))Sx = TxXx this implies that ∂∞f(x) ⊂ (TxXx)

⊥
, and the second

part of (12) is proved. It now follows from (12) and Remark 2(ii) that (9) holds.
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In order to conclude let us recall (Definition 1) that ∂◦f(x) = co (∂f(x)+∂∞f(x)).
In view of (12) any element of co (∂f(x) + ∂∞f(x)) admits ∇Rf(x) as a projection
onto TxXx. By taking the closure of the previous set we obtain (10).

Remark 4. The inclusion in (10) may be strict (think of the function f(x) =
−||x||1/2 at x = 0, where ∂◦f(0) = ∅). Of course, whenever ∂◦f(x) is nonempty (for
example, if f is locally Lipschitz), under the assumptions of Proposition 4 we have

Proj TxXx
∂◦f(x) = {∇Rf(x)}.

Corollary 5. Assume that f is lower semicontinuous and admits a nonvertical
Cp-Whitney stratification. Then:

(i) for all x ∈ dom ∂◦f we have

(14) ||∇Rf(x)|| ≤ ||x∗|| for all x∗ ∈ ∂◦f(x).

(ii) (Morse–Sard theorem) If p ≥ n, then the set of Clarke critical values of f
has Lebesgue measure zero.

Proof. Assertion (i) is a direct consequence of (10) of Proposition 4. To prove
(ii), set C := [∂◦f ]−1({0}) = {x ∈ R

n : ∂◦f(x) � 0}. Since the set of strata is at most
countable, the restrictions of f to each of those yield a countable family {fn}n∈N of
Cp functions. In view of (14), we have that C ⊂ ∪n∈N(∇fn)−1(0). The result follows
by applying to each Cp-function fn the classical Morse–Sard theorem [33].

As we see in the next section, several important classes of lower semicontinuous
functions satisfy the assumptions (thus also the conclusions) of Proposition 4 and of
Corollary 5.

4. Kurdyka–�Lojasiewicz inequalities for o-minimal functions. Let us re-
call briefly a few definitions concerning o-minimal structures (see, for instance, Coste
[7], van den Dries and Miller [11], Ta Lê Loi [35], and references therein).

Definition 6 (o-minimal structure). An o-minimal structure on (R,+, .) is a
sequence of Boolean algebras On of “definable” subsets of R

n such that for each n ∈ N:
(i) if A belongs to On, then A× R and R ×A belong to On+1;
(ii) if Π : R

n+1 → R
n is the canonical projection onto R

n, then for any A in On+1

the set Π(A) belongs to On;
(iii) On contains the family of algebraic subsets of R

n, that is, every set of the
form

{x ∈ R
n : p(x) = 0},

where p : R
n → R is a polynomial function;

(iv) the elements of O1 are exactly the finite unions of intervals and points.
Definition 7 (definable function). Given an o-minimal structure O (over (R,+, .)),

a function f : R
n → R ∪ {+∞} is said to be definable in O if its graph belongs to

On+1.
Remark 5 (examples). At first sight, o-minimal structures might appear artificial

in optimization. The following fundamental properties (see [11] for the details) might
convince the reader that this is not the case.

(i) (Tarski–Seidenberg) The collection of semialgebraic sets is an o-minimal struc-
ture. Recall that semialgebraic sets are Boolean combinations of sets of the form

{x ∈ R
n : p(x) = 0, q1(x) < 0, . . . , qm(x) < 0},

where p and qi’s are polynomial functions on R
n .
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(ii) (Gabrielov) There exists an o-minimal structure that contains the sets of the
form

{(x, t) ∈ [−1, 1]n × R : f(x) = t},

where f : R
n → R is real analytic around [−1, 1]n.

(iii) (Wilkie) There exists an o-minimal structure that contains simultaneously
the graph of the exponential function R � x �→ expx and all semialgebraic sets
(respectively, all sets of the structure defined in (ii)).

We insist on the fact that these results are crucial foundation blocks on which
o-minimal geometry rests.

Let us finally recall the following elementary but important result: The com-
position of mappings that are definable in some o-minimal structure remains in the
same structure [11, section 2.1]. This is also true for the sum, the inf-convolution,
and several other classical operations of analysis involving a finite number of defin-
able objects. Another prominent fact about definable sets is that they admit, for
each k ≥ 1, a Ck–Whitney stratification with finitely many strata (see, for instance,
[11, Result 4.8, p. 510]). This remarkable stability, combined with new techniques
of finite-dimensional optimization, offers a large field of investigation. Several works
have already been developed in this spirit; see, for instance, [1], [3], [12].

Given any o-minimal structure O and any lower semicontinuous definable function
f : R

n → R ∪ {+∞}, the assumptions of Proposition 4 are satisfied. More precisely,
we have the following result.

Lemma 8. Let O be an o-minimal structure, B := {B1, . . . , Bq} be a collection of
definable subsets of R

n, and f : R
n → R∪{+∞} be a definable lower semicontinuous

function. Then for any p ≥ 1, there exists a nonvertical definable Cp-Whitney strati-
fication {S1, . . . , S�} of Graph f yielding (by projecting each stratum Si ⊂ R

n+1 onto
R

n) a Cp-Whitney stratification {X1, . . . , X�} of dom f compatible with B.
Proof. By transforming, using diffeomorphisms preserving verticality, R

n to D :=
{x ∈ R

n : ||x|| < 1} and R to (−1, 1), we may assume without loss of generality that
f is defined in D := {x ∈ R

n : ||x|| < 1} with values in (−1, 1). Set X = Graph f
and Ai = Bi × (−1, 1) for i ∈ {1, . . . , q}, and let π : X → D denote the restriction to
Graph f of the canonical projection of D× (−1, 1) to D. The lemma follows from the
canonical stratification of the mapping π according to [34, II.1.17].

Corollary 9 (Morse–Sard theorem for definable functions). Let f : R
n →

R∪{+∞} be a lower semicontinuous definable function and p ≥ 1. Then there exists
a finite definable Cp-Whitney stratification X = (Xi)i∈I of dom f such that for all
x ∈ dom f

(15) Proj TxXx
∂◦f(x) ⊂ {∇Rf(x) } .

As a consequence:
(i) for all x ∈ dom ∂◦f and x∗ ∈ ∂◦f(x), we have ||∇Rf(x)|| ≤ ||x∗||;
(ii) the set of Clarke critical values of f is finite;
(iii) the set of asymptotic Clarke critical values of f is finite.
Proof. Assertion (i) is a direct consequence of (15). This projection formula

follows directly by combining Lemma 8 with Proposition 4. To prove (iii), let fi be
the restriction of f to the stratum Xi. Then assertion (i), together with the fact that
the number of strata is finite, implies that the set of the asymptotic Clarke critical
values of f is the union (over the finite set I) of the asymptotic critical values of
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each (definable C1) function fi. Thus the result follows from [8, Remarque 3.1.5].
Assertion (ii) follows directly from (iii) (cf. Remark 2(iii)).

Remark 6. The fact that the set of the asymptotic critical values of a definable
differentiable function f is finite has been established in [8, Théorème 3.1.4] (see also
[20, Theorem 3.1] for the case that the domain of f is bounded). In [22, Proposition 2]
a more general result (concerning functions taking values in R

k) has been established
in the semialgebraic case.

We shall now give another application of Proposition 4, namely, a nonsmooth
version of the classical Kurdyka–�Lojasiewicz inequality ([20, Theorem 1]). Before we
proceed, we shall improve the latter in a way that allows us to deal directly with
unbounded domains. To this end, we shall need the following proposition.

Proposition 10 (uniform boundedness). Let I = [a,+∞) for some a ∈ R,
and let V be a definable neighborhood of {0} × I in R+ × I and φ : V → R+ a
definable function, continuous throughout {0}× I, satisfying φ(0, s) = 0 for all s ∈ I.
Then there exist ε0 > 0 and continuous definable functions χ : I → (0, ε0) and
ψ : (0, ε0) → [0,+∞) such that ψ is C1 on (0, ε0), ψ(0) = 0, and

ψ(t) ≥ φ(t, s) for all s ∈ I, t ∈ (0, χ(s)).

Proof. We can clearly assume that a = 0. Since V is a definable neighborhood of
{0} × I, we may assume there exists a continuous definable function g : I → (0,+∞)
such that {(t, s) ∈ R+ × I : t ≤ g(s)} ⊂ V. Set

(16) δ(s) := sup

{
δ ∈ (0, g(s)) : φ(t, s) ≤ 1

s + 1
∀t ∈ [0, δ)

}
,

and note that δ(s), being definable, has a finite number of points of discontinuity.
Since φ is continuous on {0}×I and φ(0, s) = 0 for all s ∈ I, we infer that lim inf

s→s̄
δ(s) >

0 for all s̄ ∈ I. We deduce that there exists a continuous decreasing and definable
function χ : I → (0,+∞) satisfying χ(s) ≤ δ(s) for all s ∈ I. Set ε0 = sup χ(I) =
χ(0) > 0, and consider the definable function

ψ(t) = max
s∈[0,χ−1(t)]

φ(t, s) for all t ∈ [0, ε0).

By the monotonicity lemma [7, Theorem 2.1] we conclude that ψ is C1 on (0, β) for
some β ≤ ε0. Truncating χ if necessary (by defining χ̃(s) := min{β, χ(s)}), we see
that there is no loss of generality to assume β = ε0. Note that ψ(0) = 0. Let us show
that ψ is also continuous at t = 0. Let us assume, towards a contradiction, that there
exists a sequence tn ↘ 0+ satisfying ψ(tn) > c > 0. Then for every n ∈ N there exists
sn ∈ [0, χ−1(tn)] such that φ(tn, sn) > c > 0. If {sn} → +∞, then since δ(sn) ≥ χ(sn)
we would deduce from (16) that (sn + 1)−1 ≥ φ(tn, sn) > c, which is impossible
for large values of n. Thus {sn} is bounded and has a convergent subsequence to
some s ∈ I. Using the continuity of φ at (0, s) and the fact that φ(0, s) = 0, the
contradiction follows. One can easily check that the definable functions ψ and χ
satisfy the conclusion of the proposition.

We now provide the following extension of the Kurdyka–�Lojasiewicz inequality
([20, Theorem 1]) for unbounded sets in the smooth case.
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Theorem 11 (Kurdyka–�Lojasiewicz inequality). Let U be a nonempty definable
submanifold of R

n (not necessarily bounded) and f : U → R+ be a definable differen-
tiable function. Then there exist a continuous definable function ψ : [0, ε0) → R+

satisfying ψ(0) = 0 and being C1 on (0, ε0) and a continuous definable function
χ : R+ → (0, ε0) such that

(17) ||∇(ψ ◦ f)(x)|| ≥ 1 for all 0 < f(x) ≤ χ(||x||).

Proof. With no loss of generality we can assume that f is not identically equal to
0 on U .

For each (t, s) ∈ (0,+∞) × R+ we set
(18)
F (t, s) := f−1(t) ∩B(0, s) ⊂ U and mf (t, s) = inf {||∇f(x)|| : x ∈ F (t, s)}.

Note that mf (t, s) ≡ +∞ whenever F (t, s) is empty. If f−1(0) = ∅, then for every
s ≥ 0 there exists δ > 0 such that for all t ∈ (0, δ) we have F (t, s) = ∅. Thus, the
definable function

s �→ δ(s) := sup{δ > 0 : F (t, s) = ∅ ∀t ∈ (0, δ]} < +∞

is positive (cf. continuity of f), decreasing (since F (t, s1) ⊂ F (t, s2) for s1 ≤ s2), and
continuous on (s̄,+∞) for some s̄ > 0 (cf. monotonicity lemma [7, Theorem 2.1]). In
this case (17) follows trivially by considering the continuous function

χ(s) =

{
δ(s)/2 if s ≥ s̄,
δ(s̄)/2 if s ≤ s̄,

and any continuous definable function ψ.
Thus there is no loss of generality to assume that there exists s0 ≥ 0 and a

decreasing continuous definable function ρ : [s0,+∞) → (0,+∞) such that F (t, s) �= ∅
for all t ∈ [0, ρ(s)] and all s ≥ s0. It follows that for all s ≥ s0 and t ∈ [0, ρ(s)] we
have mf (t, s) ∈ R+ and (since arg min f = {0}) mf (0, s) = 0. Using an argument
of Kurdyka ([20, Claim, p. 777]) we deduce that the function t �→ mf (t, s) is not
identically 0 near the origin, and we set for all s ≥ s0

g(s) = sup { t0 ∈ (0, ρ(s)) : mf (t, s) > 0 ∀t ∈ (0, t0] } ∈ (0,+∞).

Then g is decreasing, positive, definable, and thus continuous on [s1,+∞) for some
s1 ≥ s0. Set D = {(t, s) ∈ R+ × [s1,+∞) : t ≤ g(s)}, and consider the following
definable point-to-set mapping M : D ⇒ U ⊂ R

n, with

M(t, s) := {x ∈ F (t, s) : ||∇f(x)|| ≤ 2 mf (t, s)}.

Using the definable selection lemma (cf. [7, Theorem 3.1]), we obtain a definable
mapping γ : D → R

n such that γ(t, s) ∈ M(t, s) for all (t, s) ∈ D. Note that for
each s fixed, the function (0, g(s)) � t �→ γ(t, s) is absolutely continuous and ∂

∂tγi(·, s)
changes sign only a finite number of times on D for all i ∈ {1, . . . , n}. We set

φ(t, s) =

∫ t

0

max
i∈{1,...,n}

∣∣∣∣ ∂∂tγi(τ, s)
∣∣∣∣ dτ

for all (t, s) ∈ D. Applying the monotonicity lemma we obtain the integrability of the
function

τ �→ max
i=1,...,n

∣∣∣∣ ∂∂tγi(τ, s)
∣∣∣∣ .
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Using routine arguments it is easily seen that φ is actually definable on D. Moreover,
φ(t, s) > 0 whenever t > 0 (else the curve γ(·, s) would be stationary, which is not
possible since f(γ(t, s)) = t). Note also that φ(0, s) = 0 and limt↘0+ φ(t, s) = 0.
Considering a stratification of φ we deduce that there exists a ≥ s1 and a definable
neighborhood V of {0} × [a,+∞) in D where φ is (jointly) continuous. Applying
Proposition 10, we obtain ε0 > 0, a continuous definable function χ : [a,+∞) →
(0, ε0), and a continuous definable function ψ : [0, ε0) → R, with ψ(0) = 0, such that
ψ is C1 on (0, ε0) and ψ(t) ≥ φ(t, s) for all t ∈ [0, χ(s)].

Fix s ≥ a. Since ψ(t) ≥ φ(t, s) for t ∈ [0, χ(s)] and ψ(0) = φ(0, s), it follows (see
[2, Lemma 1(i)], for example) that for all t > 0 sufficiently small

(19) ψ′(t) ≥ ∂

∂t
φ(t, s) > 0.

For each s ∈ [a,+∞) let us define ε(s) to be the supremum of all ε ∈ (0, ε0) such that
(19) holds true in the interval (0, ε). It follows that s �→ ε(s) is a positive definable
function and is thus continuous on [b,+∞) for some b ≥ a. Let us define

χ̃(s) =

{
min{χ(s), ε(s)} if s ≥ b,

min{χ(b), ε(b)} if s ∈ [0, b].

We shall now show that (17) holds for ψ̃ = ( 1
2
√
n
)ψ and for χ̃ : R+ → (0, ε0). Indeed,

let x ∈ U be such that 0 < f(x) ≤ χ̃(||x||) (hence ∇f(x) �= 0). Set t = f(x) and
s = max{||x||, b}. Using the definition of γ we obtain

(20) ||∇(ψ ◦ f)(x)|| = ψ′(t)||∇f(x)|| ≥ 1

2
ψ′(t)||∇f(γ(t, s))||.

On the other hand, since f(γ(t, s)) = t, we have

d

dt
f(γ(t, s)) =

〈
∂

∂t
γ(t, s),∇f(γ(t, s))

〉
= 1

for all (t, s) ∈ D; hence

√
n max

i=1,...,n

∣∣∣∣ ∂∂tγi(·, s)
∣∣∣∣ ||∇f(γ(t, s)|| ≥

∥∥∥∥ ∂

∂t
γ(t, s)

∥∥∥∥ ||∇f(γ(t, s)|| ≥ 1,

and thus

(21) ||∇f(γ(t, s))|| ≥
[√

n max
i=1,...,n

∣∣∣∣ ∂∂tγi(·, s)
∣∣∣∣
]−1

=

[√
n
∂

∂t
φ(t, s)

]−1

.

Since f(x) ≤ χ̃(||x||) ≤ ε(s), by combining (19), (20), and (21) we finally obtain that

||∇(ψ ◦ f)(x)|| ≥ 1

2
√
n
ψ′(t)

[
∂

∂t
φ(t, s)

]−1

≥ 1

2
√
n

;

that is, (17) holds for ψ̃ = ( 1
2
√
n
)−1ψ.

Remark 7. If in the statement of Theorem 11 the definable set U is not open,
then ∇f is understood as the Riemannian gradient of f on U .
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We easily obtain the following corollaries.
Corollary 12. Let f : U → R be a definable differentiable function, where

U is a definable submanifold of R
n (not necessarily bounded). Then there exist a

continuous definable function ψ : [0, ε0) → R+ which is C1 on (0, ε0), with ψ(0) = 0,
and a relatively open neighborhood V of f−1(0) in U such that

||∇(ψ ◦ |f |)(x)|| ≥ 1

for all x in V \ f−1(0).
Proof. Let us first assume that f is nonnegative. The result holds trivially if

f−1(0) = ∅, so let us assume f−1(0) �= ∅. Take ψ and χ as in Theorem 11, and let
x ∈ f−1(0). It suffices to show that the inequality holds on a ball around x. Take
r ∈ (0, ε0) such that χ(||x||) > r. Since χ and f are continuous, there exists δ > 0
such that y ∈ B(x, δ) ∩ U implies χ(||y||) > r > f(y). Applying Theorem 11, we
conclude that for all y ∈ B(x, δ)∩U inequality (17) holds. When f takes its values in
R (not necessarily in R+), the conclusion follows easily by considering the subman-
ifolds {x ∈ U : f(x) > 0}, {x ∈ U : f(x) < 0} and by applying the monotonicity
Lemma.

Corollary 13. Let f : U → R be a definable differentiable function, where U is
a definable submanifold of R

n (not necessarily bounded). Let us denote by C1, . . . , Cm

the connected components of (∇f)−1({0}) and by c1, . . . , cm the corresponding critical
values. Then there exist a continuous definable function ψ : [0, ε0) → R+ which is C1

on (0, ε0), with ψ(0) = 0, and relatively open neighborhoods Vi of Ci in U for each
i ∈ {1, . . . ,m} such that for all x ∈ Vi \ Ci we have

||∇[ψ ◦ |f − ci|](x)|| ≥ 1.

Proof. Note that (∇f)−1({0}) ⊂ ∪m
i=1 f

−1(ci). For each i ∈ {1, . . . ,m} we apply
Corollary 12 to the function fi := f−ci on U to obtain a relatively open neighborhood
Vi of Ci and ψi : [0, εi) → R+ such that for all x ∈ Vi \ f−1(ci)

||∇[ψi ◦ |f − ci|](x)|| ≥ 1.

Set ε0 = min{εi : i ∈ {1, . . . ,m}}. Since ψi are definable functions, shrinking ε0

if necessary, we may assume (cf. the monotonicity lemma) that ψ′
i0

(t) ≥ ψ′
i(t) for

all t ∈ (0, ε0) and all i ∈ {1, . . . ,m}. The conclusion follows by setting ψ := ψi0 on
[0, ε0).

We shall now use Corollary 9 to extend Theorem 11 to a nonsmooth setting.
Theorem 14 (nonsmooth Kurdyka–�Lojasiewicz inequality). Let f : R

n →
R ∪ {+∞} be a lower semicontinuous definable function. There exist ρ > 0, a strictly
increasing continuous definable function ψ : [0, ρ) → (0,+∞) which is C1 on (0, ρ),
with ψ(0) = 0, and a continuous definable function χ : R+ → (0, ρ) such that

(22) ||x∗|| ≥ 1

ψ′(|f(x)|) ,

whenever 0 < |f(x)| ≤ χ(||x||) and x∗ ∈ ∂◦f(x).
Proof. Set U1 = {x ∈ dom f : f(x) > 0} and U2 = {x ∈ dom f : f(x) < 0},

and let X1, . . . , Xl be a finite definable stratification of dom f compatible with the
(definable) sets U1 and U2 such that the definable sets Si = {(x, f(x)) : x ∈ Xi}
are the strata of a nonvertical definable Cp-Whitney stratification of Graph f (cf.
Lemma 8). For each i ∈ {1, . . . , l} such that Xi ⊂ U1 we consider the positive
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C1 function fi := f |Xi
on the definable manifold Xi (thus for x ∈ Xi we have

∇fi(x) = ∇Rf(x) and fi(x) = f(x)), and we apply Theorem 11 to obtain εi > 0,
a continuous definable function χi : R+ → (0, εi), and a strictly increasing definable
C1-function ψi : (0, εi) → (0,+∞) such that for all x ∈ f−1(0, χi(||x||)) we have
||∇Rf(x)|| ≥ [ψ′

i(f(x))]−1. Similarly, for each j ∈ {1, . . . , l} such that Xj ⊂ U2

we consider the positive C1-function fj := −f |Xi
(note that for x ∈ Xj we have

∇fj(x) = −∇Rf(x) and fj(x) = −f(x)) to obtain as before a definable function χj :
R+ → (0, εj) and a strictly increasing definable C1-function ψj : (0, εj) → (0,+∞)
such that for all x ∈ f−1(0, χi(||x||)) we have ||∇Rf(x)|| ≥ [ψ′

j(−f(x))]−1. Thus for
all i ∈ {1, . . . , l} there exist a definable function χi : R+ → (0, εi) and a strictly
increasing definable C1-function ψi : (0, εi) → R such that

||∇Rf(x)|| ≥ 1

ψ′
i(|f(x)|) for all x ∈ f−1(0, χi(||x||)).

Set χ = minχi, ρ = min εi, and let i1, i2 ∈ {1, . . . , l}. By the monotonicity theorem
for definable functions of one variable (see [20, Lemma 2], for example), the definable
function

(0, ρ) � r �→ 1/ψ′
i1(r) − 1/ψ′

i2(r)

has a constant sign in a neighborhood of 0. Repeating the argument for all couples
i1, i2 and shrinking ρ if necessary, we obtain the existence of a strictly increasing,
positive, definable function ψ = ψi0 on (0, ρ) of class C1 that satisfies 1/ψ′ ≤ 1/ψ′

i on
(0, ρ) for all i ∈ {1, . . . , l}. Evoking Corollary 9(i), we obtain

||x∗|| ≥ ||∇Rf(x)|| ≥ 1

ψ′(|f(x))| ,

whenever x ∈ |f |−1(0, χ(||x||)) and x∗ ∈ ∂◦f(x). Since ψ is definable and bounded
from below, it can be extended continuously to [0, ρ). By eventually adding a constant,
we can also assume ψ(0) = 0.

In a similar way to Corollary 13 we obtain the following result.
Corollary 15. Let f : R

n → R ∪ {+∞} be a lower semicontinuous definable
function. Let us denote by C1, . . . , Cm the connected components of (∂◦f)−1({0}) and
by c1, . . . , cm the corresponding critical values (cf. Corollary 9(ii)). Then there exist a
continuous definable function ψ : [0, ε0) → R+ which is C1 on (0, ε0), with ψ(0) = 0,
and relatively open neighborhoods Vi of Ci in dom f for each i ∈ {1, . . . ,m} such that
for all x ∈ Vi we have

(23) ||x∗|| ≥ 1

ψ′(|f(x) − ci|)
,

whenever 0 < |f(x) − ci| ≤ χ(||x||) and x∗ ∈ ∂◦f(x).
The assumption that the function f is definable is important for the validity of

(22). It implies in particular that the connected components of the set of the Clarke
critical points of f lie in the same level set of f (cf. Corollary 9(ii)). Let us present
some examples of C1-functions for which (22) is not true.

Example 1. (i) Consider the function f : R → R, with

f(x) =

{
x2 sin 1

x if x �= 0,
0 if x = 0.
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Then the set S = {x ∈ R : f ′(x) = 0} meets infinitely many level sets around 0.
Consequently, (22) is not fulfilled since the critical value 0 is not isolated. Note also
that f provides an example of a nondefinable function whose graph admits a Whitney
stratification (in particular f satisfies the conclusion of Proposition 4).

(ii) A nontrivial example is proposed in [31, p. 14], where a C∞ “Mexican-hat”
function has been defined. An example of a similar nature has been given in [1] and
will be described below: Let f be defined in polar coordinate on R

2 by

f(r, θ) =

⎧⎨
⎩

exp(− 1
1−r2 ) [1 − 4r4

4r4+(1−r2)4 sin(θ − 1
1−r2 )] if r ≤ 1,

0 if r > 1.

The function f does not satisfy the Kurdyka–�Lojasiewicz inequality for the critical
value 0; i.e., one cannot find a strictly increasing C1-function ψ : (0, ρ) → (0,+∞),
with ρ > 0, such that

||∇(ψ ◦ f)(x)|| ≥ 1

for small positive values of f(x). To see this, let us notice that the proof of [20,
Theorem 2] shows that for any C1-function f (not necessarily definable) that satisfies
the Kurdyka–�Lojasiewicz inequality, the bounded trajectories of the gradient system

ẋ(t) + ∇f(x(t)) = 0

have a bounded length. However, in the present example, taking as the initial
condition r0 ∈ (0, 1) and θ0 such that θ0(1 − r0)

2 = 1, the gradient trajectory
ẋ(t) = −∇f(x(t)) must comply with

θ(t) =
1

1 − r(t)2
,

where r(t) ↗ 1− as t → +∞ (see [1] for details). The total length of the above curve
is obviously infinite, which shows that the Kurdyka–�Lojasiewicz inequality (for the
critical value 0) does not hold.

Let us finally give an easy consequence of Theorem 14 for the case of subanalytic
functions [25].

Corollary 16 (subgradient inequality). Assume that f : R
n → R ∪ {+∞} is a

lower semicontinuous globally subanalytic function and f(x0) = 0. There exist ρ > 0
and a continuous definable function χ : R+ → (0,+∞) such that

|f(x)|θ ≤ ρ ||x∗||,

whenever 0 < |f(x)| ≤ χ(||x||) and x∗ ∈ ∂◦f(x).
Proof. In the case that f is globally subanalytic, one can apply [20, Theorem LI]

to deduce that the continuous function ψ of Theorem 14 can be taken of the form
ψ(s) = s1−θ, with θ ∈ (0, 1).

Remark 8. Corollary 9(ii) (and a fortiori Corollary 16) extends [3, Theorem 7]
to the lower semicontinuous case. We also remark that the conclusions of Theorem
14 and of Corollary 16 remain valid for any notion of subdifferential that is included
in the Clarke subdifferential and thus, in particular, in view of (7), for the Fréchet
and the limiting subdifferential. However, let us point out that this is not the case
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for broader notions of subdifferentials, as, for example, the convex-stable subdifferen-
tial introduced and studied in [4]. It is known that the convex-stable subdifferential
coincides with the Clarke subdifferential whenever the function f is locally Lipschitz
continuous, but it is strictly larger in general, creating more critical points. In partic-
ular, [3, section 4] constructs an example of a subanalytic continuous function on R

3

that is strictly increasing in a segment lying in the set of its broadly critical points
(that is, critical in the sense of the convex-stable subdifferential). Consequently, The-
orem 14 and Corollary 16 do not hold for this subdifferential.
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WEAK SHARP MINIMA FOR SEMI-INFINITE OPTIMIZATION
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Abstract. We study local weak sharp minima and sharp minima for smooth semi-infinite
optimization problems SIP. We provide several dual and primal characterizations for a point to be a
sharp minimum or a weak sharp minimum of SIP. As applications, we present several sufficient and
necessary conditions of calmness for infinitely many smooth inequalities. In particular, we improve
some calmness results in [R. Henrion and J. Outrata, Math. Program., 104 (2005), pp. 437–464].
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1. Introduction. The notion of a sharp minimum, namely, a strong isolated
minimum or a strong unique local minimum, of real-valued functions, introduced in
[24], plays an important role in the convergence analysis of numerical algorithms in
mathematical programming problems (see [4, 12, 22, 30]). As such, it has received
extensive attention and investigation. As a generalization of sharp minima, weak
sharp minima for real-valued functions were introduced and studied in [5]. Extensive
study of weak sharp minima for real-valued convex functions has been done in the
literature (cf. [2, 3, 28, 31, 33]). It has been found that the weak sharp minimum
is closely related to the error bound in convex programming (cf. [32]), a notion that
has received much attention and has produced a vast number of publications (see
[16, 17, 23, 31, 32]).

The calmness is an important type of Lipschitz-like property for multifunctions,
which play a key role in many issues of mathematical programming such as sensitivity
analysis, error bounds, and optimality conditions. Thus, the study of the calmness
has recently received increasing attention in the mathematical programming literature
(see [8, 9, 10, 15]).

In this paper, we will study local weak sharp minima for the following semi-infinite
optimization problem:

(SIP) min f(x) subject to φ(x, y) ≤ 0 for all y ∈ Y,

where f : X → R is a smooth function, X is an Euclidean space, Y is an infinite
index set, and φ : X × Y → R is a function such that the function x �→ φ(x, y)
is smooth for each index y ∈ Y . It is known that (SIP) has many important and
interesting applications in engineering design, control of robots, mechanical stress of
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materials, and social sciences; see the survey paper [11] and the books [6, 21, 25]. In
the past three decades, (SIP) and its broad range of applications have been an active
study area in mathematical programming (see [1, 7, 13, 14, 20, 27, 29] and references
therein).

Let Z denote the set of all feasible points for (SIP); that is,

Z := {x ∈ X : φ(x, y) ≤ 0 for all y ∈ Y }.

We say that x̄ ∈ X is a local sharp minimum of (SIP) if x̄ ∈ Z and there exist
η, δ ∈ (0, +∞) such that

η‖x− x̄‖ ≤ f(x) − f(x̄) + sup
y∈Y

[φ(x, y)]+ for all x ∈ B(x̄, δ),(1.1)

where B(x̄, δ) denotes the open ball with center x̄ and radius δ.
We say that x̄ is a local weak sharp minimum of (SIP) if x̄ ∈ Z and there exist

η, δ ∈ (0, +∞) such that

ηd(x, Lf (x̄) ∩ Z) ≤ f(x) − f(x̄) + sup
y∈Y

[φ(x, y)]+ for all x ∈ B(x̄, δ),(1.2)

where Lf (x̄) := {x ∈ X : f(x) = f(x̄)} and d(x, Lf (x̄) ∩ Z) := inf{‖x − u‖ : u ∈
Lf (x̄) ∩ Z}.

Recall a known optimality condition of (SIP) (cf. [11, 13, 34]) that if x̄ is a local
minimum of (SIP) and a constraint qualification is satisfied at x̄, then there exist
ti ≥ 0 and yi ∈ I0(x̄), i = 1, . . . , p, such that

0 = f ′(x̄) +

p∑
i=1

tiφ
′
x(x̄, yi),(1.3)

where I0(x̄) denotes the index set of active inequality constraints at x̄. Furthermore,
under a convexity assumption, the optimality condition (1.3) also becomes sufficient.

When Y is a compact topological space and φ(x, y) and φ′
x(x, y) satisfy some

continuity conditions, we will prove that x̄ is a local weak sharp minimum of (SIP) if
and only if there exist η, δ ∈ (0, +∞) such that for all u ∈ Lf (x̄) ∩ Z ∩B(x̄, δ)

Ñ(Lf (x̄) ∩ Z, u) ∩ ηBX∗ ⊂ f ′(u) + [0, 1]co{φ′
x(u, y) : y ∈ I0(x̄)},(1.4)

where X∗ denotes the dual space of X, BX∗ denotes the unit ball of X∗, and Ñ(A, u)
is any one of the Fréchet, limiting, or Clarke normal cones of A at u; in particular, x̄
is a local sharp minimum of (SIP) if and only if

0 ∈ int(f ′(x̄) + [0, 1]co{φ′
x(x̄, y) : y ∈ I0(x̄)}).(1.5)

It is interesting to compare (1.5) and (1.4) with (1.3). These are referred to as
dual characterizations. We also obtain a set of primal ones for a local weak sharp
minimum of (SIP). Moreover, we obtain mixed characterizations for a local (weak)
sharp minimum.

Motivated by Henrion and Outrata [10], we consider the calmness of multifunc-
tions defined by infinitely many smooth inequalities. As applications of several char-
acterizations of weak sharp minima mentioned above, we provide several equivalent
conditions for the calmness; in particular, we improve one of the main results in [10].
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The outline of the paper is as follows. In section 2, some preliminaries on notions
of variational analysis are given. In section 3, several characterizations for a local
weak sharp minimum and a local sharp minimum of (SIP) are obtained. In section 4,
some equivalent conditions for the calmness of the system of infinitely many smooth
inequalities are provided.

2. Preliminaries. Let X be an Euclidean space and ψ : X → R ∪ {+∞} a
proper lower semicontinuous function. For x ∈ dom(ψ) := {x ∈ X : φ(x) < +∞}, let

∂̂ψ(x) denote the Fréchet subdifferential of ψ at x; that is,

∂̂ψ(x) :=

{
x∗ ∈ X∗ : lim inf

u
ψ→x

ψ(u) − ψ(x) − 〈x∗, u− x〉
‖u− x‖ ≥ 0

}
,

where u
ψ→ x means u → x and ψ(u) → ψ(x). The limiting subdifferential of ψ at x

is denoted by ∂ψ(x) and is defined by

∂ψ(x) := lim sup

u
ψ→x

∂̂ψ(u);

that is, x∗ ∈ ∂ψ(x) if and only if there exist sequences xk
ψ→ x and x∗

k → x∗ with

x∗
k ∈ ∂̂ψ(xk).

The following proposition is well known (cf. [18, Theorem 2.33]) and is useful for
us.

Proposition 2.1. Let ψ1, ψ2 : X → R ∪ {+∞} be proper lower semicontinuous
functions and x ∈ dom(ψ1)∩dom(ψ2). Suppose that ψ1 is locally Lipschitz at x. Then

∂(ψ1 + ψ2)(x) ⊂ ∂ψ1(x) + ∂ψ2(x).

For a closed subset A of X and a ∈ A, let N̂(A, a) and N(A, a) denote the Fréchet
normal cone and the limiting normal cone of A at a, respectively; that is,

N̂(A, a) = ∂̂δA(a) and N(A, a) = ∂δA(a),

where δA denotes the indicator function of A. Thus, x∗ ∈ N̂(A, a) if and only if

lim sup
x

A→a

〈x∗,x−a〉
‖x−a‖ ≤ 0, where x

A→ a means x ∈ A and x → a, and x∗ ∈ N(A, a) if

and only if there exist xk
A→ a and x∗

k → x∗ such that x∗
k ∈ N̂(A, xk) for all k ∈ N,

where N denotes the set of all natural numbers.
Let T (A, a) denote the tangent cone of A at a; that is,

T (A, a) := {h ∈ X : ∃tk → 0+ and hk → h such that a + tkhk ∈ A for all k ∈ N}.

It is known (cf. [26, Theorem 6.28]) that

N̂(A, a) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ 0 for all h ∈ T (A, a)}.(2.1)

Let Tc(A, a) denote the Clarke tangent cone; that is, v ∈ Tc(A, a) if and only if, for
each sequence {ak} in A converging to a and each sequence {tk} in (0, ∞) decreasing
to 0, there exists a sequence {vk} in X converging to v such that ak + tkvk ∈ A for
all k ∈ N. Let Nc(A, a) denote the Clarke normal cone of A at a and be defined by

Nc(A, a) := {x∗ ∈ X∗ : 〈x∗, v〉 ≤ 0 for all v ∈ Tc(A, a)}.(2.2)
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It is well known (cf. [26, Proposition 6.5] and [18, Theorem 3.57]) that

N̂(A, a) ⊂ N(A, a) ⊂ Nc(A, a) and Nc(A, a) = coN(A, a).(2.3)

Histories of the subdifferentials and the normal cones can be found in [18, 19, 26].
For any x ∈ X, let PA(x) denote the projection of x on A; that is,

PA(x) := {a ∈ A : ‖x− a‖ = d(x,A)}.

We will need the following known result (cf. [26, Example 6.16]).
Lemma 2.1. Let A be a closed subset of X and x ∈ X. Then

x− a ∈ N̂(A, a) for any a ∈ PA(x).(2.4)

3. Weak sharp minima for smooth semi-infinite optimization problems.
Throughout the remainder of this paper, let X be an Euclidean space of dimension
m and Y a compact topological space (e.g., a bounded closed subset of an Euclidean
space). Let f : X → R and φ : X × Y → R be as in section 1. We always assume
that the following properties hold:

(P1) The function x �→ φ(x, y) is smooth for each y ∈ Y , and the function y �→
φ(x, y) is continuous for each x ∈ X.

(P2) The functions (x, y) �→ φ(x, y) and (x, y) �→ φ′
x(x, y) are continuous on X×Y ,

where φ′
x(x, y) denotes the derivative of the function x �→ φ(x, y).

In the literature on semi-infinite optimization, assumptions (P1) and (P2) have been
extensively used.

Since Y is compact and (P1) holds, it is easy to verify that x̄ ∈ Z is a local
sharp minimum and a local weak sharp minimum of (SIP) if and only if there exist
η, δ ∈ (0, +∞) such that

η‖x− x̄‖ ≤ f(x) − f(x̄) + max
y∈Y

[φ(x, y)]+ for all x ∈ B(x̄, δ)(3.1)

and

ηd(x, Lf (x̄) ∩ Z) ≤ f(x) − f(x̄) + max
y∈Y

[φ(x, y)]+ for all x ∈ B(x̄, δ),(3.2)

respectively.
It follows from (3.2) that every local weak sharp minimum of (SIP) is a local

solution of (SIP). Clearly, x̄ is a local sharp minimum of (SIP) if and only if x̄ is a
local weak sharp minimum of (SIP) and

Lf (x̄) ∩ Z ∩B(x̄, δ) = {x̄} for some δ > 0.

For convenience, let

Φ(x) := max{φ(x, y) : y ∈ Y } and I(x) := {y ∈ Y : φ(x, y) = Φ(x)}.

From (P1) and the compactness of Y , it is clear that I(x) �= ∅ for all x ∈ X. For each
x ∈ Z, let I0(x) denote the index set of active inequality constraints at x; that is,

I0(x) := {y ∈ Y : φ(x, y) = 0}.

We will provide characterizations for x̄ to be a local weak sharp minimum or a local
sharp minimum of (SIP). We need the following lemma.
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Lemma 3.1. Let x̄ ∈ X and ε > 0. Then there exists δ > 0 such that for any
x ∈ B(x̄, δ) and u ∈ Lf (x̄) ∩ Z ∩B(x̄, δ)

〈f ′(u), x− u〉 ≤ f(x) − f(x̄) + ε‖x− u‖

and

〈φ′
x(u, y), x− u〉 ≤ φ(x, y) + ε‖x− u‖ for all y ∈ I0(u).

Proof. Since (x, y) �→ φ′
x(x, y) is continuous, for any y ∈ Y there exist open

neighborhoods Uy and Vy of x̄ and y, respectively, such that

‖φ′
x(x1, v1) − φ′

x(x2, v2)‖ < ε for all x1, x2 ∈ Uy and for all v1, v2 ∈ Vy.

Since Y is compact, there exist y1, . . . , yk ∈ Y such that Y =
⋃k

i=1 Vyi . Let U :=⋂n
i=1 Uyi , and take δ > 0 such that B(x̄, δ) ⊂ U . It is easy to verify that

‖φ′
x(x1, y) − φ′

x(x2, y)‖ < ε for all x1, x2 ∈ B(x̄, δ) and for all y ∈ Y.(3.3)

Since f is continuously differentiable, we assume without loss of generality that

‖f ′(x1) − f ′(x2)‖ < ε for all x1, x2 ∈ B(x̄, δ)(3.4)

(considering smaller δ if necessary). Let x ∈ B(x̄, δ), u ∈ Lf (x̄) ∩ Z ∩ B(x̄, δ), and
y ∈ I0(u). By the mean value theorem, there exist θ1, θ2 ∈ (u, x) := {tu + (1 − t)x :
0 < t < 1} such that

f(x) − f(x̄) = f(x) − f(u) = 〈f ′(θ1), x− u〉

and

φ(x, y) = φ(x, y) − φ(u, y) = 〈φ′
x(θ2, y), x− u〉.

It follows from (3.4) and (3.3) that

〈f ′(u), x− u〉 = 〈f ′(u) − f ′(θ1), x− u〉 + 〈f ′(θ1), x− u〉
≤ f(x) − f(x̄) + ε‖x− u‖

and

〈φ′
x(u, y), x− u〉 ≤ φ(x, y) + ε‖x− u‖.

The proof is completed.
Lemma 3.2. Let x̄ ∈ Z and u ∈ Lf (x̄) ∩ Z. Then

〈f ′(u), h〉 = 0 and 〈φ′
x(u, y), h〉 ≤ 0, for all h ∈ T (Lf (x̄)∩Z, u) and for all y ∈ I0(u).

Proof. Let h ∈ T (Lf (x̄) ∩ Z, u) and y ∈ I0(u). Then there exist tk → 0+ and
hk → h such that u + tkhk ∈ Lf (x̄) ∩ Z for all k ∈ N. Hence

f(u + tkhk) = f(u) = f(x̄) and φ(u + tkhk, y) ≤ 0 for all k ∈ N.

Since f is continuously differentiable,

f(u + tkhk) − f(u) = 〈f ′(u), tkhk〉 + o(tk).
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It follows that 〈f ′(u), hk〉 + o(tk)
tk

= 0. This implies that 〈f ′(u), h〉 = 0. Let ε be an
arbitrary positive number. Then Lemma 3.1 implies that

〈φ′(u, y), tkhk〉 ≤ φ(u + tkhk, y) + ε‖tkhk‖ ≤ ε‖tkhk‖

for all k large enough, and so 〈φ′(u, y), h〉 ≤ ε‖h‖. Since ε is arbitrary, it follows that
〈φ′(u, y), h〉 ≤ 0. This completes the proof.

In the next theorems we first provide some dual characterizations and then some
primal characterizations for a feasible point of (SIP) to be a local weak sharp mini-
mum. As usual, let coA denote the convex hull of A. For convenience, we adopt the
conventions that if u ∈ Lf (x̄) ∩ Z, with I0(u) = ∅, then

[0, 1]co{φ′
x(u, y) : y ∈ I0(u)} := {0}

and

max
y∈I0(u)

[〈φ′
x(u, y), h〉]+ := 0 for all h ∈ X.

Theorem 3.1. Let x̄ be a feasible point of (SIP) (i.e., x̄ ∈ Z). Then the following
statements are equivalent:

(i) x̄ is a local weak sharp minimum of (SIP).
(ii) There exist η, δ ∈ (0, +∞) such that

N̂(Lf (x̄) ∩ Z, u) ∩ ηBX∗ ⊂ f ′(u) + [0, 1]co{φ′
x(u, y) : y ∈ I0(u)}(3.5)

for all u ∈ Lf (x̄) ∩ Z ∩B(x̄, δ).
(iii) There exist η, δ ∈ (0, +∞) such that

N(Lf (x̄) ∩ Z, u) ∩ ηBX∗ ⊂ f ′(u) + [0, 1]co{φ′
x(u, y) : y ∈ I0(u)}(3.6)

for all u ∈ Lf (x̄) ∩ Z ∩B(x̄, δ).
(iv) There exist η, δ ∈ (0, +∞) such that

Nc(Lf (x̄) ∩ Z, u) ∩ ηBX∗ ⊂ f ′(u) + [0, 1]co{φ′
x(u, y) : y ∈ I0(u)}(3.7)

for all u ∈ Lf (x̄) ∩ Z ∩B(x̄, δ).
Proof. (i)⇒(ii). Suppose that there exist η, δ ∈ (0, +∞) such that (3.2) holds.

Let u ∈ Lf (x̄) ∩ Z ∩ B(x̄, δ
2 ) and u∗ ∈ N̂(Lf (x̄) ∩ Z, u) ∩ BX∗ . Let ε > 0, and take

r ∈ (0, δ
2 ) such that

〈u∗, v − u〉 ≤ ε‖v − u‖ for all v ∈ Lf (x̄) ∩ Z ∩B(u, r).

Let x ∈ B(u, r
2 ) ⊂ B(x̄, δ). Then there exists v ∈ Lf (x̄) ∩ Z such that ‖x − v‖ =

d(x, Lf (x̄) ∩ Z). Hence,

‖v − u‖ ≤ ‖v − x‖ + ‖x− u‖ ≤ 2‖x− u‖ < r.

Therefore,

〈u∗, x− u〉 = 〈u∗, x− v〉 + 〈u∗, v − u〉
≤ ‖x− v‖ + ε‖v − u‖
≤ (1 + ε)‖x− v‖ + ε‖x− u‖
= (1 + ε)d(x, Lf (x̄) ∩ Z) + ε‖x− u‖.



WEAK SHARP MINIMA FOR SEMI-INFINITE OPTIMIZATION 579

It follows from (3.2) and B(u, r
2 ) ⊂ B(x̄, δ) that

η〈u∗, x− u〉 ≤ (1 + ε)(f(x) − f(x̄) + [Φ(x)]+) + ηε‖x− u‖ for all x ∈ B
(
u,

r

2

)
.

Noting that f(u) = f(x̄) and [Φ(u)]+ = 0, it follows that u is a local minimum of the
function

x �→ −η〈u∗, x− u〉 + (1 + ε)(f(x) − f(x̄) + [Φ(x)]+) + ηε‖x− u‖.

This and Proposition 2.1 imply that

ηu∗ ∈ (1 + ε)(f ′(u) + ∂[Φ(·)]+(u)) + ηεBX∗ .

Letting ε → 0, one has

ηu∗ ∈ f ′(u) + ∂[Φ(·)]+(u) = f ′(u) + co({0} ∪ ∂Φ(u)) = f ′(u) + [0, 1]∂Φ(u).

Noting (by [26, Theorem 10.31]) that

∂Φ(u) =

{
{0} I0(u) = ∅,
co{φ′

x(u, y) : y ∈ I0(u)} I0(u) �= ∅,

it follows that (3.5) holds.
(ii)⇒(iii). Suppose that there exist η, δ ∈ (0, +∞) such that (3.5) holds for all

u ∈ Lf (x̄)∩Z∩B(x̄, δ). Let u ∈ Lf (x̄)∩Z∩B(x̄, δ) and u∗ ∈ N(Lf (z̄)∩Z, u)∩ηBX∗ .
Take a sequence {uk} in Lf (x̄) ∩ Z and a sequence {u∗

k} in X∗ such that uk → u,

u∗
k → u∗, and u∗

k ∈ N̂(Lf (x̄) ∩ Z, uk) for all k ∈ N. Without loss of generality, we
assume that uk ∈ B(x̄, δ) and u∗

k ∈ ηBX∗ for each k ∈ N. By (3.5), one has

u∗
k ∈ f ′(uk) + [0, 1]co{φ′

x(uk, y) : y ∈ I0(uk)} for all k ∈ N.

We divide into two cases: 1) I0(uk) = ∅ for infinitely many k and 2) I0(uk) �= ∅ for
infinitely many k.

Case 1. Without loss of generality we assume that I0(uk) = ∅ for all k ∈ N

(passing to a subsequence if necessary). Thus, u∗
k = f ′(uk) for all k ∈ N. It follows

that u∗ = f ′(u). Hence (3.6) holds.
Case 2. We can assume that I0(uk) �= ∅ for all k ∈ N. Noting that X is of

dimension m, it follows from the Caratheodory theorem (cf. [26, Theorem 2.29]) that
there exist t1k, . . . , tm+1k ∈ [0, 1] and y1k, . . . , ym+1k ∈ I0(uk) such that

m+1∑
i=1

tik ≤ 1 and u∗
k = f ′(uk) +

m+1∑
i=1

tikφ
′
x(uk, yik) for all k ∈ N.

Without loss of generality, we assume that

tik → ti and yik → yi ∈ I0(u) as k → ∞, i = 1, . . . ,m + 1

(passing to subsequences if necessary). Thus,

m+1∑
i=1

ti ≤ 1 and u∗ = f ′(u) +

m+1∑
i=1

tiφ
′
x(u, yi).

This shows that (3.6) holds for all u ∈ Lf (x̄) ∩ Z ∩B(x̄, δ).
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(iii)⇒(iv). Suppose that there exist η, δ ∈ (0, +∞) such that (3.6) holds for all
u ∈ Lf (x̄) ∩ Z ∩B(x̄, δ). It follows that

N(Lf (x̄)∩Z, u) ⊂ R+f
′(u)+R+co{φ′

x(u, y) : y ∈ I0(u)} for all u ∈ Lf (x̄)∩Z∩B(x̄, δ).

On the other hand, by (2.1) and Lemma 3.2 one has

R+f
′(u) + R+co{φ′

x(u, y) : y ∈ I0(u)} ⊂ N̂(Lf (x̄) ∩ Z, u) for all u ∈ Lf (x̄) ∩ Z.

It follows that

N̂(Lf (x̄) ∩ Z, u) = N(Lf (x̄) ∩ Z, u) for all u ∈ Lf (x̄) ∩ Z ∩B(x̄, δ).

By (2.1) and (2.3), one has

N(Lf (x̄) ∩ Z, u) = Nc(Lf (x̄) ∩ Z, u) for all u ∈ Lf (x̄) ∩ Z ∩B(x̄, δ).

Therefore, (iv) holds.
(iv)⇒(i). Suppose that there exist η, δ ∈ (0, +∞) such that (3.7) holds for all

x ∈ Lf (x̄)∩Z∩B(x̄, δ). Let x ∈ B(x̄, δ
2 )\Lf (x̄)∩Z, and take u ∈ PLf (x̄)∩Z(x). Then

u ∈ B(x̄, δ), and it follows from Lemma 2.1 and (2.3) that x−u
‖x−u‖ ∈ Nc(Lf (x̄)∩Z, u).

We claim that I0(u) �= ∅. Suppose to the contrary that I0(u) = ∅. Then, by the
definition, [0, 1]co{φ′

x(u, y) : u ∈ I0(u)} = {0}. This and (3.7) imply that the
intersection Nc(Lf (x̄) ∩ Z, u) ∩ ηBX∗ is the singleton {f ′(u)}, contradicting the fact

that it contains 0 and η(x−u)
‖x−u‖ . Hence I0(u) �= ∅. By (3.7), there exist t1, . . . , tq ∈

[0, +∞) and y1, . . . , yq ∈ I0(u) such that

q∑
i=1

ti ≤ 1 and
η(x− u)

‖x− u‖ = f ′(u) +

q∑
i=1

tiφ
′
x(u, yi).

Hence

η‖x− u‖ = 〈f ′(u), x− u〉 +

q∑
i=1

ti〈φ′
x(u, yi), x− u〉.

Let ε ∈ (0, η
2 ). By Lemma 3.1, without loss of generality we assume that

〈f ′(u), x− u〉 ≤ f(x) − f(x̄) + ε‖x− u‖

and

〈φ′
x(u, y), x− u〉 ≤ φ(x, y) + ε‖x− u‖ for all y ∈ I0(u)

(considering smaller δ if necessary). Therefore,

η‖x− u‖ ≤ f(x) − f(x̄) +

q∑
i=1

tiφ(x, yi) + 2ε‖x− u‖

≤ f(x) − f(x̄) + max
y∈Y

[φ(x, y)]+ + 2ε‖x− u‖.

It follows that

(η − 2ε)‖x− u‖ ≤ f(x) − f(x̄) + max
y∈Y

[φ(x, y)]+;

that is,

(η − 2ε)d(x, Lf (x̄) ∩ Z) ≤ f(x) − f(x̄) + max
y∈Y

[φ(x, y)]+.
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Since f(x) = f(x̄) and maxy∈Y [φ(x, y)]+ = 0 if x ∈ Lf (x̄) ∩ Z, the last inequal-
ity holds trivially if x ∈ Lf (x̄) ∩ Z. This shows that (i) holds. The proof is
completed.

Remark. In view of the proof of Theorem 3.1, one can see that the implication
(i)⇒(ii) of Theorem 3.1 holds even when X is a Banach space of infinite dimension.

Theorem 3.2. Let x̄ ∈ Z. Then the following statements are equivalent:
(i) x̄ is a local weak sharp minimum of (SIP).
(ii) There exist η, δ ∈ (0, +∞) such that

ηd(h, T (Lf (x̄) ∩ Z, u)) ≤ 〈f ′(u), h〉 + max
y∈I0(u)

[〈φ′
x(u, y), h〉]+(3.8)

for all u ∈ Lf (x̄) ∩ Z ∩B(x̄, δ) and h ∈ X.
(iii) There exist η, δ ∈ (0, +∞) such that

ηd(h, Tc(Lf (x̄) ∩ Z, u)) ≤ 〈f ′(u), h〉 + max
y∈I0(u)

[〈φ′
x(u, y), h〉]+(3.9)

for all u ∈ Lf (x̄) ∩ Z ∩B(x̄, δ) and h ∈ X.
(iv) There exist η, δ ∈ (0, +∞) such that

η‖x− u‖ ≤ 〈f ′(u), x− u〉 + max
y∈I0(u)

[〈φ′
x(u, y), x− u〉]+(3.10)

for any x ∈ B(x̄, δ) and u ∈ PLf (x̄)∩Z(x).
Proof. (i)⇒(iii). Suppose that (i) holds. Then by Theorem 3.1 there exist η, δ ∈

(0, +∞) such that (3.7) holds for all u ∈ Lf (x̄) ∩ Z ∩ B(x̄, δ). Let u ∈ Lf (x̄) ∩ Z ∩
B(x̄, δ) and h ∈ X. By Lemma 3.2, (3.9) holds if h ∈ Tc(Lf (x̄) ∩ Z, u). Now we
assume that h �∈ Tc(Lf (x̄) ∩ Z, u). Take h0 ∈ PTc(Lf (x̄)∩Z,u)(h). Then by Lemma 2.1
and (2.3) one has

h− h0 ∈ Nc(Tc(Lf (x̄) ∩ Z, u), h0).

Since Tc(Lf (x̄) ∩ Z, u) is a convex cone,

〈h− h0, z − h0〉 ≤ 0 for all z ∈ Tc(Lf (x̄) ∩ Z, u).

Hence

〈h− h0, h0〉 = 0 and 〈h− h0, z〉 ≤ 0 for all z ∈ Tc(Lf (x̄) ∩ Z, u).

This and (2.2) imply that η(h−h0)
‖h−h0‖ ∈ Nc(Lf(x̄) ∩ Z, u). It follows from (3.7) that

I0(u) �= ∅, and there exist t1, . . . , tq ∈ [0, +∞) and y1, . . . , yq ∈ I0(u) such that

q∑
i=1

ti ≤ 1 and
η(h− h0)

‖h− h0‖
= f ′(u) +

q∑
i=1

tiφ
′
x(u, yi).

Hence

ηd(h, Tc(Lf (x̄) ∩ Z, u)) =

〈
η(h− h0)

‖h− h0‖
, h− h0

〉

=

〈
η(h− h0)

‖h− h0‖
, h

〉

= 〈f ′(u), h〉 +

q∑
i=1

ti〈φ′
x(u, yi), h〉

≤ 〈f ′(u), h〉 + max
y∈I0(u)

[〈φ′
x(u, y), h〉]+.

Therefore, (3.9) holds. This shows that (iii) holds.
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Since Tc(Lf (x̄) ∩ Z, u) ⊂ T (Lf (x̄) ∩ Z, u) for any u ∈ Lf (x̄) ∩ Z,

d(h, T (Lf (x̄)∩Z, u)) ≤ d(h, Tc(Lf (x̄)∩Z, u)) for all h ∈ Xand for all u ∈ Lf (x̄)∩Z.

Hence (iii)⇒(ii) holds trivially.
Suppose that (ii) holds. Take η, δ ∈ (0, +∞) such that (3.8) holds for all u ∈

Lf (x̄)∩Z∩B(x̄, δ) and h ∈ X. Let x ∈ B(x̄, δ
2 )\Lf (x̄)∩Z, and take u ∈ PLf (x̄)∩Z(x).

By Lemma 2.1, one has x−u
‖x−u‖ ∈ N̂(Lf (x̄) ∩ Z, u). Hence 〈 x−u

‖x−u‖ , z〉 ≤ 0 for any

z ∈ T (Lf (x̄) ∩ Z, u). This implies that

‖x− u‖ ≤
〈

x− u

‖x− u‖ , x− u− z

〉
≤ ‖x− u− z‖ for all z ∈ T (Lf (x̄) ∩ Z, u).

Hence ‖x − u‖ = d(x − u, T (Lf (x̄) ∩ Z, u)). Noting that u ∈ B(x̄, δ), it follows from
(3.8) that (3.10) holds. This shows that the implication (ii)⇒(iv) holds.

Suppose that (iv) holds. Take η, δ ∈ (0, +∞) such that (3.10) holds for any x ∈
B(x̄, δ) and u ∈ PLf (x̄)∩Z(x). Let x ∈ B(x̄, δ

2 ) \Lf (x̄)∩Z, and take u ∈ PLf (x̄)∩Z(x).
Then u ∈ B(x̄, δ). Hence (3.10) holds for such x and u. Let ε ∈ (0, η

2 ). By Lemma
3.1, without loss of generality we assume that

〈f ′(u), x− u〉 ≤ f(x) − f(x̄) + ε‖x− u‖

and

〈φ′
x(u, y), x− u〉 ≤ φ(x, y) + ε‖x− u‖ for all y ∈ I0(u)

(taking smaller δ if necessary). Hence

[〈φ′
x(u, y), x− u〉]+ ≤ [φ(x, y)]+ + ε‖x− u‖ for all y ∈ I0(u).

It follows from (3.10) that

η‖x− u‖ ≤ f(x) − f(x̄) + max
y∈Y

[φ(x, y)]+ + 2ε‖x− u‖.

Therefore,

(η − 2ε)d(x, Lf (x̄) ∩ Z) = (η − 2ε)‖x− u‖ ≤ f(x) − f(x̄) + max
y∈Y

[φ(x, y)]+.

This shows that (i) holds. The proof is completed.
Now we provide a mixed characterization for x̄ to be a weak sharp minimum of

(SIP), which is inspired from [10, Theorem 4].
Proposition 3.1. Let x̄ ∈ Z. Then x̄ is a local weak sharp minimum of (SIP)

if and only if the following conditions are satisfied:
(i) T (Lf (x̄) ∩ Z, x̄) = {h ∈ X : 〈f ′(x̄), h〉 + maxy∈I0(x̄)[〈φ′

x(x̄, y), h〉]+ ≤ 0}.
(ii) There exist η0, δ ∈ (0, +∞) such that for any u ∈ Lf (x̄) ∩ Z ∩B(x̄, δ) \ {x̄}

N̂(Lf (x̄) ∩ Z, u) ∩ η0BX∗ ⊂ f ′(u) + [0, 1]co{φ′
x(u, y) : y ∈ I0(u)}.

Proof. By Lemma 3.2, one has

T (Lf (x̄)∩Z, x̄) ⊂ {h ∈ X : 〈f ′(x̄), h〉+ max
y∈I0(x̄)

[〈φ′
x(x̄, y), h〉]+ ≤ 0 for all y ∈ I0(x̄)}.
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It follows from (ii) of Theorem 3.2 and (ii) of Theorem 3.1 that the necessity part
holds.

To prove the sufficiency part, suppose that (i) and (ii) hold. We claim that there
exists η1 > 0 such that

η1‖h‖ ≤ 〈f ′(x̄), h〉 + max
y∈I0(x̄)

[〈φ′
x(x̄, y), h〉]+ for all h ∈ N̂(Lf (x̄) ∩ Z, x̄).(3.11)

Suppose to the contrary that there exists a sequence {hk} in N̂(Lf (x̄) ∩ Z, x̄) such
that

‖hk‖ = 1 and 〈f ′(x̄), hk〉 + max
y∈I0(x̄)

[〈φ′
x(x̄, y), hk〉]+ <

1

k
for all k ∈ N.

Without loss of generality we assume that hk → h0. Then

h0 ∈ N̂(Lf (x̄) ∩ Z, x̄) and 〈f ′(x̄), h0〉 + max
y∈I0(x̄)

[〈φ′
x(x̄, y), h0〉]+ ≤ 0.

It follows from (i) that h0 ∈ T (Lf (x̄) ∩ Z, x̄), contradicting ‖h0‖ = 1 and (2.1). This
shows that (3.11) holds. Let x ∈ B(x̄, δ

2 ) \ Lf (x̄) ∩ Z and u ∈ PLf (x̄)∩Z(x). Then
u ∈ B(x̄, δ) \ {x} and x−u

‖x−u‖ ∈ N̂(Lf (x̄) ∩ Z, u). In the case when u = x̄, by (3.11)

one has

η1‖x− x̄‖ ≤ 〈f ′(x̄), x− x̄〉 + max
y∈I0(x̄)

[〈φ′
x(x̄, y), x− x̄〉]+.(3.12)

In the case when u �= x̄, by (ii) there exist ti ∈ [0, +∞) and yi ∈ I0(u), i = 1, . . . , q,
such that

q∑
i=1

ti ≤ 1 and
η0(x− u)

‖x− u‖ = f ′(u) +

q∑
i=1

tiφ
′(u, yi).

It follows that

η0‖x− u‖ = 〈f ′(u), x− u〉 +

q∑
i=1

ti〈φ′
x(u, yi), x− u〉

≤ 〈f ′(u), x− u〉 + max
y∈I0(u)

[〈φ′
x(u, yi), x− u〉].

This and (3.12) imply that (iv) of Theorem 3.2 holds with η = min{η0, η1}. It follows
from Theorem 3.2 that the sufficiency part holds. The proof is completed.

Remark. Letting

ψ(x) := f(x) + max
y∈Y

[φ(x, y)]+ for all x ∈ X,

it is clear that if x̄ is a local weak sharp minimum of (SIP), then x̄ is a local weak
sharp minimum of ψ: There exist η, δ ∈ (0, +∞) such that

ηd(x, Lψ(x̄)) ≤ ψ(x) − ψ(x̄) for all x ∈ B(x̄, δ).

The converse implication may not be true. Indeed, let X = R, Y = {y0}, f(x) = −x2,
and φ(x, y0) = x2 for all x ∈ R. Then Z = {0}, and x̄ = 0 is not a local weak sharp
minimum of (SIP). But, noting that ψ(x) = f(x) + maxy∈Y [φ(x, y)]+ = 0 for all
x ∈ X, 0 is a weak sharp minimum of ψ.
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When ψ is a convex function, in terms of the normal and tangent cones of the
solution set as well as the subdifferential and the directional derivative of ψ, some
characterizations for the weak sharp minimum of ψ have been established (cf. [2, 33]).
To the best of our knowledge, in the nonconvex case no one considers corresponding
characterizations.

Finally, we provide characterizations for x̄ ∈ Z to be a local sharp minimum of
(SIP).

Theorem 3.3. Let x̄ ∈ Z. Then the following statements are equivalent:
(i) x̄ is a local sharp minimum of (SIP).
(ii) There exists η > 0 such that

ηBX∗ ⊂ f ′(x̄) + [0, 1]co{φ′
x(x̄, y) : y ∈ I0(x̄)}.

(iii) There exists η > 0 such that

η‖h‖ ≤ 〈f ′(x̄), h〉 + max
y∈I0(x̄)

[〈φ′
x(x̄, y), h〉]+ for all h ∈ X.

(iv) {h ∈ X : 〈f ′(x̄), h〉 + maxy∈I0(x̄)[〈φ′
x(x̄, y), h〉]+ ≤ 0} = {0}.

Proof. (i)⇒(ii) is immediate from Theorem 3.1 and N({x̄}, x̄) = X∗. (ii)⇒(iii)
and (iii)⇒(iv) are trivial.

It remains to prove (iv)⇒(i). Suppose that (iv) holds. Noting that T ({x̄}, x̄) =
{0}, by Proposition 3.1 we need only show that Lf (x̄) ∩ Z ∩ B(x̄, δ) = {x̄} for some
δ > 0. Suppose to the contrary that there exists a sequence {xk} in Lf (x̄) ∩ Z \ {x̄}
such that xk → x̄. Without loss of generality we assume that xk−x̄

‖xk−x̄‖ → h (passing to

a subsequence if necessary). Thus, h ∈ T (Lf (x̄) ∩ Z, x̄). It follows from Lemma 3.2
that

〈f ′(x̄), h〉 + max
y∈I0(x̄)

[〈φ′
x(x̄, y), h〉]+ ≤ 0,

contradicting (iv) and ‖h‖ = 1. The proof is completed.

4. Calmness for infinitely many smooth inequalities. Recently Henrion
and Outrata [10] studied the calmness of infinitely many smooth inequalities. Let
C(Y ) denote the Banach space of all continuous functions on Y equipped with the
maximum norm, and consider the multifunction M : C(Y ) ⇒ X defined by

M(g) := {x ∈ X : φ(x, y) ≤ −g(y) for all y ∈ Y } for all g ∈ C(Y ),(4.1)

where X, Y , and φ(x, y) are as in section 3. For ḡ ∈ C(Y ) and x̄ ∈ M(ḡ), recall that
M is calm at (ḡ, x̄) if there exist L, δ ∈ (0, +∞) such that

d(x,M(ḡ)) ≤ L‖g − ḡ‖ for all g ∈ B(ḡ, δ) and for all x ∈ B(x̄, δ) ∩M(g).

We say that M is strongly calm at (ḡ, x̄) if there exist L, δ ∈ (0, +∞) such that

‖x− x̄‖ ≤ L‖g − ḡ‖ for all g ∈ B(ḡ, δ) and for all x ∈ B(x̄, δ) ∩M(g).

It is clear that M is strongly calm at (ḡ, x̄) if and only if M is calm at (ḡ, x̄) and
M(ḡ)∩B(x̄, δ) = {x̄} for some δ > 0. Let Λ := {g ∈ C(Y ) : g(y) ≤ 0 for all y ∈ Y }
and x̄ ∈ M(0). It is known (cf. [10]) that M is calm at (0, x̄) if and only if there exist
L, δ ∈ (0, +∞) such that

d(x,M(0)) ≤ Ld(φ(x, ·),Λ) for all x ∈ B(x̄, δ).
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Noting that

M(0) = Z and d(φ(x, ·),Λ) = max
y∈Y

[φ(x, y)]+,

it follows that M is calm at (0, x̄) if and only if there exist η, δ ∈ (0, +∞) such that

ηd(x, Z) ≤ max
y∈Y

[φ(x, y)]+ for all x ∈ B(x̄, δ).(4.2)

Setting f(x) = 0 for all x ∈ X in (SIP), one sees that (4.2) means that x̄ is a local
weak sharp minimum of (SIP). Thus, by Theorems 3.1 and 3.2 and Proposition 3.1
we have the following characterizations for M to be calm at (0, x̄).

Theorem 4.1. Let M be as in (4.1) and x̄ ∈ M(0). Then the following statements
are equivalent:

(i) M is calm at (0, x̄).
(ii) There exist τ, δ ∈ (0, +∞) such that

N̂(M(0), u)∩BX∗ ⊂ [0, τ ]co{φ′
x(u, y) : y ∈ I0(u)} for all u ∈ M(0)∩B(x̄, δ).

(iii) There exist τ, δ ∈ (0, +∞) such that

N(M(0), u)∩BX∗ ⊂ [0, τ ]co{φ′
x(u, y) : y ∈ I0(u)} for all u ∈ M(0)∩B(x̄, δ).

(iv) There exist τ, δ ∈ (0, +∞) such that

Nc(M(0), u)∩BX∗ ⊂ [0, τ ]co{φ′
x(u, y) : y ∈ I0(u)} for all u ∈ M(0)∩B(x̄, δ).

(v) There exist τ, δ ∈ (0, +∞) such that

d(h, T (M(0), u)) ≤ τ max
y∈I0(u)

[〈φ′
x(u, y), h〉]+

for all u ∈ M(0) ∩B(x̄, δ) and h ∈ X.
(vi) There exist τ, δ ∈ (0, +∞) such that

d(h, Tc(M(0), u)) ≤ τ max
y∈I0(u)

[〈φ′
x(u, y), h〉]+

for all u ∈ M(0) ∩B(x̄, δ) and h ∈ X.
(vii) There exist τ, δ ∈ (0, +∞) such that

‖x− u‖ ≤ τ max
y∈I0(u)

[〈φ′
x(u, y), x− u〉]+

for any x ∈ B(x̄, δ) and u ∈ PM(0)(x).
(viii) T (M(0), x̄) = {h ∈ X : 〈φ′

x(x̄, y), h〉 ≤ 0 for all y ∈ I0(x̄)}, and there exist
τ, δ ∈ (0, +∞) such that for any u ∈ M(0) ∩B(x̄, δ) \ {x̄}

N̂(M(0), u) ∩BX∗ ⊂ [0, τ ]co{φ′
x(u, y) : y ∈ I0(u)}.

In the remainder of this section, we assume that Y is a compact subset of Rn.
Following Henrion and Outrata [10], let

J := {S ∈ K(Y ) : ∃xi
bdM(0)\{x̄}−→ x̄ such that dH(S, I0(xi)) → 0},

where K(Y ) denotes the family of all compact subsets of Y and dH denotes the
Hausdorff distance between compact sets.

Corollary 4.1. Let M be as in (4.1) and x̄ ∈ M(0). Suppose that the following
conditions are satisfied:
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1. T (M(0), x̄) = {h ∈ X : 〈φ′
x(x̄, y), h〉 ≤ 0 for all y ∈ I0(x̄)}.

2. There exists ρ > 0 such that

d(0, co{φ′
x(x̄, y) : y ∈ S)}) > ρ for all S ∈ J .

Then M is calm at (0, x̄).
Proof. We claim that there exists δ > 0 such that

d(0, co{φ′
x(x, y) : y ∈ I0(x)}) > ρ for all x ∈ bd(M(0)) ∩B(x̄, δ) \ {x̄}.(4.3)

If this is not the case, then there exists a sequence {xi} in bd(M(0)) \ {x̄} such that

xi → x̄ and d(0, co{φ′
x(xi, y) : y ∈ I0(xi)}) ≤ ρ for all i ∈ N.

Noting that X is of dimension m, it follows from the Caratheodory theorem that for
each i ∈ N there exist tji ≥ 0 and yji ∈ I0(xi), j = 1, . . . ,m + 1, such that

m+1∑
j=1

tji = 1 and

∥∥∥∥∥∥
m+1∑
j=1

tjiφ
′
x(xi, yji)

∥∥∥∥∥∥ ≤ ρ.

By (P2) and the compactness of Y , without loss of generality we assume that

tji → tj ≥ 0 and yji → yj ∈ I0(x̄), j = 1, . . . ,m + 1.

Hence,

m+1∑
j=1

tj = 1 and

∥∥∥∥∥∥
m+1∑
j=1

tjφ
′
x(x̄, yj)

∥∥∥∥∥∥ ≤ ρ.(4.4)

Since the space of compact subsets of X endowed with the Hausdorff distance is itself
compact, without loss of generality we assume that there exists S0 ∈ J such that
dH(I0(xi), S0) → 0. It is clear that yj ∈ S0, j = 1, . . . ,m + 1. This and (4.4) imply
that d(0, co{φ′

x(x̄, y) : y ∈ S0)}) ≤ ρ, contradicting condition 2. Hence there exists
δ > 0 such that (4.3) holds. Recalling (cf. [26, Definition 7.25 and Theorem 10.31])
that Φ(x) = maxy∈Y φ(x, y) is regular and ∂Φ(x) = co{φ′(x, y) : y ∈ I(x)}, it follows
from (4.3) and [26, Proposition 10.3] that

N(M(0), x) = R+co{φ′
x(x, y) : y ∈ I0(x)} for all x ∈ bd(M(0)) ∩B(x̄, δ) \ {x̄}.

Let x ∈ bd(M(0)) ∩ B(x̄, δ) \ {x̄} and x∗ ∈ N(M(0), x) ∩ BX∗ . Then there exist
t ∈ [0, +∞) and u∗ ∈ co{φ′

x(x, y) : y ∈ I0(x)} such that x∗ = tu∗. This and (4.3)
imply that t < 1

ρ . Hence,

N(M(0), x) ∩BX∗ ⊂
[
0,

1

ρ

]
co{φ′

x(x, y) : y ∈ I0(x)}.

It is clear that

N(M(0), x) ∩BX∗ = {0} ⊂
[
0,

1

ρ

]
co{φ′

x(x̄, y) : y ∈ I0(x)} for all x ∈ int(M(0)).

Hence, (viii) of Theorem 4.1 holds, and so M is calm at (0, x̄). The proof is
completed.
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Remark 4.1. Corollary 4.1 is a slight improvement of [10, Theorem 4], which,
in addition to all assumptions on Corollary 4.1, requires that (x, y) �→ φ(x, y) is
continuously differentiable and (x, y) �→ φ′(x, y) is locally Lipschitz. Noting that

J = {S ⊂ Y : ∃xi
bdM(0)\{x̄}−→ x̄ such that I0(xi) = S for all i ∈ N}

when Y is a finite set, Corollary 4.1 recaptures [10, Theorem 3].
The following example shows that implication (viii)⇒(i) of Theorem 4.1 properly

improves [10, Theorems 4 and 3]. Let X = R2, Y = {0, 1}, φ((s, t), 0) = 0, and
φ((s, t), 1) = s − t for all (s, t) ∈ R2. Then M(0) = {(s, t) ∈ R2 : s ≤ t} and
I0(x) = Y for any x ∈ bd(M(0)). Let x̄ = (0, 0). Then J = {Y }. Noting that

co{φ′((s, t), y) : y ∈ Y } = {(u,−u) : 0 ≤ u ≤ 1} for all (s, t) ∈ R2,

it follows that d(0, co{φ′
x(x̄, y) : y ∈ S}) = 0 for all S ∈ J . Thus, Corollary 4.1

and so [10, Theorems 4 and 3] are not applicable. On the other hand, noting that
bd(M(0)) = {(s, s) : s ∈ R},

T (M(0), (s, s)) = M(0) and N(M(0), (s, s)) = {(t,−t) : t ≥ 0} for all s ∈ R,

one can see that (viii) of Theorem 4.1 holds. Hence, applying implication (viii)⇒(i)
of Theorem 4.1, one obtains that M is calm at (0, x̄).

We conclude with characterizations for M to be strongly calm at (0, x̄).
Theorem 4.2. Let M be as in (4.1) and x̄ ∈ M(0). Then the following statements

are equivalent:
(i) M is strongly calm at (0, x̄).
(ii) There exists τ ∈ (0, +∞) such that

BX∗ ⊂ [0, τ ]co{φ′
x(x̄, y) : y ∈ I0(x̄)}.

(iii) X∗ = R+co{φ′
x(x̄, y) : y ∈ I0(x̄)}.

(iv) There exists τ ∈ (0, +∞) such that

‖h‖ ≤ τ max
y∈I0(x̄)

[〈φ′
x(x̄, y), h〉]+ for all h ∈ X.

(v) {h ∈ X : 〈φ′
x(x̄, y), h〉 ≤ 0 for all y ∈ I0(x̄)} = {0}.

Proof. Noting that M is strongly calm at (0, x̄) if and only if x̄ is a local sharp
minimum of (SIP) with f ≡ 0, (i)⇔(ii)⇔(iv)⇔(v) are immediate from Theorem 3.3.
It is clear that (ii)⇒(iii)⇒(v) hold. The proof is completed.
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Abstract. In this paper we derive second-order necessary conditions for optimality for an
optimization problem with abstract constraints in Banach spaces. Results for the nondegenerate
case derived earlier [H. Gfrerer, SIAM J. Control Optim., 45 (2006), pp. 972–997] are extended to
the degenerate case. For the mathematical programming problem, where the constraints are given
by equality and finitely many inequality constraints, our approach applies to the degenerate case,
when the equality constraints are not regular; our results appear to be new even in this special case.
Our second-order necessary conditions are contained in the gap between the standard necessary and
sufficient conditions, where the only difference is the change from a nonstrict to a strict inequality.
Our results are formulated in such a way to be applicable also to vector optimization problems.
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1. Introduction. In this paper we study necessary second-order optimality con-
ditions for minimization problems with abstract constraints of the form

g(x) ∈ K,(1.1)

where the constraint mapping g : X → V carries a Banach space X into another
Banach space V , and K is a closed convex subset of V .

The feasible sets of various optimization problems can be formulated in the
form (1.1) in a natural way. For instance, the possibly infinite-dimensional math-
ematical programming problem with finitely many inequality constraints gi(x) ≤ 0,
i = 1, . . . ,m, and an equality constraint G(x) = 0, where G : X → V̂ maps X into
another Banach space V̂ , fits into the scheme with V = R

m × V̂ , K = R
m
− × {0},

and g = (g1, . . . , gm, G). Other examples are provided by semi-infinite programming
problems, semidefinite programming problems, and optimal control problems. We
refer to the monograph [10] for a comprehensive overview.

When studying necessary optimality conditions at a point x̄ satisfying (1.1), usu-
ally a condition on the constraints is needed, since otherwise the necessary conditions
trivially hold and therefore their utility for describing optimality is very limited. One
classical condition in this setting is Robinson’s condition [30]:

0 ∈ int (g(x̄) + g′(x̄)X −K).(1.2)

Note that in the case of the finite-dimensional mathematical programming problem,
condition (1.2) reduces to the classical Mangasarian–Fromovitz constraint qualifica-
tion. Under Robinson’s condition, the structure of the set of tangent directions of the
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constraints is well established (see, e.g., [10]) and second-order conditions have been
formulated by several authors; see [9], [14], [17], [23], [28], [29].

In a recent paper [15], we presented second-order necessary optimality conditions,
which are shown to be the best possible in a certain sense, under the nondegeneracy
assumption

int (g′(x̄)X −K) �= ∅.(1.3)

This condition is clearly weaker than Robinson’s condition (1.2). For instance, for the
mathematical programming problem, condition (1.3) reduces to a condition on the
equality constraint only, namely, the well-known Lyusternik condition G′(x̄)X = V̂ ,
which has been used by several authors (see, e.g., [7], [8], [27], [16]). However, it is
well known that there exist second-order necessary conditions for the mathematical
programming problem which do not require the Lyusternik condition G′(x̄)X = V̂
to be satisfied. A generalization of the classical Lyusternik theorem for nonregular
mappings G′(x̄) was first derived and proved in [12]. Tret’yakov [33] and Avakov [4],
[5] presented optimality conditions for this nonregular case. These results have been
extended by several authors; see, e.g., [1], [2], [6], [11], [19], [25], [26].

In this paper we will derive second-order necessary optimality conditions in the
degenerate case, i.e., condition (1.3) is dropped. The obtained results appear to be
new even in the special case of the mathematical programming problem. Our approach
is essentially based on the ideas presented in [15]. We will use both an observation
made by Robinson [32]—that a certain multifunction built by the objective and the
constraints obtains a singular behavior at a local minimizer—and an accurate char-
acterization of metric regularity of this multifunction by means of a certain signed
distance function.

With this approach, when dealing with general constraints of the form (1.1), it
does not require great effort to consider also the case of general objective functions.
Thus the problem we consider in this paper is given by

L-minimize f(x) subject to g(x) ∈ K,(P)

where f : X → U is a mapping from the Banach space X to another Banach space
U and where L ⊂ U is a closed convex cone with nonempty interior, intL �= ∅. We
define different kinds of local L-minimizers as follows.

Definition 1.1. An element x̄ ∈ X is called a local weak minimizer for (P)
if g(x̄) ∈ K and if there exists a neighborhood N of x̄ such that for each x ∈ N
with g(x) ∈ K, one has f(x) − f(x̄) �∈ −intL. A local weak minimizer x̄ is called
a strict local minimizer for (P) if for each x ∈ N \ {x̄} with g(x) ∈ K, one has
f(x) − f(x̄) �∈ −L. Finally, a weak local minimizer x̄ is called an essential local
minimizer of second order for problem (P) if there exists some real β > 0 such that

max{d(f(x) − f(x̄),−L), d(g(x),K)} ≥ β‖x− x̄‖2 ∀x ∈ N .(1.4)

Of course, each essential local minimizer of second order is also a strict local
minimizer.

Note that (P) includes the very common problem of constrained scalar minimiza-
tion, for which U = R and L = R+. Local weak minimizers for (P) then amount
to usual local minimizers, and for essential local minimizers the so-called quadratic
growth condition is satisfied:

f(x) − f(x̄) ≥ β‖x− x̄‖2 ∀x ∈ N : g(x) ∈ K.
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Another important particular case, for instance, is the Pareto maximization
optimization problem with U = R

p, L = R
p
−.

For second-order optimality conditions for problem (P) in the multicriteria case
we refer to [8], [13], [15], [20], [21], [22].

Given a feasible point x̄ ∈ g−1(K), fixed throughout this paper, we will now define
a certain multifunction associated with (P) and x̄. Let h : X → U × V be defined by

h(x) := (f(x) − f(x̄), g(x)), C := (−L) ×K, Y := U × V.(1.5)

Then the multifunction Γ : X ⇒ Y , given by

Γ(x) := h(x) − C,(1.6)

will form the basis of our investigations. Throughout this paper we will use the
following smoothness assumption on h.

Assumption 1. h is Fréchet differentiable at x̄ and for some radius r̄ > 0 and
some scalar η ≥ 0 we have

‖h(x1) − h(x2) − h′(x̄)(x1 − x2)‖ ≤ ηmax{‖x1 − x̄‖, ‖x2 − x̄‖}‖x1 − x2‖

for all x1, x2 ∈ x̄ + r̄BX .
In what follows we will use the norm ‖(u, v)‖ := max{‖u‖, ‖v‖} on the product

space Y = U × V .
Our notation is fairly standard. In a normed space Z, BZ := {z ∈ Z : ‖z‖ ≤ 1}

denotes the closed unit ball and SZ := {z ∈ Z : ‖z‖ = 1} denotes the unit sphere.
The topological dual space is denoted by Z∗. 〈z∗, z〉 is the value z∗(z) of the linear
functional z∗ ∈ Z∗ at z ∈ Z. For a set D ⊂ Z we denote by σD(·) its support
function, i.e., σD(z∗) := supz∈D〈z∗, z〉, and by d(·, D) the distance function, i.e.,
d(z,D) = infy∈D ‖z − y‖. For a convex set D ⊂ Z we denote by TD(z) (respectively,
ND(z)) the common tangent cone (respectively, normal cone) of convex analysis at a
point z ∈ D, i.e., we have ND(z) := {z∗ ∈ Z∗ : 〈z∗, ζ − z〉 ≤ 0 for all ζ ∈ D} and

TD(x) =

{
s : lim inf

t→0+

d(z + ts,D)

t
= 0

}
=

{
s : lim sup

t→0+

d(z + ts,D)

t
= 0

}
.

If W is another normed space, we denote by L(Z,W ) the space of all continuous linear
operators from Z into W . If A ∈ L(Z,W ), then A∗ : W ∗ → Z∗ denotes the adjoint
operator of A. Finally, we denote by T the set of all sequences (tn) → 0+.

Fritz–John-type optimality conditions for problem (P) can be written in the form

f ′(x̄)∗u∗ + g′(x̄)∗v∗ = 0, 0 �= (u∗, v∗) ∈ L∗ ×NK(g(x̄)) ⊂ U∗ × V ∗,(1.7)

where L∗ := {u∗ ∈ U∗ : 〈u∗, u〉 ≥ 0 for all u ∈ L} is the dual cone of the cone L.
Setting y∗ := (u∗, v∗) and using the notation of h and C, the condition (1.7) can also
be written more shortly as

h′(x̄)∗y∗ = 0, y∗ ∈ NC(h(x̄)), y∗ �= 0.(1.8)

In what follows we will denote the set of multipliers y∗ satisfying the Fritz–John
conditions (1.8) by ΛFJ . It should be noted that in general ΛFJ may be empty.
An additional condition has to be imposed to ensure the existence of a nontrivial
multiplier y∗ at a local weak minimizer for (P).
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2. Preliminaries. In this section we will recapitulate partially the basic theory
on second-order optimality conditions as presented in [15].

In a very general form, these conditions can be formulated by means of a function
d̂C(y,A, κ) : Y × L(X,Y ) × R → R given by

d̂C(y,A, κ) := sup
y∗∈SY ∗

{〈y∗, y〉 − σC(y∗) − κ‖A∗y∗‖} .

Theorem 2.1 (see [15, Theorem 3.2]). Suppose that Assumption 1 is satisfied at
x̄. If x̄ is a local weak minimizer for (P), then

lim inf
x→x̄
τ→0+

d̂C(h(x), h′(x̄), τ‖x− x̄‖)
‖x− x̄‖2

≥ 0.(2.1)

Moreover, a feasible point x̄ is an essential local minimizer of second order for (P) if
and only if

lim inf
x→x̄
τ→0+

d̂C(h(x), h′(x̄), τ‖x− x̄‖)
‖x− x̄‖2

> 0.(2.2)

The following theorem gives further details on the optimality conditions of The-
orem 2.1 (see [15, Theorems 3.5, 3.6]).

Theorem 2.2.

1. Suppose that a feasible point x̄ is not an essential local minimizer of second
order for (P). Then there exists a twice continuously differentiable mapping δh :=
(δf, δg) satisfying δh(x̄) = 0, δh′(x̄) = 0, and δh′′(x̄) = 0, such that x̄ is not a local
weak minimizer for (P) with f and g replaced by f + δf and g + δg, respectively.

2. Assume that at a feasible point x̄ condition (2.1) holds, and assume that

int (h′(x̄)X − C) �= ∅.(2.3)

Then there exists a mapping δh = (δf, δg) : X → Y with δh(x) = ψ(‖x− x̄‖)y, where
y ∈ Y and ψ : R+ → R+ is a twice continuously differentiable function satisfying
ψ(0) = ψ′(0) = ψ′′(0) = 0, such that x̄ is a strict local minimizer for (P) with f and
g replaced by f + δf and g + δg, respectively.

Remark. It follows from the proof of [15, Theorem 3.6] that the assertion of
the second part of Theorem 2.2 does not depend on the special form of h and C,
respectively. Indeed, for any closed convex set C ⊂ Y and any mapping h : X → Y ,
differentiable at some point x̄ satisfying h(x̄) ∈ C and conditions (2.1) and (2.3),
there exist a neighborhood N of x̄ and a mapping δh(x) = ψ(‖x − x̄‖)y of the same
kind as in the second part of Theorem 2.2, such that d

(
(h + δh)(x), C)

)
> 0 for all

x ∈ N \ {x̄}.
Definition 2.3. We call x̄ nondegenerate for the problem (P) if int (h′(x̄)X −

C) �= ∅. Conversely, if int (h′(x̄)X − C) = ∅, the element x̄ is said to be degenerate
for (P).

The following theorem states some geometrical properties of the function d̂C : It
can be treated as a signed distance function for certain sets.

Theorem 2.4 (see [15, Proposition 2.6]). For each A ∈ L(X,Y ), each y ∈ Y ,
and each κ ≥ 0 let DC(y,A, κ) be given by DC(y,A, κ) := y + κABX − C. Then one
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has

d̂C(y,A, κ) =

⎧⎨
⎩

d(0, DC(y,A, κ)) if 0 �∈ clDC(y,A, κ),
0 if 0 ∈ bdDC(y,A, κ),
− sup{ρ : ρBY ⊂ DC(y,A, κ)} if 0 ∈ intDC(y,A, κ).

It follows easily from the definition that d̂C(·, A, κ) is Lipschitz continuous with
constant 1. Moreover we have the following property.

Lemma 2.5 (see [15, Lemma 2.8]). Let A ∈ L(X,Y ), y ∈ Y , and κ ≥ 0 be such

that d̂C(y,A, κ) < 0. Then

d(0, A−1(C − y)) ≤ κ

d(y, C) − d̂C(y,A, κ)
d(y, C).

For the sake of completeness we mention some material from [15] also used in this
paper. First, let us recall the notion of (local) metric regularity.

Definition 2.6. Let Ψ : X ⇒ Y be a set-valued map, ȳ ∈ Ψ(x̄). The
multifunction Ψ is called metrically regular near (x̄, ȳ) if there are neighborhoods Nx̄,
Nȳ of x̄, ȳ, respectively, and some k > 0 such that d(x,Ψ−1(y)) ≤ k d(y,Ψ(x)) for
each (x, y) ∈ Nx̄ ×Nȳ.

The following two theorems are the base for the necessary optimality conditions
of Theorem 2.1 and are also of substantial significance for this paper.

Theorem 2.7 (see [15, Proposition 2.4]). Let (xn) be a sequence converging to x̄
such that for each n, Γ is metrically regular near (xn, 0). Then x̄ is not a local weak
minimizer for (P).

Theorem 2.8 (see [15, Proposition 2.10]). Let x̂ ∈ X be given and suppose that
there exist a continuous linear mapping A ∈ L(X,Y ), a vector x0 ∈ X, and scalars
R > 0, κ̂ ≥ 0, and γ > 0, such that the following conditions are satisfied:

‖h(x′) − h(x) −A(x′ − x)‖ ≤ γ‖x′ − x‖ ∀x, x′ ∈ x̂ + RBX ,(2.4)

h(x̂) + A(x0 − x̂) ∈ C, r := ‖x0 − x̂‖ < R/2,(2.5)

2γ(κ̂ + 3r) + d̂C(h(x̂), A, κ̂) < 0.(2.6)

Then there exists some x̃ ∈ x0 + rBX , such that h(x̃) ∈ C and Γ is metrically regular

near (x̃, 0). Moreover, d̂C(h(x̃), A, κ̂ + ‖x̃− x̂‖) ≤ d̂C(h(x̃), A, κ̂) + γ‖x̃− x̂‖.
3. A general necessary condition. The following theorem states an abstract

necessary optimality condition for problem (P). In some sense it is contained in the
gap between the necessary and sufficient optimality conditions of Theorem 2.1.

Theorem 3.1. Assume that Assumption 1 holds. Further assume that x̄ is a
local weak minimizer, but not an essential local minimizer of second order, and let
(zn) ⊂ SX , (tn) ∈ T, and (τn) ∈ T be sequences such that

lim sup
n→∞

t−2
n d̂C(h(x̄ + tnzn), h′(x̄), τntn) ≤ 0.(3.1)

Further assume that there is a sequence (An) ⊂ L(X,Y ) of continuous linear operators
mapping X into Y such that, together with some positive scalars γ′, R′ > 0 and a
sequence (ϕ′

n) ∈ T, one has

‖h(x′) − h(x) −An(x′ − x)‖
≤
(
ϕ′
ntn + γ′ max{‖x̄ + tnzn − x′‖, ‖x̄ + tnzn − x‖}

)
‖x′ − x‖(3.2)
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for all x′, x ∈ x̄ + tn(zn + R′BX) and for each n. Then for each T > 0 one has

lim inf
n→∞

t−2
n d̂C(h(x̄ + tnzn), An, T tn) ≥ 0.(3.3)

Proof. By Theorem 2.4, for each n we can find some element δzn ∈ BX such that

δn : = t−2
n d(h(x̄ + tnzn) + tnτnh

′(x̄)δzn, C)

≤ t−2
n max{d̂C(h(x̄ + tnzn), h′(x̄), τntn), 0} +

1

n
,

and from (3.1) it follows that δn → 0. Let z′n := zn + τnδzn. Then ‖z′n‖ ≤ 1+ τn, and
using Assumption 1 we obtain

δ′n := t−2
n d(h(x̄ + tnz

′
n), C)

≤ t−2
n

(
d(h(x̄ + tnzn) + tnτnh

′(x̄)δzn, C)

+ ‖h(x̄ + tnz
′
n) − h(x̄ + tnzn) − tnτnh

′(x̄)δzn‖
)

≤ δn + t−2
n ηmax{‖tnz′n‖, ‖tnzn‖}‖tn(zn − z′n)‖ ≤ δn + η(1 + τn)τn,

yielding δ′n → 0. We will now prove by contraposition that (3.3) holds for arbitrarily
fixed T > 0. Assume on the contrary that

lim inf
n→∞

t−2
n d̂C(h(x̄ + tnzn), An, T tn) ≤ −2ε < 0

for some T > 0. Using the Lipschitz continuity of d̂C(·, An, T tn), Theorem 2.4, and
condition (3.2) we obtain

d̂C(h(x̄ + tnz
′
n), An, T tn) ≤ d̂C(h(x̄ + tnzn) + τntnAnδzn, An, T tn)

+ ‖h(x̄ + tnz
′
n) − h(x̄ + tnzn) − τntnAnδzn‖

≤ d̂C(h(x̄ + tnzn), An, (T + τn)tn)

+ (ϕ′
ntn + γ′τntn‖δzn‖)τntn‖δzn‖

= d̂C(h(x̄ + tnzn), An, (T + τn)tn) + o(t2n).

Next define Tn := T + τn and μn := max{τn, ϕ′
n,

Tnδ
′
n

ε } for each n. Since μn → 0, by
passing to a subsequence if necessary, we may assume that

t−2
n d̂C(h(x̄ + tnz

′
n), An, Tntn) ≤ −ε,

(2 + 8γ′)(μnTn + 3μ2
n) − ε < 0,

τn + 3μn ≤ R′

for each n. Now let n be arbitrarily fixed. We will now show that the assumptions
of Theorem 2.4 hold with data x̂ = x̄ + tnz

′
n, A = An, R = 3μntn, κ̂ = Tntn, and

γ = (1 + 4γ′)μntn. Since ‖tn(z′n − zn)‖ + R ≤ tn(τn + 3μn) ≤ tnR
′ it follows from

(3.2) for all x, x′ ∈ x̄ + tnz
′
n + RBX ⊂ x̄ + tn(zn + R′BX) that

‖h(x′) − h(x) −An(x′ − x)‖
≤ (tnϕ

′
n + γ′ max{‖x̄ + tnzn − x′‖, ‖x̄ + tnzn − x‖})‖x− x′‖

≤ (tnϕ
′
n + γ′(R + tn‖zn − z′n‖))‖x− x′‖

≤ (ϕ′
n + γ′(3μn + τn))tn‖x− x′‖ ≤ (1 + 4γ′)μntn‖x− x′‖,
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and hence (2.4) holds. Using Lemma 2.5 we have

d(0, A−1
n (h(x̄ + tnz

′
n) − C)) ≤ Tntnd(h(x̄ + tnz

′
n), C)

d(h(x̄ + tnz′n), C) − d̂C(h(x̄ + tnz′n), An, Tntn)

≤ Tntnδ
′
nt

2
n

δ′nt
2
n + εtn

2 <
Tnδ

′
n

ε
tn ≤ μntn.

Thus there exists some x0 such that

h(x̄ + tnz
′
n) + An(x0 − (x̄ + tnz

′
n)) ∈ C, r := ‖x0 − (x̄ + tnz

′
n)‖ ≤ μntn =

R

3
,

showing the validity of (2.5). Finally, we have

2γ(κ̂ + 3r) + d̂C(h(x̄ + tnz
′
n), An, κ̂) ≤ 2(1 + 4γ′)μntn(Tntn + 3μntn) − εt2n

=
(
(2 + 8γ′)(μnTn + 3μ2

n) − ε
)
t2n < 0,

yielding (2.6). Thus we can apply Theorem 2.4 to establish the existence of some
x̃n ∈ x̄ + tnz

′
n + 3μntnBX such that h(x̃n) ∈ C and the multifunction h(·) − C is

metrically regular near (x̄, 0). This holds for each n, and since x̃n → x̄ we conclude
from Theorem 2.7 that x̄ is not a local weak minimizer, a contradiction.

It is easy to show that if h is continuously differentiable in a neighborhood of x̄,
then for a sequence (An) ⊂ L(X,Y ) of linear operators satisfying condition (3.2) one
has ‖h′(x̄ + tnzn) −An‖ ≤ ϕ′

ntn = o(tn). The converse is also true if h is sufficiently
smooth near x̄.

Lemma 3.2. Suppose that h is continuously differentiable in some ball x̄ + ρBX

around x̄. Further suppose that either h is twice Fréchet differentiable at x̄ or that h′(·)
is Lipschitz continuous in x̄+ρBX . Then, for any sequences (zn) ⊂ SX , (tn) ∈ T, and
(An) ⊂ L(X,Y ) such that ‖h′(x̄+tnzn)−An‖ = o(tn), there exist a sequence (ϕ′

n) ∈ T

and positive reals γ′ and R′ such that condition (3.2) holds for all n sufficiently large.
Proof. Let R′ > 0 be arbitrarily chosen and consider n chosen so large that

tn(zn + R′BX) ⊂ ρBX . Consider an arbitrary linear functional y∗ ∈ BY ∗ . For every
pair x, x′ ∈ x̄+ tn(zn +R′BX), by the mean-value theorem, there exists some element
ξ belonging to the line segment [x, x′] such that 〈y∗, h(x′)−h(x)〉 = 〈y∗, h′(ξ)(x′−x)〉
and

〈y∗, h(x′)−h(x̄)−An(x′−x)〉 = 〈y∗, (h′(ξ)−An)(x′−x)〉 ≤ ‖y∗‖‖h′(ξ)−An‖‖x′−x‖

follows. Now, in order to prove the lemma it is sufficient to show the bound

‖h′(ξ) −An‖ ≤ ϕ′
ntn + γ′ max{‖x̄ + tnzn − x′‖, ‖x̄ + tnzn − x‖}(3.4)

for some constant γ′ and some sequence (ϕ′
n) ∈ T. When h is twice Fréchet differen-

tiable at x̄ we have

‖h′(ξ) − h′(x̄ + tnzn)‖ ≤ ‖h′(ξ) − (h′(x̄) + h′′(x̄)(ξ − x̄))‖ + ‖h′′(x̄)(ξ − (x̄ + tnzn))‖
+ ‖h′(x̄) + h′′(x̄)tnzn − h′(x̄ + tnzn)‖.

Together with

‖h′(ξ) −An‖ ≤ ‖h′(ξ) − h′(x̄ + tnzn)‖ + ‖h′(x̄ + tnzn) −An‖
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and ‖x̄+ tnzn−ξ‖ ≤ max{‖x̄+ tnzn−x′‖, ‖x̄+ tnzn−x‖} condition (3.4) follows with
ϕ′
n := t−1

n (2 sup{‖h′(x̄) + h′′(x̄)(η − x̄) − h′(η)‖ : η ∈ x̄ + tn(zn + R′BX)} + ‖h′(x̄ +
tnzn) − An‖) = o(1) and γ′ = ‖h′′(x̄)‖. Similarly, when h′(·) is Lipschitz continuous
in x̄+ ρBX , condition (3.4) holds with ϕ′

n := t−1
n ‖h′(x̄+ tnzn)−An‖ = o(1) and with

γ′ being the Lipschitz constant of h′(·). Thus the lemma is proved.
Note that a sequence (An) ⊂ L(X,Y ) satisfying (3.2) can also exist if h is not

continuously differentiable. For instance, consider a twice continuously differentiable
function Ψ : R → R with Ψ(t) = o(t2) for t → 0, let ỹ ∈ Y be arbitrarily chosen,
and set h(x) := Ψ(‖x− x̄‖)ỹ. Then it is easy to show that condition (3.2) holds with
An = 0 for all n, but in general h(·) will be only continuously differentiable provided
‖ · −x̄‖2 is.

In addition, this example together with the second part of Theorem 2.2 shows that
the conclusion of Theorem 3.1 automatically holds at a point x̄ which is nondegenerate
for the problem (P) and where condition (2.1) is satisfied. On the other hand, when x̄
is degenerate for the problem (P) (i.e., int (h′(x̄)X −C) = ∅), then, as a consequence
of Theorem 2.4, the necessary condition (2.1) is automatically satisfied regardless of
whether the point x̄ is a local weak minimizer for the problem (P) or not. However,
as we will see, condition (3.3) of Theorem 3.1 may fail for nonoptimal points x̄. We
will present corresponding examples in sections 4 and 5.

Further note that sequences (zn), (tn), (τn) satisfying the assumption (3.1) exist
if and only if condition (2.2) does not hold, or, equivalently, x̄ is not an essential
local minimizer of second order. Thus the necessary condition (3.3) reduces the gap
between the necessary and sufficient conditions of Theorem 3.1 in the degenerate case.

4. Second-order necessary conditions for certain directions. We will now
analyze Theorem 3.1 for the special case of convergent sequences (zn) → z, and we
will rewrite condition (3.3) in terms of first- and second-order derivatives of h and
first- and second-order approximation sets for the convex set C. Since we deal with
rather general sets C, there is an inherent nonsmoothness when building second-order
approximation sets. Hence it seems to be quite natural to assume a similar amount
of smoothness on h only.

Definition 4.1. Let E,F be normed spaces and let an element z ∈ E be given.
1. Let k : E → F be a mapping and let ē ∈ E so that k is differentiable at ē.

We define the following second-order one-sided directional derivative to k at ē with
respect to z as

k′′(ē; z) :=

{
f ∈ F : ∃(tn) ∈ T such that f = lim

n→∞

k(ē + tnz) − k(ē) − tnk
′(ē)z

t2n/2

}
.

Further, for given �t = (tn) ∈ T we write

k′′�t (ē; z) := lim
n→∞

k(ē + tnz) − k(ē) − tnk
′(ē)z

t2n/2
,

when the limit on the right-hand side exists.
2. Let S be a subset of F , let A ∈ L(E,F ) be a continuous linear operator, and

let f̄ ∈ S. Then for z ∈ E the second-order compound tangent set to S at (f̄ , z) (with
respect to A) and a sequence �t = (tn) ∈ T is the set

S′′
A,�t

(f̄ ; z) :=

{
w ∈ Y : ∃(zn) → z such that d

(
f̄ + tnAzn +

t2n
2
w, S

)
= o(t2n)

}
.
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We also define

S′′
A(f̄ , z) :=

⋃
�t∈T

S′′
A,�t

(f̄ ; z),

which corresponds to the second-order compound tangent set introduced in [28] and
which played a crucial role in [15].

In order to have C ′′
h′(x̄),�t

(h(x̄); z) �= ∅ it must necessarily hold that

d(h(x̄) + tnh
′(x̄)z, C) = d(h(x̄) + tnh

′(x̄)zn, C) + o(tn) = O(t2n) + o(tn) = o(tn)

for some sequence (zn) → z, implying h′(x̄)z ∈ TC(h(x̄)), i.e., z belongs to the so-
called critical cone C(x̄) defined by

C(x̄) := {z ∈ X : h′(x̄)z ∈ TC(h(x̄))}.

Lemma 4.2. For any element z ∈ C(x̄) and any sequence �t = (tn) ∈ T with
C ′′

h′(x̄),�t
(h(x̄); z) �= ∅, the inclusions

cl (C ′′
h′(x̄),�t

(h(x̄); z)+TC(h(x̄))+Imh′(x̄)) ⊂ C ′′
h′(x̄),�t

(h(x̄); z) ⊂ cl (TC(h(x̄))+Imh′(x̄))

hold. Moreover, C ′′
h′(x̄),�t

(h(x̄); z) is a closed convex set.

Proof. The fact that C ′′
h′(x̄),�t

(h(x̄); z) is a closed convex set follows easily from the

definition. To show the inclusions let y ∈ C ′′
h′(x̄),�t

(h(x̄); z) be arbitrarily fixed. By the

definition we can find sequences (zn) → z and (yn) → y such that h(x̄) + tnh
′(x̄)zn +

1
2 t

2
nyn ∈ C for each n and yn ∈ 2t−2

n (C−h(x̄))+h′(x̄)(−t−1
n zn) ⊂ TC(h(x̄))+Imh′(x̄)

follows. Hence y ∈ cl (TC(h(x̄)) + Imh′(x̄)). Now consider arbitrary elements w ∈
TC(h(x̄)) and v = h′(x̄)s ∈ Imh′(x̄). Then we can find a convergent sequence (wn) →
w such that h(x̄) + tnwn ∈ C for all n. For all n sufficiently large we have tn < 2 and
by using the convexity of C we conclude

tn
2

(h(x̄) + tnwn) +

(
1 − tn

2

)(
h(x̄) + tnh

′(x̄)zn +
1

2
t2nyn

)

= h(x̄) + tnh
′(x̄)

(
zn − tn

2
(zn + s)

)
+

t2n
2

(yn + wn + v) ∈ C.

Since the sequence (zn − tn
2 (zn + s)) converges to z we obtain y + w + v = limn yn +

wn + v ∈ C ′′
h′(x̄),�t

(h(x̄); z), and since C ′′
h′(x̄),�t

(h(x̄); z) is closed, the proposed inclusion

follows.
Lemma 4.3. Suppose Assumption 1 is satisfied. Let (zn) → z be a convergent

sequence in X and let �t = (tn) ∈ T, such that h′′
�t
(x̄; z) exists. Then

h′′
�t
(x̄; z) = lim

n→∞

h(x̄ + tnzn) − h(x̄) − tnh
′(x̄)zn

t2n/2

also holds. Moreover, there exists a sequence τn → 0 such that (3.1) holds if and only
if h′′

�t
(x̄; z) ∈ C ′′

h′(x̄),�t
(h(x̄); z).

Proof. Using Assumption 1, the first assertion follows immediately from the
estimate

‖h(x̄ + tnzn) − h(x̄ + tnz) − tnh
′(x̄)(zn − z)‖ ≤ ηt2n max{‖zn‖, ‖z‖}‖zn − z‖ = o(t2n).
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Now assume h′′
�t
(x̄; z) ∈ C ′′

h′(x̄),�t
(h(x̄); z). By the definition, there exists a sequence

(z′n) → z such that d(h(x̄) + tnh
′(x̄)z′n + (t2n/2)h′′

�t
(x̄; z), C) = o(t2n). Hence,

d(h(x̄ + tnzn) + tnh
′(x̄)(z′n − zn), C)

= d

(
h(x̄) + tnh

′(x̄)zn +
t2n
2
h′′
�t
(x̄; z) + tnh

′(x̄)(z′n − zn), C

)
+ o(t2n) = o(t2n)

and (3.1) follows from Theorem 2.4 with τn = ‖z′n − zn‖. Now let (τn) ∈ T be a
sequence such that (3.1) holds. Then, as in the proof of Theorem 3.1, we can find
some sequence (z′n) → z with z′n = zn + τntnδzn, δzn ∈ BX , such that

d(h(x̄ + tnz
′
n), C) = d

(
h(x̄) + tnh

′(x̄)z′n +
t2n
2
h′′
�t
(x̄; z), C

)
+ o(tn)2 = o(t2n),

showing h′′
�t
(x̄; z) ∈ C ′′

h′(x̄),�t
(h(x̄); z).

The second-order derivative h′′
�t
(x̄; z) is useful for building second-order approx-

imations of h in the direction z. But we also need another type of second-order
derivatives, namely, in the sense of first-order approximations of first derivatives. We
know from the discussion following Theorem 3.1 that if h is sufficiently smooth near
x̄, then for given sequences (zn) ⊂ SX and (tn) ∈ T a sequence of linear operators
(An) ⊂ L(X,Y ) satisfies condition (3.2) if and only if An = h′(x̄+ tnzn)+o(tn) holds.
We use condition (3.2) to define this other type of second-order derivative without
assuming existence of h′(·) near x̄.

Lemma 4.4. Let E,F be normed spaces, let k : E → F be a mapping, and
let ē ∈ E such that k is differentiable at ē. Further let an element z ∈ E and a
sequence (tn) ∈ T be given. Then there exists at most one continuous linear operator
K ∈ L(E,F ) such that, together with some positive scalars γ̃, R̃ and some sequence
(ϕ̃n) ∈ T, one has

‖k(e′) − k(e) − (k′(ē) + tnK)(e′ − e)‖
≤
(
ϕ̃ntn + γ̃ max{‖ē + tnz − e′‖, ‖ē + tnz − e‖}

)
‖e′ − e‖(4.1)

for all e, e′ ∈ ē + tn(z + R̃BE) and all n.
Proof. We prove the lemma by contraposition. Assume that there exist two

continuous linear operators K1 �= K2 satisfying (4.1) with parameters γ̃1, R̃1, (ϕ̃1n)
and γ̃2, R̃2, (ϕ̃2n), respectively. Set γ̃ := max{γ̃1, γ̃2}, ϕ̃n := max{ϕ̃1n, ϕ̃2n} for all n,
and R̃ = min{R̃1, R̃2}. By the triangle inequality we obtain

‖tn(K1 −K2)(e
′ − e)‖ ≤ ‖k(e′) − k(e) − (k′(ē) + tnK1)(e

′ − e)‖
+ ‖k(e′) − k(e) − (k′(ē) + tnK2)(e

′ − e)‖
≤ 2
(
ϕ̃ntn + γ̃ max{‖ē + tnz − e′‖, ‖ē + tnz − e‖}

)
‖e′ − e‖

for all e, e′ ∈ ē+tn(z+R̃BE) and all n. Let d ∈ E denote a direction with (K1−K2)d �=
0 and ‖d‖ ≤ R′. Applying the above estimate successively with e = ē+tnz, e

′ = e+ tn
n d

for each n we obtain∥∥∥∥tn(K1 −K2)
tn
n
d

∥∥∥∥ ≤ 2

(
ϕ̃ntn + γ̃

∥∥∥∥ tnn d

∥∥∥∥
)∥∥∥∥ tnn d

∥∥∥∥ = 2
t2n
n

(
ϕ̃n +

γ̃‖d‖
n

)
‖d‖.

Dividing by
t2n
n and passing to the limit yields ‖(K1−K2)d‖ ≤ 0, a contradiction.
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Definition 4.5. Under the assumptions of Lemma 4.4, if the unique continuous
linear operator K ∈ L(E,F ) satisfying condition (4.1) exists, we will denote it by
(k′)

′
�t(ē; z).
If k is differentiable near ē, then ‖k′(ē + tnz) − (k′(ē) + tn(k′)

′
�t(ē; z))‖ = o(tn)

follows easily from condition (4.1). Thus, (k′)
′
�t(ē; z) is an element of the so-called

contingent derivative, also called graphical derivative or Bouligand derivative (see,
e.g., [24]), which in our case is given by

Ck′(ē)z :=

{
K ∈ L(E,F ) : ∃(tn) ∈ T, zn → z with K = lim

n→∞

k′(ē + tnzn) − k′(ē)

tn

}
.

If k′(·) is Lipschitz continuous near ē, using arguments similar to those in Lemma 3.2
we can conclude that ⋃

�t∈T

(k′)
′
�t(ē; z) = Ck′(ē)z,

and if k is twice Fréchet differentiable at ē, then (k′)
′
�t(ē; z) = k′′(ē)z for all �t ∈ T

holds.
In general, when k is not twice differentiable at ē, we can have (k′)

′
�t(ē; z)z �=

k′′�t (ē; z). However, (k′)
′
�t(ē; z) acts like a derivative for the mapping 1

2k
′′
�t
(ē; ·) at z for

given �t ∈ T. Indeed, from condition (4.1) the estimate∥∥∥∥1

2
k′′�t (ē; s) − 1

2
k′′�t (ē; z) − (k′)

′
�t(ē; z)(s− z)

∥∥∥∥ ≤ γ̃‖s− z‖2,

being valid for all s ∈ z + R̃BX such that k′′�t (ē; s) exists, easily follows.

When (h′)′�t(x̄; z) exists for some z ∈ X, �t ∈ T, then it is easy to see that for any
convergent sequence (zn) → z condition (3.2) holds with An = h′(x̄) + tn(h′)′�t(x̄; z),

ϕ′
n = ϕ̃n + γ̃‖zn − z‖, γ′ = γ̃, R′ = R̃/2 for all n sufficiently large, such that

‖zn − z‖ ≤ R̃/2.
We are now in a position to state the main result of this section. We state this

result under the following technical assumption, which will be analyzed separately.
Assumption 2. Each sequence (y∗n) ⊂ SY ∗ with

lim
n→∞

t−1
n (〈y∗n, h(x̄)〉 − σC(y∗n)) = lim

n→∞
t−1
n ‖(h′(x̄) + tn(h′)′�t(x̄; z))∗y∗n‖ = 0(4.2)

has at least one weak-∗ accumulation point which is not equal to 0.
Theorem 4.6. Suppose that x̄ is a local weak minimizer for problem (P), that

Assumption 1 holds, and that we are given an element z ∈ C(x̄) ∩ SX and a sequence
(tn) = �t ∈ T such that the second-order directional derivatives h′′

�t
(x̄; z) and (h′)′�t(x̄; z)

exist, the inclusion h′′
�t
(x̄; z) ∈ C ′′

h′(x̄),�t
(h(x̄); z) holds, and Assumption 2 is satisfied.

Then there exist a multiplier ȳ∗ ∈ ΛFJ and an element μ̄∗ ∈ (Kerh′(x̄))⊥ such that

(h′)′�t(x̄; z)∗ȳ∗ + μ̄∗ = 0,(4.3)

and for each pair (s, y) with s ∈ C(x̄) and y ∈ C ′′
h′(x̄),�t

(h(x̄); s) one has

〈μ̄∗, z − s〉 +
1

2
〈ȳ∗, h′′

�t
(x̄; z) − y〉 ≥ 0.(4.4)
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Proof. From the preceding discussion we know that the assumptions of Theorem
3.1 hold with zn := z, An := h′(x̄) + tn(h′)′�t(x̄; z), and some sequence (τn) ∈ T given
by Lemma 4.3. Hence, applying Theorem 3.1 with T = 1 we have

lim inf
n→∞

sup
y∗∈SY ∗

{
〈y∗, h(x̄ + tnz)〉 − σC(y∗)

t2n
− 1

tn
‖(h′(x̄) + tn(h′)′�t(x̄; z))∗y∗‖

}
≥ 0.

Now, for each n we can find some y∗n ∈ SY ∗ approaching the supremum sufficiently
accurate, such that

lim inf
n→∞

{
〈y∗n, h(x̄ + tnz)〉 − σC(y∗n)

t2n
− 1

tn
‖(h′(x̄) + tn(h′)′�t(x̄; z))∗y∗n‖

}
≥ 0.

Since lim supn→∞ t−2
n d̂C(h(x̄ + tnz), h

′(x̄), τntn) ≤ 0 we also have

0 ≥ lim sup
n→∞

sup
y∗∈SY ∗

{
〈y∗, h(x̄ + tnz)〉 − σC(y∗)

t2n
− τn

tn
‖(h′(x̄)∗y∗‖

}

= lim sup
n→∞

sup
y∗∈SY ∗

{
〈y∗, h(x̄ + tnz)〉 − σC(y∗)

t2n
− τn

tn
‖h′(x̄)∗y∗‖ + τn‖(h′)′�t(x̄; z)

∗
y∗‖
}

≥ lim sup
n→∞

sup
y∗∈SY ∗

{
〈y∗, h(x̄ + tnz)〉 − σC(y∗)

t2n
− τn

tn
‖(h′(x̄) + tn(h′)′�t(x̄; z))∗y∗‖

}

and limn→∞ t−1
n ‖(h′(x̄) + tn(h′)′�t(x̄; z))∗y∗n‖ = 0 follows. In particular we obtain

μ∗
n :=

h′(x̄)∗y∗n
tn

= O(1),(4.5)

lim
n→∞

t−1
n (h′(x̄) + tn(h′)′�t(x̄; z))∗y∗n = lim

n→∞
(h′)′�t(x̄; z)∗y∗n + μ∗

n = 0,(4.6)

lim inf
n→∞

〈y∗n, h(x̄ + tnz)〉 − σC(y∗n)

t2n
≥ 0.(4.7)

Because of (4.7) and the relation h(x̄ + tnz) = h(x̄) + tnh
′(x̄)z +

t2n
2 h′′

�t
(x̄; z) + o(t2n)

we have

lim inf
n→∞

{
〈y∗n, h(x̄)〉 − σC(y∗n)

t2n
+

〈y∗n, h′(x̄)z〉
tn

+
1

2
〈y∗n, h′′

�t
(x̄; z)〉

}
≥ 0.

Together with 〈y∗n, h′(x̄)z〉 = tn〈μ∗
n, z〉 = O(tn) and 〈y∗n, h(x̄)〉−σC(y∗n) ≤ 0 we obtain

σC(y∗n) − 〈y∗n, h(x̄)〉 = O(t2n).(4.8)

Together with (4.6) we may conclude from Assumption 2 that the sequence (y∗n)
has a nonzero accumulation point ỹ∗. Then there exists some element ỹ ∈ Y with
〈ỹ∗, ỹ〉 = 1, and we can choose a subsequence (y∗kn

) such that 〈y∗kn
, ỹ〉 → 1. (y∗kn

, μ∗
kn

)
is a bounded sequence in Y ∗×X∗ = (Y ×X)∗ and by the Alaoglu–Bourbaki theorem
at least one weak-∗ accumulation point, say (ȳ∗, μ̄∗), exists. Of course, ȳ∗ is also a
weak-∗ accumulation point of the sequence (y∗kn

). Hence 〈ȳ∗, ỹ〉 = 1, implying ȳ∗ �= 0.
Note that (ȳ∗, μ̄∗) is also a weak-∗ accumulation point of the entire sequence (y∗n, μ

∗
n).

Since μ∗
n ∈ Imh′(x̄)∗ ⊂ (Kerh′(x̄))⊥ and the annihilator (Kerh′(x̄))⊥ is weakly-∗

closed in X∗, we have μ̄∗ ∈ (Kerh′(x̄))⊥. Further, (4.3) follows easily from (4.6).
Now let us show ȳ∗ ∈ ΛFJ . Since σC(·) − 〈·, h(x̄)〉 is weakly-∗ lower semicontin-

uous, we obtain σC(ȳ∗) − 〈ȳ∗, h(x̄)〉 ≤ 0 from condition (4.8). Because of h(x̄) ∈ C
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we also have σC(ȳ∗) − 〈ȳ∗, h(x̄)〉 ≥ 0, showing ȳ∗ ∈ NC(h(x̄)). From condition (4.5)
it follows that h′(x̄)y∗n → 0 and, consequently, h′(x̄)∗ȳ∗ = 0. Hence ȳ∗ ∈ ΛFJ .
It remains to show that (4.4) holds. Let the pair (s, y) ∈ C(x̄) × C ′′

h′(x̄),�t
(h(x̄); s)

be arbitrarily fixed. Then by the definitions of the support function σC and the
set C ′′

h′(x̄),�t
(h(x̄); s) we have σC(y∗n) ≥ 〈y∗n, h(x̄) + tnh

′(x̄)sn +
t2n
2 y〉 + o(t2n) for some

sequence (sn) → s. Together with condition (4.7) and the second-order expansion
for h(x̄ + tnz) it follows that

0 ≤ lim inf
n→∞

〈y∗n, h(x̄) + tnh
′(x̄)z +

t2n
2 h′′

�t
(x̄; z)〉 − 〈y∗n, h(x̄) + tnh

′(x̄)sn +
t2n
2 y〉

t2n

= lim inf
n→∞

{
〈μ∗

n, z − sn〉 +
1

2
〈y∗n, h′′

�t
(x̄; z) − y〉

}
≤ 〈μ̄∗, z − s〉 +

1

2
〈ȳ∗, h′′

�t
(x̄; z) − y〉,

and this completes the proof.
Of course, Assumption 2 holds when Y is finite-dimensional. But there are also

other situations when this assumption holds.
Definition 4.7. Let E,F be Banach spaces, let S ⊂ F be a closed convex subset

of F , let k : E → F be a mapping, which is differentiable at ē ∈ E, with k(ē) ∈ S,
and let the multifunction Ψ : E ⇒ F be given by Ψ(e) := k(e) − S. Then k is said to
be 2-nondegenerate at the point ē in the direction z ∈ E with respect to the set C and
the sequence �t ∈ T if the following conditions are satisfied:

1. (k′)
′
�t(ē; z) exists.

2. The set k(ē) + k′(ē)E − S has nonempty relative interior.
3. The interior of the set KE − (S − k(Ē)) × {0} is nonempty in Q × F/Q,

where Q := aff (k(ē) + k′(ē)E − S) ⊂ F is the affine hull of the set k(ē) +
k′(ē)E − S, the continuous linear operator K : E → Q × F/Q is given by
Ks := (k′(ē)s, π(k′)

′
�t(ē; z)s), and π denotes the quotient map from F onto

the quotient space F/Q.
In what follows let Q denote the affine hull of the set h(x̄) + h′(x̄)X − C and let

π denote the quotient map from Y onto the quotient space Y/Q.
Theorem 4.8. Let the mapping h be 2-nondegenerate at x̄ in the direction z ∈ X

with respect to C and the sequence �t ∈ T. Then it is sufficient for Assumption 2 to
hold that either the quotient space Y/Q or the subspace Imh′(x̄) ∩ aff (C − h(x̄)) is
finite-dimensional.

Proof. Let (y∗n) ⊂ SY ∗ be a sequence satisfying condition (4.2). In order to
prove the theorem we have to show that at least one nonzero weak-∗ accumulation
point of the sequence (y∗n) exists. Since Q is a closed subspace of the Banach space
Y , the quotient space P := Y/Q and hence also Q × P are Banach spaces. Let
H : X → Q × P be the continuous linear operator according to Definition 4.7, i.e.,
Hs = (h′(x̄)s, π(h′)′�t(x̄; z)s) for all s. Now choose (q, p) ∈ Q×P , x ∈ X, and q̄ ∈ Ĉ :=
C − h(x̄) ⊂ Q such that (q, p) = Hx− (q̄, 0) ∈ int (HX − Ĉ × {0}). Application of
the generalized open mapping theorem (see [31, Theorem 1]) yields (q, p) ∈ int (H(x+
BX) − Ĉ × {0}) and it follows that

ρBQ×P ⊂ int ((q̄, 0) + HBX − Ĉ × {0})(4.9)

for some ρ > 0. Using Theorem 2.4 we obtain that

sup
(q∗,p∗)∈S(Q×P )∗

{
〈q∗, q̄〉 − σĈ(q∗) − ‖H∗(q∗, p∗)‖

}
≤ −ρ
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and therefore

〈q∗, q̄〉 − σĈ(q∗) − ‖H∗(q∗, p∗)‖ ≤ −ρ(‖q∗‖ + ‖p∗‖) ∀(q∗, p∗) ∈ Q∗ × P ∗.(4.10)

Now let the linear operators A ∈ L(X,Q) and B ∈ L(X,P ) be given by As = h′(x̄)s
and Bs = π(h′)′�t(x̄; z)s, respectively. Further let iQ : Q → Y denote the natural
embedding from Q into Y . Consequently, h′(x̄) = iQ ◦A. For each n, let q∗n := i∗Qy

∗
n ∈

Q∗ be the restriction of the linear functional y∗n to Q. By the Hahn–Banach theorem
we can extend the linear form q∗n ∈ Q∗ to a linear functional y∗Q,n over Y such that
‖y∗Q,n‖ = ‖q∗n‖. Setting y∗P,n := y∗n − y∗Q,n we have i∗Qy

∗
P,n = i∗Qy

∗
n − i∗Qy

∗
Q,n = 0, i.e.,

y∗P,n belongs to the annihilator Q⊥ := {y∗ ∈ Y ∗ : 〈y∗, y〉 = 0 for all y ∈ Q} of the
subspace Q ⊂ Y . The mapping π∗ : P ∗ → Y ∗ is isometric and allows us to identify
the dual space P ∗ = (Y/Q)∗ with Q⊥. For each n let p∗n ∈ P ∗ denote the linear
functional uniquely given by the relation π∗p∗n = y∗P,n. Finally, let ȳQ := iQq̄. Then
we have

〈y∗n, ȳQ〉 = 〈q∗n, q̄〉,(4.11)

σĈ(q∗n) = σiQ(Ĉ)(y
∗
n) = σC(y∗n) − 〈y∗n, h(x̄)〉,(4.12)

(h′(x̄)∗ + tn(h′)′�t(x̄; z))∗y∗n = A∗q∗n + tnB
∗p∗n + tn(h′)′�t(x̄; z)∗y∗Q,n(4.13)

= H∗(q∗n, tnp
∗
n) + tn(h′)′�t(x̄; z)∗y∗Q,n,

and (4.10) implies

〈y∗n, ȳQ〉 + 〈y∗n, h(x̄)〉 − σC(y∗n) − ‖(h′(x̄)∗ + tn(h′)′�t(x̄; z))∗y∗n‖
≤ −ρ(‖q∗n‖ + tn‖p∗n‖) + tn‖(h′)′�t(x̄; z̄)∗y∗Q,n‖.(4.14)

Now let us assume that lim supn→∞ ‖q∗n‖ > 0. By passing to a subsequence if nec-
essary we may also assume that lim infn→∞ ‖q∗n‖ = ε > 0. The sequence (y∗n) has
at least one weak-∗ accumulation point ȳ∗ by the Alaoglu–Bourbaki theorem. Since
tn → 0 and the sequence (y∗n) satisfies condition (4.2) we obtain from condition (4.14)
that 〈ȳ∗, ȳQ〉 ≤ −ρε < 0. Hence, ȳ∗ �= 0 and the theorem is proved in the case
lim supn→∞ ‖q∗n‖ > 0.

Now let us assume that lim supn→∞ ‖q∗n‖ = 0. If we denote by p̄∗ an arbi-
trary weak-∗ accumulation point of the sequence (p∗n), then ȳ∗ := π∗p̄∗ is a weak-∗
accumulation point both of the sequence (y∗P,n) and the sequence (y∗n), the latter be-
cause of ‖y∗Q,n‖ = ‖y∗n − y∗P,n‖ → 0. Further, ȳ∗ �= 0 if and only if p̄∗ �= 0. Since
‖y∗P,n‖ = ‖p∗n‖ → 1, the assertion of the theorem now follows immediately in the case
that P and hence also P ∗ are finite-dimensional spaces.

It remains to prove the theorem in the case in which the subspace W := Imh′(x̄)∩
aff (C − h(x̄)) is finite-dimensional. To do this we will first show the inclusion

ρBQ×P ⊂ (q̄, 0) +

(
A

t
,B

)
BX −

(
Ĉ +

ρ + ‖A‖
t

BW

)
× {0} ∀t ∈

]
0,

ρ

‖A‖

[
.

(4.15)

Let the element (q, p) ∈ ρBQ×P and the scalar t ∈ ]0, ‖A‖−1ρ[ be arbitrarily fixed. We

observe that condition (4.9) together with q̄ ∈ Ĉ implies γρBQ×P ⊂ (q̄, 0) + γHBX −
Ĉ × {0} for all γ ∈ ]0, 1]. Hence we can find some x1 ∈ ρ−1‖(p, q)‖BX and some
c1 ∈ Ĉ such that (q, p) = (q̄ + Ax1 − c1, Bx1). We have ‖t(q − q̄ + c1)‖ = ‖tAx1‖ ≤
t‖A‖‖x1‖ ≤ ‖(q, p)‖, and ‖(t(q− q̄+c1), p)‖ = max{‖t(q− q̄+c1)‖, ‖p‖} ≤ ‖(q, p)‖ ≤ ρ
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follows. Consequently, we can find some x2 ∈ ρ−1‖(p, q)‖BX and some c2 ∈ Ĉ with
(t(q − q̄ + c1), p) = (q̄ + Ax2 − c2, Bx2). Thus

(q, p) =

(
q̄ +

q̄ − c2
t

+
1

t
Ax2 − c1, Bx2

)

and q̄ − c2 = A(tx1 − x2) ∈ W . Moreover, we have

‖q̄ − c2‖ ≤ t‖Ax1‖ + ‖A‖‖x2‖ ≤ ‖(p, q)‖
(

1 +
‖A‖
ρ

)
≤ ρ + ‖A‖.

Therefore, (p, q) ∈ (q̄, 0) − (Ĉ + t−1(ρ + ‖A‖)BW ) × {0} + (t−1A,B)BX and, since
(p, q) ∈ ρBQ×P has been chosen arbitrarily, the inclusion (4.15) follows. Now, by
Theorem 2.4 we obtain

sup
(q∗,p∗)∈S∗

Q×P

{
〈q∗, q̄〉 − σĈ(q∗) − (ρ + ‖A‖)σBW

(q∗)

t
−
∥∥∥∥A∗ q

∗

t
+ B∗p∗

∥∥∥∥
}

≤ −ρ.

Consequently, for all n sufficiently large such that tn‖A‖ < ρ we have

〈q∗n, q̄〉 − σĈ(q∗n) − (ρ + ‖A‖)σBW
(q∗n)

tn
−
∥∥∥∥A∗ q

∗
n

tn
+ B∗p∗n

∥∥∥∥ ≤ −ρ(‖q∗n‖ + ‖pn‖∗).

Taking into account conditions (4.2), (4.11)–(4.13), and ‖q∗n‖ = ‖y∗Q,n‖ → 0 we obtain

lim
n→∞

〈q∗n, q̄〉 = 0, lim
n→∞

σĈ(q∗n) = 0, lim
n→∞

∥∥∥∥A∗ q
∗
n

tn
+ B∗p∗n

∥∥∥∥ = 0.

Since we also have ‖p∗n‖ → 1,

lim inf
n→∞

σBW
(q∗n)

tn
≥ ρ

ρ + ‖A‖

follows. Now, if W is finite-dimensional, and extracting if necessary a subsequence,
there exists some x̃ ∈ X such that w̄ := Ax̃ ∈ BW satisfies

〈q∗n, w̄〉/tn ≥ ρ

2(ρ + ‖A‖) := ρ̃ > 0

for all n. Let p̄ denote an arbitrary weak-∗ accumulation point of the sequence (p∗n).
Extracting if necessary a subsequence, we have

〈p̄∗, Bx̃〉 = lim
n→∞

〈p∗n, Bx̃〉 = lim
n→∞

〈B∗p∗n, x̃〉 = − lim
n→∞

〈
A∗ q

∗
n

tn
, x̃

〉

= − lim
n→∞

〈
q∗n
tn

, w̄

〉
≤ −ρ̃,

and p̄∗ �= 0 follows. Then ȳ∗ = π∗p̄∗ is a nonzero weak-∗ accumulation point of the
sequence (y∗n), and this completes the proof.

Let us discuss the assumptions of Theorem 4.8 in further detail. In our case, the
set C has the form (−L) × K with intL �= ∅, and so the assumption that h(·) is 2-
nondegenerate in direction z with respect to C and �t can be reduced to an assumption
on the constraints, namely, that g(·) is 2-nondegenerate in direction z with respect to
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K and �t. To be a little bit more general, let us consider the case when the Banach
space Y and the set C can be decomposed in the form C = C1 × C2 ⊂ Y1 × Y2 = Y
with intC1 �= ∅. Similarly, we denote by h1, h2, respectively, (h′

1)
′
�t(x̄; z), (h′

2)
′
�t(x̄; z),

the components of h, respectively, (h′)′�t(x̄; z). Then there holds Q = Y1 × Q2 with
Q2 = aff (h2(x̄)+h′

2(x̄)X−C2), and it follows that h(·) is 2-nondegenerate in direction
z and with respect to C and �t if and only if h2(·) is of such a kind with respect to C2.

Finally let us mention that the remaining assumption of Theorem 4.8, i.e., that ei-
ther the quotient space Y/Q or the space Imh′(x̄)∩aff (C−h(x̄)) is finite-dimensional,
is satisfied in a variety of cases, e.g., when X or Y is finite-dimensional, or in the case
of the scalar mathematical programming problem. Further, we know a lot of special
cases where this assumption can be replaced, but we do not want to go down to the
last detail here.

Example 4.1. Consider the problem

min
x∈R2

f(x) := x1 − x2
2

subject to g(x) :=

⎛
⎝ x1 − 1

4x
2
2

x1x2

x1 + 1
2x

2
2 + ψ(x2)

⎞
⎠ ∈ K,

where K := {(v1, v2, v1 + v2) : v1 ≥ |v2|
3
2 } and

ψ(ξ) :=

{
ξ2 sin(ln |ξ|), ξ �= 0,
0, ξ = 0.

Note that ψ is not twice differentiable at 0; however, Assumption 1 is fulfilled. We
show now that x̄ := (0, 0) is not a local minimizer of this problem.

Define the set C := {(c0, c1, c2, c3) : c0 ≤ 0, (c1, c2, c3) ∈ K} and the mapping h :=
(f−f(x̄), g) according to (1.5). The set ΛFJ consists of all multipliers y∗0 , y

∗
1 , y

∗
2 , y

∗
3 , y

∗
4 ,

not all 0, such that

y∗0 + y∗1 + y∗3 = 0, y∗0 ≥ 0, y∗1 + y∗3 ≤ 0, y∗2 + y∗3 = 0.(4.16)

Now let z := (0, 1). Then we have h′(x̄)z = 0, implying z ∈ C(x̄), and for any sequence
�t ∈ T the set C ′′

h′(x̄),�t
(h(x̄); z) is formed by limits of sequences (yn0 , y

n
1 , y

n
2 , y

n
3 ) such

that

tnz
n
1 +

t2n
2
yn0 ≤ 0,

tnz
n
1 +

t2n
2
yn1 ≥

∣∣∣∣ t2n2 yn2

∣∣∣∣
3
2

,

tnz
n
1 +

t2n
2
yn3 = tnz

n
1 +

t2n
2

(yn1 + yn2 )

hold for some sequence (zn1 , z
n
2 ) → z. It follows that

C ′′
h′(x̄),�t

(h(x̄); z) = {(y0, y1, y2, y3) : y0 ≤ y1, y3 = y1 + y2}.

Now for α ∈ [0, 2π] define the sequence �tα ∈ T by tαn := e−2nπ+α for all n. Then some
straightforward calculations give

h′′
�tα

(x̄; z) =

⎛
⎜⎜⎝

−2
− 1

2
0

1 + 2 sinα

⎞
⎟⎟⎠ , (h′)′�tα(x̄; z) =

⎛
⎜⎜⎝

0 −2
0 − 1

2
1 0
0 1 + 2 sinα + cosα

⎞
⎟⎟⎠ ,
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and by taking α = − arcsin 3
4 we obtain h′′

�tα
(x̄; z) ∈ C ′′

h′(x̄),�tα
(h(x̄); z). Since Y is finite-

dimensional, Assumption 2 holds, and hence we can apply Theorem 4.6. Assuming
x̄ to be a locally optimal solution, there exist multipliers y∗ ∈ ΛFJ ∩ SY ∗ and μ∗ ∈
Ker (h′(x̄))⊥ = {(μ1, 0) : μ1 ∈ R} such that conditions (4.3) and (4.4) with s = z
and y = 0 are fulfilled:

(h′)′�tα(x̄; z)∗y∗ + μ∗ =

(
y∗2 + μ1

−2y∗0 − 1
2y

∗
1 + y∗3(1 + 2 sinα + cosα)

)
= 0,

0 +
1

2
〈y∗, h′′

�tα
(x̄; z) − 0〉 =

1

2

(
−2y∗0 − 1

2
y∗1 + (1 + 2 sinα)y∗3

)
≥ 0.

However, these conditions, together with condition (4.16), are fulfilled only for y∗0 =
y∗1 = y∗2 = y∗3 = μ∗

1 = 0, contradicting y∗ ∈ SY ∗ . Hence, x̄ is not a local minimizer.

5. Second-order necessary conditions for the scalar mathematical pro-
gramming problem. We consider here the results of the preceding section for the
special case of the scalar mathematical programming problem

min f(x)

s.t. gi(x) ≤ 0, i = 1, . . . ,m,(MP)

G(x) = 0,

where f : X → R, gi : X → R for i = 1, . . . ,m, G : X → V̂ , and X and V̂ are Banach
spaces. Then Y = R × R

m × V̂ and for a given feasible point x̄ the mapping h and
the set C according to (1.5) are given by h(x) = (f(x)− f(x̄), g1(x), . . . , gm(x), G(x))
and C = R− ×R

m
− ×{0}. We will assume throughout this section that Assumption 1

holds. The set of multipliers ΛFJ satisfying the first-order conditions of Fritz–John
type consists of all multipliers (α, λ, v∗) ∈ R × R

m × V̂ ∗, such that

L′
x(x̄, α, λ, v∗) = 0,

α ≥ 0,

λi ≥ 0, λigi(x̄) = 0, i = 1, . . . ,m,

(α, λ, v∗) �= (0, 0, 0),

where the generalized Lagrangian L is given in the usual way by L(x, α, λ, v∗) :=
αf(x) +

∑m
i=1 λigi(x) + 〈v∗, G(x)〉 and L′

x is the partial derivative of the Lagrangian
with respect to x. For partial second-order directional derivatives of the Lagrangian
with respect to the first variable we use the following notation:

L′′
x�t(x̄, α, λ, v

∗; z) := αf ′′
�t
(x̄; z) +

m∑
i=1

λigi
′′
�t
(x̄; z) + 〈v∗, G′′

�t
(x̄; z)〉,

(L′
x)′�t(x̄, α, λ, v

∗; z) := α(f ′)
′
�t(x̄; z) +

m∑
i=1

λi(g
′
i)

′
�t(x̄; z) + (G′)

′
�t(x̄; z)

∗
v∗.

Note that the multipliers (α, λ, v∗) form a linear functional y∗ ∈ Y ∗, and we have
L′
x(x̄, α, λ, v∗) = h′(x̄)∗y∗, L′′

x�t(x̄, α, λ, v
∗; z) = h′′

�t
(x̄; z) and (L′

x)′�t(x̄, α, λ, v
∗; z) =

(h′)′�t(x̄; z)
∗
y∗.

In the case of the mathematical programming problem the second-order com-
pound tangent sets have the property that

0 ∈ C ′′
h′(x̄),�t

(h(x̄); s) ∀s ∈ C(x̄),�t ∈ T.(5.1)
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This follows easily from the definition and the observation that for arbitrary s ∈ C(x̄)
and �t ∈ T we have h(x̄)+ tns ∈ C for all n sufficiently large. Condition (5.1) together
with Lemma 4.2 implies

C ′′
h′(x̄),�t

(h(x̄); s) = cl
(
TC(h(x̄)) + Imh′(x̄)

)
.

Hence, C ′′
h′(x̄),�t

(h(x̄); s) does not depend on the choice of the direction s ∈ C(x̄) and

the sequence �t ∈ T. Moreover, C ′′
h′(x̄),�t

(h(x̄); s) is a cone and its polar cone can be
written as

C ′′
h′(x̄),�t

(h(x̄); s)◦ = NC(h(x̄)) ∩ (Imh′(x̄))⊥ = ΛFJ ∪ {0}.

It follows that y ∈ C ′′
h′(x̄),�t

(h(x̄); s) holds if and only if one has 〈y∗, y〉 ≤ 0 for each
y∗ ∈ ΛFJ .

In a next step, for fixed z ∈ C(x̄) ∩ SX and �t ∈ T with h′′
�t
(x̄; z) ∈ C ′′

h′(x̄),�t
(h(x̄); z)

we will analyze the conclusions (4.3) and (4.4) of Theorem 4.6 under condition (5.1).
Using condition (4.4) with s = z and y = 0 yields, together with the above character-
ization for h′′

�t
(x̄; z) ∈ C ′′

h′(x̄),�t
(h(x̄); z),

〈ȳ∗, h′′
�t
(x̄; z)〉 = max

y∗∈ΛFJ

〈y∗, h′′
�t
(x̄; z)〉 = 0.

Since h′′
�t
(x̄; z) ∈ C ′′

h′(x̄),�t
(h(x̄); z) implies h′′

�t
(x̄; z) ∈ C ′′

h′(x̄),�t
(h(x̄); s) for all s ∈ C(x̄)

we obtain 〈μ̄∗, z − s〉 ≥ 0 for all s ∈ C(x̄). Thus μ̄∗ ∈ NC(x̄)(z) or, equivalently, since
C(x̄) is a cone, μ̄∗ ∈ {μ∗ ∈ C(x̄)◦ : 〈μ∗, z〉 = 0}, where C(x̄)◦ denotes the polar cone
of the critical cone C(x̄). Now in the case of (MP) the critical cone is given by

C(x̄) =

⎧⎨
⎩z ∈ X :

〈f ′(x̄), z〉 ≤ 0,
〈g′i(x̄), z〉 ≤ 0 ∀i ∈ Ī ,
G′(x̄)z = 0

⎫⎬
⎭ ,

where Ī := {i ∈ {1, . . . ,m} : gi(x) = 0} denotes the index set of active inequality
constraints. If ImG′(x̄) is closed, then by the generalized Farkas lemma (see, e.g.,
[10, Proposition 2.201]) the polar cone C(x̄)◦ is given by the formula

C(x̄)◦ =

⎧⎨
⎩αf ′(x) +

∑
i∈Ī

λig
′
i(x)∗ + G′(x̄)∗v∗ : α ≥ 0, λi ≥ 0, i ∈ Ī , v∗ ∈ V̂ ∗

⎫⎬
⎭ .

Hence, μ̄∗ ∈ {μ∗ ∈ C(x̄)◦ : 〈μ∗, z〉 = 0} has the following representation:

μ̄∗ = α̃f ′(x) +

m∑
i=1

λ̃ig
′
i(x) + G′(x̄)∗ṽ∗,

where α̃ ≥ 0, λ̃i ≥ 0, λ̃igi(x̄) = 0, i = 1, . . . ,m, and ṽ∗ ∈ V̂ ∗ are such that α̃〈g′i(x̄), z〉+∑m
i=0 λ̃i〈g′i(x̄), z〉 + 〈ṽ∗, G′(x̄)z〉 = 0, or, equivalently, since z ∈ C(x̄),

α̃〈f ′(x̄), z〉 = 0, λ̃igi(x̄) = λ̃i〈g′i(x̄), z〉 = 0, i = 1, . . . ,m.

Next let us consider Assumption 2. It surely holds if the space V̂ ∗ is finite-
dimensional. In the case of infinite-dimensional V̂ let us examine the assumptions of
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Theorem 4.8. Note that aff (C−h(x̄)) = R×R
m×{0} is always finite-dimensional for

the problem (MP). From the discussion at the end of the preceding section we know
that to verify 2-nondegeneracy of h(·) with respect to C we only have to consider
the equality constraints G(x) = 0. It is straightforward to see that the mapping
G(·) is 2-nondegenerate in direction z with respect to {0} and the sequence �t ∈ T,
provided that (G′)

′
�t(x̄; z) exists if and only if ImG′(x̄) is closed in V̂ and the mapping

s → (G′(x̄)s, πG′′
�t
(x̄; z)s) carries X onto ImG′(x̄)× V̂ /ImG′(x̄), where π here denotes

the quotient mapping onto the quotient space V̂ /ImG′(x̄). For twice, respectively,
three times continuously differentiable mappings G this condition already appears
in a lot of papers on optimality conditions for problems with degenerate equality
constraints; see [4], [5], [25]. Further, in a slightly different version it is also known
as the property of 2-regularity of the mapping G (see [6], [33]). We refer also to [19],
where the theory of 2-regularity was applied to once differentiable mappings having
a locally Lipschitzian derivative.

We summarize these considerations in the following corollary.
Corollary 5.1. Let x̄ be a local minimizer for the mathematical programming

problem (MP) and let Assumption 1 hold. Then for each element z ∈ C(x̄) and
each sequence �t ∈ T such that the second-order directional derivatives h′′

�t
(x̄; z) and

(h′)′�t(x̄; z) exist, such that

sup
(α,λ,v̂∗)∈ΛFJ

L′′
x�t(x̄, α, λ, v

∗; z) ≤ 0,(5.2)

and such that either dim V̂ < ∞ or G(·) is 2-nondegenerate in direction z with respect
to {0} and (�t), there exist multipliers (α, λ, v∗) ∈ ΛFJ and (α̃, λ̃, ṽ∗) ∈ R+ ×R

m
+ × V̂ ∗

such that

L′′
x�t(x̄, α, λ, v

∗; z) = 0,(5.3)

(L′
x)′�t(x̄, α, λ, v

∗; z) + L′
x(x̄, α̃, λ̃, ṽ∗) = 0,(5.4)

λ̃igi(x̄) = λ̃i〈g′i(x̄), z〉 = 0, i = 1, . . . ,m,(5.5)

α̃〈f ′(x̄), z〉 = 0.(5.6)

Let us compare Corollary 5.1 with the standard second-order conditions (see, e.g.,
[16]) for (MP). For the sake of simplicity let us assume that f , gi, i = 1, . . . ,m, and
G are twice continuously differentiable at x̄ and that the range ImG′(x̄) is closed. If
ΛFJ �= ∅ and if there is some β > 0 such that

max
(α,λ,v∗)∈ΛFJ∩SY ∗

L′′
x(x̄, α, λ, v∗)(z, z) ≥ β

for all z ∈ C(x̄)∩SX , then x̄ is a strict local minimizer, and in fact one can show [15]
that this condition is also equivalent for x̄ to be an essential local minimizer of second
order. On the other hand, the standard second-order necessary conditions state that
at a local minimizer x̄ the set ΛFJ is not empty, and for each z ∈ C(x̄) there is some
multiplier (α, λ, v∗) ∈ ΛFJ ∩ SY ∗ such that

L′′
x(x̄, α, λ, v∗)(z, z) ≥ 0.

It is also well known that on one hand this necessary condition is equivalent to condi-
tion (2.1) for nondegenerate points x̄, i.e., when ImG′(x̄) = V̂ , and on the other hand
that it is always satisfied when x̄ is degenerate, whether x̄ is a local minimizer or not.
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Now, for degenerate points x̄ Corollary 5.1 states the additional necessary conditions
(5.4)–(5.6) for exactly those directions z ∈ C(x̄) ∩ SX , where the sufficient conditions
fail to hold, and thus reduces the gap between the standard necessary and sufficient
conditions for the mathematical programming problem (MP).

Now let us compare our work with Avakov’s results [4], [5]: For the sake of
simplicity we consider only the case when no inequality constraints are present, i.e.,
m = 0. Avakov shows, assuming that f is Fréchet differentiable at x̄ and G is
twice Fréchet differentiable at a local minimizer x̄ and the range ImG′(x̄) is closed,
the following “first-order” conditions hold: For each z ∈ X such that G′(x̄)z = 0,
G′′(x̄)(z, z) ∈ ImG′(x̄), and the operator G(x̄; z) : X → ImG′(x̄) × V̂ /ImG′(x̄)
given by G(x̄, z)s → (G′(x̄)s, πG′′(x̄)(z, s)) has closed range, there exist multipliers
(0, 0) �= (α, v∗) ∈ R+ × KerG′(x̄)∗ and ṽ∗ ∈ V̂ ∗ such that

αf ′(x̄) + G′(x̄)∗ṽ∗ + G′′(x̄)(z, ·)∗v∗ = 0.(5.7)

Now let us demonstrate how this result follows from our work in the case in which
the equality constraints are degenerate, i.e., ImG′(x̄) �= V̂ , under the assumption
that f is strictly differentiable at x̄. Let z ∈ X be fixed, satisfying G′(x̄)z = 0,
G′′(x̄)(z, z) ∈ ImG′(x̄). We can assume 〈f ′(x̄), z〉 ≤ 0, since otherwise we can take
the direction −z. When G(x̄; z) is not surjective but has closed range, (5.7) with
α = 0 follows from the existence of a nontrivial functional in (ImG(x̄; z))⊥ by using
standard arguments.

Now assume that G(x̄; z) is surjective, i.e., G is 2-nondegenerate in direction z. It
follows that πG′′(x̄)(z, ·) �= 0 and hence z �= 0; w.l.o.g. ‖z‖ = 1. Let p∗ ∈ X∗ denote
a continuous linear functional with 〈p∗, z〉 = 1 and consider the problem

min
x∈X

ϕ(x) := 〈p∗, x− x̄〉(f(x) − f(x̄)) s.t. 〈−p∗, x− x̄〉 ≤ 0, G(x) = 0.(MPp∗)

Then x̄ is also a local minimizer for this problem and one can show that Assump-
tion 1 is satisfied and also the second-order directional derivatives exist for every
direction and every sequence �t ∈ T . In particular, we have ϕ′(x̄) = 0, ϕ′′

�t
(x̄; z) =

2〈f ′(x̄), z〉〈p, z〉, and (ϕ′)
′
�t(x̄; z) = 〈p∗, z〉f ′(x̄) + 〈f ′(x̄), z〉p∗. It follows immediately

that z belongs to the critical cone of problem (MPp∗).

Now let (0, 0, 0) �= (α, λ, v∗) ∈ R+×R+× V̂ ∗ be an arbitrary multiplier satisfying
the Fritz–John conditions for (MPp∗). We have −λp∗+G′(x̄)∗v∗ = 0 and consequently
λ = λ〈p∗, z〉 = 〈v∗, G′(x̄)z〉 = 0 and G′(x̄)∗v∗ = 0. Due to our assumption on z we
have G′′(x̄)(z, z) = G′(x̄)w for some w ∈ X and therefore

αϕ′′
�t
(x̄; z)+0+〈v∗, G′′(x̄)(z, z)〉 = 2α〈f ′(x̄), z〉〈p∗, z〉+〈v∗, G′(x̄)w〉 = 2α〈f ′(x̄), z〉 ≤ 0.

This shows that condition (5.2) is satisfied and application of Corollary 5.1 proves the
existence of multipliers (0, 0, 0) �= (α, 0, v∗) ∈ R+ × R+ × KerG′(x̄)∗ and (α̃, λ̃, ṽ∗) ∈
R+×R+×V̂ ∗ such that we have −λ̃ = λ̃〈−p∗, z〉 = 0 by condition (5.5), α〈f ′(x̄), z〉 = 0
by condition (5.3), and also

α(ϕ′)
′
�t(x̄; z) + G′′(x̄)(z, ·)∗v∗ + G′(x̄)∗ṽ∗ = αf ′(x̄) + G′(x̄)∗ṽ∗ + G′′(x̄)(z, ·)∗v∗ = 0

by condition (5.4). Hence, condition (5.7) holds.
Note that condition (5.7) is called a “first-order” condition, although it contains

the second derivative G′′(x̄). Similarly, Avakov and others presented “second-order”
conditions (see [4], [5], [18], [25]), where third derivatives of the mapping G are in-
volved. Of course, our results cannot cover such “second-order” conditions. Indeed,
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as pointed out by an anonymous referee, the assertion of Corollary 5.1 follows from
[5, Theorem 2] under such stronger differentiability assumptions.

There are also other second-order conditions known from the literature; see, for
instance, the monograph of Arutyunov [2] and the references therein.

Example 5.1. This is a very easy example which can be treated by the results of
this paper but not by results in the literature. Consider the problem

min
(x1,x2,x3)∈R3

−x2
1 + x3 s.t. x1x2 + |x1|5/2 = 0, x3 = 0,

at x̄ = (0, 0, 0). Then x̄ = (0, 0, 0) is not a local minimum, and this follows also
from Corollary 5.1 since the second-order conditions (5.3)–(5.6) are not satisfied for
the direction z = (−1, 0, 0). However, the necessary “first-order” conditions (5.7)
hold and the “second-order” conditions from [4], [25], [26] do not apply since the
constraints are not three times differentiable at x̄. Also the necessary conditions of
Arutyunov [1, Theorems 3.1 and 3.2] and Belash and Tret’yakov [6, Theorem 3] are
either satisfied or cannot be used since f ′(x̄) �= 0 and G′(x̄) �= 0. Finally, if we replace
the equality constraint x3 = 0 by the inequality constraint x3 ≥ 0, then again the
origin x̄ = (0, 0, 0) can be classified as nonoptimal by Corollary 5.1, but the necessary
conditions [3] cannot be used.

Example 5.2. Now consider the problem

min
(x1,x2)∈R2

x1 s.t. x2 ≤ 0, x1x2 = 0,

at x̄ = (0, 0). Again, x̄ is not a local minimum, but the second-order conditions of
Corollary 5.1 now hold. To verify these conditions we have to consider the directions
z = (−1, 0) and z = (0,−1), and in both cases the multipliers (α, λ, v∗) ∈ ΛFJ

satisfying the conditions (5.3)–(5.6) are given by (0, 0, 1). Moreover, for any direction
z ∈ C(x̄) ∩ SX we have L′′

x�t(x̄, α, λ, v
∗; z) ≥ 0 for multipliers of the form (α, λ, v∗) =

(0, 0, t), t > 0.
Now we show that in a situation as in Example 5.2, where the multipliers corre-

sponding to Corollary 5.1 are contained in a pointed closed convex cone, the second-
order necessary conditions of Corollary 5.1 are sharp. We state this result in terms of
the general problem (P).

Theorem 5.2. Let the point x̄ be feasible for problem (P) and suppose that
Assumption 1 holds, that dimY < ∞, and that

lim
t→0+

d

(
h(x̄ + tz) − h(x̄) − th′(x̄)z

t2/2
, h′′(x̄; z)

)
= 0(5.8)

holds uniformly for all z ∈ C(x̄) ∩ BX . Further suppose that there is a pointed closed
convex cone Λ̄ ⊂ ΛFJ ∪ {0} such that for every z ∈ C(x̄) and every y ∈ h′′(x̄; z) there
is some ȳ∗ ∈ Λ̄ ∩ SY ∗ with 〈ȳ∗, y〉 ≥ 0. Then there exists a mapping δh = (δf, δg)
with δh(x) = ψ(‖x − x̄‖)y, where y ∈ Y and ψ : R+ → R+ is a twice continuously
differentiable function satisfying ψ(0) = ψ′(0) = ψ′′(0) = 0, such that x̄ is a strict
local minimizer for (P) with f and g replaced by f + δf and g + δg, respectively.

Proof. Let S := Λ̄◦ denote the polar cone of the pointed convex closed cone Λ̄.
Since dimY < ∞, we have intS �= ∅. Further we have cl (h′(x̄)X+TC(h(x̄))) = Λ◦

FJ ⊂
S. Let the subspace Q be given by Q := aff (h′(x̄)X − TC(h(x̄))). If dimQ < dimY ,
then we can find p := dimY − dimQ linearly independent elements yi ∈ S \ Q,
i = 1, . . . , p, forming a basis for some topological complement Qc to Q, such that
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int (h′(x̄)X − C̄) �= ∅, where C̄ := h(x̄) + TC(h(x̄)) + Ŝ and the cone Ŝ is given by
Ŝ := {

∑p
i=1 αiyi : αi ≥ 0, i = 1, . . . , p}. Note that C̄ is closed since TC(h(x̄)) ⊂ Q

and Ŝ ⊂ Qc are closed and Y = Q⊕Qc. On the other hand, if dimQ = dimY , take
C̄ := h(x̄)+TC(h(x̄)+ Ŝ with Ŝ = {0}. In any case we have int (h′(x̄)X− C̄) �= ∅ and
C ⊂ h(x̄) + TC(h(x̄)) ⊂ C̄ ⊂ h(x̄) + S. By taking into account the remark following
Theorem 2.2 we see that in order to prove the theorem it is sufficient to show

lim inf
x→x̄
τ→0+

d̂C̄(h(x̄), h′(x̄), τ‖x− x̄‖)
‖x− x̄‖2

≥ 0.

Assume on the contrary that there are sequences (zn) ⊂ SX , �t = (tn) ∈ T, and (τn) ∈
T, and a real β > 0 such that t−2

n d̂C̄(h(x̄ + tnzn), h′(x̄), τntn) ≤ −β for all n. Then
by Theorem 2.4 we have 0 ∈ h(x̄+ tnzn)+ τntnh

′(x̄)BX − C̄, and using Assumption 1
we see t−1

n (h(x̄ + tnzn) − h(x̄)) = h′(x̄)zn + O(tn) ∈ t−1
n (C̄ − h(x̄)) = TC(h(x̄)) + Ŝ.

Since dimY < ∞, h′(x̄)zn ⊂ Y is a bounded sequence and Imh′(x̄) is closed, we have,
by passing to a subsequence if necessary, h′(x̄)zn → h′(x̄)z̄ for some z̄ ∈ X. Then
h′(x̄)z̄ ∈ TC(h(x̄)) + Ŝ and since h′(x̄)z̄ ∈ Q, TC(h(x̄) ⊂ Q, and Ŝ ∩Q = {0}, h′(x̄) ∈
TC(h(x̄)) follows, i.e., z̄ ∈ C(x̄). Further, since Imh′(x̄) is closed we can find another
sequence, say (z′n), such that h′(x̄)z′n = h′(x̄)z̄ and ‖z′n − zn‖ ≤ γ‖h′(x̄)z̄ − h′(x̄)zn‖
for some γ > 0. By taking z̃n := z′n/‖z′n‖ we have found a sequence (z̃n) ⊂ C(x̄)∩SX

with z̃n − zn → 0. By our assumptions, there exists a sequence (wn) with wn ∈
h′′(x̄; z̃n) such that ‖h(x̄ + tnz̃n) − (h(x̄) + tnh

′(x̄)z̃n +
t2n
2 wn)‖ = o(t2n) and, together

with Assumption 1,∥∥∥∥h(x̄ + tnzn) −
(
h(x̄) + tnh

′(x̄)zn +
t2n
2
wn

)∥∥∥∥ ≤ ηt2n‖zn − z̃n‖ + o(t2n) = o(t2n)

follows. Now, for each n let y∗n ∈ Λ̄∩SY ∗ be chosen such that 〈y∗n, wn〉 ≥ 0. Since y∗n ∈
ΛFJ we have h′(x̄)∗y∗n = 0 and because of h(x̄) ∈ C̄ we obtain σC̄(y∗n) ≥ 〈y∗n, h(x̄)〉.
Hence we conclude that

t−2
n d̂C̄(h(x̄ + tnzn), h′(x̄), τntn) ≤ t−2

n (〈y∗n, h(x̄ + tnzn)〉 − σC̄(y∗n) − τntn‖h′(x̄)∗y∗n‖)
≤ t−2

n 〈y∗n, h(x̄ + tnzn) − h(x̄)〉
= t−2

n 〈y∗n, h(x̄ + tnzn) − h(x̄) − tnh
′(x̄)zn〉

=
1

2
〈y∗n, wn〉 + o(1) ≥ o(1),

a contradiction.
Note that, as a consequence of Assumption 1 and dimY < ∞, convergence in

condition (5.8) is always uniform with respect to z in compact sets. Hence, besides
the case when h is twice Fréchet differentiable at x̄, condition (5.8) holds uniformly
for all z ∈ C(x̄) when dimX < ∞.

It is easy to see that the perturbation δh is Fréchet differentiable at x̄ with δh(x̄) =
0, δh′(x̄) = 0 and that Assumption 1 is fulfilled with arbitrarily small η. Moreover, for
any sequence �t ∈ T and any element z ∈ X we have h′′

�t
(x̄; z) = 0 and (h′)′�t(x̄; z) = 0.

Consequently, our assumptions are also fulfilled for the perturbed problem and all the
quantities used in the optimality conditions do not change. Further note that δh is
even twice continuously differentiable and δh′′(x̄) = 0, provided X is a Hilbert space.

In the case when f is scalar and K is a polyhedral cone, using the notion of 2-
normal mappings, Arutyunov [1], [2] presented conditions which are sufficient for the
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existence of a cone Λ̄ satisfying the assumptions of Theorem 5.2. Further, Arutyunov
showed 2-normal mappings to be generic under certain circumstances. However, note
that the constraint mapping of Example 5.2 is not 2-normal.

Arutyunov [1, Theorem 4.3] stated also a result which is very similar to The-
orem 5.2 and from which he concluded that the “gap” between his necessary and
sufficient second-order conditions is as minimal as possible. Note that the second
derivatives of Arutyunov’s perturbations can be made only arbitrary small, but they
do not vanish at the point x̄ under consideration.
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Abstract. We introduce a notion of quasi regularity for points with respect to the inclusion
F (x) ∈ C, where F is a nonlinear Fréchet differentiable function from R

v to R
m. When C is the

set of minimum points of a convex real-valued function h on R
m and F ′ satisfies the L-average

Lipschitz condition of Wang, we use the majorizing function technique to establish the semilocal
linear/quadratic convergence of sequences generated by the Gauss–Newton method (with quasi-
regular initial points) for the convex composite function h◦F . Results are new even when the initial
point is regular and F ′ is Lipschitz.
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1. Introduction. The convex composite optimization to be considered is as
follows:

min
x∈Rv

f(x) := h(F (x)),(1.1)

where h is a real-valued convex function on R
m and F is a nonlinear Fréchet differ-

entiable map from R
v to R

m (with norm ‖ · ‖). We assume throughout that h attains
its minimum hmin.

This problem has recently received a great deal of attention. As observed by
Burke and Ferris in their seminal paper [4], a wide variety of its applications can
be found throughout the mathematical programming literature, especially in convex
inclusion, minimax problems, penalization methods, and goal programming (see also
[2, 6, 7, 15, 22]). The study of (1.1) provides not only a unifying framework for the
development and analysis of algorithms for solutions but also a convenient tool for
the study of first- and second-order optimality conditions in constrained optimization
[3, 5, 7, 22]. As in [4, 13], the study of (1.1) naturally relates to the convex inclusion
problem

F (x) ∈ C,(1.2)

where

C := argminh,(1.3)

∗Received by the editors April 4, 2006; accepted for publication (in revised form) January 16,
2007; published electronically August 1, 2007.

http://www.siam.org/journals/siopt/18-2/65622.html
†Department of Mathematics, Zhejiang University, Hangzhou 310027, P. R. China (cli@zju.

edu.cn). This author was supported in part by the National Natural Science Foundation of China
(grant 10671175) and the Program for New Century Excellent Talents in University.

‡Department of Mathematics, Chinese University of Hong Kong, Hong Kong, P. R. China
(kfng@math.cuhk.edu.hk). This author was supported by a direct grant (CUHK) and an Earmarked
Grant from the Research Grant Council of Hong Kong.

613



614 CHONG LI AND K. F. NG

the set of all minimum points of h. Of course, it is meaningful to study (1.2) in its
own right for a general closed convex set (cf. [14, 16]). In section 3, we introduce a
new notion of quasi regularity for x0 ∈ R

v with respect to the inclusion (1.2). This
new notion covers the case of regularity studied by Burke and Ferris [4] as well as the
case when F ′(x0) − C is surjective, employed by Robinson [18]. More importantly,
we introduce notions of the quasi-regular radius rx0

and of the quasi-regular bound
function βx0

attached to each quasi-regular point x0. For the general case this pair
(rx0 , βx0

) together with a suitable Lipschitz-type assumption on F ′ enables us to
address the issue of convergence of Gauss–Newton sequences provided by the following
well-known algorithm (cf. [4, 10, 13, 31]).

Algorithm A (η,Δ, x0). Let η ∈ [1,+∞), Δ ∈ (0,+∞], and for each x ∈ R
v

define DΔ(x) by

DΔ(x) = {d ∈ R
v : ‖d‖ ≤ Δ, h(F (x) + F ′(x)d) ≤ h(F (x) + F ′(x)d′)(1.4)

∀d′ ∈ R
v with ‖d′‖ ≤ Δ}.

Let x0 ∈ R
v be given. For k = 0, 1, . . . , having x0, x1, . . . , xk, determine xk+1 as

follows.
If 0 ∈ DΔ(xk), then stop; if 0 /∈ DΔ(xk), choose dk such that dk ∈ DΔ(xk) and

‖dk‖ ≤ ηd(0, DΔ(xk)),(1.5)

and set xk+1 = xk + dk. Here d(x,W ) denotes the distance from x to W in the
finite-dimensional Banach space containing W .

Note that DΔ(x) is nonempty and is the solution set of the following convex
optimization problem:

(1.6) min
d∈Rv,‖d‖≤Δ

h(F (x) + F ′(x)d),

which can be solved by standard methods such as the subgradient method, the cutting
plane method, the bundle method, etc. (cf. [9]).

If the initial point x0 is a quasi-regular point with (rx0
, βx0

) and if F ′ satisfies
a Lipschitz-type condition (introduced by Wang [28]) with an absolutely continuous
function L satisfying a suitable property in relation to (rx0 , βx0), our main results
presented in section 4 show that the Gauss–Newton sequence {xn} provided by Al-
gorithm A (η,Δ, x0) converges at a quadratic rate to some x∗ with F (x∗) ∈ C (in
particular, x∗ solves (1.1)). Even in the special case when x0 is regular and F ′ is Lip-
schitz, the advantage of allowing βx0 and L to be functions (rather than constants)
provides results which are new even for the above special case. Examples are given
in section 6 to show there are situations where our results are applicable but not
the earlier results in the literature; in particular, Example 6.1 is a simple example to
demonstrate a quasi-regular point which is not regular. We shall show that the Gauss–
Newton sequence {xn} is “majorized” by the corresponding numerical sequence {tn}
generated by the classical Newton method with initial point t0 = 0 for a “majorizing”
function of the following type (again introduced by Wang [28]):

φα(t) = ξ − t + α

∫ t

0

L(u)(t− u) du for each t ≥ 0,(1.7)

where ξ, α are positive constants and L is a positive-valued increasing (more precisely,
nondecreasing) absolutely continuous function on [0,+∞). In the case when L is a
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constant function, (1.7) reduces to

φα(t) = ξ − t +
αL

2
t2 for each t ≥ 0,(1.8)

the majorizing function used by Kantorovich [11] and by Kantorovich and Akilov [12].
In the case when

L(u) =
2γ

(1 − γu)3
,(1.9)

expression (1.7) reduces to

φα(t) = ξ − t +
αγt2

1 − γt
,(1.10)

the majorizing function that Wang made use of in his work [28] on approximate
zeros of Smale (cf. [26]). Motivated by this and as an application of our results in
section 4, we provide a sufficient condition ensuring that a point x0 ∈ R

v will be an
“approximate solution” of (1.1) in the sense that the Gauss–Newton sequence {xn}
generated by Algorithm A (η,Δ, x0) converges to a solution of (1.1) and satisfies the
condition

‖xn+1 − xn‖ ≤
(

1

2

)2n−1

‖xn − xn−1‖ for each n = 1, 2, . . .(1.11)

(the last condition was used by Smale [26] in his study of approximate zeros for
Newton’s method).

2. Preliminaries. Let B(x, r) stand for the open ball in R
v or R

m with center
x and radius r, while the corresponding closed ball is denoted by B(x, r). Let W be
a closed convex subset of R

v or R
m. The negative polar of W is denoted by W� and

defined by

W� = {z : 〈z, w〉 ≤ 0 for each w ∈ W}.

Let L be a positive-valued increasing absolutely continuous function on [0,+∞), and
let α > 0. Let rα > 0 and bα > 0 such that

α

∫ rα

0

L(u) du = 1 and bα = α

∫ rα

0

L(u)u du(2.1)

(thus bα < rα). Let ξ ≥ 0, and define

φα(t) = ξ − t + α

∫ t

0

L(u)(t− u) du for each t ≥ 0.(2.2)

Thus

φ′
α(t) = −1 + α

∫ t

0

L(u) du, φ′′
α(t) = αL(t) for each t ≥ 0,(2.3)

and φ′′′
α (t) exists almost everywhere thanks to the assumption that L is absolutely

continuous. Let tα,n denote the sequence generated by Newton’s method for φα with
initial point tα,0 = 0:

tα,n+1 = tα,n − φ′
α(tα,n)−1φα(tα,n) for each n = 0, 1, . . . .(2.4)
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In particular, by (2.2) and (2.3),

tα,1 = ξ.(2.5)

Below we list a series of useful lemmas for our purpose. They are either known or
can be verified easily by elementary methods (such as by differential calculus). In
particular, Lemma 2.3 and Lemma 2.1(i) are taken from [28], while Lemma 2.1(ii)
and (iii) are well known. Here we shall give a proof of Lemma 2.4 as an illustration.

Lemma 2.1. Suppose that 0 < ξ ≤ bα. Then bα < rα and the following assertions
hold:

(i) φα is strictly decreasing on [0, rα] and strictly increasing on [rα,+∞) with

φα(ξ) > 0, φα(rα) = ξ − bα ≤ 0, φα(+∞) ≥ ξ > 0.(2.6)

Moreover, if ξ < bα, φα has two zeros, denoted respectively by r∗α and r∗∗α , such that

ξ < r∗α <
rα
bα

ξ < rα < r∗∗α ,(2.7)

and if ξ = bα, then φα has a unique zero r∗α in (ξ,+∞) (in fact, r∗α = rα).
(ii) {tα,n} is strictly monotonically increasing and converges to r∗α.
(iii) The convergence of {tα,n} is of quadratic rate if ξ < bα, and linear if ξ = bα.
Lemma 2.2. Let rα, bα, and φα be defined by (2.1) and (2.2). Let α′ > α with

the corresponding φα′ . Then the following assertions hold:
(i) The functions α 
→ rα and α 
→ bα are strictly decreasing on (0,+∞).
(ii) φα < φα′ on (0,+∞).
(iii) The function α 
→ r∗α is strictly increasing on the interval I(ξ), where I(ξ)

denotes the set of all α > 0 such that ξ ≤ bα.
Lemma 2.3. Let 0 ≤ c < +∞. Define

χ(t) =
1

t2

∫ t

0

L(c + u)(t− u) du for each 0 ≤ t < +∞.(2.8)

Then χ is increasing on [0,+∞).
Lemma 2.4. Define

ωα(t) = φ′
α(t)−1φα(t), for each t ∈ [0, r∗α).

Suppose that 0 < ξ ≤ bα. Then ωα is increasing on [0, r∗α).
Proof. Since

ω′
α(t) =

φ′
α(t)2 − φα(t)φ′′

α(t)

φ′
α(t)2

for each t ∈ [0, r∗α),

it suffices to show that

ζα(t) := φ′
α(t)2 − φα(t)φ′′

α(t) ≥ 0 for each t ∈ [0, r∗α).

Since ζα(r∗α) = φ′
α(r∗α)2 ≥ 0, it remains to show that ζα is decreasing on [0, r∗α]. To

do this, note that by (2.3), ζα is absolutely continuous, and so the derivative of ζα
exists almost everywhere on [0, r∗α] with

ζ ′α(t) = φ′
α(t)φ′′

α(t) − φα(t)φ′′′
α (t) ≤ 0 for a.e. t ∈ [0, r∗α),
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because φ′
α ≤ 0 while φα, φ

′′
α, φ

′′′
α ≥ 0 almost everywhere on [0, r∗α). Therefore, ζα is

decreasing on [0, r∗α), and the proof is complete.
The following conditions were introduced by Wang in [28] but using the terminolo-

gies of “the center Lipschitz condition with the L average” and “the center Lipschitz
condition in the inscribed sphere with the L, average,” respectively, for (a) and (b).

Definition 2.5. Let Y be a Banach space and let x0 ∈ R
v. Let G be a mapping

from R
v to Y . Then G is said to satisfy

(a) the weak L-average Lipschitz condition on B(x0, r) if

‖G(x) −G(x0)‖ ≤
∫ ‖x−x0‖

0

L(u) du for each x ∈ B(x0, r);(2.9)

(b) the L-average Lipschitz condition on B(x0, r) if

‖G(x) −G(x′)‖ ≤
∫ ‖x−x′‖+‖x′−x0‖

‖x′−x0‖
L(u) du for all x, x′ ∈ B(x0, r)(2.10)

with ‖x− x′‖ + ‖x′ − x0‖ ≤ r.

3. Regularities. Let C be a closed convex set in R
m. Consider the inclusion

F (x) ∈ C.(3.1)

Let x ∈ R
v and

D(x) = {d ∈ R
v : F (x) + F ′(x)d ∈ C}.(3.2)

Remark 3.1. In the case when C is the set of all minimum points of h and if
there exists d0 ∈ R

v with ‖d0‖ ≤ Δ such that d0 ∈ D(x), then d0 ∈ DΔ(x), and for
each d ∈ R

v with ‖d‖ ≤ Δ one has

d ∈ DΔ(x) ⇐⇒ d ∈ D(x) ⇐⇒ d ∈ D∞(x).(3.3)

Remark 3.2. The set D(x) defined in (3.2) can be viewed as the solution set of
the following “linearized” problem associated with (3.1):

(Px) : F (x) + F ′(x) d ∈ C.(3.4)

Thus β(‖x − x0‖) in (3.5) is an “error bound” in determining how far the origin is
away from the solution set of (Px).

Definition 3.1. A point x0 ∈ R
v is called a quasi-regular point of the inclusion

(3.1) if there exist r ∈ (0,+∞) and an increasing positive-valued function β on [0, r)
such that

D(x) �= ∅ and d(0,D(x)) ≤ β(‖x− x0‖) d(F (x), C) for all x ∈ B(x0, r).(3.5)

Let rx0
denote the supremum of r such that (3.5) holds for some increasing

positive-valued function β on [0, r). Let r ∈ [0, rx0
], and let Br(x0) denote the set of

all increasing positive-valued functions β on [0, r) such that (3.5) holds. Define

βx0(t) = inf{β(t) : β ∈ Brx0
(x0)} for each t ∈ [0, rx0).(3.6)
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Note that each β ∈ Br(x0) with limt→r− β(t) < +∞ can be extended to an element
of Brx0

(x0). From this we can verify that

βx0
(t) = inf{β(t) : β ∈ Br(x0)} for each t ∈ [0, r).(3.7)

We call rx0
and βx0

respectively the quasi-regular radius and the quasi-regular bound
function of the quasi-regular point x0.

Definition 3.2. A point x0 ∈ R
v is a regular point of the inclusion (3.1) if

ker(F ′(x0)
T ) ∩ (C − F (x0))

� = {0}.(3.8)

The notion of regularity relates to some other notions of regularity that can be
found in the papers [1, 3, 20, 21, 25], which have played an important role in the
study of nonsmooth optimizations. Some equivalent conditions on the regular points
for (3.1) are given in [4]. In the following proposition the existence of constants r and
β is due to Burke and Ferris [4], and the second assertion then follows from a remark
after Definition 3.1.

Proposition 3.3. Let x0 be a regular point of (3.1). Then there are constants
r > 0 and β > 0 such that (3.5) holds for r and β(·) = β; consequently, x0 is a
quasi-regular point with the quasi-regular radius rx0 ≥ r and the quasi-regular bound
function βx0 ≤ β on [0, r].

Another important link of the present study relates to Robinson’s condition [18,
19] that the convex process d 
→ F ′(x)d − C is onto R

m. To see this, let us first
recall the concept of convex process, which was introduced by Rockafeller [23, 24] for
convexity problems (see also Robinson [19]).

Definition 3.4. A set-valued mapping T : R
v → 2R

m

is called a convex process
from R

v to R
m if it satisfies

(a) T (x + y) ⊇ Tx + Ty for all x, y ∈ R
v;

(b) Tλx = λTx for all λ > 0, x ∈ R
v;

(c) 0 ∈ T0.
Thus T : R

v → 2R
m

is a convex process if and only if its graph Gr(T ) is a convex
cone in R

v ×R
m. As usual, the domain, range, and inverse of a convex process T are

respectively denoted by D(T ), R(T ), T−1; i.e.,

D(T ) = {x ∈ R
v : Tx �= ∅},

R(T ) = ∪{Tx : x ∈ D(T )},

T−1y = {x ∈ R
v : y ∈ Tx}.

Obviously T−1 is a convex process from R
m to R

v. Furthermore, for a set A in an R
v

or R
m, it would be convenient to use the notation ‖A‖ to denote its distance to the

origin, that is,

‖A‖ = inf{‖a‖ : a ∈ A}.(3.9)

Definition 3.5. Suppose that T is a convex process. The norm of T is defined
by

‖T‖ = sup{‖Tx‖ : x ∈ D(T ), ‖x‖ ≤ 1}.

If ‖T‖ < +∞, we say that the convex process T is normed.
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For two convex processes T and S from R
v to R

m, the addition and multiplication
are defined respectively as follows:

(T + S)(x) = Tx + Sx for each x ∈ R
v,

(λT )(x) = λ(Tx) for each x ∈ R
v and λ ∈ R.

Let C be a closed convex set in R
m and let x ∈ R

v. We define Tx by

Txd = F ′(x) d− C for each d ∈ R
v.(3.10)

Then its inverse is

T−1
x y = {d ∈ R

v : F ′(x) d ∈ y + C} for each y ∈ R
m.(3.11)

Note that Tx is a convex process in the case when C is a cone. Note also that
D(Tx) = R

v for each x ∈ R
v and D(T−1

x0
) = R

m if x0 ∈ R
v is such that the following

condition of Robinson is satisfied:

Tx0
carries R

v onto R
m.(3.12)

Proposition 3.7 below shows that the condition of Robinson (3.12) implies that x0

is a regular point of (3.1), and an estimate of the quasi-regular bound function is
provided. For its proof we need the following lemma, which is known in [18].

Lemma 3.6. Let C be a closed convex cone in R
m, and let x0 ∈ R

v be such that
the condition of Robinson (3.12) is satisfied. Then the following assertions hold: (i)
T−1
x0

is normed.
(ii) If S is a linear transformation from R

v to R
m such that ‖T−1

x0
‖‖S‖ < 1, then

the convex process T̃ defined by

T̃ = Tx0
+ S

carries R
v onto R

m. Furthermore, T̃−1 is normed and

‖T̃−1‖ ≤
‖T−1

x0
‖

1 − ‖T−1
x0 ‖‖S‖

.

Proposition 3.7. Let x0 ∈ R
v, and let Tx0 be defined as in (3.10). Suppose that

the condition of Robinson (3.12) is satisfied. Then the following assertions hold:
(i) x0 is a regular point of (3.1).
(ii) Suppose further that C is a closed convex cone in R

m and that F ′ satisfies
the weak L-average Lipschitz condition on B(x0, r) for some r > 0. Let β0 = ‖T−1

x0
‖

and let rβ0 be defined by

β0

∫ rβ0

0

L(u) du = 1(3.13)

(cf. (2.1)). Then the quasi-regular radius rx0 and the quasi-regular bound function
βx0 satisfy rx0 ≥ min{r, rβ0} and

(3.14) βx0(t) ≤
β0

1 − β0

∫ t

0
L(u) du

for each t with 0 ≤ t < min{r, rβ0}.



620 CHONG LI AND K. F. NG

Proof. Suppose that the condition (3.12) is satisfied, and let y belong to the set
of the intersection in (3.8). Then, in view of the definition of Tx0 , there exist u ∈ R

v

and c ∈ C such that −y − F (x0) = F ′(x0)u− c. Hence, by (3.8),

〈y, F ′(x0)u〉 = 〈F ′(x0)
T y, u〉 = 0 and 〈y, c− F (x0)〉 ≤ 0.(3.15)

It follows that

〈y, y〉 = 〈y, c− F (x0) − F ′(x0)u〉 = 〈y, c− F (x0)〉 ≤ 0(3.16)

and hence y = 0. This shows that (3.8) holds, and so x0 is a regular point of the
inclusion (3.1).

Now let r > 0 and suppose that F ′ satisfies the weak L-average Lipschitz condition
on B(x0, r). Let x ∈ R

v such that ‖x− x0‖ < min{r, rβ0
}. Then

‖F ′(x) − F ′(x0)‖ ≤
∫ ‖x−x0‖

0

L(u) du <

∫ rβ0

0

L(u) du;

hence, by (3.13),

‖T−1
x0

‖‖F ′(x) − F ′(x0)‖ < ‖T−1
x0

‖
∫ rβ0

0

L(u) du = 1.

This with Lemma 3.6 implies that the convex process defined by

Txd = F ′(x) d− C = Tx0d + [F ′(x) − F ′(x0)] d for each d ∈ R
v

carries R
v onto R

m and

‖T−1
x ‖ ≤

‖T−1
x0

‖
1 − ‖T−1

x0 ‖‖F ′(x) − F ′(x0)‖
≤

‖T−1
x0

‖
1 − ‖T−1

x0 ‖
∫ ‖x−x0‖
0

L(u) du
.(3.17)

Since Tx is surjective, we have that D(x) is nonempty; in particular, for each c ∈ C,

T−1
x (c− F (x)) ⊆ D(x).(3.18)

To see this, let d ∈ T−1
x (c−F (x)). Then, by (3.11), one has that F ′(x) d ∈ c−F (x)+

C ⊆ C − F (x), and so F (x) + F ′(x) d ∈ C, that is, d ∈ D(x). Hence (3.18) is true.
Consequently,

d(0,D(x)) ≤ ‖T−1
x (c− F (x))‖ ≤ ‖T−1

x ‖‖c− F (x)‖.

Since this is valid for each c ∈ C, it is seen that

d(0,D(x)) ≤ ‖T−1
x ‖d(F (x), C).

Combining this with (3.17) and (3.6) gives the desired result (3.14), and the proof is
complete.

4. Convergence criterion. We assume throughout the remainder of this paper
that C is the set of all minimum points of h. Let x0 ∈ R

v be a quasi-regular point
of the inclusion (3.1) with the quasi-regular radius rx0

and the quasi-regular bound
function βx0

. Let η ∈ [1,+∞) and let

ξ := ηβx0(0) d(F (x0), C).(4.1)
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For all r ∈ (0, rx0
], we define

α0(r) := sup

{
ηβx0

(t)

ηβx0
(t)
∫ t

0
L(u) du + 1

: ξ ≤ t < r

}
,(4.2)

with the usual convention that sup ∅ = −∞.
Theorem 4.1. Let η ∈ [1,∞) and Δ ∈ (0,∞]. Let x0 ∈ R

v be a quasi-regular
point of the inclusion (3.1) with the quasi-regular radius rx0 and the quasi-regular
bound function βx0 . Let ξ > 0, 0 < r ≤ rx0 , and α0(r) be as described above. Let
α ≥ α0(r) be a positive constant and let bα, rα be defined by (2.1). Let r∗α denote
the smaller zero of the function φα defined by (2.2). Suppose that F ′ satisfies the
L-average Lipschitz condition on B(x0, r

∗
α), and that

ξ ≤ min{bα,Δ} and r∗α ≤ r(4.3)

(for example, (4.3) is satisfied if

ξ ≤ min

{
bα,

bα
rα

r, Δ

}
(4.4)

holds). Let {xn} denote the sequence generated by Algorithm A (η,Δ, x0). Then,
{xn} converges to some x∗ such that F (x∗) ∈ C, and the following assertions hold for
each n = 1, 2, . . . :

‖xn − xn−1‖ ≤ tα,n − tα,n−1,(4.5)

‖xn+1 − xn‖ ≤ (tα,n+1 − tα,n)

(
‖xn − xn−1‖
tα,n − tα,n−1

)2

,(4.6)

F (xn) + F ′(xn)(xn+1 − xn) ∈ C,(4.7)

and

‖xn−1 − x∗‖ ≤ r∗α − tα,n−1.(4.8)

Proof. By (2.7) and (4.4),

r∗α ≤ rα
bα

ξ ≤ r.(4.9)

Hence (4.4)=⇒(4.3). Thus it suffices to prove the theorem for the case when (4.3) is
assumed. By (4.3), (2.5), and Lemma 2.1, one has that, for each n,

ξ ≤ tα,n < r∗α ≤ r ≤ rx0 .(4.10)

By the quasi regularity assumption, it follows that

D(x) �= ∅ and d(0,D(x)) ≤ βx0
(‖x− x0‖) d(F (x), C)(4.11)

for each x ∈ B(x0, r).

Let k ≥ 1. We use 1, k to denote the set of all integers n satisfying 1 ≤ n ≤ k. Below
we will verify the following implication:

(4.5) holds for all n ∈ 1, k, and (4.7) holds for n = k − 1(4.12)

=⇒ (4.6) and (4.7) hold for n = k.
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To do this, suppose that (4.5) holds for each n ∈ 1, k, and set

xτ
k = τxk + (1 − τ)xk−1 for each τ ∈ [0, 1].(4.13)

Note that

‖xk − x0‖ ≤
k∑

i=1

‖xi − xi−1‖ ≤
k∑

i=1

(tα,i − tα,i−1) = tα,k(4.14)

and

‖xk−1 − x0‖ ≤ tα,k−1 ≤ tα,k.(4.15)

It follows from (4.13) and (4.10) that xτ
k ∈ B(x0, r

∗
α) ⊆ B(x0, r) for each τ ∈ [0, 1].

Hence (4.11) holds for x = xk, namely,

D(xk) �= ∅ and d(0,D(xk)) ≤ βx0(‖xk − x0‖) d(F (xk), C).(4.16)

We claim that

ηd(0,D(xk)) ≤ (tα,k+1 − tα,k)

(
‖xk − xk−1‖
tα,k − tα,k−1

)2

≤ tα,k+1 − tα,k(4.17)

(the second inequality needs no proof by the assumption of (4.12)). To show the
first inequality, using (4.7) for n = k − 1 and the fact that F ′ satisfies an L-average
Lipschitz condition on B(x0, r

∗
α), together with the elementary identity

∫ 1

0

∫ A+τB

A

L(u) du dτ =

∫ B

0

L(A + u)

(
1 − u

B

)
du for all A, B > 0,(4.18)

we have by (4.16) that

ηd(0,D(xk))≤ ηβx0
(‖xk − x0‖)d(F (xk), C)

≤ ηβx0(‖xk − x0‖)‖F (xk) − F (xk−1) − F ′(xk−1)(xk − xk−1)‖

≤ ηβx0
(‖xk − x0‖)

∥∥∥∥
∫ 1

0

(F ′(xτ
k) − F ′(xk−1))(xk − xk−1) dτ

∥∥∥∥
≤ ηβx0

(‖xk − x0‖)
∫ 1

0

(∫ τ‖xk−xk−1‖+‖xk−1−x0‖

‖xk−1−x0‖
L(u) du

)

× ‖xk − xk−1‖ dτ

= ηβx0(‖xk − x0‖)

×
(∫ ‖xk−xk−1‖

0

L(‖xk−1 − x0‖ + u)(‖xk − xk−1‖ − u) du

)

≤ ηβx0(tα,k)

(∫ ‖xk−xk−1‖

0

L(tα,k−1 + u)(‖xk − xk−1‖ − u) du

)
,
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where the last inequality is valid because L and βx0
are increasing and thanks to

(4.14) and (4.15). Since (4.5) holds for n = k, Lemma 2.3 implies that

∫ ‖xk−xk−1‖
0

L(tα,k−1 + u)(‖xk − xk−1‖ − u) du

‖xk − xk−1‖2

≤
∫ tα,k−tα,k−1

0
L(tα,k−1 + u)(tα,k − tα,k−1 − u) du

(tα,k − tα,k−1)2
,

and it follows from the earlier estimate that

ηd(0,D(xk)) ≤ ηβx0(tα,k)

(∫ tα,k−tα,k−1

0

L(tα,k−1 + u)(tα,k − tα,k−1 − u)du

)

×
(
‖xk − xk−1‖
tα,k − tα,k−1

)2

.(4.19)

Similarly by (2.2), (2.3), (2.4), and (4.18), we have

φα(tα,k) = φα(tα,k) − φα(tα,k−1) − φ′
α(tα,k−1)(tα,k − tα,k−1)

=

(∫ 1

0

[φ′
α(tα,k−1 + τ(tα,k − tα,k−1)) − φ′

α(tα,k−1)] d τ

)
(tα,k − tα,k−1)

=

(
α

∫ 1

0

∫ τ(tα,k−tα,k−1)+tα,k−1

tα,k−1

L(u) du dτ

)
(tα,k − tα,k−1)

= α

∫ tα,k−tα,k−1

0

L(tα,k−1 + u)(tα,k − tα,k−1 − u) du.(4.20)

On the other hand, by (4.10) and (4.2),

ηβx0(tα,k)

α0(r)
≤
(

1 − α0(r)

∫ tα,k

0

L(u) du

)−1

.

Since α ≥ α0(r) and by (2.3), it follows that

ηβx0(tα,k)

α
≤
(

1 − α

∫ tα,k

0

L(u) du

)−1

= −(φ′
α(tα,k))

−1.(4.21)

Combining (4.19)–(4.21) together with (2.4), the first inequality in (4.17) is seen to
hold. Moreover, by Lemma 2.4 and (4.3), we have

tα,k+1 − tα,k = −φ′
α(tα,k)

−1φα(tα,k) ≤ −φ′
α(tα,0)

−1φα(tα,0) = ξ ≤ Δ,

so (4.17) implies that d(0,D(xk)) ≤ Δ. Hence there exists d0 ∈ R
v with ‖d0‖ ≤ Δ

such that F (xk) + F ′(xk)d0 ∈ C. Consequently, by Remark 3.1,

DΔ(xk) = {d ∈ R
v : ‖d‖ ≤ Δ, F (xk) + F ′(xk)d ∈ C}

and

d(0, DΔ(xk)) = d(0,D(xk)).
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Since dk = xk+1 − xk ∈ DΔ(xk) by Algorithm A (η,Δ, x0), it follows that (4.7) holds
for n = k. Furthermore, one has that

‖xk+1 − xk‖ ≤ ηd(0, DΔ(xk)) = ηd(0,D(xk)).

This with (4.17) yields that (4.6) holds for n = k, and hence implication (4.12) is
proved.

Clearly, if (4.5) holds for each n = 1, 2, . . . , then {xn} is a Cauchy sequence by the
monotonicity of {tn} and hence converges to some x∗. Thus (4.8) is clear. Therefore,
to prove the theorem, we need to prove only that (4.5), (4.6), and (4.7) hold for each
n = 1, 2, . . . . We will proceed by mathematical induction. First, by (4.1), (4.3), and
(4.11), D(x0) �= ∅ and

ηd(0,D(x0)) ≤ ηβx0(‖x0 − x0‖) d(F (x0), C) = ηβx0
(0)d(F (x0), C) = ξ ≤ Δ.

Then using the same arguments just used above, we have that (4.7) holds for n = 0
and

‖x1 − x0‖ = ‖d0‖ ≤ ηd(0, DΔ(x0)) ≤ ηβx0(0)d(F (x0), C) = ξ = tα,1 − tα,0;

that is, (4.5) holds for n = 1. Thus, by (4.12), (4.6) and (4.7) hold for n = 1.
Furthermore, assume that (4.5), (4.6), and (4.7) hold for all 1 ≤ n ≤ k. Then

‖xk+1 − xk‖ ≤ (tα,k+1 − tα,k)

(
‖xk − xk−1‖
tα,k − tα,k−1

)2

≤ tα,k+1 − tα,k.

This shows that (4.5) holds for n = k + 1, and hence (4.5) holds for all n with
1 ≤ n ≤ k+1. Thus, (4.12) implies that (4.6) and (4.7) hold for n = k+1. Therefore,
(4.5), (4.6), and (4.7) hold for each n = 1, 2, . . . . The proof is complete.

Remark 4.1. (a) In Theorem 4.1 if one assumes in addition that either (i) ξ < bα
or (ii) α > α0 := α0(r), then the convergence of the sequence {xn} is of quadratic rate.
For the case of (i), this remark follows immediately from Lemma 2.1(iii) thanks to
(4.5) and (4.8). If (ii) is assumed, then, by Lemma 2.2, ξ ≤ bα < bα0 and r∗α0

≤ r∗α ≤ r.
Hence (4.3) holds with α0 in place of α. Since ξ < bα0

, we are now in the case (i) if
α is replaced by α0, and hence our remark here is established.

(b) Refinements for results presented in the remainder of this paper can also be
established in a similar manner as in (a) above.

Remark 4.2. Suppose that there exists a pair (ᾱ, r̄) such that

(4.22)

{
ᾱ = α0(r̄),
r∗ᾱ = r̄.

Note that the function α 
→ bα is decreasing by Lemma 2.2. Then, if (4.3) holds
for some (α, r) with α ≥ ᾱ and r ≥ r̄, (4.3) does for (α, r) = (ᾱ, r̄) (and hence
Theorem 4.1 is applicable).

Recall from Proposition 3.3 that the assumption for the existence of r, β in the
following corollary is automatically satisfied when x0 ∈ R

v is a regular point of the
inclusion (3.1). This remark also applies to Theorems 5.1 and 5.6 and Corollary 5.2.

Corollary 4.2. Let x0 ∈ R
v be a regular point of the inclusion (3.1) with r > 0

and β > 0 such that

D(x) �= ∅ and d(0,D(x)) ≤ β d(F (x), C) for all x ∈ B(x0, r).(4.23)
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Let η ∈ [1,∞), Δ ∈ (0,∞], ξ = ηβd(F (x0), C),

α =
ηβ

1 + ηβ
∫ ξ

0
L(u)du

,(4.24)

and let bα, rα be defined by (2.1). Let r∗α denote the smaller zero of the function
φα defined by (2.2). Suppose that F ′ satisfies the L-average Lipschitz condition on
B(x0, r

∗
α) and that

ξ ≤ min{bα,Δ} and r∗α ≤ r(4.25)

(for example, (4.25) is satisfied if

ξ ≤ min

{
bα,

bα
rα

r, Δ

}
(4.26)

holds). Then the conclusions of Theorem 4.1 hold.
Proof. Note that ξ < rα

∗ ≤ r by Lemma 2.1 and (4.25). By (3.6) and (3.7), it is
clear that rx0

≥ r and βx0(·) ≤ β on [0, r). Let r := r, and let α0(r) be defined by
(4.2) as in Theorem 4.1. Then, by (4.24), we have that

α ≥ ηβx0
(t)

1 + ηβx0
(t)
∫ t

0
L(u) du

for each t ∈ [ξ, r).

Hence α ≥ α0(r) by (4.2). Note that (4.26) (resp., (4.25)) is identical to (4.4) (resp.,
(4.3)); Theorem 4.1 is applicable, and the proof is complete.

Corollary 4.3. Let η ∈ [1,+∞), Δ ∈ (0,+∞], and let C be a cone. Let
x0 ∈ R

v be such that Tx0
carries R

v onto R
m. Let

(4.27) ξ = η‖T−1
x0

‖ d(F (x0), C),

α =
η‖T−1

x0
‖

1 + (η − 1)‖T−1
x0 ‖

∫ ξ

0
L(u) du

,(4.28)

and let bα, rα be defined by (2.1). Let r∗α denote the smaller zero of the function
φα defined by (2.2). Suppose that F ′ satisfies the L-average Lipschitz condition on
B(x0, r

∗
α) and that

ξ ≤ min{bα,Δ}.(4.29)

Then the conclusions of Theorem 4.1 hold.
Proof. Let β0 = ‖T−1

x0
‖, and let rβ0

be defined by (3.13). Then, by Proposi-
tion 3.7(ii), we know that x0 is a quasi-regular point with the quasi-regular radius

rx0 ≥ min{r∗α, rβ0}(4.30)

and the quasi-regular bound function

βx0(t) ≤
β0

1 − β0

∫ t

0
L(u) du

for each t with 0 ≤ t < min{r∗α, rβ0}.(4.31)
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Let r := min{r∗α, rβ0
}, and let α0(r) be defined by (4.2). We claim that

α ≥ α0(r)(4.32)

and

rβ0
≥ r∗α.(4.33)

Granting this, the minimum on the right-hand side of (4.30) is simply r∗α, and so
r = r∗α ≤ rx0

. Moreover, we note that βx0
(0) ≤ β0 by (4.31), and so the ξ defined by

(4.1) is majorized by that defined by (4.27); thus (4.29) entails that (4.3) holds and
Theorem 4.1 is applicable. Therefore we need only to prove our claim. Note by (4.31)
that, for each ξ ≤ t < min{r∗α, rβ0} = r, we have

(4.34) η

∫ t

0

L(u) du+
1

βx0(t)
≥ 1

β0
+(η−1)

∫ t

0

L(u) du ≥ 1

β0
+(η−1)

∫ ξ

0

L(u) du;

that is,

(4.35)
βx0(t)

1 + ηβx0
(t)
∫ t

0
L(u)du

≤ β0

1 + (η − 1)β0

∫ t

0
L(u)du

.

Thus (4.32) follows by definitions of α0(r) and of α, respectively given by (4.2) and
(4.28). To verify (4.33), consider the two cases (i) α ≥ β0 and (ii) α < β0. In (i), since
by Lemma 2.2, rα is decreasing with respect to α, we have that r∗α ≤ rα ≤ rβ0

. In (ii),
since r∗α is increasing with respect to α by Lemma 2.2, we have that r∗α ≤ r∗β0

≤ rβ0
.

Therefore, (4.33) holds in all cases, and the proof is complete.
Remark 4.3. (a) If the strict inequalities in (4.25) (resp., (4.29)) of Corollary 4.2

(resp., Corollary 4.3) hold, then the starting point x0 of the sequence {xn} can be
replaced by a nearby point; that is, there exists a neighborhood U(x0) of x0 such that
the sequence {xn} generated by Algorithm A (η,Δ, x̄) with initial point x̄ from U(x0)
converges to some solution of the inclusion problem (3.1) at a quadratic rate.

(b) Refinements for results presented in the remainder of this paper can also be
established in a similar manner as in (a) above.

5. Special cases and applications. This section is devoted to some applica-
tions. First we specialize results of the preceding section to two important cases of the
function L: L =constant and L = 2γ

(1−γu)3 . Second, mimicking Smale’s γ-theory about

the approximation zeros for Newton’s method in solving nonlinear equations, we do
the same for the Gauss–Newton method in solving composite convex optimization.

5.1. Kantorovich type. Throughout this subsection, we assume that the func-
tion L is a constant function. Then, by (2.1) and (2.2), we have that, for all α > 0,

rα =
1

αL
, bα =

1

2αL
(5.1)

and

φα(t) = ξ − t +
αL

2
t2.

Moreover, if ξ ≤ 1
2αL , then the zeros of φα are given by

r∗α
r∗∗α

}
=

1 ∓
√

1 − 2αLξ

αL
.(5.2)
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It is also known (see, for example, [8, 17, 29]) that {tα,n} has the closed form

tα,n =
1 − q2n−1

α

1 − q2n

α

r∗α for each n = 0, 1, . . . ,(5.3)

where

qα :=
r∗α
r∗∗α

=
1 −

√
1 − 2αLξ

1 +
√

1 − 2αLξ
.(5.4)

For the present case (L is a positive constant), a commonly used version of Lip-
schitz continuity on B(x0, r) is of course the following: a function G is Lipschitz
continuous with modulus L (Lipschitz constant) if

‖G(x1) −G(x2)‖ ≤ L‖x1 − x2‖ for all x1, x2 ∈ B(x0, r).

Clearly, this is a stronger requirement than the corresponding ones given in Defini-
tion 2.5. Although the weaker requirement of Definition 2.5(b) is sufficient for results
in this subsection, we prefer to use the Lipschitz continuity in this regard to be in line
with the common practice.

Theorem 5.1. Let x0 ∈ R
v be a regular point of the inclusion (3.1) with r > 0

and β > 0 such that (4.23) holds. Let L ∈ (0,+∞), η ∈ [1,+∞), Δ ∈ (0,+∞],
ξ = ηβd(F (x0), C),

R∗ =
1 + Lηβξ −

√
1 − (Lηβξ)2

Lηβ
and Q =

1 −
√

1 − (Lηβξ)2

Lηβξ
.(5.5)

Assume that F ′ is Lipschitz continuous on B(x0, R
∗) with modulus L, and that

ξ ≤ min

{
1

Lβη
, Δ

}
and r ≥ R∗(5.6)

(for example, (5.6) is satisfied if

ξ ≤ min

{
1

Lβη
,

1

2
r, Δ

}
(5.7)

holds). Let {xn} denote the sequence generated by Algorithm A (η,Δ, x0). Then {xn}
converges to some x∗ with F (x∗) ∈ C and

‖xn − x∗‖ ≤ Q2n−1∑2n−1
i=0 Qi

R∗ for each n = 0, 1, . . . .(5.8)

Proof. Let α be given as in (4.24), namely, α = ηβ
1+Lηβξ . Moreover, by (5.1)–(5.5),

one has that

r∗α = R∗, qα = Q, rα =
1 + Lηβξ

Lηβ
, bα =

1 + Lηβξ

2Lηβ
(5.9)

and

tα,n =
1 −Q2n−1

1 −Q2n R∗.(5.10)
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Hence condition (4.3) (resp., (4.4)) is equivalent to the three inequalities

ξ ≤ 1 + Lηβξ

2Lηβ
, ξ ≤ Δ, and r∗α ≤ r

(
resp., ξ ≤ bα

rα
r

)
,

and is hence, by (5.9), also equivalent to condition (5.6) (resp., (5.7)). Thus we apply
Corollary 4.2 to conclude that the sequence {xn} converges to some x∗ with F (x∗) ∈ C
and, for each n = 1, 2, . . . ,

‖xn − x∗‖ ≤ r∗α − tα,n.

Noting, by (5.9) and (5.10), that

r∗α − tα,n =

(
1 − 1 −Q2n−1

1 −Q2n

)
R∗ =

Q2n−1∑2n−1
i=0 Qi

R∗,

it follows that (5.8) holds, and the proof is complete.
The following corollary (which requires no proof by virtue of Theorem 5.1 and

Remark 4.3(a)) is a slight extension of [13, Theorem 1] (which, in turn, extends a
result of Burke and Ferris [4, Theorem 4.1]), and our conditions such as (5.11) are
more direct than the corresponding ones in [13]. In fact, the conditions (a)–(c) of [13,
Theorem 1] clearly imply the condition (5.11) below. Moreover, by (a) and (b) of [13,
Theorem 1], δ̄ > 4ηβ̄d(F (x̄), C) = 4ξ̄. Since, for each ξ ≤ 1

Lβ̄η
,

1 + Lηβ̄ξ̄ −
√

1 − (Lηβ̄ξ̄)
2

Lηβ̄ξ̄
≤ 2,

one has that

1 + Lηβ̄ξ̄ −
√

1 − (Lηβ̄ξ̄)
2

Lηβ̄
=

1 + Lηβ̄ξ̄ −
√

1 − (Lηβ̄ξ̄)
2

Lηβ̄ξ̄
ξ̄ ≤ 2ξ̄ < δ̄.

Hence, r̄∗ := δ̄ satisfies the requirements of Corollary 5.2 below.
Corollary 5.2. Let x̄ ∈ R

v be a regular point of the inclusion (3.1) with positive
constants r̄ and β̄ satisfying (4.23) in place of r and β, respectively. Let L ∈ (0,+∞),

η ∈ [1,+∞), Δ ∈ (0,+∞], ξ̄ = ηβ̄d(F (x̄), C), and let r̄∗ >
1+Lηβ̄ξ̄−

√
1−(Lηβ̄ξ̄)2

Lηβ̄
.

Assume that F ′ is Lipschitz continuous on B(x̄, r̄∗) with modulus L, and that

ξ̄ < min

{
1

Lβ̄η
,

1

2
r̄, Δ

}
.(5.11)

Then, there exists a neighborhood U(x̄) of x̄ such that the sequence {xn} generated by
Algorithm A (η,Δ, x0) with x0 ∈ U(x̄) converges at a quadratic rate to some x∗ with
F (x∗) ∈ C, and the estimate (5.8) holds.

Theorem 5.3. Let η ∈ [1,+∞), Δ ∈ (0,+∞], and let C be a cone. Let x0 ∈ R
v

be such that Tx0
carries R

v onto R
m. Let L ∈ (0,+∞) and ξ = η‖T−1

x0
‖d(F (x0), C).

Instead of (5.5), we write

R∗ =
1 + (η − 1)L‖T−1

x0
‖ξ −

√
1 − 2L‖T−1

x0 ‖ξ − (η2 − 1)(L‖T−1
x0 ‖ξ)2

L‖T−1
x0 ‖η

(5.12)
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and

Q =
1 − L‖T−1

x0
‖ξ −

√
1 − 2L‖T−1

x0 ‖ξ − (η2 − 1)(L‖T−1
x0 ‖ξ)2

L‖T−1
x0 ‖ηξ

.(5.13)

Suppose that F ′ is Lipschitz continuous on B(x0, R
∗) with modulus L, and that

ξ ≤ min

{
1

L‖T−1
x0 ‖(η + 1)

,Δ

}
.(5.14)

Then, the same conclusions hold as in Theorem 5.1.

Proof. Let α be defined as in (4.28); that is, α =
η‖T−1

x0
‖

1+(η−1)L‖T−1
x0 ‖ξ . Then, by (5.1),

the following equivalences hold:

ξ ≤ bα ⇐⇒ 2Lξη‖T−1
x0

‖ ≤ 1 + (η − 1)L‖T−1
x0

‖ξ ⇐⇒ ξL‖T−1
x0

‖(1 + η) ≤ 1;

that is, (4.29) and (5.14) are equivalent. Moreover, it is easy to verify that R∗ and Q
defined in (5.12) and (5.13), respectively, are equal to r∗α and qα defined in (5.2) and
(5.4). Therefore, one can complete the proof in the same way as for Theorem 5.1 but
using Corollary 4.3 in place of Corollary 4.2.

5.2. Smale’s type. Let γ > 0. For the remainder of this section we assume
that L is the function defined by

L(u) =
2γ

(1 − γu)3
for each u with 0 ≤ u <

1

γ
.(5.15)

Then, by (2.1), (2.2), and elementary calculation (cf. [28]), one has that for all α > 0,

rα =

(
1 −
√

α

1 + α

)
1

γ
, bα =

(
1 + 2α− 2

√
α(1 + α)

) 1

γ
(5.16)

and

φα(t) = ξ − t +
αγt2

1 − γt
for each t with 0 ≤ t <

1

γ
.(5.17)

Thus, from [28], we have the following lemma.
Lemma 5.4. Let α > 0. Assume that ξ ≤ bα, namely,

γξ ≤ 1 + 2α− 2
√
α(1 + α).(5.18)

Then the following assertions hold:
(i) φα has two zeros given by

r∗α
r∗∗α

}
=

1 + γξ ∓
√

(1 + γξ)2 − 4(1 + α)γξ

2(1 + α)γ
.

(ii) The sequence {tα,n} generated by Newton’s method for φα with initial point
tα,0 = 0 has the closed form

tα,n =
1 − q2n−1

α

1 − q2n−1
α pα

r∗α for each n = 0, 1, . . . ,(5.19)
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where

qα :=
1 − γξ −

√
(1 + γξ)2 − 4(1 + α)γξ

1 − γξ +
√

(1 + γξ)2 − 4(1 + α)γξ
and(5.20)

pα :=
1 + γξ −

√
(1 + γξ)2 − 4(1 + α)γξ

1 + γξ +
√

(1 + γξ)2 − 4(1 + α)γξ
.

(iii)

tα,n+1 − tα,n
tα,n − tα,n−1

=
1 − q2n

α

1 − q2n−1

α

· 1 − q2n−1−1
α pα

1 − q2n+1−1
α pα

q2n−1

α ≤ qα
2n−1.(5.21)

For the following lemma, we define, for ξ > 0,

I(ξ) = {α > 0 : ξ ≤ bα} = {α > 0 : γξ ≤ 1 + 2α− 2
√

α(1 + α)}.(5.22)

Sometimes in order to emphasize the dependence, we write q(α, ξ) for qα defined by
(5.20).

Lemma 5.5. The following assertions hold:
(i) For each α > 0, the function q(α, ·) is strictly increasing on (0, bα].
(ii) For each ξ > 0, the function q(·, ξ) is strictly increasing on I(ξ).
Proof. We prove only the assertion (i), as (ii) can be proved similarly. Let α > 0.

Define

g1(t) = (1 + t)2 − 4(1 + α)t for each t

and

g2(t) = 1 − t +
√

g1(t) for each t ∈ (0, 1 + 2α− 2
√

α(1 + α)].

Then,

g′1(t) = 2(1 + t) − 4(1 + α) for each t

and

g′2(t) = −1 +
g′1(t)

2
√
g1(t)

=
g′1(t) − 2

√
g1(t)

2
√
g1(t)

for each t ∈ (0, 1 + 2α− 2
√

α(1 + α)].

Define

g(t) = 1 − 2
√
g1(t)

g2(t)
for each t ∈ (0, 1 + 2α− 2

√
α(1 + α)].

Then, for each t ∈ (0, 1 + 2α− 2
√

α(1 + α)],

g′(t) = −g′1(t)g2(t) + 2g1(t) −
√

g1(t)g
′
1(t)

g2
2(t)
√
g1(t)

= − (1 − t)g′1(t) + 2g1(t)

g2
2(t)
√
g1(t)

.

Since (as can be verified easily)

(1 − t)g′1(t) + 2g1(t) = −4α(1 + t) < 0,
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it follows that g′ > 0 on (0, 1 + 2α − 2
√

α(1 + α)], and hence g is increasing on

(0, 1 + 2α− 2
√

α(1 + α)]. Noting that

q(α, ξ) = g(γξ) for each ξ ∈ (0, bα],

the desired conclusion holds. The proof is complete.
Theorem 5.6. Let x0 ∈ R

v be a regular point of the inclusion (3.1) with r > 0
and β > 0 such that (4.23) holds. Let η ∈ [1,+∞), Δ ∈ (0,+∞], ξ = ηβd(F (x0), C),

and α = ηβ(1−γξ)2

ηβ+(1−ηβ)(1−γξ)2 . Set

r∗α =
1 + γξ −

√
(1 + γξ)2 − 4(1 + α)γξ

2(1 + α)γ
and(5.23)

qα =
1 − γξ −

√
(1 + γξ)2 − 4(1 + α)γξ

1 − γξ +
√

(1 + γξ)2 − 4(1 + α)γξ
.

Assume that F ′ satisfies the L-average Lipschitz condition on B(x0, r
∗
α) and that

(5.24)

ξ ≤ min

⎧⎨
⎩1 + 2ηβ − 2

√
ηβ(1 + ηβ)

γ
,

(
1 + 2ηβ − 2

√
ηβ(1 + ηβ)

)
(1 + ηβ)

1 + ηβ −
√

ηβ(1 + ηβ)
r, Δ

⎫⎬
⎭ .

Let {xn} denote the sequence generated by Algorithm A (η,Δ, x0). Then {xn} con-
verges at a quadratic rate to some x∗ with F (x∗) ∈ C, and the following assertions
hold:

‖xn − x∗‖ ≤ qα
2n−1r∗α for all n = 0, 1, . . .(5.25)

and

‖xn+1 − xn‖ ≤ q2n−1

α ‖xn − xn−1‖ for all n = 1, 2, . . . .(5.26)

Proof. By (5.15),
∫ ξ

0
L(u) du = (1− γξ)−2 − 1; hence α given in the statement of

the theorem is consistent with (4.24). Set α′ = ηβ. Then, by (5.16),

bα′ =
1

γ

(
1 + 2ηβ − 2

√
ηβ(1 + ηβ)

)
(5.27)

and

bα′

rα′
=

(
1 + 2ηβ − 2

√
ηβ(1 + ηβ)

)
(1 + ηβ)

1 + ηβ −
√

ηβ(1 + ηβ)
.

Thus (5.24) reads

ξ ≤ min

{
bα′ ,

bα′

rα′
r, Δ

}
.(5.28)

Since γξ < 1 by (5.24), it is clear from the definition of α that α < α′ if ξ > 0 and
α = α′ if ξ = 0. Since the function u 
→ bu strictly decreasing by Lemma 2.2, it
follows that if ξ > 0,

bα′ < bα.(5.29)
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We claim that

ξ < bα, ξ ≤ Δ, and r∗α < r.(5.30)

In fact, this claim is trivially true if ξ = 0, and so we can assume that ξ > 0.
Then the first two inequalities follow from (5.28) and (5.29), while the last inequality
follows from the fact that r∗α < r∗α′ ≤ rα′

bα′
ξ ≤ r thanks to (5.28), Lemma 2.1(i),

and Lemma 2.2(iii). Therefore, (5.30) is true. Moreover, by (5.30) and (5.16), γξ <
1 + 2α − 2

√
α(1 + α), the smaller root of the function t :→ (1 + t)2 − 4(1 + α)t.

Therefore, (1+γξ)2−4(1+α)γξ > 0, and so qα < 1 by (5.23). Now, by Corollary 4.2,
the sequence {xn} converges to some x∗ with F (x∗) ∈ C, and the following estimates
hold for each n:

‖xn − x∗‖ ≤ r∗α − tα,n,(5.31)

‖xn+1 − xn‖ ≤ (tα,n+1 − tα,n)

(
‖xn − xn−1‖
tα,n − tα,n−1

)2

≤
(
tα,n+1 − tα,n
tα,n − tα,n−1

)
‖xn − xn−1‖.

(5.32)

Hence (5.25) and (5.26) are true because, by (5.19) and (5.21), one has

r∗α − tα,n =
q2n−1
α (1 − pα)

1 − q2n−1
α pα

r∗α ≤ qα
2n−1r∗α(5.33)

and

tα,n+1 − tα,n
tα,n − tα,n−1

≤ qα
2n−1.(5.34)

Thus the convergence of {xn} is quadratic, and the proof is complete.
The following result can be proved similarly, but applying Corollary 4.3 in place

of Corollary 4.2, and using α′ := η‖T−1
x0

‖ (thus bα′ =
1+2η‖T−1

x0
‖−2

√
η‖T−1

x0 ‖(1+η‖T−1
x0 ‖)

γ ).

Theorem 5.7. Let η ∈ [1,+∞), Δ ∈ (0,+∞], and let C be a cone. Let x0 ∈ R
v

such that Tx0 carries R
v onto R

m. Let ξ = η‖T−1
x0

‖d(F (x0), C) and

α =
η‖T−1

x0
‖(1 − γξ)2

(η − 1)‖T−1
x0 ‖ + (1 − (η − 1)‖T−1

x0 ‖)(1 − γξ)2
.

Set, as in (5.23),

r∗α =
1 + γξ −

√
(1 + γξ)2 − 4(1 + α)γξ

2(1 + α)γ
and(5.35)

qα =
1 − γξ −

√
(1 + γξ)2 − 4(1 + α)γξ

1 − γξ +
√

(1 + γξ)2 − 4(1 + α)γξ
.

Suppose that F ′ satisfies the L-average Lipschitz condition on B(x0, r
∗
α) and that

ξ ≤ min

⎧⎨
⎩

1 + 2η‖T−1
x0

‖ − 2
√

η‖T−1
x0 ‖(1 + η‖T−1

x0 ‖)
γ

, Δ

⎫⎬
⎭ .(5.36)

Then the conclusions hold as in Theorem 5.6.
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5.3. Extension of Smale’s approximate zeros. The following notion of ap-
proximate zeros was introduced in [26] for Newton’s method. Let f be an operator
from a domain D in a Banach space X to another one Y . Recall that Newton’s
iteration for f is defined as follows:

xn+1 = xn − f ′(xn)−1f(xn), n = 0, 1, . . . .(5.37)

The sequence {xn} is said to satisfy Smale’s condition if

‖xn+1 − xn‖ ≤
(

1

2

)2n−1

‖xn − xn−1‖ for each n = 1, 2, . . . .(5.38)

Note that (5.38) implies that {xn} is a Cauchy sequence and hence converges (with
limit denoted by x∗). By (5.37) it follows that x∗ is a zero of f .

Definition 5.8. Suppose that x0 ∈ D is such that Newton iteration (5.37) is
well defined for f and {xn} satisfies Smale’s condition. Then x0 is said to be an
approximate zero of f .

Note that if x0 is an approximate zero of f , then Newton iteration (5.37) converges
to a zero x∗ of f . We now extend the notion of approximate zeros to the Gauss–
Newton method for convex composite optimization problems.

Definition 5.9. Suppose that x0 ∈ D is such that the sequence {xn} generated
by Algorithm A (η,Δ, x0) converges to a limit x∗ solving (1.1) and satisfies Smale’s
condition. Then x0 is said to be an (η,Δ)-approximate solution of (1.1).

Recall that L is defined by (5.15).
Theorem 5.10. Let x0 ∈ R

v be a regular point of the inclusion (3.1) with r > 0
and β > 0 such that (4.23) holds. Let η ∈ [1,+∞), Δ ∈ (0,+∞], ξ = ηβd(F (x0), C),
and

R̂ =

(
1 −

√
ηβ

1 + ηβ

)
1

γ
.

Suppose that F ′ satisfies the L-average Lipschitz condition on B(x0, R̂) and that

(5.39)

ξ ≤ min

⎧⎨
⎩4 + 9ηβ − 3

√
ηβ(9ηβ + 8)

4γ
,

(
1 + 2ηβ − 2

√
ηβ(1 + ηβ)

)
(1 + ηβ)

1 + ηβ −
√

ηβ(1 + ηβ)
r, Δ

⎫⎬
⎭ .

Then, x0 is an (η,Δ)-approximate solution of (1.1).
Proof. Let α be defined as in Theorem 5.6, and set α′ = ηβ. Then, as in the

proof of Theorem 5.6, we have α ≤ α′ and rα′ = R̂ by (5.16). By Lemma 2.2(iii) and
(2.7), it follows that

r∗α ≤ r∗α′ ≤ rα′ = R̂.

Thus, by the assumptions, F ′ satisfies the L-average Lipschitz condition on B(x0, r
∗
α).

On the other hand, noting that

4 + 9ηβ − 3
√
ηβ(9ηβ + 8)

4γ
<

1 + 2ηβ − 2
√

ηβ(1 + ηβ)

γ
,(5.40)
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we see that (5.39) implies (5.24). Therefore, one can apply Theorem 5.6 to conclude
that the sequence {xn} converges to a solution x∗ of (1.1) and

‖xn+1 − xn‖ ≤ q2n−1

α ‖xn − xn−1‖ for all n = 1, 2, . . . .(5.41)

It remains to show that qα ≤ 1
2 . To do this we need to emphasize the dependence

on the parameters, and so we write q(α, ξ) for qα defined by (5.20) as before. Note
that, by (5.27) the right-hand-side member of the inequality (5.40) is simply bα′ , while
the left-hand-side member majorizes ξ by (5.39). It follows from the monotonicity of
q(·, ·) established in Lemma 5.5 that

q(α, ξ) ≤ q(α′, ξ) ≤ q

(
α′,

4 + 9ηβ − 3
√

ηβ(9ηβ + 8)

4γ

)
=

1

2
,

where the last equality can be verified elementarily. This completes the proof.
Similar to the above proof, we can use Theorem 5.7 in place of Theorem 5.6 to

verify the following result.
Theorem 5.11. Let η ∈ [1,+∞), Δ ∈ (0,+∞], and let C be a cone. Let x0 ∈ R

v

such that Tx0 carries R
v onto R

m. Let ξ = η‖T−1
x0

‖d(F (x0), C) and

R̃ =

(
1 −

√
η‖T−1

x0 ‖
1 + η‖T−1

x0 ‖

)
1

γ
.

Suppose that F ′ satisfies the L-average Lipschitz condition on B(x0, R̃) and that

ξ ≤ min

⎧⎨
⎩

4 + 9η‖T−1
x0

‖ − 3
√

η‖T−1
x0 ‖(9η‖T−1

x0 ‖ + 8)

4γ
, Δ

⎫⎬
⎭ .(5.42)

Then, x0 is an (η,Δ)-approximate solution of (1.1).

6. Examples. Let us begin with a simple example demonstrating a quasi-regular
point which is not a regular point.

Example 6.1. Consider the operator F from R
2 to R

2 defined by

F (x) =

(
1 − t1 + t2 + t21

1 − t1 + t2

)
for each x = (t1, t2) ∈ R

2,

where R
2 is endowed with the l1-norm. Let x0 = 0 ∈ R

2 and C = {0} ⊆ R
2. Then

F ′(x) =

(
−1 + 2t1 1

−1 1

)
for each x = (t1, t2) ∈ R

2;

in particular, F (x0) = (1, 1) and

F ′(x0) =

(
−1 1
−1 1

)
.

Thus x0 does not satisfy (3.12). Moreover,

kerF ′(x0) ∩ (C − F (x0))
� = {(t, t) : t ≥ 0} �= {0},
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and hence x0 is not a regular point of the inclusion (3.1). In view of the definition of
D(x) in (3.2), we have that, for x = (t1, t2) ∈ R

2,

D(x) =

{
{(− t1

2 ,−1 + t1
2 − t2)}, t1 �= 0,

{(d1, d1 − 1 − t2) : d1 ∈ R}, t1 = 0

(note that F ′(x) is of full rank if and only if t1 �= 0). Therefore,

d(0,D(x)) ≤ 1 + |t1| + |t2| = 1 + ‖x‖ for each x = (t1, t2) ∈ R
2

and

d(F (x), C) = |1−t1 +t2 +t21|+ |1−t1 +t2| ≥ 1−‖x‖ for each x = (t1, t2) ∈ B(x0, 1).

This implies that

d(0,D(x)) ≤ β(‖x− x0‖)d(F (x), C) for each x = (t1, t2) ∈ B(x0, 1),

where β(t) = 1+t
1−t for each t ∈ [0, 1). Thus, x0 is a quasi-regular point with quasi-

regular radius rx0 ≥ 1. In fact, rx0
= 1 because

lim
t1→0+

d(0,D(x))

d(F (x), C)
= lim

t1→0+

1

t1
= +∞

as x goes to (0,−1) on the radial l : 1 − t1 + t2 = 0, t1 ≥ 0.
Next we give a few examples to illustrate some situations where our results are

applicable but not the earlier results in the literature. For the following examples,
recall that C is defined by (1.3) and we take

(6.1) η = 1 and Δ = +∞.

Regarding the convergence issue of Gauss–Newton methods, the advantage of
considering Wang’s L-average Lipschitz condition rather than the classical Lipschitz
condition is shown in the following example, for which Theorem 5.7 is applicable but
not Theorem 5.3.

Example 6.2. Let m = n = 1 and h be defined by

h(y) =

{
0, y ≤ 0,
y, y ≥ 0.

Let τ be a constant satisfying

(6.2) 10
√

2 − 14 < τ < 3 − 2
√

2,

and define

(6.3) F (x) =

{
τ − x + x2

1−x , x ≤ 1
2 ,

τ − 1
2 + 2x2, x ≥ 1

2 .

Then C = (−∞, 0],

F ′(x) =

{
−2 + 1

(1−x)2 , x ≤ 1
2 ,

4x, x ≥ 1
2 ,



636 CHONG LI AND K. F. NG

and

(6.4) F ′′(x) =

{
2

(1−x)3 , x < 1
2 ,

4, x > 1
2 .

Let γ = 1, and let L be defined as in (5.15), that is

L(u) =
2

(1 − u)3
for each u with 0 ≤ u < 1.(6.5)

Then

(6.6) L(u) < L(v) whenever 0 ≤ u < v < 1.

It follows from (6.4) that

(6.7) sup{F ′′(x) : x ∈ [−r, r] \ {1/2}} =

{
16, r ≥ 1

2 ,
2

(1−r)3 , 0 < r ≤ 1
2 ,

and that

(6.8) 0 < F ′′(u) ≤ F ′′(|u|) ≤ L(|u|) whenever 1/2 �= u < 1.

Let x0 = 0. Then, for all x, x′ ∈ B(x0, 1) with |x′|+ |x−x′| < 1, it follows from (6.6)
and (6.8) that
(6.9)

|F ′(x) − F ′(x′)| = |x− x′|
∫ 1

0

F ′′(x′ + t(x− x′))dt ≤ |x− x′|
∫ 1

0

L(|x′| + t|x− x′|)dt.

Thus F ′ satisfies the L-average Lipschitz condition on B(x0, 1) with L defined by
(6.5). Note that Tx0

carries R onto R and ‖T−1
x0

‖ = 1 as F ′(x0) = −1. Let ξ be
defined as in Theorems 5.3 and 5.7. Since F (x0) = τ and by (6.2), we have

(6.10) ξ = ‖T−1
x0

‖d(F (x0), C) = τ < 3 − 2
√

2.

Thus (5.36) is satisfied. Recalling the definitions of α and r∗α in Theorem 5.7, we have
that α = 1 and

r∗α =
1 + ξ −

√
(1 + ξ)2 − 8ξ

4
≤ 1 + ξ

4
≤ 1 + 3 − 2

√
2

4
< 1.

Therefore Theorem 5.7 is applicable with initial point x0. We show next that The-
orem 5.3 is not applicable here. In fact, by (6.7), one has that, for any r > 0, F ′ is
also Lipschitz continuous on B(x0, r) with the (least) Lipschitz constant Lr given by

(6.11) Lr =

{
2

(1−r)3 , r ≤ 1
2 ,

16, r ≥ 1
2 .

Suppose that there are ξ, L, and R∗ satisfying the assumptions stated in Theorem 5.3.
For simplicity of notation we write r for R∗. Then by the least property of Lr, (5.12),
(5.14), and by a similar argument as for (6.10), we have

L ≥ Lr,(6.12)

r =
1 −

√
1 − 2Lξ

L
,(6.13)
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and

(6.14) τ = ξ ≤ 1

2L
≤ 1

2Lr
.

Since τ > 10
√

2 − 14 > 1
32 , we have from (6.14) that Lr < 16, and it follows from

(6.11) that r < 1/2 and hence Lr = 2
(1−r)3 ≥ 2. Consequently, by (6.12) and (6.13),

we have

(6.15) τ = ξ = r − Lr2

2
≤ r − Lrr

2

2
≤ r − r2.

Combining this with (6.14) and (6.11), we have that

(6.16) τ ≤ min

{
(1 − r)3

4
, r − r2

}
.

Note that the function r 
→ (1−r)3

4 is decreasing and r 
→ r − r2 increasing on [0, 1
2 ].

Hence

(6.17) τ ≤ min

{
(1 − r)3

4
, r − r2

}
= r0 − r2

0 = 10
√

2 − 14,

where r0 = 3 − 2
√

2 is the least positive root of equation (1−r)3

4 = r − r2. However,
(6.17) contradicts (6.2), and therefore Theorem 5.3 is not applicable to x0.

Even when initial point x0 is regular, the advantage to considering the quasi
regularity bound functions rather than a constant β with the property stated in
Proposition 3.3 is shown in the following example, for which Theorem 5.1 (and hence
results in [4, 13]) are not applicable while Theorem 5.3 is applicable, which is based on
the quasi-regular bound function βx0 satisfying (3.14) rather than the quasi-regular
bound constant β given by Proposition 3.3.

Example 6.3. Let m = n = 1 and h be defined by

h(y) = |y| for each y ∈ R.

Then C = {0}. Let
√

3−1
4 < τ ≤ 1

4 and define

F (x) = τ − x + x2 for each x ∈ R.

Then

F ′(x) = −1 + 2x for each x ∈ R;

hence F ′ is Lipschitz continuous with the modular L = 2. Let x0 = 0. It is clear that
Tx0 carries R onto R and ‖T−1

x0
‖ = 1 as F ′(x0) = −1. Since

(6.18) ‖T−1
x0

‖d(F (x0), C) = τ ≤ 1

4
,

Theorem 5.3 is applicable with initial point x0 = 0. Below we shall show that Theo-
rem 5.1 is not applicable. Suppose, on the contrary, that there exist r > 0 and β > 0
satisfying the assumptions stated in Theorem 5.1 for x0. Then

(6.19) D(x) is nonempty and d(0,D(x)) ≤ βd(F (x), C) for each x ∈ B(x0, r),
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(6.20) r ≥ 1 + 2βξ −
√

1 − (2βξ)2

2β
,

and

(6.21) βτ = ξ ≤ 1

2β
.

By definition, it is easy to see that, for each x ∈ R,

(6.22) D(x) =

{
{−F ′(x)−1F (x)}, x �= 1

2 ,

∅, x = 1
2 ,

and it follows from (6.19) that r ≤ 1
2 and, for each x ∈ B(x0, r),

(6.23) d(0,D(x)) = |F ′(x)−1F (x)| =
1

1 − 2|x| |F (x)| =
1

1 − 2|x|d(F (x), C).

By (6.19) this implies that

(6.24)
1

1 − 2|x| ≤ β for each x ∈ B(x0, r).

Considering x0 = 0, this implies 1
1−2r ≤ β; that is,

(6.25) 2βr ≤ β − 1.

It follows from (6.20) that

(6.26) 1 + 2βξ −
√

1 − (2βξ)2 ≤ β − 1,

or equivalently,

(6.27) ((2ξ − 1)2 + (2ξ)2)β2 + 4(2ξ − 1)β + 3 ≤ 0.

Hence

(6.28) (4(2ξ − 1))2 − 4 · 3((2ξ − 1)2 + (2ξ)2) ≥ 0,

which implies that ξ ≤
√

3−1
4 . This contradicts the assumption that τ >

√
3−1
4 because

ξ = βτ ≥ τ by (6.21) and (6.24).
We remark that, on one hand, the results in section 5 cover (and improve) the

cases considered by Burke and Ferris and by Robinson (the initial points are regular
in [4, 18]), and, on the other hand, there are examples of quasi-regular but not regular
points x0 for which Theorem 4.1 is applicable.

Example 6.4. Let m = n = 3. To ease our computation, let R
3 be endowed with

the l1-norm. Let h be defined by

h(x) = χ(t1) + χ(t2) +

∣∣∣∣t3 − t1 − t2 −
1

8

∣∣∣∣ for each x = (t1, t2, t3) ∈ R
3,

where χ(t) is a real-valued function on R defined by

χ(t) =

⎧⎨
⎩

−1 − t, t ≤ −1,
0, −1 ≤ t ≤ 0,
t, t ≥ 0.
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Define

(6.29) A = {(c1, c2, c3) : c3 = c1 + c2},

and let F : R
3 
→ R

3 be defined by

(6.30) F (x) =

⎛
⎜⎝

1
16 − t1 + t21 + t2 + t3
1
16 + t1 − t2 + t22 + t3

t21 + t22 + 2t3

⎞
⎟⎠ for each x = (t1, t2, t3) ∈ R

3.

Then

C =

{
(c1, c2, c3) : c1, c2 ∈ [−1, 0], c3 = c1 + c2 +

1

8

}
,(6.31)

C − F (x) is contained in A,(6.32)

F ′(x) =

⎛
⎝ −1 + 2t1 1 1

1 −1 + 2t2 1
2t1 2t2 2

⎞
⎠ for each x = (t1, t2, t3) ∈ R

3,(6.33)

and hence

(6.34) C − F (x) is contained in A = {F ′(x)d : d ∈ R
3} for each x ∈ R

3.

In particular, for x0 = 0, we have that

(6.35) F ′(x0) =

⎛
⎝ −1 1 1

1 −1 1
0 0 2

⎞
⎠ ,

and hence

(6.36) kerF ′(x0) = {(t, t, 0) : t ∈ R}.

Since F (x0) = ( 1
16 ,

1
16 , 0), one has that

(6.37) kerF ′(x0) ∩ (C − F (x0))
� = {(t, t, 0) : t ≥ 0};

hence x0 is not a regular point of (3.1), and the condition of Robinson is not sat-
isfied (see Proposition 3.7). Below we shall show that x0 is a quasi-regular point
with the quasi-regular radius rx0 and the quasi-regular bound function βx0

satisfying
respectively

(6.38) rx0 ≥ 3

4
and βx0(t) ≤

2

3 − 4t
for each t ∈

[
0,

3

4

)
.

To do this, we note first that F ′ satisfies the L-average Lipschitz condition on R
3 with

L = 2,

(6.39) ‖F ′(x) − F ′(y)‖ ≤ 2‖x− y‖ for each x, y ∈ R
3,

and the rank of F ′(x) is given by

(6.40) rankF ′(x) = 2 for each x ∈ R
3.
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Since

F ′(x) = F ′(x0) + F ′(x) − F ′(x0) and ‖F ′(x) − F ′(x0)‖ ≤ 2‖x− x0‖,

it follows from the perturbation property of matrixes (cf. [27, 30]) that

(6.41) ‖F ′(x)†‖ ≤ ‖F ′(x0)
†‖

1 − 2‖x− x0‖‖F ′(x0)†‖

holds for each x ∈ R
3 with 2‖x − x0‖‖F ′(x0)

†‖ < 1, where A† denotes the Moore–
Penrose generalized inverse of the matrix A (cf. [27, 30]). By (6.35), one has that

(6.42) F ′(x0)
† =

⎛
⎜⎝

− 1
4

1
4 0

1
4 − 1

4 0

1
6

1
6

1
3

⎞
⎟⎠ and ‖F ′(x0)

†‖ =
2

3
.

This together with (6.41) implies that

(6.43) ‖F ′(x)†‖ ≤ 2

3 − 4‖x− x0‖
for each x ∈ B

(
x0,

3

4

)
.

On the other hand, by (6.33) and (3.2), we have

(6.44) D(x) = F ′(x)†(C − F (x)) for each x ∈ R
3

and, consequently, for each x ∈ B(x0,
3
4 ),

(6.45) d(0,D(x)) ≤ ‖F ′(x)†‖d(F (x), C) ≤ 2

3 − 4‖x− x0‖
d(F (x), C).

This shows that x0 is a quasi-regular point with the quasi-regular radius rx0 and the
quasi-regular bound function βx0 satisfying (6.38). Let r = 3

4 . Recalling (4.2) and
(6.1), it follows from (6.38) that

(6.46) α0(r) ≤ sup

{
β(t)

β(t)2t + 1
: ξ ≤ t < r

}
=

2

3
,

where β(t) := 2
3−4t for each t ∈ [0, 3

4 ). Thus taking α = 2
3 in (2.1), we get that

(6.47) rα =
3

4
and bα =

3

8
.

By (4.1) and (6.38),

ξ = βx0
(0)d(F (x0), C) ≤ β(0)‖F (x0) − c0‖ =

1

6
,

where c0 = (0, 0, 1
8 ). It follows that (4.4) is satisfied. Hence Theorem 4.1 is applicable

with initial point x0 even though it is not a regular point.
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7. Conclusion. In connection with inclusion problem (1.2) and for a given point
x0 we introduce two new notions: (a) the L-average Lipschitz condition for F ′ and
(b) quasi regularity (with the associate quasi-regular radius rx0 and quasi-regular
bound function βx0). The notion (a) extends the classical Lipschitz condition and
Smale’s condition, and notion (b) extends the regularity. When Robinson’s condition
(3.12) is satisfied, x0 is shown to be a regular point, and the associate quasi-regular
radius rx0

as well as the associate quasi-regular bound function βx0 are estimated
if in addition F ′ satisfies (a) with suitable L. We provide sufficient conditions for
convergence results with a quasi-regular initial point x0 in the Gauss–Newton method
for the convex composition optimization problem (1.1) with C given to be the set of
all minimizers of a convex function h. These conditions are given in terms of rx0 ,
βx0

, and L in (a). Examples are given to show that the new concept and results are
nontrivial extensions of the existing ones.
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Abstract. We consider a (finite or infinite) family of closed convex sets with nonempty inter-
section in a normed space. A property relating their epigraphs with their intersection’s epigraph is
studied, and its relations to other constraint qualifications (such as the linear regularity, the strong
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1. Introduction. In dealing with a lower semicontinuous extended real-valued
function φ defined on a Banach space (or more generally, a normed linear space)
X, it is not only natural but also useful to study its relation with the epigraph
epiφ := {(x, r) ∈ X × R : φ(x) ≤ r}, which is clearly a closed convex subset of the
product X×R. Conversely, given a nonempty closed convex set C in X, let σC denote
the support function of C, which is defined by

σC(x∗) = sup{〈x∗, x〉 : x ∈ C}, x∗ ∈ X∗,

where X∗ denotes the dual space of X and 〈x∗, x〉 = x∗(x), the value of the functional
x∗ at x. Thus σC is a w∗-lower semicontinuous convex function and epiσC is a
w∗-closed convex subset of X∗ × R. In this paper, we shall apply this simple duality
between C and epiσC to study several important aspects (including the regularity,
the strong conical hull intersection property (CHIP), Jameson’s property (G), and
other constraint qualifications) for a CCS -system {Ci : i ∈ I}, by which we mean a
family of closed convex sets in X with nonempty intersection ∩i∈ICi, where I is an
index set.

For the case when I is finite, the concept of regularity and its quantitative versions
were introduced in [4, 5, 6] by Bauschke, Borwein, and Li and were utilized to establish
norm or linear convergence results. The concept of the strong CHIP was introduced
by Deutsch, Li, and Ward in [12], and was utilized in [13], as well as in [9, 24, 25], to
reformulate certain optimization problems with constraints. All the works cited above
were in the Hilbert space or Euclidean space setting. The concept of property (G)
was introduced by Jameson [17] for a pair of cones, and was utilized to give a duality
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characterization of the linear regularity. In improving the partial results obtained
by Lewis and Pang (see [23, 31]) and by Bauschke, Borwein, and Li [6], Jameson’s
result was extended by Ng and Yang [30] to the general case (without the additional
assumption that each Ci is a cone), but still only for finite I. For the case when X is
a Hilbert space, the same result was also independently obtained by Bakan, Deutsch,
and Li in [3].

In this paper, we extend the above mentioned results to cover the case when I is
infinite. From both theoretical and application points of view, the extension from the
finite case to the infinite one is of importance. Regarding the strong CHIP, such an
extension has already been done rather successfully with many interesting applications
(see, for example, [27, 28]). Our investigation is made through the consideration of
epigraphs, and in particular by virtue of that, of a new constraint qualification, defined
below. Our works in this connection are inspired by the recent works of Jeyakumar
and his collaborates (see [7, 18, 19, 20, 22], for example), who made use of epigraphs
to provide sufficient conditions to ensure the strong CHIP (for a finite collection of
closed convex sets), and study systems of convex inequalities. We say that a CCS -
system {Ci : i ∈ I} satisfies the SECQ (sum of epigraphs constraint qualification)
if

epiσ∩i∈ICi =
∑
i∈I

epiσCi .

In section 4, we study the interrelationship between this property and other con-
straint qualifications, especially the linear regularity. Also, since this property is
stronger than the strong CHIP (and the converse holds in some important cases; see
Theorem 3.1), it is both natural and useful to inquire whether or not the sufficient
conditions originally provided to ensure the strong CHIP can in fact ensure the SECQ.
In this connection, let us recall the following results proved in [27] (see, in particular,
Theorems 4.1 and 5.1 therein). For the remainder of this section, we assume that I
is a compact metric space (needless to say, if I is finite, then it is compact under the
discrete metric) and see the next section for definitions of the undefined terms.

Theorem 1.1. Consider the CCS-system {D,Ci : i ∈ I}. Suppose that

(a) D is of finite dimension;
(b) the set-valued map i �→ (aff D) ∩ Ci is lower semicontinuous on I;
(c) there exist x0 ∈ D ∩ (∩i∈ICi) and r > 0 such that

(1.1) (aff D) ∩B(x0, r) ⊆ Ci for each i ∈ I;

(d) the pair {aff D,Ci} has the strong CHIP for each i ∈ I.

Then {D,Ci : i ∈ I} has the strong CHIP.

Theorem 1.2. Consider the CCS-system {D,Ci : i ∈ I}. Suppose that

(a) D is of finite dimension l;
(b) the set-valued map i �→ (aff D) ∩Ci is lower and upper semicontinuous on I;
(c) for any finite subset J of I with number of elements |J | ≤ l, there exist

x0 ∈ D and r > 0 such that

(aff D) ∩B(x0, r) ⊆ Ci for each i ∈ J ;

(d) for any finite subset J of I, the subsystem {D,Cj : j ∈ J} has the strong
CHIP.
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Then {D,Ci : i ∈ I} has the strong CHIP.
In section 5, we present corresponding results for the SECQ, and as a consequence

Theorems 1.1 and 1.2 are recaptured with some significant improvements. In our
Corollary 5.5, condition (c) in Theorem 1.1 can be considerably weakened to require
(1.1) to hold for each i ∈ J with some finite subsets J of I and to allow r to depend
on J . In our Corollary 5.6, we show that the words “and upper” in Theorem 1.2(b)
can be dropped and that (d) can be weakened to require the strong CHIP to hold
only for subsystems {D,Cj : j ∈ J} with |J | = l + 1.

2. Notations and preliminary results. The notations used in the present
paper are standard (cf. [8, 15]). In particular, we assume throughout the whole paper
that X is a real normed linear space (we remark that some results in this section
hold for general locally convex spaces). We use B(x, ε) to denote the closed ball
with center x and radius ε. For a set A in X (or in R

n), the interior (resp., relative
interior, closure, convex hull, convex cone hull, linear hull, affine hull, boundary) of A
is denoted by intA (resp., riA, A, coA, coneA, spanA, aff A, bdA), and the negative
polar cone A� is the set defined by

A� = {x∗ ∈ X∗ : 〈x∗, z〉 ≤ 0 for all z ∈ A},

which coincides with the polar A◦ of A when A is a cone. The normal cone of A
at z0 is denoted by NA(z0) and defined by NA(z0) = (A − z0)

�. Let Z be a closed
convex nonempty subset of X. The interior and the boundary of A relative to Z are,
respectively, denoted by rintZ A and bdZ A; they are defined to be, respectively, the
interior and the boundary of the set aff Z ∩A in the metric space aff Z. Thus, a point
z ∈ rintZ A if and only if there exists ε > 0 such that

z ∈ (aff Z) ∩ B(z, ε) ⊆ A,

while z ∈ bdZ A if and only if z ∈ aff Z and, for any ε > 0, (aff Z)∩B(z, ε) intersects
A and its complement.

For a closed subset A of X, the indicator function δA and the support function
σA of set A are, respectively, defined by

δA(x) :=

{
0, x ∈ A,
∞, otherwise

and

σA(x∗) := sup
x∈A

〈x∗, x〉 for each x∗ ∈ X∗.

Let f be a proper lower semicontinuous extended real-valued function on X. The
domain of f is denoted by dom f := {x ∈ X : f(x) < +∞}. Then the subdifferential
of f at x ∈ dom f , denoted by ∂f(x), is defined by

∂f(x) := {z∗ ∈ X∗ : f(x) + 〈z∗, y − x〉 ≤ f(y) for all y ∈ X}.

Let f , g be proper functions, respectively, defined on X and X∗. Let f∗, g∗ denote
their conjugate functions, that is,

f∗(x∗) := sup{〈x∗, x〉 − f(x) : x ∈ X} for each x∗ ∈ X∗,

g∗(x) := sup{〈x∗, x〉 − g(x∗) : x∗ ∈ X∗} for each x ∈ X.
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The epigraph of a function f on X is denoted by epi f and defined by

epi f := {(x, r) ∈ X × R : f(x) ≤ r}.

Then, for proper lower semicontinuous extended real-valued convex functions f1 and
f2 on X, we have

(2.1) f1 ≤ f2 ⇐⇒ f∗
1 ≥ f∗

2 ⇐⇒ epi f∗
1 ⊆ epi f∗

2 ,

where the forward direction of the first arrow and the second equivalence are easy to
verify, while the backward direction of the first arrow is standard (cf. [35, Theorem
2.3.3]).

For closed convex sets A,B, the following assertions are well known and easy to
verify:

σA = δ∗A,(2.2)

NA(x) = ∂δA(x) for each x ∈ A,(2.3)

σA(x∗) = 〈x∗, x〉 ⇔ x∗ ∈ NA(x) ⇐⇒ (x∗, 〈x∗, x〉) ∈ epiσA for each x ∈ A,(2.4)

and

epiσA ⊆ epiσB if A ⊇ B.

Let {Ai : i ∈ J} be a family of subsets of X containing the origin. The set∑
i∈J Ai is defined by

∑
i∈J

Ai =

{ {∑
i∈J0

ai : ai ∈ Ai, ∅ �= J0 ⊆ J being finite
}

if J �= ∅,
{0} if J = ∅.

Let I be an arbitrary index set. The following concept of the strong CHIP plays an
important role in optimization theory (see [3, 6, 9, 10, 11, 33]) and is due to [12, 13]
in the case when I is finite and to [26, 27] in the case when I is infinite.

Definition 2.1. Let {Ci : i ∈ I} be a collection of convex subsets of X. The
collection is said to have

(a) the strong CHIP at x ∈ ∩i∈ICi if N∩i∈ICi
(x) =

∑
i∈I NCi

(x), that is,(⋂
i∈I

Ci − x

)�

=
∑
i∈I

(Ci − x)�;

(b) the strong CHIP if it has the strong CHIP at each point of ∩i∈ICi;
(c) the SECQ if epiσ∩i∈ICi =

∑
i∈I epiσCi .

Note that N∩i∈ICi(x) ⊇
∑

i∈I NCi(x) holds automatically for x ∈ ∩i∈ICi. Hence
{Ci : i ∈ I} has the strong CHIP at x if and only if

N∩i∈ICi(x) ⊆
∑
i∈I

NCi
(x).

To establish a similar property regarding the SECQ, we first need to extend [16,
part X, Theorem 2.4.4] to the setting of normed linear spaces. We recall that for an

arbitrary function f defined on X∗, we define co f
w∗

by (cf. [35, page 63])

epi(co f
w∗

) := co(epi f)
w∗

.
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Lemma 2.2. Let {gi : i ∈ I} be a family of proper convex lower semicontinuous
functions on X with supi∈I gi(x0) < +∞ for some x0 ∈ X. Then for all y∗ ∈ X∗,

(supi∈I gi)
∗(y∗) = co(infi∈I(g∗i ))

w∗

(y∗).
Proof. It is well known (and immediate from the definition of the conjugate) that

for a family of proper convex lower semicontinuous functions (fi)i∈I on X,

(2.5)

(
inf
i∈I

fi

)∗
= sup

i∈I
f∗
i .

Now, since gi is proper convex lower semicontinuous for each i ∈ I, g∗∗i = gi and g∗i
is proper (cf. [35, Theorem 2.3.3]). Applying (2.5) to g∗i in place of fi, we see that(

inf
i∈I

g∗i

)∗
= sup

i∈I
g∗∗i = sup

i∈I
gi.

From this and the properness assumption on supi∈I gi, we obtain from [35, Theorem

2.3.4] that (infi∈I g
∗
i )

∗∗ = co(infi∈I g∗i )
w∗

. The result follows.
The following lemma was stated without proof in [21, page 902]. We give a proof

here for the sake of completeness (note that the condition that “supi∈I gi is proper”
is needed).

Lemma 2.3. Let {gi : i ∈ I} be a system of proper convex lower semicontinuous
functions on X with supi∈I gi(x0) < +∞ for some x0 ∈ X. Then

(2.6) epi

(
sup
i∈I

gi

)∗
= co

⋃
i∈I

epi g∗i

w∗

.

Proof. For the family {g∗i : i ∈ I} of proper convex lower semicontinuous

functions on X we have ∪i∈I epi g∗i ⊂ epi (infi∈I g
∗
i ) ⊂ co∪i∈I epi g∗i

w∗

. This im-

plies that epi (infi∈I g∗i )
w∗

= co∪i∈I epi g∗i
w∗

. The conclusion follows on invoking
Lemma 2.2.

Proposition 2.4. Let {Ci : i ∈ I} be a collection of closed convex sets in X
with C := ∩i∈ICi �= ∅. Then

epiσC =
∑
i∈I

epiσCi

w∗

.

Proof. Note that supi∈I δCi = δC and that σC = δ∗C by (2.2). It follows that
epiσC = epi(supi∈I δCi)

∗. Consequently, by (2.6) and (2.2), one has that

epiσC = co
⋃
i∈I

epi δ∗Ci

w∗

= co
⋃
i∈I

epiσCi

w∗

=
∑
i∈I

epiσCi

w∗

,

where the last equality holds because epiσCi
is clearly a cone for each i ∈ I.

Corollary 2.5. Let {Ci : i ∈ I} be a collection of closed convex sets in X with
C :=

⋂
i∈I Ci �= ∅. Then the following equivalences are true:

{Ci : i ∈ I} satisfies the SECQ ⇐⇒
∑

i∈I epiσCi is w∗-closed

⇐⇒ epiσC ⊆
∑
i∈I

epiσCi
.(2.7)
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The following simple proposition states that the SECQ is invariant under trans-
lation.

Proposition 2.6. Let {Ci : i ∈ I} be a family of closed convex sets in X.
Suppose that C :=

⋂
i∈I Ci �= ∅. Then {Ci : i ∈ I} satisfies the SECQ if and only if

the system {Ci − x : i ∈ I} does for each x ∈ X.
Proof. Let x ∈ X. Note that

(y∗, α) ∈ epiσC−x ⇐⇒ (y∗, α + 〈y∗, x〉) ∈ epiσC

and

(y∗, α) ∈
∑
i∈I

epiσCi−x ⇐⇒ (y∗, α + 〈y∗, x〉) ∈
∑
i∈I

epiσCi
.

Hence the conclusion follows from Corollary 2.5.
We will need the following notion of semicontinuity of set-valued maps in sections

4 and 5. Readers may refer to standard texts such as [1, 32].
Definition 2.7. Let Q be a metric space. Let X be a normed linear space and

let t0 ∈ Q. A set-valued function F : Q → 2Y \ {∅} is said to be
(i) lower semicontinuous at t0 if, for any y0 ∈ F (t0) and any ε > 0, there exists

a neighborhood U(t0) of t0 such that B(y0, ε) ∩ F (t) �= ∅ for each t ∈ U(t0);
(ii) lower semicontinuous on Q if it is lower semicontinuous at each t ∈ Q.
The following characterization regarding the lower semicontinuity is a reformu-

lation of the equivalence of (i) and (ii) in [27, Proposition 3.1]. For a closed convex
set S in a normed linear space X, let dS(·) denote the distance function of S defined
by dS(x) = inf{‖x − y‖ : y ∈ S} for each x ∈ X. Furthermore, let lim inft→t0 F (t)
denote the lower limit of the set-valued function F at t0 ∈ Q which is defined by

lim inf
t→t0

F (t) := {z ∈ X : ∃{zt}t∈Q with zt ∈ F (t) such that zt → z as t → t0}.

Proposition 2.8. Let Q be a metric space. Let F : Q → 2X \{∅} be a set-valued
function and let t0 ∈ Q. Then the following statements are equivalent:

(i) F is lower semicontinuous at t0.
(ii) For any y0 ∈ F (t0), limt→t0 dF (t)(y0) = 0.
(iii) F (t0) ⊆ lim inft→t0 F (t).
We collect some properties of the lower limit of the set-valued function F at t0 ∈ Q

in the following proposition. The first property is direct from the definition and the
second property is a direct consequence of [32, Proposition 4.15].

Proposition 2.9. Let Q be a metric space and X a normed linear space. Let
F : Q → 2X \ {∅} be a set-valued function such that F (t) is convex for each t ∈ Q.
Let t0 ∈ Q. Then lim inft→t0 F (t) is convex.

Moreover, if X is finite dimensional and B is a compact subset contained in
int(lim inft→t0 F (t)) (e.g., F is lower semicontinuous and B is a compact set contained
in int(F (t0))), then there exists a neighborhood U(t0) of t0 such that B ⊆ intF (t) for
each t ∈ U(t0).

3. The strong CHIP and the SECQ. Recall that I is an arbitrary index set
and {Ci : i ∈ I} is a collection of nonempty closed convex subsets of X. We denote⋂

i∈I Ci by C and assume that 0 ∈ C throughout the whole paper. The following
theorem describes a relationship between the strong CHIP and the SECQ for the
system {Ci : i ∈ I}. Results in this section are folklore; we include their proofs here
for the sake of completeness.
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Theorem 3.1. If {Ci : i ∈ I} satisfies the SECQ, then it has the strong CHIP;
the converse conclusion holds if domσC ⊆ Im ∂ δC , that is, if

(3.1) domσC ⊆
⋃
x∈C

NC(x).

Proof. Suppose that {Ci : i ∈ I} satisfies the SECQ. Let x ∈ C and y∗ ∈ NC(x).
Then (y∗, 〈y∗, x〉) ∈ epiσC by (2.4). Hence, if {Ci : i ∈ I} satisfies the SECQ, one
can apply (2.7) to express (y∗, 〈y∗, x〉) as

(y∗, 〈y∗, x〉) =
∑
j∈J

(y∗j , uj)

for some finite set J ⊆ I and (y∗j , uj) ∈ epiσCj (x) for each j ∈ J . Then 〈y∗j , x〉 ≤
σCj

(y∗j ) ≤ uj for all j ∈ J and
∑

j∈J〈y∗j , x〉 =
∑

j∈J uj . It follows that 〈y∗j , x〉 = uj

for each j ∈ J and hence that y∗j ∈ NCj
(x) by (2.4). Therefore y∗ ∈

∑
i∈I NCi

(x).
Thus the strong CHIP for {Ci : i ∈ I} is proved.

Conversely, assume that domσC ⊆ Im ∂ δC and that the strong CHIP for {Ci :
i ∈ I} is satisfied. We have to show that

(3.2) epiσC ⊆
∑
i∈I

epiσCi
.

To do this, let (y∗, α) ∈ epiσC , that is, α ≥ σC(y∗). Hence y∗ ∈ domσC . Then, by
the assumption and (2.4), there exists x ∈ C such that y∗ ∈ NC(x). By the strong
CHIP assumption, it follows that there exist a finite index set J ⊆ I and y∗j ∈ NCj

(x)
for each j ∈ J such that

(3.3) y∗ =
∑
j∈J

y∗j .

Note that, for each j ∈ J , σCj (y
∗
j ) ≤ 〈y∗j , x〉 because y∗j ∈ NCj (x). Since α ≥ 〈y∗, x〉 =∑

j∈J〈y∗j , x〉, there exists a set {αj : j ∈ J} of real numbers such that

α =
∑
j∈J

αj and σCj
(y∗j ) ≤ 〈y∗j , x〉 ≤ αj for each j ∈ J.

This implies that (y∗j , αj) ∈ epiσCj for each j and (y∗, α) ∈
∑

i∈I epiσCi thanks to
(3.3). Hence (3.2) is proved.

Given a closed convex set C and a finite dimensional linear subspace Y containing
C, recall from [2, section 2.4] and [14] that C ⊆ Y is said to be continuous if y∗ �→
sup{〈y∗, y〉 : y ∈ C} is continuous on Y ∗\{0}. Here, the continuity at y∗0 with
sup{〈y∗0 , y〉 : y ∈ C} = +∞ means that for each α ∈ R there exists a neighborhood
V0 of y∗0 such that sup{〈v∗, y〉 : y ∈ C} > α for all v∗ ∈ V0.

For convenience, we use x∗|Z to denote the restriction to Z of the functional
x∗ ∈ X∗, where Z is a linear subspace of X.

Proposition 3.2. Let C be a nonempty closed convex set in X. Then condition
(3.1) holds in each of the following cases:

(i) There exists a weakly compact convex set D and a closed convex cone K such
that C = D + K.

(ii) dimC < ∞, Im ∂δC is convex, and C is a continuous set as a subset of
spanC.
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Proof. (i) Suppose that (i) holds and let y∗ ∈ domσC . Then since K is a cone,

(3.4) sup
d∈D

〈y∗, d〉 = sup
d∈D

〈y∗, d〉 + sup
k∈K

〈y∗, k〉 = sup
d∈D, k∈K

〈y∗, d + k〉 = σC(y∗) < +∞.

Since D is weakly compact, there exists x ∈ D (⊆ C) such that 〈y∗, x〉 = supd∈D〈y∗, d〉.
Thus by (3.4), 〈y∗, x〉 = σD(y∗) = σC(y∗). Hence y∗ ∈ NC(x) and (3.1) is proved.

(ii) Suppose that (ii) holds. If C is bounded, then C is compact because spanC
is finite dimensional. Hence (3.1) in this case follows from part (i). If C is the whole
space, then (3.1) holds trivially as domσC = Im ∂ δC = {0}. Thus we may assume
that C is a proper and unbounded subset of the finite dimensional space Z := spanC.
Let δ̂C denote the indicator function of the set C as a set in the space Z, and let
σ̂C(c∗) := sup{〈c∗, c〉 : c ∈ C} for each c∗ ∈ Z∗; that is, δ̂C and σ̂C are the indicator
function and the support function of C as a subset of Z, respectively. It is easy to see
from definitions that
(3.5)

domσC = {y∗ ∈ X∗ : y∗|Z ∈ dom σ̂C} and Im ∂δC = {y∗ ∈ X∗ : y∗|Z ∈ Im ∂ δ̂C}.

Now, by the assumption, it follows that Im ∂ δ̂C is convex in Z∗. We claim that

(3.6) dom σ̂C ⊆ Im ∂ δ̂C .

Since C is proper, unbounded, and continuous as a subset of Z, we know from [2,
Proposition 2.4.3] that

(3.7) dom σ̂C\{0} = int(dom σ̂C) �= ∅.

On the other hand, since Im ∂ δ̂C is a convex set in the finite dimensional Banach
space Z∗, one has (cf. [35, Proposition 1.2.1 and Corollary 1.3.4])

(3.8) int(Im ∂ δ̂C) = int(Im ∂ δ̂C).

Moreover, by [35, Theorem 3.1.2], one has dom σ̂C ⊆ Im ∂δ̂C . Consequently, by (3.6)–
(3.8), we get that

dom σ̂C\{0} = int(dom σ̂C) ⊆ int(Im ∂ δ̂C) = int(Im ∂ δ̂C) ⊆ Im ∂ δ̂C .

Therefore claim (3.6) stands because 0 ∈ Im ∂δ̂C . Consequently, (3.1) follows from
(3.5), (3.6), and the Hahn–Banach theorem. The proof is complete.

Combining Theorem 3.1 and Proposition 3.2, we immediately have the following
corollary.

Corollary 3.3. Let {Ci : i ∈ I} be a family of closed convex sets in X. Then
the strong CHIP and the SECQ are equivalent for {Ci : i ∈ I} in each of the following
cases.

(i) There exists a weakly compact convex set D and a closed convex cone K such
that C = D + K.

(ii) dimC < ∞, Im ∂δC is convex, and C is a continuous set as a subset of
spanC.

Remark 3.1. Part (i) was known in some special cases; see [7, Proposition 4.2]
for the case when I is a two point set and D = {0}, and see [20] for the case when I
is a finite set and D = {0}.
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4. Linear regularity and the SECQ. Let I be an arbitrary index set and let
{Ci : i ∈ I} be a CCS -system with 0 ∈ C, where C =

⋂
i∈I Ci as before. Throughout

this section, we shall use Σ∗ to denote the set B∗ × R
+, where B∗ is the closed unit

ball of X∗, while R
+ consists of all nonnegative real numbers. This section is devoted

to a study of the relationship between the linear regularity and the SECQ. We begin
with the notion of the linear regularity for the system {Ci : i ∈ I} and two simple
lemmas (the first one is easy to verify). Recall that, for a closed convex set S in a
normed linear space X, dS(·) denotes the distance function of S.

Definition 4.1. The system {Ci : i ∈ I} is said to be
(i) linearly regular if there exists a constant γ > 0 such that

dC(x) ≤ γ sup
i∈I

dCi(x) for all x ∈ X;

(ii) boundedly linearly regular if, for each r > 0, there exists a constant γr > 0
such that

dC(x) ≤ γr sup
i∈I

dCi
(x) for all x ∈ rB.

Lemma 4.2. Let γ > 0. Then

co∪i∈I(epiσCi ∩ γΣ∗)
w∗

+ {0} × R
+ = co∪i∈I(epiσCi ∩ γΣ∗)

w∗

.

Lemma 4.3. Let γ > 0 and let fγ := γdS. If 0 ∈ S, then

(4.1) epi f∗
γ = epiσS ∩

(
γB∗ × R

+
)
.

Proof. By conjugation computation rules (cf. [35, Theorem 2.3.1(v) and Proposi-
tion 3.8.3(i)]), we have for any x∗ ∈ X∗,

f∗
γ (x∗) = γ(σS + δB∗)

(
x∗

γ

)
= σS(x∗) + δγB∗(x∗).

Then (4.1) follows immediately.
In the next two theorems, we shall use the graph gph f of a function f which is

defined by

gph f := {(x, f(x)) ∈ X × R : x ∈ dom f}.

Clearly, gph f ⊆ epi f for a function f on X.
Theorem 4.4. Let γ > 0. Then the following conditions are equivalent:
(i) For all x ∈ X, dC(x) ≤ γ supi∈I dCi(x).

(ii) epiσC ∩ Σ∗ ⊆ co∪i∈I(epiσCi ∩ γΣ∗)
w∗

.

(iii) gphσC ∩ Σ∗ ⊆ co∪i∈I(epiσCi ∩ γΣ∗)
w∗

.
Proof. By Lemmas 2.3 and 4.3, one has that

epi

(
sup
i∈I

dCi

)∗
= co

⋃
i∈I

epi d∗Ci

w∗

= co
⋃
i∈I

(epiσCi ∩ Σ∗)
w∗

.

Noting that epiσS is a cone, we see that the equivalence of (i) and (ii) follows from
(2.1) and Lemma 4.3.
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By Lemma 4.2, (iii) implies that

epiσC ∩ Σ∗ ⊆ gphσC ∩ Σ∗ + {0} × R
+

⊆ co∪i∈I(epiσCi ∩ γΣ∗)
w∗

+ {0} × R
+

= co∪i∈I(epiσCi ∩ γΣ∗)
w∗

.

Therefore (iii)⇒(ii). Since (ii)⇒(iii) is obvious, the proof is complete.
We give a simple application of our new characterization of the linear regularity

in Theorem 4.4. The following theorem includes an important characterization of the
linear regularity of finitely many closed convex sets in a Banach space, given in [30,
Theorem 4.2].

Theorem 4.5. Let γ > 0 and suppose that X is a Banach space. Consider the
following statements:

(i) For all x ∈ X, dC(x) ≤ γ supi∈I dCi(x).

(ii) For all x ∈ C, NC(x) ∩ B∗ ⊆ co∪i∈I(NCi
(x) ∩ γB∗)

w∗

.
Then (ii) implies (i). If we assume further that I is a compact metric space and
i �→ Ci is lower semicontinuous, then (i) and (ii) are equivalent. In particular, when
I is finite, (i), (ii), (ĩi), and (iii) are equivalent, where (ĩi) and (iii) are defined in the
following:

(ĩi) For all x ∈ C, NC(x) ∩ B∗ ⊆ co∪i∈I(NCi(x) ∩ γB∗).
(iii) For all x ∈ C and for all x∗ ∈ NC(x) ∩ B∗, there exist x∗

i ∈ NCi(x), i ∈ I,
such that

∑
i∈I ‖x∗

i ‖ ≤ γ and x∗ =
∑

i∈I x
∗
i .

Remark 4.1. Let ρ > 0 and recall from [3, 30] that the collection {D1, . . . , Dm}
in X is said to have property (Gρ) if(

m∑
i=1

Di

)⋂
B ⊆

m∑
i=1

(
Di

⋂ 1

ρ
B

)
.

Clearly, when I is finite, there exists γ > 0 such that condition (iii) above holds if
and only if the strong CHIP holds for all x ∈ C and there exists ρ > 0 such that, for
each x ∈ C, {NCi

(x) : i ∈ I} has the property (Gρ) in X∗.
Proof. (ii)⇒(i). In view of Theorem 4.4, to establish (i), it is sufficient to show

that

gphσC ∩ Σ∗ ⊆ co
⋃
i∈I

(epiσCi ∩ γΣ∗)
w∗

.

To do this, let (y∗, σC(y∗)) ∈ gphσC ∩ Σ∗. We have to show that

(4.2) (y∗, σC(y∗)) ∈ co
⋃
i∈I

(epiσCi
∩ γΣ∗)

w∗

.

Since the set on the right-hand side of (4.2) obviously contains the origin, we may
suppose without loss of generality that y∗ �= 0.

Consider first the case when y∗ ∈ Im ∂ δC . Then y∗ ∈ NC(x)∩B∗ for some x ∈ C
by (2.3). Thus one can apply (ii) to find a net {ỹ∗V } with w∗-limit y∗ such that for
each V , ỹ∗V is representable as

ỹ∗V = γ
∑
i∈JV

λiy
∗
i
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for some finite index set JV ⊆ I, y∗i ∈ NCi
(x) ∩ B∗, i ∈ JV , and λi ∈ [0, 1] with∑

i∈JV
λi = 1. Using (2.4) again, we obtain (y∗i , 〈y∗i , x〉) ∈ epiσCi for each i ∈ JV . In

w∗-limits, it follows that

(y∗, 〈y∗, x〉) = lim
V

(ỹ∗V , 〈ỹ∗V , x〉) = lim
V

γ
∑
i∈JV

λi(y
∗
i , 〈y∗i , x〉);

hence,

(4.3) (y∗, 〈y∗, x〉) ∈ co
⋃
i∈I

(epiσCi
∩ γΣ∗)

w∗

and, in particular, (4.2) holds provided that y∗ ∈ Im ∂ δC and ‖y∗‖ ≤ 1. For the
general case (that is, we do not assume that y∗ ∈ Im ∂ δC), by [35, Theorem 3.1.4(ii)],
there exists a sequence (yn, y

∗
n) ∈ gph ∂ δC such that y∗n converges to y∗ in norm and

σC(y∗n) converges to σC(y∗). Note that by (2.4), we have (y∗n, 〈y∗n, yn〉) ∈ gphσC . If
‖y∗n‖ ≤ 1 for all but finitely many n ∈ N, then one can apply (4.3) to (y∗n, σC(y∗n)) in
place of (y∗, σC(y∗)) to conclude that

(4.4) (y∗n, σC(y∗n)) ∈ co
⋃
i∈I

(epiσCi
∩ γΣ∗)

w∗

.

On the other hand, if it happens that ‖y∗n‖ > 1 for infinitely many n ∈ N, then we
must have ‖y∗‖ = 1 and ‖y∗n‖ → 1 as n → ∞. Since Im ∂ δC is a cone, we see that
y∗
n

‖y∗
n‖

∈ Im ∂ δC . Applying (4.3) to (
y∗
n

‖y∗
n‖

, σC(
y∗
n

‖y∗
n‖

)) in place of (y∗, σC(y∗)), we obtain

(4.5)

(
y∗n

‖y∗n‖
, σC

(
y∗n
‖y∗n‖

))
∈ co

⋃
i∈I

(epiσCi
∩ γΣ∗)

w∗

.

Taking limits in (4.4) and (4.5), we get (4.2), as required in both cases. This completes
the proof of (ii)⇒(i).

For the converse implication, let us begin by noting that if (i) holds, then by the
definition of subdifferential, we have

(4.6) ∂ dC(x) ⊆ γ ∂ sup
i∈I

dCi(x) for each x ∈ C.

Now we suppose further that I is compact and that i �→ Ci is lower semicontinuous.
Then by [1, Corollary 1.4.17], i �→ dCi(·) is upper semicontinuous. Hence one can

apply [35, Theorem 2.4.18] to get the inclusion ∂
(
supi∈I dCi

)
(x) ⊆ co∪i∈I ∂ dCi(x)

w∗

,

and it follows from (4.6) that ∂ dC(x) ⊆ γ co∪i∈I ∂ dCi(x)
w∗

; hence (ii) holds for all
x ∈ C thanks to the standard result that ∂ dC(x) = NC(x) ∩ B∗ and ∂ dCi(x) =
NCi(x) ∩B∗ (cf. [35, Proposition 3.8.3]).

Next, we consider the case when I is finite. We need only show that (ii)⇔(ĩi) in
this case. For any x ∈ C, we note that by the Banach–Alaoglu theorem, NCi(x)∩B∗

is w∗-compact for each i ∈ I; thus co∪i∈I(NCi
(x) ∩ B∗) is w∗-closed as I is finite.

Hence (ii) and (ĩi) are the same when I is finite.
Finally, we turn to prove that (ĩi)⇔(iii). The forward implication is obvious.

For the converse implication, fix x ∈ C. Let x∗ ∈ NC(x) ∩ B∗; we wish to show
that x∗ ∈ co∪i∈I(NCi

(x) ∩ γB∗). By (iii), there exist x∗
i ∈ NCi

(x), i ∈ I, with
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∑
i∈I ‖x∗

i ‖ ≤ γ and x∗ =
∑

i∈I x
∗
i . If all the x∗

i ’s are zero, then the inclusion holds
trivially. Otherwise, set λ :=

∑
i∈I ‖x∗

i ‖ > 0. Then λ ≤ γ. Thus we see that

x∗ = λ

( ∑
i∈I, x∗

i 
=0

‖x∗
i ‖
λ

x∗
i

‖x∗
i ‖

+

(
1 −

∑
i∈I, x∗

i 
=0

‖x∗
i ‖
λ

)
0

)
∈ co

⋃
i∈I

(NCi(x) ∩ γB∗),

which completes the proof.
Theorem 4.6. Suppose that

(4.7) co
⋃
i∈I

(epiσCi
∩ Σ∗)

w∗

⊆
∑
i∈I

epiσCi
,

and that {Ci : i ∈ I} is linearly regular. Then it satisfies the SECQ.
Proof. By the assumption, one can combine (4.7) with Theorem 4.4 to conclude

that epiσC∩Σ∗ ⊆
∑

i∈I epiσCi , and hence that epiσC ⊆
∑

i∈I epiσCi for each epiσCi

is a cone.
In the next theorem, we shall provide some sufficient conditions for (4.7). We

first prove a simple lemma. We shall prove it in a bit more general context for later
use. Recall that {Ci : i ∈ I} is a CCS -system with 0 ∈ C.

Lemma 4.7. Let I be a metric space. Suppose that Z is a linear subspace of X
and i �→ Z∩Ci is lower semicontinuous. Consider elements i0 ∈ I, (x∗

0, α0) ∈ X∗×R

and nets {ik} ⊆ I, {(x∗
k, αk)} ⊆ X∗ × R with each (x∗

k, αk) ∈ epiσCik
. Suppose

further that ik → i0, αk → α0, and x∗
k|Z →w∗

x∗
0|Z . If {x∗

k|Z} is bounded, then
(x∗

0, α0) ∈ epiσZ∩Ci0
.

Proof. Let x ∈ Z ∩ Ci0 . We have to prove that 〈x∗
0, x〉 ≤ α0. By the assumption,

there exists a net {xk} ⊆ X with each xk ∈ Z ∩ Cik such that xk → x. Since

〈x∗
0, x〉 = 〈x∗

0 − x∗
k, x〉 + 〈x∗

k, x− xk〉 + 〈x∗
k, xk〉,

where on the right-hand side the first two terms converge to zero and the last term
〈x∗

k, xk〉 ≤ αk for each k, it follows by passing to the limits that 〈x∗
0, x〉 ≤ α0.

Theorem 4.8. Let I be a compact metric space and i �→ Ci be lower semicon-
tinuous on I. Suppose that either I is finite or there exists an index i0 ∈ I such that
dimCi0 < +∞. Then (4.7) holds. Consequently, if {Ci : i ∈ I} is, in addition,
linearly regular, then it satisfies the SECQ.

Proof. We first assume that I is finite, say I = {1, 2, . . . ,m}. Let (x∗, α) ∈
co∪m

i=1(epiσCi ∩ Σ∗)
w∗

. Then there exists a net {(x∗
k, αk)} in co∪m

i=1(epiσCi ∩ Σ∗)
such that (x∗

k, αk) w
∗-converges to (x∗, α). Without loss of generality, we assume that

0 ≤ αk ≤ α + 1 for all k. Each (x∗
k, αk) can be expressed as a convex combination

(4.8) (x∗
k, αk) =

m∑
i=1

λk,i(x
∗
k,i, αk,i)

for some (x∗
k,i, αk,i) ∈ epiσCi ∩ Σ∗ and λk,i ∈ [0, 1] with

∑m
i=1 λk,i = 1. Note that

(4.9) λk,i(x
∗
k,i, αk,i) ∈ epiσCi ∩ Σ∗ for each k and i.

By considering subnets if necessary and by the w∗-compactness of the closed unit ball
in Banach dual space X∗ (the Banach–Alaoglu theorem), we may assume without loss
of generality that for each i, there exist x∗

i ∈ B∗ and βi ∈ [0, α + 1] such that

(4.10) λk,ix
∗
k,i → x∗

i , λk,iαk,i → βi



SECQ, LINEAR REGULARITY, AND THE STRONG CHIP 655

(note that λk,iαk,i ≤ α+1 for all k). By the w∗-closedness of the set epiσCi
, we have

from (4.10) and (4.9) that

(4.11) (x∗
i , βi) ∈ epiσCi for each i.

Passing to the limits in (4.8), we arrive at

(x∗, α) =

m∑
i=1

(x∗
i , βi) ∈

m∑
i=1

epiσCi ,

where the inclusion follows from (4.11).
Next we assume that there exists an index i0 ∈ I such that dimCi0 < +∞. Let

Z0 = spanCi0 and let (x∗, α) ∈ co∪i∈I(epiσCi ∩ Σ∗)
w∗

. Then there exists a net
{(x∗

k, αk)} in co∪i∈I(epiσCi
∩Σ∗) such that (x∗

k, αk) →w∗
(x∗, α). Since Z0 ×R is of

dimension m + 1, one can apply the Carathéodory theorem to express each (x∗
k, αk)

as a convex combination of m + 2 many elements of ∪i∈I(epiσCi ∩Σ∗). Hence there
exist indices ikj ∈ I, nonnegative scalars λk,j , and pairs

(x∗
k,j , αk,j) ∈ epiσC

ikj

∩ Σ∗ for each 1 ≤ j ≤ m + 2

with the properties
∑m+2

j=1 λk,j = 1 and

(4.12) (x∗
k|Z0 , αk) =

m+2∑
j=1

λk,j(x
∗
k,j |Z0 , αk,j).

Note that

(4.13) λk,j(x
∗
k,j , αk,j) ∈ epiσC

ikj

∩ Σ∗.

Since {αk} is convergent, by passing to subnets if necessary, we may assume that
α + 1 ≥ αk ≥ 0. Then we also have {αk} and {λk,jαk,j} bounded for 1 ≤ j ≤
m + 2. Hence, considering subnets if necessary, we may assume that each of the nets
{λk,jx

∗
k,j}, {αk}, {λk,jαk,j} for 1 ≤ j ≤ m + 2 converges, say with limits,

x∗
0,j , α, α0,j ,

and we can assume further that ikj converges to some i0j ∈ I (1 ≤ j ≤ m+2), thanks to
the compactness assumption of I. Making use of (4.13) and thanks to the assumption
that i �→ Ci is lower semicontinuous, it follows from Lemma 4.7 (applied to X in place
of Z) that

(x∗
0,j , α0,j) ∈ epiσC

i0j

for each 1 ≤ j ≤ m + 2.

Moreover, passing to the limits in (4.12), we have

(x∗|Z0 , α) =

m+2∑
j=1

(x∗
0,j |Z0 , α0,j).

Noting the trivial relation that epiσCi0
contains Z⊥

0 × R
+, where Z⊥

0 := {x∗ ∈ X∗ :
x∗|Z0 = 0}, it follows that

(x∗, α) ∈
m+2∑
j=1

(x∗
0,j , α0,j) + Z⊥

0 × R
+ ⊆

∑
i∈I

epiσCi .
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This shows that (4.7) holds.
Finally, in addition we assume that {Ci : i ∈ I} is linearly regular. Then it

follows from Theorem 4.6 that this system satisfies the SECQ.
We intend to relate bounded linear regularity with the strong CHIP. We first

provide a sufficient condition for a system to be linearly regular. The result is known
when the ambient space is a Hilbert space [4, Theorem 4.2.6, Corollary 4.4.4] or a
Banach space [34, Corollary 5]. The corresponding theorems in those references are
derived from a lemma whose proof is based on the open mapping theorem and thus
does not work in general normed linear spaces. As some preparatory work, we first
state the following lemma, which is a generalization of [7, Proposition 3.1(i)] to a
normed linear space (or even locally convex space) setting. We shall omit its proof, as
it is a direct application of [29, Remarque 10.2] (alternatively, the proof given for [7,
Proposition 3.1(i)], which was based on a result in [34], can easily be adopted here).

Lemma 4.9. Let E,F be two closed convex sets in X with E ∩ intF �= ∅. Then
{E,F} satisfies the SECQ.

We now give a sufficient condition for a system to be linearly regular.
Lemma 4.10. Let E be a closed convex set in X containing the origin and let

r > 0. Then

(4.14) dE∩rB(x) ≤ 4 max{dE(x), drB(x)} for each x ∈ X.

Proof. We first show that

(4.15) gphσE∩rB ∩ Σ∗ ⊆ co ((epiσE ∩ 4Σ∗) ∪ (epiσrB ∩ 4Σ∗)) .

Take (y∗, σE∩rB(y∗)) ∈ gphσE∩rB ∩Σ∗. By Lemma 4.9, there exist (y∗1 , α1) ∈ epiσE

and (y∗2 , α2) ∈ epiσrB such that

(y∗, σE∩rB(y∗)) = (y∗1 , α1) + (y∗2 , α2).

This implies that

(4.16) σE∩rB(y∗) = α1 + α2.

Since 0 ∈ E, we have 0 ≤ σE(y∗1) ≤ α1 and hence α2 ≤ σE∩rB(y∗) ≤ r thanks to
(4.16). It follows that r‖y∗2‖ = σrB(y∗2) ≤ α2 ≤ r, and thus ‖y∗1‖ ≤ ‖y∗‖ + ‖y∗2‖ ≤ 2.
Therefore,

(y∗, σE∩rB(y∗)) =
1

2
[(2y∗1 , 2α1) + (2y∗2 , 2α2)] ∈ co((epiσE ∩ 4Σ∗) ∪ (epiσrB ∩ 4Σ∗))

and (4.15) is established. By the implication (iii)⇒(i) of Theorem 4.4 (with γ = 4),
it follows that (4.14) holds.

The following proposition on a relationship between bounded linear regularity
and the linear regularity was shown in [4, Theorem 4.2.6(ii)] for the special case when
X is a Hilbert space.

Proposition 4.11. Let {Ai : i ∈ I} be a system of closed convex sets in X
containing the origin, and suppose that {Ai : i ∈ I} is boundedly linearly regular.
Then for all r > 0, the system {rB, Ai : i ∈ I} is linearly regular.

Proof. Write A = ∩i∈IAi and let r > 0. By assumption, there exists kr > 0 such
that

(4.17) dA(x) ≤ kr sup
i∈I

dAi(x) for each x ∈ rB.
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Let f be defined by f(x) := kr supi∈I dAi
(x) − dA(x) for each x ∈ X. From (4.17),

we see that f(x) ≥ 0 for all x ∈ rB, and the equality holds for all x ∈
⋂

i∈I Ai ∩ rB.
Since f is clearly Lipschitz with modulus kr + 1, it follows from [8, Proposition 2.4.3]
that f(x) + (kr + 1)drB(x) ≥ 0 for all x ∈ X. This implies

dA(x) ≤ (2kr + 1) max

{
drB(x), sup

i∈I
dAi(x)

}
for each x ∈ X.

It follows from Lemma 4.10 that

dA∩rB(x) ≤ 4 max{drB(x), dA(x)}

≤ 4(2kr + 1) max

{
drB(x), sup

i∈I
dAi(x)

}
for each x ∈ X.

This completes the proof.
For the following corollary, we need a lemma, which will also be used in the next

section.
Lemma 4.12. Let {D,Ci : i ∈ I} be a family of closed convex sets with nonempty

intersection. Let A be a closed subset of X such that

(4.18) D
⋂(⋂

i∈I

Ci

)⋂
intA �= ∅.

If {D,Ci : i ∈ I} has the strong CHIP, then so does {D ∩ A,Ci : i ∈ I}. As a
partial converse result, if {D ∩ A,Ci : i ∈ I} has the strong CHIP at some point
a ∈ D ∩ (∩i∈ICi) ∩ intA, so does {D,Ci : i ∈ I}.

Proof. Set E := D ∩ (∩i∈ICi). By hypothesis, NE(x) = ND(x) +
∑

i∈I NCi(x)
for each x ∈ E. Since E ∩ intA �= ∅ and D ∩ intA �= ∅,

N(A∩D)∩(∩i∈ICi)(x) = NA∩E(x) = NA(x) + NE(x) = NA(x) + ND(x) +
∑
i∈I

NCi(x)

= NA∩D(x) +
∑
i∈I

NCi(x) for each x ∈ A ∩ E.

This proves the first part. For the second part, observe that NA(a) = {0}; hence
NA∩D(a) = ND(a) and NA∩E(a) = NE(a). The conclusion is then immediate.

Corollary 4.13. Suppose that I is a compact metric space and the set-valued
function i �→ Ci is lower semicontinuous. Suppose that either I is finite or there
exists an index i0 ∈ I such that dimCi0 < +∞. If {Ci : i ∈ I} is boundedly linearly
regular, then it has the strong CHIP.

Proof. Fix any x ∈ ∩i∈ICi. Let r = ‖x‖ + 1. Since {Ci : i ∈ I} is boundedly
linearly regular, we obtain from Proposition 4.11 that {rB, Ci : i ∈ I} is linearly
regular. Taking an index i∞ /∈ I, set I∞ = I ∪ {i∞} and Ci∞ = rB. Clearly the
map i �→ Ci is lower semicontinuous on I∞. It now follows from the assumptions and
Theorem 4.8 that {Ci : i ∈ I∞} satisfies the SECQ and so does {rB, Ci : i ∈ I}; thus
{rB, Ci : i ∈ I} has the strong CHIP (thanks to Theorem 3.1). Then it follows from
Lemma 4.12 (with D = X and A = rB) that {Ci : i ∈ I} has the strong CHIP at x
because x ∈ int(rB). The proof is complete.

Corollary 4.13 and the implication (i)=⇒(ii) in Theorem 4.5 were established
under the following conditions: (α) I is compact, and (β) the set-valued function
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i �→ Ci is lower semicontinuous. Below we give a simple example with several cases
to illustrate that these conditions are needed.

Example 4.1. Let X = R
2 and J = { 1

n : n ∈ N}. Define Cj := {x ∈ X : ‖x‖ ≤ j}
for each j ∈ J . Consider the system {X,Ci : i ∈ I} with I defined in the following:

(a) I = J .
(b) I = {0} ∪ J and C0 := {x ∈ X : ‖x‖ ≤ 1}.
(c) I = {0} ∪ J and C0 := {0}.

Then, in each case, C = ∩i∈ICi = {0}. Moreover, for each x ∈ X, dCi(x) =
max{0, ‖x‖−i} for each i ∈ J , while dC0(x) = max{0, ‖x‖−1} in (b) and dC0(x) = ‖x‖
in (c). It follows that

(4.19) sup
i∈I

dCi(x) = ‖x‖ = d(x, 0) = d⋂
i∈I Ci

(x).

Thus the system {Ci : i ∈ I} is linearly regular in each of (a), (b), and (c).
Note also that (c) satisfies both (α) and (β) and hence that Theorem 4.5(ii) and the
conclusion of Corollary 4.13 hold (and these can be verified directly too). For each of
(a) and (b), we have C = {0} and NCi

(0) = {0} for each i ∈ I, so NC(0) ∩ B = B
but co∪i∈I(NCi(0) ∩ B) = {0}; thus the corresponding system does not have the
strong CHIP (nor the SECQ, by Theorem 3.1), and Theorem 4.5(ii) does not hold.
This failure of (a) and (b) is because each satisfies only one condition of (α), (β) (I is
not compact in (a) and the set-valued function i �→ Ci is not lower semicontinuous
in (b)).

5. Interior-point conditions and the SECQ. Recall that I is an index-set
and C =

⋂
i∈I Ci ⊆ X. As in [27], the family {D,Ci : i ∈ I} is called a closed convex

set system with base-set D (CCS -system with base-set D) if D and all Ci’s are closed
convex subsets of X. Furthermore, throughout the remainder of this section, we
always assume that I is a compact metric space and that 0 ∈ D ∩ C. Thus,

σD and σCi are nonnegative functions on X∗ for all i ∈ I.

Let |J | denote the cardinality of the set J .
Definition 5.1. Let {D,Ci : i ∈ I} be a CCS-system with base-set D. Let m

be a positive integer. Then the CCS-system {D,Ci : i ∈ I} is said to satisfy
(i) the m-D-interior-point condition if, for any subset J of I with |J | ≤ m,

D
⋂( ⋂

i∈J

rintD Ci

)
�= ∅;

(ii) the m-interior-point condition if, for any subset J of I with |J | ≤ m,

D
⋂( ⋂

i∈J

intCi

)
�= ∅.

Before proving our main theorems, we first give the following lemma. Recall that,
for a linear subspace Z of X, y∗|Z ∈ Z∗ is the restriction to Z of y∗.

Lemma 5.2. Let m be a positive integer and let {D,Ci : i ∈ I} be a CCS-system
with the base-set D. Let Z := spanD and suppose that the following conditions are
satisfied:

(a) D is finite dimensional.
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(b) The set-valued mapping i �→ Z ∩ Ci is lower semicontinuous on I.
(c) The system {D,Ci : i ∈ I} satisfies the m-D-interior-point condition.

Let (y∗, α) ∈ X∗ × R and let {(y∗k, αk)} ⊆ X∗ × R be a sequence such that

(5.1) (y∗k|Z , αk) converges to (y∗|Z , α),

where each (y∗k|Z , αk) can be expressed in the form

(5.2) (y∗k|Z , αk) = (v∗k|Z , βk) +

m∑
j=1

(
x∗
ikj

∣∣∣
Z
, αikj

)

with

(5.3) (v∗k, βk) ∈ epiσD,
(
x∗
ikj
, αikj

)
∈ epiσC

ikj

for some ik1 , . . . , i
k
m ∈ I. Then

(5.4) (y∗, α) ∈ epiσD +
∑
i∈I

epiσZ∩Ci .

Proof. Since I is compact, by considering subsequences if necessary we may
assume that there exists ij ∈ I such that ikj → ij for each j = 1, . . . ,m. By assump-
tion (c), there exist z ∈ D and δ′ > 0 such that

(5.5) B(z, δ′) ∩ Z ⊆ Cij ∩ Z for each j = 1, 2, . . . ,m.

Set for convenience B := B(z, δ) ∩ Z, where δ = δ′

2 . Then B is compact, thanks to
assumption (a). For each j = 1, 2, . . . ,m, we make use of assumption (b) and apply
Proposition 2.9 at the point t0 := ij of the lower semicontinuous function i �→ Ci ∩Z
to conclude from (5.5) that B ⊆ Cikj

∩ Z for all large enough k. Do this for each

j = 1, 2, . . . ,m and take k0 ∈ N large enough such that

(5.6) B ⊆ Cikj
∩ Z for each 1 ≤ j ≤ m and k ≥ k0.

Note that, for each 1 ≤ j ≤ m and k ∈ N,

σB

(
x∗
ikj

)
= sup

x∈B

〈
x∗
ikj
, x

〉
= sup

x∈δB∩Z

〈
x∗
ikj
, x

〉
+
〈
x∗
ikj
, z
〉

= δ
∥∥∥x∗

ikj

∣∣∣
Z

∥∥∥ +
〈
x∗
ikj
, z
〉
.

It follows from (5.6) that

(5.7) αikj
≥ σC

ikj

(
x∗
ikj

)
≥ σC

ikj
∩Z

(
x∗
ikj

)
≥ σB

(
x∗
ikj

)
= δ

∥∥∥x∗
ikj

∣∣∣
Z

∥∥∥ +
〈
x∗
ikj
, z
〉
,

provided that k ≥ k0. Moreover, since z ∈ D and (v∗k, βk) ∈ epiσD, (5.2) establishes
that

(5.8) αk − 〈y∗k, z〉 = βk − 〈v∗k, z〉 +

m∑
j=1

(
αikj

−
〈
x∗
ikj
, z
〉)

≥
m∑
j=1

(
αikj

−
〈
x∗
ikj
, z
〉)

.

Combining (5.7) and (5.8) yields that

αk − 〈y∗k, z〉 ≥
m∑
j=1

(
αikj

−
〈
x∗
ikj
, z
〉)

≥
m∑
j=1

δ
∥∥∥x∗

ikj

∣∣∣
Z

∥∥∥ .
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This implies that {x∗
ikj
|Z : k ∈ N} is bounded for each 1 ≤ j ≤ m thanks to (5.1).

Consequently {v∗k|Z : k ∈ N} is bounded as, by (5.2), (v∗k|Z) is the sum of m + 1
bounded sequences. Since Z is finite dimensional (and by passing to subsequences if
necessary) we may assume that for each j = 1, 2, . . . ,m, there exist x̃∗

ij
and ṽ∗ ∈ Z∗

such that

x∗
ikj

∣∣∣
Z
→ x̃∗

ij and v∗k|Z → ṽ∗ as k → ∞.

Now, observe from (5.1)–(5.3) that {αikj
} and {βk} are bounded. Thus we may also

assume that, for each j, αikj
→ α̂ij for some α̂ij ∈ R and that βk → β̂ for some β̂ ∈ R.

Then, by (5.1) and (5.2),

(5.9) y∗|Z = ṽ∗ +

m∑
j=1

x̃∗
ij and α = β̂ +

m∑
j=1

α̂ij .

Let x∗
ij

∈ X∗ be an extension of x̃∗
ij

to X and v∗ ∈ X∗ be an extension of ṽ∗ to X.

It follows from Lemma 4.7 that (x∗
ij
, α̂ij ) ∈ epiσ(Cij

∩Z) and (v∗, β̂) ∈ epiσD. Write

ŷ∗ = y∗ − v∗ −
∑m

j=1 x
∗
ij

. Then by (5.9), ŷ∗ ∈ Z⊥ and

(y∗, α) = (ŷ∗, 0) + (v∗, β̂) +

m∑
j=1

(
x∗
ij , α̂ij

)
∈ Z⊥ × {0} + epiσD +

m∑
j=1

epiσCij
∩Z .

Thus, (5.4) holds, as Z⊥ × {0} is clearly contained in epiσD.
Remark 5.1. If, for (a) of Lemma 5.2, dimD ≤ m − 1, then the following

implication is valid:

(a) ∧ (b) ∧ (c) ⇒ {D, (spanD) ∩ Ci : i ∈ I} satisfies the SECQ.

(This can be seen from (i) of Theorem 5.3 below, but with m replaced by m− 1.)
Theorem 5.3. Let m ∈ N and let {D,Ci : i ∈ I} be a CCS-system with the

base-set D. We consider the following conditions:
(a) D is of finite dimension m.
(b) The set-valued mapping i �→ (spanD) ∩ Ci is lower semicontinuous on I.
(c) The system {D,Ci : i ∈ I} satisfies the (m + 1)-D-interior-point condition.
(d) For each i ∈ I, the pair {D,Ci} has the property

epiσ(spanD)∩Ci
⊆ epiσD + epiσCi

(e.g., {D,Ci} satisfies the SECQ).
(c*) The system {D,Ci : i ∈ I} satisfies the m-D-interior-point condition.
(d*) For each finite subset J of I with |J | = min{m+1, |I|}, the subsystem {D,Cj :

j ∈ J} satisfies the SECQ.
Then the following assertions hold:

(i) If (a), (b), (c) are satisfied, then {D, (spanD) ∩ Ci : i ∈ I} satisfies the
SECQ.

(ii) If (a), (b), (c), (d) are satisfied, then {D,Ci : i ∈ I} satisfies the SECQ.
(iii) If D is bounded and (a), (b), (c*), (d*) are satisfied, then {D,Ci : i ∈ I}

satisfies the SECQ.
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Proof. (i) Write Z := spanD as before. For a subset H of X∗ × R, we use
H|Z ⊆ Z∗ × R to denote the restriction to Z of H defined by

H|Z = {(x∗|Z , β) : (x∗, β) ∈ H}.

Let (y∗, α) ∈ epiσD +
∑

i∈I epiσCi

w∗

. Since Z is finite dimensional, there exists a
sequence {(y∗k, αk)} ⊆ X∗ × R with

(5.10) (y∗k, αk) ∈ epiσD +
∑
i∈I

epiσCi for each k ∈ N

such that (y∗k|Z , αk) converges to (y∗|Z , α). By (5.10) we express for each k ∈ N,

(5.11) (y∗k, αk) = (v∗k, βk) + (u∗
k, γk),

where (v∗k, βk) ∈ epiσD and (u∗
k, γk) ∈

∑
i∈I epiσCi . Since (

∑
i∈I epiσCi)|Z is a

convex cone in the (m + 1)-dimensional space Z∗ × R, it follows from [32, Theo-
rem 3.15] that, for each k, there exist indices {ik1 , . . . , ikm+1} ⊆ I and {(x∗

ik1
, αik1

), . . . ,

(x∗
ikm+1

, αikm+1
)} with (x∗

ikj
, αikj

) ∈ epiσC
ikj

for each 1 ≤ j ≤ m + 1 such that

(5.12) (u∗
k|Z , γk) =

m+1∑
j=1

(
x∗
ikj

∣∣∣
Z
, αikj

)
for each k ∈ N.

Thus we have

(5.13) (y∗k|Z , αk) = (v∗k|Z , βk) +

m+1∑
j=1

(
x∗
ikj

∣∣∣
Z
, αikj

)
for each k ∈ N.

By Lemma 5.2 and thanks to assumptions (a), (b), (c),

(y∗, α) ∈ epiσD +
∑
i∈I

epiσZ∩Ci .

We have just proved the inclusion

(5.14) epiσD +
∑
i∈I

epiσCi

w∗

⊆ epiσD +
∑
i∈I

epiσZ∩Ci .

Noting D ∩ (∩i∈I(Z ∩Ci)) = D ∩ (∩i∈ICi), it follows from Proposition 2.4 and (5.14)
that

(5.15) epiσD∩(∩i∈I(Z∩Ci)) = epiσD +
∑
i∈I

epiσCi

w∗

⊆ epiσD +
∑
i∈I

epiσZ∩Ci .

Thus {D, (spanD) ∩ Ci : i ∈ I} satisfies the SECQ by Corollary 2.5. This proves
assertion (i).

(ii) Now suppose in addition that (d) is also satisfied. Then (5.15) implies that

epiσD∩∩i∈ICi
⊆ epiσD +

∑
i∈I

(epiσD + epiσCi
) ⊆ epiσD +

∑
i∈I

epiσCi
.
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By Corollary 2.5 again, this implies that {D,Ci : i ∈ I} satisfies the SECQ; that is,
(ii) holds.

(iii) Now suppose that (a), (b), (c*), (d*) are satisfied. Without loss of gener-
ality, we may assume that |I| > m + 1 since, otherwise, the conclusion follows from
assumption (d*). Consider (y∗, α), (y∗k, αk), (v∗k, βk), (u∗

k, γk) satisfying (5.10)–(5.13).
Let k ∈ N and set Ik = {ik1 , . . . , ikm+1}. Then for any z ∈ D ∩ ∩j∈IkCj (⊆ Z),

αk = βk +
∑
j∈Ik

αikj
≥ σD(v∗k) +

m+1∑
j=1

σCj

(
x∗
ikj

)
≥

〈
v∗k +

m+1∑
j=1

x∗
ikj
, z

〉
= 〈y∗k, z〉,

thanks to (5.13). Since D ∩ (
⋂

j∈Ik Cj) is compact, there exists xk ∈ D ∩ (
⋂

j∈Ik Cj)
such that

(5.16) αk ≥ 〈y∗k, xk〉 = σD∩(
⋂

j∈Ik
Cj)(y

∗
k),

i.e., y∗k ∈ ND∩(∩
j∈Ik

Cj)(x
k). It follows from assumption (d*) and Theorem 3.1 that

y∗k ∈ ND(xk) +
∑

j∈Ik NCj (x
k). Applying [32, Theorem 3.15] to the m-dimensional

linear subspace Z, y∗k|Z can be expressed in the form

(5.17) y∗k|Z = d∗k|Z +
∑
j∈Jk

z∗j |Z

for some d∗k ∈ ND(xk) and z∗j ∈ NCj (x
k) (j ∈ Jk), where Jk is a subset of Ik with

m elements. Evaluating (5.17) at xk ∈ D ∩ (∩j∈IkCj), and invoking (2.4) and (5.16),
we have

(5.18) αk ≥ 〈y∗k, xk〉 = σD(d∗k) +
∑
j∈Jk

σCj
(z∗j ).

Define

μk = αk −
∑
j∈Jk

σCj
(z∗j ).

Then μk ≥ σD(d∗k) by (5.18). Denoting σCj
(z∗j ) by γj , this and (5.17) imply that

(y∗k|Z , αk) = (d∗k|Z , μk) +
∑
j∈Jk

(z∗j |Z , γj).

Note that (d∗k, μk) ∈ epiσD and (z∗j , γj) ∈ epiσCj for each j ∈ Jk. Since |Jk| = m
and thanks to assumptions (a), (b), and (c*), Lemma 5.2 asserts that

(5.19) (y∗, α) ∈ epiσD +
∑
i∈I

epiσ(Z∩Ci).

Let i ∈ I and let J be any subset of I such that i ∈ J and |J | = m + 1. Then, by
assumption (d*), one has that

(5.20) epiσ(Z∩Ci) ⊆ epiσ(D∩(∩j∈JCj)) ⊆ epiσD +
∑
j∈J

epiσCj .
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Therefore, by (5.19) and (5.20), (y∗, α) ∈ epiσD +
∑

i∈I epiσCi
, and thus epiσD +∑

i∈I epiσCi is weakly∗ closed in the case when assumptions (a), (b), (c*), and (d*)
are satisfied. By Corollary 2.5, this implies that {D,Ci : i ∈ I} satisfies the SECQ.
The proof is complete.

Corollary 5.4. Let m ∈ N and let {D,Ci : i ∈ I} be a CCS-system with the
base-set D satisfying the following conditions:

(a) D is of finite dimension m.
(b) The set-valued mapping i �→ (spanD) ∩ Ci is lower semicontinuous on I.

(c+) The system {D,Ci : i ∈ I} satisfies the (m + 1)-interior-point condition.

Then {D,Ci : i ∈ I} satisfies the SECQ.

Proof. By Lemma 4.9, (c+) implies conditions (d) and (c) of Theorem 5.3. Thus,
Theorem 5.3(ii) is applicable.

The following corollary, which is a direct consequence of Theorem 5.3(i), is an
improvement of Theorem 1.1.

Corollary 5.5. Let {D,Ci : i ∈ I} be a CCS-system with the base-set D. Let
m ∈ N and let x0 ∈ D ∩ C. Suppose that the following conditions are satisfied:

(a) D is of finite dimension m.
(b) The set-valued mapping i �→ (spanD) ∩ Ci is lower semicontinuous on I.
(c) The system {D,Ci : i ∈ I} satisfies the (m + 1)-D-interior-point condition.
(d̃) For each i ∈ I, the pair {D,Ci} has the property

N(spanD)∩Ci
(x0) ⊆ ND(x0) + NCi(x0).

Then the system {D,Ci : i ∈ I} has the strong CHIP at x0.

The following corollary is an important improvement of Theorem 1.2. Our main
improvement lies in the fact that we need not require the upper semicontinuity of the
set-valued map i �→ (spanD) ∩Ci and that (d) can be weakened to require that only
the subsystems {D,Cj : j ∈ J} with |J | = l + 1 have the strong CHIP.

Corollary 5.6. Let m ∈ N and let {D,Ci : i ∈ I} be a CCS-system with the
base-set D satisfying the following conditions:

(a) D is of finite dimension m.
(b) The set-valued mapping i �→ (spanD) ∩ Ci is lower semicontinuous on I.

(c*) The system {D,Ci : i ∈ I} satisfies the m-D-interior-point condition.
(d) For each finite subset J of I with |J | = min{m+1, |I|}, the subsystem {D,Cj :

j ∈ J} has the strong CHIP.

Then the system {D,Ci : i ∈ I} has the strong CHIP.

Proof. If |I| < m + 1, then min{m + 1, |I|} = |I|, so the result is trivially true
by (d). Thus we may assume that |I| ≥ m + 1. Recall that C = ∩i∈ICi and let
x ∈ D ∩C. We have to show that the system has the strong CHIP at x. To this end,
let D̃ = D ∩ B(x, rx), where rx = ‖x‖ + 1. Consider the system {D̃, Ci : i ∈ I}. We
claim that the following conditions hold:

(ã) D̃ is of finite dimension and dim D̃ = m.
(b̃) The set-valued mapping i �→ (span D̃) ∩ Ci is lower semicontinuous on I.
(c̃) The system {D̃, Ci : i ∈ I} satisfies the m-D̃-interior-point condition.
(d̃) For each finite subset J of I with |J | = m+1, the subsystem {D̃, Cj : j ∈ J}

satisfies the SECQ.

In fact, by assumption (c*), for each finite subset J of I with |J | = m, there exist
x̄ ∈ D and δ > 0 such that B(x̄, δ) ∩ spanD ⊆ D ∩ (∩j∈JCj). Since 0 ∈ intB(x, rx),
there exists λ ∈ (0, 1) such that λB(x̄, δ) ⊆ B(x, rx). Consequently,
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(5.21) λB(x̄, δ)
⋂

spanD ⊆ D
⋂

B(x, rx)
⋂( ⋂

j∈J

Cj

)
⊆ D̃

⋂( ⋂
i∈J

Ci

)
.

This implies that intB(x̄, δ) ∩ riD �= ∅; hence

(5.22) span D̃ = spanD.

Consequently, condition (c̃) holds by (5.21). Moreover, by (a), (b), and (5.22), it
is seen that (ã) and (b̃) hold. As to condition (d̃), let J be any subset of I with
|J | = m + 1. By (d) the subsystem {D,Cj : j ∈ J} has the strong CHIP. Since
x ∈ intB(x, rx) ∩ (D ∩ (∩j∈JCj)), and by applying Lemma 4.12 to the ball with

center x, radius rx, and J in place of A and I, it follows that {D̃, Cj : j ∈ J} has the
strong CHIP and consequently satisfies the SECQ, thanks to Corollary 3.2(i) because
D̃ ∩ (∩j∈JCj) is compact. Thus (d̃) is established. Thus part (iii) of Theorem 5.3 is

applicable for concluding that the system {D̃, Ci : i ∈ I} satisfies the SECQ, which
in turn implies that it has the strong CHIP at x. Consequently, the system has the
strong CHIP at x by Lemma 4.12 applied to the ball with center x, radius rx, and J
in place of A and I. The proof is complete.

Acknowledgments. The authors would like to express their sincere thanks to
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[2] A. Auslender and M. Teboulle, Asymptotic Cones and Functions in Optimization and

Variational Inequalities, Springer-Verlag, New York, 2003.
[3] A. Bakan, F. Deutsch, and W. Li, Strong CHIP, normality, and linear regularity of convex

sets, Trans. Amer. Math. Soc., 357 (2005), pp. 3831–3863.
[4] H. Bauschke, Projection Algorithms and Monotone Operators, Ph.D. thesis, Department of

Mathematics, Simon Fraser University, Burnaby, BC, Canada, 1996. Available online at
http://oldweb.cecm.sfu.ca/preprints/1996pp.html.

[5] H. H. Bauschke and J. M. Borwein, On projection algorithms for solving convex feasibility
problems, SIAM Rev., 38 (1996), pp. 367–426.

[6] H. Bauschke, J. Borwein, and W. Li, Strong conical hull intersection property, bounded
linear regularity, Jameson’s property (G), and error bounds in convex optimization, Math.
Program. Ser. A, 86 (1999), pp. 135–160.

[7] R. S. Burachik and V. Jeyakumar, A simple closure condition for the normal cone intersec-
tion formula, Proc. Amer. Math. Soc., 133 (2005), pp. 1741–1748.

[8] F. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons, New York, 1983.
[9] F. Deutsch, The role of the strong conical hull intersection property in convex optimization

and approximation, in Approximation Theory IX, Vol. I: Theoretical Aspects, C. Chui and
L. Schumaker, eds., Vanderbilt University Press, Nashville, TN, 1998, pp. 105–112.

[10] F. Deutsch, Best Approximation in Inner Product Spaces, Springer, New York, 2001.
[11] F. Deutsch, W. Li, and J. Swetits, Fenchel duality and the strong conical hull intersection

property, J. Optim. Theory Appl., 102 (1997), pp. 681–695.
[12] F. Deutsch, W. Li, and J. Ward, A dual approach to constrained interpolation from a convex

subset of Hilbert space, J. Approx. Theory, 90 (1997), pp. 385–414.
[13] F. Deutsch, W. Li, and J. D. Ward, Best approximation from the intersection of a closed

convex set and a polyhedron in Hilbert space, weak Slater conditions, and the strong conical
hull intersection property, SIAM J. Optim., 10 (1999), pp. 252–268.

[14] D. Gale and V. Klee, Continuous convex sets, Math. Scand., 7 (1959), pp. 370–391.
[15] J. Hiriart-Urruty and C. Lemarechal, Convex Analysis and Minimization Algorithms I,

Grundlehren Math. Wiss. 305, Springer, New York, 1993.
[16] J. Hiriart-Urruty and C. Lemarechal, Convex Analysis and Minimization Algorithms II,

Grundlehren Math. Wiss. 306, Springer, New York, 1993.



SECQ, LINEAR REGULARITY, AND THE STRONG CHIP 665

[17] G. J. O. Jameson, The duality of pairs of wedges, Proc. London Math. Soc., 24 (1972), pp.
531–547.

[18] V. Jeyakumar, G. M. Lee, and N. Dinh, New sequential Lagrange multiplier conditions
characterizing optimality without constraint qualification for convex programs, SIAM J.
Optim., 14 (2003), pp. 534–547.

[19] V. Jeyakumar, N. Dinh, and G. M. Lee, A New Closed Cone Constraint Qualification for
Convex Optimization, Applied Mathematics Research Report AMR 04/6, University of
New South Wales, Sydney, Australia.

[20] V. Jeyakumar and H. Mohebi, A global approach to nonlinearly constrained best approxima-
tion, Numer. Funct. Anal. Optim., 26 (2005), pp. 205–227.

[21] V. Jeyakumar, A. M. Rubinov, B. M. Glover, and Y. Ishizuka, Inequality systems and
global optimization, J. Math. Anal. Appl., 202 (1996), pp. 900–919.

[22] V. Jeyakumar and A. Zaffaroni, Asymptotic conditions for weak and proper optimality in
infinite dimensional convex vector optimization, Numer. Funct. Anal. Optim., 17 (1996),
pp. 323–343.

[23] A. Lewis and J. S. Pang, Error bounds for convex inequality systems, in Generalized Con-
vexity, Generalized Monotonicity: Recent Results, Proceedings of the Fifth Symposium on
Generalized Convexity, Luminy, 1996, J.-P. Crouzeix, J.-E. Martinez-Legaz, and M. Volle,
eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997, pp. 75–110.

[24] C. Li and X.-Q. Jin, Nonlinearly constrained best approximation in Hilbert spaces: The strong
CHIP and the basic constraint qualification, SIAM J. Optim., 13 (2002), pp. 228–239.

[25] C. Li and K. F. Ng, On best approximation by nonconvex sets and perturbation of nonconvex
inequality systems in Hilbert spaces, SIAM J. Optim., 13 (2002), pp. 726–744.

[26] C. Li and K. F. Ng, Constraint qualification, the strong CHIP, and best approximation with
convex constraints in Banach spaces, SIAM J. Optim., 14 (2003), pp. 584–607.

[27] C. Li and K. F. Ng, Strong CHIP for infinite system of closed convex sets in normed linear
spaces, SIAM J. Optim., 16 (2005), pp. 311–340.

[28] C. Li and K. F. Ng, On best restricted range approximation in continuous complex-valued
function spaces, J. Approx. Theory, 136 (2005), pp. 159–181.

[29] J. J. Moreau, Fonctionnelles convexes, Séminaire sur les Équations aux dérivées partielles,
Collège de France, Paris, 1967.

[30] K. F. Ng and W. H. Yang, Regularities and their relations to error bounds, Math. Program.
Ser. A, 99 (2004), pp. 521–538.

[31] J. S. Pang, Error bounds in mathematical programming, Math. Program. Ser. B, 79 (1997),
pp. 299–332.

[32] R. T. Rockafellar and J. B. Wets, Variational Analysis, Springer-Verlag, New York, 1998.
[33] I. Singer, Duality for optimization and best approximation over finite intersection, Numer.

Funct. Anal. Optim., 19 (1998), pp. 903–915.
[34] W. Song and R. Zang, Bounded linear regularity of convex sets in Banach spaces and its

applications, Math. Program. Ser. A, 106 (2006), pp. 59–79.
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INTERIOR METHODS∗
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Abstract. Iterative methods are proposed for certain augmented systems of linear equations
that arise in interior methods for general nonlinear optimization. Interior methods define a sequence
of KKT equations that represent the symmetrized (but indefinite) equations associated with New-
ton’s method for a point satisfying the perturbed optimality conditions. These equations involve both
the primal and dual variables and become increasingly ill-conditioned as the optimization proceeds.
In this context, an iterative linear solver must not only handle the ill-conditioning but also detect the
occurrence of KKT matrices with the wrong matrix inertia. A one-parameter family of equivalent
linear equations is formulated that includes the KKT system as a special case. The discussion focuses
on a particular system from this family, known as the “doubly augmented system,” that is positive
definite with respect to both the primal and dual variables. This property means that a standard
preconditioned conjugate-gradient method involving both primal and dual variables will either termi-
nate successfully or detect if the KKT matrix has the wrong inertia. Constraint preconditioning is a
well-known technique for preconditioning the conjugate-gradient method on augmented systems. A
family of constraint preconditioners is proposed that provably eliminates the inherent ill-conditioning
in the augmented system. A considerable benefit of combining constraint preconditioning with the
doubly augmented system is that the preconditioner need not be applied exactly. Two particular
“active-set” constraint preconditioners are formulated that involve only a subset of the rows of the
augmented system and thereby may be applied with considerably less work. Finally, some numerical
experiments illustrate the numerical performance of the proposed preconditioners and highlight some
theoretical properties of the preconditioned matrices.
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1. Introduction. This paper concerns the formulation and analysis of precon-
ditioned iterative methods for the solution of augmented systems of the form

(1.1)

(
H −AT

A G

)(
x1

x2

)
=

(
b1
b2

)
,

with A an m×n matrix, H symmetric, and G symmetric positive semidefinite. These
equations arise in a wide variety of scientific and engineering applications, where they
are known by a number of different names, including “augmented systems,” “saddle-
point systems,” “KKT systems,” and “equilibrium systems.” (The bibliography of the
survey by Benzi, Golub, and Liesen [3] contains 513 related articles.) The main focus
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of this paper will be on the solution of augmented systems arising in interior methods
for general constrained optimization, in which case (1.1) is the system associated with
Newton’s method for finding values of the primal and dual variables that satisfy the
perturbed KKT optimality conditions (see, e.g., Wright [49] and Forsgren, Gill, and
Wright [15]). In this context H is the Hessian of the Lagrangian, A is the constraint
Jacobian, and G is diagonal.

Many of the benefits associated with the methods discussed in this paper derive
from formulating the interior method so that the diagonal G is positive definite. We
begin by presenting results for G positive definite and consider the treatment of sys-
tems with positive semidefinite and singular G in section 5. Throughout, for the case
where G is positive definite, we denote G by D and rewrite (1.1) as an equivalent
symmetric system Bx = b, where

(1.2) B =

(
H −AT

−A −D

)
and b =

(
b1

−b2

)
,

with D positive definite and diagonal. We will refer to this symmetric system as the
KKT system. (It is possible to symmetrize (1.1) in a number of different ways. The
format (1.2) will simplify the linear algebra in later sections.) When D is nonsingular,
it is well known that the augmented system is equivalent to the two smaller systems

(1.3) (H + ATD−1A)x1 = b1 + ATD−1b2 and x2 = D−1(b2 −Ax1),

where the system for x1 is known as the condensed system. It is less well known that
another equivalent system is the doubly augmented system

(1.4)

(
H + 2ATD−1A AT

A D

)(
x1

x2

)
=

(
b1 + 2ATD−1b2

b2

)
,

which has been proposed for use with direct factorization methods by Forsgren and
Gill [16]. In this paper we investigate the properties of preconditioned iterative meth-
ods applied to system (1.2) directly or to the equivalent systems (1.3) and (1.4).

If the underlying optimization problem is not convex, the matrix H may be in-
definite. The KKT matrix B of (1.2) is said to have correct inertia if the matrix
H +ATD−1A is positive definite. This definition is based on the properties of the un-
derlying optimization problem. Broadly speaking, the KKT system has correct inertia
if the problem is locally convex (for further details see, e.g., Forsgren and Gill [16],
Forsgren [18], and Griffin [32]). If the KKT matrix has correct inertia, then systems
(1.2)–(1.4) have a common unique solution (see section 2).

1.1. Properties of the KKT system. The main issues associated with using
iterative methods to solve KKT systems are (i) termination control, (ii) inertia con-
trol, and (iii) inherent ill-conditioning. The first of these issues is common to other
applications where the linear system represents a linearization of some underlying non-
linear system of equations. Issues (ii) and (iii), however, are unique to optimization
and will be the principal topics of this paper.

In the context of interior methods, the KKT system (1.2) is solved as part of
a two-level iterative scheme. At the outer level, nonlinear equations that define the
first-order optimality conditions are parameterized by a small positive quantity μ.
The idea is that the solution of the parameterized equations should approach the
solution of the optimization problem as μ → 0. At the inner level, equations (1.2)
represent the symmetrized Newton equations associated with finding a zero of the
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perturbed optimality conditions for a given value of μ. Although systems (1.2)–(1.4)
have identical solutions, an iterative method will generally produce a different se-
quence of iterates in each case (see section 3 for a discussion of the equivalence of
iterative solvers in this context). An iterative method applied to the augmented sys-
tem (1.2) or the doubly augmented system (1.4) treats x1 and x2 as independent
variables, which is appropriate in the optimization context because x1 and x2 are as-
sociated with independent quantities in the perturbed optimality conditions (i.e., the
primal and dual variables). In contrast, an iterative solver for the condensed system
(1.3) will generate approximations to x1 only, with the variables x2 being defined as
x2 = D−1(b2 −Ax1). This becomes an important issue when an approximate solution
is obtained by truncating the iterations of the linear solver. During the early outer
iterations, it is usually inefficient to solve the KKT system accurately, and it is better
to accept an inexact solution that gives a residual norm that is less than some factor
of the norm of the right-hand side (see, e.g., Dembo, Eisenstat, and Steihaug [7]).
For the condensed system, the residual for the second block of equations will be zero
regardless of the accuracy of x1, which implies that termination must be based on the
accuracy of x1 alone. It is particularly important for the solver to place equal weight
on x1 and x2 when system (1.2) is being solved in conjunction with a primal-dual
trust-region method (see Gertz and Gill [20] and Griffin [32]). The conjugate-gradient
version of this method exploits the property that the norms of the (x1, x2) iterates
increase monotonically (see Steihaug [44]). This property does not hold for (x1, x2)
iterates generated for the condensed system.

If the KKT matrix does not have the correct inertia, the solution of (1.2) is not
useful, and the optimization continues with an alternative technique based on either
implicitly or explicitly modifying the matrix H (see, e.g., Toint [45], Steihaug [44],
Gould et al. [30], Hager [33], and Griffin [32]). It is therefore important that the
iterative solver is able to detect if B does not have correct inertia.

As the perturbation parameter μ is reduced, the KKT systems become increas-
ingly ill-conditioned. The precise form of this ill-conditioning depends on the formu-
lation of the interior method, but a common feature is that some diagonal elements
of D are big and some are small. (It is almost always possible to formulate an interior
method that requires the solution of an unsymmetric system that does not exhibit
inevitable ill-conditioning as μ → 0. This unsymmetric system could be solved us-
ing an unsymmetric solver such as GMRES or QMR. Unfortunately, this approach
is unsuitable for general KKT systems because an unsymmetric solver is unable to
determine if the KKT matrix has correct inertia.) In section 3 we consider a pre-
conditioned conjugate-gradient (PCG) method that provably removes the inherent
ill-conditioning. In particular, we define a one-parameter family of preconditioners
related to the class of so-called constraint preconditioners proposed by Keller, Gould,
and Wathen [34]. Several authors have used constraint preconditioners in conjunction
with the conjugate-gradient method to solve the indefinite KKT system (1.2) with
b2 = 0 and D = 0 (see, e.g., Lukšan and Vlček [36], Gould, Hribar, and Nocedal [29],
Perugia and Simoncini [40], and Bergamaschi, Gondzio, and Zilli [4]). Recently, Dol-
lar [12] and Dollar et al. [11] have proposed constraint preconditioners for system (1.2)
with no explicit inertial or diagonal condition on D, but a full row-rank requirement
on A and the assumption that b2 = 0.

Methods that require b2 = 0 must perform an initial projection step that effec-
tively shifts the right-hand side to zero. The constraint preconditioner then forces the
x1 iterates to lie in the null space of A. A disadvantage with this approach is that the
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constraint preconditioner must be applied exactly if subsequent iterates are to lie in
the null space. This limits the ability to perform approximate solves with the precon-
ditioner, as is often required when the matrix A has a PDE-like structure that also
must be handled using an iterative solver (see, e.g., Saad [41], Notay [37], Simoncini
and Szyld [43], and Elman et al. [14]). In section 3 we consider preconditioners that
do not require the assumption that b2 = 0, and hence do not require an accurate solve
with the preconditioner.

1.2. A PCG method for the KKT system. The goal of this paper is to for-
mulate iterative methods that not only provide termination control and inertia control,
but also eliminate the inevitable ill-conditioning associated with interior methods. All
these features are present in an algorithm based on applying a PCG method to the
doubly augmented system (1.4). This system is positive definite if the KKT matrix
has correct inertia, and gives equal weight to x1 and x2 for early terminations. As
preconditioner we use the constraint preconditioner

(1.5) P =

(
M + 2ATD−1A AT

A D

)
,

where M is an approximation of H such that M + ATD−1A is positive definite.
The equations Pv = r used to apply the preconditioner are solved by exploiting the
equivalence of the systems(

M + 2ATD−1A AT

A D

)(
v1

v2

)
=

(
r1
r2

)
,(1.6a) (

M −AT

−A −D

)(
v1

v2

)
=

(
r1 − 2ATD−1r2

−r2

)
, and(1.6b)

(M + ATD−1A)v1 = r1 −ATD−1r2, v2 = D−1(r2 −Av1)(1.6c)

(see section 3). This allows us to compute the solution of (1.6a) by solving either
(1.6b) or (1.6c). (The particular choice will depend on the relative efficiency of the
methods available to solve the condensed and augmented systems.)

We emphasize that the doubly augmented systems are never formed or factored
explicitly. The matrix associated with the doubly augmented equations (1.4) is used
only as an operator to define products of the form v = Bu. As mentioned above, the
equations (1.6a) that apply the preconditioner are solved using either (1.6b) or (1.6c).
An important property of the method is that these equations also may be solved using
an iterative method. (It is safe to use the augmented or condensed system for the
preconditioner equations Pv = r because the inertia of P is guaranteed by the choice
of M (see section 3).)

In section 4 we formulate and analyze two variants of the preconditioner (1.5)
that exploit the asymptotic behavior of the elements of D. The use of these so-called
active-set preconditioners may require significantly less work when the underlying
optimization problem has more constraints than variables. In section 5, we consider
the case where G is positive semidefinite and singular. Finally, in section 6, we present
some numerical examples illustrating the properties of the proposed preconditioners.

1.3. Notation and assumptions. Unless explicitly indicated otherwise, ‖ · ‖
denotes the vector two-norm or its subordinate matrix norm. The inertia of a real
symmetric matrix A, denoted by In(A), is the integer triple (a+, a−, a0) giving the
number of positive, negative, and zero eigenvalues of A. The spectrum of a (possi-
bly unsymmetric) matrix A is denoted by eig(A). As the analysis concerns matrices
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with only real eigenvalues, eig(A) is regarded as an ordered set, with the least (i.e.,
“leftmost”) eigenvalue, denoted by eigmin(A), appearing first. The quantity σk(A)
denotes the kth largest singular value of A. Given a positive-definite A, the unique
positive-definite X such that X2 = A is denoted by A1/2. Given vectors x1 and x2,
the column vector consisting of the elements of x1 augmented by the elements of x2

is denoted by (x1, x2).
When μ is a positive scalar such that μ → 0, the notation p = O

(
μ
)

means that
there exists a constant K such that |p| ≤ Kμ for all μ sufficiently small. For a positive
p, p = Ω(1/μ) implies that there exists a constant K such that 1/p ≤ Kμ for all
μ sufficiently small. In particular, p = O

(
1
)

means that |p| is bounded, and, for a
positive p, p = Ω(1) means that p is bounded away from zero. For a positive p, the
notation p = Θ

(
1
)

is used for the case where both p = O
(
1
)

and p = Ω(1), so that p
remains bounded and is bounded away from zero as μ → 0.

As discussed in section 1.1, we are concerned with solving a sequence of systems of
the form (1.2), where the matrices A, H, and D depend implicitly on μ. In particular,
A and H are first and second derivatives evaluated at a point depending on μ, and
D is an explicit function of μ. The notation defined above allows us to characterize
the properties of H, A, and D in terms of their behavior as μ → 0. Throughout the
analysis, it is assumed that the following properties hold:

(A1) ‖H‖ and ‖A‖ are both O
(
1
)
.

(A2) The row indices of A may be partitioned into disjoint subsets S, M, and B
such that dii = O

(
μ
)

for i ∈ S, dii = Θ
(
1
)

for i ∈ M, and dii = Ω(1/μ) for
i ∈ B.

(A3) If AS is the matrix of rows of A with indices in S and r = rank(AS), then r
remains constant as μ → 0 and σr(AS) = Θ(1).

The second assumption reflects the fact that for μ sufficiently small, some diagonal
elements of D are “small,” some are “medium,” and some are “big.”

It is often the case in practice that the equations and variables corresponding to
unit rows of A are eliminated directly from the KKT system. This elimination creates
no additional nonzero elements and provides a smaller “partially condensed” system
with an Ω(1/μ) diagonal term added to H. It will be shown that preconditioners for
both the full and partially condensed KKT systems depend on the eigenvalues of the
same matrix (see Lemmas 3.4 and 3.5). It follows that our analysis also applies to
preconditioners defined for the partially condensed system.

2. A parameterized system of linear equations. In this section, it is shown
how the indefinite KKT system (1.2) may be embedded in a family of equivalent
linear systems, parameterized by a scalar ν. This parameterization facilitates the
simultaneous analysis of the three systems (1.2)–(1.4).

Definition 2.1 (the parameterized system). Let ν denote a scalar. Associ-
ated with the KKT equations Bx = b of (1.2), we define the parameterized equations
B(ν)x = b(ν), with

B(ν) =

(
H + (1 + ν)ATD−1A νAT

νA νD

)
and b(ν) =

(
b1 + (1 + ν)ATD−1b2

νb2

)
,

where H is symmetric and D is positive definite and diagonal.
The following proposition states the equivalence of the KKT system (1.2) and the

parameterized system of Definition 2.1.
Proposition 2.2 (equivalence of the parameterized systems). Let ν denote a

scalar parameter. If ν �= 0, then the system Bx = b of (1.2) and the system B(ν)x =
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b(ν) of Definition 2.1 are equivalent, i.e., (1.2) has a solution (x1, x2) if and only if
(x1, x2) is a solution to B(ν)x = b(ν). If ν = 0, then (1.2) has a solution (x1, x2) if
and only if x1 is a solution of B(0)x = b(0) and x2 = D−1(b2 −Ax1).

We are particularly interested in the parameterized system B(ν)x = b(ν) for the
values ν = −1, ν = 0, and ν = 1. If ν = −1, we obtain the symmetric KKT system
(1.2). If ν = 0, we obtain the condensed system

(2.1) (H + ATD−1A)x1 = b1 + ATD−1b2 with x2 arbitrary.

In this case, x2 does not appear in the augmented system and must be computed as
x2 = D−1(b2 −Ax1). Finally, if ν = 1, we obtain the doubly augmented system

(2.2)

(
H + 2ATD−1A AT

A D

)(
x1

x2

)
=

(
b1 + 2ATD−1b2

b2

)
.

The next result follows from Lemma A.1 of the appendix and gives the inertia of
B(ν) as a function of ν.

Proposition 2.3 (inertia of the parameterized system). For the matrix B(ν) of
Definition 2.1, it holds that

(i) In
(
B(ν)

)
= In(H + ATD−1A) + (m, 0, 0) if ν > 0;

(ii) In
(
B(ν)

)
= In(H + ATD−1A) + (0,m, 0) if ν < 0; and

(iii) In
(
B(ν)

)
= In(H + ATD−1A) + (0, 0,m) if ν = 0.

This proposition implies that the inertia of B(ν) may be determined from the
inertia of H + ATD−1A and the sign of ν. In particular, the result gives the inertia
of the three alternate systems in the situation where the inertia of B is correct and
the solver can be allowed to continue solving the system. If the inertia of B is correct,
then (i) the doubly augmented system is positive definite; (ii) the KKT system has
n positive eigenvalues and m negative eigenvalues; and (iii) the condensed system is
positive definite (when regarded as a system involving only x1).

Proposition 2.3 implies that it is not worth applying a conjugate-gradient method
to the general indefinite KKT system (1.2) because this method is unable to estimate
the number of negative eigenvalues of an indefinite matrix. In contrast, the conjugate-
gradient method is appropriate for both the doubly augmented system and the con-
densed system because indefiniteness is immediately indicated by the occurrence of a
negative value of pTjCpj , where pi is a conjugate direction and C is either the doubly
augmented matrix or the matrix for the condensed system. In other words, the occur-
rence of a negative value of pTjCpj indicates that the inertia of the system is incorrect
and the search for a solution of (1.2) should be abandoned.

3. Constraint preconditioning for the linear equations. The rate of con-
vergence of the conjugate-gradient method may be accelerated by choosing an appro-
priate symmetric positive-definite preconditioner of the form P = RTR, and applying
the conjugate-gradient method to the preconditioned system R−TBR−1Rx = R−Tb.
As is well known, the computations may be arranged so that the preconditioner is
applied by solving systems of the form Pv = r. It is the eigenvalues of the precondi-
tioned matrix R−TBR−1 that determine the rate of convergence. As eig(R−TBR−1) =
eig(R−1R−TBR−1R) = eig(P−1B), the analysis may be written in terms of P−1B
without regard to R. However, it must be emphasized that P must be symmetric
positive definite for the standard PCG method to be well defined.

Several authors have suggested constraint preconditioners for (1.2) and (1.3), in
which H is replaced by a “simpler” approximation matrix M such that M+ATD−1A is
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positive definite (see, e.g., Keller, Gould, and Wathen [34] and Bergamaschi, Gondzio,
and Zilli [4]).

Under certain circumstances, the PCG method may be applied to all three systems
and will give identical results in exact arithmetic.

Proposition 3.1. Assume that H + ATD−1A is positive definite. Consider the
PCG method applied to the KKT system (1.2), the condensed system (1.3), and the
doubly augmented system (1.4) with preconditioners

(3.1)

(
M −AT

−A −D

)
, M + ATD−1A, and

(
M + 2ATD−1A AT

A D

)
,

respectively. If b2 = 0, then the PCG method generates the same sequence of iterates
for all three systems (where an x2 iterate for the condensed system is defined as the
product of −D−1A and the x1 iterate).

The first preconditioner of (3.1) is not positive definite, which implies that it does
not fit within the conventional PCG framework. However, Proposition 3.1 implies
that the PCG method may be applied safely to the KKT system (1.2) in the special
situation where b2 = 0. The result is a projected PCG method that can be shown to
be formally equivalent to the standard method applied to the condensed system; see,
e.g., Lukšan and Vlček [36] and Gould, Hribar, and Nocedal [29].

The condition b2 = 0 may be achieved by choosing a special initial point y. In
particular, consider the point (y1, y2) such that Ay1 +Dy2 = b2, and the appropriate
preconditioner is used for each system. Let x denote the generic vector of unknowns
(the dimension of x will depend on which of the three systems is to be solved). We may,
for example, solve Py = b, where P is one of the three appropriate preconditioners,
or we may set y1 = 0, y2 = D−1b2. Then use PCG with preconditioner P to solve

Bx̂ = b−By and set x = y + x̂.

In general, if b2 �= 0, it is not safe to apply the PCG method to the indefinite sys-
tem (1.2). Moreover, the PCG method will usually generate different iterates for the
condensed system (1.3) and the doubly augmented system (1.4).

Finally, we note that the condensed system (1.3) and doubly augmented system
(1.4) may be viewed as being preconditioned versions of each other, as defined in the
following result.

Proposition 3.2. Consider the PCG method applied to a generic symmetric
system Ax = b with symmetric positive-definite preconditioner P and initial iterate
x0 = 0. Let L be a nonsingular matrix with the same dimension as A. Then, if the
PCG method is applied to LALTx̂ = Lb with preconditioner LPLT and initial iterate
x̂0 = 0, the PCG iterates are related by the transformation x = LTx̂.

If we consider the decomposition(
M + 2ATD−1A AT

A D

)
=

(
I ATD−1

I

)(
M + ATD−1A

D

)(
I

D−1A I

)
,

then Proposition 3.2 implies that the doubly augmented system may be viewed as a
particular preconditioned version of the condensed system augmented by the diagonal
D for the x2 variables (or vice versa). This is a further illustration that the proposed
approach gives equal weight to x1 and x2. We prefer to do the analysis in terms of
the doubly augmented system because it provides the parameterization based on the
scalar parameter ν.
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3.1. Properties of the constraint preconditioners. We now embed the pre-
conditioners of (3.1) within a family of preconditioners, parameterized by the scalar ν.
This parameterization is analogous to the parameterization of the matrices of Propo-
sition 2.2. The parameterization allows a unified analysis of the three preconditioners
given in (3.1).

Definition 3.3 (a parameterized preconditioner). Associated with the matrix
B(ν) of Definition 2.1, we define the preconditioner P (ν) as

P (ν) =

(
M + (1 + ν)ATD−1A νAT

νA νD

)
,

where M is a symmetric approximation to H such that
(P1) ‖M‖ = O

(
1
)
;

(P2) M + ATD−1A is positive definite;
(P3) eigmin(M + ATD−1A) = Ω(1).
Given suitable A and D, a matrix M satisfying the conditions of Definition 3.3

may be found, for example, by using a suitable factorization when solving with P (−1)
(see Forsgren and Murray [17], Forsgren and Gill [16], and Forsgren [18]).

Proposition 2.3 gives In(P (ν)) = In(M +ATD−1A)+In(νD). It follows that P (ν)
is nonsingular for ν �= 0, positive definite for ν > 0, and In(P (ν)) = (n,m, 0) for ν < 0.
It is straightforward to show that for all nonzero ν, the eigenvalues of P (ν)−1B(ν)
are real and independent of ν. The first lemma reveals the structure of P (ν)−1B(ν).

Lemma 3.4 (structure of the parameterized preconditioner). Let B(ν) and P (ν)
be defined as in Definitions 2.1 and 3.3, respectively. Then, for ν �= 0, it holds that

(3.2) P (ν)−1B(ν) =

(
S
T I

)
=

(
I

−D−1A I

)(
S

I

)(
I

D−1A I

)
,

where S and T are given by

S = (M + ATD−1A)−1(H + ATD−1A),(3.3a)

T = D−1A(M + ATD−1A)−1(M −H).(3.3b)

In addition, the spectrum of P (ν)−1B(ν) is independent of ν and consists of m unit
eigenvalues and the n eigenvalues of (M + ATD−1A)−1(H + ATD−1A).

Proof. The expressions for P (ν)−1B(ν) follow from the decomposition given in
Lemma A.1 of the appendix. The similarity transform (3.2) implies that the spectrum
of P (ν)−1B(ν) consists of the n eigenvalues of (M + ATD−1A)−1(H + ATD−1A)
together with m unit eigenvalues.

Next we relate the O
(
μ
)

diagonal elements in D to eigenvalues of size 1+O
(
μ1/2

)
in the (1, 1) block S of P (ν)−1B(ν) from (3.2).

Lemma 3.5 (eigenvalues of the parameterized preconditioner). Let M satisfy
assumptions (P1)–(P3) of Definition 3.3. Let AS denote the submatrix of rows of A
associated with diagonal elements of D that are O

(
μ
)
. Then the eigenvalues of

(M + ATD−1A)−1(H + ATD−1A)

are all O
(
1
)

with at least rank(AS) being 1 + O
(
μ1/2

)
.

Proof. First we show that (M + ATD−1A)−1 has at least rank(AS) eigenvalues
that are O

(
μ
)
. Let m1 = rank(AS). Without loss of generality it may be assumed that

the rows of A are ordered so that the m1 row indices in S corresponding to linearly
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independent rows of AS appear first. This implies that A and D may be partitioned
as

A =

(
A1

A2

)
and D =

(
D1

D2

)
,

where A1 is m1 × n, and D1 is m1 ×m1 with all eigenvalues O
(
μ
)
. Then

ATD−1A = AT
1 D

−1
1 A1 + AT

2 D
−1
2 A2.

Consider the singular-value decomposition A1 = UΣV T , where U and V are orthonor-
mal matrices of dimension m1 ×m1 and n ×m1, respectively, and Σ is an m1 ×m1

diagonal matrix. Let v = V p, where p is an arbitrary m1-vector of unit length. Then

(3.4) vTAT
1 D

−1
1 A1v = pTV TAT

1 D
−1
1 A1V p = pTΣUTD−1

1 UΣp ≥ σ2
m1

eigmin(D−1
1 ).

Assumption (A3) implies that σm1
= Θ(1). In addition, all eigenvalues of D1 are

O
(
μ
)
, and so (3.4) implies that vTAT

1 D
−1
1 A1v = Ω(1/μ). It follows that

(3.5) vT(M + ATD−1A)v = vTMv + vTAT
1 D

−1
1 A1v + vTAT

2 D
−1
2 A2v = Ω(1/μ),

since vTMv = O
(
1
)

and vTAT
2 D

−1
2 A2v ≥ 0. As p is an arbitrary unit vector such that

v = V p, we conclude from (3.5) that there exists an m1-dimensional subspace of vec-
tors v such that vT(M+ATD−1A)v is Ω(1/μ). The Courant–Fischer min-max theorem
implies that M +ATD−1A has at least m1 eigenvalues that are Ω(1/μ); see, e.g., [28,
Theorem 8.1.2, p. 394]. It follows that there exists an n×m1 orthonormal matrix Y
and m1×m1 diagonal Λ with eigmin(Λ) = Ω(1/μ) such that (M +ATD−1A)Y = Y Λ.
Since M+ATD−1A is positive definite, it must hold that (M+ATD−1A)−1Y = Y Λ−1

and (M + ATD−1A)−1/2Y = Y Λ−1/2 with

‖(Y T(M + ATD−1A)−1Y )‖ = O
(
μ
)
,(3.6a)

‖(M + ATD−1A)−1/2Y ‖ = O
(
μ1/2

)
.(3.6b)

Let E = (M+ATD−1A)−1/2(H−M)(M+ATD−1A)−1/2 and let Z be an n×(n−m1)
orthonormal matrix such that the columns of Z form a basis for the null space of Y T .
Then Q = (Y Z) is orthonormal and E has the same eigenvalues as the matrix

QTEQ =

(
Y TEY Y TEZ
ZTEY ZTEZ

)
,

where

Y TEY = Y T(M + ATD−1A)−1/2(H −M)(M + ATD−1A)−1/2Y ,(3.7a)

Y TEZ = Y T(M + ATD−1A)−1/2(H −M)(M + ATD−1A)−1/2Z,(3.7b)

ZTEZ = ZT(M + ATD−1A)−1/2(H −M)(M + ATD−1A)−1/2Z.(3.7c)

Then Definition 3.3 and the order estimates (3.6) imply that ‖Y TEY ‖ = O
(
μ
)
,

‖ZTEY ‖ = O
(
μ1/2

)
, and ‖ZTEZ‖ = O

(
1
)
. Hence, since ‖ZTEY ‖ = O

(
μ1/2

)
, the

eigenvalues of E differ by O
(
μ1/2

)
from the eigenvalues of Y TEY together with the
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eigenvalues of ZTEZ. But, since ‖Y TEY ‖ = O
(
μ
)
, we conclude that E has m1 eigen-

values that are O
(
μ1/2

)
. By similarity,

eig
(
(M + ATD−1A)−1(H −M)

)
= eig(E),

and it must hold that (M +ATD−1A)−1(H−M) has at least m1 eigenvalues that are
O
(
μ1/2

)
. The required results now follow from the identity

(M + ATD−1A)−1(H + ATD−1A) = I + (M + ATD−1A)−1(H −M),

completing the proof.
If M−H is known to be a definite matrix, then the O

(
μ1/2

)
bound of Lemma 3.5

may be sharpened to be O
(
μ
)
. In this case, the O

(
μ
)

curvature of the product (M +

ATD−1A)−1/2(H−M)(M+ATD−1A)−1/2 over a rank(AS)-dimensional space implied
by (3.7a) is sufficient to guarantee rank(AS) eigenvalues 1 + O

(
μ
)
.

A combination of Lemmas 3.4 and 3.5 gives the following result on the eigenvalues
of P (ν)−1B(ν).

Theorem 3.6 (eigenvalues of the preconditioned matrix). Let ν �= 0, and let
B(ν) and P (ν) be defined as in Definitions 2.1 and 3.3, respectively. Let AS denote
the submatrix of rows of A associated with diagonal elements of D that are O

(
μ
)
. The

preconditioned matrix P (ν)−1B(ν) has the following properties :
(a) The spectrum of P (ν)−1B(ν) is independent of ν and consists of m unit

eigenvalues and the n eigenvalues of (M + ATD−1A)−1(H + ATD−1A).
(b) Every eigenvalue of P (ν)−1B(ν) is of order O

(
1
)
. Moreover, P (ν)−1B(ν)

has at least m + rank(AS) eigenvalues 1 + O
(
μ1/2

)
, of which at least m are

exactly one.
This result implies that if mS denotes the number of eigenvalues of D that are

O
(
μ
)

and the corresponding mS × n submatrix AS has full row rank, then the PCG

method can be expected to give a solution that is O
(
μ1/2

)
accurate in at most n−mS

iterations.

4. Active-set preconditioning. An advantage of interior methods is that all
inequality constraints are treated in the same way—i.e., the solution path does not de-
pend on an explicit prediction of which constraints are active at the solution. However,
this advantage also can be a weakness because all constraint gradients are included
in the linear system, even those having little or no influence on the solution. For ex-
ample, if an interior method is applied to a problem with 100 variables and 100,000
inequality constraints, then a KKT system with 100,100 rows and columns must be
solved at each iteration. However, if only 50 (say) of the inequalities are active at
the solution, an active-set method would need to solve a KKT system of order 150.
In the context of an interior method, the partition of constraints into “active” and
“inactive” is determined by the magnitude of the diagonals of D in the KKT system
(1.2). Broadly speaking, the active set at the solution is estimated by the indices of
the “small” diagonals, and the inactive set is estimated by the indices of the “big”
diagonals.

In this section we formulate and analyze two active-set preconditioners based on
discarding rows of A that correspond to the big diagonals of D. The preconditioners
may be applied with a cost comparable to that of solving the KKT system in an
active-set method. In addition, the preconditioners allow considerable flexibility in
how the diagonals are partitioned into large and small elements—the partition affects
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only the rate of convergence of the iterative solver, not the rate of convergence of the
interior method. Similar preconditioners have been proposed by Gertz and Griffin [21]
in the context of support vector machine classifiers for large data sets. Preconditioners
for the solution of linear programs in standard form have been considered by Gill
et al. [25] and Oliveira and Sorensen [38]. An active-set preconditioner for general
nonlinear optimization has been proposed by Lukšan, Matonoha, and Vlček [35].

4.1. Two active-set preconditioners. Let mS , mM, and mB denote the num-
ber of row indices in the sets S, M, and B of “small,” “medium,” and “big” elements
of D (see section 1.3). These sets are disjoint, and together they contain all the row
indices of A, so that mS + mM + mB = m. If strict complementarity holds for the
underlying optimization problem, then mM is zero for all μ sufficiently small (see,
e.g., Forsgren, Gill, and Wright [15, p. 531]). The following analysis, does not assume
strict complementarity and so mM may be nonzero. However, it must be emphasized
that in this situation, the assumption regarding the order of the small elements of D
is a simplification of the real situation. Our assumption that dii = O

(
μ
)

for i ∈ S
is sufficient to capture the behavior as μ converges to zero. For a detailed discussion
regarding interior methods on degenerate problems, see, e.g., Wright and Orban [48].

In order to simplify the notation, the indices corresponding to the small and
medium diagonals are combined into one set C, i.e., C = S ∪ M. This set is the
complement of B, i.e., C∩B = ∅ and C∪B = {1, . . . ,m}. This simplification is possible
because of our focus on preconditioners based on discarding information associated
with the indices in B. Given the partition induced by B and C, the matrix P (ν) may
be partitioned as

(4.1) P (ν) =

⎛
⎝M + (1 + ν)ATD−1A νAT

C νAT
B

νAC νDC
νAB νDB

⎞
⎠ .

By eliminating the νDB block from P (ν), we may factor P (ν) as P (ν) = RPPP(ν)RT
P ,

with

RP =

⎛
⎝I AT

BD
−1
B

I
I

⎞
⎠ ,(4.2a)

PP(ν) =

⎛
⎝M + AT

BD
−1
B AB + (1 + ν)AT

CD
−1
C AC νAT

C
νAC νDC

νDB

⎞
⎠ .(4.2b)

Here, the subscript “P” identifies matrices that depend on the partition induced by
B and C (note that P (ν) itself is independent of the partition).

The nontrivial step associated with applying the preconditioner in the factored
form P (ν) = RPPP(ν)RT

P requires a solve with the leading principal submatrix of
(4.2b):

(4.3)

(
M + AT

BD
−1
B AB + (1 + ν)AT

CD
−1
C AC νAT

C
νAC νDC

)
.

This matrix, formed by eliminating the block νDB from P (ν), has smaller dimension,
(n + m − mB) × (n + m − mB), compared to (n + m) × (n + m) for P (ν). Lukšan,
Matonoha, and Vlček [35] propose an active-set preconditioner based on forming an



ITERATIVE SOLUTION OF AUGMENTED SYSTEMS 677

incomplete factorization of the (1, 1) block. This avoids unnecessary fill-in from the
term AT

BD
−1
B AB. We propose an alternative strategy based on the observation that

since ‖D−1
B ‖ = O

(
μ
)
, then ‖AT

BD
−1
B AB‖ = O

(
μ
)
. In particular, the term AT

BD
−1
B AB

may be omitted from the (1, 1) block of PP(ν) without significantly changing the
preconditioner. This implies that (4.3) is replaced by PC(ν), where

(4.4) PC(ν) =

(
M + (1 + ν)AT

CD
−1
C AC νAT

C
νAC νDC

)
.

The subscript “C” indicates that PC(ν) depends only on the indices in C. In active-set
constraint preconditioning, PC(ν) plays the role of P (ν) in the analysis of the standard
case in section 3.1. Analogous to the assumptions on M , A, and D in Definition 3.3,
we require that

(P′
1) ‖M‖ = O

(
1
)
;

(P′
2) M + AT

CD
−1
C AC is positive definite; and

(P′
3) eigmin(M + AT

CD
−1
C AC) = Ω(1).

When PC(ν) replaces the leading principal submatrix in (4.2b) the product of the
factors becomes

(4.5) P 1
P(ν) =

⎛
⎝M + νAT

BD
−1
B AB + (1 + ν)AT

CD
−1
C AC νAT

C νAT
B

νAC νDC
νAB νDB

⎞
⎠ ,

which alternatively may be viewed as the preconditioner obtained by subtracting the
term AT

BD
−1
B AB from the (1, 1) block of P (ν).

The preconditioner (4.5) has the factorization P 1
P(ν) = RPP

2
P(ν)RT

P , where RP
is the upper-triangular matrix (4.2a) and P 2

P(ν) is given by

(4.6) P 2
P(ν) =

⎛
⎝M + (1 + ν)AT

CD
−1
C AC νAT

C
νAC νDC

νDB

⎞
⎠ .

The matrix P 2
P(ν) is yet another active-set preconditioner, which may be derived dif-

ferently by replacing the leading principal submatrix of PP(ν) by PC(ν) and replacing
RP by I. Observe that the replacement of RP by I quantifies the difference between
P 1
P(ν) and P 2

P(ν), and hence P 1
P(ν) is always a “better” approximation to PP(ν) than

P 2
P(ν). However, regardless of the choice of preconditioner, the dominant cost is the

solve with the matrix PC(ν) of (4.4). Note that AB does not appear in P 2
P(ν), which

may make P 2
P(ν) the more attractive preconditioner when it is expensive to form A,

e.g., in PDE-constrained optimization [5].
It remains to establish the theoretical properties of the preconditioners P 1

P(ν) and
P 2
P(ν). The next result shows that, asymptotically, the eigenvalues of P (ν)−1B(ν) and

P 1
P(ν)−1B(ν) are identical.

Theorem 4.1 (properties of the preconditioner P 1
P(ν)). Let B(ν) and P 1

P(ν) be
as defined in Definition 2.1 and (4.5), respectively. In addition, assume that assump-
tions (P′

1)–(P′
3) hold. Then P 1

P(ν) is positive definite for all ν > 0. Moreover, the
following properties hold for all ν �= 0:

(a) The spectrum of P 1
P(ν)−1B(ν) is independent of ν and consists of m unit

eigenvalues and the n eigenvalues of (M + AT
CD

−1
C AC)−1(H + ATD−1A).

(b) The matrix P 1
P(ν)−1B(ν) has all eigenvalues of order O

(
1
)

and at least m+

rank(AS) eigenvalues 1 + O
(
μ1/2

)
, of which at least m are exactly one.
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(c) If P (ν) is the preconditioner of Definition 3.3, then eig(P 1
P(ν)−1B(ν)) =

eig(P (ν)−1B(ν)) + O
(
μ
)
.

Proof. Proposition 2.3 implies that the preconditioner P 1
P(ν) is positive definite

for all ν > 0. For the remainder of the proof it will be assumed that ν is nonzero. It
follows that eig(P 1

P(ν)−1B(ν)) = eig(P 2
P(ν)−1R−1

P B(ν)R−T
P ), where

(4.7) R−1
P B(ν)R−T

P =

⎛
⎝H + AT

BD
−1
B AB + (1 + ν)AT

CD
−1
C AC νAT

C
νAC νDC

νDB

⎞
⎠ .

By successively replacing H by H+AT
BD

−1
B AB, A by AC , and D by DC in Lemma 3.4,

a combination of (4.6) and (4.7) gives

(4.8) P 2
P(ν)−1R−1

P B(ν)R−T
P =

⎛
⎝SC
TC I

I

⎞
⎠ ,

where the matrices SC and TC are given by

SC = (M + AT
CD

−1
C AC)−1(H + ATD−1A),(4.9a)

TC = D−1
C AC(M + AT

CD
−1
C AC)−1(M −H −AT

BD
−1
B AB).(4.9b)

The identity (4.8) implies that the spectrum of P 1
P(ν)−1B(ν) consists of the eigenval-

ues of SC and m unit eigenvalues, which proves part (a). Since SC is independent of
ν, the spectrum of P 1

P(ν)−1B(ν) is also independent of ν. Lemma 3.5 implies that SC
has at least rank(AS) eigenvalues that are 1 + O

(
μ1/2

)
, which establishes part (b).

To establish part (c), we need to estimate the difference between the eigenvalues
of SC and S, where S is given by (3.3a). This can be done using Lemma A.2 of the
appendix. We may write

SC = I + (M + AT
CD

−1
C AC)−1(H −M) + (M + AT

CD
−1
C AC)−1AT

BD
−1
B AB,(4.10a)

S = I + (M + ATD−1A)−1(H −M).(4.10b)

By assumption, matrix M+AT
CD

−1
C AC is positive definite with the smallest eigenvalue

bounded away from zero, and AT
BD

−1
B AB is positive definite with ‖D−1

B ‖ = O
(
μ
)
. The

identity (4.10a) implies that the matrix (M +AT
CD

−1
C AC)1/2SC(M +AT

CD
−1
C AC)−1/2

is symmetric and has the same eigenvalues as SC , and it follows from (4.10) that

eig(SC) = 1 + eig((M + AT
CD

−1
C AC)−1(H −M)) + O

(
μ
)
,(4.11a)

eig(S) = 1 + eig((M + ATD−1A)−1(H −M)).(4.11b)

If we define M1 = M + AT
CD

−1
C AC , M2 = AT

BD
−1
B AB, and M3 = H −M , then (4.11)

gives eig(SC) = 1 + eig(M−1
1 M3) + O

(
μ
)

and eig(S) = 1 + eig((M1 + M2)
−1M3).

Lemma A.2 in conjunction with assumptions (P′
1)–(P′

3) gives the desired result.
Next we establish that P 2

P(ν) has the same asymptotic behavior as P (ν) and
P 1
P(ν). For P 2

P(ν) it is assumed that ν > 0, which ensures that the eigenvalues of
P 2
P(ν)−1B(ν) are real. The preconditioner P 2

P(ν) is less expensive to apply than P 1
P(ν),

but the number of unit eigenvalues of the preconditioned matrix decreases from m to
m − rank(AB) because AB does not appear in P 2

P(ν). However, as the next theorem
shows, for ν > 0, P 2

P(ν) behaves almost as well as P 1
P(ν) in the sense that the

eigenvalues of P 2
P(ν)−1B(ν) differ from the eigenvalues of P (ν)−1B(ν) by O

(
μ1/2

)
.
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Theorem 4.2 (properties of the preconditioner P 2
P(ν)). Let B(ν) and P 2

P(ν) be
as defined in Definition 2.1 and (4.6), respectively. In addition, assume that assump-
tions (P′

1)–(P′
3) hold. Then the following properties hold for all ν > 0:

(a) P 2
P(ν) is positive definite.

(b) The matrix P 2
P(ν)−1B(ν) has all eigenvalues of order O

(
1
)

and at least m+

rank(AS) eigenvalues 1+O
(
μ1/2

)
, of which at least m−rank(AB) are exactly

one.
(c) If P (ν) is the preconditioner of Definition 3.3, then eig(P 2

P(ν)−1B(ν)) =
eig(P (ν)−1B(ν)) + O

(
μ1/2

)
.

Proof. The positive definiteness of P 2
P(ν) for ν > 0 follows from Proposition 2.3.

For the remainder of the proof, assume that ν > 0. Then, since P 2
P(ν) is positive def-

inite, the identity eig(P 2
P(ν)−1/2B(ν)P 2

P(ν)−1/2) = eig(P 2
P(ν)−1B(ν)) ensures that

P 2
P(ν)−1B(ν) has real eigenvalues. Analogous to the proof of Theorem 4.1, by succes-

sively replacing the matrix H by H + (1 + ν)AT
BD

−1
B AB, A by AC , and D by DC in

Lemma 3.4, and by using a combination of Proposition 2.3 and (4.6), we find that

(4.12) P 2
P(ν)−1B(ν) =

⎛
⎝SC
TC I

I

⎞
⎠ +

⎛
⎝U X

V Y
W

⎞
⎠ ,

where SC and TC are given by (4.9),

U = ν(M + AT
CD

−1
C AC)−1AT

BD
−1
B AB,(4.13a)

V = −νD−1
C AC(M + AT

CD
−1
C AC)−1AT

BD
−1
B AB,(4.13b)

W = D−1
B AB,(4.13c)

X = ν(M + AT
CD

−1
C AC)−1AT

B ,(4.13d)

Y = −νD−1
C AC(M + AT

CD
−1
C AC)−1AT

B .(4.13e)

It follows from (4.12) that P 2
P(ν)−1B(ν) contains m−mB columns from the identity

matrix; hence it has at least m−mB unit eigenvalues. The remaining eigenvalues are
those of the matrix N given by

(4.14) N =

(
SC + U X

W I

)
=

(
SC + νS−1

M AT
BD

−1
B AB νS−1

M AT
B

D−1
B AB I

)
,

with SM = M + AT
CD

−1
C AC . Observe that (4.14) implies that any nonzero vector x

such that AT
Bx = 0 induces an eigenvector corresponding to a unit eigenvalue of N .

Hence, N has at least mB − rank(AB) unit eigenvalues. Further, let Q̃ be defined by

Q̃ =

(
S

1/2
M

ν1/2D
1/2
B

)
.

Then N and Q̃NQ̃−1 have identical eigenvalues, and Q̃NQ̃−1 is given by

Q̃NQ̃−1 =

(
S

1/2
M SCS

−1/2
M + νS

−1/2
M AT

BD
−1
B ABS

−1/2
M ν1/2S

−1/2
M AT

BD
−1/2
B

ν1/2D
−1/2
B ABS

−1/2
M I

)

=

(
S

1/2
M SCS

−1/2
M

I

)
+

(
νS

−1/2
M AT

BD
−1
B ABS

−1/2
M ν1/2S

−1/2
M AT

BD
−1/2
B

ν1/2D
−1/2
B ABS

−1/2
M

)
.
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Note that S
1/2
M SCS

−1/2
M is symmetric, and hence Q̃NQ̃−1 is symmetric. In addi-

tion, from our assumptions, it follows that ‖ν1/2S
−1/2
M AT

BD
−1/2
B ‖ = O

(
μ1/2

)
and

‖νS−1/2
M AT

BD
−1
B ABS

−1/2
M ‖ = O

(
μ
)
. Hence, Q̃NQ̃−1 has mB eigenvalues that differ

by O
(
μ1/2

)
from unity, and n eigenvalues that differ by O

(
μ1/2

)
from the eigen-

values of the matrix S
1/2
M SCS

−1/2
M . In addition, the eigenvalues of S

1/2
M SCS

−1/2
M and

SC are identical. Consequently, it follows that the spectrum of P 2
P(ν)−1B(ν) consists

of m − rank(AB) unit eigenvalues, rank(AB) eigenvalues that are 1 + O
(
μ1/2

)
, and

n eigenvalues that differ by O
(
μ1/2

)
from the eigenvalues of SC . Theorem 4.1 now

shows that eig(P 2
P(ν)−1B(ν)) = eig(P 1

P(ν)−1B(ν)) + O
(
μ1/2

)
, which gives the re-

quired result, since O
(
μ1/2

)
dominates O

(
μ
)
. In particular, Theorem 4.1 implies that

P 2
P(ν)−1B(ν) has at least m + rank(AS) eigenvalues that are 1 + O

(
μ1/2

)
.

We conclude that it is possible to construct appropriate constraint preconditioners
based on solving the smaller system (4.4). Moreover, the matrix PC(ν) of (4.4) has
exactly the same structure as P (ν). The difference is that the number of rows and
columns in the preconditioner has been reduced from n + m to n + m−mB. Hence,
all the previous analysis applies. For our example with 100 variables and 100,000
inequality constraints, a matrix of dimension 150 would need to be factored instead
of a matrix of dimension 100,100.

As shown above, the partition of the row indices into B and its complement C pro-
vides active-set preconditioners P 1

P(ν) and P 2
P(ν) that are asymptotically equivalent

to P (ν). If strict complementarity holds, then mM = 0 and the division into large
and small elements is straightforward. If strict complementarity does not hold, then
mM > 0 and we have chosen to append M to S. Analogous preconditioners may be
constructed by first identifying S and then forming the complementary set S̄, which
is the set obtained by appending M to B. The resulting KKT system analogous to
(4.4) would have smaller dimension because C is replaced by S. However, the result-
ing preconditioners would not be asymptotically equivalent in general. For P 1

P(ν), the
1+O

(
μ1/2

)
cluster of eigenvalues would be the same as for P (ν), but the eigenvalues

resulting from M would differ by an O
(
1
)

term. The reason for this difference is that

the norm of D−1
S̄ would not be of order O

(
μ
)
, but would include terms involving mM

eigenvalues of order one.
It should be emphasized that the choice of C and B affects only the efficiency of

the active-set constraint preconditioners and not the definition of the linear equations
that need to be solved. A poorly chosen partition may adversely affect the quality of
the preconditioner, but not the solution of the linear equations. The partition analyzed
here provides the largest B for which we can guarantee that the preconditioners P 1

P(ν)
and P 2

P(ν) are asymptotically equivalent to P (ν) for ν > 0. If elements are excluded
from B, then P 1

P(ν) and P 2
P(ν) become “better” approximations to P (ν), and the

asymptotic performance is unchanged. However, this increases the dimension of the
KKT system (4.4). As noted above, if B is chosen too large, in the sense that diagonal
elements of D are included in DB that are not Ω(1/μ), then the quality of the active-
set preconditioners can be expected to deteriorate. Hence, it is not essential that B is
estimated correctly, but it is essential that DB contains only large elements.

5. On semidefinite diagonal matrices. Up to this point we have assumed
that the matrix D in the (2, 2) block of the KKT system is positive definite. In the
general case, the last block of equations in the KKT system has the form

(5.1) Ax1 + Gx2 = b2,
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where G is a diagonal matrix with positive and zero entries. If all the constraints
of the optimization problem are nonlinear, it is always possible to formulate the
interior method so that G is positive definite. For inequality constraints, standard
formulations give positive elements in G that are of the order of the perturbation
parameter μ (see, e.g., Vanderbei and Carpenter [46] and Forsgren and Gill [16]).
Typically, zero elements of G are associated with linearized equality constraints, where
the corresponding subset of equations (5.1) are the Newton equations for a zero of
the constraint residual. An alternative to direct constraint linearization is to impose
equality constraints approximately via a quadratic penalty function. It can be shown
that this approach gives a positive element in G of the order of μ̄, where μ̄ is the
inverse of the penalty parameter (see, e.g., Gould [31] and Forsgren and Gill [16]).
The parameter μ̄ may be allowed to vary with μ, or may be fixed at some small
value (see, e.g., Gill et al. [26] and Saunders and Tomlin [42]). Fixing μ̄ defines a
regularization of the problem, which allows the formulation of methods that do not
require an assumption on the rank of the equality constraint Jacobian. (For more
details on the use of regularization in interior methods, see Gill et al. [24], Vanderbei
and Shanno [47], and Altman and Gondzio [1].)

However, it may not always be beneficial to regularize linear constraints. Regu-
larization in this context is less crucial because reliable techniques exist for discarding
dependent equality constraints. Moreover, interior methods can be defined so that
every iterate satisfies the linear equality constraints (see below). With an appropri-
ate choice of constraints, this feature can be used to guarantee that the nonlinear
functions and their derivatives are well defined at all points generated by the interior
method.

In order to consider KKT systems with a semidefinite (2, 2) block, we assume
that the variables and equations are preordered to give a system Bx = b such that

(5.2)

⎛
⎝ H −AT −FT

−A −D
−F

⎞
⎠

⎛
⎝x1

x2

x3

⎞
⎠ =

⎛
⎝ b1
−b2
−b3

⎞
⎠ ,

where D is positive definite. Note that we cannot compute the condensed or doubly
augmented system for these equation because of the zero block. In this case, B has
correct inertia if NT (H + ATD−1A)N is positive definite, where the columns of N
form a basis for the null space of F (see Forsgren [18]).

The KKT system (5.2) may be solved using a projection technique similar to
that described in section 3. First, an initial point y is found with first n components
forming a vector y1 such that Fy1 = b3. This vector may be computed in various
ways—e.g., by computing an LU factorization of FT (see, e.g., Gill, Murray, and
Saunders [27]), or by solving a system for the preconditioning matrix associated with
(5.2), where H is replaced by a suitable approximation M (see Gould, Hribar, and
Nocedal [29]). Once y is known, the PCG method may be used to solve

(5.3)

⎛
⎝ H −AT −FT

−A −D
−F

⎞
⎠

⎛
⎝x̂1

x̂2

x̂3

⎞
⎠ =

⎛
⎝ b̂1
−b̂2

0

⎞
⎠ ,

with b̂1 = b1 −Hy1 + ATy2 + FTy3 and b̂2 = b2 − Ay1 −Dy2. The required solution
is then x = y + x̂. Analogous to the situation when G is positive definite, we may



682 ANDERS FORSGREN, PHILIP E. GILL, AND JOSHUA D. GRIFFIN

embed (5.3) into the parameterized system of linear equations

(5.4)

⎛
⎝H + (1 + ν)ATD−1A νAT −FT

νA νD
−F

⎞
⎠

⎛
⎝x̂1

x̂2

x̂3

⎞
⎠ =

⎛
⎝b̂1 + (1 + ν)ATD−1b̂2

νb̂2
0

⎞
⎠ ,

with b̂1 = b1 − Hy1 + ATy2 + FTy3 and b̂2 = b2 − Ay1 − Dy2. If the zero elements
of G are associated with linear constraints, and the system (5.3) is solved exactly, it
suffices to compute the special step y only once, when solving the first system. Then,
provided that the constraint preconditioner is applied exactly at every PCG step, the
right-hand side of (5.3) will remain zero for all subsequent iterations.

The linear equations (5.2), (5.3), and (5.4) do not require N . If the preconditioner
cannot be applied exactly, then it is necessary to use an alternative method based
on computing products of the form NTv and Nu. (Gill, Murray, and Saunders [27]
describe how these products may be computed in a numerically stable way without
needing to store N explicitly.) The requirement that Fx̂1 = 0 implies that x̂1 can
be written as x̂1 = Np̂1. Substituting this expression in (5.3) gives the reduced KKT
system

(5.5)

(
NTHN −(AN)T

−AN −D

)(
p̂1

p̂2

)
=

(
NT(b1 −Hy1 + ATy2)
−b2 + Ay1 + Dy2

)
,

from which we can define x̂1 = Np̂1 and x̂2 = p̂2. This system has a nonsingular (2, 2)
block and has correct inertia if (5.2) has correct inertia. Moreover, the iterates define
exact projections regardless of the accuracy of the solves with the preconditioner.
Hence, all the conditions needed for the application of the PCG method proposed
in section 3 apply. The systems (5.3) and (5.5) are mathematically equivalent, which
implies that we may apply the analysis of section 3 directly to both (5.3) and (5.4).

6. Some numerical examples. To illustrate the numerical performance of the
proposed preconditioners, a PCG method was applied to a collection of illustrative
large sparse KKT systems. The test matrices were generated from a number of realis-
tic KKT systems arising in the context of primal-dual interior methods. We conclude
with some randomly generated problems that illustrate some of the properties of the
preconditioned matrices.

6.1. Examples from the COPS test set. First we describe some numerical
results obtained on linear equations arising in a primal-dual interior method applied
to optimization problems from the COPS 3.0 test collection [6, 9, 10] implemented in
the AMPL modeling language [2, 19].

The equations are analogous to those generated by an interior-point method with
barrier parameter μ. The data for the test matrices was generated using a primal-
dual trust-region method (see, e.g., [16, 20, 32]) applied to eight problems, Camshape,
Channel, Gasoil, Marine, Methanol, Pinene, Polygon, and Tetra, from the COPS 3.0
test collection [6, 8, 9, 10]. The interior-point method requires the solution of systems
with a KKT matrix of the form

(6.1)

(
H −JT

−J −Γ

)
,

where H is the n × n Hessian of the Lagrangian, J is the m × n Jacobian matrix of
constraint gradients, and Γ is a positive-definite diagonal with some large and small
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Table 6.1

Dimensions of the AMPL versions of the COPS problems.

Problem n m ‖H −M‖ σk(J)

Camshape 1200 3600 2.6e+0 1.3e-5

Channel 6398 6398 1.1e+2 4.1e-5

Gasoil 4001 4001 1.1e+1 0.0e+0

Marine 6415 6407 3.5e+1 0.0e+0

Methanol 4802 4802 3.1e+0 2.8e-3

Pinene 8000 8000 9.2e+3 6.8e-8

Polygon 398 20496 2.4e+2 0.0e+0

Tetra 1200 4254 2.7e+1 0.0e+0

elements. These systems have the same structure as the generic system (1.2). The
dimensions of the eight problems are given in Table 6.1. The optimization problems
in the COPS collection have a mixture of general nonlinear constraints and simple
upper and lower bounds on the variables. The simple bounds lead to unit rows in
J , and it is customary to define a smaller KKT system in which the unit rows and
columns are eliminated. However, in the numerical experiments, the unit rows were
included in order to more accurately illustrate the results of Theorems 3.6, 4.1, and
4.2. Hence the value of m also includes the bound constraints. The final column gives
the kth largest singular value of J , where k = min{m,n}.

For each of the eight featured COPS problems, matrices H, A, D and the right-
hand side were generated from the matrices H, J , Γ and the right-hand side at a
snapshot taken at iteration 30 of the interior method. For each problem snapshot,
five systems of equations were generated by specifying five matrices D with entries
parameterized by a scalar μ = 10−� for 	 = {1, 2, 4, 6, 8}. For each value of μ, the
matrices A and D were generated from J and Γ using the MATLAB code fragment

[D, ind] = sort(Gamma); % sort the diagonals of Gamma

A = J(ind,:); % reorder the rows of J

k = min([m,n]); %

if k < m, D(k+1:end) = max(D(k+1:end), 1/mu); end

D(1:k) = min(D(1:k),mu);

This choice of D implicitly defines a sequence of systems associated with a ver-
tex solution of the underlying optimization problem for which strict complementarity
holds. This was done deliberately to minimize the effect of the matrix M on the effi-
ciency of the preconditioner (see the definition of P (ν) in (4.1)). Asymptotically, the
matrix M defines the efficiency of the preconditioner within the null space of the ma-
trix of active constraints (see, e.g., Dollar et al. [11]). In our analysis we have focused
on the part of the preconditioner associated with the constraint part of the KKT
system. The formulation and analysis of effective choices for M are beyond the scope
of this paper. (For some possible approaches, see, e.g., [22, 23].) In the experiments
reported here, M was a diagonal matrix with entries Mjj = max

(
|Hjj |, δ

)
, where

δ = 10−1.
Figure 6.1 depicts the number of PCG iterations required to solve the resulting

8 sets of 5 systems of linear equations. The bar charts give the PCG iterations for
the condensed system (top) and doubly augmented system (bottom). The MATLAB
version of SYMMLQ [39] was used as the PCG solver. The symmetric indefinite solver
MA27 was used to factor the constraint preconditioner (see Duff and Reid [13]). The
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Fig. 6.1. Results on the COPS problems. The graphs give the number of PCG iterations for
P (0) (above) and P (1) (below). The vertical axis is limited to 50 iterations. The number of iterations
needed for each off-scale case is given by the appropriate key code “A”, “B”, or “C”.

value of 10−6 was used for the SYMMLQ relative convergence tolerance. For problem
Channel, with the three larger values of μ, PCG did not converge within the pre-
assigned limit of 106 iterations (a more sophisticated choice of M is needed in this
case). Note the similar number of PCG iterations needed to solve the condensed
system and doubly augmented system.

Figure 6.2 gives the number of PCG iterations for the active-set preconditioners on
the COPS problems Camshape, Polygon, and Tetra. These problems have significantly
more constraints than variables and provide good examples on which to test the active-
set preconditioners. In order to illustrate the behavior of the active-set preconditioner,
we scale D so that exactly n elements are less than μ and the remaining elements are
greater than 1/μ. We emphasize that the motivation for manipulating D in this way
is to illustrate the effect of changing μ for fixed H and J .

mS = min([n,m,k]);

JS = J(1:mS,:); JB = J(mS+1:end,:);

DS = D(1:mS); DB = D(mS+1:end);

DS = spdiags(DS,0,mS,mS);
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Fig. 6.2. COPS problems: PCG iterations for P 1
P (1) (left) and P 2

P (1) (right). The vertical axis
is limited to 50 iterations. The number of iterations needed for each off-scale case is given by the
appropriate key code “A”, “B”, or “C”.

6.2. Results from randomly generated problems. Additional experiments
were performed on randomly generated KKT systems. The purpose of these experi-
ments was to illustrate the clustering of the eigenvalues of the preconditioned matrices
associated with the doubly augmented system. The first set of experiments involved
applying the preconditioners P (1), P 1

P(1), and P 2
P(1) to randomly generated prob-

lems satisfying the assumptions of Theorems 4.1 and 4.2. Of particular interest is the
“strict complementarity” assumption that every element of the diagonal D is either
big or small. Given values n = 400, m = 600, and μ = 10−� for 	 = {1, 2, 4, 6, 8},
matrices H, AS , AB, DS , and DB were generated using the MATLAB code fragment

mS = 100; d = 10^(-2);

H = sprandsym(n,d); JS = sprand(mS,n,d,0.1); JB = sprand(m-mS,n,d);

DS = diag(mu*ones(mS,1)); DB = diag((1/mu)*ones(m-mS,1));

Table 6.2 gives details of the eigenvalues of the preconditioned matrices associated
with each of the preconditioners P (1), P 1

P(1), and P 2
P(1), where the diagonal precon-

ditioner M was defined as in the COPS examples of the previous section. In all these
runs, the resulting KKT matrix satisfies ‖H −M‖ = 4.95 and σn(JS) = 10−1. These
linear systems would be typical for a primal-dual method applied to an optimization
problem with 100 active constraints at a point satisfying a strict complementarity as-
sumption. Theorems 3.6 and 4.1 predict that for the preconditioners P (1) and P 1

P(1),
700 (= m + rank(AS)) eigenvalues of the preconditioned matrix will cluster close to
unity, with 600 of these eigenvalues exactly equal to one. Theorem 4.2 predicts that as
μ is reduced, P 2

P(1) also will give 700 eigenvalues close to one, whereas 200 (= m−n)
eigenvalues will be exactly one.

The last four columns of Table 6.2 illustrate the degree of clustering of the eigen-
values of the preconditioned matrix. Clustering is measured by means of the function
l(θ) defined as follows. Given a matrix C with real eigenvalues, the function

l(θ) = card{λ ∈ eig(C) : |λ− 1| ≤ θ}

gives the number of eigenvalues of C within distance θ of unity. Table 6.2 gives the
values of l(θ) for the three preconditioned matrices C = P (1)−1B(1), P 1

P(1)−1B(1),
and P 2

P(1)−1B(1). In this strict-complementarity case, we expect that the proposed
preconditioners would asymptotically give a cluster of 700 unit eigenvalues. Note that
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Table 6.2

Number of clustered eigenvalues of the preconditioned matrix. Randomly generated KKT systems
with n = 400, m = 600, mS = 100, mM = 0, mB = 500, (DS)ii = μ, and (DB)ii = 1/μ.

μ l(10−8) l(10−6) l(10−4) l(10−2)

10−1 600 600 600 601

10−2 600 600 600 612

P 10−4 600 600 612 675

10−6 600 612 673 700

10−8 606 673 700 700

10−1 600 600 600 602

10−2 600 600 600 611

P 1
P 10−4 600 600 612 675

10−6 600 612 673 700

10−8 593 673 700 700

10−1 200 200 200 425

10−2 200 200 215 567

P 2
P 10−4 200 215 566 673

10−6 215 566 672 700

10−8 546 672 700 700

Table 6.3

Number of clustered eigenvalues for the preconditioned matrix. Randomly generated KKT systems
with n = 400, m = 600, mS = 75, mM = 25, mB = 500, (DS)ii = μ, (DM)ii = 1, and
(DB)ii = 1/μ.

μ l(10−8) l(10−6) l(10−4) l(10−2)

10−1 600 600 600 601

10−2 600 600 600 609

P 10−4 600 600 609 654

10−6 600 609 653 675

10−8 604 653 675 675

10−1 600 600 600 602

10−2 600 600 600 609

P 1
P 10−4 600 600 609 654

10−6 600 609 653 675

10−8 591 653 675 675

10−1 200 200 200 425

10−2 200 200 215 563

P 2
P 10−4 200 215 563 653

10−6 215 563 653 675

10−8 544 653 675 675

for small values of μ, P (1) and P 1
P(1) produce very similar numbers of eigenvalues

close to unity. The preconditioner P 2
P(1) tends to give fewer accurate eigenvalues than

P (1) and P 1
P(1) for the larger values of μ, although the differences become less marked

as μ is reduced.
Table 6.3 was generated with the same data used for Table 6.2, with the one

exception that strict complementarity was assumed not to hold. As in Table 6.2, we
simulate an optimization problem with 100 active constraints, but in this case we set
mS = 75 and mM = 25. The corresponding diagonal elements of DM were set at one.
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In this non-strict-complementarity case, Theorems 3.6, 4.1, and 4.2 predict that the
proposed preconditioners would asymptotically give a cluster of 675 (= m+mS) unit
eigenvalues, which is reflected in the results. The performance of the preconditioners
is very similar to that depicted in Table 6.2.

7. Summary and further research. A framework has been proposed for ap-
plying the PCG method to KKT systems of the form (1.1) that arise in interior
methods for general nonconvex optimization. The proposed methods are based on ap-
plying the conjugate-gradient method to the doubly augmented system (1.4), which
is positive definite if the underlying optimization problem satisfies the second-order
sufficient conditions for optimality. An advantage of the doubly augmented system is
that it is positive definite with respect to all of the variables.

We also have proposed a class of constraint preconditioners for the doubly aug-
mented system. In particular, we have analyzed two ways of using an estimate of the
active set to reduce the cost of applying the preconditioner when there are many in-
equality constraints. As the solution of the optimization problem is approached, these
active-set preconditioners have theoretical performance comparable to constraint pre-
conditioners that include all the constraints. An advantage of using preconditioning
in conjunction with the doubly augmented system is that the linear equations used
to apply the preconditioner need not be solved exactly. Future work will consider the
analysis associated with these approximate preconditioners.

The focus of this paper has been on the formulation and analysis of constraint pre-
conditioners. The next step is to consider “full” preconditioners based on estimating
the matrix H in the (1, 1) block of the KKT equations. For example, a preconditioner
may be defined using an incomplete inertia-controlling factorization of the KKT sys-
tem (1.2). For more details on the inertia-controlling factorization for augmented
systems in interior methods, see Forsgren and Gill [16] and Forsgren [18].

Appendix. Linear algebra. Here we review two results from linear algebra.
The first gives the structure of the inverse of B(ν) and may be verified by direct
multiplication.

Lemma A.1. Given a nonsingular symmetric matrix D, consider the matrix

B(ν) =

(
H + (1 + ν)ATD−1A νAT

νA νD

)
,

where ν is a scalar. Then B(ν) may be factored in the form

B(ν) =

(
I ATD−1

I

)(
H + ATD−1A

νD

)(
I

D−1A I

)
.

Moreover, if H + ATD−1A is nonsingular and ν �= 0, then B(ν) is nonsingular, with
inverse

B(ν)−1 =

(
(H + ATD−1A)−1 −(H + ATD−1A)−1ATD−1

−D−1A(H + ATD−1A)−1 1
νD

−1 + D−1A(H + ATD−1A)−1ATD−1

)

=

(
I

−D−1A I

)(
(H + ATD−1A)−1

1
νD

−1

)(
I −ATD−1

I

)
.

The second result provides bounds on the perturbation of the eigenvalues of
M−1

1 M3 when M1 is perturbed by a positive-semidefinite matrix M2.
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Lemma A.2. Let M1, M2, and M3 be n×n symmetric matrices with M1 positive
definite and M2 positive semidefinite. Let {λi} and {λ̃i} denote the eigenvalues of
M−1

1 M3 and (M1 +M2)
−1M3, respectively. Assume that the {λi} are ordered so that

λ1 ≥ λ2 ≥ · · · ≥ λn, with the same ordering for {λ̃i}. Then

0 ≤ λi − λ̃i ≤ ‖M−1/2
1 M2M

−1/2
1 ‖λ̃i for all i such that λi ≥ 0,

0 ≤ λ̃i − λi ≤ −‖M−1/2
1 M2M

−1/2
1 ‖λ̃i for all i such that λi < 0.

Proof. Let M , M̃ , and Ĩ be defined such that

M = M
−1/2
1 M3M

−1/2
1 , Ĩ = I + M

−1/2
1 M2M

−1/2
1 , and M̃ = Ĩ−1/2MĨ−1/2.

Then M , Ĩ, and M̃ are symmetric with Ĩ positive definite. A similarity transformation

gives eig(M−1
1 M3) = eig(M

−1/2
1 M3M

−1/2
1 ) = eig(M), which means that M has eigen-

values λi, i = 1 :n. Similarly, we have

(M1 + M2)
−1M3 = M

−1/2
1 (I + M

−1/2
1 M2M

−1/2
1 )−1M

−1/2
1 M3

= M
−1/2
1 Ĩ−1MM

1/2
1 .(A.1)

Successive similarity transformations of (A.1) with M
1/2
1 and Ĩ1/2 give

eig
(
(M1 + M2)

−1M3

)
= eig(Ĩ−1M) = eig(Ĩ−1/2MĨ−1/2) = eig(M̃),

which means that M̃ has eigenvalues λ̃i, i = 1 :n.
Now we relate λi to λ̃i. First, consider the case λi ≥ 0. Since λi is an eigenvalue

of M and λ̃i is an eigenvalue of M̃ , with M̃ = Ĩ−1/2MĨ−1/2, the Courant–Fischer
min-max theorem gives

(A.2)
1

‖Ĩ−1‖
λ̃i ≤ λi ≤ ‖Ĩ‖λ̃i;

see, e.g., Golub and Van Loan [28, pp. 403–404]. Since Ĩ = I +M
−1/2
1 M2M

−1/2
1 with

M2 positive semidefinite, it follows that ‖Ĩ−1‖ ≤ 1 and ‖Ĩ‖ ≤ 1+‖M−1/2
1 M2M

−1/2
1 ‖.

Hence, (A.2) gives

λ̃i ≤ λi ≤ (1 + ‖M−1/2
1 M2M

−1/2
1 ‖)λ̃i,

which is equivalent to the desired result when λi ≥ 0,

0 ≤ λi − λ̃i ≤ ‖M−1/2
1 M2M

−1/2
1 ‖λ̃i.

For the case λi < 0, we apply the analysis above to the matrices −M̃ and −M . Then,
since −λi is a positive eigenvalue of −M and −λ̃i is an eigenvalue of −M̃ , we conclude
that

0 ≤ −λi + λ̃i ≤ −‖M−1/2
1 M2M

−1/2
1 ‖λ̃i,

as required.
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DUALITY AND THE COMPUTATION OF APPROXIMATE
INVARIANT DENSITIES FOR NONSINGULAR

TRANSFORMATIONS∗

CHRISTOPHER J. BOSE† AND RUA MURRAY‡

Abstract. We investigate a class of optimization problems which arise in the approximation
of invariant densities for a nonsingular, measurable transformation T acting on a finite measure
space. The problems under consideration have convex integral-type objectives and finite moment
constraints and include, for example, the maximum entropy and quadratic programming approaches
previously studied in the literature. This article is a natural sequel to those investigations and to
the paper [C. Bose and R. Murray, Discrete Contin. Dyn. Syst., 14 (2006), pp. 597–615], where
a general class of convergent moment approximations were defined such that the limiting optimal
solution is an invariant density for T . This article mainly concerns the solution of a single finite
moment problem arising from this general approximation scheme. Both theoretical aspects and
computational issues are treated. Although the problem fits easily into the standard theory of
duality in convex optimization, its dynamical origins lead to technical obstructions in the derivation
of optimality conditions. In particular, the dual functional for our problem is neither strictly convex
nor coercive, relating in part to the fact that the moment generating functions for the approximation
scheme need not be pseudo-Haar. The method of the paper circumvents these obstructions and yields
an unexpected benefit: each finite moment approximation leads to rigorous bounds on the support
of all invariant densities for T .

Key words. invariant measure, Frobenius–Perron operator, entropy-like objective, moment
constraint, strong duality
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1. Introduction. Let X = (X;B, μ) be a Borel measure space. When T : X →
X is measurable and nonsingular with respect to μ, (T,X) is a dynamical system,
and we are motivated by the question: Can one find a T -invariant probability measure
with a density function f ∈ Lp(X;μ) (usually p = 1)? A measure ν is T -invariant,
or an invariant measure, if ν = ν ◦ T−1. Invariant measures determine equilibrium
statistics of the dynamical system (T,X) (via Birkhoff’s ergodic theorem) and those
with densities do so for a μ-nontrivial set of orbits. T -invariant measures with densities
are absolutely continuous invariant measures (ACIMs). Usually, they cannot be found
in closed form, and it is highly desirable to develop computational strategies for
approximating them. In [5] we studied a class of convex optimization problems on
classical Banach spaces whose solutions robustly approximate T -invariant densities:
the solutions {fn} to appropriately chosen sequences of optimization problems (Pn)
converge (in Lp) to a T -invariant density. In the current paper we investigate some
of the technical issues that arise in solving such (Pn) as well as provide complete and
explicit solutions for some special cases.
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The optimization problems have the general form

Minimize Φ(f) =

∫
X

φ(f(x)) dμ(x)

(Pn)
subject to f ∈ Lp(X;μ) and Mf = b ∈ R

N+1

(hereafter we denote Lp(X;μ) = Lp). The constraint M : Lp → R
N+1 is of moment

type, i.e., is defined with respect to a given finite collection1 g0, g1, . . . gN of moment
test functions in Lq(X) and

(Mf)i =

∫
f gi dμ, i = 0, 1, . . . N.

For each n, the vector b is fixed and q is the conjugate index: 1
p + 1

q = 1 (when p = 1,

q = ∞). This setup generalizes a study of Ding [6].
Our aim is to develop numerical algorithms for invariant density approximations

which work in practice: the methods must produce a convergent sequence of ap-
proximately invariant densities, and each iteration must involve the computation of
a well-defined function, which can be performed on a computer. Our optimization
based program requires the following:

1. a suitable choice of generating functions (in Lq) such that any limit as n → ∞
of solutions to (Pn) is an invariant density of the dynamical system (T,X);
the dynamics of T are thus “encoded into M”;

2. a choice of Φ which ensures norm convergence of the solutions of (Pn) as
n → ∞;

3. any refinements needed to ensure that the solution of (Pn) can be reduced to
the solution of a finite number of algebraic equations; and

4. application of the method to specific examples to produce a convergent se-
quence of approximately invariant densities.

All of these steps lead to nontrivial considerations. Most of 1 is addressed in [5],
where we refer the interested reader. The main requirement is that the moment test
functions are derived from a sequence whose span is weak∗-dense in Lq; the necessary
details are given in section 2. The requirements of 2 can be addressed with standard
results from the literature [1, 3, 12, 11], and some details are collected in section 2.
Several example formulations are also presented in section 2.

The main effort in this paper is directed toward 3: establishing conditions which
allow the primal optimization problems (Pn) to be solved on a computer. Since
each (Pn) is convex, it is natural to write down the Lagrangian and pass to a dual
(or conjugate) optimization problem, obtaining a concave, finite-dimensional, and
unconstrained problem (Dn). While (Dn) is derived easily using standard methods,
for a large (and reasonable) choice of moment formulations of the invariant measure
problem, the dual objective function is noncoercive.2 This leads to difficulty in the
derivation of necessary and sufficient optimality conditions, and possibly to failure
of dual attainment (with consequent impediments in the practical solution of the
optimization problems). We have identified two mechanisms leading to noncoercivity
of (Dn): (i) the moment test functions defining the constraint operators M may
not be pseudo-Haar3 leading to unbounded contours (in fact hyperplanes) in the

1Note that N may not equal n in some applications.
2That is, it has unbounded (upper) level sets; see [2].
3That is, they may not be linearly independent μ-almost everywhere.
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objective of (Dn); and (ii) regions of X which are transient under the dynamics
of T can prevent the dual problem (Dn) from attaining its maximum at all. Our
main result (Theorem 3.3) is a condition which ensures dual attainment, leading to
necessary and sufficient optimality conditions for the solution (Theorem 3.7). In the
remainder of section 3 we develop a domain restriction which guarantees that the
conditions in the theorems are met. Despite the ad hoc appearance of the restriction,
it is intimately connected with the dynamics of T , and its imposition does not alter the
solution of the underlying invariant measure problem. Moreover, the restriction yields
useful dynamical information (see Lemma 3.8 (2)) which is not normally revealed
by other methods for invariant density approximation (for example, Ulam’s method
[15, 9, 7, 10, 5]).

In section 4 we present several examples, illustrating how noncoercivity of the dual
problems arises and how it is dealt with. In particular, we show how to accomplish
the domain restriction for an “Entropy method” with simple moment test functions.

2. Optimization formulation of the invariant measure problem. The T -
invariance condition for densities can be encoded into a sequence of constraint opera-
tors M for problems (Pn), and the optimization of Φ provides a convenient method of
selecting a convergent sequence of approximately invariant measures. We now give a
brief discussion of the dynamical origins of (Pn); further detail and discussion about
connections between this and other methods for invariant measure approximation may
be found in [5].

2.1. Encoding dynamics as moment constraints. Let (T,X) be a dynam-
ical system. A σ-finite Borel measure ν is absolutely continuous if it has the form
dν = fdμ for some measurable function4 f . We write ν � μ for absolute continu-
ity and f = dν

dμ . We also assume that T is nonsingular : μ ◦ T−1 � μ, from which

one can quickly deduce that ν ◦ T−1 � μ whenever ν � μ. As noted above, it is
particularly interesting to find absolutely continuous probability measures which are
invariant under T . For such a ν, f = dν

dμ is called an invariant density .

Invariant densities can be investigated via a transfer operator on Lp (usually, p =

1). If dν = fdμ then ν ◦T−1 � μ so there is a function f̂ satisfying d(ν ◦T−1) = f̂dμ.

Thus, T induces an action P on L1 by Pf
def
= f̂ = d(ν◦T−1)

dμ . The operator P is linear

and positive (in the sense that f ≥ 0 implies Pf ≥ 0) and preserves integrals. P is
called the Frobenius–Perron operator associated to T . Invariant densities 0 ≤ f ∈ L1

are fixed points of P . An alternative5 characterization of P is

(2.1)

∫
Pf h dμ =

∫
f h ◦ T dμ for all f ∈ L1, h ∈ L∞,

from which

(2.2) Pf = f if and only if

∫
f (h ◦ T − h) dμ = 0 for all h ∈ L∞.

In view of (2.2), it is natural to express the invariant density condition via a sequence
of moment approximations. Suppose H = {h1, h2, . . . hN} ⊆ L∞ is a finite collection

4Normally we require f ≥ 0, although signed absolutely continuous measures also make sense in
this context. The usual definition of absolute continuity is μ(B) = 0 ⇒ ν(B) = 0; the equivalence of
the two is part of the Lebesgue–Radon–Nikodym theorem.

5If B is a measurable set, then
∫
Pf 1B dμ = ν(T−1B) =

∫
f 1B ◦ T dμ. For any simple h,

linearity of the integral gives
∫
Pf h dμ =

∫
f h ◦ T dμ, and the general case follows since simple

functions are dense in L∞.
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of functions. We say that f is approximately invariant up to H if

(2.3)

∫
f(hi ◦ T − hi) dμ = 0, i = 1, 2, . . . N.

Setting gi = hi ◦ T − hi and6 g0 = 1, we define the set of approximately invariant
functions to be the feasible set for (Pn):

Fn =
{
f ∈ L1

∣∣ ∫
f g0 dμ = 1,

∫
f gi dμ = 0, i = 1, 2, . . . N

}
=

{
f ∈ L1 | Mf = b

}
,

where M : L1 → R
N+1 is defined by (Mf)i =

∫
f gi dμ and b = (1, 0, . . . , 0). (Pn) will

be called feasible if Fn 
= ∅, and each f ∈ Fn is feasible for (Pn). We call the collection
G = {g0, g1, g2, . . . gN} the set of moment test functions and H the set of generating
functions for the approximation. Notice that we do not explicitly include the non-
negativity constraint f ≥ 0 in the definition of the feasible set; we prefer to impose
this, when desired, using the objective function Φ. (In [5] we present the case of Φ(f) =
1
2‖f‖2

L2 where allowing f to assume negative values is convenient.) The function g0

ensures that the approximate invariant densities are normalized.7 Note that each (Pn)
has its own N , feasible set, moment test functions, and generating functions. When
there is any possibility of ambiguity, these will be denoted N(n),Fn,Gn, and Hn

(respectively). The possibility that N 
= n should be emphasized. For example, when
the moment generating functions arise from n-steps in a process of binary partition
of the underlaying space, N(n) = 2n. (See section 2.3 for this and other examples.)

Finally, we make the standing assumption that μ(X) < ∞. Then, in the definition
of Fn, the function space L1 can be replaced by Lp, 1 < p < ∞. This is due to the
fact that Lp ⊆ L1, 1 ≤ p < ∞, and L∞ ⊆ Lq, 1 ≤ q ≤ ∞, so all the integrals in Fn

remain well defined. This allows us to consider a range of objectives Φ (such as H,
V , and V + defined below).

Convergence of approximately invariant densities. The application of the
problems (Pn) relies on the constraints being such that F∞ =

⋂
n≥1 Fn consists

precisely of T -invariant densities. This condition is certainly satisfied when there
exists an Lp T -invariant density, H∞ = {hi}∞i=1 is a sequence whose span is weak∗-
dense in Lq, and Hn = {h1, . . . , hn}. In this situation, the sets {Fn} are nested
(Fn ⊆ Fm whenever n ≥ m), so

F∞ =
{
f

∣∣ ∫
f dμ = 1,

∫
(Pf − f)h dμ = 0 for all h ∈ span(H∞)

}
,

guaranteeing the condition in (2.2). (See [13] for generalizations of the Lq weak∗-
density condition.) The nested condition on Fn and the density condition on {Hn}
can be weakened,8 allowing other reasonable choices of {Hn}. The role of the objective
functional Φ is to specify a selection of fn ∈ Fn such that limn→∞ fn exists and is in
F∞.

2.2. Choice of convex functional. The objective functionals Φ are chosen for
mathematical and practical convenience. Let μ(X) < ∞ and φ : X → R ∪ {∞} be
proper [11], lower semicontinuous, and strictly convex. Define

Φ(f) =

∫
φ(f(x)) dμ(x).

61B denotes the characteristic function of the measurable subset B and 1 = 1X .
7This constraint also eliminates the trivial solution f = 0 from (Pn).
8In [5, section 3] we establish a suitable convergence result under “lattice” and “weak eventual

clustering” conditions.
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(So φ is a normal convex integrand in the sense of Rockafellar [11].) We require Φ
to be strictly convex and weakly lower semicontinuous and to have weakly compact
lower level sets and the Kadec property [3]: if Φ(fn) → Φ(f) < ∞ and fn → f weakly
as n → ∞, then ‖f − fn‖Lp → 0.

Remarks.
1. The function φ(f) need not be integrable for every f ∈ Lp; however, we

assume [φ(f)]− (its negative part) is integrable, and consequently Φ(f) is
unambiguously an element of (−∞,∞]. For the examples below, this as-
sumption holds.

2. Provided there is an invariant density f∗ for T with f∗ ∈ Lp, (Pn) will be
feasible for every choice of generators H.

Natural choices for Φ. In [5] we studied the following choices for φ : R → R:

φ(t) = η(t)
def
=

⎧⎪⎨
⎪⎩
t log t for t > 0,

0 if t = 0,

+∞ if t < 0,

after which we adopt the standard notation Φ = H, the (negative) Boltzmann–
Shannon entropy on L1. Notice that H(f) < ∞ implies that f ≥ 0 μ-almost ev-
erywhere. If

φ(t) = v(t)
def
=

1

2
t2,

we optimize with respect to an “Energy” functional which we denote by Φ = V , and
when

φ(t) = v+(t)
def
=

{
1
2 t

2 if t ≥ 0,

+∞ if t < 0,

we get a positively constrained Energy functional, denoted Φ = V+. Of course the
appropriate Banach space domains for the energy functionals V and V+ would be
L2. Properties of these and other “Entropy-like” functionals are investigated in many
papers (for example, [3, 2, 12]).

2.3. Three example setups.

Partition generating functions with “Energy” objective. Let P be a par-
tition of X into measurable subsets P = {Bi}Ni=1, and let H = {1Bi}Ni=1 be the set of
generating functions (in a slight abuse of terminology, we call this a partition basis).
The moment test functions are therefore

gi = 1Bi ◦ T − 1Bi = 1T−1Bi
− 1Bi ,

and the approximately invariant densities can be considered as “invariant up to the
discretization imposed by P.” Let Φ(f) = 1

2‖f‖2
L2 . This example is studied in detail

in [5] and leads to a convergent invariant density approximation scheme under the
assumption that T admits an invariant density in L2. The main complication that
arises with this method is that

∑N
i=1 gi =

∑N
i=1(hi ◦ T − hi) = 1X ◦ T − 1X = 0

since
∑N

i=1 hi =
∑N

i=1 1Bi = 1∪Bi = 1X . Consequently, the M∗ (defined below)
has nontrivial kernel, leading to noncoercivity of the dual problem (Dn) (see sec-
tion 3.2). This is dealt with easily, both analytically (section 3.2) and numerically [5,
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Remark 7.1]. From a computational viewpoint, the case of a binary partition of the
space is natural. Then we would have N(n) = 2n in the dimension of the moment
problem n-steps into the associated approximation scheme.

Partition generating functions with “Entropy” objective. Again one uses
a partition basis H = {1B1 ,1B2 , . . .1BN

}, but now Φ(f) = H(f) =
∫
X
η(f) dμ =∫

X
f(x) log f(x) dμ(x). For many interesting densities f (for example, the invariant

densities for the logistic family of maps on [0, 1]), H(f) < ∞ while V (f) = ∞. So, one
gains applicability with this choice of Φ, but at cost: the dual optimization problem
is potentially less tractable. In fact, the dual problem can suffer from noncoercivity,
wherein the optimizer occurs “at infinity.” In section 3.4 we elaborate and resolve
these difficulties by restricting the domain of integration in (Pn).

Polynomial basis functions with “Entropy” objective. Let X = [0, 1] ⊆ R,
let μ be Lebesgue measure, and let Hn = {x, x2, . . . xn}. Here, quite naturally, N(n) =
n. In Ding [6] this generating set is used, along with the entropy objective H to derive
approximately invariant densities under the following dynamical assumptions:

(D1) The moment test functions gi(x) = (Tx)i − xi, i = 1, 2 . . . n, are linearly
independent; and

(D2) T admits a unique invariant density f∗, and further, this density satisfies
f∗ > 0 and H(f∗) < ∞.

In [4] we show, using techniques derived later in this article, that Ding’s method can
be extended to dynamical systems satisfying only the following:

(D3) T admits an invariant density f∗ with H(f∗) < ∞ such that T is not of finite
order with respect to f∗ dμ. (That is, there is no n > 0 so that Tn = id, f∗ dμ-
almost everywhere).

3. Main results.

3.1. The dual problem (Dn). Since φ is a normal convex integrand in the
sense of Rockafellar [11], we have a simple closed form for the dual functional, which
we denote by Q,

Maximize Q(λ) = 〈λ,b〉 −
∫

φ∗([M∗λ](x)) dμ(x)

(Dn)
subject to λ ∈ R

N+1,

where M∗ : R
N+1 → Lq is the adjoint map defined by

(3.1) M∗λ =
∑
i

λigi ∈ Lq,

and where φ∗ denotes the classical Fenchel (convex) conjugate of φ. Finally, weak
duality holds:

(3.2) for all λ ∈ R
N+1, for all f ∈ Lp such that Mf = b, Q(λ) ≤ Φ(f).

We refer readers not familiar with this type of argument to [2, 12] and provide a
short, self-contained derivation of these facts in the appendix. The function φ∗ is
automatically convex (a fact we will need below), and the main work is in identi-
fying conditions which guarantee that (Dn) attains its maximum at a finite λ (dual
attainment); this is accomplished by proving that Q is coercive. As often occurs, dual
attainment leads to necessary and sufficient conditions for both the dual and primal
problems (section 3.3).
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3.2. Dual attainment. A critical issue for solution of (Pn) is whether or not
the dual problem (Dn) attains its maximum value. We remark at the outset that
for many of our examples, the functional Q fails to be coercive. The treatment we
give is motivated by [2], although immediate application of the results of that paper
is impeded by the fact that our (Pn) do not necessarily admit feasible solutions in
the quasirelative interior of Lp (the interesting T -invariant measures may not be
supported on all of X). The first problem that can occur is that the operator M∗ can
have nontrivial kernel; this problem was noted in the partition basis examples above
and is elaborated further in section 4.1 below.

Lemma 3.1. Suppose that (Pn) is feasible and write9
R

N+1 = Ker(M∗) ⊕
Range(M), the canonical orthogonal direct sum. Then the following hold:

1. b = (1, 0, 0, . . . , 0) ∈ Range(M).
2. Q(·) is upper semicontinuous and constant on hyperplanes parallel to the sub-

space Ker(M∗).
3. If Ker(M∗) 
= {0}, then Q is not coercive; however, in any event

Maxλ∈RN+1Q(λ) = Maxλ∈Range(M)Q(λ).

Moreover, (Dn) will attain its maximal value if and only if Q|Range(M) attains
its (relative) maximal value.

4. Write Range(M) = span{b} ⊕ Λ̂. If f is feasible for (Pn) and λ̂ ∈ Λ̂, then∫
M∗λ̂ f dμ = 〈λ̂,Mf〉 = 〈λ̂,b〉 = 0

(where 〈·, ·〉 is the usual inner product on R
N+1).

5. If λ = λ0 + αb + λ̂, where λ0 ∈ Ker(M∗) and λ̂ ∈ Λ̂, then

Q(λ) = α−
∫

φ∗(α1 + M∗λ̂) dμ.

Proof. 1. Since (Pn) is feasible, there is an f ∈ Lp for which Mf = b. Thus
b ∈ Range(M). Statements 2–3 follow immediately from 1 and the formula for Q in
(Dn). Statements 4–5 are direct computations.

Given this lemma, dual attainment will follow once we have established that the
upper level sets of Q|Range(M) are bounded. This is done by exploiting the superlinear
growth of the term

∫
φ∗(M∗(·)) dμ (restricted to the linear subspace Range(M)) to

produce a bound on the decay of Q(λ) as λ → ∞.
Lemma 3.2. With notation as in Lemma 3.1, and with ‖·‖ denoting the Euclidean

norm in R
N+1, assume also the following:

1. φ∗ ≥ 0 and φ∗|[0,∞) is nondecreasing.

2. For every λ̂ ∈ Λ̂ with λ̂ 
= 0 one has [M∗λ̂]+ 
= 0.

Then there exist γ0, δ0 > 0 such that if λ = λ0 + αb + λ̂ and α + ‖λ̂‖ γ0 ≥ 0, then

Q(λ) ≤ α− δ0 φ
∗(α + ‖λ̂‖ γ0).

Proof. First, note that
∫

[M∗(·)]+ dμ is continuous on R
N+1 and, by hypothesis

2, is positive for every nonzero λ̂ ∈ Λ̂. Since the unit sphere in Λ̂ is compact in R
N+1,

there is a γ > 0 such that

‖λ̂‖ = 1 ⇒
∫
X

[M∗λ̂]+ dμ ≥ γ.

9Here, Ker(M∗) = {λ ∈ R
N+1 | M∗λ = 0 μ-almost everywhere}.
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Let 0 < γ0 < γ
μ(X) and put Aλ = {x : [M∗( λ̂

‖λ̂‖ )](x) > γ0}. Then

γ ≤
∫
X

[
M∗ λ̂

‖λ̂‖

]+

dμ =

∫
Aλ

[
M∗ λ̂

‖λ̂‖

]+

dμ +

∫
X−Aλ

[
M∗ λ̂

‖λ̂‖

]+

dμ

≤ ‖M∗‖ [μ(Aλ)]1/p + [μ(X)] γ0,

where ‖M∗‖ denotes the operator norm of M∗ : R
N+1 → Lq. We therefore conclude

that

(3.3) μ(Aλ) ≥
(
γ − μ(X) γ0

‖M∗‖

)p
def
= δ0.

Next, restricted to Aλ, M∗(λ) = α1 + M∗(λ̂) ≥ α + ‖λ̂‖ γ0 ≥ 0. Thus

(3.4)
1

μ(Aλ)

∫
Aλ

M∗λ dμ ≥ α + ‖λ̂‖ γ0.

Now, since φ∗ is convex, we have by Jensen’s inequality

μ(Aλ)φ∗
(

1

μ(Aλ)

∫
Aλ

M∗λ dμ

)
≤

∫
Aλ

φ∗(M∗λ) dμ.

Since φ∗ is nondecreasing, (3.3) and (3.4) lower bound the left-hand side by

δ0 φ
∗(α + ‖λ̂‖ γ0),

and since φ∗ ≥ 0 we can upper bound the right-hand side to obtain

δ0 φ
∗(α + ‖λ̂‖ γ0) ≤

∫
X

φ∗(M∗λ) dμ.

The lemma now follows from Lemma 3.1 (5).
Theorem 3.3. With notation as in Lemma 3.1, assume that
1. φ∗ ≥ 0 and φ∗|[0,∞) is nondecreasing;

2. lims→+∞
φ∗(s)

s = ∞; and

3. for every λ̂ ∈ Λ̂ with λ̂ 
= 0 one has [M∗λ̂]+ 
= 0.
Then

lim
‖λ‖→∞, λ∈Range(M)

Q(λ) = −∞,

and the dual optimization problem (Dn) attains its supremum.
Proof. It suffices to establish that for any sequence {λn} ⊂ Range(M) with

‖λn‖ → ∞, Q(λn) is unbounded below. First, note that λn = αn b + λ̂n. If any
subsequence {λni} has αni → −∞, then Q(λni) ≤ αni → −∞ by Lemma 3.1 (5)
(recall that φ∗ ≥ 0). Thus, we need only consider sequences {λn} for which {αn} is
bounded below. If {αn} is also bounded above, then since ‖λn‖ → ∞, we must have

limn→∞ ‖λ̂n‖ → ∞ so that αn + ‖λ̂n‖ γ0 → ∞. In particular, αn + ‖λ̂n‖ γ0 ≥ 0 for
all large enough n, so by Lemma 3.2,

Q(λn) ≤ αn − δ0 φ
∗(αn + ‖λ̂n‖ γ0) → −∞
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(since lims→∞ φ∗(s) = ∞). The only other possibility is that {αn} is unbounded
above, in which case there is a subsequence {λnj} of {λn} for which limj→∞ αnj = ∞.
Then, in view of hypothesis 2, there is an N such that

αnj ≥ 0 and
φ∗(αnj )

αnj

≥ 2

δ0
for j ≥ N.

Then use Lemma 3.2 to estimate

Q(λnj ) ≤ αnj
− δ0 φ∗(αnj ) ≤ −αnj → −∞ as j → ∞.

Note. The limit in condition 2 could be replaced by a lim sup since φ∗ is convex.
Theorem 3.3 is analogous to [2, Theorem 4.8], but condition 3 is unnecessary there
due to the assumption of a strictly positive feasible point for (Pn).

Example 3.4. Suppose X = [0, 1], μ is Lebesgue measure, and

T (x) =

⎧⎪⎨
⎪⎩

2x if 0 ≤ x < 1/2,

2(x− 1
2 ) + 1

2 if 1
2 ≤ x < 3

4 ,

2(x− 1
2 ) if 3

4 ≤ x ≤ 1.

Then f∗ = 21[ 12 ,1]
is the unique invariant probability density for T . Let P =

{[0, 1
2 ), [ 12 , 1]}. The functions gi are

g0 = 1, g1 = −1[ 14 ,
1
2 ), g2 = 1[ 14 ,

1
2 ),

so Ker(M∗) = span{(0, 1, 1)T }, Range(M) = span{(1, 0, 0)T , (0, 1,−1)T }, and Λ̂ =
span{(0, 1,−1)T }. But evidently, M∗(0, 1,−1)T = −21[ 14 ,

1
2 ) ≤ 0, so that hypothesis

3 of Theorem 3.3 fails. In fact, using the entropy functional H as the objective, one
easily computes the dual functional Q on the two-dimensional subspace Range(M)
(where vectors take the form (α, β,−β)T ) as

Q((α, β,−β)T ) = α− e(α−1)

{
1

4
e−2β +

3

4

}
.

So Q is noncoercive, supRange(M) Q = log(4/3), but it is not reached at any point of
Range(M), so dual attainment fails.

Example 3.5. We can immediately apply Theorem 3.3 to establish coercivity of Q
for Ding’s polynomial basis maximum entropy method [6]. The condition (D1) (above)
implies that Ker(M∗) = {0}, so the decomposition in Lemma 3.1 is R

n+1 = Range(M)
and the set Λ̂ = {λ ∈ R

n+1 | λ0 = 0} = (span{b})⊥. Now suppose λ 
= 0 and λTb = 0
so that M∗(λ) 
= 0. If [M∗λ]+ = 0 then M∗λ = [M∗λ]− (almost everywhere), so
whenever f > 0 is feasible for (Pn),

〈λ,b〉 = 〈λ,Mf〉 =

∫
M∗λf dμ < 0.

Since (D2) guarantees the existence of a feasible, almost everywhere positive invariant
density f∗, this calculation contradicts λTb = 0. We conclude that [M∗λ]+ 
= 0 and
Theorem 3.3 yields dual attainment. Even without condition (D1), the restriction of
(Dn) to Range(M) will yield dual attainment by the same argument.
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3.3. Necessary and sufficient optimality conditions. Once dual attainment
is established, the dual (Dn) and primal (Pn) problems are linked by a standard
derivation of optimality conditions [2, 11]. We begin by quoting a calculus lemma.

Lemma 3.6. Assume μ(X) < ∞ and that ϕ : R → R with ϕ ∈ C1. Suppose
A : R

N+1 → L∞(X) is linear and set, for every z ∈ R
N+1,

q(z) =

∫
X

ϕ((Az)(x)) dμ(x).

Then
1. for every z0 ∈ R

N+1, ϕ′(Az0(·)) ∈ L1;
2. for every z0 ∈ R

N+1, (∇zA)z0(·) ∈ [L∞]N+1; and
3. q is Gateaux differentiable at every z0 ∈ R

N+1 and in particular

(∇zq(z0))i =

∫
ϕ′(Az0(x))Aei(x) dμ(x) ∈ R.

Theorem 3.7 (necessary and sufficient optimality conditions). Assume that the
primal problem (Pn) is feasible and ϕ = φ∗ is smooth and satisfies the hypothesis of
Lemma 3.6. If λ(n) yields a global maximum of Q in the dual formulation (Dn), then

1. λ(n) satisfies

(3.5)

∫
[φ∗]′([M∗λ(n)](x))gi(x) dμ(x) = bi, i = 0, 1, 2 . . . n;

2. fn = [φ∗]′(M∗λ(n)) ∈ L1 is feasible for (Pn); and
3. Q(λ(n)) =

∫
φ(fn(x)) dμ(x), and hence, from the weak duality condition (3.2),

we conclude that fn is a minimizer in the primal problem (Pn).
In particular, (3.5) is also sufficient for an optimal value of λ in (Dn) and the function
fn defined in part 2 is optimal in the primal problem.

Proof. Using Lemma 3.6 we establish necessary conditions for λ(n) to maximize
Q:

0 = −bi +

∫
[φ∗]′([M∗λ(n)](x))gi(x) dμ(x), i = 0, 1, 2 . . . N,

so fn defined in part 2 satisfies fn ∈ L1 and the constraint Mfn = b. Now, since φ∗ is
convex, proper, and smooth, one easily derives from classical facts (see the appendix)
that for all s ∈ R

φ∗(s) + φ∗∗([φ∗]′(s)) = s[φ∗]′(s),

which, combined with φ∗∗ = φ, yields

φ([φ∗]′(s)) + φ∗(s) = s[φ∗]′(s).

If we now substitute s = [M∗λ(n)](x) and rearrange to obtain

φ(fn(x)) = [M∗λ(n)](x)fn(x) − φ∗([M∗λ(n)](x)),

we see that φ(fn(·)) is an integrable function since both functions on the right are inte-
grable. Conclude that fn is feasible for (Pn). Finally, integrating this last expression
over x ∈ X yields

Φ(fn) = Q(λ(n)),

closing the duality gap and proving both that fn is a minimizer of Φ in (Pn) and that
λ(n) is a maximizer of Q in (Dn) if and only if (3.5) holds.
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3.4. Domain restriction with a partition basis. In Example 3.4, the exis-
tence of a nonpositive, nonzero M∗λ prevented Q from being coercive and destroyed
any prospect of dual attainment. However, supp(M∗λ) was contained in a part of
X that was transient under the action of T . In general, if f is feasible10 for (Pn)
and M∗λ ≤ 0, then supp(M∗λ) ∩ supp(f) = ∅, so any noncoercivity of Q because of
failure of condition 3 in Theorem 3.3 can be attributed to the behavior of M∗ on an
unimportant part of X. Motivated by this (and justified in Lemma 3.8 and section 4.2
below), we employ a (Pn)-specific domain restriction.

Consider the (sub)cone of R
N+1 defined by C = {λ̂ ∈ Λ̂ | M∗λ̂ ≤ 0} and set

X0(n) = X \
⋃

λ̂∈C{x ∈ X | [M∗λ̂](x) < 0}.
Lemma 3.8. Let P be a finite measurable partition of X and let the constraints

in (Pn) be with respect to the corresponding partition basis. Then the following hold:
1. X0(n) belongs to the σ-algebra generated by P∨T−1P (and so is measurable).
2. Assume that φ satisfies the hypothesis of Theorem 3.3 and that Φ(f) < ∞ =⇒

f ≥ 0 almost everywhere. Then Φ(f) < ∞, and f feasible for (Pn) implies
supp(f) ⊆ X0(n).

3. Under the same condition as in part 2, X0(n) is not a null-set of X and the
value of the problem

Minimize Φ0(f) =

∫
X0(n)

φ(f(x)) dμ(x)

(P ′
n)

subject to f ∈ Lp(X0(n)) and Mf = b ∈ R
N+1

is identical to the value of (Pn). Dual attainment holds in the case of the
problem (P ′

n),

Q0(λ)
def
= Maxλ∈RN+1{〈λ,b〉 −

∫
X0(n)

φ∗(M∗(λ)) dμ}.
Proof. 1. Observe that for each λ, {x|M∗λ(x) < 0} is an element of the finite

σ-algebra generated by P ∨ T−1P (cf. Lemma 4.1 below). It follows that X0(n) is
measurable, even though the union is over an uncountable parameter set. 2. When
Φ(f) < ∞ and f is feasible for (Pn),

∫
M∗λ̂f dμ = 0 for all λ̂ by Lemma 3.1 (4). This

implies that supp(f) ⊆ X0(n). 3. Since f0 ∈ Lp(X0(n)) is feasible for (P ′
n) if and

only if f01X0(n) ∈ Lp(X) is feasible for (Pn), either both problems are infeasible, or
there is a feasible f 
= 0. In this case,

∫
X0(n)

f dμ = 1, so X0(n) 
= ∅. Furthermore,

Φ0(f) = Φ(f) for all feasible f . Dual attainment holds since restricted to X0(n),
hypothesis 3 of Theorem 3.3 holds.

In effect, we have moved troublesome vectors λ where M∗λ ≤ 0 into Ker(M∗)
over the restricted measure space X0(n). Of course, the domain for (Pn) is therefore
changed, as is Φ, but our argument shows that the values of the two problems are
identical, and the restricted problem has dual attainment.

Example 3.4 revisited. Recall that dual attainment failed due to the noncoer-
civity of Q. However, observe that if 0 
= λ̂ ∈ Λ̂ and M∗λ̂ ≤ 0, then we have
supp(M∗λ̂) = [14 ,

1
2 ) (note that M∗λ̂ 
= 0 since λ̂ ∈ Range(M) = (Ker(M∗))⊥).

By Lemma 3.1 (4)
∫
M∗λ̂ f dμ = 0 and f ≥ 0 (provided f is feasible). Thus,

supp(f) ⊆ ([0, 1] \ [1/4, 1/2)), so we let X0 = ([0, 1] \ [1/4, 1/2)) and solve

Minimize H0(f) =

∫
X0

η(f(x)) dμ(x) s.t. f ∈ L1(X0) and Mf = b.

10For example, any T -invariant density.
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4. Applications. We now discuss some of the computational details when the
method is applied to the specific case of a partition basis. For the rest of the paper,
we assume for simplicity that N(n) = n and let P = {B1, . . . , Bn} be the measurable
partition defining the basis.

4.1. The “Energy” method with kernel. Recall that φ(t) = 1
2 t

2. Then,
since

Q(λ) = 〈λ,b〉 − 1

2

∫
(M∗λ(x))2 dμ(x)

and the conjugate in the second term is weakly (in fact, norm) lower semicontinuous,
Q is norm upper semicontinuous, so it attains its supremum over compact subsets.
Let

R
n+1 = R

N+1 = Ker(M∗) ⊕ Range(M),

the canonical decomposition relative to the operator M . This decomposition is non-
trivial since

∑n
i=1 gi =

∑n
i=1 1T−1Bi

− 1Bi = 1− 1 = 0, so (0, 1, 1, . . . 1)T ∈ Ker(M∗)
(cf. Lemma 3.1.) Clearly, if Q restricted to the subspace Range(M) attains its (rela-
tive) maximum at λ∗, then Q will also be maximized at λ∗. To see why dual attain-
ment holds in this case, note that

MaxλQ(λ) = Maxλ∈Range(M)Q(λ) = Maxλ∈Range(M)

{
〈λ,b〉 − 1

2

∫
(M∗λ)2 dμ(x)

}

= Maxλ∈Range(M)

{
〈λ,b〉 − 1

2
〈λ,MM∗λ〉

}
.

The linear operator MM∗ maps Range(M) into Range(M) and for λ 
= 0 in Range(M)
we have 〈λ,MM∗λ〉 > 0 so the operator MM∗|Range(M) is positive definite. It follows
that the restricted functional Q|Range(M) is a negative definite quadratic form, is
therefore coercive, and attains its maximum value.

There is no need to identify the restricted measure space X0(n) from this point of
view, and applying Theorem 3.7 yields the necessary equation for the optimal value
of λ(n),

(4.1)
∑
j

[λ(n)]j
∫
gi(x) gj(x) dμ(x) = bi, i = 0, 1, . . . n,

and the formula for the optimal solution fn,

(4.2) fn = M∗λ(n) =
∑
j

[λ(n)]jgj .

Since [φ∗]′(s) = s, the equation to be solved is linear and consistent in n + 1
variables:

A[λ(n)] = b,

where A = {aij} is the (n+1)×(n+1) matrix of correlations: aij =
∫
gi(x)gj(x) dμ(x).

Notice that A = MM∗ with Ker(A) = Ker(MM∗) = Ker(M∗), along which we know
Q is constant, so any solution of (4.1) will lead to optimal values for both primal
and dual (see also Theorem 3.7). In section 4.3 we present results of some numerical
experiments concerning this problem with respect to the basis φi = 1Bi generated by
a partition.

Further details (including some issues about numerical implementation) are in [5].
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4.2. The “Entropy” method and domain restriction. In the case of a
partition basis, the X0 of Lemma 3.8 may be needed to ensure dual attainment.
We show below how to identify X0(n) by a finite computation. Once this is done,
Theorem 3.7 can be invoked to derive the optimality equations in concrete form:

(4.3)

∫
X0(n)

exp{[M∗λ(n)](x) − 1}gi(x) dμ(x) = bi, i = 0, 1, . . . n,

from which the primal optimal points will be computed according to the formula in
Theorem 3.7(2). That is, we recover the solution to (Pn) by solving (P ′

n) with λ(n)
satisfying (4.3). The solution to (Pn) is then f0(x) = 1X0(n) exp{[M∗λ(n)](x) − 1}.

Identification of restricted domain. We now let P = {B1, . . . , Bn} be a
fixed partition of X. Thus, n = N is fixed, and we suppress, where possible, explicit
notational dependence on n. For example, from now on we will write X0 instead of
X0(n). Recall the decomposition Range(M) = {b} ⊕ Λ̂. Then C = {λ ∈ Λ̂|M∗λ ≤ 0}
and X0 = X \

⋃
λ∈C{x|M∗λ(x) < 0}.

Lemma 4.1. For each i, j = 1, . . . , n,

M∗λ|Bi∩T−1Bj
= (λ0 + λj − λi)1Bi∩T−1Bj

.

Proof. Since both {Bk} n
k=1 and {T−1Bk} n

k=1 are partitions of X, the

lemma follows directly from the facts that M∗λ =
∑ n

k=0 λk gk and 1Bi∩T−1Bj
=

1Bi1T−1Bj
.

Lemma 4.2. Let A be the (n × n) matrix with entries Aij = μ(Bi ∩ T−1Bj),

and let λ ∈ Λ̂ be such that M∗λ ≤ 0. If (Am1)ij > 0 and (Am2)ji > 0 for some
m1,m2 > 0, then λi = λj.

Proof. Since λ ∈ Λ̂, λ0 = 0. Since each Akl ≥ 0, there is a sequence {ik}m1+m2

k=0

such that i0 = i = im1+m2 , im1 = j and each Ailil+1
> 0. Then, by Lemma 4.1,

(λil+1
− λil)Ailil+1

=

∫
(λil+1

− λil)1Bil
∩T−1Bil+1

dμ =

∫
Bil

∩T−1Bil+1

M∗λ dμ ≤ 0.

Thus λi0 ≥ λi1 ≥ · · · ≥ λim1
≥ · · · ≥ λim1+m2

= λi0 . In particular, λi = λi0 = λim1
=

λj .
Proposition 4.3. The following are equivalent:
(i) Aij > 0 and (Am)ji > 0 for some m > 0;
(ii) μ(Bi ∩ T−1Bj) > 0 and Bi ∩ T−1Bj ⊂ X0 (mod μ).
Proof. (i)⇒(ii) Suppose that μ(Bi∩T−1Bj) = Aij > 0, (Am)ji > 0, and let λ ∈ C.

Then, using Lemma 4.2 with m1 = 1 and m2 = m gives λi = λj . By Lemma 4.1,
M∗λ(x) = λj−λi = 0 when x ∈ Bi ∩ T−1Bj . This establishes that Bi∩T−1Bj ⊂ X0.

(ii)⇒(i) We assume that μ(Bi ∩ T−1Bj) = Aij > 0 but that (Am)ji = 0 for all

m > 0. We need to construct a λ̂ ∈ C such that M∗λ̂|Bi∩T−1Bj
< 0, since this will

show that Bi ∩ T−1Bj is disjoint from X0 μ-almost everywhere. Let I = {j} ∪ {k :
(Am)jk > 0 for some m > 0} and define λ by putting λl = −1I(l) and λ0 = 0.
Observe that (a) λi = 0 and λj = −1; and (b) if k ∈ I and Akl > 0 then l ∈ I.
Now, by Lemma 4.1, if Akl > 0 then M∗λ|Bk∩T−1Bl

= λl − λk. By observation (a),
M∗λ|Bi∩T−1Bj

= −1. We now check that M∗λ ≤ 0: by observation (b), if λk = −1

and Akl > 0 then λl = −1 so M∗λ|Bk∩T−1Bl
= 0; on the other hand, if λk = 0 then

λl − λk ≤ 0, so in any event M∗λ ≤ 0. Finally, decompose λ = λ̂ + z, where λ̂ ∈ Λ̂
and z ∈ Ker(M∗). Then M∗λ̂ = M∗λ ≤ 0 and M∗λ̂|Bi∩T−1Bj

< 0.
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Proposition 4.3 suggests an elementary iterative procedure for identifying X0 up
to a set of measure 0:

1. Calculate the n× n matrix Aij = μ(Bi ∩ T−1Bj).
2. For each Aij > 0, determine I(j) = {k|(Am)jk > 0 for some m > 0}. If

i ∈ I(j), then Bi∩T−1Bj ⊂ X0, and set Âij := Aij . Otherwise, set Âij := 0.

At the end of this procedure, set I0 = {(i, j)|Âij > 0}. Then take

X0 = ∪(i,j)∈I0
Bi ∩ T−1Bj .

Remarks 4.4.
1. For reasonably regular maps T the matrix A is very sparse, with O(n) nonzero

entries which can be stored as a list of triples (i, j, Aij). Consequently each
set I(j) can be determined in O(n) operations (mostly array look-ups); the
identification of I0 via the above procedure thus requires at most O(n2) op-
erations.

2. Proposition 4.3 essentially characterizes X0 as elements of the partition P ∨
T−1P which correspond to strongly connected components of a certain di-
rected graph.11 If A has O(n) nonzero entries, all of these components (and
the edges connecting them) can be found with O(n) computational effort by
Tarjan’s algorithm [14]. See [8] for related work on the use of discrete models
to obtain recurrent components and Lyapunov functions of dynamical sys-
tems.

The following corollary to Proposition 4.3 will be used below.
Corollary 4.5. If (Âm)ik > 0 then there is an M > 0 such that (ÂM )ki > 0.
Proof. There are indices i = i0, i1, . . . , im = k, and integers M1, . . . ,Mm such

that Âil−1il > 0 and (ÂMl)ilil−1
> 0 for l = 1, . . . ,m. Then

(ÂM1+···+Mm)ki ≥ (ÂMm)imim−1 · · · (ÂM1)i1i0 > 0.

Solution of the necessary conditions. Since the solution to (Pn) is obtained
via (Dn), one needs to maximize

Q(λ) = 〈λ,b〉 −
∫
X0

exp{M∗λ(x) − 1} dμ(x).

Using Lemma 4.1 and Proposition 4.3, we have

Q(λ) = λ0 − exp{λ0 − 1}
∑

(i,j)∈I0

Âij exp{λj − λi},

so that (Dn) is solved by minimizing G(λ) =
∑

(i,j)∈I0
Âij exp{λj − λi} and setting

λ0 = 1 − log(
∑

(k,l)∈I0
Âkl exp{λl − λk}). The optimal values of λ can then be used

to recover the solution to (Pn) as in Theorem 3.7(2). The minimum of G(λ) can
be calculated using standard optimization algorithms, although we obtained rapid
convergence with a fixed point method that we now describe.

The equations ∂G
∂λi

= 0 reduce to
∑

l Âil exp{λl − λi} =
∑

k Âki exp{λi − λk}.
Thus, for i = 1, . . . , n,

(e−λi)2 =

∑
k �=i Âki e

−λk∑
l �=i Âil eλl

,

11The vertices are the elements of P and the edge set corresponds to those ij with Aij > 0.
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which suggests an iterative scheme (λi)
(m+1) = − 1

2 logFi(e
−λ

(m)
1 , . . . , e−λ(m)

n ) with

the choice Fi(x1, · · · , xn) =
∑

k �=i Âki xk∑
l �=i Âil

1
xl

. In practice, it is more convenient to work

directly with the values x
(m)
i = e−(λi)

(m)

, updating according to

x
(m+1)
i =

√
Fi(x(m))∑

j

√
Fj(x(m))

.

We have no general proof for convergence of this iteration but note that it worked in
all cases we tested, using (xi)

(0) = 1.
Remarks 4.6.
1. The definition of Fi needs slight modification to allow for the possibilities

that (i)
∑

l �=i Âil = 0 or (ii) xl = 0. In the case of (i), Corollary 4.5 ensures

that
∑

k �=i Âki = 0, from which it follows that G(λ) is independent of λi.
In this case, set Fi(x) := 1. In the case of (ii), an indeterminate expression
is obtained only for those i with Âil > 0, and continuity of Fi can then be
ensured by putting Fi(x) = 0.

2. The normalization of x(m+1) ensures that the iteration scheme preserves the
unit simplex in (R+)n, without altering the value of G(λ) (if x �→ cx, the
effect on xi = e−λi is λi �→ λi − log c, and for any log c ∈ R, G(λ) = G(λ −
log c)).

3. The iteration is not a uniform contraction of the unit simplex since it preserves
the boundary.

4.3. Numerical examples. We now apply the energy and entropy minimiza-
tion approaches to approximate the invariant measures for several examples on the
unit interval. μ in this case is Lebesgue measure.

Example 1. Let

T (x) =

⎧⎪⎨
⎪⎩

2x, x ∈ [0, 1/2),

2x− 1/2, x ∈ [1/2, 3/4),

2x− 1, x ∈ [3/4, 1].

The invariant measure for T has density f∗(x) = 21[1/2,1]. For a sequence of val-

ues of n, approximations f
(V )
n , f

(H)
n have been calculated which minimize V (f) =

1
2

∫
f2 dμ and H(f) =

∫
f log f dμ, respectively. The approximation errors ‖f −

f
(V )
n ‖L1 and ‖f − f

(H)
n ‖L1 are displayed in Table 1. The density approximations for

n = 729 are displayed in the first row of Figure 1. Notice that f
(V )
729 has some negative

values in [0, 1/2); this is possible because our formulation of the optimization problem
(with V ) imposes no positivity condition although [fn]− → 0 and [fn]+ → f (see [5,

Remark 5.3(2)]). The spikes in f
(H)
729 occur at preimages of 1

2 (a boundary point of
supp(f∗)) and disappear when 1

2 is a boundary of a Bi.
Example 2. Let

T (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3x, x ∈ [0, 1/4),

x + 1/2, x ∈ [1/4, 1/2),

x− 1/2, x ∈ [1/2, 3/4),

3x− 2, x ∈ [3/4, 1].
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Table 1

L1 approximation errors for energy and entropy minimization approaches to invariant density
calculations.

Example 1 Example 2

n ‖f − f
(V )
n ‖L1 ‖f − f

(H)
n ‖L1 ‖f − f

(V )
n ‖L1 ‖f − f

(H)
n ‖L1

3 0.666667 0.699359 0.098485 0.104804
9 0.346007 0.326124 0.063600 0.067046
27 0.196225 0.134116 0.042583 0.043930
81 0.090671 0.051596 0.035391 0.036633
243 0.038662 0.019901 0.027982 0.029287
729 0.021628 0.006858 0.024727 0.025740
2187 0.008310 0.002605 0.022186 0.023187
6561 0.003775 0.000863 0.020258 0.021252
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Fig. 1. n = 729 density approximations for the maps in Examples 1 and 2 using Energy and
Entropy minimization.

The invariant measure for T has density f∗(x) = 1.21[0,1/4)∪(3/4,1] + 0.81[1/4,3/4].

For a sequence of values of n, approximations f
(V )
n , f

(H)
n have been calculated which

minimize V (f) = 1
2

∫
f2 dμ and H(f) =

∫
f log f dμ, respectively. The approxima-

tion errors ‖f − f
(V )
n ‖L1 and ‖f − f

(H)
n ‖L1 are displayed in Table 1. The density

approximations for n = 729 are displayed in the second row of Figure 1.
Example 3. The tent map Tr(x) = r(0.5−|x−0.5|) admits an invariant density fr

(of bounded variation) whenever r ∈ (1, 2]. Therefore, H(fr) < ∞, and a sequence of
fn solving the finitely constrained optimization problems (Pn) will converge in L1 to

fr as n → ∞. In fact, if r ∈ (22−(k+1)

, 22−k

), then the density is supported on a union
of 2k intervals. In Figure 2, the n = 729 minimum entropy approximation is displayed
for the tent map with r = 1.3. The displayed density is supported on X0(n), a union
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Fig. 2. Entropy minimization with n = 729 for density approximation for the tent map (Ex-
ample 3).

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1

f_
n(

x)

x

Minimum entropy approximation for logistic map (r=4.0, n=729)

Fig. 3. Entropy minimization with n = 729 for density approximation for the fully developed
logistic map (Example 4).

of several intervals, the larger two contain the support of the invariant density for Tr,
and the remaining (small) intervals are clustered near the unstable fixed points for Tr

at x = 0, r
1+r ≈ 0.565. The correct density has no simple formula at this parameter

value, so a direct calculation of the approximation error is not possible.
Example 4. The logistic map Tr(x) = r x (1 − x) admits an invariant density

f∗(x) = 1

π
√

x (1−x)
when r = 4.0. Then, H(f∗) = 0.241564 · · · < ∞, so the mini-

mum entropy method will produce a sequence of density approximations fn such that
limn→∞ ‖fn− f‖L1 = 0, even though neither Tr, nor any of its iterates, is expanding.
The n = 729 minimum entropy approximation is displayed in Figure 3. (The error
‖fn − f∗‖L1 = 0.24683.)

Appendix. Derivation of (Dn). The Lagrangian for (Pn) is

L(f, λ) = Φ(f) − 〈λ,Mf − b〉, f ∈ Lp, λ ∈ R
N+1,

where 〈·, ·〉 denotes the inner product in R
N+1. Next, define

Q(λ) = inf
f∈Lp

L(f, λ)

= 〈λ,b〉 − sup
f∈Lp

{〈λ,Mf〉 − Φ(f)}

= 〈λ,b〉 − Φ∗(M∗λ),
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where Φ∗ : Lq → R denotes the Fenchel (convex) conjugate of Φ, that is,

Φ∗(g) = sup
f∈Lp

{∫
f(x)g(x) dμ(x) − Φ(f)

}
,

and the adjoint M∗ : R
N+1 → Lq is calculated as

M∗λ =

n∑
k=0

λkgk.

We note that Φ∗ is easily seen to be both convex and weakly lower semicontinuous
on Lq.

The functional Φ∗ is the Banach space generalization of the classical convex con-
jugate φ∗ for real functions φ : R → (−∞,∞]. See Rockafellar [12] for definitions
and elementary properties. When Φ is of integral type, there are some important
connections between the two concepts.

For example, if f ∈ Lp is such that φ(f(·)) is integrable, then for all g ∈ Lq,
from Fenchel’s inequality φ(t) + φ∗(s) ≥ ts, after substituting t = f(x) and s = g(x)
and integrating, one obtains

∫
φ∗(g(x)) dμ(x) ≥

∫
f(x)g(x) dμ(x) −

∫
φ(f(x)) dμ(x).

It follows that
∫
φ∗(g(x)) dμ(x) ∈ (−∞,∞] unambiguously and

∫
φ∗(g(x)) dμ(x) ≥

Φ∗(g). These and many other properties of integral-type objectives are derived in
Rockafellar [11]. We summarize the facts that we will use.

Lemma A.1. Let φ : R → (−∞,∞] be a convex, lower semicontinuous, and
proper function.

1. Suppose that for every f ∈ Lp, Φ(f) =
∫
φ(f(x)) dμ(x) is unambiguously an

element of (−∞,∞]. Then for each g ∈ Lq,
∫
φ∗(g(x)) dμ(x) is unambigu-

ously defined as an element of (−∞,∞] and

Φ∗(g) =

∫
φ∗(g(x)) dμ(x).

2. If φ∗(g) is integrable for at least one g ∈ Lq then the integral
∫
φ(f(x)) dμ(x)

is well defined (possibly = ∞) for every f ∈ Lp. This will be the case, for
example, if φ∗ is proper and μ(X) < ∞.

Equipped with these tools, we can write down the dual optimization problem
associated to (Pn) as

Max Q(λ) = 〈λ,b〉 −
∫
X

φ∗(M∗λ)(x) dμ(x)

(Dn)
subject to λ ∈ R

N+1,

an unconstrained, finite-dimensional, and concave problem. It follows directly from
the definitions of Q and L that

(A.1) Q(λ) ≤ inf
f∈Lp,Mf=b

L(f, λ) ≤ Φ(f)

whenever f is feasible for (Pn) and λ ∈ R
N+1. Hence, the (maximal) value of (Dn)

is majorized by the (minimal) value of (Pn), the so-called principle of weak duality .
Thus, solving the unconstrained dual problem (Dn) is equivalent to solving the primal
(Pn) precisely when this “duality gap” can be closed. Theorem 3.7 describes one
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situation which is tailored to our applications and where the duality gap can be
closed.
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UNIQUENESS AND COMPARISON RESULTS FOR FUNCTIONALS
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Abstract. We introduce a family of solutions to a variational problem and we prove uniqueness
and comparison results.
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1. Introduction. We consider the problem of minimizing the functional

J (u) =

∫
Ω

[f(∇u(x)) + αu(x)] dx,(1)

where α �= 0 is a constant, on a suitable class of functions. We shall say that a
function w ∈ W 1,1(Ω) is a solution if the functional attains its minimum among
all the functions in W 1,1(Ω) that satisfy the same boundary conditions as w. Our
purpose is to provide a comparison result and a result on uniqueness of solutions.
A comparison result is a statement of the following kind: “For w and v solutions
(satisfying different boundary conditions), w ≤ v on ∂Ω implies w ≤ v on Ω.” A
uniqueness result instead concerns solutions with the same boundary datum.

The assumptions we make on the convex function f are very general and apply to
convex Lagrangeans that can be extended valued and not necessarily differentiable;
moreover, f can be such that the domain of the subdifferential is strictly smaller than
the domain of the function. Apart from this, our main point is that we do not assume
that f is strictly convex: in this sense, this paper is a sequel to [1]. Notice, however,
that the uniqueness result we present does not hold no matter what the boundary
data are (a result of this kind would be rather unlikely, without any assumption of
strict convexity), but holds only for a restricted class of boundary conditions.

The boundary conditions are those satisfied by a family of solutions that we are
going to describe. We emphasize the fact that this family is explicit, i.e., that it can
be computed directly from the Lagrangean f .

2. A family of solutions. In what follows, f∗ is the polar of f ; for its main
properties, we refer to [3] and [2].

Theorem 1. Let Ω be an open bounded set, regular enough so that the divergence
theorem holds, and let f : RN → R ∪ {+∞} be an extended valued, convex, lower
semicontinuous function. For x0 and θ in RN and c ∈ R, consider the function

ωα(x) =
N

α
f∗

(
θ +

x− x0

N
α

)
+ c.

∗Received by the editors April 18, 2006; accepted for publication (in revised form) October 26,
2006; published electronically October 4, 2007.
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If ωα is defined on Ω and belongs to W 1,1(Ω), then it is the only minimum of the
functional

J (u) =

∫
Ω

[f(∇u(x)) + αu(x)] dx,

in the class of functions

S =
{
u ∈ W 1,1 (Ω) , u− ωα ∈ W 1,1

0 (Ω)
}
.

As an example, the polar to the convex function

f(ξ) =

{
‖ξ‖ −

√
‖ξ‖ if ‖ξ‖ ≥

√
1,

0 if ‖ξ‖ ≤
√

1

is given by

f∗(p) =

{ 3
4(1−‖p‖) if 1

2 ≤ ‖p‖ < 1,

‖p‖ if ‖p‖ ≤ 1
2 .

For N = 1, α = 1, Ω = (−1, 1), θ = 0, x0 = 0, the function

ω(x) = f∗(x)

is defined on Ω but does not belong to W 1,1(Ω). However, one has the following result.
Remark 1. If, in addition, f has superlinear growth, then, for Ω bounded, for

every x0 and θ, the function ωα(x) is defined on Ω and belongs to W 1,∞(Ω).
Indeed, by the superlinear growth of f , we obtain that f∗(p) < +∞ for every

p ∈ RN . In particular, for every θ and x0 in RN , the convex function ωα(x) is defined
and Lipschitzian on Ω.

The proof of Theorem 1 is direct and does not depend on the validity of the Euler–
Lagrange equation, since, to this author’s knowledge, the validity of this equation, for
the class of problems considered in this paper, is yet to be established. We shall need
the following lemma.

Lemma 1. Let f be convex, let ξ1 �= ξ2, and let p be in both ∂f(ξ1) and ∂f(ξ2).
Then, f∗ is not differentiable at p.

Proof. Since p ∈ ∂f(ξ2), for λ > 0 we have

1

λ
(f∗(p + λ(ξ2 − ξ1)) − f∗(p))

=
1

λ

(
sup
ξ
{〈p + λ(ξ2 − ξ1), ξ〉 − f(ξ)} − (〈p, ξ2〉 − f(ξ2))

)
≥ 〈(ξ2 − ξ1), ξ2〉.

Analogously, since p ∈ ∂f(ξ1), we have

1

λ
(f∗(p + λ(ξ1 − ξ2)) − f∗(p)) ≥ 〈(ξ1 − ξ2), ξ1〉

so that, if f∗ is differentiable at p, we obtain

〈(ξ2 − ξ1), ξ1〉 ≥ 〈∇f∗(p), ξ2 − ξ1〉 ≥ 〈(ξ2 − ξ1), ξ2〉,

i.e., ‖ξ2 − ξ1‖2 ≤ 0.



UNIQUENESS AND COMPARISON RESULTS 713

Proof of Theorem 1. Consider the case α > 0; in this case, ωα is a convex function
(it would be concave for α < 0).

(a) We shall prove that for every u ∈ S, we have J (ωα) ≤ J (u). By assump-
tion, the effective domain of the convex function ωα contains Ω; hence, ωα is locally
Lipschitzian, hence differentiable almost everywhere, on Ω. Let x ∈ Ω be such that
∇ωα(x) exists, and set p(x) = θ+ x−x0

N α. Then f∗(p) is differentiable in p at p = p(x),
with gradient z = ∇f∗ (p) = ∇f∗ (p(x)). Since z ∈ ∇f∗(p) implies p ∈ ∂f(z), we
obtain that

p(x) ∈ ∂f (∇f∗ (p(x))) = ∂f(z),

so that, for every q ∈ RN ,

f(q) − f(z) ≥ 〈p(x), q − z〉 .

We have that

∇ωα(x) = ∇f∗
(
θ +

x− x0

N
α

)
= ∇f∗(p(x)) = z.

Hence, in particular, for u(x) ∈ S and for almost every x ∈ Ω, we obtain

f (∇u(x)) − f (∇ωα(x)) ≥ 〈p(x),∇u(x) −∇ωα(x)〉 ,(2)

so that∫
Ω

[f (∇u(x)) − f (∇ωα(x))] dx ≥
∫

Ω

〈
θ +

α

N
(x− x0),∇u(x) −∇ωα(x)

〉
dx.

We have that u− ω ∈ W 1,1
0 (Ω); recalling the divergence theorem, we obtain∫

Ω

〈θ,∇u(x) −∇ωα(x)〉 dx =

∫
Ω

div((u(x) − ωα(x))θ) dx = 0

and ∫
Ω

〈 α

N
(x− x0),∇u(x) −∇ωα(x)

〉
dx

=

∫
Ω

[
div

(
(u(x) − ωα(x))

α

N
(x− x0)

)
− α

N
(u(x) − ωα(x))div(x− x0)

]
dx

= −
∫

Ω

α(u(x) − ωα(x)) dx,

so that ∫
Ω

[f (∇u(x)) − f (∇ωα(x))] dx ≥ −
∫

Ω

α (u(x) − ωα(x)) dx,

i.e., ∫
Ω

[f (∇u(x)) + αu(x)] dx ≥
∫

Ω

[f (∇ωα(x)) + αωα(x)] dx.

Since u is arbitrary in S, the above inequality shows that ωα is a solution.
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(b) Let w be another solution. Because it is a solution, we have∫
Ω

([f (∇w(x)) − f (∇ωα(x))] + α[w(x) − ωα(x)]) dx = 0.(3)

Since

−
∫

Ω

〈p(x),∇w(x) −∇ωα(x)〉 dx = −
∫

Ω

〈
θ +

x− x0

N
α,∇w(x) −∇ωα(x)

〉
dx

= α

∫
Ω

[w(x) − ωα(x)] dx,

from (3) we obtain∫
Ω

([f (∇w(x)) − f (∇ωα(x))] − 〈p(x),∇w(x) −∇ωα(x)〉) dx = 0.

From (2) applied to the solution w, we have that

[f (∇w(x)) − f (∇ωα(x))] − 〈p(x),∇w(x) −∇ωα(x)〉 ≥ 0,

so that, for a.e. x ∈ Ω, we obtain

f (∇w(x)) − f (∇ωα(x)) − 〈p(x),∇w(x) −∇ωα(x)〉 = 0.

Next, we claim that p(x) ∈ ∂f(∇w(x)) as well. In fact, for every ξ, from the above
equality we obtain

f(ξ) − f(∇w(x)) = f(ξ) − [f(∇ωα(x)) + 〈p(x),∇w(x) −∇ωα(x)〉]

= f(ξ) − [f(∇ωα(x)) + 〈p(x), ξ −∇ωα(x)〉 + 〈p(x),∇w(x) − ξ〉] ≥ 〈p(x),∇w(x) − ξ〉

so that, by definition, p(x) ∈ ∂f(∇w(x)).
Apply Lemma 1. By assumption, we have that f∗ is differentiable at p = p(x);

hence we infer that ∇w(x) = ∇ωα(x). The point x was arbitrary and the two functions
satisfy the same boundary condition so that w = ωα.

The following is our comparison result; here, by saying that at ∂Ω we have v ≥ u,
we mean, as usual, that (u− v)+ ∈ W 1,1

0 (Ω).
Corollary 1 (comparison theorem). Let w be a solution to the minimization

of (1) in the class of those functions satisfying the same boundary conditions as w;
assume that, on ∂Ω, we have w ≤ ωα. Then, w ≤ ωα a.e. in Ω.

Proof. Set η = (w − ωα)+ so that η ∈ W 1,1
0 (Ω). We have that ω̃α = ωα + η is

such that ω̃α − ωα ∈ W 1,1
0 (Ω), while, defining w̃ = w − η, we have that w̃ satisfies

w̃ − w ∈ W 1,1
0 (Ω). Set E+ = {x ∈ Ω : η(x) > 0}: on E+, ∇ω̃α = ∇w and ω̃α = w,

while ∇w̃ = ∇ωα and w̃ = ωα.
Since ωα is a solution on the set ω − ωα ∈ W 1,1

0 (Ω), we have

0 ≤
∫

Ω

[f(∇ω̃α(x)) + αω̃α(x)] dx−
∫

Ω

[f(∇ωα(x)) + αωα(x)] dx

=

∫
E+

[f(∇w(x)) + αw(x)] dx−
∫
E+

[f(∇ωα(x)) + αωα(x)] dx.
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In the same way, since w is a solution on the set v − w ∈ W 1,1
0 (Ω), we obtain

0 ≤
∫
E+

[f(∇ωα(x)) + αωα(x)] dx−
∫
E+

[f(∇w(x)) + αw(x)] dx

so that ∫
E+

[f(∇ωα(x)) + αωα(x)] dx =

∫
E+

[f(∇w(x)) + αw(x)] dx

=

∫
E+

[f(∇ω̃α(x)) + αω̃α(x)] dx

and ω̃α is a further solution to the minimization of (1) on {u : u − ωα ∈ W 1,1
0 (Ω)}.

This solution differs from ωα when m(E+) > 0, a contradiction to Theorem 1. Hence,
m(E+) = 0.

3. The limit as α → 0. The functions ωα are undefined for α = 0. We are
interested in the question of whether the functions ωα converge to a limit as α → 0,
and, if this is the case, of how this limit is related to the solutions of the minimum
problem with α = 0, i.e., of the problem

minimize

∫
Ω

f(∇u(x)) dx, u− u0 ∈ W 1,1
0 (Ω).(4)

In particular, write the arbitrary constant c as c = −N
α f∗(θ) + β (β arbitrary)

and consider the family of solutions to problem (1) given by

ω(α,θ,β)(x) =
N

α
f∗

(
θ +

x− x0

N
α

)
− N

α
f∗(θ) + β.

A remarkable feature of this class of solutions to problem 1 is provided by the following
result:

Theorem 2. Let f be an extended valued, convex, lower semicontinuous function
with superlinear growth. Then

(a) when f∗ is differentiable at θ, as α tends to 0, the function ω(α,θ,β) converges
to the affine map 〈∇f∗(θ), x− x0〉 + β, a solution to problem (4).

(b) in general, as α tends to 0+, the function ω(α,θ,β) converges to h+
θ,x0,β

, the

solution to problem (4), presented in Theorem 1 of [1]; as α tends to 0−, ω(α,θ,β)

converges to h−
θ,x0,β

.
Proof.
(a) From the assumption of differentiability we have that

lim
α→0

N

α

[
f∗

(
θ +

x− x0

N
α

)
− f∗ (θ)

]

= 〈∇f∗(θ), x− x0〉 .

(b) By assumption, ∂f∗(θ) is nonempty, so by Theorem 23.4 of [3], we have

lim
α→0+

N

α
f∗

(
θ +

x− x0

N
α

)
− N

α
f∗(θ)) = sup

k∈∂f∗(θ)

〈k, x− x0〉 .
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By Theorem 1 of [1], the map supk∈∂f∗(θ) 〈k, x− x0〉 is a solution to (4) and the claim
follows. The proof is analogous for the second claim, taking into account that the
function ω(α,θ,β) becomes concave in this case.

Example. Consider the problem

minimize

∫
Ω

[G(u′(x)) + αu(x)] dx,

where α > 0 and G is

G(ξ) =

{ √
2‖ξ‖ if ‖ξ‖ ≤

√
2,

1 + 1
2‖ξ‖2 if ‖ξ‖ ≥

√
2.

(5)

We have

G∗(p) =

{
0 if ‖p‖ ≤

√
2,

1
2‖p‖2 − 1 if ‖p‖ ≥

√
2.

In particular, for ‖θ‖ =
√

2, so that G∗(θ) = 0, and x0 = 0, we obtain

ω(α,θ,0) =

{
0 if ‖θ + α

N x‖ ≤
√

2,
N
α

(
1
2‖θ + α

N x‖2 − 1
)

if ‖θ + α
N x‖ ≥

√
2.

As α ↓ 0, the set of points {x : ‖θ+ α
N x‖ ≤

√
2} grows to the half space {x : 〈x, θ〉 ≤ 2},

and ω(α,θ,0) converges pointwise to{
0 if 〈x, θ〉 ≤ 2,

〈θ, x〉 if 〈x, θ〉 ≥ 2.

This last function is

sup
k∈∂G∗(θ)

{〈k, x〉} =
(
I∂G∗(θ)

)∗
(x),

a solution to (4).
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Abstract. This paper is concerned with the Lipschitzian behavior of the optimal set of convex
semi-infinite optimization problems under continuous perturbations of the right-hand side of the
constraints and linear perturbations of the objective function. In this framework we provide a
sufficient condition for the metric regularity of the inverse of the optimal set mapping. This condition
consists of the Slater constraint qualification, together with a certain additional requirement in the
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1. Introduction. We consider the canonically perturbed convex semi-infinite
programming problem, in R

n,

(1)
P (c, b) : Inf f(x) + c′x

s.t. gt (x) ≤ bt, t ∈ T,

where x ∈ R
n is the vector of decision variables, regarded as a column-vector, c ∈ R

n,
c′ denotes the transpose of c, the index set T is a compact metric space, f : R

n → R

and gt : R
n → R, t ∈ T, are given convex functions in such a way that (t, x) �→ gt (x)

is continuous on T × R
n, and b ∈ C (T,R), i.e., T � t �→ bt ∈ R is continuous on T.

In this setting, the pair (c, b) ∈ R
n ×C (T,R) is regarded as the parameter to be

perturbed. We denote by σ (b) the constraint system associated with P (c, b), i.e.,

σ (b) := { gt (x) ≤ bt, t ∈ T} .

The parameter space R
n × C (T,R) is endowed with the norm

(2) ‖(c, b)‖ := max {‖c‖ , ‖b‖∞} ,

where R
n is equipped with any given norm ‖·‖ and ‖b‖∞ := maxt∈T |bt| . The corre-

sponding dual norm in R
n is given by ‖u‖∗ := max {u′x | ‖x‖ ≤ 1} .
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Associated with the parametric family of problems P (c, b) , we consider the set-
valued mappings G : R

n ⇒ C (T,R) and G∗ : R
n⇒ R

n × C (T,R) given by

G (x) := {b ∈ C (T,R) | gt (x) ≤ bt for all t ∈ T} ,

G∗ (x) :=
{
(c, b) ∈ R

n × G (x) | x ∈ arg min
{
f(y) + c′y | y ∈ G−1(b)

}}
.

The corresponding inverse mappings will be denoted by F and F∗, respectively.
Observe that F (b) and F∗ (c, b) are, respectively, the feasible set and the optimal set
(set of optimal solutions) of P (c, b) , i.e.,

F (b) := {x ∈ R
n | gt (x) ≤ bt for all t ∈ T} ,

F∗ (c, b) := arg min {f(x) + c′x | x ∈ F (b)} .

Finally, by Πc and Πs we denote the sets of parameters corresponding to consistent
or solvable problems, respectively; i.e.,

Πc := {(c, b) ∈ R
n × C (T,R) | F (b) �= ∅}

and

Πs := {(c, b) ∈ R
n × C (T,R) | F∗(c, b) �= ∅}.

According to Corollary 8.3.3 and Theorem 8.7 in [24], if σ(b) and σ(b1) are both
consistent, F(b) and F(b1) have the same recession cone.

This paper is concerned with the metric regularity of G∗ at a given x for
(
c̄, b̄

)
∈

G∗ (x) , that is, with the existence of neighborhoods U of x and V of
(
c̄, b̄

)
and a

constant κ ≥ 0 such that

(3) d (x,F∗ (c, b)) ≤ κd ((c, b) ,G∗ (x)) for all x ∈ U and all (c, b) ∈ V,

where, as usual, d(x, ∅) = +∞. In section 3 we provide a sufficient condition, (10), for
this property. Essentially, it is a Karush–Kuhn–Tucker (KKT) type condition with
some additional requirements.

In the particular case of linear problems of the form

(4)
P (c, b) : Inf c′x

s.t. a′tx ≥ bt, t ∈ T,

where a ∈ C (T,Rn) is a given function, this algebraic condition is given by (9), and it
turns out to be equivalent to a condition introduced by Nürnberger [22, Condition (2)
in Thm. 1.4], in relation to the stability of the strong uniqueness of minimizers (see
also [11] and [13], dealing with linear optimization problems without continuity as-
sumptions). Moreover in the linear setting, the referred condition is not only sufficient
but also necessary for the metric regularity of G∗ at x for

(
c̄, b̄

)
.

The metric regularity is a basic quantitative property of mappings in variational
analysis which is widely used in both theoretical and computational studies. In order
to illustrate how this concept works in our context, let x be an optimal solution
of P

(
c, b

)
and let (ca, ba) and xa be close enough approximations to

(
c, b

)
and x,

respectively. Then problem P (ca, ba) has an optimal solution whose distance to xa is
bounded by κ times d((ca, ba),G∗(xa)). The latter distance is usually easy to compute
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or estimate, while finding an exact solution of P (ca, ba) might be considerably difficult.
For instance, a possible choice of parameters which make xa optimal is c = c and b
such that xa is feasible for σ (b) and some suitably chosen constraints are active at
xa (according to the KKT condition). See section 3 for details. The metric regularity
of a set-valued mapping turns out to be equivalent to the pseudo-Lipschitz property,
also called the Aubin property, of the inverse mapping (see, for instance, [19], [25]
and the references therein). Specifically, the Aubin property in our context reads as
follows: There exist neighborhoods U of x and V of

(
c̄, b̄

)
and a constant κ ≥ 0 such

that

(5) d
(
x2,F∗ (c1, b1)) ≤ κd

((
c1, b1

)
,
(
c2, b2

))
for all

(
c1, b1

)
,
(
c2, b2

)
∈ V and all x2 ∈ U ∩ F∗ (c2, b2) . Other Lipschitz/regularity

properties also can be traced back to [19], [25].
In our context of problems (1), the metric regularity of G∗ (i.e., the pseudo-

Lipschitz property of F∗) at a point of its graph is equivalent to the strong Lipschitz
stability of F∗ (see Lemma 5), which reads as follows: There exist open neighborhoods
U of x and V of

(
c̄, b̄

)
and a constant κ ≥ 0 such that F∗ (c, b) ∩ U is a singleton,

{x(c, b)}, for all (c, b) ∈ V and∥∥x (c1, b1)− x
(
c2, b2

)∥∥ ≤ κ
∥∥(c1, b1)− (

c2, b2
)∥∥ for all

(
c1, b1

)
,
(
c2, b2

)
∈ V.

Note that because of the convexity of F∗ (c, b), we already have F∗ (c, b) = {x (c, b)}
for all (c, b) ∈ V . In other words, the strong Lipschitz stability of F∗ at

((
c̄, b̄

)
, x

)
is

equivalent to the local single-valuedness and Lipschitz continuity of F∗ near
((
c̄, b̄

)
, x

)
[17], [19], [26]. The fact that the pseudo-Lipschitz property of the global optimal
solution set mapping S of a parametric optimization problem implies strong Lipschitz
stability of S holds for a rather general class of optimization problems (see again
Lemma 5). In the particular case of linear problems, we can add as a third equivalent
property the local single-valuedness and continuity of F∗ (a Kojima-type stability
condition under specific perturbations [21], [26]).

Section 5.3 in [20] clarifies the relationship between the strong Lipschitz stabil-
ity and the strong Kojima stability. Specifically, as a straightforward consequence of
Corollary 5.5 there, one obtains the equivalence between these two properties when
applied to finite linear optimization problems. In this way, Theorem 16 below, con-
fined to the linear case, extends the fulfillment of these equivalences to the case of
infinitely many constraints.

That paper [20] was concerned with the strong Lipschitz stability of the station-
ary solution map (in the KKT sense) in our context of problems (1), with T finite,
where the functions included in the model are assumed to belong to the class C1,1, and
under the general assumption of the Mangasarian–Fromowitz constraint qualification
(MFCQ). The more general case in which the functions f and g also depend on a
parameter τ ∈ T ⊂ R

r is dealt with in [19, sect. 8]. Note that if the constraint func-
tions gt of the convex semi-infinite problem (1) are differentiable, then the (extended)
MFCQ is nothing else but the Slater CQ (i.e., the existence of a strict solution of the
associated constraint system). The fulfillment of both the Slater condition and the
boundedness (and nonemptiness) of the set of optimal solutions yields high stability
for optimization problems in different frameworks (see, for instance, [18, Thm. 1] and
[5, Thm. 4.2] in relation to the Lipschitz continuity of the optimal value).

There are different contributions to the stability theory for the feasible and the
optimal set mappings in linear semi-infinite optimization. The article [10] analyzed
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the (Berge) lower semicontinuity of the feasible set mapping F in the more general
context in which there is no continuity assumption and the parameters are (a, b) ∈
(Rn × R)

T
, the latter being endowed with an appropriate extended distance. On

the other hand, the lower and upper semicontinuity of F∗ in the general context of
parameters (c, (a, b)) ∈ R

n × (Rn × R)
T

were analyzed in [5] in the linear case, and
in [8] in the convex case. More details about stability of linear semi-infinite problems
and their constraint systems in this general context (no continuity assumption) are
gathered in [9, Chapters 6 and 10]. The continuous case, in which T is a compact
Hausdorff space, the functions a and b are continuous on T , and all the parameters may
be (continuously) perturbed, was analyzed, e.g., in [3] and [7]. Note also that classical
parametric optimization (see, e.g., [1], [2], [16]) applies to this and more general
settings by writing the constraints as one aggregated inequality, like maxt∈T (gt(x) −
bt) ≤ 0 in the case of (1). In the current context of continuous perturbations of only
the right-hand side of the system, the metric regularity of the mapping G, in the linear
case, was approached in [4].

Next, we summarize the structure of the paper. Section 2 gathers some prelim-
inaries about convex analysis and multifunctions. Moreover we include here some
results about the stability of F and its relation with continuity properties of F∗.
Specifically, Lemma 3 shows the equivalence among some relevant stability criteria
concerning the feasible set. Proposition 4 provides a sufficient condition for the lower
semicontinuity of F∗, which constitutes a key step in the analysis of the metric regu-
larity of G∗. In section 3 we introduce, after some motivation, condition (10). Some
consequences of this condition are gathered in Proposition 9. Theorem 10 shows that
condition (10) is sufficient for the metric regularity of G∗ in the convex case. Sec-
tion 4 deals with the linear case. Theorem 16 establishes the equivalence between
the specification of (10) for the linear case and several well-known stability concepts
concerning the optimal set, including the metric regularity of G∗. Finally, section 5
shows at a glance the main results of the paper.

2. Preliminaries and first results. In this section we provide further nota-
tion and some preliminary results. Given X ⊂ R

k, k ∈ N, we denote by conv (X)
and cone (X) the convex hull and the conical convex hull of X, respectively. We as-
sume that cone (X) always contains the zero vector of R

k, 0k. We shall also assume
conv (∅) = ∅ and cone (∅) := {0k}. If X is a closed convex set, O+(X) represents the
recession cone of X.

If X is a subset of any topological space, int (X) and cl(X) will represent the
interior and the closure of X, respectively. A typical element of cone ({xi, i ∈ I}) ,
where I is any index set, is represented as

∑
i∈I λixi, where λ = (λi)i∈I belongs to

the cone R
(I)
+ of all functions from I to R+ := [0,+∞[ with finite support, i.e., taking

positive values at only finitely many points of I. Generically, sequences will be indexed
by r ∈ N, and limr should be interpreted as limr→∞ .

Let h : R
n → R∪{+∞} be a proper closed convex function. By ∂h (x) we denote

the subdifferential of h at x, and by h0+ the recession function of h, i.e., the sublinear
function whose epigraph is the recession cone of the epigraph of h.

Observe that our problem P (c, b) is equivalent to the unconstrained problem

(6) Inf
x∈Rn

{
h(x) := f(x) + c′x + δF(b)(x)

}
,

where δF(b) is the indicator function of F(b) (i.e., δF(b)(x) = 0 if x ∈ F(b), and
δF(b)(x) = +∞ if x /∈ F(b)). We shall use the recession function of h, which, thanks



METRIC REGULARITY IN CONVEX SEMI-INFINITE OPTIMIZATION 721

to [24, Thm. 9.3], turns out to be

h0+(y) = f0+(y) + c′y + δF(b)0
+(y)

= f0+(y) + c′y + δO+(F(b))(y).

Associated with problem (1), for each x ∈ F (b) we consider

Tb (x) = {t ∈ T | gt (x) = bt} and Ab (x) = cone

⎛
⎝ ⋃

t∈Tb(x)

(−∂gt (x))

⎞
⎠ .

Recall that Ab (x) = {0n} if Tb (x) = ∅. For our model (1), σ (b) satisfies the Slater
condition if Tb(x

0) is empty for some x0 ∈ F(b), in which case x0 is referred to as
a Slater point of σ (b) (see [9, sect. 7.5]). Note that the continuity of t �→ gt

(
x0

)
together with the compactness of T entails that x0 is a Slater point of σ (b) if and
only if there exists some slack ρ > 0 such that gt

(
x0

)
≤ bt − ρ for all t ∈ T.

Lemma 1. Let (c, b) ∈ R
n × C (T,R) and x ∈ R

n. One has the following for the
parametric problem (1):

(i) If σ (b) satisfies the Slater condition, then Ab (x) is closed [9, Thm. 7.9].

(ii) KKT conditions (see [9, (7.9) and Thm. 7.8]): If x ∈ F (b) and (c+ ∂f(x))∩
Ab(x) �= ∅, then x ∈ F∗ (c, b) . The converse holds when σ (b) satisfies the Slater
condition.

Next we recall some well-known continuity concepts for set-valued mappings. If
Y and Z are two metric spaces and H : Y ⇒ Z is a set-valued mapping, H is said
to be lower semicontinuous (lsc, in brief), in the classical sense of Berge, at y ∈ Y if,
for each open set W ⊂ Z such that W ∩ H(y) �= ∅, there exists an open set U ⊂ Y,
containing y, such that W ∩ H(y1) �= ∅ for each y1 ∈ U . The mapping H is upper
semicontinuous (usc, for short), in the sense of Berge, at y ∈ Y if, for each open
set W ⊂ Z such that H(y) ⊂ W , there exists an open neighborhood of y in Y, U ,
such that H(y1) ⊂ W for every y1 ∈ U . We say that H is closed at y ∈ Y if for
all sequences {yr} ⊂ Y and {zr} ⊂ Z satisfying limr→∞yr = y, limr→∞zr = z, and
zr ∈ H(yr), one has z ∈ H(y). Obviously, H is closed on Y (at every point y ∈ Y)
if the graph of H, gph(H) := {(y, z) ∈ Y × Z : z ∈ H(y)}, is closed (in the product
topology). In what follows, rge(H) will represent the image set of H.

The following property of our optimal set mapping F∗ is a straightforward con-
sequence of [1, Thm. 4.3.3] and will be used later on.

Lemma 2. Let (c, b) ∈ R
n × C(T,R). Assume that F is lsc at b and F∗(c, b) is

nonempty and bounded. Then F∗ is usc at (c, b).

Note that our mapping F is closed on C (T,R) due to the continuity of each gt.
The lower semicontinuity of F turns out to be equivalent to other stability properties
referred above (see [12] for a discussion about conditions (i)–(iii) in the following
lemma).

Lemma 3. (See [4, Thm. 2.1] for the linear case with equality/inequality con-
straints.) Let b ∈ rge(G). The following statements are equivalent:

(i) σ
(
b
)

satisfies the Slater condition.

(ii) F is lsc at b.

(iii) b ∈ int(rge(G)).

(iv) G is metrically regular at any x ∈ F
(
b
)

for b.
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(v)

(7) 0n /∈ conv

⎛
⎝ ⋃

t∈Tb(x)

∂gt (x)

⎞
⎠ for all x ∈ F

(
b
)

such that Tb (x) �= ∅.

Proof. (i)⇒(ii). Define the function G : R
n × C(T,R) → R by

G(x, b) := max
t∈T

(gt(x) − bt) .

Hence F(b) = {x |G(x, b) ≤ 0}. By classical parametric optimization (cf., e.g., [2],
[16]), G is continuous, since (t, x, b) �→ gt(x) − bt is continuous and T is nonempty
and compact. Obviously, for given b, G(·, b) is convex. Since for x ∈ F

(
b
)

we have

G(x, b) = 0 if and only if Tb(x) �= ∅, statement (i) is equivalent to the existence of x
such that G(x, b) < 0. Now, Theorem 12 in [16] applies.

(ii)⇒(iii). It comes straightforwardly from the definitions, taking into account
that (iii) may be interpreted as σ

(
b1
)

being consistent (F
(
b1
)
�= ∅) for all b1 in some

neighborhood of b.
(iii)⇒(i). It follows from the following fact: For ε > 0 small enough, F (bε) �= ∅,

where bε ∈ C (T,R) is given by bεt := bt − ε, t ∈ T. In this case, any feasible point of
σ (bε) is a Slater point of σ

(
b
)

with slack ε.
(iii)⇔(iv). This equivalence is established via the Robinson–Ursescu theorem

(see, for instance, [6]) for mappings between Banach spaces having a closed convex
graph. We have already mentioned that gph(G) is closed, and it is also convex, due
to the convexity of each gt.

(i)⇔(v). With G as above, let g(x) := G(x, b). Thus, (i) equivalently means that
g(x) < 0 is satisfied for some x, which holds if and only if every point x ∈ F

(
b
)

such
that Tb(x) �= ∅ is not a minimum of g. By [15, Thm. VI.4.4.2], the latter is equivalent
to the following fact: For every point x ∈ F

(
b
)

such that Tb(x) �= ∅ we have

0n /∈ ∂g(x) = conv

⎛
⎝ ⋃

t∈Tb(x)

∂gt (x)

⎞
⎠ ,

and this is precisely (v).
The following proposition accounts for some properties of F∗ in relation to F (see

also Lemma 2).
Proposition 4. (i) If (c, b) ∈ int(Πs), then F∗(c, b) is a nonempty bounded set.
(ii) Assume that (c, b) ∈ int(Πc) and that F∗(c, b) is a nonempty bounded set.

Then (c, b) ∈ int(Πs) and F∗(c, b) is also a nonempty bounded set for (c, b) in a
certain neighborhood of (c, b).

(iii) If F is lsc at b, then F∗ is closed at
(
c, b

)
.

(iv) If F is lsc at b and F∗ (c, b) is a singleton, then F∗ is lsc at
(
c, b

)
.

Proof. (i) Let (c, b) ∈ int(Πs), and assume that F∗(c, b) is unbounded. Take
u ∈ O+(F∗(c, b)), u′u = 1, and consider the sequence in Πc,

(
c− 1

ru, b
)
, r = 1, 2, . . . ,

which obviously converges to (c, b). Now, for λ ≥ 0 and x ∈ F∗(c, b) ⊂ F(b), and
representing by v the optimal value of P (c, b), we have

f (x + λu) +

(
c− 1

r
u

)′
(x + λu) = v − 1

r
u′x− λ

r
.
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By letting λ → +∞, it follows that the objective function of P
(
c− 1

ru, b
)

is un-

bounded from below, and this contradicts the assumption (c, b) ∈ int(Πs).
(ii) Since F∗(c, b) is nonempty and bounded, [15, Prop. IV.3.2.5] yields h0+(y) > 0

for all y �= 0n, where h is the function introduced in (6), associated to the nominal
parameter (c, b). Since h0+ is lsc

ε := min{h0+(y) | ‖y‖∗ = 1} > 0.

Consider any parameter (c, b) such that ‖c− c‖ < ε and that is close enough to (c, b)
to be sure that (c, b) ∈ Πc. If h is the associated function (see (6)) and ‖y‖∗ = 1, we
can write

h0+(y) = f0+(y) + c′y + δO+(F(b))(y)

= f0+(y) + c′y + δO+(F(b))(y) + (c− c)′y

= h0+(y) + (c− c)′y(8)

≥ h0+(y) − ‖c− c‖

> h0+(y) − ε ≥ 0.

Since (8) entails h0+(y) > 0 for all y �= 0n, [15, Prop. IV.3.2.5] implies that F∗(c, b)
is a nonempty bounded set.

(iii) Since F is closed at b, this is a classical result; see [16, Thm. 8].
(iv) Since F∗ (c, b) is a singleton, it holds by definition that F∗ is lsc at

(
c, b

)
if

F∗ is both usc at
(
c, b

)
and nonempty-valued near

(
c, b

)
. The first property follows

from Lemma 2, the second one from Corollary 9.1 in [16].
Problem (1) fits into the more general class of parametric problems given by

P (c, b) : Inf f(x) + c′x

s.t. x ∈ M(b),

where f is any real-valued function defined on R
n, M is any multifunction which

maps a metric space Y to R
n, and (c, b) ∈ R

n × Y varies in some neighborhood of
(c̄, b̄) ∈ R

n × Y. If we define

F∗ (c, b) := arg min {f(x) + c′x | x ∈ M (b)} ,

we obtain the following result without any assumption about continuity.
Lemma 5 (Corollary 4.7 in [19]). Let ((c̄, b̄), x) ∈ gph(F∗). Then F∗ is pseudo-

Lipschitz at ((c̄, b̄), x) if and only if F∗ is strongly Lipschitz stable at this point.
Proof. To show the nontrivial direction, let F∗ be pseudo-Lipschitz at ((c̄, b̄), x).

Hence, by Corollary 4.7 in [19], F∗ (c, b) is a singleton for (c, b) near (c̄, b̄). This
implies strong Lipschitz stability at (and hence, by definition of that stability, near)
((c̄, b̄), x).

3. A sufficient condition for the metric regularity of G∗. This section
provides a KKT-type condition which is sufficient for the metric regularity G∗ at x
for

(
c̄, b̄

)
∈ G∗ (x) in the context of convex problems (1). The relationship between

this condition and the strong uniqueness of optimal solutions is explored, too. The
specification of this KKT-type property for linear problems (4) turns out to be also
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necessary for the metric regularity. The next example partially motivates this alge-
braic condition in the linear case.

Example 6. Consider the problem, in R
2 (with the Euclidean norm),

P
(
c̄, b̄

)
:= Inf {x1 | x1 − x2 ≥ 0, x1 + x2 ≥ 0, x1 ≥ 0} .

Here c̄ = (1, 0)
′
and b̄ = 03.

One has F∗ (c̄, b̄) = {02} . If we consider the perturbed problem P (cr, br) , with

br := (0, 0, 1/r)
′
and cr =

(
1,−1/r2

)
, we have F∗ (cr, br) =

{(
1
r ,

1
r

)}
. So, by taking

xr =
(

1
r , 0

)′
, we obtain

d (xr,F∗ (cr, br)) =
1

r
and d ((cr, br) ,G∗ (xr)) ≤ d ((cr, br) , (c̄, br)) =

1

r2
.

Hence, d (xr,F∗ (cr, br)) ≥ rd ((cr, br) ,G∗ (xr)) , r = 1, 2, . . . . Therefore, G∗ is not
metrically regular at 02 for

(
c̄, b̄

)
.

The key fact in this example is that c̄ belongs to the convex cone generated by one
vector, associated with the active constraints in x, in the two-dimensional Euclidean
space. The following property, referred to as a given

(
x,

(
c̄, b̄

))
∈ gph(G∗) in the linear

case (4), avoids the previous situation (here |D| denotes the cardinality of D):

(9)
σ
(
b̄
)

satisfies the Slater condition and there is no D ⊂ Tb̄ (x)

with |D| < n such that c̄ ∈ cone ({at, t ∈ D}) .

The following natural extension of (9) for the convex problem (1) will play a crucial
role in this section; in fact, it constitutes the announced sufficient condition for the
metric regularity of G∗ at

(
x,

(
c̄, b̄

))
:

(10)

σ
(
b̄
)

satisfies the Slater condition and there is no D ⊂ Tb̄ (x)

with |D| < n such that (c̄ + ∂f(x)) ∩ cone

(⋃
t∈D

(−∂gt (x))

)
�= ∅.

Remark 7. Observe that condition (9) does not imply the linear independence of
{at, t ∈ Tb̄(x)} . Consider the example resulting from replacing the third constraint
in Example 6 with any of the other two (which would appear twice in the system).

Remark 8. In the case n = 1, condition (10) reads as follows: σ
(
b̄
)

satisfies the
Slater condition and 0 /∈ c̄ + ∂f(x) (which entails Tb̄ (x) �= ∅).

Proposition 9. Assume that
(
x,

(
c̄, b

))
∈ gph(G∗) verifies (10). Then the

following conditions hold:
(i) There exists a neighborhood W of

(
x,

(
c̄, b̄

))
such that (10) is satisfied when(

x,
(
c̄, b̄

))
is replaced by any (x, (c, b)) ∈ W ∩ gph(G∗).

(ii) There exist u ∈ ∂f(x) as well as some uti ∈ −∂gti (x), ti ∈ Tb̄ (x) , and some
λi > 0 for i ∈ {1, . . . , n} , such that {ut1 , . . . , utn} is a basis of R

n and

u + c̄ =
n∑

i=1

λiuti .

(iii) F∗ (c̄, b̄) = {x}.
(iv) F∗ is lsc at

(
c̄, b̄

)
.

As a consequence of the previous statements, one has the following condition:
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(v) There exists a neighborhood V of
(
c̄, b

)
such that F∗ is single-valued and

continuous on V.

Proof. (i) From the equivalence (i)⇔(iii) in Lemma 3, it is clear that σ (b) fulfills
the Slater condition for b close enough to b. Now, reasoning by contradiction, assume
that there exists {(xr, (cr, br))} ⊂ gph(G∗) converging to

(
x,

(
c̄, b̄

))
as well as some

subgradients ur ∈ ∂f(xr), ur
tri

∈ −∂gtri (xr) , tri ∈ Tbr (xr) , λr
i ≥ 0, i = 1, . . . , n − 1,

r = 1, 2, . . . , such that we can write

(11) ur + cr =

n−1∑
i=1

λr
iu

r
tri
.

In this expression we have made use of the convexity of the involved subdifferential
sets.

For each i ∈ {1, . . . , n− 1} the sequence {tri } has a subsequence (still denoted
by {tri }, for simplicity) converging to certain ti ∈ Tb̄ (x) , since T is compact and
gti (x)− b̄ti = limr

(
gtri (xr)− brtri

)
= 0. Let us see that the sequence {γr}r∈N

given by

γr :=
∑n−1

i=1 λr
i , r = 1, 2, . . . , must be bounded. Otherwise, we may assume without

loss of generality (considering suitable subsequences) that limr→∞ γr = +∞ and

the sequence
{λr

i

γr

}
r∈N

converges to certain μi ≥ 0 for each i ∈ {1, . . . , n− 1} . So,

dividing by γr in (11) and letting r → +∞ we have (considering again appropriate
subsequences of

{
ur
tri

}
r∈N

for each i)

(12)

0n =

n−1∑
i=1

μiuti ,

with

n−1∑
i=1

μi = 1 and uti := limr u
r
tri

∈ −∂gti (x) , i = 1, . . . , n− 1,

where we have applied [24, Thm. 24.5] to sequences
{
gtri

}
r∈N

, i = 1, . . . , n − 1, and

{xr}r∈N (here the continuity of t �→ gt(x), for all x ∈ R
n, is essential to allow the use

of the referred theorem). In this way we attain a contradiction with (7) in Lemma 3.

Once we have established the boundedness of {γr}r∈N
, we may assume without

loss of generality that, for each i ∈ {1, . . . , n− 1} , the sequence {λr
i }r∈N

converges

to certain βi ≥ 0,
{
ur
tri

}
r∈N

converges again to certain uti ∈ −∂gti (x) , and {ur}r∈N

converges to some u ∈ ∂f(x) (appealing again to [24, Thm. 24.5]). Thus, letting
r → ∞ in (11) we obtain

u + c̄ =

n−1∑
i=1

βiuti , with
{
t1, . . . , tn−1

}
⊂ Tb (x) ,

contradicting (10).

(ii) It follows easily from the KKT conditions (see Lemma 1), property (10), and
Carathéodory’s theorem.

(iii) Let u+ c̄ be represented as in (ii). If there exists y ∈ F∗ (c̄, b̄) \ {x} , then we
have, by using convexity of f and taking into account

0 ≥ gti (y) − bti = gti (y) − gti (x) ≥ −u′
ti (y − x)
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as well as λi > 0, i = 1, 2, . . . , n,

0 = f(y) + c̄′y − f(x) − c̄′x ≥ (u + c̄)′(y − x)

=

n∑
i=1

λiu
′
ti(y − x) ≥ 0.

Thus, we obtain u′
ti (y − x) = 0 for i = 1, . . . , n, contradicting the fact that {ut1,...,utn}

is a basis of R
n.

(iv) It is a straightforward consequence of (iii) above and Proposition 4(iv) (recall
also that (i)⇔(ii) in Lemma 3).

(v) Take a neighborhood U0×V0 of
(
x,

(
c̄, b̄

))
contained in certain W verifying (i).

Due to (iv) we may consider a neighborhood of
(
c̄, b̄

)
, say V ⊂ V0, such that F∗ (c, b)∩

U0 �= ∅ for all (c, b) ∈ V. Now, for each (c, b) ∈ V, there exists x ∈ F∗ (c, b) ∩ U0, and
so (x, (c, b)) ∈ W ∩ gph(G∗) and (i) together with (iii) entail F∗ (c, b) = {x} . Finally,
the continuity of the single-valued mapping F∗ |V comes from (i) and (iv).

Next we present a sufficient condition for metric regularity of G∗. By Lemma 5,
the latter is equivalent to the strong Lipschitz stability of F∗.

Theorem 10. For the convex semi-infinite program (1), let
(
x,

(
c̄, b̄

))
∈ gph(G∗).

If condition (10) holds, then G∗ is metrically regular at x for
(
c̄, b̄

)
.

Proof. Reasoning by contradiction, assume that (10) holds, but G∗ is not metri-
cally regular at x for

(
c̄, b̄

)
. According to the equivalence between metric regularity

of a mapping and the Aubin property of its inverse (see (5)), there must exist a se-
quence {xr}r∈N

⊂ R
n converging to x and two sequences of parameters {(cr, br)}r∈N

and
{(

c̄r, b̄r
)}

r∈N
, both converging to

(
c̄, b̄

)
, such that, for all r ∈ N, xr ∈ F∗ (cr, br)

and

(13) d
(
xr,F∗ (c̄r, b̄r)) > rd

(
(cr, br) ,

(
c̄r, b̄r

))
.

Because of condition (v) in Proposition 9 we may assume without loss of generality
that, for all r, F∗ (c̄r, b̄r) is a singleton, say F∗ (c̄r, b̄r) = {xr} .The continuity of F∗

at
(
c̄, b̄

)
ensures that the sequence {xr} converges to x (see again Proposition 9(v)).

Moreover (13) ensures, for all r, xr �= xr and

(14)
supt∈T

∣∣brt − b̄rt
∣∣

‖xr − xr‖ <
1

r
.

According to conditions (i) and (ii) in Proposition 9 we can write, for r large
enough,

(15) ur + cr =

n∑
i=1

λr
iu

r
tri

and ur + cr =

n∑
i=1

λ
r

iu
r
tri

for certain subgradients ur ∈ ∂f(xr), ur ∈ ∂f(x̄r), ur
tri

∈ −∂gtri (x
r), ur

tri
∈ −∂gtri (x

r),

associated with certain indices tri ∈ Tbr (xr) and t
r
i ∈ Tb̄r (xr) , and certain positive

scalars λr
i , λ

r

i for i = 1, 2, . . . , n. Moreover, following the same argument as in the
proof of Proposition 9(i), we may assume that for each i = 1, . . . , n, the sequences{
λr
i

}
r∈N

and
{
λ
r

i

}
r∈N

converge to some λi and λi, respectively. We may also assume

that, for each i, the sequences
{
tri
}
r∈N

and
{
t
r
i

}
r∈N

involved in (15) converge to ti

and ti, respectively, both belonging to Tb̄ (x) , and that {ur}r∈N
, {ur}r∈N

,
{
ur
tri

}
r∈N

,
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and
{
ur
tri

}
r∈N

converge to certain u, u ∈ ∂f(x), uti ∈ −∂gti (x), and uti ∈ −∂gti (x),

respectively. Thus (15) leads us to

(16) u + c =

n∑
i=1

λiuti and u + c =

n∑
i=1

λiuti .

Moreover, condition (10) together with Carathéodory’s theorem ensures all λi and λi

are positive and that, at the same time, {ut1 , . . . , utn} and
{
ut1 , . . . , utn

}
are both

bases of R
n.

On the other hand, since, for each i and each r, we have gtri (xr) = brtri , and

gtri (xr) ≤ b̄rtri (recall tri ∈ Tbr (xr) and xr ∈ F(b̄r)), we can write

(17) u′
tri

xr − xr

‖xr − xr‖ = −u′
tri

xr − xr

‖xr − xr‖ ≤
gtri (xr) − gtri (xr)

‖xr − xr‖ ≤
b̄rtri − brtri
‖xr − xr‖ <

1

r
,

where the last inequality comes from (14). By considering again a suitable subse-
quence, it is clear that

{
xr−xr

‖xr−xr‖
}
r∈N

may be assumed to converge to some z ∈ R
n

with ‖z‖ = 1. Hence letting r → ∞ in (17) we obtain u′
tiz ≤ 0 for all i = 1, . . . , n.

Consequently, (16) ensures

(18) (u + c)′z ≤ 0.

A completely symmetric argument entails u′
ti
z ≥ 0 for i = 1, . . . , n, and, hence,

(19) (u + c)′z ≥ 0.

This yields u′z ≤ u′z. To show that we have even equality, we note that by convexity
of f ,

f(xr) ≥ f(xr) + (ur)
′
(xr − xr) and f(xr) ≥ f(xr) + (ur)

′
(xr − xr).

This implies

(ur)
′
(xr − x̄r) ≤ f(xr) − f(xr) ≤ (ur)

′
(xr − x̄r).

Hence, dividing by ‖xr − x̄r‖ and taking the limit yields u′z ≤ u′z, which establishes
u′z = u′z. Consequently, expressions (18) and (19) coincide, and then

(u + c)′z = (u + c)′z = 0.

Finally, appealing to the first equality of (16), and recalling that u′
tiz ≤ 0 and

λi > 0 for all i, we conclude u′
tiz = 0 for i = 1, . . . , n. This, recalling that z �= 0n,

represents a contradiction with the fact that {ut1 , . . . , utn} is a basis of R
n. This

completes the proof.
Remark 11. Condition (10) is not necessary for metric regularity of the mapping

G∗. Just consider the optimization problem, in R
2,

P (c, b) : Inf x2
1 + x2 + c1x1 + c2x2

s.t. x1 ≥ b1, x2 ≥ b2.

Note that, in a neighborhood of
(
c̄, b̄

)
= (02, 02), F∗ is the Lipschitz function given

by F∗ (c, b) = {(max {−c1/2, b1} , b2)}, and then G∗ is metrically regular at x̄ = 02

for
(
c̄, b̄

)
. However, condition (10) fails.
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Remark 12. In fact, condition (10) is in general rather strong for metric regularity:
as we will see, it implies a first order growth condition on f at x with respect to
σ(b̄), namely, the strong uniqueness of x as a minimizer of P

(
c, b

)
(see (20)), and

moreover at least n constraints have to be active at x. It is well known for finite
nonlinear optimization problems with twice differentiable data that already certain
second order growth conditions—which also typically hold in the situation of less than
n active constraints—are sufficient and necessary for metric regularity of G∗; see, e.g.,
[19, Chap. 8] and [20]. Generalizing this to the nonlinear semi-infinite case remains
an open problem. However, in the next section we will see that for linear semi-infinite
programs, condition (10) is indeed needed for metric regularity of G∗ at x for (c̄, b̄).

The rest of this section is concerned with the relationship between condition (10)
and the strong uniqueness of a minimizer in the context of convex optimization. For
continuously differentiable data f and gt and under the Slater condition, property
(ii) of Proposition 9 (recall that it is a consequence of condition (10)) is known as a
sufficient condition for x to be a (locally) strongly unique minimizer of P (c̄, b̄); see
Theorem 3.1.16 in [14]. In the linear case, condition (10) turns out to be equivalent
even to persistence of strong unicity under small parameter changes (see section 4 for
details). In the following paragraphs we show how condition (10) is still sufficient for
the latter property but no longer necessary.

Here, we say that x ∈ F (b) is a strongly unique minimizer of P (c, b) if there
exists a positive scalar α such that

(20) f(y) + c′y ≥ f(x) + c′x + α ‖y − x‖ for all y ∈ F (b) .

Obviously, in that case F∗ (c, b) = {x}. (Note that the convexity assumptions allow
us to formulate the previous definition in global terms, not only in a neighborhood
of x.) The following lemma characterizes the strong uniqueness of optimal solutions
in terms of perturbations of vector c (which generalizes the linear version given in [9,
Thm. 10.5]).

Lemma 13. A point x is the strongly unique optimal solution of P (c, b) if and
only if there exists ε > 0 such that ‖c̃− c‖ < ε implies x ∈ F∗ (c̃, b) (in fact, for
possibly smaller ε, x is the strongly unique solution of P (c̃, b)).

Proof. According to [23, Chap. 5, Lem. 3] and [24, Thm. 23.8], x is a strongly
unique optimal solution of P (c, b) or, equivalently, of the problem

Inf
x∈Rn

{
f(x) + c′x + δF(b)(x)

}
,

if and only if

0n ∈ int{c + ∂(f + δF(b))(x)} = c + int{∂(f + δF(b))(x)}

holds. The latter is equivalent to

0n ∈ c̃ + ∂(f + δF(b))(x) for c̃ close enough to c,

i.e., x ∈ F∗ (c̃, b) for c̃ close enough to c. To ensure the last assertion, just take c̃ such
that 0n ∈ c̃ + int

{
∂(f + δF(b))(x)

}
.

Proposition 14. If condition (10) holds at
(
x,

(
c̄, b̄

))
∈ gph(G∗), then x is the

strongly unique optimal solution of P
(
c, b

)
.

Proof. From Proposition 9(ii) there exist u ∈ ∂f(x) as well as some uti ∈
−∂gti (x), ti ∈ Tb̄ (x) , and some λi > 0 for i ∈ {1, . . . , n} , such that {ut1 , . . . , utn} is
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a basis of R
n and

u + c̄ =
n∑

i=1

λiuti .

So, u + c̄ ∈ int(cone ({ut1 , . . . , utn})) . Hence, if ‖c̃− c̄‖ is small enough, then

u + c̃ ∈ cone ({ut1 , . . . , utn}) ,

which entails x ∈ F∗ (c̃, b) . Thus, applying the previous lemma, x is the strongly

unique optimal solution of P
(
c, b

)
.

Remark 15. Actually, under condition (10), we have that
(
c, b

)
∈ int({(c, b) :

P (c, b) has a strongly unique optimal solution}) as a consequence of Proposition 9(i)
and (v) (the latter ensures that all problems in a certain neighborhood have optimal
solutions and (i) entails that these solutions are strongly unique). However, the
converse statement does not hold. Just consider the parametrized convex problem, in
which condition (10) fails trivially (|T | = 1, while the problem is posed in R

2):

P (c, b) := Inf {c1x1 + c2x2 | |x1| − x2 ≤ b} ,

around
(
c, b

)
= ((0, 1)′, 0) . In fact, one can easily check that

F∗ (c, b) = {(0,−b)} if ‖c− c‖ <
1√
2
,

and, since F∗ (c, b) does not depend on c, we immediately conclude that (0,−b) is
a strongly unique optimal solution of P (c, b) when ‖c− c‖ < 1√

2
. (We used the Eu-

clidean norm.)
Finally, note that the metric regularity property is sufficient neither for condition

(9) nor for strong uniqueness. Just consider the example of Remark 11 and note that
x is not a locally strongly unique minimizer of P (02, 02), considering the feasible ray
{(t, 0) | t ≥ 0}.

4. Characterization of the metric regularity of G∗ for linear problems.
The following theorem provides the announced characterizations of the metric regular-
ity of G∗ for linear semi-infinite problems (4). Note that condition (v) is nothing else
but (9). Moreover, condition (vi) comes from adapting to our notation Nürnberger’s
condition introduced in [22]. Actually, [22, Thm. 1.4] provides the counterpart of the
equivalence (vi)⇔(vii) in the context in which perturbations of the at’s are also al-
lowed. The equivalence also holds, requiring only the boundedness of the at’s, without
continuity assumptions in the model (see [13, Thm. 4.1]).

Theorem 16. For the linear semi-infinite program (4), let
(
x,

(
c̄, b̄

))
∈ gph(G∗).

Then the following conditions are equivalent:
(i) G∗ is metrically regular at x for

(
c̄, b̄

)
.

(ii) F∗ is strongly Lipschitz stable at
((
c̄, b̄

)
, x

)
.

(iii) F∗ is locally single-valued and continuous in some neighborhood of (c̄, b̄).
(iv) F∗ is single-valued in some neighborhood of

(
c̄, b̄

)
.

(v) σ
(
b
)

satisfies the Slater condition and there is no D ⊂ Tb̄ (x) with |D| < n
such that c̄ ∈ cone ({at, t ∈ D}).

(vi) σ
(
b
)

satisfies the Slater condition and for each D ⊂ Tb̄ (x) with |D| = n such
that c̄ ∈ cone ({at, t ∈ D}); we have that all the possible subsets with n elements of
{at, t ∈ D} ∪ {c} are linearly independent.
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(vii)
(
c̄, b̄

)
∈ int ({(c, b) : F∗ (c, b) consists of a strongly unique minimizer}).

Proof. The equivalence (i)⇔(ii) is nothing else but Lemma 5.
(ii)⇒(iii)⇒(iv). They are obvious consequences of the respective definitions.
(iv)⇒(v). From (iv) we immediately conclude that

(
c̄, b̄

)
∈ int (rge(G∗)), which

obviously implies b̄ ∈ int (rge(G)) and, from Lemma 3, G is metrically regular at x
for b̄ and σ

(
b̄
)

satisfies the Slater condition. In fact, if S
(
b̄
)

denotes the set of Slater

points of σ
(
b̄
)
, then one has S

(
b̄
)

= int
(
F
(
b̄
))

[9, Ex. 6.1]. Take x̂ ∈ S
(
b̄
)

and
define, for each r ∈ N,

xr := x +
1

r
(x̂− x) ∈ int

(
F
(
b̄
))

(by the accessibility lemma).

Suppose, reasoning by contradiction, that c̄ =
∑k

i=1 λiati , with ti ∈ Tb̄ (x) and

λi > 0 for i = 1, . . . , k and k < n. Now choose u ∈ {at1 , . . . , atk}
⊥

with ‖u‖ = 1,
whose existence is guaranteed by k < n. Then, since xr ∈ int

(
F
(
b̄
))

, there exists

some scalar αr such that yr := xr + αru ∈ F
(
b̄
)
, and we shall take αr ∈ ]0, 1/r] .

Define, for each r ∈ N,

brt := (1 − ϕr (t)) min {a′txr, a′ty
r} + ϕr (t) b̄t,

where ϕr : T → [0, 1] is a continuous function verifying

ϕr (t) = 0 if t ∈ {t1, . . . , tk} and ϕr (t) = 1 if a′tx− b̄t ≥ 1
r .

The existence of such a ϕr is guaranteed by Urysohn’s lemma. If
{
t ∈ T | a′tx− b̄t ≥ 1

r

}
is empty, we take ϕr ≡ 0. Observe that xr, yr ∈ F

(
b̄
)

implies that xr, yr ∈ F (br) for
all r. Moreover, from the choice of u, we have {t1, . . . , tk} ⊂ Tbr (xr) ∩ Tbr (yr) , and

c̄ =
∑k

i=1 λiati ensures xr, yr ∈ F∗ (c̄, br) for all r (see Lemma 1). Now, let us show
that limr→∞ br = b̄. In fact, in the nontrivial case a′tx − b̄t <

1
r (otherwise brt = b̄t)

we have ∣∣brt − b̄t
∣∣ ≤ (1 − ϕ (t))

∣∣min {a′txr, a′ty
r} − b̄t

∣∣
≤ max

{∣∣a′txr − b̄t
∣∣ , ∣∣a′tyr − b̄t

∣∣}
≤

∣∣a′txr − b̄t
∣∣ + |a′t (yr − xr)|

≤ |a′t (xr − x)| +
(
a′tx− b̄t

)
+ ‖at‖∗

1

r

≤ 1

r

(
1 + (1 + ‖x̂− x‖) max

t∈T
‖at‖∗

)
,

just recalling the definition of xr. Hence

∥∥br − b̄
∥∥
∞ ≤ 1

r

(
1 + (1 + ‖x̂− x‖) max

t∈T
‖at‖∗

)
.

In this way, we provided a sequence {br}r∈N
converging to b̄ such that F∗ (c̄, br) is

not a singleton, which contradicts (iv).
(v)⇒(i). This follows from Theorem 10.
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(v)⇔(vi) comes from standard arguments of linear algebra. Once we have estab-
lished the equivalence among all conditions (i) to (vi), note that (vi)⇒(vii) comes
from [22, Thm. 1.4] by taking into account that perturbations (c, b) are a particular
case of perturbations of all coefficients. Finally, (vii)⇒(iv) is trivial.

Remark 17. Example 4.6 in [20] shows that in the convex case (even for finite
programs) the metric regularity of G∗ (or, equivalently, strong Lipschitz stability
of F∗) does not necessarily hold if F∗ is Kojima-stable (locally single-valued and
continuous). This is in contrast to the linear semi-infinite case treated in the foregoing
theorem.

5. Concluding remarks. The following diagram summarizes the main results
of the paper concerning the convex case (1). The question of whether or not the strong
uniqueness of an optimal solution for (c, b) near (c̄, b̄) implies the metric regularity of
G∗ at (x, (c̄, b̄)) remains an open problem. Observe that condition (10) strictly implies
the others in the diagram. Nevertheless, it is the only one which can be checked from
the nominal problem’s data, without involving parameters in a neighborhood.

{
Condition (10)

at (x,
(
c̄, b̄

)
) ∈ gphG∗

} ⇒
Rem. 15

�
Rem. 15

(
c, b

)
∈ int

⎧⎨
⎩(c, b) :

P (c, b) has a
strongly unique
minimizer

⎫⎬
⎭

Thm. 10 ⇓ �⇑ Rem. 11 �⇑ Rem. 15{
G∗is metrically regular}
at (x,

(
c̄, b̄

)
) ∈ gphG∗

}
⇔

Lemma 5

⎧⎨
⎩
F∗ is single-valued and Lipschitz
in a neighborhood of (x,

(
c̄, b̄

)
)

(strongly Lipschitz stable)

⎫⎬
⎭

obvious ⇓ �⇑ Rem. 17⎧⎨
⎩
F∗ is single-valued and continuous

in a neighborhood of (x,
(
c̄, b̄

)
)

(Kojima-type stability)

⎫⎬
⎭

When confined to the linear case, Theorem 16 establishes the equivalence among all
of the conditions above.

Acknowledgment. The authors are indebted to the referees for their helpful
critical comments.
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ON THE EXISTENCE OF SOLUTIONS TO DIFFERENTIAL
INCLUSIONS WITH NONCONVEX RIGHT-HAND SIDES∗

M. I. KRASTANOV† , N. K. RIBARSKA‡ , AND TS. Y. TSACHEV§

Abstract. We study the existence of solutions of differential inclusions with upper semicontin-
uous right-hand sides. The investigation was prompted by the well-known Filippov examples. We
define a new concept, “colliding on a set.” In the case when the admissible velocities do not “collide”
on the set of discontinuities of the right-hand side, we expect that at least one trajectory emanates
from every point. If the velocities do “collide” on the set of discontinuities of the right-hand side, the
existence of solutions is not guaranteed, as is seen from one of Filippov’s examples. In this case we
impose an additional condition in order to prove the existence of a solution starting at a point of the
discontinuity set. For the right-hand sides under consideration, we assume the following: whenever
the velocities “collide” on a set S there exist tangent velocities (belonging to the Clarke tangent cone
to S) on a dense subset of S. Then we prove the existence of an ε-solution for every ε > 0. Under
additional assumptions we can pass to the limit as ε → 0 and obtain a solution of the considered
differential inclusion.

Key words. differential inclusions with nonconvex right-hand sides, existence of solutions,
colliding on a set

AMS subject classifications. 34A36, 34A60

DOI. 10.1137/060659077

1. Introduction. We study the existence of solutions of the differential inclusion

ẋ ∈ F (x), x(0) = x0,(1.1)

with upper semicontinuous right-hand side F . Our attention is focused on the exis-
tence in the autonomous case alone, and we are not going to discuss questions like
uniqueness of the solution, continuous dependence on the initial conditions, etc.

Filippov proved the existence of a solution of (1.1) for the case of upper semicon-
tinuous right-hand side F with convex and compact values (cf., for example, [14], [15],
[16]). Since then the convexity assumption on the right-hand side has been of univer-
sal use in the calculus of variations and optimal control when differential inclusions
are involved. Filippov’s convexifying approach, however, because of its generality,
does not always provide the best result. A longstanding open problem is the exis-
tence of solutions of differential inclusions with upper semicontinuous right-hand sides
with nonconvex values. As is seen from the well-known Filippov examples (cf., for
example, [16]), such a solution does not always exist.

The question of whether solutions exist for continuous F without convex values
was raised by Hermes in [18] and solved by Filippov in [15]. This was generalized to
the case of lower semicontinuous right-hand sides, by Bressan [5] (cf. also [4], [6], [7])
by means of the selection approach, and by Lojasiewicz in [20] and [21] by means of
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Filippov’s method. Existence results unifying the continuous and the convex cases
were obtained by Olech in [22] (cf. also [19]) and by Lojasiewicz in [21], who proved
existence assuming lower semicontinuity on an open set and convexity plus upper
semicontinuity on its complement.

Bressan, Cellina, and Colombo studied in [9] the existence of solutions to dif-
ferential inclusions with upper semicontinuous cyclically monotone right-hand sides.
Recall that a multifunction A: Rn → Rn is called cyclically monotone if for every
cyclical sequence x0, x1, . . . , xN = x0 (N -arbitrary) and every sequence yi ∈ A(xi),

i = 1, . . . , N , we have
∑N

i=1 〈xi − xi−1, yi〉 ≥ 0, where as usual 〈., .〉 denotes the in-
ner product of Rn. These multifunctions are exactly the upper semicontinuous ones,
the graph of which is contained in the subdifferential of a proper convex function
(cf. [25]). The last result along these lines, known to the authors, was obtained in [3]
by Bounkhel and Haddad. A direct corollary of their result is that (1.1) has a solution
if the right-hand side is an upper semicontinuous map with compact values, the graph
of which is contained in the graph of the proximal subdifferential of a uniformly regu-
lar lower semicontinuous function. Another result, obtained by Veliov in [26], already
proved to be very useful in studying invariance, stability, and attainability properties
of a given compact set with respect to a differential inclusion. It yields the existence
of solutions of differential inclusions with right-hand sides of the form

F (x) =
{
η ∈ G(x) : D−ψ(x; η) ≤ φ(x)

}
,

where G is an upper semicontinuous map with compact convex values, ψ is a locally
Lipschitz function, φ is an upper semicontinuous real-valued function, and D− denotes
the lower Dini derivative. Another interesting result was presented by Cellina and
Ornelas in [10].

As we already mentioned, Bressan in [5] and Lojasiewicz in [20] and [21] proved
the existence of a solution with lower semicontinuous right-hand side F , possibly not
convex valued. On the other hand, having an arbitrary upper semicontinuous multi-
valued mapping F , it is well known (cf. Fort [17]) that it is not lower semicontinuous
on a first Baire category set. But a set of first Baire categories may have a very
complicated structure. However, if a positive real ε is fixed, then the set where F
is not ε-lower semicontinuous is contained in a closed set with empty interior. (It is
said that F is ε-lower semicontinuous at the point x̂ if there exists an open set U
containing x̂ and such that F (x̂) ⊂ F (x) + εB for each x ∈ U .) This is one of the
possible motivations to work with ε-approximations of F .

Another motivation is given by a general fact about upper semicontinuous mul-
tivalued mappings, namely, a selection theorem of Srivatsa. To formulate it, we need
the following definition (cf. Ribarska [23]).

Definition 1.1. Let X be a topological space and let

U = {Uα : 1 ≤ α < α0}

be a well-ordered family of its subsets. It is said that U is a relatively open partitioning
of X iff

(i) Uα is contained in X \
(⋃

β<α Uβ

)
and it is relatively open in it for every α;

(ii) X =
⋃

1≤α<α0
Uα.

Note that each element of a relatively open partitioning is an intersection of an
open and a closed set. Particular cases of such partitionings appear in [8] (cf. also
[13]) in a proof (much simpler than the original one) for the lower semicontinuous
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case, and in [1] in the definition of the so-called patchy vector field which was used for
constructing piecewise constant stabilizing feedback control.

Now we formulate the above-mentioned selection theorem (Srivatsa [24]).

Theorem 1.2. Let F : X ⇒ Y be an upper semicontinuous multivalued mapping,
where X is a metric space and Y is a convex subset of a normed linear space. Then
F has a selector f which is of the first Baire class and which is a uniform limit of
functions, each of them constant on the elements of some relatively open partitioning
of X.

The simple structure of the functions uniformly approximating the selector f
prompts us to study the problem of the existence of ε-solutions of the original problem,
i.e., we are looking for an absolutely continuous function x : [0, T ] → Rn such that∣∣∣∣∣

ẋ(t) ∈ F (x(t)) + εB̄ a.e. on [0, T ],

x(0) = x0.

But the simple Filippov examples show that finding an ε-solution is not a trivial
task. Consider

F1(x) =

⎧⎨
⎩

1 if x < 0,
{−1, 1} if x = 0,
−1 if x > 0

and F2(x) =

⎧⎨
⎩

−1 if x < 0,
{−1, 1} if x = 0,

1 if x > 0.

The inclusion ẋ ∈ F1(x) does not have a solution when x(0) = 0. It does not even
have an ε-solution for ε ∈ (0, 1) and x(0) = 0. The inclusion ẋ ∈ F2(x) has a solution
for any x0.

The geometric intuition suggests that the reason for the nonexistence of a solution
in the first Filippov example is that the corresponding vector field “collides” on the set
of discontinuity of the right-hand side. In the present paper we define rigorously the
concept of “colliding on a set” (section 3). In the case when the admissible velocities
do not “collide” on the set of discontinuity of the right-hand side, one can expect
that at least one trajectory emanates from every point. If the velocities do “collide”
on the set of discontinuity of the right-hand side, the existence of solutions is not
guaranteed, as is seen from the first Filippov example. In this case one needs to
impose an additional condition in order to prove the existence of a solution starting
at a point of the discontinuity set. For the right-hand sides under consideration, we
assume the following: whenever the velocities “collide” on a set S there exist tangent
velocities (belonging to the Clarke tangent cone to S ) on a dense subset of S. Then
we prove the existence of an ε-solution of (1.1) for every ε > 0 (section 4). Under
additional assumptions we can pass to the limit as ε → 0 and obtain a solution of
(1.1) (section 5).

2. Preliminaries and technical lemmas. For any sets S1, S2 ⊆ Rn and η ∈ R,
we set S1+ηS2 := {s1+ηs2 : s1 ∈ S1, s2 ∈ S2}. Also, Br(p) := {x ∈ Rn : ‖x−p‖ < r},
B̄r(p) is the closure of Br(p) for all p ∈ Rn, B := B1(0), and B̄ := B̄1(0).

The principal nonsmooth objects used in this paper are the proximal subgradient
and normal cone, and here we review these concepts; see [11] for a complete treatment.
Let S ⊆ Rn be closed and s ∈ S. A vector ζ ∈ Rn is called a proximal normal vector
of S at s provided there exists σ = σ(ζ, s) > 0 so that

〈ζ, s′ − s〉 ≤ σ||s′ − s||2 for all s′ ∈ S.(2.1)
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The set of all proximal normals of S at s is denoted by N̂S(s) and is a convex cone.
One can show (cf. [11, p. 25]) that for each δ > 0 and s ∈ S, ζ ∈ N̂S(s) iff there exists
σ = σ(ζ, s) > 0 so that

〈ζ, s′ − s〉 ≤ σ||s′ − s||2 for all s′ ∈ S ∩ δBn(s).(2.2)

By NS(x) we denote the set of all limiting normals to S at x, which is defined as
follows:

NS(x) :=
{
ζ : ζ = lim

n→∞
ζn, ζn ∈ N̂S(xn), x = lim

n→∞
xn

}
.

The Bouligand tangent cone TS(x) to S at the point x is defined in the following
way:

TS(x) :=

{
v : v = lim

n→∞

xn − x

tn
, xn ∈ S, x = lim

n→∞
xn, lim

n→∞
tn = 0, tn > 0

}
.

At last, we say that v belongs to the Clarke tangent cone T̂S(x) to S at x if
for each sequence {xn}∞n=1 of points of S and for each sequence {tn}∞n=1 of positive
numbers decreasing to zero there exists a sequence {vn}∞n=1 converging to v such that
xn + tnvn ∈ S for all n.

Recall that the distance function dS(·) : Rn → R is given by dS(x) := min{‖x−
s‖ : s ∈ S}. Then ζ ∈ N̂S(s) iff there exists ε > 0 such that dS(s + tζ) = t‖ζ‖ for all
t ∈ (0, ε).

For the related functional concept, assume that f : Rn → (−∞,∞] is lower
semicontinuous and let x ∈ domain(f) := {x′ : f(x′) < ∞}. Then ξ ∈ Rn is called a
proximal subgradient for f at x provided there exist σ > 0 and η > 0 so that

f(x′) ≥ f(x) + 〈ξ, x′ − x〉 − σ‖x′ − x‖2 for all x′ ∈ Bη(x).(2.3)

The set of all proximal subgradients for f at x is denoted by ∂P f(x). This set could
be empty at some points, even for C1 functions (e.g., the proximal subgradient of
f(x) = −|x|3/2 at x = 0 is empty). Recall that the epigraph epi f ⊆ Rn+1 of
f : Rn → [−∞,+∞] is the set {(x, r) : r ≥ f(x)}, and is closed iff f is lower
semicontinuous. Two fundamental facts are as follows:

ξ ∈ ∂P f(x) ⇐⇒ (ξ,−1) ∈ N̂epif (x, f(x)) for all x ∈ domain(f),

ζ ∈ ∂P dS(x) ⇐⇒ x + dS(x)ζ ∈ projS(x) for all x ∈ Rn \ S,(2.4)

where projS(x) := {s ∈ S : dS(x) = ‖x − s‖} is called the set of all projections of x
into S.

Lemma 2.1. Let S = U ∩G, where U is an open subset of Rn and G is a closed
subset of Rn. Let F : U ⇒ Rn be an upper semicontinuous map with convex and
compact values. Moreover, let the set F (U) be bounded. Then there exists an open
subset V of U containing S such that projG(x) ⊂ U for each point x ∈ V . If

min {〈x− z, v〉 : z ∈ projG(x), v ∈ F (z)} ≤ 0(2.5)

for every x ∈ V , then the set S is weakly invariant with respect to F , i.e., for each
point x ∈ S there exist tx > 0 and an absolutely continuous function ϕ : [0, tx] → S
such that ϕ̇(t) ∈ F (ϕ(t)) for almost every t ∈ [0, tx].
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Proof. Define the set V to be

V :=
{
x ∈ Rn : dG(x) < dRn\U (x)

}
.

Clearly, V is an open subset of U containing S. If x ∈ V , then for every point
z ∈ projG(x) we have

‖z − x‖ = dG(x) < dRn\U (x),

i.e., z �∈ Rn \ U . Thus projG(x) ⊂ U .
According to (2.5), for each x ∈ V there exist zx ∈ projG(x) and vx ∈ F (zx) such

that 〈x− zx, vx〉 ≤ 0. For every x ∈ V , take any of these vx and define θ(x) := vx.
Let x be an arbitrary point of S. Take tx > 0 in such a way that x + tx.cB ⊂ V ,

where c is an upper bound of the set {‖y‖ : y ∈ F (x), x ∈ U}. Let

π := {t0 = 0, t1, . . . , tn−1, tn = tx}

be a partition of the interval [0, tx] and let ϕπ be the corresponding Euler arc, i.e.,

ϕπ(t0) := x, ϕπ(t) := ϕπ(ti−1) + (t− ti−1) θ (ϕπ(ti−1))

for ti−1 ≤ t ≤ ti and i = 1, 2, . . . , n.
According to the choice of tx, ϕπ(·) is well defined on [0, tx] and is contained in

V . We have for every i = 1, 2, . . . , n and for every t ∈ ( ti−1, ti]

d2
S (ϕπ(t)) ≤

∥∥ϕπ(t) − zϕπ(ti−1)

∥∥2
=
∥∥ϕπ(ti−1) + (t− ti−1) θ (ϕπ(ti−1)) − zϕπ(ti−1)

∥∥2

≤
∥∥ϕπ(ti−1) − zϕπ(ti−1)

∥∥2
+ (t− ti−1)

2 ‖θ (ϕπ(ti−1))‖2

+ 2(t− ti−1)
〈
ϕπ(ti−1) − zϕπ(ti−1), θ (ϕπ(ti−1))

〉
≤ d2

S (ϕπ(ti−1)) + (t− ti−1)
2 c2 ≤ d2

S (ϕπ(ti−1)) + (ti − ti−1)
2 c2.

Denote

μπ := max
1≤i≤n

(ti − ti−1).

Then summing up the above inequalities for i = 1, 2, . . . , k and for t ∈ (tk−1, tk),
we obtain

d2
S (ϕπ(t)) ≤ d2

S (ϕπ(t0)) + c2
k∑

i=1

(ti − ti−1)
2(2.6)

≤ d2
S (ϕπ(t0)) + c2μπ

k∑
i=1

(ti − ti−1) ≤ d2
S (ϕπ(t0)) + c2μπtx = c2μπtx.

Now let {πj}∞j=1 be a sequence of partitions such that μπj
→ 0 as j → ∞ and

necessarily nj → ∞. Then the family
{
ϕπj

}∞
j=1

is equicontinuous and uniformly
bounded. According to the Arzelà–Ascoli theorem, some subsequence of

{
ϕπj

}∞
j=1

converges uniformly to a continuous function ϕ(·) on [0, tx]. The limiting function
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inherits the Lipschitz constant c on [0, tx], and hence it is absolutely continuous.
Passing to the limits in (2.6) with π = πj as j → ∞, we obtain

d2
S (ϕ(t)) ≤ 0

for every t ∈ [0, tx], i.e., for t ∈ [0, tx]

ϕ(t) ∈ S.(2.7)

Define the multivalued map

FS(x) := co
⋃

y∈projS(x)

F (y) for x ∈ V.

Because of the upper semicontinuity and the boundedness of F (·), and of the
compactness of the set projG(x) for every x ∈ V , FS(x) is a compact and convex
set. Since the multivalued map x ⇒ projG(x) is upper semicontinuous, the map
x ⇒ FS(x) is also upper semicontinuous. Moreover, by construction θ(·) is a selection
of FS(·). By Corollary 1.12 on p. 186 in [11], ϕ(·) is a solution of∣∣∣∣∣

ẋ(t) ∈ FS(x(t)) a.e. on [0, tx],

x(0) = x.

Because FS(·) and F (·) coincide on the set S, (2.7) implies that ϕ(·) is a solution
of ∣∣∣∣∣

ẋ(t) ∈ F (x(t)) a.e. on [0, tx],

x(0) = x.

This completes the proof.
Remark. If in the assumptions of Lemma 2.1 we replace (2.5) by

min {〈ζ, v〉 : v ∈ F (z)} ≤ 0(2.8)

for each z ∈ S with N̂S(z) �= ∅ and for each ζ ∈ N̂S(z), the conclusion of Lemma 2.1
remains true, because (2.8) implies (2.5).

Lemma 2.2. Let G : X ⇒ Rn be an upper semicontinuous uniformly bounded
map defined on a complete metric space X and let ε > 0 be fixed. Then there exists
an open and dense subset W of X such that for each x0 ∈ W there exists an open
neighborhood V of x0 with

G(x0) ⊂ G(x) + εB(2.9)

whenever x ∈ V .
Proof. Let M > 0 be such that ‖G(x)‖ ≤ M for each x ∈ X. Take {y1, y2, . . . ,

yk} ⊂ Rn to be a finite ε/2-net for the closed ball MB̄ centered at the origin with
radius M . The upper semicontinuity implies that the sets

Xi =
{
x ∈ X : G(x)

⋂(
yi +

ε

2
B̄
)
�= ∅

}
, i = 1, 2, . . . , k,

are closed. We set

W :=

k⋂
i=1

(
(X \Xi)

⋃
int Xi

)
.
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The set W is an open and dense subset of X. Take an arbitrary x0 ∈ W and denote

I(x0) =
{
i : G(x0)

⋂(
yi +

ε

2
B̄
)
�= ∅

}
.

Now, we set

V := {x ∈ W : I(x) = I(x0)} .

Clearly, V is an open subset of X and x0 ∈ V . To validate the assertion of
Lemma 2.2, take x ∈ V . Then verify

G(x0) ⊂
⋃

i∈I(x0)

(
yi +

ε

2
B̄
)

=
⋃

i∈I(x)

(
yi +

ε

2
B̄
)
⊂

⋃
y∈G(x)

(
y + εB̄

)
= G(x) + εB̄.

This completes the proof.
Lemma 2.3. Let S = U

⋂
K, where U is an open subset of Rn and K is a closed

subset of Rn. Let c > 0 and ε > 0 be fixed. Then there exists a relatively open and
dense in S subset W of S such that for each x0 ∈ W there exists an open neighborhood
V of x0 with

T̂S(x)
⋂

c B̄ ⊂ TS(x0)
⋂

c B̄ + εB(2.10)

for every point x ∈ V .
Proof. Let S be endowed with the inherited topology of Rn and let G : S ⇒ Rn

be defined as

G(x) := NS(x)
⋂

c B̄.

According to Proposition 6.6 on p. 202 in [25], G is upper semicontinuous and
uniformly bounded. Applying Lemma 2.2, we get an open relatively dense in S set
W such that for every point x0 ∈ W there exists a relatively open neighborhood V of
x0 with

NS(x0)
⋂

c B̄ ⊂ NS(x)
⋂

c B̄ + εB(2.11)

whenever x ∈ V .
Assume that (2.10) does not hold. Then there exists w ∈ T̂S(y)

⋂
c B̄ with y ∈ V

such that

w �∈ TS(x0)
⋂

c B̄ + εB.

According to Proposition 6.27 on p. 219 in [25], there exists v ∈ NS(x0)
⋂
B

satisfying

dTS(x0)(w) = 〈v, w〉 .

Because of (2.11),

cv ∈ NS(x)
⋂

c B̄ + εB,

i.e., cv = v1 + εv2 with v1 ∈ NS(x)
⋂
c B̄ and v2 ∈ B. Hence,

〈v, w〉 =
〈v1

c
, w
〉

+
ε

c
〈v2, w〉 ≤ 0 + ε = ε,

i.e., dTS(x0)(w) ≤ ε, which is a contradiction. Thus (2.10) holds true.
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3. Colliding on a set. Let D be an intersection of an open and a closed subset
of Rn, let x0 ∈ D and T > 0, and let F : D ⇒ Rn be an upper semicontinuous
mapping with nonempty compact values which are uniformly bounded.

Definition 3.1. Let us fix an arbitrary ε > 0. It is said that F does not ε-collide
from D to the point x̂ of D iff there exist a subset A of D and a multivalued map
G : A ⇒ Rn defined on it such that

(i) the set A is an intersection of an open and a closed set, and x̂ ∈ A∩cl(int A)
(here int A denotes the interior of A relatively in D);

(ii) G is an upper semicontinuous convex valued map with G(x) ⊂ F (x) + εB for
each x ∈ A;

(iii) for each point x ∈ (∂A) ∩ A (here (∂A) denotes the boundary of A relatively
in D) and for each ζ ∈ N̂A(x) there exists v ∈ G(x) with

〈ζ, v〉 ≤ 0.(3.1)

Lemma 2.1 shows that the differential inclusion ẋ ∈ F (x) with x(0) = x0 has an
ε-solution on a small time interval whenever x0 ∈ A and D is open in Rn (here A and
D relate to F (·) as in Definition 3.1).

Proposition 3.2. The following assertions hold true:

(a) If F is ε-lower semicontinuous at x̂ ∈ D, then F does not ε-collide from D
to the point x̂. Therefore the subset of D consisting of all points to which F does not
ε-collide contains a dense relatively open subset of D.

(b) If F is upper semicontinuous and convex valued on an open neighborhood V
of x̂ ∈ D, then F does not ε-collide from D to x̂.

Proof. Part (b) is obvious, because we can set A to be V ∩D and G to be F . For
part (a), let V be an open (in D) neighborhood of x̂ with F (x̂) ⊂ F (x)+εB whenever
x ∈ V . We set A := V and G(x) := ŷ for every x ∈ A, ŷ being an arbitrarily fixed
point of F (x̂). The last statement in part (a) is an immediate corollary of Lemma 2.2
and the first statement.

Another class of multivalued maps which do not ε-collide at any point consists of
the monotone maps and some of their generalizations (cf. [12]).

Definition 3.3. The operator T : X ⇒ X∗ is called hypomonotone if for every
x0 ∈ X there exist δ > 0 and ρ > 0 such that for all x1, x2 ∈ Bδ(x0) and for all
ξi ∈ T (xi), i = 1, 2, we have

〈ξ2 − ξ1, x2 − x1〉 ≥ −ρ‖x1 − x1‖2.

Proposition 3.4. Let D be an open subset of Rn and let F : D ⇒ Rn be an
upper semicontinuous hypomonotone multivalued map with nonempty compact values.
Then F does not ε-collide from D to any point x̂ of D for every ε > 0.

Proof. Let us fix x̂ ∈ D and ε > 0. Denote R := max{‖y‖ : y ∈ F (x̂)} and
choose ŷ in F (x̂) with ‖ŷ‖ = R. The Euclidean norm in Rn being uniformly convex,
we are able to find r > 0 and α > 0 such that the slice

S =
{
y ∈ B̄R+r(θ) : 〈y, ŷ〉 ≥ R2 − α

}
has diameter less than ε. Let S̃ be the smaller slice

S̃ =
{
y ∈ B̄R+r(θ) : 〈y, ŷ〉 ≥ R2 − α

2

}
.
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The positive numbers ρ > 0 and δ > 0 come from the definition of hypomonotonicity
of F at x̂. Put

β = min

{
δ

2
,

α

4ρR2

}
> 0.

Then the set C = (F−1(S̃) ∩ B̄β(x̂)) +
[
0, α

2ρR2

]
ŷ is closed in D because of the upper

semicontinuity of F at x̂. Here F−1(S̃) = {x ∈ D : F (x) ∩ S̃ �= ∅}. The set
U = Bβ(x̂)∩{x ∈ D : F (x) ⊂ BR+r(θ)} is relatively open in D and contains x̂. Now
A = C ∩ U and G(x) := S for each x ∈ A satisfy the conditions in Definition 3.1.
Indeed, let z ∈ A, that is, z = x + tŷ and z ∈ U with ‖x− x̂‖ ≤ β and F (x) ∩ S̃ �= ∅.
Let z∗ be an arbitrary element of F (z) and y ∈ F (x) ∩ S̃. Then 〈z∗ − y, z − x〉 ≥
−ρ‖z − x‖2; therefore for each t ∈

(
0, α

2ρR2

]
〈z∗, ŷ〉 =

1

t
〈z∗, z − x〉 ≥ 1

t
〈y, z − x〉 − ρ

t
‖z − x‖2

= 〈y, ŷ〉 − ρt‖ŷ‖2 ≥ R2 − α

2
− ρR2t ≥ R2 − α.

Thus F (z) ⊂ S whenever t > 0. Otherwise z ∈ F−1(S̃) ⊂ F−1(S). We see that in
both cases (ii) is satisfied for every z ∈ A because diam (S) < ε and so S ⊂ F (z)+εB.

The above reasoning (applied with x := x̂ and y := ŷ) shows that if z = x̂ + tŷ
with t ∈ (0, β), then 〈z∗, ŷ〉 > R2 − α

2 for each z∗ ∈ F (z), that is, F (z) ⊂ int S̃, and
by the upper semicontinuity of F we find a (relatively) open set V with z ∈ V and
V ⊂ F−1(int S̃) ∩ Bβ(x̃) ⊂ C. So x̂ ∈ A ∩ cl(int A) and (i) is satisfied. Now let

x ∈ ∂A and ξ ∈ N̂A(x). Then x ∈ A implies that x = x̃ + t̃ŷ with t ∈
[
0, α

2ρR2

)
and

x̃ ∈ F−1(S̃)∩Bβ(x̂) (t̃ �= α
2ρR2 because β ≤ α

4ρR2 ). Hence again the points z = x+ tŷ

belong to A for all t > 0 sufficiently small. This yields

〈ξ, z − x〉 ≤ σ‖z − x‖2, i.e., 〈ξ, ŷ〉 ≤ σt‖ŷ‖2

for every sufficiently small t > 0. Hence 〈ξ, ŷ〉 ≤ 0 and ŷ ∈ S = G(x). This completes
the proof of the proposition.

In particular, since every monotone map is hypomonotone, monotone (and, of
course, cyclically monotone) maps do not ε-collide. Also, the proximal subdifferentials
of uniformly regular lower semicontinuous functions (see Definition 3.5 below) are
hypomonotone too.

Definition 3.5 (cf. [3]). Let U be a nonempty open subset of Rn and let f :
U → Rn be a lower semicontinuous function. We say that f is uniformly regular over
U if there exists β ≥ 0 such that for all x ∈ U and for all ξ ∈ ∂P f(x) one has

〈ξ, x′ − x〉 ≤ f(x′) − f(x) + β‖x′ − x‖2 for all x′ ∈ U.

To prove that ∂P f(x) is hypomonotone, take arbitrary x1, x2 ∈ U and ξi ∈
∂P f(xi), i = 1, 2. Then summing the inequalities

f(x2) − f(x1) − 〈ξ1, x2 − x1〉 ≥ −β‖x2 − x1‖2,

f(x1) − f(x2) − 〈ξ2, x1 − x2〉 ≥ −β‖x2 − x1‖2,

we obtain

〈ξ2 − ξ1, x2 − x1〉 ≥ −2β‖x2 − x1‖2.
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Example 1. Let C be the graph of a function f : R → R which is not absolutely
continuous on any subinterval of R. Consider F : R2 ⇒ R2 defined by

F (x1, x2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(1, 1)} if x2 < f(x1);

co {(1,−1), (1, 1), (1,−2)} if x2 = f(x1);

{(1,−1)} if x2 ∈
[
f(x1) +

1

4k
, f(x1) +

1

4k − 1

]
;

{(1,−2)} if x2 ∈
[
f(x1) +

1

4k + 2
, f(x1) +

1

4k + 1

]
;

{(1,−1), (1,−2)} if x2 ∈
(
f(x1) +

1

4k + 3
, f(x1) +

1

4k + 2

)
;

{(1,−1), (1,−2)} if x2 ∈
(
f(x1) +

1

4k + 1
, f(x1) +

1

4k

)
,

where k denotes a positive integer. Then F is lower semicontinuous on R2 \ C and
upper semicontinuous and convex valued on C. As C is a closed set, the differential
inclusion ẋ ∈ F (x) has a solution according to Theorem 1 of [21]. It is easy to see
that F does not satisfy Definition 3.1 for every point of C and each ε ∈ (0, 1/2).
Nevertheless, there exists an upper semicontinuous convex-valued map G : R2 ⇒ R2

(not contained in the ε-neighborhood of F ) such that every solution of ẋ ∈ G(x) is a
solution of ẋ ∈ F (x).

Example 2. Consider F : R3 ⇒ R3 defined by

F (x1, x2, x3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(0, 0,−1)} if x3 > 0,

{(0, 0, 1)} if x3 < 0,

{(0, 0,±1), (0, 1, 0)} if x3 = 0 and x2 < 0,

{(0, 0,±1), (0,−1, 0)} if x3 = 0 and x2 > 0,

{(0, 0,±1), (0,±1, 0), (−1, 0, 0)} if x3 = x2 = 0 and x1 > 0,

{(0, 0,±1), (0,±1, 0), (1, 0, 0)} if x3 = x2 = 0 and x1 < 0,

{(0, 0,±1), (0,±1, 0), (±1, 0, 0), (0, 0, 0)} if x3 = x2 = x1 = 0.

This map F is upper semicontinuous, and it does not satisfy Definition 3.1 for any
ε ∈ (0, 1) with D = R3 and x̂ ∈ D1 := {(x1, x2, x3) : x3 = 0}; D = D1 and
x̂ ∈ D2 := {(x1, x2, x3) : x2 = x3 = 0}; D = D2 and x̂ = (0, 0, 0).

Example 3. Consider F : R2 ⇒ R2 defined by

F (x1, x2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(0,−1)} if x1 > 0 and x2 > 0,

{(0, 1)} if x1 > 0 and x2 < 0,{
− (x1, x2)√

x2
1 + x2

2

}
if x1 < 0,

{(−1, 0)} if x1 > 0 and x2 = 0,{
(y1, y2) : y2

1 + y2
2 = 1

}
if x1 = x2 = 0.

This map F is upper semicontinuous and does not satisfy Definition 3.1 for any
ε ∈ (0, 1) with D = R2 and x̂ ∈ D1 := {(x1, x2) : x1 ≥ 0, x2 = 0}. On the other
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hand, this map satisfies Definition 3.1 with the set D1 and all of its points. Evidently,
there is no trajectory of ẋ ∈ F (x) + εB̄, x(0) = (0, 0). The reason for this is the fact
that the map x ⇒ ND1(x) ∩ cB̄ is not ε-lower semicontinuous at the point (0, 0).

These examples motivate the next two definitions.
Definition 3.6. Let C be a relatively closed (in D) subset of D. It is said that

F ε-collides from D to C iff C is the closure (in D) of the complement in D of the
set

{x ∈ D : F does not ε-collide from D to x}

∩
{
x ∈ D : ND(x)

⋂
cB̄ is ε-lower semicontinuous at x

}
,

where c := sup{‖y‖ : y ∈ F (x), x ∈ D}.
Definition 3.7. Let C be a relatively closed (in D) subset of D. It is said

that F collides to the set C iff there exist ε > 0, a decreasing well-ordered family
{Dα}1≤α<α0

, and a family of upper semicontinuous multivalued maps Fα : Dα → Rn

with nonempty compact values such that
(i) D1 = D, F1 ≡ F , C = Dα0

;
(ii) Dα is a nonempty closed subset of Dα−1 if α is not a limit ordinal and

Dα =
⋂

β<α Dβ if α is a limit ordinal;

(iii) Fα(x) ⊆
(
TDα(x) + εB̄

)⋂
F (x) for every x ∈ Dα \Dα+1;

(iv) Fα ε-collides from Dα to Dα+1.

4. Basic assumption and existence of ε-solutions. The main idea of our
approach is to assume that whenever the admissible velocities do “collide” on some
set S, in order to have a solution of (1.1) which does not leave S, there exist tangent
velocities to S. It is natural to assume that these velocities belong to the Bouligand
tangent cone to S. The following example shows that this cone is too big for our
purposes. The reason is that it lacks good continuity properties.

Example 4. We define the multivalued map F : [0, 1] ⇒ {−1, 1} using a Cantor-
like construction:

F (x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{1} if x ∈
(

1

5
,
2

5

)
,

{−1} if x ∈
(

3

5
,
4

5

)
,

{1} if x ∈
(

1

52
,

2

52

)
∪
(

2

5
+

3

52
,
2

5
+

4

52

)
∪
(

4

5
+

1

52
,
4

5
+

2

52

)
,

{−1} if x ∈
(

3

52
,

4

52

)
∪
(

2

5
+

1

52
,
2

5
+

2

52

)
∪
(

4

5
+

3

52
,
4

5
+

4

52

)
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We define F (x) to be {−1, 1} on the remaining Cantor set A. Clearly, A is the set
of all points x at which F is not continuous. It is easy to check that F collides to
A and F (x)

⋂
TA(x) �= ∅ for all x ∈ A. On the other hand, the differential inclusion

ẋ ∈ F (x) has no solution whenever the starting point belongs to a dense subset of A.
Moreover, this differential inclusion has no ε-solution for each ε ∈ (0, 1) starting from
the same points.

Let D be an intersection of an open and a closed subset of Rn, and let F : D ⇒
Rn be an upper semicontinuous mapping with nonempty compact values which are
uniformly bounded. Example 4 and Lemma 2.3 motivate the following assumption.
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Basic assumption. For every C ⊆ D such that F collides to C there exists a dense
subset E of C such that

F (x)
⋂

T̂C(x) �= ∅ for all x ∈ E.

It is straightforward to verify that Examples 1, 3, and 4 do not satisfy the basic
assumption, and Example 2 satisfies it.

Theorem 4.1. Let D be an open subset of Rn and let F : D ⇒ Rn be an
upper semicontinuous mapping with nonempty compact values which are uniformly
bounded. Moreover, let F satisfy the basic assumption. Then for each ε > 0, for
each T > 0, and for each point x0 of D there exists an absolutely continuous function
x : [0, T ] → Rn such that∣∣∣∣∣

ẋ(t) ∈ F (x(t)) + εB a.e. on [0, T ],

x(0) = x0.

Proof. We set c := sup{‖y‖ : y ∈ F (x), x ∈ D} and D1 := D. Let D2 be the
closed subset of D1 to which F ε-collides from D1. We set W1 := D1\D2 and F1 ≡ F .
Then Proposition 3.2(a) implies that W1 is a dense and relatively open (in D1) subset
of D1.

According to the basic assumption, there exists a dense subset E2 of D2 such that

F (x)
⋂

T̂D2
(x) �= ∅ for all x ∈ E2.(4.1)

We define F2 : D2 ⇒ Rn as follows:

F2(x) =
{
v ∈ Rn : xn → x, xn ∈ E2, vn → v, vn ∈ F1(xn) ∩ T̂D2(xn)

}
.

It is straightforward to check that F2 is an upper semicontinuous mapping with
nonempty and compact values. Because of the upper semicontinuity of F , we have
F2(x) ⊆ F (x) for each x ∈ D2.

According to Lemma 2.3, there exists a relatively open and dense (in D2) set W̃2

such that for each point x̂ ∈ W̃2 there exists an open neighborhood V of x̂ with

T̂D2(x)
⋂

c B̄ ⊂ TD2(x̂)
⋂

c B̄ + εB̄(4.2)

for every point x ∈ V . Let v ∈ F2(x̂) be arbitrary. Then there exist a sequence
{xn}∞n=1 of points in E2 converging to x̂ and a sequence of velocities vn → v with
vn ∈ F1(xn)

⋂
T̂D2(xn). Then the upper semicontinuity of F2 and (4.2) imply that

F2(x̂) ⊆ TD2(x̂)
⋂

c B̄ + εB̄.(4.3)

Let Dβ and Fβ be defined for each β < α. If α is a limit ordinal, we put

Dα =
⋂
β<α

Dβ , Fα := F.

If α is not a limit ordinal, there exists β = α − 1 < α. Let Dα be the closed
subset of Dα−1 to which Fα−1 ε-collides from Dα−1.
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We repeat the construction of F2: According to the basic assumption, there exists
a dense subset Eα of Dα such that

F (x)
⋂

T̂Dα(x) �= ∅ for all x ∈ Eα.(4.4)

We define Fα : Dα ⇒ Rn as follows:

Fα(x) =
{
v ∈ Rn : xn → x, xn ∈ Eα, vn → v, vn ∈ F (xn) ∩ T̂Dα(xn)

}
.

It is straightforward to check that Fα is an upper semicontinuous mapping with
nonempty and compact values. Because of the upper semicontinuity of F , we have
Fα(x) ⊆ F (x) for each x ∈ Dα.

According to Lemma 2.3, there exists a relatively open and dense (in Dα) set W̃α

such that for each point x̂ ∈ W̃α there exists an open neighborhood V of x̂ with

T̂Dα(x)
⋂

c B̄ ⊂ TDα(x̂)
⋂

c B̄ + εB̄(4.5)

for every point x ∈ V . Let v ∈ Fα(x̂) be arbitrary. Then there exist a sequence
{xn}∞n=1 of points in Eα converging to x̂ and a sequence of velocities vn → v with
vn ∈ F (xn)

⋂
T̂Dα

(xn). Then the upper semicontinuity of Fα and (4.2) imply that

Fα(x̂) ⊆ TDα(x̂)
⋂

c B̄ + εB̄.(4.6)

Thus we have constructed Dα and Fα. Let α0 be the first ordinal number with
Dα0 = ∅.

Let x be an arbitrary point of D1. We set

αx := min {α : x �∈ Dα} .

Let us assume that αx is a limit ordinal, i.e., αx = sup{β : β < αx}. The def-
inition of αx implies that for each β < αx the point x belongs to Dβ . Hence,
x ∈

⋂
β<αx

Dβ = Dαx
. The last inclusion contradicts the definition of αx. So,

αx is not a limit ordinal. Then x ∈ Dαx−1 \Dαx
, and hence Fαx−1 does not ε-collide

to x from Dαx−1. According to Definition 3.1, there exists a subset A of Dαx−1 and
a multivalued map G : A ⇒ Rn such that

(i) the subset A is an intersection of an open and a closed set, and the point x
belongs to A

⋂
cl (int A);

(ii) G is an upper semicontinuous convex-valued map with G(x̂) ⊂ Fαx−1(x̂)+εB̄
for each x̂ ∈ A;

(iii) for each point x̂ ∈ ∂A
⋂
A and for each ζ ∈ N̂A(x̂) there exists v ∈ G(x̂) with

〈ζ, v〉 ≤ 0.(4.7)

Let x̂ be an arbitrary point of A and let ζ be an arbitrary element of N̂A(x̂). If
x̂ is in the interior of A relatively in Dαx−1, then ζ ∈ N̂Dαx−1(x̂). According to (4.6)
and (ii),

G(x̂) ⊂ Fαx−1(x̂) + εB̄ ⊂ TDαx−1(x̂) ∩ cB̄ + 2εB̄,

and so there exists a vector v ∈ TDαx−1(x̂) ∩ (G(x̂) + 2εB̄). Hence, 〈ζ, v〉 ≤ 0 holds
true. If x̂ is in the boundary of A relatively in Dαx−1, then by (ii) and (iii) there
exists v ∈ G(x̂) ⊂ Fαx−1(x̂) + εB̄ satisfying (4.7). So, we can apply Lemma 2.1 to
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the set A and the map G + 2εB̄. Thus we obtain the existence of tx > 0 and of a
trajectory ϕ : [0, tx) → A which is a solution of∣∣∣∣∣

ẋ(t) ∈ G(x(t)) + 2εB̄ ⊆ Fαx−1(x(t)) + 3εB̄ a.e. on [0, tx],

x(0) = x.

In particular, there exist tx0 > 0 and an absolutely continuous function ϕ :
[0, tx0) → D1 which is well defined on [0, tx) and is a solution of the following differ-
ential inclusion: ∣∣∣∣∣

ẋ(t) ∈ F (x(t)) + 3ε B̄ a.e. on [0, tx0),

x(0) = x0.

Let T̂ be the supremum of all T̄ ≥ 0 for which the function ϕ has an absolutely
continuous extension on the interval [0, T̄ ) (which we denote again by ϕ) which is
a solution of the above-written differential inclusion on the interval [0, T̄ ). Clearly,
T̂ ≥ tx0 > 0. Let us assume that T̂ ≤ T . Then we have that∣∣∣∣∣

ϕ̇(t) ∈ F (ϕ(t)) + 3ε B̄ a.e. on [0, T̂ ),

ϕ(0) = x0.
(4.8)

Then for each increasing sequence {tn}∞n=1 → T̂ we have

‖ϕ(tn) − ϕ(tn−1)‖ ≤
∫ tn

tn−1

‖ϕ̇(τ)‖ dτ ≤ c (tn − tn−1).

This means that the sequence {ϕ(tn)}∞n=1 is a Cauchy sequence. Hence, there exist

ϕ(T̂ ) := limt→T̂ ϕ(t). But then we can find an absolutely continuous extension of the

function ϕ which is a solution of (4.8) on the interval
[
0, T̂ + tϕ(T̂ )

)
. This contradicts

the definition of T̂ . Hence, T̂ > T and this completes the proof.
Corollary 4.2. Let S be a closed set and let F be a uniformly bounded upper

semicontinuous multivalued map with nonempty compact values which satisfies the
basic assumption. If

max
ξ∈N̂S(x)

min
v∈F (x)

〈ξ, v〉 ≤ 0

for every x ∈ S, then (S, Fε) is viable (weakly invariant) for each ε > 0, i.e., for
each point x0 ∈ S there exists a solution x(·) of the differential inclusion ẋ ∈ Fε(x),
x(0) = x0, with Fε(x) = F (x) + εB̄, defined on some interval [0, tx0), tx0 > 0, such
that x(t) ∈ S for each t ∈ [0, tx0).

In contrast to the convex-valued case (cf., for example, [2] or [11]), the basic
assumption is crucial for the validity of this corollary.

5. Existence of a solution. The question of when it is possible to pass to the
limit as ε → 0 and to obtain a real solution of (1.1) remains open. Assuming that
F is an upper semicontinuous mapping satisfying the basic assumption, a relatively
open partitioning Uε is constructed in the proof of Theorem 4.1 for every ε > 0.
Its elements are invariant with respect to the trajectories of the differential inclusion
ẋ ∈ F (x) + εB̄.
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The next theorem is inspired by Bressan’s proof in the lower semicontinuous case.
To prove it, we have additionally assumed that some refinements of the relatively open
partitioning Uε may be chosen finite and that their elements are invariant with respect
to the trajectories of the differential inclusion ẋ ∈ F (x) + ηB̄ for each 0 < η < ε.

Theorem 5.1. Let the set D be an intersection of an open and a closed subset
of Rn and let F : D ⇒ Rn be a uniformly bounded upper semicontinuous multivalued
mapping with nonempty compact values. Let

Uk =
{
Uk
α : 1 ≤ α < αk

0

}
, k = 1, 2, . . . ,

be uniformly locally finite (i.e., every point of D has a neighborhood V which intersects
at most finitely many members of Uk for each positive integer k) relatively open par-
titionings of D. Let Uk+1 be a refinement of Uk for each k. Moreover, we assume
that there exist multivalued mappings Fk : D ⇒ Rn such that the restriction of Fk

on an arbitrary element U of Uk is upper semicontinuous with nonempty convex
compact values, the diameter of Fk(U) is less than or equal to 1

k , and Fk+1 ⊂ Fk and
Fk ⊂ F + 1

k B̄ for each k. We also assume that for each point x0 of D there exists
T > 0 such that

(i) for each positive integer k there exists an absolutely continuous function xk :
[0, T ] → D such that ∣∣∣∣∣

ẋ(t) ∈ Fk(x(t)) a.e. on [0, T ],

x(0) = x0;
(5.1)

(ii) for each positive integer k and m with k ≥ m, and for each solution xk(·) of
(5.1), the function

t → α(t), where xk(t) ∈ Um
α(t),

is monotone increasing.
Then there exists an absolutely continuous function x : [0, T ] → D such that∣∣∣∣∣

ẋ(t) ∈ F (x(t)) a.e. on [0, T ],

x(0) = x0.

Proof. Let us fix an arbitrary point x0 ∈ D. Without loss of generality, we
may think that {xk(t) : t ∈ [0, T ]} is contained in the neighborhood V of x0 that
intersects at most finitely many members of Uk for every positive integer k. Let
αk

1 < αk
2 < · · · < αk

s(k) be such that V ∩ Uk
α = ∅ whenever α �= αk

s , s = 1, . . . , s(k).
Let us fix for a moment the positive integer m and let k be an arbitrary integer

with k ≥ m. Then
{
xk(t) : t ∈ [0, T ]

}
⊂
⋃s(m)

s=1 Um
αm

s
. We set

Δm,k
s :=

{
t : xk(t) ∈ Um

αm
s

}
, s = 1, 2, . . . , s(m).

According to (ii), the sets Δm,k
s , s = 1, 2, . . . , s(m), are intervals such that ts1 < ts2

for each point tsi ∈ Δm,k
si , i = 1, 2, whenever s1 < s2. Of course, some of the sets

Δm,k
s can be empty.

Without loss of generality (cf., for example, [21]) we may think that the sequence
{xk(·)}∞k=1 is uniformly convergent on the interval [0, T ] to an absolutely continuous
function denoted by x(·).
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Let us denote by tm,k
s , s = 1, 2, . . . , s(m), the points of transition of the trajectory

xk(·) from the set Um
αm

s−1
to the set Um

αm
s

. If the trajectory passes from Um
αm

s
to Um

αm
l

with l ≥ s + 2, then we set tm,k
s = tm,k

s+1 = · · · = tm,k
l−1 = tm,k

l . Without loss of

generality, we may think that each sequence
{
tm,k
s

}∞
k=1

is monotone and tends to the

number tms , s = 1, 2, . . . , s(m). The inequalities tm,k
s ≤ tm,k

s+1 imply that tms ≤ tms+1,
s = 1, 2, . . . , s(m).

For almost all τ from [0, T ] (cf. Lemma 2 from [21]) the derivatives ẋ(τ) and ẋk(τ)
exist and

ẋ(τ) ∈ co {ẋk(τ) : k ≥ k0}

for any positive integer k0.
If τ does not coincide with any of the points tms , s = 1, 2, . . . , s(m), then τ ∈

(tms−1, t
m
s ) for some s, and so xk(τ) ∈ Um

αm
s−1

for all sufficiently large k. If τ coincides

with the point tms for some s, then two cases are possible: the sequence
{
tm,k
s

}∞
k=1

is nonincreasing, and hence xk(τ) ∈ Um
αm

s
for all sufficiently large k, or the sequence{

tm,k
s

}∞
k=1

is increasing, and therefore xk(τ) ∈ Um
αm

s−1
for all sufficiently large k.

In all cases xk(τ), k ≥ k0, belong to one and the same element of the partitioning
Um, say U , and thus

ẋ(τ) ∈ co {ẋs(τ) : s ≥ k0} ⊂ co

⎛
⎝ ⋃

s≥k0

Fs(xs(τ))

⎞
⎠ ⊂ co

⎛
⎝ ⋃

s≥k0

Fm(xs(τ))

⎞
⎠

⊂ co

(
Fm(xk(τ)) +

1

m
B̄

)
= Fm(xk(τ)) +

1

m
B̄ ⊂ F (xk(τ)) +

2

m
B̄

for all k ≥ max(m, k0). Now the upper semicontinuity of F and xk(τ) → x(τ) imply

ẋ(τ) ∈ F (x(τ)) +
2

m
B̄.(5.2)

Since ẋ(τ) does not depend on m and F is compact valued, we obtain that

ẋ(τ) ∈ F (x(τ)).

This completes the proof.
Remark 1. It is possible to consider the lower semicontinuous case as a corollary

to this result. Indeed, let us consider the simplest case when D is a closed set. G :
D → Rn is a uniformly bounded lower semicontinuous multivalued map with compact
values such that G(y) ⊂ TD(y) for each y ∈ D. We set x = (y, z), F (x) := G(y)×{1}
and consider the differential inclusion ẋ ∈ F (x). Starting from the relatively open
partitioning constructed in the proof of Lemma 6.2 in [13, p. 67], one can refine it by
dividing if necessary the elements of the partitioning by the finitely many hyperplanes
{(y, z) : z = zi}, where zi is the sum of δi and the last coordinate of ωi (these notations
are from the proof of Lemma 6.2 in [13, p. 67]). Then the obtained partitioning
can be ordered in such a way as to satisfy the assumptions of Theorem 5.1 with
Fk(x) =

(
fk(y) + 1

2k−1 B̄
)
× {1} (again fk is from the above-mentioned proof). Note

that in the proof of Theorem 5.1 the upper semicontinuity of F is used only to derive
(5.2). In the lower semicontinuous case the limit trajectory x(·) cannot remain on
the boundaries of the elements of the partitioning. Hence, for all τ except for finitely
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many values, x(τ) belongs to the interior of the elements of the partitioning and we
can pass to the limit as k → ∞ without using the upper semicontinuity.

Remark 2. Theorem 5.1 can be applied to the differential inclusions with right-
hand sides F2 (cf. the end of the introduction), the multivalued mappings described
in Example 2, Example 3 (if (0, 0) is added to F (0, 0)), and Example 4 (if the origin
is added to F (x) for every x ∈ A). These multivalued mappings, clearly, are not
lower semicontinuous everywhere. Moreover, the assumptions of Theorem 5.1 do not
exclude the existence of periodic solutions (cf. the assumption (ii)). To show this, we

consider the following example: We set D =
⋃4

i=1 Di, where

D1 = {(x, y) : x > 0, y ≥ 0, x + y < 1} ,

D3 = {(x, y) : x < 0, y ≤ 0, x + y > −1} ,

D2 = {(x, y) : x ≤ 0, y > 0, y − x < 1} ,

D4 = {(x, y) : x ≥ 0, y < 0, y − x > −1} .

On the set D we consider the following differential inclusion:

(ẋ, ẏ) ∈

⎧⎪⎪⎨
⎪⎪⎩
{(−x− y, x + y)} for (x, y) ∈ int D1 ∪ int D3;

{(x− y, x− y)} for (x, y) ∈ int D2 ∪ int D4;

{(−x− y, x + y), (x− y, x− y)} for (x, y) ∈ D ∩ {(x, y) : xy = 0} .

We denote the right-hand side of the considered differential inclusion by G. Clearly,
G is a uniformly bounded compact-valued upper semicontinuous mapping. Let us
fix an arbitrary point (x0, y0) from the set D. Then there exists a trajectory of
the considered differential inclusion starting from (x0, y0) and defined on the interval
[0,+∞). Moreover, this trajectory is a periodic function with respect to time with
period 4.

To show how Theorem 5.1 can be applied in this case, we set F (x, y, z) :=
G(x, y) × {1} and consider the differential inclusion (ẋ, ẏ, ż) ∈ F (x, y, z) on the set
D̂ = D × [0,+∞).

Let k be an arbitrary positive integer. We are going to define a relatively open
partitioning Uk =

{
Uk
s , s = 0, 1, 2, . . .

}
of D̂. Let us fix arbitrarily the positive

integer k and the nonnegative integer s. Let us denote by m and r the quotient and
the remainder of s over 8k, respectively, i.e., s = 8mk+r, where r ∈ {0, 1, . . . , 8k−1}.
We set Uk

s to be the set{
(x, y) ∈ D1 :

r

k
≤ x + y <

r + 1

k
, m ≤ z < m +

y

x + y

}

if r = 0, 1, . . . , k − 1;

{
(x, y) ∈ D2 :

r

k
− 1 ≤ y − x <

r + 1

k
− 1, m ≤ z < m +

x

x− y

}

if r = k, k + 1, . . . , 2k − 1;

{
(x, y) ∈ D3 :

r

k
− 2 ≤ −x− y <

r + 1

k
− 2, m ≤ z < m +

y

x + y

}

if r = 2k, 2k + 1, . . . , 3k − 1;
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(x, y) ∈ D4 :

r

k
− 3 ≤ x− y <

r + 1

k
− 3, m ≤ z < m +

x

x− y

}

if r = 3k, 3k + 1, . . . , 4k − 1;

{
(x, y) ∈ D1 :

r

k
− 4 ≤ x + y <

r + 1

k
− 4, m +

y

x + y
≤ z < m + 1

}

if r = 4k, 4k + 1, . . . , 5k − 1;

{
(x, y) ∈ D2 :

r

k
− 5 ≤ y − x <

r + 1

k
− 5, m +

x

x− y
≤ z < m + 1

}

if r = 5k, 5k + 1, . . . , 6k − 1;

{
(x, y) ∈ D3 :

r

k
− 6 ≤ −x− y <

r + 1

k
− 6, m +

y

x + y
≤ z < m + 1

}

if r = 6k, 6k + 1, . . . , 7k − 1;

{
(x, y) ∈ D4 :

r

k
− 7 ≤ x− y <

r + 1

k
− 7, m +

x

x− y
≤ z < m + 1

}

if r = 7k, 7k + 1, . . . , 8k − 1.

On the set D̂ we define Fk as follows:

Fk(x, y, z) =

{
{(−x− y, x + y, 1)} for (x, y) ∈ D1 ∪D3;

{(x− y, x− y, 1)} for (x, y) ∈ D2 ∪D4.

It could be directly checked that the diameter of Fk(U
k
s ) is less than or equal to

√
2

k ,
and Fk+1 = Fk and Fk ⊂ F for each k and each s. One can directly verify that for
each point x0 of D̂, for each T > 0, and for each positive integer k there exists an
absolutely continuous function xk : [0, T ] → D̂ such that∣∣∣∣∣

ẋ(t) ∈ Fk(x(t)) a.e. on [0, T ],

x(0) = x0.
(5.3)

Moreover, for each positive integer k and m with k ≥ m, and for each solution xk(·)
of (5.1), the function

t → s(t), where xk(t) ∈ Um
s(t),

is monotone increasing. Hence, Theorem 5.1 can be applied.

REFERENCES

[1] F. Ancona and A. Bressan, Patchy vector fields and asymptotic stabilization, ESAIM Control
Optim. Calc. Var., 4 (1999), pp. 445–471.

[2] J.-P. Aubin and A. Cellina, Differential Inclusions. Set-Valued Maps and Viability Theory,
Grundlehren Math. Wiss. 264, Springer-Verlag, Berlin, 1984.



EXISTENCE OF SOLUTIONS TO DIFFERENTIAL INCLUSIONS 751

[3] H. Bounkhel and T. Haddad, Existence of viable solutions for nonconvex differential inclu-
sions, Electron. J. Differential Equations, 2005 (2005), pp. 1–10.

[4] A. Bressan, Upper and lower semicontinuous case. A unified approach, in Nonlinear Controlla-
bility and Optimal Control, H. Sussmann, ed., Marcel Dekker, New York, 1980, pp. 23–31.

[5] A. Bressan, On differential relations with lower continuous right-hand side: An existence
theorem, J. Differential Equations, 37 (1980), pp. 89–97.

[6] A. Bressan, Solutions of lower semicontinuous differential inclusions on closed sets, Rend.
Sem. Mat. Univ. Padova, 69 (1983), pp. 99–107.

[7] A. Bressan, On the qualitative theory of lower semicontinuous differential inclusions, J. Dif-
ferential Equations, 77 (1989), pp. 379–391.

[8] A. Bressan and A. Cortesi, Directionally continuous selections in Banach spaces, Nonlinear
Anal., 13 (1989), pp. 987–992.

[9] A. Bressan, A. Cellina, and G. Colombo, Upper semicontinuous differential inclusions
without convexity, Proc. Amer. Math. Soc., 106 (1989), pp. 771–775.

[10] A. Cellina and A. Ornelas, Existence of solutions to differential inclusions and to time
optimal control problems in the autonomous case, SIAM J. Control Optim., 42 (2003),
pp. 260–265.

[11] F. Clarke, Y. Ledyaev, R. Stern, and P. Wolenski, Nonsmooth Analysis and Control
Theory, Springer-Verlag, New York, 1998.

[12] A. Daniilidis and P. Georgiev, Cyclic hypomonotonicity, cyclic submonotonicity and inte-
gration, J. Optim. Theory Appl., 122 (2004), pp. 19–39.

[13] K. Deimling, Multivalued Equations, Walter de Gruyter, Berlin, New York, 1992.
[14] A. F. Filippov, Differential equations with discontinuous right-hand side, Amer. Math. Soc.

Transl. Ser. 2, 42 (1964), pp. 199–231.
[15] A. F. Filippov, The existence of solutions of generalized differential equations, Math. Notes,

10 (1971), pp. 608–611.
[16] A. F. Filippov, Differential Equations with Discontinuous Right-Hand Sides, Math. Appl.

(Soviet Ser.) 18, F. M. Arscott, ed., Kluwer Academic, Dordrecht, The Netherlands, 1988
(transl. from the Russian).

[17] M. K. Fort, Points of continuity of semi-continuous functions, Publ. Math. Debrecen, 2
(1951), pp. 100–102.

[18] H. Hermes, The generalized differential equation ẋ ∈ R(t, x), Adv. Math., 4 (1970), pp. 149–
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Abstract. The paper is devoted to optimization problems of the Bolza and Mayer types for
evolution systems governed by nonconvex Lipschitzian differential inclusions in Banach spaces under
endpoint constraints described by finitely many equalities and inequalities with generally nonsmooth
functions. We develop a variational analysis of such problems mainly based on their discrete ap-
proximations and the usage of advanced tools of generalized differentiation satisfying comprehen-
sive calculus rules in the framework of Asplund (and hence any reflexive Banach) spaces. In this
way we establish extended results on stability of discrete approximations (with the strong W 1,2-
convergence of optimal solutions under consistent perturbations of endpoint constraints) and derive
necessary optimality conditions for nonconvex discrete-time and continuous-time systems in the re-
fined Euler–Lagrange and Weierstrass–Pontryagin forms accompanied by the appropriate transver-
sality inclusions. In contrast to the case of geometric endpoint constraints in infinite dimensions, the
necessary optimality conditions obtained in this paper do not impose any nonempty interiority/finite-
codimension/normal compactness assumptions. The approach and results developed in the paper
make a bridge between optimal control/dynamic optimization and constrained mathematical pro-
gramming problems in infinite-dimensional spaces.

Key words. variational analysis, dynamic optimization and optimal control, evolution and
differential inclusions, Banach and Asplund spaces, discrete/finite-difference approximations, nondif-
ferentiable programming, generalized differentiation, necessary optimality conditions
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1. Introduction. This paper concerns the study of dynamic optimization prob-
lems governed by constrained evolution systems in infinite-dimensional spaces. We
pay attention mainly to variational analysis of the following generalized Bolza problem
(P ) for differential inclusions in Banach spaces with endpoint constraints described
by finitely many equalities and inequalities.

Let X be a Banach state space with the initial state x0 ∈ X, and let T := [a, b] ⊂ R

be a fixed time interval. Given a set-valued mapping F :X × T →→ X and real-valued
functions ϕi:X → R as i = 0, . . . ,m+r and ϑ:X×X×T → R, consider the following
problem:

minimize J [x] := ϕ0

(
x(b)

)
+

∫ b

a

ϑ
(
x(t), ẋ(t), t

)
dt(1.1)

subject to dynamic constraints governed by the evolution/differential inclusion

ẋ(t) ∈ F
(
x(t), t

)
a.e. t ∈ [a, b] with x(a) = x0(1.2)

with functional endpoint constraints of the inequality and equality types given by

ϕi

(
x(b)

)
≤ 0, i = 1, . . . ,m,(1.3)
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ϕi

(
x(b)

)
= 0, i = m + 1, . . . ,m + r.(1.4)

Note that ẋ(t) stands in (1.1) for the time derivative of x(t) and that “a.e.”
(almost everywhere) signifies as usual that the inclusion holds up to the Lebesgue
measure zero on R. The initial state x0 and the time interval T are fixed in problem
(P ) for simplicity; the methods developed in this paper allow us to include x(a) and
[a, b] in the optimization process and to derive necessary optimality conditions for
these variable data.

Dynamic optimization problems for differential inclusions with the finite-dimen-
sional state space X = R

n have been intensively studied over the years, especially
during the last decade, mainly from the viewpoint of deriving necessary optimality
conditions; see [3, 8, 12, 14, 17, 19] for various results, methods, and more references.
Dynamic optimization problems governed by infinite-dimensional evolution equations
have also been much investigated, motivated mainly by applications to optimal control
of partial differential equations; see, e.g., the books [7, 10] and the references therein.
To the best of our knowledge, deriving necessary optimality conditions in dynamic
optimization problems for evolution systems governed by differential inclusions in
infinite-dimensional spaces has not drawn attention in the literature till very recently.

In the book [14], the author developed the method of discrete approximations
to study optimal control problems of minimizing the Bolza functional (1.1) over ap-
propriate solutions to evolution systems governed by infinite-dimensional differential
inclusions of type (1.2) with endpoint constrains given in the geometric form

x(b) ∈ Ω ⊂ X(1.5)

via closed subsets of Banach spaces satisfying certain requirements. The major as-
sumption on Ω made in [14] is the so-called sequential normal compactness (SNC)
property of Ω at the optimal endpoint x̄(b) ∈ Ω; see [13] for a comprehensive theory
for this and related properties, which play a significant role in infinite-dimensional
variational analysis and its applications. Loosely speaking, the SNC property means
that Ω should be “sufficiently fat” around the reference point; e.g., it never holds for
singletons unless X is finite-dimensional, where the SNC property is satisfied for every
nonempty set. For convex sets in infinite-dimensional spaces, the SNC property auto-
matically holds when int Ω �= ∅. Furthermore, it happens to be closely related [14] to
the so-called finite-codimension property of convex sets, which is known to be essential
for the fulfillment of an appropriate counterpart of the Pontryagin maximum principle
for infinite-dimensional systems of optimal control; see the books by Fattorini [7] and
by Li and Yong [10] for the corresponding results, discussions, counterexamples, and
more references.

In this paper we show that the dynamic optimization problem (P ) formulated
above, with the functional endpoint constraints (1.3) and (1.4) given by finitely
many Lipschitz continuous functions on a broad class of Banach spaces (that par-
ticularly includes every reflexive space), admits necessary optimality conditions in
the extended Euler–Lagrange form accompanied by the corresponding Weierstrass–
Pontryagin/maximum and transversality relations with no SNC and similar assump-
tions imposed on the underlying endpoint constraint set. Moreover, the case of end-
point constraints (1.3) and (1.4) under consideration allows us to partly avoid some
other rather restrictive assumptions (like “strong coderivative normality,” which may
not hold in infinite-dimensional spaces; see sections 6 and 7 for more details) imposed
in [14] in the general case of geometric constraints (1.5). Our approach is based, in
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addition to the results of [14], on certain delicate properties of appropriate subdiffer-
entials of locally Lipschitzian functions on infinite-dimensional spaces, as well as on
dual/coderivative characterizations of Lipschitzian and metric regularity properties of
set-valued mappings.

The rest of the paper is organized as follows. In section 2 we formulate the stand-
ing assumptions on the initial data of (P ), make more precise the solution concept
for the evolution inclusion (1.1) and the types of local minimizers to (P ) under con-
sideration, and also discuss the relaxation procedure used for some results and proofs
in the paper. Our main focus in this paper is on the so-called intermediate local min-
imizers, which occupy (strictly) an intermediate position between the classical weak
and strong minima, being nevertheless closer to strong minimizers from the viewpoint
of necessary optimality conditions for differential inclusions.

In section 3 we construct a sequence of the well-posed discrete approximations
(PN ) to the original Bolza problem (P ), which take into account specific features of
the functional endpoint constraints (1.3) and (1.4) involving consistent perturbations
of these constraints in the discrete approximation procedure. Then we present a major
result on the strong stability of discrete approximations that justifies the W 1,2-norm
convergence of optimal solutions for (PN ) to the fixed local minimizer for the original
problem (P ).

Section 4 contains an overview of the basic tools of generalized differentiation
needed to perform the subsequent variational analysis of the discrete-time and con-
tinuous-time evolution systems under consideration in infinite-dimensional spaces.
Most of the material in this section is taken from the author’s book [13], where the
reader can find more results and commentaries in this direction and related topics.

Section 5 is devoted to deriving necessary optimality conditions for the con-
strained discrete-time problems arising from the discrete approximation procedure
whose well-posedness and stability are justified in section 3. These problems are
reduced to (nondynamic) constrained problems of mathematical programming in infi-
nite dimensions, which happen to be intrinsically nonsmooth and involve finitely many
functional and geometric constraints generated by those in (1.2)–(1.4) via the discrete
approximation procedure. Variational analysis of such problems requires applications
of the full power of the generalized differential calculus in infinite-dimensional spaces
developed in [13].

In section 6 we derive necessary optimality conditions of the extended Euler–
Lagrange type for relaxed intermediate minimizers to the original Bolza problem (P )
by passing to the limit from those obtained for discrete-time problems in section 5.
It is worth emphasizing that the realization of the limiting procedure requires not
only the strong convergence of optimal trajectories to discrete approximation prob-
lems established in section 3 but also justifying an appropriate convergence of adjoint
trajectories in necessary optimality conditions for the sequence of discrete-time inclu-
sions. The latter becomes passable due to specific properties of the basic generalized
differential constructions reviewed in section 4, which include complete dual charac-
terizations of Lipschitzian and metric regularity properties of set-valued mappings.

The concluding section 7 concerns necessary optimality conditions for arbitrary
(nonrelaxed) intermediate minimizers to problem (P ), considering for simplicity the
Mayer form (PM ) with no integral term in (1.1), that are established in terms of
the extended Euler–Lagrange inclusion accompanied by the Weierstrass–Pontryagin/
maximum and transversality relations without imposing any SNC assumptions on
the target/endpoint constraint set described by (1.3) and (1.4). The approach is
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based on an additional approximation procedure that allows us to reduce (PM ) to an
unconstrained (while nonsmooth and nonconvex) Bolza problem of the type treated
in section 6, for which any intermediate local minimizer happens to be a relaxed
one. The passage to the limit from the latter approximation is largely similar to that
developed in section 6, not requiring, however, any relaxation requirement due to the
usage of Ekeland’s variational principle.

Our notation is basically standard; cf. [13, 14]. Unless otherwise stated, all the
spaces considered are Banach with the norm ‖ · ‖ and the canonical dual pairing
〈·, ·〉 between the space in question, say X, and its topological dual X∗ whose weak∗

topology is denoted by w∗. We use the symbols B and B
∗ to signify the closed unit

balls of the space under consideration and its dual, respectively. Given a set-valued
mapping F :X →→ X∗, its sequential Painlevé–Kuratowski upper/outer limit at x̄ is
defined by

Lim sup
x→x̄

F (x) :=
{
x∗ ∈ X∗

∣∣∣ ∃ sequences xk → x̄, x∗
k

w∗
→ x∗ with

x∗
k ∈ F (xk) as k ∈ N := {1, 2, . . .}

}
.

(1.6)

2. The generalized Bolza problem for evolution inclusions. For the sake
of brevity and simplicity, we consider in this paper the Bolza problem (P ) with au-
tonomous (time-independent) data, i.e., when ϑ = ϑ(x, v) in (1.1) and F = F (x) in
(1.2). The case of nonautonomous systems can be studied in a manner similar to that
of [14, Chapter 6], which is devoted to problems with geometric constraints of type
(1.5). Let us start with the precise definition of solutions (trajectories, arcs) to the
differential inclusion (1.2) following the book by Deimling [6].

Definition 2.1 (solutions to differential inclusions in infinite-dimensional spaces).
By a solution to inclusion (1.2) we understand a mapping x:T → X, which is Fréchet
differentiable for a.e. t ∈ T satisfying (1.2) and the Newton–Leibniz formula

x(t) = x0 +

∫ t

a

ẋ(s) ds for all t ∈ T,

where the integral in taken in the Bochner sense.
It is well known that for X = R

n, x(t) is a.e. differentiable on T and satisfies the
Newton–Leibniz formula if and only if it is absolutely continuous on T in the standard
sense. However, for infinite-dimensional spaces X even the Lipschitz continuity may
not imply the a.e. differentiability. On the other hand, there is a complete charac-
terization of Banach spaces X, where the absolute continuity of every x:T → X is
equivalent to its a.e. differentiability and the fulfillment of the Newton–Leibniz for-
mula: this is the class of spaces having the so-called Radon–Nikodým property (RNP),
which is well investigated in the geometric theory of Banach spaces [4]. Observe, in
particular, that every reflexive space enjoys the RNP.

Recall further that a Banach space X is Asplund if any of its separable subspaces
has a separable dual. This is a major subclass of Banach spaces that particularly
includes every space with a Fréchet differentiable renorm off the origin (i.e., every
reflexive space), every space with a separable dual, etc.; see [4] for more details,
characterizations, and references. There is a deep relationship between spaces having
the RNP and Asplund spaces, which is used in what follows: given a Banach space
X, the dual space X∗ has the RNP if and only if X is Asplund.

It has been well recognized that differential inclusions (1.2), which are certainly
interesting on their own, provide a useful generalization of control systems governed
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by differential/evolution equations with control parameters:

ẋ = f(x, u), u ∈ U,(2.1)

where the control sets U(·) may also depend on time and state variables via F (x, t) =
f(x, U(x, t), t). In some cases, especially when the sets F (·) are convex, the differential
inclusions (1.2) admit parametric representations of type (2.1), but in general they
cannot be reduced to parametric control systems and should be studied for their
own sake. Note also that the ODE form (2.1) in Banach spaces is strongly related
to various control problems for evolution partial differential equations of parabolic
and hyperbolic types, where solutions may be understood in some other appropriate
senses; see, e.g., the books [7, 10, 14] for more discussions.

In what follows, we focus our attention on the study of intermediate local mini-
mizers for problem (P ) introduced by the author in [12]. Recall that a feasible arc to
(P ) is a solution to the differential inclusion (1.2), in the sense of Definition 2.1, for
which J [x] < ∞ in (1.1) and the endpoint constraints (1.3) and (1.4) are satisfied.

Definition 2.2 (intermediate local minimizers). A feasible arc x̄(·) is an inter-
mediate local minimizer of rank p ∈ [1,∞) for (P ) if there are numbers ε > 0 and
α ≥ 0 such that J [x̄] ≤ J [x] for any feasible arcs to (P ) satisfying the relationships

‖x(t) − x̄(t)‖ < ε for all t ∈ [a, b] and(2.2)

α

∫ b

a

‖ẋ(t) − ˙̄x(t)‖p dt < ε.(2.3)

In fact, relationships (2.2) and (2.3) mean that we consider a neighborhood of
x̄(·) in the Sobolev space W 1,p

(
[a, b];X

)
with the norm

‖x(·)‖W 1,p := max
t∈[a,b]

‖x(t)‖ +
(∫ b

a

‖ẋ(t)‖p dt
)1/p

,

where the norm on the right-hand side is taken in the space X. If there is only the
requirement (2.2) in Definition 2.2, i.e., α = 0 in (2.3), then we get the classical
strong local minimum corresponding to a neighborhood of x̄(·) in the norm topology
of C

(
[a, b];X

)
. If instead of (2.3) one puts the more restrictive requirement

‖ẋ(t) − ˙̄x(t)‖ < ε a.e. t ∈ [a, b],

then we have the classical weak local minimum in the framework of Definition 2.2.
Thus the introduced notion of intermediate local minimizers takes, for any p ∈ [1,∞),
an intermediate position between the classical concepts of strong (α = 0) and weak
(p = ∞) local minima, being indeed different from both classical notions; see vari-
ous examples in [20, 14]. Clearly all the necessary conditions for intermediate local
minimizers automatically hold for strong (and hence for global) minimizers.

Considering the autonomous Bolza problem (P ) in this paper, we impose the
following standing assumptions on its initial data along a given intermediate local
minimizer x̄(·):

(H1) There are an open set U ⊂ X and a number �F > 0 such that x̄(t) ∈ U for
all t ∈ [a, b], and the sets F (x) are nonempty and compact for all x ∈ U and satisfy
the inclusion

F (x) ⊂ F (u) + �F ‖x− u‖B whenever x, u ∈ U,(2.4)
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which implies the uniform boundedness of the sets F (x) on U , i.e., the existence of
some constant γ > 0 such that

F (x) ⊂ γB for all x ∈ U.

(H2) The integrand ϑ is Lipschitz continuous on U × (γB).

(H3) The endpoint functions ϕi, i = 0, . . . ,m+ r, are locally Lipschitzian around
x̄(b) with the common Lipschitz constant � > 0.

Observe that (2.4) is equivalent to saying that the set-valued mapping F is locally
Lipschitzian around x̄(·) with respect to the classical Hausdorff metric on the space
of nonempty and compact subsets of X.

In what follows, along with the original problem (P ), we consider its “relaxed”
counterpart significantly used in some results and proofs of the paper. Roughly speak-
ing, the relaxed problem is obtained from (P ) by a convexification procedure with
respect to the velocity variable. It follows the route of Bogolyubov and Young in the
classical calculus of variations and of Gamkrelidze and Warga in optimal control; see
the book [14] and the references therein for more details and commentaries.

To construct an appropriate relaxation of the Bolza problem (P ) under consider-
ation, we first consider the extended-real-valued function

ϑF (x, v) := ϑ(x, v) + δ
(
v;F (x)

)
,

where δ(·; Ω) is the indicator function of the set Ω equal to 0 on Ω and to ∞ out of
it. Denote by

ϑ̂F (x, v) :=
(
ϑF )∗∗v (x, v), (x, v) ∈ X ×X,

the biconjugate/bipolar function to ϑF (x, ·), i.e., the greatest proper, convex, and
lower semicontinuous function with respect to v, which is majorized by ϑF . Then the
relaxed problem (R) to (P ), or the relaxation of (P ), is defined as follows:

minimize Ĵ [x] := ϕ0

(
x(b)

)
+

∫ b

a

ϑ̂F

(
x(t), ẋ(t)

)
dt(2.5)

over a.e. differentiable arcs x: [a, b] → X that are Bochner integrable on [a, b] to-
gether with ϑF

(
x(t), ẋ(t)

)
, satisfying the Newton–Leibniz formula and the endpoint

constraints (1.3), (1.4).

Note that the feasibility requirement Ĵ [x] < ∞ in (2.5) is fulfilled only if x(·) is a
solution (in the sense of Definition 2.1) to the convexified differential inclusion

ẋ(t) ∈ clcoF
(
x(t), ẋ(t)

)
a.e. t ∈ [a, b] with x(a) = x0,(2.6)

where “clco” stands for the convex closure of a set in X. Thus the relaxed problem
(R) can be considered under explicit dynamic constraints given by the convexified
differential inclusion (2.6). Any trajectory for (2.6) is called a relaxed trajectory for
(1.2), in contrast to the ordinary (or original) trajectories for the latter inclusion.

Deep relationships exist between relaxed and ordinary trajectories for differential
inclusions, which reflect the fundamental hidden convexity inherent in continuous-time
(nonatomic measure) dynamic systems defined by differential and integral operators.
In particular, any relaxed trajectory of (1.2) under assumption (H1) can be uniformly
approximated (in the C

(
[a, b];X

)
-norm) by a sequence of ordinary trajectories; see,
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e.g., [6, 18]. We need the following version [5] of this approximation/density property
involving not only differential inclusions but also minimizing functionals.

Lemma 2.3 (approximation property for the relaxed Bolza problem). Let x(·) be
a relaxed trajectory for the differential inclusion (1.2) with a separable state space X,
where F and ϑ satisfy assumptions (H1) and (H2), respectively. Then there is sequence
of the ordinary trajectories xk(·) for (1.2) such that xk(·) → x(·) in C

(
[a, b];X

)
as

k → ∞ and

lim inf
k→∞

∫ b

a

ϑ
(
xk(t), ẋk(t)

)
dt ≤

∫ b

a

ϑ̂F

(
x(t), ẋ(t)

)
dt.

Note that Lemma 2.3 does not assert that the approximating trajectories xk(·)
satisfy the endpoint constraints (1.3) and (1.4). Indeed, there are examples showing
that the latter may not be possible and, moreover, the property of relaxation stability

inf(P ) = inf(R)(2.7)

is violated; in (2.7) the infima of the cost functionals (1.1) and (2.5) are taken over
all the feasible arcs in (P ) and (R), respectively.

An obvious sufficient condition for the relaxation stability is the convexity of the
sets F (x, t) and of the integrand ϑ in v. However, the relaxation stability goes far
beyond the standard convexity due to the hidden convexity property of continuous-
time differential systems. In particular, Lemma 2.3 ensures the relaxation stability of
nonconvex problems (P ) with no constraints on the endpoint x(b). There are various
efficient conditions for the relaxation stability of nonconvex problems with endpoint
and other constraints; see [14, subsection 6.1.2] with the commentaries therein for
more details, discussions, and references.

A local version of the relaxation stability property (2.7) regarding intermediate
minimizers for the Bolza problem (P ) is postulated as follows.

Definition 2.4 (relaxed intermediate local minimizers). A feasible arc x̄(·) to
the Bolza problem (P ) is a relaxed intermediate local minimizer of rank p ∈ [1,∞)
for (P ) if it is an intermediate local minimizer of this rank for the relaxed problem

(R) providing the same value of the cost functionals: J [x̄] = Ĵ [x̄].
It is not hard to observe that, under the standing assumptions formulated above,

the notions of intermediate local minima and relaxed intermediate local minima do
not actually depend on rank p, i.e., they either hold or violate for all p ∈ [1,∞)
simultaneously. In what follows we always take (unless otherwise stated in section 7)
p = 2 and α = 1 in (2.3) for simplicity.

The principal method of our study in this paper involves discrete approximations
of the original Bolza problem (P ) for constrained continuous-time evolution inclusions
by a family of dynamic optimization problems of Bolza type governed by discrete-time
inclusions with endpoint constraints. We show that this method generally leads to
necessary optimality conditions for relaxed intermediate local minimizers of (P ). Then
an additional approximation procedure allows us to establish necessary optimality
conditions for arbitrary (nonrelaxed) intermediate local minimizers by reducing them
to problems which are automatically stable with respect to relaxation.

3. Stability of discrete approximations. In this section we present basic
constructions of the method of discrete approximations in the theory of necessary op-
timality conditions for differential inclusions following the scheme of [12, 14] developed
for the case of geometric constraints, with certain modifications required for the func-



VARIATIONAL ANALYSIS OF EVOLUTION INCLUSIONS 759

tional endpoint constraints (1.3) and (1.4) under consideration in infinite-dimensional
spaces.

Since we use discrete approximations mostly from a “theoretical” viewpoint (as
a vehicle to derive necessary optimality conditions), in what follows we use just the
simplest finite-difference replacement of the derivative by the uniform Euler scheme:

ẋ(t) ≈ x(t + h) − x(t)

h
, h → 0.

To formalize this process, we take any natural number N ∈ N and consider the discrete
mesh on T defined by

TN :=
{
a, a + hN , . . . , b− hN , b

}
, hN := (b− a)/N,

with the stepsize of discretization hN and the mesh points tj := a + jhN as j =
0, . . . , N , where t0 = a and tN = b. Then the differential inclusion (1.2) is replaced
by a sequence of its discrete approximations

xN (tj+1) ∈ xN (tj) + hNF
(
xN (tj)

)
, j = 0, . . . , N − 1, x(t0) = x0.(3.1)

Given a discrete trajectory xN (tj) satisfying (3.1), we consider its piecewise linear
extension xN (t) to the continuous-time interval T = [a, b], i.e., the Euler broken lines.
We also define the piecewise constant extension to T of the corresponding discrete
velocity by

vN (t) :=
xN (tj+1) − xN (tj)

hN
, t ∈ [tj , tj+1), j = 0, . . . , N − 1.

It follows from the very definition of the Bochner integral that

xN (t) = x0 +

∫ t

a

vN (s) ds for t ∈ T.

The next result, which plays a significant role in the method of discrete approxi-
mations, establishes the strong W 1,2-norm approximation of any trajectory for the dif-
ferential inclusion (1.2) by extended trajectories of the sequence of discrete inclusions
(3.1) under the general assumptions made in (H1). Note that the norm convergence
in W 1,2

(
[a, b];X

)
implies the uniform convergence of the trajectories on [a, b] and the

pointwise, for a.e. t ∈ [a, b], convergence of (some subsequence of) their derivatives.
The latter is crucial for the purposes of this paper, especially in the case of nonconvex-
valued differential inclusions. The proof of this result in given in [14, Theorem 6.4],
which is an infinite-dimensional counterpart of the one in [12, Theorem 3.1].

Lemma 3.1 (strong W 1,2-approximation by discrete trajectories). Let x̄(·) be an
arbitrary solution to the differential inclusion (1.2) under the assumptions in (H1),
where X is a general Banach space. Then there is a sequence of solutions x̂N (tj) to
the discrete inclusions (3.1) such that their extensions x̂N (t), a ≤ t ≤ b, converge to
x̄(t) strongly in the space W 1,2

(
[a, b];X

)
as N → ∞.

Observe that the proof of the above result given in [12, 14] is constructive and pro-
vides efficient estimates of the convergence rate being of certain independent interest
for numerical analysis.

Now fix an intermediate local minimizer x̄(·) for the Bolza problem (P ) and
construct a sequence of discrete approximation problems (PN ), N ∈ N, admitting
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optimal solutions x̄N (·) whose extensions converge to x̄(·) in the norm topology of
W 1,2

(
[a, b];X

)
as N → ∞.

To proceed, we take a sequence of the discrete trajectories x̂N (·) approximating
by Lemma 3.1 the given local minimizer x̄(·) to (P ) and denote

ηN := max
j∈{1,...,N}

‖x̂N (tj) − x̄(tj)‖ → 0 as N → ∞.(3.2)

In [14, subsection 6.1.1], the reader can find more information on computing and
estimating ηN , which is not needed in what follows: it is sufficient to know that
ηN → 0 as N → ∞.

Having ε > 0 from relations (2.2) and (2.3) for the intermediate minimizer x̄(·)
with p = 2 and α = 1, we always suppose that

x̄(t) + ε/2 ∈ U for all t ∈ [a, b],

where U is a neighborhood of x̄(·) from (H1). Let � > 0 be the common Lipschitz
constant of ϕi, i = 1, . . . ,m + r, from (H3). Construct problems (PN ), N ∈ N, as
follows: minimize

JN [xN ] := ϕ0

(
xN (tN )

)
+ hN

N−1∑
j=0

ϑ
(
xN (tj),

xN (tj+1) − xN (tj)

hN

)

+

N−1∑
j=0

∫ tj+1

tj

∥∥∥xN (tj+1) − xN (tj)

hN
− ˙̄x(t)

∥∥∥2

dt

(3.3)

over discrete trajectories xN = xN (·) =
(
x0, xN (t1), . . . , xN (tN )

)
for the difference

inclusions (3.1) subject to the constraints

ϕi

(
xN (tN )

)
≤ �ηN for i = 1, . . . ,m,(3.4)

−�ηN ≤ ϕi

(
xN (tN )

)
≤ �ηN for i = m + 1, . . . ,m + r,(3.5)

‖xN (tj) − x̄(tj)‖ ≤ ε

2
for j = 1, . . . , N, and(3.6)

N−1∑
j=0

∫ tj+1

tj

∥∥∥xN (tj+1) − xN (tj)

hN
− ˙̄x(t)

∥∥∥2

dt ≤ ε

2
.(3.7)

Considering in what follows (without further mentioning) the piecewise linear
extension of xN (·) to the whole interval [a, b], we observe the relationships:⎧⎪⎪⎨

⎪⎪⎩
xN (t) = x0 +

∫ t

a

ẋN (s) ds for all t ∈ [a, b] and

ẋN (t) = ẋN (tj) ∈ F
(
xN (tj)

)
, t ∈ [tj , tj+1), j = 0, . . . , N − 1.

(3.8)

In the next theorem, we establish that the given relaxed intermediate local min-
imizer x̄(·) to (P ) can be approximated by optimal solutions to (PN ) strongly in
W 1,2

(
[a, b];X

)
; the latter implies the a.e. pointwise convergence of the derivatives
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significant for the main results of the paper. To justify such an approximation, we
need to impose the Asplund structure on both the state space X and its dual X∗,
which is particularly the case when X is reflexive. Note also there are nonreflexive
(even separable) spaces for which both X and X∗ are Asplund; see, e.g., [4].

Theorem 3.2 (strong convergence of discrete optimal solutions). Let x̄(·) be a
relaxed intermediate local minimizer for the Bolza problem (P ) under the standing
assumptions (H1)–(H3) in the Banach state space X, and let (PN ), N ∈ N, be a
sequence of discrete approximation problems built above. The following hold:

(i) Each (PN ) admits an optimal solution.
(ii) If in addition both X and X∗ are Asplund, then any sequence {x̄N (·)} of

optimal solutions to (PN ) converges to x̄(·) strongly in W 1,2
(
[a, b];X).

Proof. To justify assertion (i), we first observe that the set of feasible solutions
to each problem (PN ) is nonempty for all N ∈ N sufficiently large. Indeed, pick the
discrete trajectory x̂N (·) approximating the given local minimizer x̄(·) by Lemma 3.1
and show that it satisfies all the constraints (3.4)–(3.7) for large N . By assumption
(H3) we have∣∣ϕi

(
x̂N (tN )

)
− ϕi

(
x̄(b)

)∣∣ ≤ � ‖x̂(tN ) − x̄(tN )‖ ≤ �ηN for all i = 1, . . . ,m + r

due to (3.2). This implies the fulfillment of the endpoint constraints (3.4) and (3.5)
for x̂N (·), since those in (1.3) and (1.4) hold for x̄(·). The fulfillment of (3.6) for x̂N (·)
follows directly from the construction of ηN → 0 in (3.2). Further, it is easy to check
that

N−1∑
j=0

∫ tj+1

tj

∥∥∥ x̂N (tj+1) − x̂N (tj)

hN
− ˙̄x(t)

∥∥∥2

dt =

∫ b

a

‖ ˙̂xN (t) − ˙̄x(t)‖2 dt =: αN

for the piecewise linear extension of x̂N (·) to [a, b]. By the W 1,2-approximation in
Lemma 3.1 we have that αN → 0 as N → ∞, which justifies the fulfillment of (3.7)
for large N . The existence of optimal solutions to (PN ) follows now from the classical
Weierstrass theorem due to the compactness and continuity assumptions made in
(H1)–(H3).

Let us now prove the convergence assertion (ii) under the additional assumptions
on the state space. Check first the value convergence

JN [x̂N ] → J [x̄] as N → ∞(3.9)

along a subsequence of N → ∞. Considering the expression for JN [x̂N ] in (3.3) and
using assumptions (H2) and (H3), we observe that (3.9) follows from

hN

N−1∑
j=0

ϑ
(
x̂N (tj),

x̂N (tj+1) − x̂N (tj)

hN

)
=

N−1∑
j=0

∫ tj+1

tj

ϑ
(
x̂N (tj), ˙̂xN (t)

)
dt

=

∫ b

a

ϑ
(
x̂N (t), ˙̂xN (t)

)
dt + O(hN ) →

∫ b

a

ϑ
(
x̄(t), ˙̄x(t)

)
dt as N → ∞,

which hold by Lemma 3.1 ensuring the a.e. convergence ˙̂xN (t) → ˙̄x(t) along a sub-
sequence and by the Lebesgue dominated convergence theorem valid for the Bochner
integral.

None of the previous arguments used either the relaxation property of the in-
termediate minimizer or the Asplund property of X and X∗. Now we are going to
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employ these properties to justify the relationship

lim
N→∞

[
βN :=

∫ b

a

‖ ˙̄xN (t) − ˙̄x(t)‖2 dt
]

= 0(3.10)

for every sequence of optimal solutions x̄N (·) to (PN ).
Arguing by contradiction, pick a limiting point β > 0 of {βN} in (3.10) and

suppose for simplicity that βN → β for all N → ∞. To proceed, observe that both
spaces X and X∗ enjoy the RNP. Indeed, the one for X∗ is equivalent to the Asplund
property of X, while the Asplund property of X∗ ensures the RNP for X due to the
latter fact and that of X ⊂ X∗∗. Taking into account (H1) and (3.8), we apply to the
sequence { ˙̄xN (·)} the Dunford theorem [4, Theorem IV.1] on the weak compactness
in L1

(
[a, b];X

)
, which allows us to find a subsequence of { ˙̄xN (·)} and a mapping

v(·) ∈ L1
(
[a, b];X

)
such that

˙̄xN (·) → v(·) weakly in L1
(
[a, b];X

)
as N → ∞.(3.11)

Using (3.8) and the compactness in C
(
[a, b];X

)
of solution sets for differential inclu-

sions that holds under the assumptions made in (H1) (see, e.g., [18, Theorem 3.4.2]),
we conclude that the sequence {x̄N (·)} contains a subsequence that converges to some
x̃ ∈ C

(
[a, b];X

)
in the norm topology of the space C

(
[a, b];X

)
. Passing to the limit

in the first relationship of (3.8), while taking into account (3.11) and the weak conti-
nuity of the Bochner integral as an operator from L1

(
[a, b];X

)
to X, we arrive at the

representation

x̃(t) = x0 +

∫ t

a

v(s) ds for all t ∈ [a, b],

which implies that v(t) = ˙̃x(t) for a.e. t ∈ [a, b].
Furthermore, the classical Mazur weak closure theorem ensures that x̃(·) is a

solution to the convexified differential inclusion (2.6). By the structure of problems
(PN ) and by the construction of x̃(·), it is not hard to conclude that x̃(·) satisfies
the endpoint constraints (1.3) and (1.4) and that it belongs to the prescribed ε-
neighborhood of x̄(·) in the norm topology of W 1,2

(
[a, b];X

)
. By passing to the limit

in the obvious inequality

JN [x̄N ] ≤ JN [x̂N ] for all large N ∈ N,

while taking into account (3.9) and the lower semicontinuity of the convexified inte-

grand ϑ̂F (x, ·) from (2.5) in the weak topology of L2
(
[a, b];X

)
, we get

Ĵ [x̃] = ϕ0

(
x̃(b)

)
+

∫ b

a

ϑ̂F

(
x̃(t), ˙̃x(t)

)
dt + β ≤ J [x̄].

Since β > 0 and J [x̄] = Ĵ [x̄], the latter gives Ĵ [x̃] < Ĵ [x̄], which contradicts the choice
of x̄(·) as a relaxed intermediate local minimizer for (P ). Thus (3.10) holds, and so
x̄N (·) → x̄(·) as N → ∞ strongly in W 1,2

(
[a, b];X

)
. This completes the proof of the

theorem.
The strong convergence result of Theorem 3.2 makes a bridge between the original

continuous-time dynamic optimization problem (P ) and its discrete-time counterparts
(PN ), which allows us to derive necessary optimality conditions for (P ) by passing to
the limit from those for (PN ). The latter ones are intrinsically nonsmooth and require
appropriate tools of generalized differentiation for their variational analysis.
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4. Generalized differentiation. In this section, we define the main construc-
tions of generalized differentiation used in what follows. Since the major framework
in this paper is the class Asplund spaces, we present simplified definitions and some
properties held in this setting. All the material reviewed and employed below is taken
from the author’s book [13], where the reader can find more details and references.

We start with generalized normals to closed sets Ω ⊂ X. Given x̄ ∈ Ω, the (basic,
limiting) normal cone to Ω at x̄ is defined by

N(x̄; Ω) := Lim sup
x→x̄

N̂(x; Ω),(4.1)

where “Lim sup” stands for the sequential upper/outer limit (1.6) of the Fréchet nor-
mal cone (or the prenormal cone) to Ω at x ∈ Ω given by

N̂(x; Ω) :=

{
x∗ ∈ X∗

∣∣∣ lim sup
u

Ω→x

〈x∗, u− x〉
‖u− x‖ ≤ 0

}
,(4.2)

where x
Ω→ x̄ signifies that x → x̄ with x ∈ Ω, and where N̂(x; Ω) := ∅ for x /∈ Ω.

Given a set-valued mapping F :X →→ Y of closed graph

gphF :=
{
(x, y) ∈ X × Y

∣∣ y ∈ F (x)
}
,

define its normal coderivative and Fréchet coderivative at (x̄, ȳ) ∈ gphF by, respec-
tively,

D∗F (x̄, ȳ)(y∗) :=
{
x∗ ∈ X∗∣∣ (x∗,−y∗) ∈ N

(
(x̄, ȳ); gphF

)}
,(4.3)

D̂∗F (x̄, ȳ)(y∗) :=
{
x∗ ∈ X∗∣∣ (x∗,−y∗) ∈ N̂

(
(x̄, ȳ); gphF

)}
.(4.4)

If F = f :X → Y is strictly differentiable at x̄ (in particular, if f ∈ C1), then

D∗f(x̄)(y∗) = D̂∗f(x̄)(y∗) =
{
∇f(x̄)∗y∗

}
, y∗ ∈ Y ∗,

i.e., both coderivatives (4.3) and (4.4) are positively homogeneous extensions of the
classical adjoint derivative operator to nonsmooth and set-valued mappings.

Finally, consider a function ϕ:X → R locally Lipschitzian around x̄; in this paper
we do not use more general functions. Then the (basic, limiting) subdifferential of ϕ
at x̄ is defined by

∂ϕ(x̄) := Lim sup
x→x̄

∂̂ϕ(x),(4.5)

where the sequential outer limit (1.6) of the Fréchet subdifferential mapping ∂̂ϕ(·) is
given by

∂̂ϕ(x) :=

{
x∗ ∈ X∗

∣∣∣ ϕ(u) − ϕ(x) − 〈x∗, u− x〉
‖u− x‖ ≥ 0

}
.(4.6)

We are not going to review in this section appropriate properties of the generalized
differential constructions (4.1)–(4.6) used in sections 5–7; these properties will be
invoked with the exact references to [13] in the corresponding places of the proofs in
the subsequent sections. Just note here that our basic/limiting constructions (4.1),
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(4.3), and (4.5) enjoy full calculus in the framework of Asplund spaces, while the
Fréchet-like ones (4.2), (4.4), and (4.6) satisfy certain rules of “fuzzy calculus.” Both
of these calculi are employed in what follows. The reader can find some additional
and related material in the books by Rockafellar and Wets [16], Smirnov [17], and
Vinter [19] (concerning exact/full calculus in finite dimensions) and in the book by
Borwein and Zhu [1] on fuzzy calculus in infinite dimensions; see also the references
therein.

5. Optimality conditions for discrete inclusions. In this section we derive
necessary optimality conditions for the sequence of discrete approximation problems
(PN ) defined in (3.1) and (3.3)–(3.7). We present results only in the “fuzzy” form,
which are more convenient for deriving necessary conditions for the original problem
(P ) by the limiting procedure in section 6. “Pointwise” necessary conditions for (PN )
and for related discrete-time problems (not used in this paper) can be found in [14,
subsection 6.1.4].

Observe first that each discrete optimization problem (PN ) can be equivalently
written in a special form of constrained mathematical programming problem in infinite-
dimensional spaces: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize ψ0(z) subject to

ψj(z) ≤ 0, j = 1, . . . , s,

f(z) = 0,

z ∈ Θj ⊂ Z, j = 1, . . . , l,

(5.1)

where ψj are real-valued functions on some Banach space Z, where f :Z → E is a
mapping between Banach spaces, and where Θj ⊂ Z. To see this, we let

z := (x1, . . . , xN , v0, . . . , vN−1) ∈ Z := X2N ,

E := XN , s := N + 2 + m + 2r, l := N − 1

and rewrite (PN ) as a mathematical programming problem (5.1) with the following
data:

ψ0(z) := ϕ0(xN ) + hN

N−1∑
j=0

ϑ(xj , vj) +

N−1∑
j=0

∫ tj+1

tj

‖vj − ˙̄x(t)‖2 dt,(5.2)

ψj(z) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖xj−1 − x̄(tj−1)‖ − ε/2, j = 1, . . . , N + 1,

N−1∑
i=0

∫ ti+1

ti

‖vi − ˙̄x(t)‖2 dt− ε/2, j = N + 2,

ϕi(xN ) − �ηN , j = N + 2 + i, i = 1, . . . ,m + r,

−ϕi(xN ) − �ηN , j = N + 2 + m + r + i, i = 1, . . . , r,

(5.3)

⎧⎨
⎩

f(z) =
(
f0(z), . . . , fN−1(z)

)
with

fj(z) := xj+1 − xj − hNvj , j = 0, . . . , N − 1,
(5.4)
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Θj :=
{
z ∈ X2N

∣∣∣ vj ∈ F (xj)
}

for j = 0, . . . , N − 1(5.5)

in terms of the initial data of problem (PN ).
The next theorem establishes necessary optimality conditions for each problem

(PN ) in the approximate/fuzzy form of refined Euler–Lagrange and transversality in-
clusions expressed in terms of Fréchet-like normals and subgradients. The proof is
based on applying the corresponding fuzzy calculus rules and neighborhood criteria for
metric regularity and Lipschitzian behavior of mappings from [13]. Note that fuzzy
calculus rules provide representations of Fréchet subgradients and normals of sums
and intersections at the reference points via those at points that are arbitrarily close
to the reference ones. Just for notational simplicity, we suppose in the formulation
and proof of the next theorem that these arbitrarily close points reduce to the reference
points in question. This convention does not restrict the generality from the view-
point of our main goal to derive necessary optimality conditions in the continuous-time
problem (P ). Indeed, the possible difference between the mentioned points obviously
disappears in the limiting procedure.

Theorem 5.1 (fuzzy Euler–Lagrange conditions for discrete approximations).
Let x̄N (·) = {x̄N (tj)| j = 0, . . . , N} be local optimal solutions to problems (PN ) as
N → ∞ under the assumptions (H1)–(H3) with the Asplund state space X. Consider
the quantities

θNj := 2

∫ tj+1

tj

∥∥∥ x̄N (tj+1) − x̄N (tj)

hN
− ˙̄x(t)

∥∥∥ dt, j = 0, . . . , N − 1.(5.6)

Then there exists a sequence εN ↓ 0 along some N → ∞, and there are sequences of
Lagrange multipliers λiN , i = 0, . . . ,m+r, and adjoint trajectories pN (·) = {pN (tj) ∈
X∗| j = 0, . . . , N} satisfying the following relationships:

• the sign and nontriviality conditions

λiN ≥ 0 for all i = 0, . . . ,m + r,

m+r∑
i=0

λiN = 1;(5.7)

• the complementary slackness conditions

λiN

[
ϕi

(
x̄N (tN )

)
− �ηN

]
= 0 for i = 1, . . . ,m;(5.8)

• the extended Euler–Lagrange inclusion in the approximate form

(pN (tj+1) − pN (tj)

hN
, pN (tj+1) − λ0N

θNj

hN
b∗Nj

)
∈ λ0N ∂̂ϑ

(
x̄N (tj),

x̄N (tj+1) − x̄N (tj)

hN

)

+N̂
((

x̄N (tj),
x̄N (tj+1) − x̄N (tj)

hN

)
; gphF

)
+ εB∗ with b∗Nj ∈ B

∗, j = 0, . . . , N − 1;

(5.9)

• the approximate transversality inclusion

−pN (tN ) ∈
m∑
i=0

λiN ∂̂ϕi

(
x̄N (tN )

)
+

m+r∑
i=m+1

λiN

[
∂̂ϕi

(
x̄N (tN )

)⋃
∂̂
(
− ϕi

)(
x̄N (tN )

)]
(5.10)

+ εB∗.
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Proof. Consider problem (PN ) for any fixed N ∈ N in the equivalent mathemat-
ical programming form (5.1) with the initial data (5.2)–(5.5). Denote

z̄ :=
(
x̄N (t1), . . . , x̄N (tN ), v̄N (t0), . . . , v̄N (tN−1)

)
and take N so large that the W 1,2-constraints (3.6) and (3.7) for x̄N (·) hold with the
strict inequality, which is possible by Theorem 3.2. Thus the latter constraints can
be simply ignored in what follows.

To prove the theorem, it is sufficient to examine the following two mutually ex-
clusive cases, which completely cover the situation.

Case 1. Assume that the operator constraint mapping f :X2N → XN in (5.1)
and (5.4) is metrically regular at z̄ relative to the set Θ := Θ0 ∩ · · · ∩ ΘN−1 in (5.5)
in the sense that there is a constant μ > 0 and a neighborhood U of z̄ satisfying the
distance estimate

dist(z;S) ≤ μ ‖f(z) − f(z̄)‖ for all z ∈ Θ ∩ U, where S :=
{
z ∈ Θ

∣∣ f(z) = f(z̄)
}
.

Then applying Ioffe’s exact penalization theorem (see [14, Theorem 5.16]) and taking
into account the specific structures of the inequality constraint functions ψj in (5.3)
for j = N + 2 + i as i = 1, . . . ,m + r, we conclude that z̄ is a local optimal solution
to the unconstrained penalized problem:

minimize max
{
ψ0(z) − ψ0(z̄), maxi∈I(x̄N ) ϕi(xN )

}
+ μ

(
‖f(z)‖ + dist(z; Θ)

)(5.11)

for all μ > 0 sufficiently large, where

I(x̄N ) :=
{
i ∈ {1, . . . ,m}

∣∣ ϕi(x̄N ) = �ηN
}

⋃{
i ∈ {m + 1, . . . ,m + r}

∣∣ either ϕi(x̄N ) = �ηN or − ϕi(x̄N ) = �ηN
}
.

Applying the generalized Fermat rule [13, Proposition 1.114] to the local optimal
solution z̄ for (5.11), we arrive at the subdifferential inclusion

0 ∈ ∂̂
[
max

{
ψ0(·) − ψ0(z̄), max

i∈I(x̄N )
ϕi(·)

}
+ μ ‖f(·)‖ + μdist(·; Θ)

]
(z̄).(5.12)

Fix any ε > 0 and apply the fuzzy sum rule for Fréchet subgradients from [13, Theo-
rem 2.33(b)] to (5.12). This gives (remember out notational convention)

0 ∈ ∂̂
[
max

{
ψ0(·) − ψ0(z̄), max

i∈I(x̄N )
ϕi(·)

}]
(z̄) + μ ∂̂‖f(·)‖(z̄) + μ ∂̂dist(z̄; Θ) + (ε/4)B∗.

Computing now by [13, Proposition 1.85] the Fréchet subdifferential of the distance
function dist(z̄; Θ) and using the simple chain rule for the composition ‖f(z)‖ =
(φ ◦ f)(z) with φ(y) := ‖y‖ and the smooth mapping f from (5.4), we get

0 ∈ ∂̂
[
max

{
ψ0(·) − ψ0(z̄), max

i∈I(x̄N )
ϕi(·)

}]
(z̄) +

N−1∑
j=0

∇fj(z̄)
∗e∗j + N̂(z̄; Θ) + (ε/4)B∗

for some e∗j ∈ X∗ with, by the structure of f in (5.4),

N−1∑
j=0

∇fj(z̄)
∗e∗j =

(
− e∗0, e

∗
0 − e∗1, . . . , e

∗
N−2

(5.13) − e∗N−1, e
∗
N−1,−hNe∗0, . . . ,−hNe∗N−1

)
.
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To proceed further, we use the fuzzy intersection rule from [13, Lemma 3.1] ensuring
that

N̂(z̄; Θ) ⊂ N̂(z̄; Θ0) + · · · + N̂(z̄; ΘN−1) + (ε/4)B∗

and also employ the fuzzy rule for Fréchet subgradients of the maximum function (cf.
[13, Theorem 3.46] and its proof), giving, by the structure of the index set I(x̄N ), the
inclusion

∂̂
[
max

{
ψ0(·) − ψ0(z̄), max

i∈I(x̄N )
ϕi(·)

}]
(z̄)

⊂
m∑
i=0

λiN ∂̂ϕi(x̄N ) +

m+r∑
i=m+1

λiN

[
∂̂ϕi(x̄N )

⋃
∂̂(−ϕi)(x̄N )

]
+ (ε/4)B∗,

where the multipliers λiN , i = 0, . . . ,m + r, satisfy the sign, nontriviality, and com-
plementary slackness conditions in (5.7) and (5.8).

Applying the aforementioned fuzzy sum rule to the cost function (5.2) and taking
into account the classical relationship

∂‖ · ‖2(x) ⊂ 2‖x‖B
∗ for any x ∈ X,

as well as the subdifferentiation formula under the integral sign in (5.2) well known
from convex analysis, we have the inclusion

∂̂ψ0(z̄) ⊂ ∂̂ϕ0(x̄N ) + hN

N−1∑
j=0

[
∂̂ϑ

(
x̄j , v̄j) +

(
0, 2θNjB

∗)] + (ε/4)B∗,

where θNj are defined in (5.6). Finally, choose pN (t0) ∈ X∗ arbitrarily and let

pN (tj) := e∗j−1, j = 1, . . . , N,

with e∗j given in (5.13). Then taking into account the special separated structures
of the sets Θj in (5.5), we arrive at the Euler–Lagrange and transversality inclusions
(5.9) and (5.10) with εN = ε by substituting the corresponding fuzzy relationships
derived above into the generalized Fermat stationary condition (5.12). This completes
the proof of the theorem in Case 1.

Case 2. It remains to consider the situation when the mapping f from (5.4) is
not metrically regular at z̄ relative to the set intersection Θ := Θ0 ∩ · · · ∩ ΘN−1. Let
us show that this never holds, along some subsequences εN ↓ 0 and N → ∞, under
the local Lipschitzian assumption imposed on F .

Indeed, in this case the restriction fΘ:X2N → XN of f to Θ defined by

fΘ(z) :=

{
f(z) if z ∈ Θ,
∅ otherwise

is obviously not metrically regular around z̄ in the sense of [13, Definition 1.47]. Then
the characterization of the latter property from [13, Theorem 4.5] allows us, for any
fixed ε > 0, to find z ∈ z̄ + εB and e∗ = (e∗0, . . . , e

∗
N−1) ∈ (X∗)N such that

‖e∗‖ > 1 and 0 ∈ D̂∗fΘ(z)(e∗)
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via the Fréchet coderivative (4.4) of fΘ. Employing now the coderivative sum rule
from [13, Theorem 1.62] and the fuzzy intersection rule from [13, Lemma 3.1], we get

0 ∈
N−1∑
j=0

∇fj(z)
∗e∗j +

N−1∑
j=0

N̂(zj ; Θj) + εB∗

with some zj ∈ Θj∩(z+εB). According to our notation agreement, we put zj = z = z̄

for simplicity. Thus there are z∗j ∈ N̂(z̄; Θj) satisfying

−
N−1∑
j=0

zj ∈
N−1∑
j=0

∇fj(z̄)
∗e∗j + εB∗.(5.14)

Taking into account calculation (5.13) due to the form (5.4) of the mapping f and
the specific structures of the sets Θj in (5.5), we find from (5.14) dual elements

(x∗
ij , v

∗
ij) ∈ N̂

((
x̄N (tj),

x̄N (tj+1) − x̄N (tj)

hN

)
; gphFj

)
, j = 0, . . . , N − 1,

satisfying the relationships⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−x∗
jj − e∗j−1 + e∗j ∈ εB∗, j = 0, . . . , N − 1,

−v∗jj + hNe∗j ∈ εB∗, j = 0, . . . , N − 1,

−e∗N−1 ∈ εB∗.

Define now the adjoint discrete trajectory pN (tj), j = 0, . . . , N , as in Case 1. Then the
above relationships ensure that the pair

(
x̄N (·), pN (·)

)
satisfies the Euler–Lagrange

inclusion (5.9) and the transversality inclusion (5.10) with

λiN = 0 for all i = 0, . . . ,m + r

and the following nontriviality condition:

‖pN (t1)‖ + · · · + ‖pN (tN )‖ ≥ 1 for all large N ∈ N.(5.15)

Let us show that condition (5.15) contradicts (5.9) and (5.10) with λiN = 0 due the
locally Lipschitzian property of F assumed in the theorem.

To proceed, we observe that the Euler–Lagrange inclusion (5.9) with λ0N = 0 can
be equivalently written as

pN (tj+1) − pN (tj)

hN
∈ D̂∗F

(
x̄N (tj),

x̄N (tj+1) − x̄N (tj)

hN

)(
− pN (tj+1)

)
+ εB∗,

j = 0, . . . , N − 1.

Then the local Lipschitzian property of F with modulus �F yields, by the neighborhood
coderivative characterization of [13, Theorem 4.7], that

‖x∗
j‖ ≤ �F ‖v∗j ‖ whenever x∗

j ∈ D̂∗Fj(xj , vj)(v
∗
j )

and (xj , vj) near
(
x̄N (tj), [x̄N (tj+1) − x̄N (tj)]/hN

)
. Thus

‖pN (tN−1)‖ ≤ ‖pN (tN )‖
(
1 + hN�F

)
+ εhN
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and then, as a discrete counterpart of the Gronwall lemma,

‖pN (tj)‖ ≤ exp
(
�F (b− a)

)
‖pN (tN )‖ + ε(b− a) for all j = 0, . . . , N.(5.16)

Finally, take a sequence νk ↓ 0 as k → ∞ and choose numbers Nk and εk such that

Nk :=
[
1/νk] and εk ≤ ν2

k as k ∈ N,

where [·] stands for the greatest integer less than or equal to the given real number.
By (5.16) and by the transversality condition (5.10) with λiN = 0 along the chosen
sequences of εk = εNk

↓ 0 and Nk → ∞ as k → ∞, we have the estimate

Nk∑
j=1

‖pNk
(tj)‖ ≤ νk exp

(
�F (b− a)

)
+ νk(b− a) ↓ 0 as k ∈ N,

which contradicts (5.15) and completes the proof of the theorem.

6. Extended Euler–Lagrange conditions for relaxed minimizers. In this
section we derive necessary optimality conditions in the refined forms of the extended
Euler–Lagrange and transversality inclusions for relaxed intermediate local minimizers
of the original problem (P ). The proof is based on the passing to the limit from the
necessary optimality conditions for discrete approximation problems obtained in sec-
tion 5 and on the usage of the strong stability of discrete approximations established
in section 3. A crucial part of the proof involves the justification of an appropri-
ate convergence of adjoint arcs; the latter becomes possible due to the coderivative
characterization of Lipschitzian set-valued mappings taken from [13].

Theorem 6.1 (extended Euler–Lagrange and transversality inclusions for re-
laxed intermediate minimizers). Let x̄(·) be a relaxed intermediate local minimizer
for the Bolza problem (P ) given in (1.1)–(1.4) under the standing assumptions of
section 2, where the spaces X and X∗ are Asplund. Then there are nontrivial La-
grange multipliers 0 �= (λ0, . . . , λm+r) ∈ R

m+r+1 and an absolutely continuous map-
ping p: [a, b] → X∗ such that the following necessary conditions hold:

• the sign conditions

λi ≥ 0 for all i = 0, . . . ,m + r;(6.1)

• the complementary slackness conditions

λiϕi

(
x̄(b)

)
= 0 for i = 1, . . . ,m;(6.2)

• the extended Euler–Lagrange inclusion, for a.e., t ∈ [a, b],

ṗ(t) ∈ clco
{
u ∈ X∗

∣∣∣ (u, p(t)) ∈ λ0∂ϑ
(
x̄(t), ˙̄x(t)

)
+ N

(
(x̄(t), ˙̄x(t)); gphF

)}
;(6.3)

• and the transversality inclusion

−p(b) ∈
m∑
i=0

λi∂ϕi

(
x̄(b)

)
+

m+r∑
i=m+1

λi

[
∂ϕi

(
x̄(b)

)⋃
∂
(
− ϕi

)(
x̄(b)

)]
.(6.4)

Proof. Given the intermediate local minimizer x̄(·) to (P ), employ Theorem 3.2,
which ensures the strong W 1,2-approximation of x̄(·) by a sequence of optimal so-
lutions x̄N (·) to problems (PN ). Applying now the necessary optimality condition
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of Theorem 5.1, we find sequence of multipliers λiN , i = 0, . . . ,m + r, and adjoint
trajectories pN (·) satisfying conditions (5.7)–(5.10). Without loss of generality, we
can and do suppose that

λiN → λi as N → ∞ for all i = 0, . . . ,m + r,

where the limiting multipliers λi, i = 0, . . . ,m + r, are not zero simultaneously and
satisfy the sign condition (6.1). Moreover, we get the complementarity slackness
conditions (6.2) by passing to the limit in (5.8) with ηN → 0 as N → ∞.

Let us next justify the possibility of passing to the limit in the approximate Euler–
Lagrange (5.9) and transversality (5.10) inclusions for the discrete-time problems
(PN ). Having θNj defined in (5.6), consider the corresponding sequence of functions
θN : [a, b] → R given by

θN (t) :=
θNj

hN
b∗Nj for t ∈ [tj , tj+1), j = 0, . . . , N − 1.

It follows from the strong W 1,2-convergence of Theorem 3.2 that

∫ b

a

∥∥θN (t)
∥∥ dt ≤

N−1∑
j=0

θNj ≤ 2

N−1∑
j=0

∫ tj+1

tj

∥∥∥ x̄N (tj+1) − x̄N (tj)

hN
− ˙̄xN (t)

∥∥∥ dt
= 2

∫ b

a

‖ ˙̄xN (t) − ˙̄x(t)‖ dt → 0,

which allows us to suppose without loss of generality that

˙̄xN (t) → ˙̄x(t) and θN (t) → 0 a.e. t ∈ [a, b] as N → ∞.

Furthermore, we derive from the approximate Euler–Lagrange condition (5.9) that
there are

e∗Nj
, ẽ∗Nj ∈ B

∗ and (x∗
Nj , v

∗
Nj) ∈ ∂̂ϑ

(
x̄N (tj),

x̄N (tj+1) − x̄N (tj)

hN

)
, j = 0, . . . , N − 1,

such that the discrete-time inclusions(pN (tj+1) − pN (tj)

hN
− λ0Nx∗

Nj

)
+ εNe∗Nj

∈ D̂∗F
(
x̄N (tj),

x̄N (tj+1) − x̄N (tj)

hN

)(
λNv∗Nj + λ0N

θNj

hN
b∗Nj − pN (tj+1) + εN ẽ∗Nj

)
hold for all j = 0, . . . , N − 1 and all N ∈ N. Observe that, due to [13, Proposi-
tion 1.85], the sequences {(x∗

Nj , v
∗
jN )} are uniformly bounded for all j = 0, . . . , N − 1

by the Lipschitz constant of ϑ. Since the mapping F is locally Lipschitzian with con-
stant �F , we get by the coderivative condition for the Lipschitz continuity from [13,
Theorem 1.43] that∥∥∥pN (tj+1)−pN (tj)

hN
− λNx∗

Nj+ εNe∗Nj

∥∥∥≤ �F

∥∥∥λNv∗Nj+ λN
θNj

hN
b∗Nj− pN (tj+1)+ εN ẽ∗Nj

∥∥∥
for j = 0, . . . , N − 1. This allows us to conclude that the piecewise extensions pN (t),
a ≤ t ≤ b, of the adjoint discrete arcs pN (·) are uniformly bounded on [a, b] with

‖ṗN (t)‖ ≤ α + β‖θN (t)‖ a.e. t ∈ [a, b],(6.5)
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where the positive numbers α and β are independent of N . Using now the Dunford
criterion for the weak compactness in L1

(
[a, b];X∗) from [4, Theorem IV.1] (note that

both X and X∗ enjoy the RNP due to their assumed Asplund property) and arguing
similarly to the proof of Theorem 3.2 above, we find an absolute continuous mapping
p: [a, b] → X∗ satisfying the Newton–Leibniz formula and such that ṗN (·) → ṗ(·) as
N → ∞ (with no loss of generality) in the weak topology of L1

(
[a, b];X∗).

Next we conclude from the approximate transversality inclusion (5.10), the sign
and nontriviality conditions in (5.7), and the local Lipschitz continuity of ϕi, i =
0, . . . ,m + r, with the common constant � from (H3) that

‖pN (b)‖ ≤ �(m + 2) + 1 for sufficiently large N ∈ N

due to the uniform boundedness of Fréchet subgradients of locally Lipschitzian func-
tions by [13, Proposition 1.85]. Since X is Asplund, this implies the weak∗ sequential
compactness of {pN (b)} in X∗. Thus, passing to the limit in (5.10) as N → ∞
and using definition (4.5) of the basic subdifferential, we arrive at the transversality
inclusion (6.4).

Considering now the approximate Euler–Lagrange inclusion (5.9), we equivalently
rewrite it as

ṗN (t) ∈
{
u ∈ X∗

∣∣∣ (
u, pN (tj+1) − λ0NθN (t)

)
∈ λ0N ∂̂ϑ(x̄N (tj), ˙̄xN (t))

+ N̂
(
(x̄N (tj), ˙̄xN (t)

)
; gphF

)
+ εNB

∗
}(6.6)

for t ∈ [tj , tj+1) with j = 0, . . . , N−1. Observe, by the weak continuity of the Bochner
integral in the Newton–Leibniz formula and by ṗN (·) → ṗ(·) weakly in L1

[
a, b];X∗),

that the values pN (t) converge to p(t) weakly in X∗. Furthermore, the Mazur weak
closure theorem ensures that some sequence of convex combinations of {ṗN (·)} con-
verges to ṗ(·) strongly in L1

(
[a, b];X∗) as N → ∞, and hence its subsequence con-

verges to ṗ(t) almost everywhere on [a, b]. Passing finally to the limit in (6.6) and
taking into account the established pointwise convergence together with (6.5), we ar-
rive at the extended Euler–Lagrange inclusion (6.3) and complete the proof of the
theorem.

Note that the results obtained in Theorem 6.1 are different from those derived in
[14, subsection 6.1.5] not only because of the absence of any SNC-like assumptions on
the target/constraint set but also because here the “coderivative normality” property
is not imposed on F , as is needed in [14] in similar settings. Observe also that the
arguments developed above allow us to provide the correspondent improvements in
the case of Lipschitzian endpoint constraints of the Euler–Lagrange-type necessary
optimality conditions derived in [15] for evolution models governed by semilinear
inclusions

ẋ(t) ∈ Ax(t) + F
(
x(t), t

)
,(6.7)

where A is an unbounded infinitesimal generator of a compact C0-semigroup on X,
and where continuous solutions to (6.7) are understood in the mild sense.

7. Euler–Lagrange and maximum conditions with no relaxation. The
main objective of this section is to derive necessary optimality conditions for interme-
diate local minimizers x̄(·) of evolution inclusions without any relaxation. We show
that it can be done under certain more restrictive assumptions on the initial data in
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comparison with those in Theorem 6.1. For simplicity, we consider here the Mayer
version (PM ) of problem (P ) with ϑ = 0 in (1.1). In this case, the Euler–Lagrange
inclusion (6.3) admits the coderivative form

ṗ(t) ∈ clcoD∗F
(
x̄(t), ˙̄x(t)

)(
− p(t)

)
a.e. t ∈ [a, b],(7.1)

which easily implies, due to the extremal property for coderivatives of convex-valued
mappings given in [13, Theorem 1.34], the Weierstrass–Pontryagin maximum condi-
tion 〈

p(t), ˙̄x(t)
〉

= max
v∈F (x̄(t))

〈
p(t), v

〉
a.e. t ∈ [a, b],(7.2)

provided that the sets F (x) are convex near x̄(t) for a.e. t ∈ [a, b]. Our goal is to justify
the above Euler–Lagrange and Weierstrass–Pontryagin conditions, together with the
other necessary optimality conditions of Theorem 6.1, for intermediate minimizers of
the Mayer problem (PM ) subject to the Lipschitzian endpoint constraints (1.3) and
(1.4), without any convexity or relaxation assumptions and with no SNC-like require-
ments imposed on the endpoint constraint set. To accomplish this goal, we employ a
certain approximation technique involving Ekeland’s variational principle combined
with other advanced results of variational analysis and generalized differentiation,
which allow us to reduce the constrained problem under consideration to an uncon-
strained (and thus stable with respect to relaxation) Bolza problem studied in section
6. However, this requires additional assumptions on the initial data of (PM ) imposed
in what follows.

Recall that a set-valued mapping F :X →→ Y is strongly coderivatively normal at
(x̄, ȳ) ∈ gphF if its normal coderivative (4.3) admits the representation

D∗F (x̄, ȳ)(y∗) =
{
x∗ ∈ X∗

∣∣∣ ∃ sequences (xk, yk) → (x̄, ȳ), x∗
k

w∗
→ x∗, and y∗k → y∗

with yk ∈ F (xk) and x∗
k ∈ D̂∗F (xk, yk)(y

∗
k) as k → ∞

}
(7.3)

=: D∗
MF (x̄, ȳ)(y∗),

where D∗
MF (x̄, ȳ) is called the mixed coderivative of F at (x̄, ȳ). Observe that the

only difference between the normal and mixed coderivatives of F at (x̄, ȳ) is that

the mixed weak∗ convergence of x∗
k

w∗
→ x∗ and the norm convergence of y∗k → y∗ is

used for D∗
MF (x̄, ȳ) in (7.3), in contrast to the weak∗ convergence of both components

(x∗
k, y

∗
k)

w∗
→ (x∗, y∗) for D∗F (x̄, ȳ) in (4.3) via (4.1). Besides the obvious case of

dimY < ∞, the strong coderivative normality holds in many important infinite-
dimensional settings, and the property is preserved under various compositions; see
[13, Proposition 4.9] describing major classes of mappings satisfying this property.

A mapping F :X →→ Y is called sequentially normally compact (SNC) at (x̄, ȳ) ∈
gphF if for any sequences (xk, yk)

gphF→ (x̄, ȳ) and (x∗
k, y

∗) ∈ N̂
(
(xk, yk); gphF

)
one

has

(x∗
k, y

∗
k)

w∗
→ 0 =⇒ ‖(x∗

k, y
∗
k)‖ → 0 as k → ∞.

As was discussed in section 1, this property is a far-reaching extension of the “finite-
codimension” and other related properties of sets and mappings. It always holds
in finite dimensions, while in reflexive spaces it agrees with the “compactly epi-
Lipschitzian” property by Borwein and Strójwas; see [13] for more details, discussions,
and calculus.
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Finally, recall that the given norm on a Banach space X is Kadec if the strong
and weak convergences agree on the boundary of the unit sphere of X. It is well
known that every reflexive space admits an equivalent Kadec norm.

Theorem 7.1 (Euler–Lagrange and Weierstrass–Pontryagin conditions for in-
termediate local minimizers with no relaxation). Let x̄(·) be an intermediate local
minimizer for the Mayer problem (PM ) in (1.1)–(1.4) under the standing hypotheses
(H1) and (H3) on F and ϕi. Assume in addition that

(a) the state space X is separable and reflexive with the Kadec norm on it;
(b) the velocity mapping F is SNC at

(
x̄(t), ˙̄x(t)

)
and strongly coderivatively nor-

mal with weakly closed graph around this point for a.e. t ∈ [a, b].
Then there are nontrivial Lagrange multipliers 0 �= (λ0, . . . , λm+r) ∈ R

m+r+1 and an
absolutely continuous mapping p: [a, b] → X∗ satisfying the following relationships:

• the sign and complementarity slackness conditions in (6.1) and (6.2);
• the Euler–Lagrange inclusion (7.1), where the closure operation is redundant;
• the Weierstrass–Pontryagin maximum condition (7.2); and
• the transversality inclusion (6.4).
Proof. Denote

ϕ+
0 (x, ν) := max

{
ϕ0(x) − ν, 0

}
, ϕ+

i (x) := max
{
ϕi(x), 0

}
, i = 1, . . . ,m,(7.4)

and, following the method of metric approximations [11], consider the parametric cost
functional

θν [x] :=

[(
ϕ+

0 )2
(
x(b), ν

)
+

m∑
i=1

(
ϕ+
i

)2(
x(b)

)
+

m+r∑
i=m+1

ϕ2
i

(
x(b)

)]1/2

, ν ∈ R,(7.5)

over trajectories for the evolution inclusion (1.1) with no endpoint constraints. Since
x̄(·) is an intermediate local minimizer for (PM ) and due to the constructions in (7.4)
and (7.5), we have

θν [x] > 0 for any ν < ν̄ := ϕ0

(
x̄(b)

)
,(7.6)

provided that x(·) is a trajectory for (1.2) belonging to the prescribed W 1,1-neighbor-
hood of the given intermediate local minimizer and such that x(t) ∈ U for all t ∈ [a, b],
where the open set U ⊂ X is taken from the requirements in (H1) imposed on x̄(·).

Form as in [2] the space X of all the trajectories x(·) for (1.2) satisfying the only
constraint x(t) ∈ clU as t ∈ [a, b] with the metric

d[x, y] :=

∫ b

a

‖ẋ(t) − ẏ(t)‖ dt.

We can easily check, based on Definition 2.1 of solutions to the original differential
inclusion and on standard properties of the Bochner integral, that the metric space X
is complete and that the function θν [·] is (Lipschitz) continuous on X for any ν ∈ R.
It follows from the above constructions that for every ε > 0 there is νε < ν̄ such that
νε → ν̄ as ε ↓ 0 and

0 ≤ θε[x̄] < ε ≤ inf
x∈X

θε[x] + ε with θε := θνε
.

Now applying the classical Ekeland variational principle, find an arc xε(·) ∈ X satis-
fying

d[xε, x̄] ≤
√
ε and θε[x] +

√
εd[x, xε] ≥ θε[xε] for all x ∈ X .(7.7)
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This distance estimate yields that xε(t) ∈ U as t ∈ [a, b] and that xε(·) belongs to the
fixed W 1,1-neighborhood of the intermediate local minimizer x̄(·) whenever ε > 0 is
sufficiently small. Hence θε[xε] > 0 for such ε by (7.6).

Given positive numbers ε and η > 0, we form the Bolza functional

Jε,η[x] := θε[x] +
√
εd[x, xε] + η

√
1 + �2F

∫ b

a

dist
(
(x(t), ẋ(t)); gphF

)
dt

and show, following the proof of the claim in [14, Theorem 6.27], that there is a number
η ≥ 1 such that for every ε ∈ (0, 1/η) the arc xε(·) built above is an intermediate local
minimizer for this functional over all absolutely continuous mappings x: [a, b] → X,
not necessarily trajectories for (1.1), satisfying the constraints

x(a) = x0 and x(t) ∈ U for t ∈ [a, b],

where the one x(t) ∈ U can be ignored from the viewpoint of necessary optimality
conditions, since the set U is open in X. Taking into account the structures of
θε[·] and d[·, ·], we conclude that xε(·) is an intermediate minimizer for the following
unconstrained Bolza problem with Lipschitzian data:

minimize ϕε

(
x(b)

)
+

∫ b

a

ϑε

(
x(t), ẋ(t), t

)
dt(7.8)

over absolutely continuous arcs x: [a, b] → X satisfying x(a) = x0 and lying in a W 1,1-
neighborhood of x̄(·), where the functions ϕε:X → R and θε:X ×X × [a, b] → R are
given by

ϕε(x) :=

[(
ϕ+

0 )2(x, νε) +

m∑
i=1

(
ϕ+
i

)2
(x) +

m+r∑
i=m+1

ϕ2
i (x)

]1/2

,(7.9)

ϑε(x, v, t) := η
√

1 + �2F dist
(
(x, v); gphF

)
+
√
ε‖v − ẋε(t)‖.(7.10)

To apply the results of Theorem 6.1 to the case of problem (7.8), we first note
that every intermediate local minimizer for the unconstrained problem (7.8) provides
a relaxed intermediate local minimum for this problem. It follows from the relaxation
stability of unconstrained Bolza problems with finite integrands, which is ensured
by an appropriate infinite-dimensional extension of the classical Bogolyubov theorem
valid under the assumptions made; see Lemma 2.3 above and its “intermediate” lo-
cal counterpart given in [9, Theorem 4] whose proof holds in the infinite-dimensional
setting under consideration. Furthermore, observe that although Theorem 6.1 is pre-
sented for autonomous problems, its results hold true with no change for the case of
summable integrands as in (7.10); it can be justified similarly to the proof of [14, The-
orem 6.22] given for problems with geometric endpoint constraints. Finally, it follows
from the proof of Theorem 6.1 that the compactness of the velocity sets assumed in
(H1) is, in fact, not needed for the unconstrained and W 1,1-bounded framework of the
Bolza problem (7.8).

Applying the optimality conditions of Theorem 6.1 to problem (7.8) with the
initial data (7.9) and (7.10), for all small ε > 0, we find an absolutely continuous
adjoint arc pε: [a, b] → X∗ satisfying

ṗε(t) ∈ co
{
u ∈ X∗

∣∣∣ (u, pε(t)) ∈ μ∂dist
(
(xε(t), ẋε(t)); gphF

)
+
√
ε
(
0,B∗)}(7.11)
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for a.e. t ∈ [a, b] with μ := η
√

1 + �2F and

−pε(b) ∈ ∂

[(
ϕ+

0 )2(·, νε) +

m∑
i=1

(
ϕ+
i

)2
(·) +

m+r∑
i=m+1

ϕ2
i (·)

]1/2 (
xε(b)

)
.(7.12)

Note that the last term on the right-hand side of (7.11) appears due to applying
the sum rule from [13, Theorem 2.33(c)] to the integrand (7.10) and using the well-
known subdifferential formula for the norm function. The other difference between
(7.10) and (6.3) is that (7.11) does not contain the closure operation as in (6.3).
The norm-closure operation can be omitted in (7.11), since the basic subdifferential
sets for Lipschitzian functions are weak compact in reflexive spaces (which are weakly
compactly generated) by [13, Theorem 3.59(i)], and hence the right-hand side of (7.11)
is closed in the norm topology of the dual space X∗.

To deal further with (7.11), fix t ∈ [a, b] and consider the two possible cases for
the location of

(
xε(t), ẋε(t)

)
relative to the graph of the velocity mapping F (·):

(i)
(
xε(t), ẋε(t)

)
∈ gphF and (ii)

(
xε(t), ẋε(t)

)
/∈ gphF.

In case (i) we use [13, Theorem 1.97] on basic subgradients of the distance function
at set points, which gives the approximate adjoint inclusion

ṗε(t) ∈ co
{
u ∈ X∗

∣∣∣ (u, pε(t)) ∈ N
(
(xε(t), ẋε(t)); gphF

)
+
√
ε
(
0,B∗)}.(7.13)

The out-of-set case (ii) is more involved and requires the Kadec norm structure of X
together with the weak closedness assumption on the graph of F . Then we obtain, by
[13, Theorem 1.105], the relationship

∂dist
(
(xε(t), ẋε(t)); gphF

)
⊂

⋃
(x,v)∈Π

(
(xε(t),ẋε(t)); gphF

)N
(
(x, v); gphF

)

via the projection operator Π(·; gphF ) at the reference point. Taking into account
the a.e. pointwise convergence (xε(t), ẋε(t)

)
→ (x̄(t), ˙̄x(t)

)
as ε ↓ 0 that follows from

(7.7), we come up to a modified inclusion (7.13) with the replacement of (xε(t), ẋε(t)
)

by some sequence (x̃ε, ṽε)
gphF→

(
x̄(t), ˙̄x(t)

)
as ε ↓ 0, while we keep the form (7.13) for

simplicity.
Consider next the transversality condition (7.12) with ϕ+

i defined in (7.4). Em-
ploying the sum and chain rules [13, subsection 3.2.1] for basic subgradients in (7.12)
and taking into account relationships (7.5) and (7.6) with νε ↑ ν̄ as ε ↓ 0, we have

−pε(b) ∈
m∑
i=0

λiε∂ϕi

(
xε(b)

)
+

m+r∑
i=m+1

λiε

[
∂ϕi

(
xε(b)

)⋃
∂
(
− ϕi

)(
xε(b)

)]
,(7.14)

where the multipliers λiε satisfy the conditions

λiε ≥ 0 for all i = 0, . . . ,m + r,

m+r∑
i=0

λ2
iε = 1 as ε ↓ 0.(7.15)

By (7.15), we suppose without loss of generality that λiε → λi as ε ↓ 0 for i =
0, . . . ,m+ r, where the limiting multipliers λi are not zero simultaneously and satisfy
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the sign and complementary slackness conditions in (6.1) and (6.2). Furthermore, it
follows from (7.14) and (7.15) that the family {pε(b)}ε>0 is uniformly bounded in X∗

for ε sufficiently small. Proceeding as in the proof of Theorem 6.1, we observe that the
strong coderivative normality assumption on F allows us, by (7.13), to use the mixed
coderivative characterization of the Lipschitz property of F from [13, Corollary 4.11]
and thus to find an absolutely continuous arc p: [a, b] → X∗ such that ṗε(·) → ṗ(·)
weakly in L1

(
[a, b];X∗) and pε(t) → p(t) weakly in X∗ as ε ↓ 0 for each t ∈ [a, b].

To complete the proof of the Euler–Lagrange and transversality inclusions of the
theorem, we pass to the limit in (7.13) and (7.14) as ε ↓ 0 by using the Mazur the-
orem on the strong convergence of convex combinations for {ṗε(·)}. To accomplish
this limiting procedure and to arrive at the desired inclusions (7.1) and (6.4), we use
the closed-graph property of the basic normal cone in (7.13) and the basic subdiffer-
ential in (7.14). This follows from [13, Theorem 3.60] due to the SNC assumption
on F and the Lipschitz continuity of ϕi in the reflexive state space X. Observe that
the closedness operation in (7.1) is redundant, similar to (7.13), due to the uniform
boundedness of

{(
ṗε(·), pε(·)

)}
in X∗ × X∗ and the arguments above involving now

[13, Theorem 3.59(ii)].
The given proof justifies the extended Euler–Lagrange and transversality condi-

tions in the theorem for arbitrary intermediate local minimizers to problem (PM ) with
no relaxation. In the general nonconvex setting the Euler–Lagrange inclusion (7.1)
does not automatically imply the maximum condition (7.2). To establish the latter
condition supplementing the other necessary conditions of the theorem, we follow the
proof of [19, Theorem 7.4.1] given for a Mayer problem of type (PM ) involving noncon-
vex differential inclusions in finite-dimensional spaces; it holds with minor changes in
infinite dimensions under the assumptions imposed. The proof of the latter theorem is
based on reducing the constrained Mayer problem for nonconvex differential inclusions
to an unconstrained Bolza (finite Lagrangian) problem, which in turn is reduced to a
problem of optimal control with smooth dynamics and nonsmooth endpoint constraints
first treated in [11] via the nonconvex normal cone (4.1) and the corresponding subdif-
ferential (4.5) introduced therein to describe the appropriate transversality conditions
in the maximum principle.

REFERENCES

[1] J. M. Borwein and Q. J. Zhu, Techniques of Variational Analysis, CMS Books Math.,
Springer, New York, 2005.

[2] F. H. Clarke, Necessary conditions for a general control problem, in Calculus of Variations
and Control Theory, D. L. Russel, ed., Academic Press, New York, 1976, pp. 257–278.

[3] F. H. Clarke, Necessary conditions in dynamic optimization, Mem. Amer. Math. Soc., 173
(2005), no. 816.

[4] J. Diestel and J. J. Uhl, Jr., Vector Measures, AMS, Providence, RI, 1977.
[5] F. S. De Blasi, G. Pianigiani, and A. A. Tolstonogov, A Bogolyubov-type theorem with a

nonconvex constraint in Banach spaces, SIAM J. Control Optim., 43 (2004), pp. 466–476.
[6] K. Deimling, Multivalued Differential Equations, De Gruyter, Berlin, 1992.
[7] H. O. Fattorini, Infinite Dimensional Optimization and Control Theory, Cambridge Univer-

sity Press, Cambridge, UK, 1999.
[8] A. D. Ioffe, Euler-Lagrange and Hamiltonian formalisms in dynamic optimization, Trans.

Amer. Math. Soc., 349 (1997), pp. 2871–2900.
[9] A. D. Ioffe and R. T. Rockafellar, The Euler and Weierstrass conditions for nonsmooth

variational problems, Calc. Var. Partial Differential Equations, 4 (1996), pp. 59–87.
[10] X. Li and J. Yong, Optimal Control Theory for Infinite-Dimensional Systems, Birkhäuser,
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TWO-STAGE STOCHASTIC PROGRAMS WITH MIXED
PROBABILITIES∗
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Abstract. We extend the traditional two-stage linear stochastic program by probabilistic con-
straints imposed in the second stage. This adds nonlinearity such that basic arguments for analyzing
the structure of linear two-stage stochastic programs have to be rethought from the very beginning.
We identify assumptions under which the problem is structurally sound and behaves stably under
perturbations of probability measures.
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1. Introduction. Stochastic programming deals with the optimization of de-
cision making under uncertainty over time. When building stochastic programming
models, two main approaches consist in introducing future costs and in fixing certain
reliability levels for constraints. For earlier reviews on the various aspects in stochastic
programming we refer, for example, to [5], [17], [22], [23], and [24].

Traditional two-stage stochastic programming is concerned with problems that
require a here-and-now decision on the basis of given probabilistic information on
the random data without making further observations. The costs to be minimized
consist of the direct costs of the first-stage decision as well as the costs generated by
the need of taking a recourse (or second-stage) decision in response to the random
environment. The stability behavior of stochastic programming models when changing
the probability measure is studied in many papers. We refer to the qualitative studies
(continuity properties of optimal values and optimal solutions) found in [1], [7], [12],
and [23] and to work on quantitative stability (quantitative continuity of optimal
values and optimal solutions) found in [6], [14], [19], [20], and [21]. The bibliographical
notes in section 5 of [14] provide a detailed account of the developments in stability
analysis of stochastic programs.

Motivated by the study of stochastic programming problems coming from plan-
ning and operational management in power generation companies, we introduce the
following parametric family of mixed-probability stochastic programs:

P (μ, λ) min

{
cTx +

∫
Rs

Q(z −Ax, λ) μ(dz) : x ∈ C

}
, (μ, λ) ∈ Δ × Λ,

where

(1.1) Q(t, λ) := min{qT y : Wy = t, y ≥ 0, λ(Hj(y)) ≥ pj , j = 1, . . . , d}.
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Here Hj , j = 1, . . . , d, are set-valued mappings from R
m to R

r with closed graph, and
pj , j = 1, . . . , d, are predesigned probability levels. If P(Rs), P(Rr) denote the sets of
all Borel probability measures on R

s and R
r, respectively, we assume that Δ,Λ are

subsets of P(Rs), P(Rr). Moreover, C is a closed subset of R
m̄, and all remaining

vectors and matrices have suitable dimensions.
In the case of planning and operational management in power generation compa-

nies, the first stage variable x in the model represents generation capacity investment
decisions, such as changes (continuous) of maximum generation capacity for thermal
plants. The variable z is a random demand and y is the second-stage operational
variable representing the level of production of energy. The latter is also limited
by emission rights for carbon dioxide that may concern single plants or consortia of
plants. The level of permitted emission is considered random, since emission rights
are traded at predesigned markets via auctions, for instance, whose outcomes are
uncertain to market participants. This motivates the modeling of limitations on the
operational variables resulting from emission rights by probabilistic rather than de-
terministic constraints.

As an illustrative example consider a power system consisting of plants i = 1, . . . , I
to be operated over a time horizon with subintervals t = 1, . . . , T . The (first-stage)
variables xi denote (continuous) capacity expansions for the individual plants. They
must be within the bounds

(1.2) 0 ≤ xi ≤ Ci, i = 1, . . . , I,

and they incur the costs

(1.3)

I∑
i=1

cixi.

The (second-stage) variable yit denotes the power output of plant i at time t. Con-
straints concern the coverage of power demand over the whole planning horizon,

(1.4)

I∑
i=1

yit ≥ zt(ω), t = 1, . . . , T,

and limitation of individual outputs by the base capacity bi plus the capacity expan-
sion xi:

(1.5) 0 ≤ yit ≤ bi + xi, i = 1, . . . , I, t = 1, . . . , T.

Production costs are assumed to be linear and sum up to

(1.6)

T∑
t=1

I∑
i=1

qiyit.

A generic formulation for the probabilistic limitations on the second-stage variables
induced by emission rights reads as follows:

(1.7) λ

⎛
⎝
⎧⎨
⎩āj :

∑
t∈Tj

∑
i∈Ij

βiyit ≤ āj

⎫⎬
⎭
⎞
⎠ ≥ pj , j = 1, . . . , d.
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Here, Tj , Ij are subsets of {1, . . . , T} and {1, . . . , I}, respectively, to express limita-
tions summed up over subhorizons and clusters of plants. The coefficients βi denote
emission intensities that may vary from plant to plant. The random levels of permit-
ted emissions for the different subhorizons and clusters are the āj = āj(ω). Finally,
pj are the probability levels with which the limitations are to be met.

The model (1.2)–(1.7) illustrates in a simple example the relevance of the general
model P (μ, λ). Further operational details of power planning such as ramp rates for
power output in adjacent time intervals or fuel constraints can easily be added without
leaving the frame of P (μ, λ). A next step is to go beyond P (μ, λ) by including unit
commitment features and, thus, integer variables; see [16] for a first attempt in that
direction, including numerical experiments.

In our example, the chance constraints (1.7) mathematically really matter for the
second-stage optimization problem (1.1). Without them, the remaining second-stage
problem, given by (1.4)–(1.6), is very simple. It is separable in t, and the individual
subproblems are continuous knapsack problems that solve immediately.

Coming back to P (μ, λ) we see that this model extends the traditional two-stage
linear stochastic program by introducing some probabilistic constraints λ(Hj(y)) ≥
pj , j = 1, . . . , d, in the second stage of the problem. These types of constraints add
nonlinearities to the problem so that basic arguments to analyze the well-posedness
of P (μ, λ) have to be rethought from the very beginning. The purpose of this paper
is to identify assumptions under which P (μ, λ) is structurally well-behaved and stable
under perturbations of (μ, λ).

Somewhat related two-stage stochastic programming formulations with proba-
bilistic constraints are presented in Chapter 12.10 of [11]. In a first group of models,
probabilistic constraints serve to replace the induced constraints by the requirement
that the second-stage problem is solvable with a prescribed probability. Another
group of two-stage models has probabilistic constraints in both stages. Neither model
type had been studied any further at the time of the writing of [11], nor, to the best
of our knowledge, were they further studied since then.

2. Basic well-posedness.
Lemma 1. For fixed λ ∈ Λ and t ∈ R

s the constraint set in (1.1) is closed.
Proof. Since the graphs of Hj , j = 1, . . . , d, are all closed we have

lim sup
yn→yo

Hj(yn) ⊆ Hj(yo), j = 1, . . . , d,

where lim supyn→yo
Hj(yn) denotes the set of all points belonging to infinitely many

of the sets Hj(yn). Hence, by the semicontinuity of the probability measure (see, for
example, [4]) we have

λ(Hj(yo)) ≥ λ

(
lim sup
yn→yo

Hj(yn)

)
≥ lim sup

yn→yo

λ(Hj(yn)) ≥ pj

for all j = 1, . . . , d and all sequences yn → yo, which allows us to conclude the
closedness of the constraint set (1.1).

The major difficulty in understanding the structure of P (μ, λ) rests in a dilemma
about the function Q. On the one hand, Q is the optimal-value function of a nonlinear
program with parameters t and λ. Parametric optimization mainly provides local
results about the structure of Q. Global results are very scarce and require specific
assumptions that are often hard to verify. On the other hand, Q arises as an integrand
in P (μ, λ). For studying properties of the related integral, global information about
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Q is required. From this viewpoint, it is not surprising that most of the structural
results about two-stage stochastic programs concern the purely linear and the linear
mixed-integer cases, i.e., the widest problem classes where parametric optimization
offers broader results about global stability.

To lay a foundation for the structural analysis of Q we formulate the following
general assumptions:

(A1) For any λ ∈ Λ there exist a nonempty set Rλ ⊆ R
s and a Lebesgue null

set Nλ ⊆ R
s such that the function Q(·, λ) is real-valued and measurable on Rλ and

continuous on Rλ \ Nλ.
(A2) It holds that ⋃

μ∈Δ

supp μ ⊆
⋂
λ∈Λ

⋂
x∈C

{Ax + Rλ},

where supp μ denotes the smallest closed set in R
s with μ-measure 1.

(A3) There exists a real-valued, measurable function h on R
s, which we call the

bounding function, with the following properties:
1. (Q-majorization.) It holds that |Q(t, λ)| ≤ h(t) for all t ∈ Rλ and all λ ∈ Λ.
2. (Integrability.) It holds that

∫
Rs h(z)μ(dz) < +∞ for all μ ∈ Δ.

3. (Generalized subadditivity.) There exists a κ > 0 such that h(t1 + t2) ≤
κ(h(t1) + h(t2)) for all t1, t2 ∈ R

s.
4. (Local boundedness.) For each t ∈ R

s there exists an open neighborhood of
t where h is bounded.

Lemma 2. Assume (A1), (A2), and (A3). Then

(2.1) G(x, μ, λ) :=

∫
Rs

Q(z −Ax, λ) μ(dz)

is real-valued for all x ∈ C, λ ∈ Λ, μ ∈ Δ.
Proof. Let x ∈ C, λ ∈ Λ, μ ∈ Δ be fixed. By (A2) we have z − Ax ∈ Rλ for all

z ∈ supp μ. Together with (A1) this yields that Q(·−Ax, λ) is measurable on supp μ.
By (A3.1) and (A3.3) it holds that

|Q(z −Ax, λ)| ≤ h(z −Ax) ≤ κh(z) + κh(−Ax)

for all z ∈ supp μ. By (A3.2) the right-hand side above is μ-integrable, and the
assertion follows.

Lemma 3. Assume (A1), (A3), and

(A2∗) there exists an open set C∗ ⊇ C such that
⋃
μ∈Δ

supp μ ⊆
⋂
λ∈Λ

⋂
x∈C∗

{Ax+Rλ}.

Let x ∈ C, λ ∈ Λ, μ ∈ Δ such that μ(Ax + Nλ) = 0. Then G(·, μ, λ) is continuous at
x.

Proof. Fix some (x, μ, λ) fulfilling the assumptions. Let xn → x and assume
without loss of generality that xn ∈ C∗ for all n. (A2∗) then implies z − Axn ∈ Rλ

for all z ∈ supp μ, and together with (A3.1)–(A3.3) it follows as in the proof of
Lemma 2 that G(xn, μ, λ) ∈ R for all n. By (A1) and μ(Ax+Nλ) = 0 it follows that
Q(z − Axn, λ) → Q(z − Ax, λ) for μ-almost all z ∈ supp μ. By (A3.1) and (A3.3) it
holds for all z ∈ supp μ that

|Q(z −Axn, λ)| ≤ h(z −Axn) ≤ κh(z) + κh(−Axn),
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yielding, together with (A3.2) and (A3.4), that there exists a uniform μ-integrable
majorant for the functions Q(· − Axn). The assertion now follows from Lebesgue’s
theorem on dominated convergence.

Remark 4. If μ is absolutely continuous with respect to the Lebesgue measure or,
equivalently, has a density, then μ(Ax + Nλ) = 0 holds for all x ∈ C, since, by (A1),
Ax + Nλ is a Lebesgue null set.

Remark 5. The essence of assumptions (A1)–(A3) is the following: Since Q(·, λ)
is the optimal-value function of a minimization problem it well may attain the values
+∞ if the problem is infeasible and −∞ if the problem is unbounded. Indeed, the
following hold:

• (A1) makes sure that Q(·, λ) is finite on some set Rλ.
• (A2) guarantees that the arguments z−Ax are in Rλ for all relevant z and x.

Otherwise, Q(z−Ax, λ) would attain infinite values with positive probability,
immediately preventing finiteness of the integral in (2.1).

• The continuity part of (A1) together with (A3) provides a framework for
applying dominated convergence to show continuity of G(·, μ, λ). Introducing
the exceptional set Nλ in (A1) makes sense, since Q(·, λ) often lacks continuity
on lower-dimensional subsets of its domain of finiteness. Furthermore, (A3)
ensures an integrable upper-bound for the functions |Q(· − Ax, λ)| when x
is varying in some neighborhood. Any other set of conditions ensuring this
could be placed instead. Clearly, h reflects the global growth of |Q(·, λ)| whose
quantitative analysis is acknowledged nontrivial for nonlinear problems.

Remark 6. Traditional two-stage linear stochastic programs form a class where
verification of (A1)–(A3) is possible with low effort. There λ does not occur, and
Q(·, λ) is given as

Q(t) := min{qT y : Wy = t, y ≥ 0}.

With the assumptions of complete recourse (W (Rm
+ ) = R

s) and dual feasibility

{u ∈ R
s : WTu ≤ q} 	= ∅

it holds that Q(t) = maxk=1,...,K dTk t, where dk, k = 1, . . . ,K, are the vertices of
{u ∈ R

s : WTu ≤ q}. Then (A1) holds with Rλ = R = R
s,Nλ = N = ∅, and (A2)

becomes vacuous. The bounding function h in (A3) can be selected as κ‖t‖ with some
positive constant κ. This reduces the integrability requirement to finiteness of the first
moment of μ. For two-stage linear stochastic programs with integrality requirements
in the second stage, similar results are valid, with the difference that the exceptional
set N becomes effective, since continuity defects of Q may occur on lower-dimensional
subsets [10].

The next proposition provides a sufficient condition for continuity of G jointly
in the first two arguments. Convergence of the second argument is understood as
weak convergence of probability measures on P(Rs). We say that a sequence {μn}
in P(Rs) converges weakly to μ ∈ P(Rs), written μn

w−→ μ, if for any bounded
continuous function g : R

s → R it holds that∫
Rs

g(z)μn(dz) →
∫

Rs

g(z)μ(dz) as n → ∞.

A basic reference for weak convergence of probability measures is Billingsley’s book
[3].
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Proposition 7. Assume (A1), (A2
∗
), (A3) and that A has full row rank. Let

ρ > 1, h̄ > 0 be constants and define

Δρ :=

{
ν ∈ Δ :

∫
Rs

h(z)ρ ν(dz) ≤ h̄

}
,

where h is the bounding function from (A3). Let x ∈ C, λ ∈ Λ, μ ∈ Δρ such that
μ(Ax + Nλ) = 0. Then G(·, ·, λ) : C∗ × Δρ −→ R is continuous at (x, μ).

Proof. Fix some (x, μ, λ) fulfilling the assumptions, and let xn → x, μn
w→ μ,

μn ∈ Δρ. Without loss of generality we assume that xn ∈ C∗ for all n. Let M :=
∪ν∈Δρ supp ν and define functions hn, ho : M → R by hn(z) := Q(z − Axn, λ) and
ho(z) := Q(z −Ax, λ). Consider the set

E(x) := {z ∈ M : ∃zn → z with hn(zn) 	→ ho(z)}.

To see that E(x) ⊆ Ax + Nλ assume that z 	∈ Ax + Nλ; hence z − Ax ∈ Rλ \ Nλ.
By (A2

∗
), there exists a neighborhood N(x) of x such that z − A

(
N(x)

)
⊆ Rλ. Let

zn → z and rewrite zn − Axn = z − (Ax + z − zn + Axn − Ax). Since A has full
row rank, it holds that Ax + z − zn + Axn − Ax ∈ A

(
N(x)

)
for sufficiently large n.

Therefore, zn − Axn ∈ Rλ for sufficiently large n. Thus hn(zn) is well-defined for
these n. In view of (A1) we have Q(zn − Axn, λ) → Q(z − Ax, λ); in other words,
hn(zn) → ho(z). Hence, z 	∈ E(x).

By μ(Ax + Nλ) = 0 it follows that μ(E(x)) = 0. Now Rubin’s theorem on
convergence of image measures (cf. [3]) yields

μn ◦ h−1
n

w→ μ ◦ h−1
o .

Next we establish the following uniform integrability

(2.2) lim
a→∞

sup
n

∫
|hn(z)|≥a

|hn(z)|μn(dz) = 0.

With ρ > 1 as in the assumptions we have∫
M

|hn(z)|ρ μn(dz) ≥
∫
|hn(z)|≥a

|hn(z)| · |hn(z)|ρ−1 μn(dz)

≥ aρ−1 ·
∫
|hn(z)|≥a

|hn(z)|μn(dz).

Therefore∫
|hn(z)|≥a

|hn(z)|μn(dz) ≤
(1

a

)ρ−1
∫
M

|hn(z)|ρ μn(dz) =
(1

a

)ρ−1
∫

Rs

|hn(z)|ρ μn(dz)

≤
(1

a

)ρ−1
∫

Rs

(
κh(z) + κh(−Axn)

)ρ
μn(dz)

≤
(1

a

)ρ−1
∫

Rs

(
κh(z) + κo

)ρ
μn(dz),

where we have used (A3.1) and (A3.3) in the second inequality, and where in the third
inequality κo > 0 is a suitable constant selected according to (A3.4). The estimate
continues as follows:

≤
(1

a

)ρ−1(
(2κo)

ρ + (2κ)ρ
∫

Rs

h(z)ρ μn(dz)
)

≤
(1

a

)ρ−1(
(2κo)

ρ + (2κ)ρh̄
)
.
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This establishes the desired uniform integrability (2.2). The proof is completed by us-
ing (2.2) and Theorem 5.4 of [3]; see also the proof of Proposition 3.6 (ii) in [18].

3. The bounded convex case. The structural analysis of P (μ, λ) can be
pushed ahead under suitable boundedness and convexity assumptions. We assume
the following:

(A4) The set Yλ := {y ∈ R
m
+ : λ(Hj(y)) ≥ pj , j = 1, . . . , d} is convex for any

λ ∈ Λ, and Y := ∪λ∈ΛYλ is bounded.
Sufficient conditions for the convexity in (A4) can be formulated for the case that

the mappings Hj all have closed convex graphs—see (A.5) below, with the help of
r-concave and logarithmic concave probability measures. The uniform distribution,
the nondegenerate multivariate normal distribution, the multidimensional Dirichlet
distribution, and the multivariate student and Pareto distributions all fit into this
framework; for details consult [8] and [11].

Lemma 8. Under (A4) the following hold for any λ ∈ Λ:
(i) Q(t, λ) ∈ R, whenever t ∈ W (Yλ).
(ii) Q(·, λ) is continuous on intW (Yλ).
(iii) There exists a constant κ̄ > 0, uniformly for all λ ∈ Λ, such that |Q(t, λ)| ≤ κ̄

for all t ∈ W (Yλ).
Proof. Assertions (i) and (iii) immediately follow from the compactness of each

Yλ, the boundedness of Y , and the continuity of qT y. To confirm (ii), note that Q(·, λ)
has to be convex as the value function of a convex program with parameters in the
right-hand side. As a (real-valued) convex function (in finite dimension) Q(·, λ) is
thus continuous on the open set intW (Yλ).

Remark 9. For fixed λ ∈ Λ the above lemma immediately gives rise to specifica-
tions of Lemma 2, Lemma 3, and Proposition 7. Indeed, (A1) holds with Rλ = W (Yλ)
and Nλ ⊆ ∂W (Yλ), where ∂ denotes the boundary. Since W (Yλ) is convex, its bound-
ary has Lebesgue measure zero; see, e.g., [9]. Assumption (A3) can obviously be
fulfilled with h(t) ≡ κ̄.

We turn our attention to analyzing P (μ, λ) with both μ and λ variable. To this
end we define the following distance (discrepancy) on Λ:

α(μ, ν) := max
j=1,...,d

sup{|μ(B) − ν(B)| : B ∈ Bj},

where each Bj , j = 1, . . . , d, is a class of Borel sets of R
s such that {Hj(y) : y ∈

R
m} ⊆ Bj and that α forms a metric. We fix a vector p̄ of probability levels and

introduce the notation

Ψ(t, λ) := argmin{qT y : Wy = t, y ≥ 0, λ(Hj(y)) ≥ p̄j , j = 1, . . . , d},
Cp(t, λ) := {y ∈ R

m : Wy = t, y ≥ 0, λ(Hj(y)) ≥ pj , j = 1, . . . , d}.

Now the following holds.
Lemma 10. Assume (A4), and fix some (to, λo) ∈ R

s×Λ such that Ψ(to, λo) 	= ∅.
For each yo ∈ Ψ(to, λo) let the function

(3.1) (ξ, t, p) �→ inf{‖ξ − y‖ : y ∈ Cp(t, λo)}

be Lipschitz continuous on some neighborhood of (yo, to, p̄).
Then the multifunction Ψ (acting from the metric space [(Rs,Λ), (‖.‖, α)] into the

subsets of R
m) is upper semicontinuous at (to, λo). Furthermore, there exist L > 0
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and δ > 0 such that

Ψ(t, λ) 	= ∅ and

|Q(t, λ) −Q(to, λo)| ≤ L · (‖t− to‖ + α(λ, λo))

whenever ‖t− to‖ + α(λ, λo) < δ.
Proof. The proof employs Lemma A.2 from the appendix of [15]. It is sufficient

to verify assumption (c) of that lemma. In our setting, this condition reads as follows:
For each yo ∈ Ψ(to, λo) there exist a neighborhood U = U(yo) and positive reals δo
and l such that the following hold for all (t, λ) ∈ R

s×Λ with ‖t− to‖+α(λ, λo) < δo:

(3.2) y ∈ Cp̄(to, λo) ∩ U implies d(y, Cp̄(t, λ)) ≤ l · (‖t− to‖ + α(λ, λo))

and

(3.3) y ∈ Cp̄(t, λ) ∩ U implies d(y, Cp̄(to, λo)) ≤ l · (‖t− to‖ + α(λ, λo)).

Let yo ∈ Ψ(to, λo) be fixed. Assumption (3.1) is equivalent to the existence of neigh-
borhoods U of yo and V of (to, p̄) and of a constant l > 0 such that d(y, Cp(t, λo)) is
finite and

(3.4) d(y, Cp1(t1, λo)) ≤ d(y, Cp2(t2, λo)) + l · (‖t1 − t2‖ + ‖p1 − p2‖)

for all y ∈ U and all (t, p), (t1, p
1), (t2, p

2) ∈ V .

Let δo > 0 such that

{(t, p) : ‖t− to‖ + ‖p− p̄‖ ≤ δo} ⊆ V

and let λ ∈ Λ such that α(λ, λo) ≤ δo. Then by definition of the distance α the
following inclusions hold:

(3.5) Cp̄+1α(λ,λo)(t, λo) ⊆ Cp̄(t, λ) ⊆ Cp̄−1α(λ,λo)(t, λo).

(Here, 1 denotes the vector of all ones.) Let y ∈ U , and set in (3.4)

p1 := p̄ + 1α(λ, λo), p2 := p̄, t1 := t, and t2 := to.

Then (3.5) and (3.4) imply1

d(y, Cp̄(t, λ)) ≤ d(y, Cp̄+1α(λ,λo)(t, λo))

≤ d(y, Cp̄(to, λo)) + l · (‖t− to‖ + α(λ, λo)),

yielding (3.2). Now set in (3.4)

p1 := p̄ , p2 := p̄− 1α(λ, λo), t1 := to, and t2 := t.

It follows that

d(y, Cp̄(to, λo)) ≤ d(y, Cp̄−1α(λ,λo)(t, λo)) + l · (‖t− to‖ + α(λ, λo)).

1To avoid further multiplicative constants we assume that the norm in ‖p1 − p2‖ is ‖.‖∞.
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Together with (3.5) we obtain

d(y, Cp̄(to, λo)) ≤ d(y, Cp̄(t, λ)) + l · (‖t− to‖ + α(λ, λo)),

yielding (3.3) and completing the proof.
Remark 11. The above result extends Theorem 3.2 in [15] to the present situation.

As in [15] the result can be further extended to the nonconvex case, provided a suitable
notion of local optimality (complete local minimizing set) is employed.

Remark 12. The essential assumption in Lemma 10 is (3.1). It can be equivalently
restated as follows: The multifunction (t, p) �→ Cp(t, λo) is pseudo-Lipschitzian in
the sense of [13] at each (yo, to, p̄) ∈ Ψ(to, λo) × {(to, p̄)}. Sufficient conditions for
multifunctions to be pseudo-Lipschitzian have been derived in the literature. The
following is a popular one, often called the Robinson–Ursescu theorem (here already
adapted to our setting): Let Γ be a multifunction from R

s × R
d into R

m with closed
convex graph. Then Γ is pseudo-Lipschitzian at each pair (yo, to, p̄) ∈ Γ(to, p̄)×R

s+d

with (to, p̄) ∈ int(dom Γ), where dom Γ = {(t, p) ∈ R
s+d : Γ(t, p) 	= ∅}.

The above remark gives rise to the following assumption.
(A5) Each Hj , j = 1, . . . , d, has a closed convex graph.
Lemma 13. Assume (A4), (A5) and let λo ∈ Λ. If to ∈ intW (Yλo), then

(to, p̄) ∈ int(domC(·)(·, λo)).

Proof. If to ∈ intW (Yλo), then there exists an open ball B(to, r) such that
B(to, r) ⊆ intW (Yλo). By continuity, the preimage under W of that ball is open,
and the preimage is obviously contained in Yλo

. Let ys ∈ W−1({to}). Then ys ∈
W−1(B(to, r)) ⊆ intYλo

. By convexity, this implies that ys > 0 and λo(Hj(ys)) >
p̄j for all j. Hence (to, p̄) ∈ int(domC(·)(·, λo)).

The combination of Lemmas 10 and 13 produces the following corollary.
Corollary 14. Assume (A4), (A5) and let λo ∈ Λ and to ∈ intW (Yλo

). Then
there exist L > 0 and δ > 0 such that

|Q(t, λ) −Q(to, λo)| ≤ L · (‖t− to‖ + α(λ, λo)) whenever ‖t− to‖ + α(λ, λo) < δ.

We are now in a position to formulate a sufficient condition for joint continuity
of G. Assumption (A2

∗
) adapts as follows to the setting of the present section:

(A2∗) there exists an open set C∗ ⊇ C such that
⋃
μ∈Δ

supp μ ⊆
⋂
λ∈Λ

⋂
x∈C∗

{Ax+W (Yλ)}.

Proposition 15. Assume (A2
∗
), (A4), (A5) and let A have full row rank. Then

G : C∗ × Δ × Λ −→ R is continuous at any triplet (x, μ, λ) ∈ C × Δ × Λ fulfilling
μ
(
Ax + ∂W (Yλ)

)
= 0.

Proof. Let (x, μ, λ) be as in the assumption, xn −→ x, μn
w−→ μ, λn

α−→ λ,
and assume without loss of generality that xn ∈ C∗ for all n. In analogy to the
proof of Proposition 7 let M := ∪ν∈Δ supp ν, define functions hn, ho : M → R by
hn(z) := Q(z −Axn, λn) and ho(z) := Q(z −Ax, λ), and consider the set

E(x) := {z ∈ M : ∃zn → z with hn(zn) 	→ ho(z)}.

Adapting the corresponding argument from the proof of Proposition 7 and taking
into account Corollary 14, we obtain that E(x) ⊆ Ax + ∂W (Yλ). The assumption
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on (x, μ, λ) thus implies μ(E(x)) = 0, and Rubin’s theorem on weak convergence of
image measures yields

(3.6) μn ◦ h−1
n

w−→ μ ◦ h−1
o .

With κ̄ according to Lemma 8(iii) we consider the bounded continuous function

g(τ) :=

⎧⎨
⎩

κ̄, τ ≥ κ̄,
τ, −κ̄ ≤ τ ≤ κ̄,

−κ̄, τ ≤ −κ̄.

By (3.6) it holds that∫
R

g(τ)μn ◦ h−1
n (dτ) −→

∫
R

g(τ)μ ◦ h−1
o (dτ).

Changing variables yields∫
M

hn(z)μn(dz) −→
∫
M

ho(z)μ(dz),

proving the assertion.
Since ∂W (Yλ) always has Lebesgue measure zero, we obtain the following corol-

lary; see also Remarks 4 and 9.
Corollary 16. Assume (A2

∗
), (A4), (A5). Let A have full row rank and let

μ have a density. Then G : C∗ × Δ × Λ −→ R is continuous at any (x, μ, λ) ∈
C × {μ} × Λ.

The joint continuity established in Proposition 15 and Corollary 16 paves the way
for qualitative stability of P (μ, λ) under perturbations of (μ, λ). To illustrate this, we
conclude the paper with a corresponding result based on Corollary 16. To this end,
we write P (μ, λ) in a more compact form as

P (μ, λ) min{cTx + G(x, μ, λ) : x ∈ C}, (μ, λ) ∈ Δ × Λ.

Notice that in the setting of Corollary 16, G(·, μ′, λ′) is convex for all (μ′, λ′) ∈ Δ×Λ.
We assume that, in addition, C is convex, and we introduce the following notation:

φ(μ, λ) := inf{cTx + G(x, μ, λ) : x ∈ C},
ψ(μ, λ) := {x ∈ C : cTx + G(x, μ, λ) = φ(μ, λ)}.

Proposition 17. Assume (A2
∗
), (A4), (A5). Let A have full row rank, let

(μ, λ) ∈ Δ × Λ, and let μ have a density. Suppose further that ψ(μ, λ) is nonempty
and bounded. Then it holds that

(i) the function φ : Δ × Λ −→ R is continuous at (μ, λ);

(ii) the multifunction ψ : Δ × Λ −→ 2R
m̄

is upper semicontinuous at (μ, λ).
With joint continuity of G in (x, μ, λ) established, the proof of the above proposi-

tion follows the lines of Berge’s theory as, for instance, in the proof of Proposition 4.2.2
in [2].
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Abstract. The notion of a maximal monotone operator is crucial in optimization as it captures
both the subdifferential operator of a convex, lower semicontinuous, and proper function and any
(not necessarily symmetric) continuous linear positive operator. It was recently discovered that
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1. Introduction. Throughout this paper, we assume that

(1) X is a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖.

Recall that a set-valued operator A : X → 2X is monotone if

(2)
(x, u) ∈ graA
(y, v) ∈ graA

}
⇒ 〈x− y, u− v〉 ≥ 0,

where graA =
{
(x, u) ∈ X ×X | u ∈ Ax

}
denotes the graph of A. The notion of a

monotone operator is central to modern optimization and analysis [9, 10, 33, 34, 35, 36,
43]. Of particular importance are maximal monotone operators, i.e., monotone opera-
tors with graphs that cannot be enlarged without destroying monotonicity. Recently,
several fundamental results on monotone operators have found—sometimes dramati-
cally simpler—new proofs by utilizing Fitzpatrick functions [8, 9, 29, 39, 41, 42]. The
Fitzpatrick function was first introduced by Fitzpatrick to study monotone operators
via convex analysis [17]; see also [2, 6, 12, 13, 14, 15, 18, 24, 25, 31, 37, 38, 40]. The
key classes of maximal monotone operators are subdifferential operators of proper,
lower semicontinuous, and convex functions [32] and continuous, linear, and mono-
tone operators. The former class is very well understood [36]; the latter class is the
topic of this paper.

∗Received by the editors March 28, 2006; accepted for publication (in revised form) November 21,
2006; published electronically October 4, 2007. This work was partially supported by the Natural
Sciences and Engineering Research Council of Canada.

http://www.siam.org/journals/siopt/18-3/65546.html
†Department of Mathematics, Irving K. Barber School, University of British Columbia Okanagan,

Kelowna, BC V1V 1V7, Canada (heinz.bauschke@ubc.ca, shawn.wang@ubc.ca). The research of the
first author was partially supported by the Canada Research Chair Program.

‡Faculty of Computer Science, Dalhousie University, 6050 University Avenue, Halifax, NS B3H
1W5, Canada (jborwein@cs.dal.ca). The research of this author was partially supported by the
Canada Research Chair Program.

789



790 H. H. BAUSCHKE, J. M. BORWEIN, AND X. WANG

It is well known that continuous, linear, and monotone operators are automati-
cally maximal monotone (see, e.g., [36, p. 30]); see also [1, 5, 7, 30, 36] for additional
works on monotone-operator-theoretic properties of linear operators. Let A : X → X
be continuous and linear. Linearity and (2) yield

(3) A is monotone ⇔ (∀x ∈ X) 〈x,Ax〉 ≥ 0.

Thus monotonicity is determined solely by the behavior of the symmetric part of A.
We now recall the relevant notions.

Definition 1.1 (symmetric and skew part). Let A : X → X be continuous and
linear. Then A+ = 1

2A + 1
2A

∗ is the symmetric part of A, and A◦ = A − A+ =
1
2A− 1

2A
∗ is the skew part of A.

The next result is clear.
Proposition 1.2. Let A : X → X be continuous and linear. Then A is monotone

if and only if A+ is monotone.
Let us define the Fitzpatrick function [17] for linear operators.
Definition 1.3 (Fitzpatrick function). Let A : X → X be continuous and linear.

The Fitzpatrick function of A is

(4) FA : X ×X → ]−∞,+∞] : (x, u) → sup
y∈X

(
〈x,Ay〉 + 〈y, u〉 − 〈y,Ay〉

)
.

Before we survey some fundamental results concerning the Fitzpatrick function of
a linear operator, we need to briefly explain our notation. We shall utilize throughout
this paper notation and results that are standard in convex analysis and monotone
operator theory. See [9, 33, 35, 36, 43] for comprehensive references. The Fenchel
conjugate and domain of a function f is denoted by f∗ and dom f , respectively. The
ball of radius ρ centered at x is denoted by B(x; ρ). The closure, the interior, and the
indicator function of a set S ⊆ X are written as S, intS, and ιS , respectively. For a
continuous and linear operator A : X → X, the kernel (also known as null space) of A
is denoted by kerA and the range by ranA. The identity operator is written as Id. If
A is monotone and symmetric, it will occasionally be convenient to use the notation

(5) (∀x ∈ X)(∀y ∈ X) 〈x, y〉A = 〈x,Ay〉 and ‖x‖A =
√
〈x, x〉A = ‖

√
Ax‖,

where
√
A denotes the square root of A [23, section 9.4].

Fact 1.4 (see [17]). Let A : X → X be continuous, linear, and monotone. Then
(i) FA is convex, lower semicontinuous, and proper;
(ii) FA = 〈·, ·〉 on graA, and FA > 〈·, ·〉 outside graA;
(iii)

(
∀(x, u) ∈ X ×X

)
FA(x, u) ≤ F ∗

A(u, x) =
(
ιgraA + 〈·, ·〉

)∗∗
(x, u).

Fact 1.4(ii) motivates the following definition (see also [14]).
Definition 1.5 (Fitzpatrick family). Let A : X → X be continuous, linear,

and monotone. The Fitzpatrick family FA consists of all functions F : X × X →
]−∞,+∞] such that F is convex, lower semicontinuous, F ≥ 〈·, ·〉, and F = 〈·, ·〉 on
graA.

Fact 1.6 (see [17]). Let A : X → X be continuous, linear, and monotone. Then
for every (x, u) ∈ X ×X,

(6) FA(x, u) = min
F∈FA

F (x, u) and F ∗
A(u, x) = max

F∈FA

F (x, u).

The plan for the remainder of the paper is as follows.
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• In section 2, we describe completely the Fitzpatrick function and its conjugate
(Theorem 2.3). Some examples and a new characterization of skew operators
in terms of the Fitzpatrick family (Theorem 2.9) are provided.

• The range of a continuous, linear, and monotone operator is studied in sec-
tion 3 and compared to the range of the adjoint. The closures of these two
ranges coincide; however, the Volterra integral operator (Example 3.3) illus-
trates that the ranges themselves can differ.

• Section 4 deals with rectangular—also known as property (∗) monotone—
operators, a class of operators introduced by Brézis and Haraux [11]. We
state their main result and discuss some useful consequences. We also pro-
vide a characterization of rectangular operators in terms of their symmetric
and skew parts (Corollary 4.10). This allows us to make a connection with
paramonotone operators (Remark 4.11). A result by Brézis and Haraux is
re-proved using the Fitzpatrick function (Theorem 4.12).

• We turn to the Fitzpatrick function of the sum in section 5. No general
formula is known; in fact, Fitzpatrick posed this as an open problem (see
[17, Problem 5.4]). We present a partial solution to his problem by show-
ing that a known upper bound is actually exact in finite-dimensional spaces
(Corollary 5.7) as well as in more general settings (Theorems 5.3 and 5.4 and
Corollary 5.6).

• Cyclic monotonicity is a quantitative refinement of monotonicity that can
be captured with higher-order Fitzpatrick functions. We begin in section 6
by reviewing known results about these functions. We then present a new
closed form (Example 6.4), a novel recursion formula (Theorem 6.5), and a
localization of the domain (Corollary 6.7).

• Finally, in section 7, we study cyclic monotonicity properties and higher-order
Fitzpatrick functions of rotators in the Euclidean plane. Complete charac-
terizations of n-cyclic monotonicity and explicit formulas for the Fitzpatrick
functions are provided in all possible cases (Theorem 7.8). This considerably
extends previously known results [2, section 4].

2. The Fitzpatrick function and skew operators. The Fitzpatrick function
of a continuous linear operator will be formulated in terms of a quadratic function
that we present next.

Definition 2.1 (quadratic function). Let A : X → X be continuous, linear, and
symmetric. Then we set qA : X → R : x → 1

2 〈x,Ax〉.
Fact 2.2. Let A : X → X be continuous, linear, and symmetric. Then

(7) qA is convex ⇔ A is monotone.

In this case, the following is true:
(i) ∇qA = A.
(ii) q∗A ◦A = qA.
(iii) ranA ⊆ dom q∗A ⊆ ranA.
(iv) q∗A ≥ 0 and (∀u ∈ X)(∀ρ ∈ R � {0}) q∗A(ρu) = ρ2q∗A(u). Consequently,

dom q∗A is a subspace.
(v) If ranA is closed, then q∗A = ιranA + qA† , where A† is the Moore–Penrose

inverse [20] of A.
(vi) If A is bijective, then q∗A = qA−1 .
Proof. (See also [3, Proposition 12.3.6].) (i) and (ii) See [5, Theorem 3.6.(i)]. See

also [30, Theorem 5.1] for a considerably more general version of (i). (iii) See [4, Fact
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2.2(iii)]. (iv) The proof of item (iv) is elementary. (v) See [6, Proposition 3.7(iv)].
(vi) is clear from (v).

Theorem 2.3. Let A : X → X be continuous, linear, and monotone. Then
(i)

(
∀(x, u) ∈ X ×X

)
FA(x, u) = 2q∗A+

(
1
2u + 1

2A
∗x

)
= FA+(x, u−A◦x);

(ii) ranA+ ⊆ (A∗ ⊕ Id)(domFA) = dom q∗A+
⊆ ranA+;

(iii)
(
∀(u, x) ∈ X ×X

)
F ∗
A(u, x) = ιgraA(x, u) + 〈x,Ax〉.

Proof. Fix (x, u) ∈ X ×X. (i) This follows from

FA(x, u) = sup
y∈X

〈x,Ay〉 + 〈y, u〉 − 〈y,Ay〉 = 2 sup
y∈X

〈y, 1
2u + 1

2A
∗x〉 − qA+(y)(8)

= 2q∗A+

(
1
2u + 1

2A
∗x

)
= 2q∗A+

(
1
2 (u−A◦x) + 1

2A+x
)

= FA+
(x, u−A◦x).

(ii) The equality is a consequence of (i), and the inclusions are then clear from Fact
2.2(iii). (iii) This follows from Fact 1.4(iii) and the fact that the function (u, x) →
ιgraA(x, u) + 〈x, u〉 = ιgraA(x, u) + 〈x,Ax〉 is already convex, lower semicontinuous,
and proper.

The next two results play a role in the proof of Theorem 5.4 below.
Example 2.4. Let A : X → X be continuous, linear, monotone, and symmetric.

Then

(9)
(
∀x ∈ X

)(
∀y ∈ X

)
FA(x,Ay) = 1

4 〈x + y,A(x + y)〉.

Proof. Take x ∈ X and y ∈ X. Using Theorem 2.3(i) and Fact 2.2(ii), we obtain

(10) FA(x,Ay) = 2q∗A
(

1
2Ay + 1

2Ax
)

= 2qA
(

1
2x + 1

2y
)

= 1
4 〈x + y,A(x + y)〉,

as required.
Example 2.5 (closed range symmetric operator). Let A : X → X be continuous,

linear, monotone, and symmetric such that ranA is closed. Then(
∀(x, u) ∈ X ×X

)
FA(x, u) = ιranA(u) + 1

4

(
〈x,Ax〉 + 2〈x, u〉 + 〈A†u, u〉

)
(11)

= ιranA(u) + 1
4‖x + A†u‖2

A

and hence

(12) domFA = X × ranA.

Proof. Fix (x, u) ∈ X × X. Using Theorem 2.3(i), Fact 2.2(v), and standard
properties of the Moore–Penrose inverse [20], we deduce that

FA(x, u) = 2q∗A
(

1
2u + 1

2Ax
)

(13)

= 2ιranA

(
1
2u + 1

2Ax
)

+ 2qA†
(

1
2u + 1

2Ax
)

= ιranA(u) + 〈A†( 1
2u + 1

2Ax), 1
2u + 1

2Ax〉
= ιranA(u) + 1

4

(
〈A†u, u〉 + 〈A†u,Ax〉 + 〈A†Ax, u〉 + 〈A†Ax,Ax〉

)
= ιranA(u) + 1

4

(
〈A†u, u〉 + 〈AA†u, x〉 + 〈x,AA†u〉 + 〈AA†Ax, x〉

)
= ιranA(u) + 1

4

(
〈x,Ax〉 + 2〈x, u〉 + 〈A†u, u〉

)
= ιranA(u) + 1

4

(
〈x,Ax〉 + 〈x,AA†u〉 + 〈A†u,Ax〉 + 〈A†u,AA†u〉

)
= ιranA(u) + 1

4 〈x + A†u,A(x + A†u)〉
= ιranA(u) + 1

4‖x + A†u‖2
A,



FITZPATRICK FUNCTIONS AND LINEAR MONOTONE OPERATORS 793

as desired.
Remark 2.6. Let A be as in Example 2.5. A referee pointed out that (12) can

also be proved as follows: Take (x, u) ∈ X × X. Utilizing Theorem 2.3(i) and Fact
2.2(iii), we have

(14) (x, u) ∈ domFA ⇔ 1
2u + 1

2Ax ∈ dom q∗A = ranA ⇔ u ∈ ranA.

Let us provide two further examples. The first one is related to [29, Example 1],
while the second one generalizes [29, Example 3].

Example 2.7 (bijective symmetric operator). Let A : X → X be continuous,
linear, monotone, symmetric, and bijective. Then(

∀(x, u) ∈ X ×X
)

FA(x, u) = 1
4

(
〈x,Ax〉 + 2〈x, u〉 + 〈A−1u, u〉

)
(15)

= 1
4‖x + A−1u‖2

A.

Proof. This is clear from Example 2.5.
Example 2.8 (skew operator). Let A : X → X be continuous, linear, and skew.

Then

(16)
(
∀(x, u) ∈ X ×X

)
FA(x, u) = F ∗

A(u, x) = ιgraA(x, u).

Proof. Since A is skew, A∗ = −A, A+ = 0 and thus dom q∗A+
= ranA+ = {0}

is closed (Fact 2.2(iii)). Using Theorem 2.3(i), Fact 2.2(iv), and Theorem 2.3(iii), we
obtain that

FA(x, u) = 2q∗A+

(
1
2u + 1

2A
∗x

)
= 2ι{0}

(
1
2u + 1

2A
∗x

)
(17)

= 2ι{0}
(

1
2u− 1

2Ax
)

= ι{0}(u−Ax) = ιgraA(x, u)

= ιgraA(x, u) + 〈x,Ax〉 = F ∗
A(u, x),

which completes the proof.
We now present a new characterization of skew operators using the Fitzpatrick

family.
Theorem 2.9. Let A : X → X be continuous, linear, and monotone. Then A is

skew ⇔ FA is a singleton. In this case, FA = {ιgraA}.
Proof. Fix (x, u) ∈ X ×X.
“⇐”: If u − Ax /∈ ranA+, then u − Ax �= 0. Now suppose that u − Ax �= 0.

Then (x, u) /∈ graA and hence F ∗
A(u, x) = +∞ by Theorem 2.3(iii). Fact 1.6 implies

that FA(x, u) = +∞, i.e., (x, u) /∈ domFA. If u + A∗x belonged to ranA+, then
q∗A+

(u + A∗x) < +∞ (by Fact 2.2(iii)) and hence (x, u) ∈ domFA (by Theorem

2.3(i)), which is absurd. Thus u + A∗x /∈ ranA+. Now u + A∗x = u − Ax + 2A+x,
which implies u−Ax /∈ ranA+. Altogether, we have verified the equivalence

(18)
(
∀(x, u) ∈ X ×X

)
u−Ax �= 0 ⇔ u−Ax /∈ ranA+.

Since (∀u ∈ X � {0}) u − A0 = u �= 0, (18) yields u = u − A0 /∈ ranA+. Hence
ranA+ = {0}; equivalently, A+ = 0 and therefore A = A◦.

“⇒”: This follows from Example 2.8 and Fact 1.6.
Remark 2.10. Loosely speaking, Theorem 2.9 states that a Fitzpatrick family

with only one element corresponds to a “bad” (here, skew) monotone operator. The
situation is similar for subdifferential operators: F∂f reduces to the singleton {f⊕f∗}
when f is sublinear or an indicator function (see [12, 13] and also [2]).
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3. Range. In this section, we compare the range of a continuous linear monotone
operator to the range of its adjoint.

Proposition 3.1. Let A : X → X be continuous, linear, and monotone. Then
kerA = kerA∗ and ranA = ranA∗.

Proof. Take x ∈ kerA and v ∈ ranA, say v = Ay. Then (∀α ∈ R) 0 ≤
〈αx+y,A(αx+y)〉 = α〈x, v〉+〈y,Ay〉. Hence 〈x, v〉 = 0 and thus kerA ⊂ (ranA)⊥ =
kerA∗. Since A∗ is also continuous, linear, and monotone, we obtain kerA∗ ⊂
kerA∗∗ = kerA. Altogether, kerA = kerA∗ and therefore ranA = ranA∗.

Remark 3.2.

(i) A referee pointed out that Proposition 3.1 also follows from [30, Corollary 3.5],
which is more general.

(ii) Example 3.3 below illustrates that the closures in Proposition 3.1 are critical.
(iii) An operator A : X → X such that ranA = ranA∗ is called range-symmetric

or EP ; see [26, p. 408]. Proposition 3.1 implies that every continuous, lin-
ear, and monotone operator with closed range is range-symmetric. See [16,
Theorem 2.3] for equivalent properties in the matrix case.

(iv) Every normal matrix A (i.e., AA∗ = A∗A) is range-symmetric: indeed, we
then have ranA = ranAA∗ = ranA∗A = ranA∗ (the first and the last
equalities follow, e.g., from [26, p. 212]).

(v) However, a range-symmetric monotone matrix need not be normal:

(19) A =

(
2 1
−1 1

)

is monotone, but AA∗ �= A∗A.
Example 3.3 (Volterra operator). Set X = L2[0, 1]. The Volterra integration

operator [21, Problem 148] is defined by

(20) V : X → X : x → V x, where V x : [0, 1] → R : t →
∫ t

0

x.

Fix x ∈ X. Then

(21) (V ∗x)(t) =

∫ 1

t

x

and kerV = kerV ∗ = {0}, so V and V ∗ have dense range. Set e ≡ 1 ∈ X. Now (20)
and (21) imply (V + V ∗)x = 〈x, e〉e and thus 〈x, (V + V ∗)x〉 = 〈x, e〉2 ≥ 0. Hence

(22) V is monotone and V+x = 1
2
〈x, e〉e.

Moreover, qV+(x) = 1
2 〈x, V+x〉 = 1

4 〈x, e〉2 and ranV+ = Re is closed. Now Fact 2.2(ii)
and Theorem 2.3(i), (iii) result in

FV : X ×X → ]−∞,+∞](23)

(z, w) →
{

1
2 〈w + V ∗z, e〉2 if w + V ∗z = 〈w + V ∗z, e〉e;
+∞ otherwise

and

F ∗
V : X ×X → ]−∞,+∞](24)

(w, z) →
{

1
2 〈z, e〉2 if w = V z;

+∞ otherwise.
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Next, assume that V x = V ∗y, i.e., (∀t ∈ [0, 1])
∫ t

0
x =

∫ 1

t
y. Evaluating this at t = 0

and t = 1, we learn that 〈y, e〉 = 〈x, e〉 = 0. We thus have verified the implication

(25)
x ∈ X
y ∈ X

V x = V ∗y

⎫⎬
⎭ ⇒ 〈x, e〉 = 〈y, e〉 = 0

and the inclusion

(26) ranV ∩ ranV ∗ ⊆
{
V x | x ∈ {e}⊥

}
.

Conversely, if x ∈ {e}⊥, then

(27) (∀t ∈ [0, 1]) (V x)(t) = 〈x, e〉 −
∫ 1

t

x =
(
V ∗(−x)

)
(t)

and hence V x ∈ ranV ∩ ranV ∗. Altogether,

(28) ranV ∩ ranV ∗ = {V x : x ∈ {e}⊥}.

Since 〈e, e〉 = 1 �= 0, the implication (25) shows that V e /∈ ranV ∗ and that V ∗e /∈
ranV . Therefore,

(29) ranV � ranV ∗ and ranV ∗
� ranV.

4. Rectangular monotone operators. We now turn to a property related to
the domain of the Fitzpatrick function.

Definition 4.1 (rectangular). Let A : X → X be continuous, linear, and mono-
tone. Then A is rectangular if X × ranA ⊆ domFA.

Remark 4.2.

(i) The property referred to in Definition 4.1 was first introduced by Brézis and
Haraux [11]. In the literature it is also known as property (*) and as 3*-
monotone. However, we follow here Simons’ [39] more descriptive naming
convention, which is based on his observation that—since domFA ⊆ domA×
ranA = X × ranA is always true—the operator A is rectangular if and only
if domFA is the “rectangle” X × ranA.

(ii) In the context of general monotone operators, the subdifferential operator is
known to be rectangular [11].

(iii) As a consequence of (ii), we note that every continuous, linear, monotone,
and symmetric operator is rectangular (Fact 2.2(i)). This will be reproved in
Corollary 4.9 below.

The importance of rectangularity stems from a powerful result due to Brézis and
Haraux [11], which we state next in the present context of linear operators.

Fact 4.3 (Brézis–Haraux). Let A and B be continuous, linear, and monotone
operators from X to X, and suppose that A or B is rectangular. Then ran (A+B) =
ranA + ranB and int ran(A + B) = int(ranA + ranB).

Proof. See [11], and also [36, 39] for different proofs.
It is worthwhile to list some of the most important consequences of Fact 4.3.
Corollary 4.4. Let A and B be continuous, linear, and monotone operators

from X to X. Suppose that A or B is rectangular, and that A or B is surjective.
Then A + B is surjective.
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Proof. Fact 4.3 yields X = intX = int(ranA+ranB) = int ran(A+B). Therefore,
X = ran(A + B) and A + B is surjective.

Corollary 4.5. Let A and B be continuous, linear, and monotone operators
from X to X such that A or B is rectangular. Then ker(A + B) = kerA ∩ kerB.

Proof. Using Proposition 3.1 and Fact 4.3, we obtain

(kerA ∩ kerB)⊥ = (kerA)⊥ + (kerB)⊥ = ranA∗ + ranB∗(30)

= ranA + ranB = ran (A + B)

=
(
ker(A + B)

)⊥
.

The result follows by taking orthogonal complements.
Corollary 4.6. Let A and B be continuous, linear, and monotone operators

from X to X. Suppose that A or B is rectangular, and that A or B is injective. Then
A + B is injective.

Corollary 4.7. Let A and B be continuous, linear, and monotone operators
from X to X. Suppose that A or B is rectangular, and that A or B is bijective. Then
A + B is bijective.

Proposition 4.8. Let A : X → X be continuous, linear, and monotone. Then
the following are equivalent:

(i) A is rectangular.
(ii) ranA + ranA∗ ⊆ dom q∗A+

.

(iii) ranA◦ ⊆ dom q∗A+
.

Proof. (i)⇔(ii): This is a direct consequence of Theorem 2.3(i). (ii)⇒(iii):
ranA◦ = ran(A − A∗) ⊆ ranA − ranA∗ = ranA + ranA∗ ⊆ dom q∗A+

. (ii)⇐(iii):

This follows from Fact 2.2(iii), (iv) and the fact that A∗ = A+ − A◦ yield ranA +
ranA∗ = ran(A+ +A◦) + ran(A+ −A◦) ⊆ ranA+ + ranA◦ ⊆ dom q∗A+

+ dom q∗A+
=

dom q∗A+
.

Corollary 4.9. Let A : X → X be continuous, linear, monotone, and symmet-
ric. Then A is rectangular.

Proof. Utilizing Fact 2.2(iii), we see that ranA + ranA∗ = ranA+ ⊆ dom q∗A+
.

The result follows from Proposition 4.8.
Corollary 4.10. Let A : X → X be continuous, linear, and monotone, and

suppose that ranA+ is closed. Then A is rectangular if and only if ranA◦ ⊆ ranA+.
Proof. Fact 2.2(iii) shows that dom q∗A+

= ranA+. Applying Proposition 4.8, we
obtain the proof.

Remark 4.11 (paramonotone operators). Let X = R
n and let A ∈ R

n×n be
monotone. By [22, Proposition 3.2.(ii)], A is paramonotone ⇔ kerA+ ⊆ kerA. On
the other hand, using Corollary 4.5 (applied to A+ and A◦) and Corollary 4.10, we
have the equivalences kerA+ ⊆ kerA ⇔ kerA+ ⊆ kerA+∩kerA◦ ⇔ kerA+ ⊆ kerA◦
⇔ ranA◦ ⊆ ranA+ ⇔ A is rectangular. Altogether,

(31) A is paramonotone if and only if A is rectangular.

See [22] for further information on paramonotone operators.
The next result can be deduced from [11, Proposition 2]. The proof provided here

is somewhat simpler and based on the Fitzpatrick function, and the result is stated
in a more applicable form.

Theorem 4.12. Let A : X → X be continuous, linear, and monotone. Then the
following are equivalent:
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(i) A is rectangular.
(ii) For some γ > 0, ‖γA− Id‖ ≤ 1.
(iii) A∗ is rectangular.
Proof. The conditions all hold when A = 0, so assume that A �= 0.
(i)⇒(ii): Consider the function

(32) f : X → ]−∞,+∞] : x → FA(x, 0).

Then f is convex, lower semicontinuous, and proper by Fact 1.4(i), (ii). Since A is
rectangular, X × {0} ⊆ X × ranA ⊆ domFA. Hence dom f = X. It follows, e.g.,
from [43, Theorem 2.2.20] that there exist δ > 0 and β > 0 such that (∀x ∈ B(0; δ))
f(x) = FA(x, 0) = supy∈X〈x,Ay〉 − 〈y,Ay〉 ≤ β. Fix x ∈ B(0; δ) and y ∈ X. Then

(33) (∀ρ ∈ R) 0 ≤ β + 〈ρy,A(ρy)〉 − 〈x,A(ρy)〉 = β + ρ2〈y,Ay〉 − ρ〈x,Ay〉.

We claim that

(34) (∀x ∈ B(0; δ))(∀y ∈ X) 〈x,Ay〉2 ≤ 4β〈y,Ay〉.

If 〈y,Ay〉 = 0, then (33) shows that 〈x,Ay〉 = 0, and hence (34) holds. Now assume
that 〈y,Ay〉 �= 0. In terms of ρ, the right side of (33) is a nonnegative quadratic
function. Substituting the minimizer 〈x,Ay〉

/
(2〈y,Ay〉) of this quadratic function

into (33) yields an inequality that is equivalent to (34). In turn, (34) leads to

(35) (∀y ∈ X) δ2‖Ay‖2 ≤ 4β〈y,Ay〉.

Set α = δ2/(4β). We deduce that (∀y ∈ X) 〈y, αAy〉 ≥ ‖αAy‖2, i.e., αA is firmly
nonexpansive. This (see [19]) is equivalent to the nonexpansivity of 2αA− Id, i.e., to
‖2αA− Id‖ ≤ 1.

(ii)⇒(i): Set α = γ/2. Fix x and y in X and take z ∈ X. Utilizing the equiva-
lences αA is firmly nonexpansive ⇔ ‖2αA − Id‖ ≤ 1 ⇔ ‖2αA∗ − Id‖ ≤ 1 ⇔ αA∗ is
firmly nonexpansive, we estimate

〈x,Az〉 + 〈z,Ay〉 − 〈z,Az〉 =
(
〈x,Az〉 − 1

2 〈z,Az〉
)

+
(
〈A∗z, y〉 − 1

2 〈z,A
∗z〉

)(36)

≤
(
‖x‖ ‖Az‖ − 1

2α‖Az‖2
)

+
(
‖A∗z‖ ‖y‖ − 1

2α‖A
∗z‖2

)
≤ 1

2α

(
‖x‖2 + ‖y‖2

)
,

where the last inequality was obtained by computing the maxima of the quadratic
functions ρ → ‖x‖ρ − 1

2αρ
2 and ρ → ‖y‖ρ − 1

2αρ
2, respectively. It follows from (36)

that

(37) (∀x ∈ X)(∀y ∈ X) FA(x,Ay) ≤ 1
γ

(
‖x‖2 + ‖y‖2

)
,

hence X × ranA ⊂ domFA.
(ii)⇔(iii): Apply the equivalence (i)⇔(ii) to A∗.
Corollary 4.13. The continuous, linear, monotone, and rectangular operators

form a convex cone.
Proof. It is clear that they form a cone. Suppose A and B are continuous,

linear, monotone, and rectangular. Then there exist γA > 0 and γB > 0 such
that ‖γAA − Id‖ ≤ 1 and ‖γBB − Id‖ ≤ 1. Set γ = 1

2 min{γA, γB} and estimate
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‖γ(A+B)− Id‖ ≤ 1
2‖2γA− Id‖+ 1

2‖2γB− Id‖ ≤ 1. Hence A+B is rectangular and
the proof is complete.

The next example was established by direct computation in [4]; however, Theo-
rem 4.12 yields a very transparent and simple proof.

Example 4.14. Let R : Xn → Xn : (x1, x2, . . . , xn) → (xn, x1, . . . , xn−1) be the
right-shift operator on Xn. Then Id −R is rectangular.

Proof. Since ‖1 · (Id − R) − Id‖ = ‖−R‖ = 1, the result is a consequence of
Theorem 4.12.

We conclude this section by providing a novel nonsmooth proof of a result on
the domain of the Fitzpatrick function of the subdifferential operator (see also [6,
Theorem 2.6]).

Theorem 4.15. Let f : X → ]−∞,+∞] be convex, lower semicontinuous, and
proper. Then

(38) dom f × dom f∗ ⊆ domF∂f ⊆ dom f × dom f∗.

Proof. The first inclusion is elementary (see also [6, Proposition 2.1]). Now take
(x, u) ∈ domF∂f and set C = dom f . Assume to the contrary that x /∈ C; hence
f(x) = +∞ and dC(x) = inf ‖x − C‖ > 0. Fix x0 ∈ dom f and define the family of
nonconvex but lower semicontinuous functions

(39) (∀ρ > 0) fρ : X → ]−∞,+∞] : y →
{
f(y) if y �= x;

f(x0) + ρ if y = x.

The approximate mean value theorem of Mordukhovich and Shao (see [27, Theo-
rem 3.49] or [28, Theorem 8.2]), applied to fρ and the points x0 and x, shows that
for every ρ > 0, there exist yρ ∈ [x0, x[ and a sequence (yρ,n, vρ,n)n∈N in gra ∂f such
that yρ,n → yρ and

(40) lim
n∈N

〈 x− yρ,n
‖x− yρ,n‖

, vρ,n

〉
≥ fρ(x) − fρ(x0)

‖x− x0‖
=

ρ

‖x− x0‖
.

Therefore, there exists a sequence ((zn, wn))n∈N in gra ∂f such that

(41)
〈 x− zn
‖x− zn‖

, wn

〉
→ +∞.

By definition of F∂f , the Cauchy–Schwarz inequality, and (41), we obtain

F∂f (x, u) = sup
(y,v)∈gra ∂f

(
〈x, v〉 + 〈y, u〉 − 〈y, v〉

)
(42)

= sup
(y,v)∈gra ∂f

(
〈x− y, v〉 + 〈y − x, u〉 + 〈x, u〉

)

≥ sup
(y,v)∈gra ∂f

(
‖x− y‖

(〈 x− y

‖x− y‖ , v
〉
− ‖u‖

)
+ 〈x, u〉

)

≥ lim
n∈N

(
‖x− zn‖

(〈 x− zn
‖x− zn‖

, wn

〉
− ‖u‖

)
+ 〈x, u〉

)

≥ lim
n∈N

(
dC(x)

(〈 x− zn
‖x− zn‖

, wn

〉
− ‖u‖

)
+ 〈x, u〉

)
= +∞.

This contradicts the assumption that F∂f (x, u) < +∞. Therefore, x ∈ dom f . An
analogous argument (applied to f∗) implies that u ∈ dom f∗.
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5. The Fitzpatrick function of the sum. One of Fitzpatrick’s open problems
[17, Problem 5.4] is to find the Fitzpatrick function of the sum of two operators. This
has proven to be a difficult problem. However, an upper bound is always readily
available.

Definition 5.1. Let A : X → X and B : X → X be continuous, linear, and
monotone operators, and set(

∀(x, u) ∈ X ×X
)

Φ{A,B}(x, u) =
(
FA(x, ·)�FB(x, ·)

)
(u)(43)

= inf
v+w=u

FA(x, v) + FB(x,w).

Proposition 5.2 (upper bound). Let A : X → X and B : X → X be continuous,
linear, and monotone operators. Then FA+B ≤ Φ{A,B}.

Proof. See [6, Proposition 4.2].
In [6, section 4] it is shown that in the context of subdifferential operators, this

upper bound is sometimes—but not always—tight. In the remainder of this section
we investigate the upper bound in the present context of continuous, linear, and
monotone operators.

Theorem 5.3. Let A : X → X and B : X → X be continuous, linear, and
monotone operators. Suppose that one of the following conditions is satisfied:

(i) A is skew, and B is skew.
(ii) A is symmetric, and B is skew.

Then FA+B = Φ{A,B}.
Proof. Fix (x, u) ∈ X ×X. (i) Repeated application of Example 2.8 yields

FA+B(x, u) = ιgra(A+B)(x, u)(44)

= inf
v+w=u

ι{Ax}(v) + ι{Bx}(w)

= inf
v+w=u

ιgraA(x, v) + ιgraB(x,w)

= inf
v+w=u

FA(x, v) + FB(x,w)

= Φ{A,B}(x, u).

(ii) Theorem 2.3(i) and Example 2.8 result in

FA+B(x, u) = FA(x, u−Bx)(45)

= inf
v∈Bx

FA(x, u− v)

= inf
v∈X

FA(x, u− v) + ιgraB(x, v)

= inf
v∈X

FA(x, u− v) + FB(x, v)

= Φ{A,B}(x, u).

The proof is complete.
The “purely symmetric” counterpart to Theorem 5.3 seems to require a closedness

assumption. We are grateful to a referee for providing us with a simpler and more
powerful proof.

Theorem 5.4. Let A : X → X and B : X → X be continuous, linear, monotone,
and symmetric. Then FA+B = Φ{A,B} on ran(A + B). Consequently, if ran(A + B)
is closed, then FA+B = Φ{A,B}.
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Proof. Fix x ∈ X and y ∈ X. Utilizing Example 2.4 thrice, we obtain

Φ{A,B}
(
x, (A + B)y

)
≤ FA(x,Ay) + FB(x,By)(46)

= 1
4 〈x + y,A(x + y)〉 + 1

4 〈x + y,B(x + y)〉
= 1

4 〈x + y, (A + B)(x + y)〉
= FA+B

(
x, (A + B)y

)
.

Thus

(47) Φ{A,B} ≤ FA+B on X × ran(A + B).

On the other hand, by Proposition 5.2, FA+B ≤ Φ{A,B}. Altogether, FA+B = Φ{A,B}
on X×ran(A+B). If ran(A+B) is closed, we deduce from (12) that FA+B = Φ{A,B}
everywhere.

Remark 5.5. We do not know whether or not the conclusion of Theorem 5.4
remains true when the assumption on the closedness of the range of the sum of the
operators is omitted. Indeed, we do not know whether or not two continuous, linear,
and monotone operators A : X → X and B : X → X exist for which FA+B �= Φ{A,B}.

Corollary 5.6. Let A : X → X and B : X → X be continuous, linear, and
monotone operators such that ran(A+ + B+) is closed. Then FA+B = Φ{A,B}.

Proof. Fix (x, u) ∈ X ×X. Using Theorems 5.3(ii), 5.4, 5.3(i), and 5.3(ii) again,
we obtain

FA+B(x, u)

(48)

= FA++A◦+B++B◦(x, u) = F(A++B+)+(A◦+B◦)(x, u)

= inf
v+w=u

FA++B+(x, v) + FA◦+B◦(x,w)

= inf
v+w=u

(
inf

v1+v2=v
FA+(x, v1) + FB+(x, v2) + inf

w1+w2=w
FA◦(x,w1) + FB◦(x,w2)

)
= inf

v1+v2+w1+w2=u
FA+(x, v1) + FA◦(x,w1) + FB+(x, v2) + FB◦(x,w2)

= inf
u1+u2=u

(
inf

v1+w1=u1

FA+(x, v1) + FA◦(x,w1) + inf
v2+w=u2

FB+(x, v2) + FB◦(x,w2)
)

= inf
u1+u2=u

FA(x, u1) + FB(x, u2)

= Φ{A,B}(x, u),

as required.
Corollary 5.7. Suppose that X is finite-dimensional, and let A : X → X and

B : X → X be continuous, linear, and monotone operators. Then FA+B = Φ{A,B}.

6. Cyclic monotonicity. An interesting quantitative grading of monotonicity
is the notion of cyclic monotonicity of order n. As demonstrated in [2], this property
is captured with a Fitzpatrick function of the corresponding order. In this section,
we study these notions for continuous linear operators. Let us start with the relevant
definitions.

Definition 6.1 (n-cyclic monotonicity). Let A : X → X be continuous and
linear. Then A is n-cyclically monotone if n ∈ {2, 3, . . . } and

(49) (∀(x1, . . . , xn) ∈ Xn)

( n−1∑
i=1

〈xi+1 − xi, Axi〉
)

+ 〈x1 − xn, Axn〉 ≤ 0.
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The operator A is cyclically monotone if A is n-cyclically monotone for every n ∈
{2, 3, . . . }.

Note that an operator is monotone if and only if it is 2-cyclically monotone.
Definition 6.2 (Fitzpatrick function of order n). Let A : X → X. For every

n ∈ {2, 3, . . . }, the Fitzpatrick function of A of order n is
(50)

FA,n(x, u) = sup
(x1,...,xn−1)∈Xn−1

( n−2∑
i=1

〈xi+1 − xi, Axi〉
)

+ 〈x− xn−1, Axn−1〉 + 〈x1, u〉.

We set FA,∞ = supn∈{2,3,...} FA,n.
Note that FA,2 = FA. We refer the reader to [2], where it is shown that FA,n is

well suited to study n-cyclic monotonicity of A. Most relevant for our current setting
is the following result.

Fact 6.3 (see [2, Theorem 2.9]). Let A : X → X be maximal monotone, and
let n ∈ {2, 3, . . . }. Then A is n-cyclically monotone ⇔ graA =

{
(x, u) ∈ X × X |

FA,n(x, u) = 〈x, u〉
}
.

Let us compute the Fitzpatrick functions of an arbitrary continuous, linear, sym-
metric, and positive definite operator. This result generalizes [2, Example 4.4].

Example 6.4. Let A : X → X be continuous, linear, symmetric, and positive
definite, and let n ∈ {2, 3, . . . }. Then

(51) FA,n : X ×X → R : (x, u) → n−1
2n

(
‖x‖2

A + ‖u‖2
A−1

)
+ 1

n
〈x, u〉

and

(52) FA,∞ = 1
2‖ · ‖

2
A ⊕ 1

2‖ · ‖
2
A−1 .

Proof. By [2, Example 4.4], we have

(53) FId,n : X ×X → R : (x, u) → n−1
2n

(
‖x‖2 + ‖u‖2

)
+ 1

n 〈x, u〉

and

(54) FId,∞ = 1
2‖ · ‖

2 ⊕ 1
2‖ · ‖

2.

Fix (x, u) ∈ X ×X. By definition, FA,n(x, u) is equal to

sup
(x1,...,xn−1)∈Xn−1

( n−2∑
i=1

〈xi+1 − xi, Axi〉
)

+ 〈x− xn−1, Axn−1〉 + 〈x1, u〉(55)

= sup
(x1,...,xn−1)∈Xn−1

( n−2∑
i=1

〈xi+1 − xi, xi〉A
)

+ 〈x− xn−1, xn−1〉A + 〈x1, A
−1u〉A.

The result now follows by applying (53) and (54) to Id, viewed as an operator on
(X, 〈·, ·〉A).

We now provide a simple, yet powerful, recursion formula.
Theorem 6.5 (recursion). Let A : X → X be monotone, and let n ∈ {2, 3, . . . }.

Then

(56)
(
∀(x, u) ∈ X ×X

)
FA,n+1(x, u) = sup

y∈X

(
FA,n(y, u) + 〈x− y,Ay〉

)
.
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Proof. Fix (x, u) ∈ X × X. Using the definition, we see that FA,n+1(x, u) is
equal to

sup
(x1,...,xn)∈Xn

( n−1∑
i=1

〈xi+1 − xi, Axi〉
)

+ 〈x− xn, Axn〉 + 〈x1, u〉(57)

= sup
xn∈X

(
sup

(x1,...,xn−1)∈Xn−1

( n−2∑
i=1

〈xi+1 − xi, Axi〉
)

+ 〈xn − xn−1, Axn−1〉 + 〈x1, u〉
)

+ 〈x− xn, Axn〉

= sup
xn∈X

(
FA,n(xn, u) + 〈x− xn, Axn〉

)
.

The proof is complete.
This section is concluded with two results on the domain of the Fitzpatrick func-

tion of order n.
Theorem 6.6. Let f : X → ]−∞,+∞] be convex, lower semicontinuous, and

proper, and let n ∈ {2, 3, . . . }. Then

(58) dom f × dom f∗ ⊆ domF∂f,n ⊆ domF∂f ⊆ dom f × dom f∗.

Proof. By [2, Theorem 3.5], we know that F∂f,n ≤ f ⊕ f∗, which implies the
first inequality of (58). The second inequality is clear since (F∂f,n)n∈{2,3,...} is an
increasing sequence. The third inequality follows from Theorem 4.15.

Corollary 6.7. Let A : X → X be continuous, linear, monotone, and symmet-
ric, and let n ∈ {2, 3, . . . }. Then

(59) X × ranA ⊆ domFA,n ⊆ X × ranA.

7. Rotators in the Euclidean plane. This section covers rotators in the Eu-
clidean plane. We characterize their cyclic monotonicity properties, and we provide
formulas for the Fitzpatrick function of any order.

From now on, X = R
2 and

(60) Aθ =

(
cos θ − sin θ
sin θ cos θ

)
, where θ ∈ [0, π/2].

The main result of this section will be stated at the end. For clarity of presen-
tation, we break up the proof into several propositions. The first proposition char-
acterizes n-cyclic monotonicity. See also Asplund’s paper [1] for characterizations for
general matrices.

Proposition 7.1. Let n ∈ {2, 3, . . . }. Then Aθ is n-cyclically monotone ⇔
θ ∈ [0, π/n].

Proof. If n = 2, then the symmetric part of Aθ is cos θ Id and the equivalence
is clear. Thus, we assume that n ∈ {3, 4, . . . }. We shall characterize the n-cyclic
monotonicity of Aθ in terms of the positive semidefiniteness of an associated Hermitian
matrix. Take n points x1 = (ξ1, η1), . . . , xn = (ξn, ηn) in X, and set xn+1 = x1. We
must show that

(61) 0 ≥
n∑

i=1

〈xi+1 − xi, Aθxi〉.
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Let us identify R
2 with C in the standard way: x = (ξ, η) in R

2 corresponds to
ξ + iη in C, where i =

√
−1, and 〈x, y〉 = Re(xy) for x and y in C. The operator Aθ

corresponds to complex multiplication by

(62) ω = exp(iθ).

Thus we aim to show that 0 ≥ Re
(∑n

i=1(xi+1 − xi)ωxi

)
=

∑n
i=1 Re

(
(xi+1 − xi)ωxi

)
,

an inequality which we now reformulate in C
n. Denote the n× n-identity matrix by

I, and set

(63) B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0

0 0 1 0
...

...
. . .

. . .

0
0 1
1 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ C
n×n and R = ωI ∈ C

n×n.

Identifying x ∈ C
n with (x1, . . . , xn) ∈ Xn, we note that (61) means 0 ≥ Re

((
(B −

I)x
)∗

Rx
)
; equivalently, 0 ≥ x∗(B∗ − I)Rx + x∗R∗(B − I)x. Set

Cn = (I − B∗)R + R∗(I − B)(64)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(ω + ω) −ω 0 · · · 0 −ω

−ω (ω + ω)
. . . 0

0
. . .

. . .
. . .

...
... 0
0 (ω + ω) −ω
−ω 0 · · · 0 −ω (ω + ω)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ C
n×n.

Then

(65) Aθ is n-cyclically monotone ⇔ Cn is positive semidefinite on C
n.

Note that the matrix Cn is a circulant Toeplitz matrix; e.g., by [26, Exercise 5.8.12],
the set of eigenvalues of Cn is

(66) Λn =
{
p(1), p(ζ), . . . , p(ζn−1)

}
, where p : t → (ω + ω) − ωt− ωtn−1,

and where ζ is an arbitrary nth root of unity. It will be convenient to work with

(67) ζn = exp(−2πi/n).

Then (
∀k ∈ {0, 1, . . . , n− 1}

)
p(ζkn) = ω + ω − ωζkn − ω(ζkn)n−1(68)

= ω + ω − ωζkn − ω(ζn−1
n )k

= ω + ω − ωζkn − ω(ζn)k

= ω + ω − (ωζkn + ωζkn)

= 2
(
cos(θ) − cos(2kπ/n− θ)

)
.
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“⇐”: Assume that θ ∈ [0, π/n]. If k ∈ {1, 2, . . . , n − 1}, then θ ≤ 2kπ/n − θ <
2π − θ and (68) implies that p(ζkn) ≥ 0. On the other hand, p(1) = 0. Altogether,
every eigenvalue in Λn is nonnegative and the Hermitian matrix Cn is thus positive
semidefinite. Therefore, by (65), Aθ is n-cyclically monotone.

“⇒”: Assume that θ ∈ ]π/(n+1), π/n]. It suffices to show that Aθ is not (n+1)-
cyclically monotone. Now (68) implies that p(ζn+1) = 2

(
cos(θ)−cos(2π/(n+1)−θ)

)
<

0 since 0 < 2π/(n+1)−θ < θ. In view of (66) and (65), we deduce that Λn+1 contains
a strictly negative eigenvalue, i.e., the matrix Cn+1 is not positive semidefinite, and
therefore Aθ is not (n + 1)-cyclically monotone.

Remark 7.2. The symmetric part of every continuous linear monotone opera-
tor is a subdifferential and hence cyclically monotone. Hence, higher-order n-cyclic
monotonicity properties are not captured in the symmetric part. In other words, the
analogue of Proposition 1.2 for n-cyclically monotone operators, where n ∈ {3, 4, . . . },
is false: Aπ/2 is not 3-cyclically monotone (by Proposition 7.1), yet its symmetric part(
Aπ/2

)
+

= 0 is cyclically monotone.

Proposition 7.3. Let n ∈ {2, 3, . . . } and suppose that θ ∈ ]π/(n + 1), π/n].
Then FAθ,n+1 ≡ +∞.

Proof. We shall utilize the following result on tridiagonal Toeplitz matrices; see
[26, Example 7.2.5]:

If α ∈ C � {0}, β ∈ C, and γ ∈ C � {0}, then the eigenvalues and the
eigenvectors of the n× n matrix

(69)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

β α 0 · · · 0

γ β α
. . .

...

0
. . .

. . .
. . . 0

...
. . . γ β α

0 · · · 0 γ β

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

are given by
(70)

λk = β + 2αρ cos
(
kπ/(n + 1)

)
and xk =

⎛
⎜⎜⎜⎜⎜⎜⎝

ρ sin
(
kπ/(n + 1)

)
ρ2 sin

(
2kπ/(n + 1)

)
ρ3 sin

(
3kπ/(n + 1)

)
...

ρn sin
(
nkπ/(n + 1)

)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

respectively, where

(71) k ∈ {1, 2, . . . , n} and ρ =
√
γ/α.

We identify R
2 with C as in the proof of Proposition 7.1, where we set ω = exp(iθ).

By (50), for an arbitrary (x, u) ∈ R
2 × R

2, we have

FAθ,n+1(x, u) = sup
a1,...,an

( n−1∑
i=1

〈ai+1 − ai, Aθai〉
)

+ 〈x− an, Aθan〉 + 〈a1 − x, u〉 + 〈x, u〉

= sup
a1,...,an

Re

(( n−1∑
i=1

(ai+1 − ai)ωai

)
+ (−an)ωan + xωan + a1u

)
(72)

= sup
a∈Cn

1
2

(
a∗Ha + (xωan + xωan) + (a1u + a1u)

)
,
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where a = (a1, . . . , an)T ∈ C
n and

(73) H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−(ω + ω) ω 0 · · · 0

ω −(ω + ω) ω 0
...

0
. . .

. . .
. . .

... ω −(ω + ω) ω
0 · · · 0 ω −(ω + ω)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ C
n×n.

By (70), the n eigenvalues of the Hermitian matrix H are given by(
∀k ∈ {1, . . . , n}

)
λk = −(ω + ω) + 2ω

√
ω/ω cos

(
kπ/(n + 1)

)
(74)

= 2
(
cos

(
kπ/(n + 1)

)
− cos(θ)

)
.

Since 0 < π/(n + 1) < θ ≤ π/2, we deduce that

(75) λ1 = 2
(
cos(π/(n + 1)) − cos(θ)

)
> 0.

Furthermore, since H is Hermitian, it can be unitarily diagonalized. There exists a
unitary matrix U ∈ C

n×n such that U∗HU = D is a diagonal matrix, with eigenvalues
λ1, . . . , λn on its diagonal. On one hand, changing variables via a = Uy, where
y = (y1, . . . , yn)T ∈ C

n, we have

(76) a∗Ha = λ1|y1|2 + · · · + λn|yn|2.

Note that if y = τ(1, 0, . . . , 0)T , then a∗Ha = λ1τ
2 is a convex quadratic in τ . On

the other hand,

(77) (xωan + xωan) + (a1x
∗ + a1x∗)

is R-linear in a, in y, and in τ . Altogether, the supremum in (72) is equal to +∞.
This completes the proof.

Proposition 7.4. Let n ∈ {2, 3, . . . } and suppose that θ = π/n. Then FAθ,n =
ιgraAθ

+ 〈·, ·〉.
Proof. Fix (x, u) ∈ X × X. If u = Aθx, then FAθ,n(x, u) = 〈x, u〉 by Fact 6.3.

Thus assume that u �= Aθx. Arguing as in the proof of Proposition 7.3, we see that

(78) FAθ,n(x, u) = sup
a∈Cn−1

1
2

(
a∗Ha + (xωan−1 + xωan−1) + (a1u + a1u)

)
,

where ω = exp(iθ) = exp(πi/n), a = (a1, . . . , an−1)
T ∈ C

n−1, and
(79)

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−(ω + ω) ω 0 · · · 0

ω −(ω + ω) ω 0
...

0
. . .

. . .
. . .

... ω −(ω + ω) ω
0 · · · 0 ω −(ω + ω)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ C
(n−1)×(n−1),

and where the eigenvalues μ1, . . . , μn−1 are given by (this is the counterpart of (74))

(80)
(
∀k ∈ {1, . . . , n− 1}

)
μk = 2

(
cos(kπ/n) − cos(θ)

)
≤ 0.
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Note that μ1 = 0 and that, by (70),

(81) b =

⎛
⎜⎜⎜⎝

b1
b2
...

bn−1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

exp(πi/n) sin(π/n)
exp(2πi/n) sin(2π/n)

...
exp((n− 1)πi/n) sin((n− 1)π/n)

⎞
⎟⎟⎟⎠

is a corresponding eigenvector. Then Hb = 0 ∈ C
n−1. Using zb, where z ∈ C, rather

than the general vector a in (78), we estimate

FAθ,n(x, u)

≥ sup
z∈C

Re (xωzbn−1 + zb1u)

= sup
z∈C

Re
(
x exp(πi/n)z exp((n− 1)πi/n) sin((n− 1)π/n) + z exp(−πi/n) sin(π/n)u

)
= sin(π/n) sup

z∈C

Re
(
z(u exp(−πi/n) − x)

)
.

(82)

Because u �= Aθx, i.e., u �= exp(πi/n)x viewed in C, we see that u exp(−πi/n)−x �= 0.
Thus, the last supremum is equal to +∞.

The following example will be utilized in Proposition 7.6.

Example 7.5. Suppose that θ ∈ [0, π/2[. Then

(83) FAθ,2 : R
2 × R

2 → R : (x, u) → 1

4 cos θ
‖u + A∗

θx‖2.

Proof. The symmetric part of Aθ is equal to cos(θ) Id and hence invertible. The
result follows by combining Theorem 2.3(i) and Fact 2.2(vi).

Proposition 7.6. Let n ∈ {2, 3, . . . } and suppose that θ ∈ ]0, π/n[. Then

(84)

FAθ,n : R
2 × R

2 → R

(x, u) → sin(n− 1)θ

2 sinnθ

(
‖x‖2 + ‖u‖2

)
+

sin θ

sinnθ
〈x,An−1

θ u〉(85)

=
sin θ

2 sinnθ

(( sin(n− 1)θ

sin θ
− 1

)(
‖x‖2 + ‖An−1

θ u‖2
)

+ ‖x + An−1
θ u‖2

)
.(86)

Proof. Observe that (86) is a direct consequence of (85). It suffices to verify (84)–
(85), and we do this by induction on n. Fix (x, u) ∈ R

2 ×R
2. Consider the case when

n = 2. Using Example 7.5 and the trigonometric identity (sin θ)/(sin 2θ) = 1/(2 cos θ),
we obtain

(87) FAθ,2(x, u) =
1

4 cos θ
‖u + A∗

θx‖2 =
sin θ

2 sin 2θ

(
‖x‖2 + ‖u‖2 + 2〈u,A∗

θx〉
)
,

which yields (85). We now assume that (85) holds for some n ∈ {2, 3, . . . }, and we
shall show that it also holds for n + 1, provided that θ ∈ ]0, π/(n + 1)[. Utilizing
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Theorem 6.5 and trigonometric identities, we obtain

(88)

FAθ,n+1(x, u)

= sup
y∈X

FAθ,n(y, u) + 〈x− y,Aθy〉

= sup
y∈X

sin(n− 1)θ

2 sinnθ

(
‖y‖2 + ‖u‖2

)
+

sin θ

sinnθ
〈y,An−1

θ u〉 + 〈A∗
θx, y〉 − 〈y,Aθy〉

= sup
y∈X

( sin(n− 1)θ

2 sinnθ
− cos θ

)
‖y‖2 +

sin(n− 1)θ

2 sinnθ
‖u‖2 +

sin θ

sinnθ
〈y,An−1

θ u〉 + 〈A∗
θx, y〉

(89)

= sup
y∈X

− sin(n + 1)θ

2 sinnθ
‖y‖2 +

sin(n− 1)θ

2 sinnθ
‖u‖2 +

sin θ

sinnθ
〈y,An−1

θ u〉 + 〈A∗
θx, y〉.

Since θ ∈ ]0, π/(n + 1)[, the coefficient of ‖y‖2 is strictly negative, which shows that
the quadratic function of y of which we take the supremum in (89) is strictly concave.
Setting the derivative of this quadratic function equal to 0, we find that the unique
maximizer in (89) is

(90)
sinnθ

sin(n + 1)θ

( sin θ

sinnθ
An−1

θ u + A∗
θx

)
.

Combining this with (88) and (89), followed by simplification and utilization of
trigonometric identities, we deduce that

(91) FAθ,n+1(x, u) =
sinnθ

2 sin(n + 1)θ

(
‖x‖2 + ‖u‖2

)
+

sin θ

sin(n + 1)θ
〈x,An

θu〉,

and this completes the proof.
Remark 7.7. Consider the setting of Proposition 7.6. Since n ∈ {2, 3, . . . } and

since θ ∈ ]0, π/n[, we have θ ≤ (n− 1)θ < π − θ and thus sin(n− 1)θ ≥ sin θ. While
it is clear from the definition that FAθ,n is convex (see (50)), we see this also directly
from (86).

We have obtained complete knowledge of all Fitzpatrick functions. Let us sum-
marize our findings.

Theorem 7.8. Let θ ∈ [0, π/2] and let Aθ be the rotator by θ in the Euclidean
plane, i.e.,

(92) Aθ =

(
cos θ − sin θ
sin θ cos θ

)
.

(i) Case θ = 0. Then Aθ = Id = ∇ 1
2‖ · ‖2 is cyclically monotone, FId,∞ =

1
2‖ · ‖2 ⊕ 1

2‖ · ‖2, and
(93)(
∀n ∈ {2, 3, . . . }

)
FId,n : R

2×R
2 → R : (x, u) → n− 1

2n

(
‖x‖2+‖u‖2

)
+

1

n
〈x, u〉.

(ii) Case θ ∈ ]0, π/2]. If n ∈ {2, 3, . . . }∩[2, π/θ[, then Aθ is n-cyclically monotone
and
(94)

FAθ,n : R
2 ×R

2 → R : (x, u) → sin(n− 1)θ

2 sinnθ

(
‖x‖2 + ‖u‖2

)
+

sin θ

sinnθ
〈x,An−1

θ u〉.
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If π/θ is an integer, then Aθ is (π/θ)-cyclically monotone and

(95) FAθ,π/θ = ιgraAθ
+ 〈·, ·〉.

If n ∈ {2, 3, . . . } ∩ ]π/θ,+∞[, then Aθ is not n-cyclically monotone and

(96) FAθ,n ≡ +∞.

Proof. (i) This follows from Example 6.4 with A = Id. (ii) is a direct consequence
of Propositions 7.1, 7.3, 7.4, and 7.6.

Remark 7.9. Theorem 7.8 greatly expands the knowledge about rotators and
their Fitzpatrick functions. In previous work [2], only rotators by 0 or by π/n, where
n ∈ {2, 3, . . . }, were considered. In that restricted setting, item (i) of Theorem 7.8
was known [2, Example 4.4]. It was also known that Aπ/n is n-cyclically monotone
but not (n + 1)-cyclically monotone [2, Example 4.6]. The formula (95) was known
only for θ = π/2 [2, Example 4.5], and formula (96) was known only for n ∈ {2, 3, 4}
[2, Remark 4.7].
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Abstract. For general constraint systems in Banach spaces, we present the directional stability
theorem based on the appropriate generalization of the directional regularity condition, suggested
earlier in [A. V. Arutyunov and A. F. Izmailov, Math. Oper. Res., 31 (2006), pp. 526–543]. This
theorem contains Robinson’s stability theorem but does not reduce to it. Furthermore, we develop
the related concept of directional metric regularity which is stable subject to small Lipschitzian per-
turbations of the constraint mapping, and which is equivalent to directional regularity for sufficiently
smooth mappings. Finally, we discuss some applications in sensitivity theory.

Key words. metric regularity, Robinson’s constraint qualification, directional regularity, direc-
tional metric regularity, feasible arc, sensitivity

AMS subject classifications. 49K27, 49K40, 90C31

DOI. 10.1137/060651616

1. Introduction. Directional regularity. Let Σ be a topological space, X
and Y be Banach spaces, and Q be a fixed closed set in Y . Consider a smooth
mapping F : Σ × X → Y (our smoothness hypotheses will be specified below), and
set

(1.1) D(σ) = {x ∈ X | F (σ, x) ∈ Q}

with σ ∈ Σ playing the role of a parameter. For a given (base) parameter value
σ0 ∈ Σ, fix x0 ∈ D(σ0). In this paper we are concerned with the following ques-
tion: For which (σ, x) ∈ Σ ×X close to (σ0, x0), and under which assumptions can
dist(x, D(σ)) be estimated from above via the “residual” of constraints in (1.1), that
is, via dist(F (σ, x), Q)? Here dist(z, S) = infs∈S ‖z− s‖ stands for the distance from
a point z to a set S.

The answer to this question is well known provided Q is convex and the so-called
Robinson’s constraint qualification (CQ) is satisfied at x0 for the mapping F (σ0, ·),
that is,

(1.2) 0 ∈ int

(
F (σ0, x0) + im

∂F

∂x
(σ0, x0) −Q

)
,

where intS is the interior of a set S, and im Λ is the range (image space) of a linear op-
erator Λ. According to Robinson’s stability theorem [21] (see also [3, Theorem 2.87]),
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under these assumptions there exists a constant c > 0 such that the estimate

(1.3) dist(x, D(σ)) ≤ cdist(F (σ, x), Q)

holds for all (σ, x) ∈ Σ ×X close enough to (σ0, x0).
In its turn, estimate (1.3) serves as a motivation for the very important concept of

metric regularity. Apparently, the term “metric regularity” appeared for the first time
in [4], but the concept dates back to earlier works [14, 20, 10] (or even to classical works
[15, 12]; see also [6, 5, 19]), and it finds multiple applications in modern variational
analysis. Specifically, the mapping F : X → Y is said to be metrically regular at
x0 ∈ F−1(Q) with respect to Q if there exists a constant c > 0 such that the estimate

(1.4) dist(x, F−1(Q + y)) ≤ cdist(F (x) − y, Q)

holds for all (x, y) ∈ X × Y close enough to (x0, 0). Note that (1.4) is nothing
else but the estimate (1.3) for F (σ, x) = F (x) − σ and σ = y, i.e., for the special
parametrization of the mapping F in question (the “right-hand side” perturbations).
Thus, by Robinson’s stability theorem, if Q is convex, then Robinson’s CQ

0 ∈ int(F (x0) + imF ′(x0) −Q)

implies metric regularity of F at x0 with respect to Q. Moreover, as is well known
(see, e.g., [3, Proposition 2.89]), under the appropriate smoothness hypothesis, the
converse implication is true as well, and thus, metric regularity and Robinson’s CQ
are actually equivalent.

For more recent developments and extensions of the metric regularity theory, see,
e.g., [17, 22, 13, 18, 16] and references therein.

In particular, if Robinson’s CQ does not hold, one cannot expect a smooth map-
ping to be metrically regular. Accordingly, for a parametric mapping F , estimate
(1.3) for all (σ, x) close enough to (σ0, x0) cannot be guaranteed if (1.2) does not
hold. However, we demonstrate below that under the regularity condition weaker
than (1.2), estimate (1.3) is still valid but possibly not for all (σ, x) in a neighbor-
hood of (σ0, x0); the set of appropriate (σ, x) will be specified. To this end, we give
the following definition.

Definition 1.1. The mapping F (σ0, ·) : X → Y is regular at x0 ∈ D(σ0) in a
direction ȳ ∈ Y if

(1.5) 0 ∈ int

(
F (σ0, x0) + im

∂F

∂x
(σ0, x0) − cone{ȳ} −Q

)
,

where coneS stands for the conic hull of a set S.
Note that for ȳ = 0, condition (1.5) reduces to Robinson’s CQ (1.2). Moreover, if

the latter is satisfied, the directional regularity condition (1.5) holds in any direction
ȳ ∈ Y , including ȳ = 0.

Condition (1.5) and the corresponding directional stability result were first sug-
gested in [1] for the case of finite-dimensional Y . However, the estimate obtained in
[1, Theorem 4.1] is somewhat weaker than (1.3). This is a consequence of the general
framework adopted in [1]. Specifically, the authors first consider the case of equal-
ity constraints and direct set constraints with a closed convex set P and prove the
directional stability theorem with the estimate to the solution set only from points
in P . Then they reduce (1.1) to this setting. On the other hand, the proof of the
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directional stability theorem in [1] is very concise and clear, and, in particular, it does
not appeal to any set-valued analysis. At the same time, the assumption dimY < ∞
cannot be dropped in that proof (and hence, in all the results obtained in [1]) be-
cause the argument there employs (the completely finite-dimensional) Brouwer’s fixed
point theorem. (We note, however, that in [1, Theorem 4.1], X can actually be just
a normed linear space, not necessarily complete.)

In section 2, we prove the directional stability theorem (Theorem 2.3) under the
same set of assumptions as in [1], but with the resulting estimate of the “proper”
form (1.3), and for a (possibly infinite-dimensional) Banach space Y . In particular,
Theorem 2.3 contains Robinson’s stability theorem but does not reduce to it, in
general.

Furthermore, in section 3, for a nonparametric mapping, we develop the direc-
tional metric regularity concept suggested by Theorem 2.3. In Theorem 3.2 we demon-
strate that this property is stable subject to small Lipschitzian perturbations of F .
This result combined with Theorem 2.3 implies the equivalence of directional regu-
larity and directional metric regularity for sufficiently smooth mappings.

Finally, in section 4, we demonstrate that Theorem 2.3 can be used in order to
directly obtain various stability results widely used in sensitivity analysis [3]. Specifi-
cally, assuming that Σ is a normed linear space, we consider the case when for a given
direction d ∈ Σ it holds that

(1.6) 0 ∈ int

(
F (σ0, x0) + im

∂F

∂x
(σ0, x0) + cone

{
∂F

∂σ
(σ0, x0)d

}
−Q

)
.

Note that (1.6) is a particular case of (1.5) for ȳ = −∂F
∂σ (σ0, x0)d. On the other hand,

(1.5) can be interpreted as (1.6) with F replaced by F (σ, y, x) = F (σ, x) − y, where
y ∈ Y is regarded as an additional parameter, and with d = (0, ȳ) ∈ Σ × Y .

In the context of mathematical programming problems, (1.6) is known as Gollan’s
condition [11]. It was extended to the general case in [2] (see also [3, Theorem 4.9]).
Moreover, in parametric optimization, this condition (which is a particular case of
(1.5)) is commonly known as the directional regularity condition. Taking into account
the relations between the two conditions discussed above, the authors prefer to use the
same name for the property stated in Definition 1.1. Note, however, that unlike (1.6),
(1.5) does not depend on a specific parametrization at all: it is entirely a property of
the unperturbed constraints. This makes our directional regularity particularly useful
for unification of some diverse developments, like those based on Robinson’s CQ and
on customary directional regularity (1.6).

2. Directional stability theorem. In what follows, we shall need some equiv-
alent formulations of the directional regularity condition introduced in Definition 1.1.

Proposition 2.1. Let Q be closed and convex.
Then condition (1.5) is equivalent to each of the following three conditions:

(2.1) cone{ȳ} ∩ int

(
F (σ0, x0) + im

∂F

∂x
(σ0, x0) −Q

)
�= ∅,

(2.2) ȳ ∈ int

(
im

∂F

∂x
(σ0, x0) −RQ(F (σ0, x0))

)
,

and

(2.3) im
∂F

∂x
(σ0, x0) − cone{ȳ} −RQ(F (σ0, x0)) = Y,
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where RS(z) = cone(S − z) stands for the radial cone to a set S at a point z ∈ S.
Note that condition (2.1) can be expressed in the following form: there exists

θ ≥ 0 such that

(2.4) θȳ ∈ int

(
F (σ0, x0) + im

∂F

∂x
(σ0, x0) −Q

)
.

Proof. (1.5) ⇒ (2.1). The proof of this implication is almost identical to that of
the corresponding assertion in [3, Theorem 4.9] (see the argument showing that (4.12)
implies (4.13)). Define the multifunction Ψ : X × R → 2Y :

(2.5) Ψ(x, θ) =

{
F (σ0, x0) + ∂F

∂x (σ0, x0)x− θȳ −Q if θ ≥ 0,
∅ if θ = 0.

Evidently, Ψ is a closed convex multifunction (that is, graph Ψ is a closed convex set;
see, e.g., [3, p. 55]), and

Ψ(X × R) = F (σ0, x0) + im
∂F

∂x
(σ0, x0) − cone{ȳ} −Q,

and thus, (1.5) means that 0 ∈ int Ψ(X×R). Furthermore, 0 ∈ Ψ(0, 0), and hence, by
the generalized open mapping theorem [3, Theorem 2.70] and by (2.5), 0 ∈ int Ψ(X×
[0, 1]). This means that there exists δ > 0 such that

Bδ(0) ⊂ Ψ(X × [0, 1])(2.6)

= F (σ0, x0) + im
∂F

∂x
(σ0, x0) − {θȳ | θ ∈ [0, 1]} −Q,

where Bδ(z) stands for the ball centered at z and of radius δ.
Fix δ̃ > 0 small enough so that δ̃ȳ ∈ Bδ(0). Then inclusion (2.6) implies that

there exists θ̃ ∈ [0, 1] such that

δ̃ȳ ∈ F (σ0, x0) + im
∂F

∂x
(σ0, x0) − θ̃ȳ −Q,

and hence,

(δ̃ + θ̃)ȳ ∈ F (σ0, x0) + im
∂F

∂x
(σ0, x0) −Q.

The set in the right-hand side of the latter inclusion is convex and contains 0, and
thus

{(δ̃ + θ̃)θȳ | θ ∈ [0, 1]} ⊂ F (σ0, x0) + im
∂F

∂x
(σ0, x0) −Q.

Then inclusion (2.6) implies that

Bδ(0) ⊂ F (σ0, x0) + im
∂F

∂x
(σ0, x0) − ȳ + {θȳ | θ ∈ [0, 1]} −Q

⊂ (1 + 1/(δ̃ + θ̃))

(
F (σ0, x0) + im

∂F

∂x
(σ0, x0) −Q

)
− ȳ.

It follows that

Bδθ(θȳ) = θȳ + Bδθ(0)

⊂ F (σ0, x0) + im
∂F

∂x
(σ0, x0) −Q
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holds with θ = (1 + 1/(δ̃ + θ̃))−1 > 0, and (2.4) (and hence (2.1)) is thus proved.
(2.1) ⇒ (2.2). Since Q − F (σ0, x0) ⊂ RQ(F (σ0, x0)), condition (2.1) clearly

implies that

int

(
im

∂F

∂x
(σ0, x0) −RQ(F (σ0, x0))

)
�= ∅.

Suppose that (2.2) does not hold. Then by the first separation theorem [3, Theo-
rem 2.13], there exists μ ∈ Y ∗ such that

〈μ, ȳ〉 ≤ 〈μ, η〉 ∀ η ∈ im
∂F

∂x
(σ0, x0) −RQ(F (σ0, x0)).

This evidently implies that

〈μ, θȳ〉 ≤ 0 ≤ 〈μ, y〉 ∀ θ ≥ 0, ∀ y ∈ F (σ0, x0) + im
∂F

∂x
(σ0, x0) −Q,

where the inclusion Q − F (σ0, x0) ⊂ RQ(F (σ0, x0)) was again taken into account.
Hence, μ separates cone{ȳ} and F (σ0, x0) + im ∂F

∂x (σ0, x0)−Q, and according to the
first separation theorem [3, Theorem 2.13], this contradicts (2.1).

(2.2) ⇒ (2.3). By (2.2), there exists δ > 0 such that

ȳ + Bδ(0) = Bδ(ȳ)

⊂ im
∂F

∂x
(σ0, x0) −RQ(F (σ0, x0)),

and hence

Bδ(0) ⊂ im
∂F

∂x
(σ0, x0) − ȳ −RQ(F (σ0, x0))

⊂ im
∂F

∂x
(σ0, x0) − cone{ȳ} −RQ(F (σ0, x0)).

Thus,

0 ∈ int

(
im

∂F

∂x
(σ0, x0) − cone{ȳ} −RQ(F (σ0, x0))

)

holds, which evidently implies (2.3).
(2.3) ⇒ (1.5). The proof of this implication is almost identical to that of the

corresponding assertion in [3, Proposition 2.95] (see the argument showing that (2.180)
implies (2.178)). Define the multifunction Ψ : X × R × R → 2Y :

(2.7) Ψ(x, θ, τ) =

{
∂F
∂x (σ0, x0)x− θȳ − τ(Q− F (σ0, x0)) if θ ≥ 0, τ ≥ 0,
∅ otherwise.

Evidently, Ψ is a closed convex multifunction, and

Ψ(X × R × R) = im
∂F

∂x
(σ0, x0) − cone{ȳ} −RQ(F (σ0, x0)),

and thus, (2.3) implies that 0 ∈ int Ψ(X ×R×R). Furthermore, 0 ∈ Ψ(0, 0, 0), and
hence, by the generalized open mapping theorem [3, Theorem 2.70] and by (2.7),

(2.8) 0 ∈ int Ψ(X × R+ × [0, 1]).
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On the other hand,

Ψ(X × R+ × [0, 1]) = im
∂F

∂x
(σ0, x0) − cone{ȳ}

−{τ(q − F (σ0, x0)) | τ ∈ [0, 1], q ∈ Q}

= F (σ0, x0) + im
∂F

∂x
(σ0, x0) − cone{ȳ}

−{τq + (1 − τ)F (σ0, x0) | τ ∈ [0, 1], q ∈ Q}

⊂ F (σ0, x0) + im
∂F

∂x
(σ0, x0) − cone{ȳ} −Q,

where the convexity of Q was taken into account. It follows that (2.8) implies
(1.5).

We shall also need the following proposition.
Proposition 2.2. Let Q be convex, y0 ∈ Q.
Then for any ȳ ∈ Y and any δ1 > 0, δ2 > 0 there exist ε > 0 and δ > 0 such that

(2.9) (Q− coneBδ(ȳ)) ∩Bε(y0) ⊂ Q ∩Bδ1(y0) − coneBδ2(ȳ).

Proof. First suppose that ȳ ∈ TQ(y0), where TQ(y0) = clRQ(y0) is the tangent
cone to Q at y0. We claim that in this case

(2.10) y0 ∈ int(Q ∩Bδ1(y0) − coneBδ2(ȳ)),

and hence, (2.9) evidently holds with an arbitrary δ > 0 and a sufficiently small ε > 0.
Indeed, the interior of the set in the right-hand side of (2.10) is nonempty, and

if (2.10) does not hold then by the first separation theorem [3, Theorem 2.13] there
exists μ ∈ Y ∗ such that

(2.11) 〈μ, y〉 ≥ 〈μ, y0〉 ∀ y ∈ Q ∩Bδ1(y0) − coneBδ2(ȳ).

Then evidently

(2.12) 〈μ, η〉 ≥ 0 ∀ η ∈ TQ(y0).

On the other hand, for any y ∈ Bδ2(0) such that 〈μ, y〉 > 0, from (2.11) we obtain

〈μ, y0 − ȳ〉 > 〈μ, y0 − (ȳ + y)〉
≥ 〈μ, y0〉,

and thus 〈μ, ȳ〉 < 0 which contradicts (2.12) (recall that ȳ ∈ TQ(y0)).
Now let ȳ �∈ TQ(y0). Since TQ(y0) is closed, by the second separation theorem

[3, Theorem 2.14] we then obtain the existence of μ ∈ Y ∗ such that (2.12) holds and
〈μ, ȳ〉 < 0.

Consider arbitrary sequences {qk} ⊂ Q, {ηk} ⊂ Y and a sequence of real numbers
{tk} such that tk ≥ 0 for all k and {qk − tkη

k} → y0. Hence

〈μ, qk − y0〉 + tk(−〈μ, ηk〉) = 〈μ, qk − tkη
k − y0〉 → 0.

Note that qk − y0 ∈ RQ(y0) ⊂ TQ(y0), and (2.12) implies that the first term in the
left-hand side is nonnegative for all k. Furthermore, inequality 〈μ, ȳ〉 < 0 implies that
the second term in the left-hand side is nonnegative as well for all k large enough,
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and hence, tk → 0. The latter implies that {qk} → y0. Thus, qk − tkη
k ∈ Q ∩

Bδ1(y0) − coneBδ2(ȳ) for all k large enough. This proves the needed inclusion (2.9)
with sufficiently small ε > 0 and δ > 0.

We are now ready to prove the main result of this section.
Theorem 2.3. Let Q be closed and convex, and let x0 ∈ D(σ0). Let F be

continuous at (σ0, x0) and Fréchet-differentiable with respect to x near (σ0, x0), and
let its derivative with respect to x be continuous at (σ0, x0).

If the mapping F (σ0, ·) is regular at x0 in a direction ȳ ∈ Y , then there exist a
neighborhood U of σ0 and ε > 0, δ > 0, and c > 0 such that the estimate (1.3) holds
for all (σ, x) ∈ U ×Bε(x0) satisfying the inclusion

(2.13) F (σ, x) ∈ Q− coneBδ(ȳ).

Proof. From the equivalent form (2.1) of the directional regularity condition it
evidently follows that there exists η̄ ∈ cone{ȳ} such that

(2.14) η̄ ∈ int

(
F (σ0, x0) + im

∂F

∂x
(σ0, x0) −Q

)
.

Note that if ȳ = 0 then necessarily η̄ = 0.
Define the multifunction F̄ : X → 2Y :

F̄(ξ) = F (σ0, x0) +
∂F

∂x
(σ0, x0)ξ −Q.

According to (2.14), there exists ξ̄ ∈ X such that F̄(ξ̄) = η̄, and moreover, by the
Robinson–Ursescu stability theorem [23, 20] (see also [3, Theorem 2.83]) it follows
that the multifunction F̄ is metrically regular at (ξ̄, η̄).

Fix ε̄ > 0. For each mapping G : X → Y , define the multifunction FG : X → 2Y ,

FG(ξ) = F (σ0, x0) + G(ξ) −Q.

Note that F ∂F
∂x (σ0, x0)

= F̄ , and hence, by [3, Theorem 2.84] it follows that there exist

l̄ > 0, δ > 0, and c̄ > 0 such that the estimate

dist(ξ̄, F−1
G (y)) ≤ c̄dist(G(ξ̄) − y, Q− F (σ0, x0))(2.15)

∀ y ∈ Bδ

(
η̄ − ∂F

∂x
(σ0, x0)ξ̄ + G(ξ̄)

)

holds for each G such that the difference mapping G(·) − ∂F
∂x (σ0, x0) is Lipschitz-

continuous on Bε̄(ξ̄) with modulus l ∈ (0, l̄).
It can be easily seen that there exists δ̃2 ∈ (0, δ/4] possessing the following prop-

erty: if η ∈ coneBδ̃2
(η̄) \ {0} then ‖‖η̄‖η/‖η‖ − η̄‖ ≤ δ/4. Put

(2.16) γ =

{
‖η̄‖ if η̄ �= 0,
δ
4 if η̄ = 0.

Set δ1 = min{δ/16, γ/4}, δ2 = ‖ȳ‖δ̃2/‖η̄‖ if η̄ �= 0 (so that coneBδ2(ȳ) = coneBδ̃2
(η̄);

if η̄ = 0, δ2 > 0 can be taken arbitrarily). Fix (σ, x) ∈ Σ ×X satisfying

(2.17) F (σ, x) ∈ Q ∩Bδ1(F (σ0, x0)) − coneBδ2(ȳ)
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and such that F (σ, x) �∈ Q (otherwise estimate (1.3) holds trivially). Then there
exists q = q(σ, x) ∈ Q ∩Bδ1(F (σ0, x0)) such that

−(F (σ, x) − q) ∈ coneBδ̃2
(η̄),

and hence, according to (2.16) and to the choice of δ̃2, it holds that

(2.18)

∥∥∥∥ γ

‖F (σ, x) − q‖ (F (σ, x) − q) + η̄

∥∥∥∥ ≤ δ

4

(note that ‖F (σ, x) − q‖ cannot be equal to 0 since F (σ, x) �∈ Q).
Set

(2.19) t = t(σ, x, q) = min

{
16 dist(F (σ, x), Q)

δ
,
‖F (σ, x) − q‖

γ

}
.

Note that t > 0 but t tends to 0 as (σ, x) tends to (σ0, x0). Define the mapping
G : X → Y ,

(2.20) G(ξ) = G(σ, x; ξ) =
1

t
(F (σ, x + tξ) − F (σ, x)),

and the difference mapping Φ : X → Y ,

Φ(ξ) = Φ(σ, x; ξ)(2.21)

= G(ξ) − ∂F

∂x
(σ0, x0)ξ

=
1

t

(
F (σ, x + tξ) − F (σ, x) − ∂F

∂x
(σ0, x0)tξ

)
.

By the mean value theorem we obtain that for (σ, x) close enough to (σ0, x0), and
for each ξ1, ξ2 ∈ X,

‖Φ(ξ1) − Φ(ξ2)‖ ≤ sup
θ∈[0, 1]

∥∥∥∥∂F∂x (σ, x + t(θξ1 + (1 − θ)ξ2)) − ∂F

∂x
(σ0, x0)

∥∥∥∥ ‖ξ1 − ξ2‖,

and hence, there exist a neighborhood U of σ0 and ε > 0 such that Φ is Lipschitz-
continuous on Bε̄(ξ̄) with modulus l ∈ (0, l̄) provided (σ, x) ∈ U ×Bε(x0). Through-
out the rest of the proof we suppose that the latter inclusion holds. Then by choosing
another (“smaller”) U and by reducing ε > 0 (if necessary), we obtain

(2.22) ‖Φ(ξ̄)‖ ≤ sup
θ∈[0, 1]

∥∥∥∥∂F∂x (σ, x + tθξ̄) − ∂F

∂x
(σ0, x0)

∥∥∥∥ ‖ξ̄‖ ≤ δ

2
.

Set

(2.23) θ = θ(σ, x, q) =
2‖F (σ, x) − q‖

γ
,

(2.24) ỹ = ỹ(σ, x, q) = θF (σ0, x0) + (1 − θ)q.

Note that, by the definition of δ1, θ ∈ (0, 1] provided U and ε > 0 are chosen
appropriately. Choose an element p = p(σ, x) ∈ Q such that

(2.25) ‖F (σ, x) − p‖ ≤ 2 dist(F (σ, x), Q),
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and set

(2.26) τ = τ(σ, x, q) =
γt

‖F (σ, x) − q‖ ,

(2.27) y = y(σ, x, p, q) = −1

t
(τ(F (σ, x) − ỹ) + (1 − τ)(F (σ, x) − p)).

Note that τ ∈ (0, 1], and moreover, τ = 1 provided

‖F (σ, x) − q‖/γ ≤ 16 dist(F (σ, x), Q)/δ,

that is, when t = ‖F (σ, x) − q‖/γ (see (2.19)). Taking this into account, by (2.18),
(2.19), (2.23)–(2.27), and the definition of δ1, we derive that

‖y − η̄‖ =

∥∥∥∥τt (F (σ, x) − ỹ) +
1 − τ

t
(F (σ, x) − p) + η̄

∥∥∥∥
≤

∥∥∥∥ γ

‖F (σ, x) − q‖ (F (σ, x) − ỹ) + η̄

∥∥∥∥ + (1 − τ)
‖F (σ, x) − p‖

t

≤
∥∥∥∥ γ

‖F (σ, x) − q‖ (F (σ, x) − q) + η̄

∥∥∥∥
+ θ

γ‖q − F (σ0, x0)‖
‖F (σ, x) − q‖ +

2δ dist(F (σ, x), Q)

16 dist(F (σ, x), Q)

≤ δ

4
+

δ

8
+

δ

8

=
δ

2
.

Thus, by the second equality in (2.21), and by (2.22), it holds that∥∥∥∥y − η̄ +
∂F

∂x
(σ0, x0)ξ̄ −G(ξ̄)

∥∥∥∥ ≤ ‖y − η̄‖ + ‖Φ(ξ̄)‖(2.28)

≤ δ

2
+

δ

2
≤ δ.

Hence, the estimate (2.15) must be valid for y defined in (2.27) and for G defined in
(2.20) provided U and ε > 0 are chosen appropriately. This means that there exist
ξ = ξ(σ, x, p, q) ∈ X and η = η(σ, x, p, q) ∈ Q such that

(2.29) G(ξ) = y + η − F (σ0, x0)

and

‖ξ‖ ≤ ‖ξ̄‖ + ‖ξ − ξ̄‖(2.30)

≤ ‖ξ̄‖ + c̄dist(G(ξ̄) − y, Q− F (σ0, x0))

≤ ‖ξ̄‖ + c̄‖G(ξ̄) − y‖

≤ ‖ξ̄‖ + c̄

(∥∥∥∥∂F∂x (σ0, x0)ξ̄ − η̄

∥∥∥∥ + δ

)
,
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where (2.28) and the inclusion 0 ∈ Q−F (σ0, x0) were taken into account. Note that
the right-hand side of the last relation is a constant independent of σ, x, p, and q.

Employing (2.21), (2.24), (2.27), and (2.29), we have

F (σ, x + tξ) = tΦ(ξ) + F (σ, x) + t
∂F

∂x
(σ0, x0)ξ

= tΦ(ξ) + t
∂F

∂x
(σ0, x0)ξ

+ τ(F (σ, x) − ỹ) + τ ỹ + (1 − τ)(F (σ, x) − p) + (1 − τ)p

= tG(ξ) − ty + τ ỹ + (1 − τ)p

= t(η − F (σ0, x0)) + τ ỹ + (1 − τ)p

= tη − tF (σ0, x0) + τθF (σ0, x0) + τ(1 − θ)q + (1 − τ)p

= tη + (τθ − t)F (σ0, x0) + τ(1 − θ)q + (1 − τ)p,

where the right-hand side is a convex combination of η, F (σ0, x0), p, and q provided
U and ε > 0 are chosen appropriately. However, all the elements η, F (σ0, x0), p, and
q belong to the convex set Q. Hence,

F (σ, x + tξ) ∈ Q,

and moreover, by (2.19) and (2.30),

t‖ξ‖ ≤ cdist(F (σ, x), Q),

where c = 16(‖ξ̄‖ + c̄(‖∂F
∂x (σ0, x0)ξ̄ − η̄‖ + δ))/δ.

We thus proved that (1.3) holds for all (σ, x) ∈ U × Bε(x0) satisfying (2.17). In
order to complete the proof it suffices to refer the reader to Proposition 2.2.

3. Directional metric regularity. Let (X, ρ) be a complete metric space and
Y be a normed linear space. As will be explained below, the following definition is
motivated by Theorem 2.3.

Definition 3.1. The multifunction Ψ: X → 2Y is metrically regular at a point
(x0, y0) ∈ graph Ψ in a direction ȳ ∈ Y , at a rate c > 0, if there exist ε > 0 and δ > 0
such that the estimate

(3.1) dist(x, Ψ−1(y)) ≤ cdist(y, Ψ(x))

holds for all (x, y) ∈ Bε(x0) ×Bε(y0) satisfying the inclusion

(3.2) y ∈ Ψ(x) + coneBδ(ȳ).

Evidently, if ȳ = 0, then directional metric regularity turns into the usual metric
regularity. Moreover, if the latter holds, directional metric regularity holds in any
direction ȳ ∈ Y , including ȳ = 0. At the same time, directional metric regularity can
hold when the usual metric regularity is violated; see Example 3.1 below.

Recall that the multifunction Ψ : X → 2Y is said to be lower (or inner) semi-
continuous at a point (x0, y0) ∈ graph Ψ if for any sequence {xk} ⊂ X convergent to
x0 there exists a sequence {yk} ⊂ Y convergent to y0 such that yk ∈ Ψ(xk) for all k
(see, e.g., [16, Definition 1.63]).

The next theorem follows the pattern of [3, Theorem 2.84], [16, Theorem 4.25];
it says that the property of directional metric regularity of Ψ in a given direction ȳ is
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stable subject to small Lipschitzian single-valued perturbations of Ψ. For the usual
notion of metric regularity, this property was studied, e.g., in [9, 7, 8]. Yet another
reference to be mentioned in relation with this property is [6], where the importance
of stability of regularity properties with respect to perturbations is already completely
clear.

Theorem 3.2. Let (x0, y0) ∈ graph Ψ. Assume that the multifunction Ψ is
closed, lower semicontinuous at (x0, y0), and metrically regular at (x0, y0) in a direc-
tion ȳ ∈ Y , at a rate c > 0. Let ε > 0 and δ > 0 be chosen according to Definition 3.1,
and set

(3.3) α =

{ δ
‖ȳ‖ if ‖ȳ‖ ≥ δ,

+∞ if ‖ȳ‖ < δ,
β(α) =

{
2

1+α if α < +∞,

0 if α = +∞.

Then for any mapping Φ : X → Y which is Lipschitz-continuous on Bε(x0) with
modulus l > 0 such that

(3.4) c l < min{1, α/5},

the multifunction Ψ + Φ is metrically regular at (x0, y0 + Φ(x0)) in the direction ȳ,
at a rate c̃ = c(1 − c l)−1(1 + β(α)).

In the case of usual metric regularity (i.e., when ȳ = 0), Theorem 3.2 directly
reduces to [16, Theorem 4.25] but with an extraneous assumption of lower semicon-
tinuity. It is possible that this assumption can actually be removed in Theorem 3.2,
though the authors did not manage to avoid it.

Remark 3.1. As can be seen from the proof below, the assertion of Theorem 3.2
can be replaced by a somewhat stronger one: Under the assumptions of this theorem,
for each l > 0 satisfying (3.4) there exist ε̃ > 0 and δ̃ > 0 such that the estimate

(3.5) dist(x, (Ψ + Φ)−1(y)) ≤ c̃dist(y, Ψ(x) + Φ(x))

holds for any mapping Φ : X → Y which is Lipschitz-continuous on Bε(x0) with
modulus l, and for all (x, y) ∈ Bε̃(x0) ×Bε̃(y0 + Φ(x0)) satisfying the inclusion

(3.6) y ∈ Ψ(x) + Φ(x) + coneBδ̃(ȳ).

That is, ε̃ and δ̃ do not depend on a specific Φ but only on ε, δ, c, ‖ȳ‖, and l.
Proof. Let ε > 0 and δ > 0 be chosen according to Definition 3.1. Fix arbitrary

ε̃ ∈ (0, ε], δ̃ ∈ (0, δ), and ε̂ > 0 satisfying the following set of conditions:

(3.7) ε̃ +
γ(ε̂)

l
(1 − γ(ε̂))−1(1 + β(α))(ε̃ + lε̃ + ω(ε̃)) < ε,

(3.8) ε̃ + lε̃ +

(
γ(ε̂)(1 − γ(ε̂))−1(1 + β(α)) +

β(α)

2

)
(ε̃ + lε̃ + ω(ε̃)) < ε,

(3.9) γ(ε̂) < min

{
1,

α(δ − δ̃)

5δ

}
,

where ω(ε̃) = supx∈Bε̃(x0) dist(y0, Ψ(x)), γ(ε̂) = c l(1 + ε̂) (note that ω(ε̃) → 0 as
ε̃ → 0 because of the lower semicontinuity Ψ at (x0, y0), and recall (3.4)).
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Let (x, y) ∈ Bε̃(x0) ×Bε̃(y0 + Φ(x0)) satisfying (3.6) be fixed. In order to prove
estimate (3.5) it suffices to establish the existence of χ(x) ∈ (Ψ + Φ)−1(y) such that

(3.10) ρ(x, χ(x)) ≤ c(1 − c l)−1(1 + β(α)) dist(y, Ψ(x) + Φ(x)).

The needed point χ(x) will be defined by means of the auxiliary iterative process.
For that purpose set t = t(x, y) = dist(y, Ψ(x) + Φ(x)) and define the sequence
{τk} ⊂ R+ by setting

τ1 =

{
δ−δ̃

(‖ȳ‖+δ)δ t if ‖ȳ‖ ≥ δ,

0 if ‖ȳ‖ < δ,
τk+1 =

2

5
τk, k = 1, 2, . . . .

According to (3.3),

(3.11) τ1‖ȳ‖ ≤ β(α)

2
t.

Note that by the definition of ω(ε̃)

t = dist(y − Φ(x0) + Φ(x0) − Φ(x), Ψ(x))(3.12)

≤ ‖y − y0 − Φ(x0)‖ + ‖Φ(x) − Φ(x0)‖ + dist(y0, Ψ(x))

≤ ε̃ + lε̃ + ω(ε̃).

We shall construct a sequence {xk} ⊂ X such that x1 = x and for all k = 1, 2, . . .

(3.13) y − Φ(xk) − τkȳ ∈ Ψ(xk+1),

(3.14) ρ(xk+2, xk+1) ≤ γ(ε̂)ρ(xk+1, xk) +
γ(ε̂)

l
(τk − τk+1)‖ȳ‖,

(3.15) ρ(xk+1, x0) ≤ ε̃ +
γ(ε̂)

l
(1 − γ(ε̂))−1(1 + β(α))(ε̃ + lε̃ + ω(ε̃)),

and if ‖ȳ‖ ≥ δ then

(3.16) ‖Φ(xk+1) − Φ(xk)‖ ≤ δ(τk − τk+1).

By (3.6) we obtain the existence of θ ≥ 0 and η ∈ Y such that ‖η‖ ≤ δ̃ and

(3.17) y − Φ(x1) − θ(ȳ + η) ∈ Ψ(x1).

Note that if θ = 0 then x = x1 ∈ (Ψ + Φ)−1(y), and we are done. Thus, let θ > 0.
Set

y1 = y − Φ(x1) − τ1ȳ, η0 = θ(ȳ + η), η1 = η0 − τ1ȳ.

By (3.8), (3.11), and (3.12) we then derive

‖y1 − y0‖ = ‖y1 + Φ(x0) − y0 − Φ(x0)‖(3.18)

≤ ‖y − y0 − Φ(x0)‖ + ‖Φ(x0) − Φ(x1)‖ + τ1‖ȳ‖

≤ ε̃ + lε̃ +
β(α)

2
(ε̃ + lε̃ + ω(ε̃))

< ε.
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Furthermore,

‖η0‖ ≤ θ(‖ȳ‖ + δ̃)

< θ(‖ȳ‖ + δ),

and hence,

θ >
‖η0‖

‖ȳ‖ + δ
(3.19)

≥ t

‖ȳ‖ + δ

≥ τ1,

where it was taken into account that, by (3.17), y − η0 ∈ Ψ(x1) + Φ(x1), and hence,
by the definition of t, it holds that t ≤ ‖η0‖. From (3.19) (including the intermediate
inequalities) and the definition of τ1 it follows that

θ‖η‖
θ − τ1

≤ θδ̃

θ − δ−δ̃
(‖ȳ‖+δ)δ t

≤ θδ̃

θ − θ δ−δ̃
δ

= δ,

and hence, by (3.17),

η1 = (θ − τ1)ȳ + θη(3.20)

= (θ − τ1)

(
ȳ +

θη

θ − τ1

)
∈ coneBδ(ȳ).

Taking into account the equality y1 = y − Φ(x1) − θ(ȳ + η) + η1, we conclude by
(3.17) and (3.20) that

y1 ∈ Ψ(x1) + coneBδ(ȳ);

that is, (3.2) holds with (x, y) replaced by (x1, y1) ∈ Bε(x0) × Bε(y0) (see (3.18)).
Thus, by metric regularity of Ψ at a point (x0, y0) in a direction ȳ, there exists x2 ∈ X
such that

(3.21) y − Φ(x1) − τ1ȳ ∈ Ψ(x2),

ρ(x2, x1) ≤ c(1 + ε̂) dist(y − Φ(x1) − τ1ȳ, Ψ(x1))(3.22)

≤ c(1 + ε̂)(t + τ1‖ȳ‖)

≤ γ(ε̂)

l

(
1 +

β(α)

2

)
t,

where the definition of t and (3.11) were taken into account. In particular, (3.13)
holds for k = 1.
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Employing (3.7), (3.12), and (3.22), we derive

ρ(x2, x0) ≤ ρ(x1, x0) + ρ(x2, x1)(3.23)

≤ ε̃ +
γ(ε̂)

l

(
1 +

β(α)

2

)
t

≤ ε̃ +
γ(ε̂)

l

(
1 +

β(α)

2

)
(ε̃ + lε̃ + ω(ε̃))

< ε,

and, in particular, (3.15) holds for k = 1.
Furthermore, if ‖ȳ‖ ≥ δ, then by (3.3), (3.9), (3.22), and (3.23), we derive

‖Φ(x2) − Φ(x1)‖ ≤ γ(ε̂)

(
1 +

β(α)

2

)
t(3.24)

<
α(δ − δ̃)

5δ

(
1 +

1

1 + α

)
t

=
α(δ − δ̃)(2 + α)

5(1 + α)δ
t

≤ 3α(δ − δ̃)

5(1 + α)δ
t

= δ(τ1 − τ2);

that is, (3.16) holds for k = 1.
Set

q2 = y − Φ(x1) − τ1ȳ,

y2 = y − Φ(x2) − τ2ȳ, η2 = (τ1 − τ2)ȳ + Φ(x1) − Φ(x2).

Note that q2 ∈ Ψ(x2) by (3.21), and by (3.24) we conclude that η2 ∈ coneBδ(ȳ)
((3.24) holds only if ‖ȳ‖ ≥ δ, but otherwise, coneBδ(ȳ) = Y ).

By (3.8), (3.11), and (3.12), and by (3.15) (for k = 1), it follows that

‖y2 − y0‖ = ‖y − y0 − Φ(x0)‖ + ‖Φ(x2) − Φ(x0)‖ + τ2‖ȳ‖(3.25)

≤ ε̃ + lε̃ + γ(ε̂)(1 − γ(ε̂))−1(1 + β(α))(ε̃ + lε̃ + ω(ε̃))

+
β(α)

2
(ε̃ + lε̃ + ω(ε̃))

< ε.

The inclusions q2 ∈ Ψ(x2) and η2 ∈ coneBδ(ȳ) imply that

y2 = y − Φ(x1) − τ1ȳ + Φ(x1) + τ1ȳ − Φ(x2) − τ2ȳ

= q2 + η2

∈ Ψ(x2) + coneBδ(ȳ);

that is, (3.2) holds with (x, y) replaced by (x2, y2) ∈ Bε(x0) × Bε(y0) (see (3.23),
(3.25)). Thus, by metric regularity of Ψ at a point (x0, y0) in a direction ȳ, there
exists x3 ∈ X such that

(3.26) y − Φ(x2) − τ2ȳ ∈ Ψ(x3),
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ρ(x3, x2) ≤ c(1 + ε̂) dist(y − Φ(x2) − τ2ȳ, Ψ(x2))(3.27)

≤ c(1 + ε̂)‖y − Φ(x2) − τ2ȳ − q2‖
≤ c(1 + ε̂)(‖Φ(x2) − Φ(x1)‖ + (τ1 − τ2)‖ȳ‖)

≤ γ(ε̂)ρ(x2, x1) +
γ(ε̂)

l
(τ1 − τ2)‖ȳ‖,

where the definition of q2 was taken into account. In particular, (3.13) holds for k = 2,
and (3.14) holds for k = 1.

Employing (3.11), (3.22), and (3.27), we derive

ρ(x3, x1) ≤ ρ(x2, x1) + ρ(x3, x2)

≤ (1 + γ(ε̂))ρ(x2, x1) +
γ(ε̂)

l
(τ1 − τ2)‖ȳ‖

≤ (1 + γ(ε̂))

(
ρ(x2, x1) +

γ(ε̂)

l
τ1‖ȳ‖

)

≤ γ(ε̂)

l
(1 + γ(ε̂))

((
1 +

β(α)

2

)
t + τ1‖ȳ‖

)

≤ γ(ε̂)

l
(1 + γ(ε̂))(1 + β(α))t,

and thus, by (3.7) and (3.12),

ρ(x3, x0) ≤ ρ(x1, x0) + ρ(x3, x1)(3.28)

≤ ε̃ +
γ(ε̂)

l
(1 + γ(ε̂))(1 + β(α))t

≤ ε̃ +
γ(ε̂)

l
(1 − γ(ε̂))−1(1 + β(α))(ε̃ + lε̃ + ω(ε̃))

< ε,

where the evident inequality 1+γ(ε̂) < (1−γ(ε̂))−1 was also employed. In particular,
(3.15) holds for k = 2.

Furthermore, if ‖ȳ‖ ≥ δ, then by (3.3), (3.9), (3.24), and (3.28), and by the
intermediate inequalities in (3.27), we derive

‖Φ(x3) − Φ(x2)‖ ≤ lρ(x3, x2)

≤ γ(ε̂)(‖Φ(x2) − Φ(x1)‖ + (τ2 − τ1)‖ȳ‖)
≤ γ(ε̂)(δ + ‖ȳ‖)(τ1 − τ2)

<
α

5
(δ + ‖ȳ‖)5

2

(
1 − 2

5

)
τ2

=
δ

2‖ȳ‖ (δ + ‖ȳ‖)(τ2 − τ3)

≤ δ(τ2 − τ3);

that is, (3.16) holds for k = 2.
Suppose now that for some s ≥ 3 we have already constructed points xk ∈ X,

k = 1, . . . , s, such that (3.13), (3.15), and (3.16), if ‖ȳ‖ ≥ δ, hold for each k =
1, . . . , s− 1, and (3.14) holds for each k = 1, . . . , s− 2. Set

qs = y − Φ(xs−1) − τs−1ȳ,
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ys = y − Φ(xs) − τsȳ, ηs = (τs−1 − τs)ȳ + Φ(xs−1) − Φ(xs).

Note that qs ∈ Φ(xs) by (3.13) (with k = s − 1), and by (3.16) (with k = s −
1) we conclude that ηs ∈ coneBδ(ȳ) ((3.16) holds only if ‖ȳ‖ ≥ δ, but otherwise,
coneBδ(ȳ) = Y ).

By (3.8), (3.11), and (3.12), and by (3.15) (for k = s− 1), it follows that

‖ys − y0‖ = ‖y − y0 − Φ(x0)‖ + ‖Φ(xs) − Φ(x0)‖ + τs‖ȳ‖(3.29)

≤ ε̃ + lε̃ + γ(ε̂)(1 − γ(ε̂))−1(1 + β(α))(ε̃ + lε̃ + ω(ε̃))

+
β(α)

2
(ε̃ + lε̃ + ω(ε̃))

< ε.

The inclusions qs ∈ Φ(xs) and ηs ∈ coneBδ(ȳ) imply that

ys = y − Φ(xs−1) − τs−1ȳ + Φ(xs−1) + τs−1ȳ − Φ(xs) − τsȳ

= qs + ηs

∈ Ψ(xs) + coneBδ(ȳ);

that is, (3.2) holds with (x, y) replaced by (xs, ys) ∈ Bε(x0) × Bε(y0) (see (3.8),
(3.15), (3.29)). Thus, by metric regularity of Ψ at a point (x0, y0) in a direction ȳ,
there exists xs+1 ∈ X such that

y − Φ(xs) − τsȳ ∈ Ψ(xs+1),

ρ(xs+1, xs) ≤ c(1 + ε̂) dist(y − Φ(xs) − τsȳ, Ψ(xs))(3.30)

≤ c(1 + ε̂)‖y − Φ(xs) − τsȳ − qs‖
≤ c(1 + ε̂)(‖Φ(xs) − Φ(xs−1)‖ + (τs−1 − τs)‖ȳ‖)

≤ γ(ε̂)ρ(xs, xs−1) +
γ(ε̂)

l
(τs−1 − τs)‖ȳ‖,

where the definition of qs was taken into account. In particular, (3.13) holds for k = s,
and (3.14) holds for k = s− 1.

Employing (3.14) we derive that for each k = 1, . . . , s− 1

k∑
i=1

ρ(xi+2, xi+1) ≤
k∑

i=1

(
γ(ε̂)ρ(xi+1, xi) +

γ(ε̂)

l
(τi − τi+1)‖ȳ‖

)

≤ γ(ε̂)

k∑
i=1

ρ(xi+1, xi) +
γ(ε̂)

l
τ1‖ȳ‖.

It can be easily seen by induction that the latter property implies the estimate

(3.31)

s−1∑
k=1

ρ(xk+2, xk+1) ≤ γ(ε̂)(1 − γ(ε̂))−1(ρ(x2, x1) + l−1τ1‖ȳ‖).

Hence, by (3.11), (3.22),

ρ(xs+1, x1) ≤ ρ(x2, x1) +

s−1∑
i=1

ρ(xi+2, xi+1)(3.32)

≤
(
1 + γ(ε̂)(1 − γ(ε̂))−1

)
ρ(x2, x1) +

γ(ε̂)

l
(1 − γ(ε̂))−1τ1‖ȳ‖

≤ γ(ε̂)

l
(1 − γ(ε̂))−1(1 + β(α))t,
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and thus, by (3.7) and (3.12),

ρ(xs+1, x0) ≤ ρ(x1, x0) + ρ(xs+1, x1)(3.33)

≤ ε̃ +
γ(ε̂)

l
(1 − γ(ε̂))−1(1 + β(α))t

≤ ε̃ +
γ(ε̂)

l
(1 − γ(ε̂))−1(1 + β(α))(ε̃ + lε̃ + ω(ε̃))

< ε.

In particular, (3.15) holds for k = s.
Finally, if ‖ȳ‖ ≥ δ, then by (3.3), (3.9), (3.16) (with k = s − 1), and (3.33), and

by the intermediate inequalities in (3.30), we derive

‖Φ(xs+1) − Φ(xs)‖ ≤ lρ(xs+1, xs)

≤ γ(ε̂)(‖Φ(xs) − Φ(xs−1)‖ + (τs−1 − τs)‖ȳ‖)
≤ γ(ε̂)(δ + ‖ȳ‖)(τs−1 − τs)

<
α

5
(δ + ‖ȳ‖)5

2

(
1 − 2

5

)
τs

=
δ

2‖ȳ‖ (δ + ‖ȳ‖)(τs − τs+1)

≤ δ(τs − τs+1);

that is, (3.16) holds for k = s.
The sequence {xk} with the needed properties is thus constructed. Moreover, as

was shown above, (3.14) implies that (3.31) and (3.32) hold for each s = 2, 3, . . . .
Clearly, (3.31) implies that {xk} is a Cauchy sequence, and by completeness of the
metric space (X, ρ), this sequence converges to some element χ(x) ∈ Bε(x0), where
the last inclusion follows from (3.7) and (3.15). Since τk → 0 as k → ∞, by passing
to the limit in (3.13) we conclude that χ(x) ∈ (Ψ + Φ)−1(y), where closedness Ψ and
continuity of Φ on Bε(x0) were taken into account. Finally, since ε̂ > 0 can be taken
arbitrarily small, (3.32) implies (3.10).

The set coneBδ(ȳ) in the right-hand side of (3.2) can be regarded as a conic
neighborhood of ȳ. Note that α defined in (3.3) is invariant with respect to the choice
of specific ȳ and δ defining the same conic neighborhood, and it is natural to refer to
this quantity as the radius of the conic neighborhood in question.

We now turn our attention to the multifunctions of the form Ψ(x) = ΨF (x) =
F (x)−Q, where F : X → Y is a given mapping and Q ⊂ Y is a given set. Note that
if F is continuous at x0 then this multifunction is automatically lower semicontinuous
at (x0, y0) for any y0 ∈ Ψ(x0). Being applied to such a multifunction, estimate (3.1)
takes the form (1.4), while condition (3.2) takes the form

(3.34) F (x) − y ∈ Q− coneBδ(ȳ).

Definition 3.1 applied to Ψ = ΨF and y0 = 0 takes the following form.
Definition 3.3. The mapping F : X → Y is metrically regular at x0 ∈ F−1(Q)

with respect to Q in a direction ȳ ∈ Y , at a rate c > 0, if there exist ε > 0 and
δ > 0 such that the estimate (1.4) holds for all (x, y) ∈ Bε(x0)×Bε(0) satisfying the
inclusion (3.34).

Throughout the rest of the paper let X and Y be Banach spaces. For a non-
parametric mapping F , the directional regularity condition in a direction ȳ takes the
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form

(3.35) 0 ∈ int(F (x0) + imF ′(x0) − cone{ȳ} −Q),

and if Q is closed and convex then according to Theorem 2.3 (applied to F (σ, x) =
F (x)−σ, σ = y), under the appropriate smoothness assumptions, the latter condition
implies metric regularity in a direction ȳ. The converse implication can be derived
from Theorem 3.2, which results in the following proposition.

Proposition 3.4. Let Q be closed and convex, and let x0 ∈ F−1(Q). Let F be
Fréchet-differentiable near x0, and let its derivative be continuous at x0.

Then F is metrically regular at x0 with respect to Q in a direction ȳ ∈ Y if and
only if it is regular at x0 in this direction.

Proof. Let F be metrically regular at x0 with respect to Q in a direction ȳ ∈ Y ,
at a rate c > 0. Define the mapping Φ : X → Y :

Φ(x) = F (x0) + F ′(x0)(x− x0) − F (x).

Then F+Φ is a linearization of F at x0. By the mean value theorem, for all x1, x2 ∈ X
close enough to x0 we obtain

‖Φ(x1) − Φ(x2)‖ = ‖F (x1) − F (x2) − F ′(x0)(x
1 − x2)‖

≤ sup
θ∈[0, 1]

‖F ′(θx1 + (1 − θ)x2) − F ′(x0)‖‖x1 − x2‖,

and hence, Φ is Lipschitz-continuous near x0 with modulus l, with l > 0 as small as
needed. Applying Theorem 3.2 to Ψ = ΨF , we conclude that the linearized mapping
F + Φ is metrically regular at x0 with respect to Q in a direction ȳ ∈ Y , at some rate
c̃ > 0 (note that ΨF + Φ = ΨF+Φ). This means that there exist ε̃ > 0 and δ̃ > 0 such
that the estimate

dist(x, x0 + (F ′(x0))
−1(Q + y − F (x0))) ≤ c̃dist(F (x0)(3.36)

+ F ′(x0)(x− x0) − y, Q)

holds for (x, y) ∈ Bε̃(x0) ×Bε̃(0) satisfying the inclusion

(3.37) F (x0) + F ′(x0)(x− x0) − y ∈ Q− coneBδ̃(ȳ).

Take x = x0, y = −θη, where η ∈ Bδ̃(ȳ) and θ ≥ 0. Then (3.37) is evidently
satisfied, and y ∈ Bε̃(0) for all θ > 0 small enough (specifically, for all θ ∈ (0, ε̃/(‖ȳ‖+
δ̃))). Hence, (3.36) holds for chosen x and y, which implies that for all η ∈ Bδ̃(ȳ) and
all θ > 0 small enough

(F ′(x0))
−1(Q + θη − F (x0)) �= ∅,

and hence, there exist ξ ∈ X and q ∈ Q such that

F ′(x0)ξ = q + θη − F (x0),

i.e.,

θη ∈ F (x0) + imF ′(x0) −Q.

It follows that

Bδ̃(ȳ) ⊂ imF ′(x0) −RQ(F (x0)).
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It remains to employ Proposition 2.1 (see (2.2)).

As mentioned above, directional metric regularity can hold when the usual metric
regularity is violated. Moreover, let, e.g., intQ �= ∅ (which in particular covers the case
of finitely many inequality constraints). It can be shown that in this case directional
regularity condition (1.5), and hence, the directional metric regularity condition hold
in any direction ȳ ∈ − intRQ(F (σ0, x0)) �= ∅.

Example 3.1. Let X = Y = R2, F (x) = (x1, x
2
1 − x2

2), Q = R2
+. Robinson’s CQ

does not hold at x0 = 0, and hence, the mapping F is not metrically regular at x0.
Moreover, estimate (1.4) does not hold even on the subspaces {x0}×Y and X ×{0}.
Indeed, if, e.g., y = (0, y2) with y2 < 0, it holds that dist(x0, F

−1(Q−y)) = (−y2)
1/2,

and the estimate (1.4) does not hold even for x = x0. Moreover, if, e.g., x = (0, x2)
with x2 �= 0, then dist(x, F−1(Q)) = |x2|/

√
2, while dist(F (x), Q) = x2

2, and the
estimate (1.4) does not hold even for y = 0.

At the same time, directional regularity condition (3.35) holds at x0 in any di-
rection ȳ ∈ R2 with ȳ2 < 0, and hence, F is metrically regular at x0 in each such
direction.

To complete this section we note that Theorem 2.3 can actually be derived from
a “uniform version” of Theorem 3.2, following the line of the argument in [3, pp. 63,
64], justifying Robinson’s stability theorem.

4. Applications to sensitivity theory. Let Σ be a normed linear space. As
an application of Theorem 2.3, we next show how it can be used in order to directly
(that is, without employing any additional tools, with the only exception for the mean
value theorem) obtain some principal lemmas playing the crucial role in sensitivity
analysis under the more special directional regularity condition (1.6). We emphasize
that both results presented below are known; the difference is only in the proofs. The
first result is [3, Lemma 4.10].

Lemma 4.1. Let Q be closed and convex, and let x0 ∈ D(σ0). Let F possess the
Lipschitz-continuous derivative near (σ0, x0).

If (1.6) holds at x0 with respect to a direction d ∈ Σ, then there exist t̄ > 0, ε1 > 0,
ε2 > 0, and a > 0 possessing the following property: for any mappings ρ(·) : R+ → Σ
and x(·) : R+ → X such that ρ(t) = o(t) and the estimates

(4.1) ‖x(t) − x0‖ ≤ ε1t
1/2

and

(4.2) dist(F (σ0 + td + ρ(t), x(t)), Q) ≤ ε2t

hold for all t ≥ 0 small enough, the estimate

(4.3)

dist(x(t), D(σ0 + td + ρ(t))) ≤ a

(
1 +

‖x(t) − x0‖
t

)
dist(F (σ0 + td + ρ(t), x(t)), Q)

holds for all t ∈ (0, t̄].

Proof. As was already mentioned in section 1, (1.6) precisely coincides with (1.5)
with ȳ = −∂F

∂σ (σ0, x0)d. For this ȳ, define ε > 0, δ > 0, and c > 0 according to
Theorem 2.3. Let l > 0 stand for the Lipschitz constant of F and L > 0 stand for
the Lipschitz constant for the derivative of F on Bε(σ0) ×Bε(x0) (ε can be reduced,
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if necessary). For each t > 0 put σ(t) = σ0 + td + ρ(t). Set ε1 = (δ/6L)1/2 and
ε2 = δ/12, and choose t̄ > 0 such that for all t ∈ (0, t̄]

(4.4) δt1/2 ≤ ε, ‖td + ρ(t)‖ ≤ ε,

(4.5) L

(
‖td + ρ(t)‖2

t
+ 2ε1

∥∥∥∥d +
ρ(t)

t

∥∥∥∥ t1/2
)

≤ δ

6
,

(4.6)

∥∥∥∥∂F∂σ (σ0, x0)

∥∥∥∥ ‖ρ(t)‖
t

≤ δ

6
.

For each t > 0 put

(4.7) τ(t) =
12 dist(F (σ(t), x(t)), Q)

δt
,

(4.8) x̃(t) = τ(t)x0 + (1 − τ(t))x(t),

(4.9) Φ1(t) = F (σ(t), x̃(t)) − F (σ(t), x(t)) + τ(t)
∂F

∂x
(σ0, x0)(x(t) − x0),

Φ2(t) = F (σ(t), x(t)) − F (σ0, x0) −
∂F

∂σ
(σ0, x0)(td + ρ(t))(4.10)

− ∂F

∂x
(σ0, x0)(x(t) − x0),

choose an element p(t) ∈ Q such that

(4.11) ‖F (σ(t), x(t)) − p(t)‖ ≤ 2 dist(F (σ(t), x(t)), Q),

and set

(4.12) q(t) = τ(t)F (σ0, x0) + (1 − τ(t))p(t).

Throughout the rest of the proof we assume that F (σ(t), x(t)) �∈ Q (otherwise esti-
mate (4.3) holds trivially). Then according to (4.2), (4.7), and the definition of ε2, it
holds that

0 < τ(t) =
12 dist(F (σ(t), x(t)), Q)

δt
≤ 12ε2

δ
= 1.

In particular, by (4.12), q(t) ∈ Q. Furthermore, by (4.2), (4.4), and (4.8) it holds that
σ(t) ∈ Bε(σ0), x̃(t) ∈ Bε(x0).

We next estimate ‖Φ1(t)‖ and ‖Φ2(t)‖ for t ∈ (0, t̄]. By (4.1), (4.5), (4.8), (4.9),
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the mean value theorem, and the definition of ε1, we obtain

(4.13)

‖Φ1(t)‖ =

∥∥∥∥F (σ(t), x(t) − τ(t)(x(t) − x0)) − F (σ(t), x(t))

−∂F

∂x
(σ0, x0)(−τ(t)(x(t) − x0))

∥∥∥∥
≤ sup

θ∈[0, 1]

∥∥∥∥∂F∂x (σ(t), x(t) − θτ(t)(x(t) − x0)) −
∂F

∂x
(σ0, x0)

∥∥∥∥ τ(t)‖x(t) − x0‖

≤ L

(
‖td + ρ(t)‖ + sup

θ∈[0, 1]

‖x(t) − θτ(t)(x(t) − x0) − x0‖
)
τ(t)‖x(t) − x0‖

≤ L

(
‖td + ρ(t)‖ + sup

θ∈[0, 1]

(1 − θτ(t))‖x(t) − x0‖
)
τ(t)‖x(t) − x0‖

≤ L

(∥∥∥∥d +
ρ(t)

t

∥∥∥∥ t + ‖x(t) − x0‖
)
τ(t)‖x(t) − x0‖

≤ L

(∥∥∥∥d +
ρ(t)

t

∥∥∥∥ t + ε1t
1/2

)
ε1τ(t)t1/2

≤
(
Lε1

∥∥∥∥d +
ρ(t)

t

∥∥∥∥ t1/2 + Lε2
1

)
τ(t)t

≤
(
δ

6
+

δ

6

)
τ(t)t

=
δ

3
τ(t)t.

Similarly, by (4.1), (4.5), (4.10), the mean value theorem, and the definition of ε1, we
obtain

‖Φ2(t)‖ ≤ sup
θ∈[0, 1]

‖F ′(σ0 + θ(td + ρ(t)), x0 + θ(x(t) − x0))(4.14)

−F ′(σ0, x0)‖(‖td + ρ(t)‖ + ‖x(t) − x0‖)
≤ L sup

θ∈[0, 1]

θ(‖td + ρ(t)‖ + ‖x(t) − x0‖)2

≤ L(‖td + ρ(t)‖2 + 2ε1‖td + ρ(t)‖t1/2 + ε2
1t)

=

(
L

(
‖td + ρ(t)‖2

t
+ 2ε1

∥∥∥∥d +
ρ(t)

t

∥∥∥∥ t1/2
)

+ Lε2
1

)
t

≤
(
δ

6
+

δ

6

)
t

=
δ

3
t.

We are now in a position to show that for t ∈ (0, t̄]

(4.15) F (σ(t), x̃(t)) − q(t) ∈ coneBδ

(
∂F

∂σ
(σ0, x0)d

)
.

(This will mean that (2.13) is satisfied with σ = σ(t), x = x̃(t), and ȳ = −∂F
∂σ (σ0, x0)d.)
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Indeed, put

(4.16) y1(t) = F (σ(t), x(t)) − p(t), y2(t) =
∂F

∂σ
(σ0, x0)ρ(t).

Then according to (4.12), (4.9), and (4.10) we have

F (σ(t), x̃(t))

−q(t) = F (σ(t), x̃(t)) − F (σ(t), x(t)) + F (σ(t), x(t))

+ τ(t)
∂F

∂x
(σ0, x0)(x(t) − x0) − τ(t)

∂F

∂x
(σ0, x0)(x(t) − x0)

− τ(t)F (σ0, x0) − (1 − τ(t))p(t)

= Φ1(t) + F (σ(t), x(t)) − p(t)

− τ(t)

(
∂F

∂x
(σ0, x0)(x(t) − x0) + F (σ0, x0) − p(t)

)
= Φ1(t) + y1(t)

+ τ(t)

(
Φ2(t) − F (σ(t), x(t)) + t

∂F

∂σ
(σ0, x0)d + y2(t) + p(t)

)

= τ(t)t

(
Φ1(t)

τ(t)t
+

y1(t)

τ(t)t
+

Φ2(t)

t
− y1(t)

t
+

y2(t)

t
+

∂F

∂σ
(σ0, x0)d

)

= τ(t)t

(
Φ1(t)

τ(t)t
+ (1 − τ(t))

y1(t)

τ(t)t
+

Φ2(t)

t
+

y2(t)

t
+

∂F

∂σ
(σ0, x0)d

)
,

and hence, by (4.6), (4.7), (4.11), (4.13), (4.14), and (4.16),∥∥∥∥F (σ(t), x̃(t)) − q(t)

τ(t)t
− ∂F

∂σ
(σ0, x0)d

∥∥∥∥ ≤ δ

3
+

2δ dist(F (σ(t), x(t)), Q)

12 dist(F (σ(t), x(t)))
+

δ

3
+

δ

6
= δ,

which proves (4.15).
By the choice of ε > 0, δ > 0, and c > 0, the estimate (1.3) holds with σ = σ(t)

and x = x̃(t). Thus, taking into account (4.7), (4.8), we conclude that for all t ∈ (0, t̄]

dist(x(t), D(σ(t))) ≤ ‖x(t) − x̃(t)‖ + dist(x̃(t), D(σ(t)))

≤ ‖x(t) − x̃(t)‖ + cdist(F (σ(t), x̃(t)), Q)

≤ ‖x(t) − x̃(t)‖
+ c(‖F (σ(t), x(t)) − F (σ(t), x̃(t))‖ + dist(F (σ(t), x(t)), Q))

≤ ‖x(t) − x̃(t)‖ + c(l‖x(t) − x̃(t)‖ + dist(F (σ(t), x(t)), Q))

≤ (1 + c l)‖x(t) − x0‖τ(t) + cdist(F (σ(t), x(t)))

≤
(
c +

12(1 + c l)

δ

‖x(t) − x0‖
t

)
dist(F (σ(t), x(t))).

This implies (4.3) with a = max{c, 12(1 + c l)/δ}.
Note that the proof above actually specifies all the constants appearing in the

assertion of Lemma 4.1.
The second result is [3, Lemma 4.109]. Our proof is an evident modification of

the proof in [1, Lemma 6.2].
Lemma 4.2. Let Q be closed and convex, and let x0 ∈ D(σ0). Let F be Fréchet-

differentiable at (σ0, x0) and Fréchet-differentiable with respect to x near (σ0, x0),
and let its derivative with respect to x be continuous at (σ0, x0).
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If (1.6) holds at x0 with respect to a direction d ∈ Σ, then there exists a > 0
possessing the following property: for any mappings ρ(·) : R+ → Σ and x(·) : R+ → X
such that ρ(t) = o(t), x(t) → x0 as t → 0, and the estimate

(4.17) dist(F (σ0 + td + ρ(t), x(t)), Q) = o(t)

holds for t ≥ 0, and for any θ > 0, the estimate

(4.18) dist(x(t), D(σ0 + (1 + θ)td + ρ((1 + θ)t))) ≤ aθt

holds for all t > 0 small enough.

Proof. By the same argument as in the proof of Lemma 4.1 we can choose ε > 0,
δ > 0, and c > 0 such that the estimate (1.3) holds for all (σ, x) ∈ Bε(σ0) × Bε(σ0)
satisfying inclusion (2.13) with ȳ = −∂F

∂σ (σ0, x0)d. For each t > 0 put σ(t) = σ0 +
td + ρ(t).

For a fixed θ > 0 and for t ≥ 0 we have

(4.19) F (σ((1 + θ)t), x(t)) = F (σ(t), x(t)) + θt
∂F

∂σ
(σ0, x0)d + o(t).

Select q(t) ∈ Q such that

‖F (σ(t), x(t)) − q(t)‖ = dist(F (σ(t), x(t)), Q) + o(t).

Then for t > 0 small enough σ(t) ∈ Bε(σ0), x(t) ∈ Bε(x0), and by (4.17) and (4.19)
it holds that

F (σ((1 + θ)t), x(t)) − q(t) = θt
∂F

∂σ
(σ0, x0)d + o(t)(4.20)

∈ coneBδ

(
∂F

∂σ
(σ0, x0)d

)
;

i.e., inclusion (2.13) holds with σ = σ((1+θ)t), x = x(t), and with ȳ = −∂F
∂σ (σ0, x0)d.

Hence by (1.3) and the equality in (4.20) we conclude that

dist(x(t), D(σ((1 + θ)t))) ≤ cdist(F (σ((1 + θ)t), x(t))Q)

≤ c‖F (σ((1 + θ)t), x(t)) − q(t)‖

= c

∥∥∥∥∂F∂σ (σ0, x0)d

∥∥∥∥ θt + o(t),

and the needed estimate (4.18) holds with any a > c‖∂F
∂σ (σ0, x0)d‖ for all t > 0 small

enough.
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BOUNDARY HALF-STRIPS AND THE STRONG CHIP∗
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Abstract. When the subdifferential sum rule formula holds for the indicator functions ιC and
ιD of two closed convex sets C and D of a locally convex space X, the pair (C,D) is said to have
the strong conical hull intersection property (the strong CHIP). The specification of a well-known
theorem due to Moreau to the case of the support functionals σC and σD subsumes the fact that
the pair (C,D) has the strong CHIP whenever the inf-convolution of σC and σD is exact. In this
article we prove, in the setting of Euclidean spaces, that if the pair (C,D) has the strong CHIP
while the boundary of C does not contain any half-strip, then the inf-convolution of σC and σD

is exact. Moreover, when the boundary of a closed and convex set C does contain a half-strip, it
is possible to find a closed and convex set D such that the pair (C,D) has the strong CHIP while
the inf-convolution of σC and σD is not exact. The validity of the converse of Moreau’s theorem in
Euclidean spaces is thus associated with the absence of half-strips within the boundary of concerned
convex sets.

Key words. strong conical hull intersection property, convex programming with convex in-
equalities, Euclidean space, exact infimal convolution, qualification conditions
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1. Introduction. This study concerns an application of a geometrical notion
called the strong conical hull intersection property (strong CHIP) introduced by Deutsch,
Li, and Swetits (see [6]). We say that the pair (C,D) of closed and convex subsets
of some locally convex space X has the strong CHIP if the subdifferential of the sum
and sum of the subdifferentials of their indicator functions coincide:

(1.1) ∂ (ιC + ιD) = ∂ιC + ∂ιD.

As customary, ιA is the indicator function of a subset A of X and is defined by
ιA(x) = 0 if x ∈ A, and ιA(x) = +∞ otherwise. We also recall that the convex
subdifferential is an operator from X into the topological dual X� of X, which assigns
to each extended-real-valued mapping Φ on X a set-valued operator between X and
X� defined by

∂Φ(x0) = {x� ∈ X∗ : 〈x− x0, x
�〉 + Φ(x0) ≤ Φ(x) ∀x ∈ X},

where 〈·, ·〉 : X ×X� → R is the duality pairing between X and X�.
Recalling that the normal cone NC(x) at x ∈ X to a closed convex set C of X is

the set ∂ιC(x), the strong CHIP for the pair (C,D) amounts to saying that

(1.2) NC∩D(x) = NC(x) + ND(x) ∀x ∈ C ∩D;

i.e., every normal direction to C ∩D at some point x can be expressed as the sum of
normal directions at x to C and D.
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This property is important in convex optimization because when we consider the
problem of minimizing a convex functional Φ on the intersection of two sets C and D
which have the strong CHIP, the optimality condition for x̄ to be a minimizer becomes

0 ∈ ∂Φ(x̄) + NC(x̄) + ND(x̄).

In the case of convex differentiable optimization, it becomes

−∇f(x̄) ∈ NC(x̄) + ND(x̄).

Let us quote only the result proved when X is a Hilbert space by Deutsch (see
[4]). It says that the strong CHIP is the weakest constraint qualification under which
a minimizer x̄ of a convex function Φ : C1 ∩ C2 → R can be characterized using the
subdifferential of Φ at x and the normal cones of C1 and C2 at x.

The existence of conditions ensuring that a pair of closed and convex sets has
the strong CHIP is based on a classical result by Moreau ([9, Remarque 10.2]); the
result initially published in [8] makes use of another key concept of convex analysis,
namely the notion of infimal convolution (inf-convolution). Recall that, if Φ and Ψ
are extended-real-valued lower semicontinuous convex functions over X (this class of
functions from now on is denoted by Γ0(X)), the inf-convolution of Φ and Ψ is the
extended real-valued function Φ�Ψ defined by

(1.3) Φ�Ψ(x) = inf
y∈X

(Φ(x− y) + Ψ(y)) .

The infimal convolution between Φ and Ψ is said to be exact if Φ�Ψ ∈ Γ0(X) and
the infimum is achieved in (1.3) whenever Φ�Ψ(x) < +∞.

Let us also recall that given a convex closed set A in X, we note σA : X� →
R ∪ {+∞}, the support function of A. It is defined by

σA(f) = sup
x∈A

〈x, f〉 .

Using this concept, Moreau’s theorem states that the subdifferential sum formula
(1.1) holds, provided that the inf-convolution of the support functionals of C and D
is exact. Remark that an equivalent way of expressing the exactness of the inf-convo-
lution of the support functionals σC and σD is to say that every linear functional
f ∈ X� which is bounded above on C ∩D may be expressed as the sum of two linear
functionals f1 and f2, bounded above on C and D, respectively, such that

sup
x∈C∩D

〈x, f〉 = sup
x∈C

〈x, f1〉 + sup
x∈D

〈x, f2〉 .

Let us observe that relation (1.2), i.e., the strong CHIP, is equivalent to the
following property: Every linear functional f ∈ X� which achieves its maximum on
C ∩ D may be expressed as the sum of two linear functionals f1 and f2, achieving
their maximum on C and D, respectively, such that

max
x∈(C∩D)

〈x, f〉 = max
x∈C

〈x, f1〉 + max
x∈D

〈x, f2〉 .

The importance of Moreau’s theorem comes from the fact that several very general
qualification conditions are known to ensure the exactness of the inf-convolution of
support functionals (the reader is referred for further information to the excellent
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articles of Zălinescu [13], Gowda and Teboulle [10], and, respectively, Simons [11], in
which he/she may find a clear picture of the topic, as well as self-contained proofs for
most of the concerned results).

Accordingly, the result proved by Moreau gives the possibility of systematically
specifying every qualification condition as a criterion for the strong CHIP (see for
instance [5, Proposition 2.3]).

Let us remark that the exactness of the inf-convolution of the support functionals
is stronger than the simple strong CHIP. Indeed, Moreau’s condition concerns all the
continuous linear functionals bounded above on the intersection C ∩ D, while the
strong CHIP is formulated only in terms of those elements from X� which achieve
their maximum on C ∩D. The question is thus raised of the validity of the converse
to this theorem.

The converse to Moreau’s theorem obviously holds for sets C and D such that
every linear and continuous map bounded above on any one of the sets C ∩ D, C,
or D necessarily achieve their maximums on this set. On this ground, a first partial
converse of the Moreau result has recently been proved by Bauschke, Borwein, and Li
for Hilbert spaces (see [1, Proposition 6.4]); the result was extended to the setting of
Banach spaces by Burachik and Jeyakumar [3, Proposition 4.2]. Their result states
that, if C and D is a pair of closed and convex cones with the strong CHIP, then the
inf-convolution of their support functionals is always exact.

However, it is not necessary to impose to every linear and continuous map which
is bounded above on any one of the sets C ∩ D, C, or D, to achieve its maximum
on this set, in order to ensure the validity of the converse to the above mentioned
Moreau’s theorem. It is the aim of this article to clearly define the best conditions
under which the converse of Moreau’s theorem holds. More precisely, we characterize
all the closed and convex subsets C of an Euclidean space X such that the following
converse of Moreau’s theorem holds: If, for some closed and convex set D, the pair
(C,D) has the strong CHIP, then the inf-convolution of σC and σD is exact.

Our main result states that the validity of the converse of Moreau’s theorem is
ensured if and only if the boundary of the closed and convex subset C of the Euclidean
space X does not contain any half-strip (by half-strip we mean, as customary, the
convex hull of two disjoint and parallel half-lines). Note that the class of closed and
convex sets without boundary half-strips is rather large, as it contains—the list is not
exhaustive—all the bounded sets, the strictly convex sets, or even the continuous sets
in the sense of Gale and Klee—sets such that their support functional is continuous
except at the origin (see [7]).

The outline of the paper is as follows. The case of closed and convex sets without
boundary half-strips is considered in section 2. We prove (Theorem 2.3) that, if the
pair (C,D) has the strong CHIP, and if the boundary of one of the sets, say C, does
not contain any half-strip, then the inf-convolution of the support functions of C and
D must be exact.

The last section is concerned with convex sets which do admit at least one bound-
ary half-strip. If the boundary of a closed and convex set C contains some half-strip,
then we give a construction of a closed and convex set D such that the pair (C,D)
has the strong CHIP, while the inf-convolution of σC and σD fails to be exact.

2. Convex sets without boundary half-strips. Now let us first collect some
conditions ensuring in every reflexive Banach space the validity of the converse of
Moreau’s theorem.
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Proposition 2.1. Let C and D be a pair of closed and convex subsets of a
reflexive Banach space X. If C and D have the strong CHIP, and at least one of the
following conditions holds:

(i) C ∩D is bounded;
(ii) C ∩D is a flat;
(iii) C ∩D is a half-line,

then the inf-convolution of the support functions of C and D is exact. In other words,
the converse of Moreau’s theorem is valid.

Proof of Proposition 2.1. We need the following standard convex analysis result.
Lemma 2.2. Let C and D be two closed and convex subsets of a locally convex

space X, and consider an element y of X� expressed as the sum y = y1 + y2 of
two normal vectors y1 ∈ NC(x) and y2 ∈ ND(x), for some x ∈ C ∩ D. Then the
inf-convolution of the support functionals is exact at y, that is,

(2.1) σC�σD(y) = σC(y1) + σD(y2) = 〈x, y〉 .

Proof of Lemma 2.2. As y1 ∈ ∂ιC(x) and y2 ∈ ∂ιD(x), relation y = y1+y2 implies
that y ∈ ∂ιC∩D(x). Thus

σC(y1) = 〈x, y1〉 , σ2(y2) = 〈x, y2〉 , σC∩D(y) = 〈x, y〉 ,

and hence

(2.2) σC∩D(y) = σC(y1) + σD(y2).

Recall that σC∩D ≤ σC�σD, which means that

(2.3) σC∩D(y) ≤ σC�σD(y).

Finally, use the definition of the inf-convolution and the fact that y = y1 + y2 to
deduce that

(2.4) σC�σD(y) ≤ σC(y1) + σD(y2).

Relation (2.1) follows from relations (2.2), (2.3), and (2.4).
Let us now return to the proof of Proposition 2.1 and consider that case (i) holds;

i.e., we suppose that the pair (C,D) has the strong CHIP and C ∩D is bounded.
As, in addition, X is a reflexive Banach space, it is easy to see that, for every

y ∈ X�, there is an x ∈ C ∩ D such that y ∈ ∂ιC∩D(x). The pair (C,D) has the
strong CHIP, and thus y = y1 + y2, for some y1 ∈ ∂ιC(x) and y2 ∈ ∂ιD(x); we may
therefore apply Lemma 2.2 and deduce that

(2.5) σC�σD(y) = σC(y1) + σD(y2) = 〈x, y〉 .

On one hand, from relation (2.5) we observe that the Γ0(X
�)-functional σC�σD is

real-valued on X� and thus, as X� is a reflexive Banach space, it follows that σC�σD

is continuous. Taking into account that relation (2.5) implies, on the other hand, that
the infimum is always attained in the expression of the inf-convolution, we conclude
that the inf-convolution of the support functions σC and σD is exact.

Case (ii). Let L be the closed subspace of X parallel to the flat C ∩D (that is,
C ∩D = x0 + L for every x0 ∈ C ∩D), and factorize X with respect to L.

The quotient space X/L, say X̂, is again a reflexive Banach space. Since x0 +L ⊂
C for every x0 ∈ C, and x0 + L ⊂ D for every x0 ∈ D, it follows that Ĉ and D̂, the
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quotients of the sets C and D, are closed and convex subsets of X̂; moreover, it is
straightforward to prove that the pair (Ĉ, D̂) has the strong CHIP if and only if the
same holds for the pair (C,D), and that the inf-convolution of the support functions
of Ĉ and D̂ is exact if and only if the inf-convolution of the support functions of C
and D is exact.

But the intersection between Ĉ and D̂ reduces to a singleton, and case (ii) is
proved by applying the conclusion of case (i) to the pair (Ĉ, D̂).

Case (iii). Set x0 + R+x for the half-line C ∩ D. Obviously, when y ∈ X� and
〈x, y〉 ≤ 0 we have y ∈ ∂ιC∩D(x0). Use the fact that the pair (C,D) has the CHIP
to deduce that y = y1 + y2 for some y1 ∈ ∂ιC(x0) and y2 ∈ ∂ιD(x0), together with
Lemma 2.2, to infer that

(2.6) σC�σD(y) = σC(y1) + σD(y2) = 〈x0, y〉 ∀y ∈ X�, 〈x, y〉 ≤ 0.

In order to obtain a similar relation for the case 〈x, y〉 > 0, note that for every
z ∈ X� such that 〈x, z〉 > 0, it holds that σC(z) = σD(z) = +∞. Moreover, the
inequality 〈x, z + v〉 > 0 means that at least one of the inequalities 〈x, z〉 > 0 and
〈x, v〉 > 0 holds. Combining these two facts, we deduce that

σC(z) + σD(v) = +∞ ∀z, v ∈ X� such that 〈x, z + v〉 > 0,

which means that

(2.7) σC�σD(y) = +∞ ∀y ∈ X�, 〈x, y〉 > 0.

Combining relations (2.6) and (2.7) yields

σC�σD = ι{y∈X�: 〈x,y〉≤0} + 〈x0, ·〉 ,

which means that the inf-convolution of σC and σD is the sum between the indicator
function of a half-space and a linear and continuous functional, and clearly belongs
to Γ0(X

�). Use once more relation (2.6) to see that the infimum in the expression of
the inf-convolution is achieved, and conclude that the inf-convolution of σC and σD

is exact.
Apparently, Proposition 2.1 lists three completely disparate conditions, each one

being sufficient in its own way for the validity of the converse of Moreau’s theorem.
The geometric notion of a half-strip, that is, a convex hull of two parallel and disjoint
half-lines, allows us to spot a common property of cases (i), (ii), and (iii) in Proposition
2.1.

Theorem 2.3. Let C and D two closed and convex subsets of the Euclidean space
X, and assume that the boundary of the set C does not contain any half-strip. If the
pair (C,D) has the strong CHIP, then the inf-convolution of σC and σD is exact (in
other words, the converse of Moreau’s theorem holds).

Proof of Theorem 2.3. When the intersection C ∩D meets the interior of C, we
specify the well-known Moreau–Rockafellar internal point condition (see [9, Chap. 6,
section 6.8]) to prove that the inf-convolution of the support functionals is exact.

If C ∩ D is a part of the boundary of C, use—as the boundary of C does not
contain any half-strip—the obvious fact that the only closed and convex subsets of an
Euclidean space which do not contain any half-strip are the bounded sets, the half-
lines, and the lines, and completely prove Theorem 2.3 by making use of Proposition
2.1.
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Fig. 3.1. Closed and convex set with a boundary half-strip.

3. Convex sets with boundary half-strips. The following result completes
the analysis initiated in Theorem 2.3.

Theorem 3.1. Let C be a closed and convex subset of the Euclidean space X;
assume moreover that the boundary of C contains at least one half-strip. Then there
is a closed and convex set D such that the pair (C,D) has the CHIP while the inf-
convolution between σC and σD is not exact.

In other words, the existence of at least one boundary half-strip prevents the
converse of Moreau’s theorem from holding.

3.1. Construction and properties of the set D. Our strategy in this section
is to construct the set D. The following easy result will be useful. It says that when X
is Euclidean, every closed and convex set with a boundary half-strip may be contained
within some half-space such that its boundary half-strip lies within the hyperplane
which delimits this half-space.

Proposition 3.2. Let C be a closed and convex subset of an Euclidean space X
such that its boundary contains a half-strip. Then, there is an orthonormal basis of
X, B = {b1, b2, . . . , bn}, a positive parameter a > 0, and x0, an element of X, such
that

x0 + A ⊂ C ⊂ x0 + E3,

where A is the half-strip defined as

A = {x ∈ X : 0 ≤ x · b1, −2a ≤ x · b2 ≤ 2a, 0 = x · bi ∀i ≥ 3},

and the half-space E3 is given by the relation

E3 = {x ∈ X : x · b3 ≤ 0}.

Proof of Proposition 3.2. Let x1, x2, x in X be such that ‖x‖ = 1 and the half-
strip spanned by the half-lines x1 + R+x and x2 + R+x lies within the boundary of
the set C. Assume (if necessary after changing x1 into x2) that x2 · x ≥ x1 · x, and
set x3 = x1 + [(x2 − x1)x]x.

Clearly, x3 ∈ x1 + R+x; as the half-lines x1 + R+x and x2 + R+x are disjoint, it
follows that x3 and x2 cannot coincide. Set

a =
‖x3 − x2‖

4
and y =

x3 − x2

4a
=

x3 − x2

‖x3 − x2‖
.
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Note that

(3.1) y · x =
1

4a
(x3 · x− x2 · x) =

1

4a
(x1 · x + (x2 − x1)xx · x− x2 · x) = 0.

Finally, put

x0 =
x3 + x2

2
+ ax =

1

2
(x3 + ax) +

1

2
(x2 + ax);

as x3 + ax ∈ x1 +R+x and (x2 + ax) ∈ (x2 +R+x), we deduce that x0 belongs to the
half-strip spanned by the half-lines x1 +R+x and x2 +R+x, and thus belongs to the
boundary of C.

Since x0 is a boundary point of a closed and convex subset of an Euclidean space,
it is well known that there is some linear mapping z ∈ X, ‖z‖ = 1, which achieves its
maximum on C at x0,

(3.2) z · x0 ≥ z · x ∀x ∈ C.

Apply relation (3.2) for x = x0 − ax = x3+x2

2 to deduce that z · x ≥ 0, and then for
x = x0 + ax = 1

2 (x3 + 2ax) + 1
2 (x2 + 2ax) to obtain z · x ≤ 0 and therefore conclude

that

(3.3) z · x = 0.

Similarly, put x0 − ax− 2ay = x2 for x in relation (3.2), and using also relation (3.3),
deduce that z · y ≥ 0. Finally, putting x = x0 − ax + 2ay = x3 in relation (3.2), and
also taking into account relation (3.3), we infer z · y ≤ 0, that is,

(3.4) z · y = 0.

Relations (3.1), (3.3), and (3.4) prove that it is possible to complete the set {x, y, z}
depicted in Figure 3.1 up to B = {b1, b2, . . . , bn}, an orthonormal basis of X.

The proof of Proposition 3.2 will be completed if we remark that the set x0 +A is
nothing but the half-strip spanned by the half-lines (x3 + ax) +R+x and (x2 + ax) +
R+x, and thus lies within the boundary of C, while relation (3.2) implies that C is a
part of the half-space x0 + E3.

The basis B, the parameter a, and the element x0 thus defined allow us to proceed
to the construction of the set D. Let us first define the set F ,

F = (P1 + S) ∩ (P2 + T ),

where P1 ⊂ P2 are the sets bordered by two plane parabolae:

P1 =

{
x ∈ X : x · b1 ≤ −a(x · b2)2

4
, x · bi = 0 ∀i ≥ 3

}
,

P2 =

{
x ∈ X : x · b1 ≤ −a(x · b2)2

8
, x · bi = 0 ∀i ≥ 3

}
,

S is an orthogonal box in X:

S = {x ∈ X : x · b1 ≤ 0, −1 ≤ ax · b2 ≤ 1, x · b3 ≤ 0} ,
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Fig. 3.2. Sets needed in constructing the set D.

T is a closed and convex subset of S:

T =

{
x ∈ X : x · b1 ≤ 0, −1 < ax · b2 < 1, x · b3 ≤ − a2(x · b2)2

1 − a2(x · b2)2

}
,

and, as customary, Z� means the polar set of some subset Z of X,

Z� = {x ∈ X : x · y ≤ 1 ∀y ∈ Z}.

Set now, as shown in Figure 3.2,

D = x0 + F � = x0 + ((P1 + S) ∩ (P2 + T ))�.

This definition grants to the set F (and thus D) several geometrical properties
which are crucial for our purpose.

Let us first notice that F is contained in the half-space E1 = {x ∈ X : x ·b1 ≤ 0};
accordingly, the half-line R+b1 lies within F �, and thus the half-line x0 + R+b1 is a
part of both sets C and D = x0 + F �. It follows that

σC(x) = σD(x) = +∞ ∀x ∈ X such that x · b1 > 0.

Let x ∈ X be such that x · b1 = 0; if y is such that y · b1 �= 0, then either y · b1 > 0 or
(x− y) · b1 > 0, so

(3.5) σC(y) + σD(x− y) = +∞ ∀ x ∈ X, x · b1 = 0, y ∈ X, y · b1 �= 0;

hence for every element x ∈ X such that x · b1 = 0 it results that

(3.6) σC�σD(x) = inf
y∈X, y·b1=0

σC(y) + σD(x− y).

The hyperplane L1 = {x ∈ X : x · b1 = 0} thus plays a very important role in
computing the inf-convolution of the support functions σC and σD. The following
lemma describes the intersection between the set F and L1; for convenience, we state
the result in terms of

γF (x) = inf
s>0

{
1

s
: sx ∈ F

}
,
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b
3

L 1

b
2

a

3

b
2

a
−λ

b
1

1
T    LU

b

F

O

Fig. 3.3. Intersection between F and L1.

the gauge function of the set F .
Lemma 3.3. The set F is a closed and convex subset of the Euclidean space X.

Moreover, F ∩ L1 = T ∩ L1, and thus (see Figure 3.3)

(3.7) γF (x) ≥ a|x · b2| ∀x ∈ L1,

(3.8) γF (x) > 1 ∀x ∈ L1 such that a|x · b2| = 1,

and

(3.9) lim
λ→+∞

γF

(
b2
a

− λb3

)
= 1.

Proof of Lemma 3.3. Recall that the sum Z1 + Z2 of two closed and convex
subsets Z1 and Z2 of an Euclidean space is always convex. This sum is moreover
closed, provided that Z1 and −Z2 do not contain two parallel half-lines (see [12,
Corollary 9.1.2]). This is obviously the case for the pairs of closed and convex sets P1

and S, as well as P2 an T , and thus the sets P1 +S and P2 +T are closed and convex,
and the same clearly holds also for the set F , which is their intersection.

It has already been noticed that all the sets P1, P2, S, and T lay within E1;
accordingly, the sum of two elements x1 and x2 from either P1 and S, or P2 and T ,
is contained within the delimiting hyperplane L1 if and only if both elements x1 and
x2 belong to L1. In other words,

(P1 + S) ∩ L1 = (P1 ∩ L1) + (S ∩ L1),

(P2 + T ) ∩ L1 = (P2 ∩ L1) + (T ∩ L1),

and note that P1 ∩ L1 = P2 ∩ L1 = {0} to deduce that

F ∩ L1 = ((P1 + S) ∩ L1) ∩ ((P2 + T ) ∩ L1)

= (S ∩ L1) ∩ (T ∩ L1) = (S ∩ T ) ∩ L1.
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Recall that T ⊂ S, and deduce that F ∩ L1 = T ∩ L1.
This relation may be used in order to compute the value of γF (x) for elements

x ∈ L1, since it obviously holds that

γF (x) = γF∩L1(x) = γT∩L1(x) ∀x ∈ L1.

Use the fact that

T ∩ L1 ⊂ S ∩ L1 ⊂ M = {x ∈ X : x · b1 = 0,−1 ≤ ax · b2 ≤ 1}

to deduce that

γT∩L1(x) ≥ γM (x) = a|x · b2| ∀x ∈ L1,

that is, relation (3.7).
In order to prove relation (3.8), note that, for every x ∈ T∩L1 we have a|x·b2| < 1.

Accordingly, relation a|x·b2| = 1 implies that x /∈ T∩L1. Let us now use [12, Corollary
9.7.1], which says that T ∩ L1 = {y : γT∩L1(y) ≤ 1}, and deduce that γT∩L1

(x) > 1.
Finally, if λ ≥ 1, standard computation shows

√
4λ2 + 1 − 1

2λ

(
b2
a

− λb3

)
∈ T ∩ L1;

thus

(3.10) γT∩L1

(
b2
a

− λb3

)
≤ 2λ√

4λ2 + 1 − 1
.

Use relation (3.8) for x =
(
b2
a − λb3

)
to see that

(3.11) 1 < γT∩L1

(
b2
a

− λb3

)
;

relation (3.9) simply comes from relations (3.10) and (3.11).
An important step in proving that the pair of closed and convex sets (C,D) has

the strong CHIP is to determine their intersection C ∩D.
Lemma 3.4. It holds that

(3.12) C ∩D = x0 + (F + Rb3)
�.

Proof of Lemma 3.4. Use the fact that R+(−b3) ⊂ T ⊂ S to deduce that
R+(−b3) ⊂ F , and thus that F � ⊂ (−E3). Accordingly, D ⊂ x0 + (−E3), and
as C ⊂ x0 + E3, we obtain that

C ∩D ⊂ (x0 + E3) ∩ (x0 + (−E3)) = x0 + L3,

where by L3 we mean

L3 = {x ∈ X : x · b3 = 0}.

In other words,

(3.13) x0 · b3 = x · b3 ∀x ∈ C ∩D.
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Consequently,

(3.14) C ∩D = C ∩ (D ∩ (x0 + L3)) = C ∩ (x0 + (F � ∩ L3)).

Recall (see [2, Chapter 4, section 1, Corollary of Proposition 3]) that, for every
closed and convex sets A and B containing 0, it holds that (A ∩B)� = co(A� ∪B�),
where co(A) denotes the closed convex hull of the set A.

Thus, by using the bipolar theorem (see [2, Chapter 4, section 1, Proposition 3])
applied to the set F , and the obvious fact that L�

3 = Rb3, we deduce that

(3.15) (F � ∩ L3)
� = co(F �� ∪ L�

3) = co(F ∪Rb3).

It is well known that for every convex set A and flat W , co (A∪W ) = co (A+W ).
Apply this relation to the convex set F and the one-dimensional flat Rb3 to prove
that co (F ∪Rb3) = co (F + Rb3); by virtue of relation (3.15) it follows that

(F � ∩ L3)
� = co (F + Rb3).

Accordingly, F � ∩ L3 = (F � ∩ L3)
�� = (co (F + Rb3))

�
; as the polar of any set

coincides with the polar of its closure, we have

(3.16) F � ∩ L3 = (F + Rb3)
�.

Let us prove that the set (F +Rb3)
� lies within C. Indeed, after an easy compu-

tation it results that

(T + Rb3) = S + Rb3(3.17)

= N = {x ∈ X : x · b1 ≤ 0, −1 ≤ ax · b2 ≤ 1} ;

thus N ⊂ (F + Rb3), which means that (F + Rb3)
� ⊂ N�.

But as

N� = {x ∈ X : 0 ≤ x · b1, −a ≤ x · b2 ≤ a, 0 = x · bi ∀i ≥ 3},

we have (see Proposition 3.2) N� ⊂ A, and thus

(3.18) x0 + (F + Rb3)
� ⊂ (x0 + N�) ⊂ (x0 + A) ⊂ C.

Relation (3.12) follows now from relations (3.14), (3.16), and (3.18).
It thus becomes necessary to determine the sum between the closed and convex

set F and the line Rb3.
Lemma 3.5. It holds that

(3.19) {x ∈ (P1 + S) : x · b1 < 0} + Rb3 ⊂ F + Rb3 ⊂ (P1 + S) + Rb3;

accordingly,

(3.20) C ∩D = x0 + (P1 + S + Rb3)
�.

Moreover, the gauge functions γF and γP1+S+Rb3 fulfill the following property:
For every x ∈ X such that x · b1 < 0, there is θ(x) ≥ 0 such that

(3.21) γP1+S+Rb3(x) = γF (x− θ(x)b3) .
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Fig. 3.4. The sum between F and the line Rb3.

Proof of Lemma 3.5. On the basis of formula (3.17), we claim that S + Rb3 is
a closed and convex set. Moreover, there are no parallel half-lines within P1 and
−(S +Rb3), so, using again [12, Corollary 9.1.2], we deduce that the set P1 +S +Rb3
(see Figure 3.4) is closed and convex.

Let us prove the second inclusion in (3.19). As F ⊂ (P1 + S), it clearly follows
that

(3.22) F + Rb3 ⊂ P1 + S + Rb3.

To establish the first inclusion in relation (3.19), we prove and use the fact that, for
every x ∈ P1 + S such that x · b1 < 0, there is λ(x) ≥ 0 such that (x− λ(x)b3) ∈ F .

When −1 < ax · b2 < 1, it is easy to see that the value

λ(x) = x · b3 +
a2(x · b2)2

1 − a2(x · b2)2

does the job. Indeed, the element y = (x · b1)b1 lies within both P1 and P2, while

z = x− y − λ(x)b3 = (x · b2)b2 −
a2(x · b2)2

1 − a2(x · b2)2
b3 +

n∑
i=4

(x · bi)bi

is obviously contained in T , and thus in S. Accordingly,

x− λ(x)b3 = y + (x− y − λ(x)b3) ∈ (P1 + S) ∩ (P2 + T ) = F.

Let x ∈ (P1 +S) such that x · b1 < 0 and a|x · b2| ≥ 1; to fix the ideas, admit that
ax · b2 ≥ 1. In order to define λ(x) in this case, use the fact that x can be expressed
as the sum x = y + z of two elements y and z such that y ∈ P1 and z ∈ S.

As y ∈ P1, it follows that

(3.23) y · b1 ≤ −a(y · b2)2
4

;
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since for every z ∈ S it holds that z · b1 ≤ 0, we deduce that thus x · b1 ≤ y · b1. We
may accordingly infer from relation (3.23) that

(3.24) x · b1 ≤ −a(y · b2)2
4

.

Use once more the fact that z ∈ S, to conclude that −1 ≤ az · b2 ≤ 1. Recall that
ax · b2 ≥ 1, and deduce that

(3.25) (y · b2)2 = (x · b2 − z · b2)2 ≥
(
x · b2 −

1

a

)2

;

from relation (3.24) and (3.25) it follows that

(3.26) x · b1 ≤ −
a
(
x · b2 − 1

a

)2
4

.

Combine the fact that x · b1 �= 0 with relation (3.26) and deduce that

x · b1 < −
a
(
x · b2 − 1

a

)2
8

;

accordingly, for some parameter α such that 0 < aα < 1, we have

(3.27) x · b1 < −a (x · b2 − α)
2

8
.

We can now define λ(x) as

λ(x) =
a2α2

1 − a2α2
.

Inequality (3.27) proves that the element (x−αb2−
∑n

i=4(x · bi)bi) belongs to the
set P2; as obviously

αb2 −
a2α2

1 − a2α2
b3 +

n∑
i=4

(x · bi)bi ∈ T,

we deduce that

x − λ(x)b3(3.28)

=

(
x− αb2 −

n∑
i=4

(x · bi)bi

)
+

(
αb2 −

a2α2

1 − a2α2
b3 +

n∑
i=4

(x · bi)bi

)

∈ P2 + T.

Remark that the case ax · b2 ≤ −1 is similar to the case ax · b2 ≥ 1. Indeed, when
ax · b2 ≤ −1, one has

(y · b2)2 ≥
(
x · b2 +

1

a

)2

instead of relation (3.25). The parameter α now lies between − 1
a and 0, and fulfills

x · b1 < −a (x · b2 + α)
2

8
,
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and not relation (3.26).
As in the case ax · b2 ≥ 1, x is the sum of two elements: one in P2, the other in T .

However, when ax · b2 ≤ −1, the element belonging to P2 is (x+αb2−
∑n

i=4(x · bi)bi),
and the one lying in T is −αb2 − a2α2

1−a2α2 b3 +
∑n

i=4(x · bi)bi.
Noticing that S + R+(−b3) = S, we have (P1 + S + R+b3) = (P1 + S). Thus, as

x ∈ P1 + S, we deduce that

(3.29) x− λb3 ∈ P1 + S ∀λ ≥ 0;

from (3.28) and (3.29) it follows that

(x− λ(x)b3) ∈ (P1 + S) ∩ (P2 + T ) = F,

and therefore for every x ∈ P1 + S such that x · b1 < 0, there is λ(x) ≥ 0 such that
x− λ(x)b3 ∈ F .

Use this observation to prove that

{x ∈ P1 + S : x · b1 < 0} + Rb3 ⊂ F + Rb3,

which, together with relation (3.22), yields relation (3.19).
Relation (3.19) implies that the set P1 +S+Rb3 is the closure of the set F +Rb3.

Recalling that the polar of any set coincides with the polar of its closure, we deduce
that

(3.30) (F + Rb3)
� = (P1 + S + Rb3)

�,

and relation (3.20) follows from formulas (3.12) and (3.30).
It remains to prove relation (3.21). To begin with, notice that from relation

(3.19), it follows that F ⊂ P1 + S + Rb3, and thus

(3.31) γP1+S+Rb3 ≤ γF .

Let us first prove that γP1+S+Rb3(x) is real-valued for every x ∈ X such that
x · b1 < 0. In this respect, note that from relation (3.17) it results that {x ∈ X :
x · b2 = x · b3 = 0} ⊂ S + Rb3, and thus that

(3.32) P1 + {x ∈ X : x · b1 = x · b2 = 0} ⊂ (P1 + S + Rb3).

On the other hand, the set P1 + {x ∈ X : x · b1 = x · b2 = 0} contains all the

elements x ∈ X such that x · b1 ≤ −a(x·b2)2
4 . As

(
− 4x · b1
a(x · b2)2

x

)
· b1 = −4(x · b1)2

a(x · b2)2
= −

a
((

− 4x·b1
a(x·b2)2 x

)
· b2

)2

4
,

this means that

− 4x · b1
a(x · b2)2

x ∈ P1 + {x ∈ X : x · b1 = x · b2 = 0}.

Combine the previous relation with formula (3.32) to deduce that

γP1+S+Rb3(x) ≤ a(x · b2)2
|4x · b1|

.
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Consequently, for every x ∈ X such that x · b1 < 0 we have γP1+S+Rb3(x) < +∞.
Let us first consider the case when γP1+S+Rb3(x) = 0, that is, when x belongs to

a ray completely contained in P1 + S + Rb3. Taking into account the definitions of
the sets P1 and S, we have

[γP1+S+Rb3(x) = 0] ⇔ [x · b1 ≤ 0 and x · b2 = 0] ;

similarly,

[γF (x) = 0] ⇔ [x · b1 ≤ 0, x · b2 = 0 and x · b3 ≤ 0] .

In this case, θ(x) = x·b3+|x·b3|
2 obviously does the job.

Let us now turn to the case γP1+S+Rb3(x) > 0 and write that

x

γP1+S+Rb3(x)
∈ P1 + S + Rb3.

We deduce that there is a λ̃(x) ∈ R such that

x

γP1+S+Rb3(x)
− λ̃(x)b3 ∈ P1 + S.

Accordingly,(
x

γP1+S+Rb3(x)
− λ̃(x)b3

)
− λ

(
x

γP1+S+Rb3(x)
− λ̃(x)b3

)
b3 ∈ F,

which means that

γF

(
x− γP1+S+Rb3(x)

(
λ̃(x) + λ

(
x

γP1+S+Rb3(x)
− λ̃(x)b3

))
b3

)
(3.33)

≤ γP1+S+Rb3(x).

Relations (3.31), (3.33) and the obvious fact that

γP1+S+Rb3(x) = γP1+S+Rb3(x + νb3) ∀ν ∈ R

prove relation (3.21) with

θ(x) = γP1+S+Rb3(x)

(
λ̃(x) + λ

(
x

γP1+S+Rb3(x)
− λ̃(x)b3

))
,

completing in this way the proof of Lemma 3.5.

3.2. The main result. We claim that the pair of closed and convex sets C and
D has the strong CHIP.

Proposition 3.6. The pair of closed and convex subsets C and D of the Eu-
clidean space X has the strong CHIP.

Proof of Proposition 3.6. Let x1 ∈ C ∩D and y ∈ ∂ιC∩D(x1), y �= 0. Our aim is
to express y as the sum of two elements y1 and y2 from ∂ιC(x1) and ∂ιD(x1).

Let us first remark that, since (x0 +A) ⊂ C ⊂ (x0 +E3) (see Proposition 3.2), it
follows that

(3.34) R+b3 ⊂ ∂ιC(x)
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for every x ∈ x0 + A, in particular for every x ∈ C ∩D (see Lemma 3.4 and relation
(3.18)). Similarly, we deduce that

(3.35) R+(−b3) ⊂ ∂ιD(x)

for every x ∈ C ∩D. The flat {x ∈ X : x · bi = 0 ∀1 ≤ i ≤ 3} obviously lies within
T , and thus in S and F . Thus D is contained within the flat x0 + {x ∈ X : x · bi =
0 ∀i ≥ 4}, and we deduce that

(3.36) {x ∈ X : x · b1 = x · b2 = x · b3 = 0} ⊂ ∂ιD(x) ∀x ∈ D.

From relations (3.34), (3.35), and (3.36) it follows that

(3.37) {x ∈ X : x · b1 = x · b2 = 0} ⊂ (∂ιC(x) + ∂ιD(x)) ∀x ∈ (C ∩D).

We address first the case when y · b1 = 0. A standard computation shows that

(P1 + S + Rb3)
�(3.38)

=

{
x ∈ X : x · b1 ≥ (x · b2)2

a− |x · b2|
,−a < x · b2 < a, x · bi = 0 ∀i ≥ 3

}
.

From the previous relation it follows that the set (P1 +S +Rb3)
� is contained within

the plane spanned by b1 and b2. For every y ∈ X such that y · b1 = 0 it follows that

(3.39) x · y = (x · b2)(y · b2) ∀x ∈ (P1 + S + Rb3)
�.

The elements x1 and x0 are both in C ∩D; in view of relation (3.20) it appears
that (x1 − x0) ∈ (P1 + S + Rb3)

�.
From relation (3.38) it follows that |(x1 − x0) · b2| < a. Set

α =
a + |(x1 − x0) · b2|

2
, z1 =

α2

a− α
b1 − αb2, z2 =

α2

a− α
b1 + αb2;

thus z1, z2 ∈ (P1 + S + Rb3)
� and z1 · b2 < (x1 − x0) · b2 < z2 · b2.

Recall that, as y ∈ ∂ιC∩D(x1), the linear functional X � x → (x · y) ∈ R achieves
its maximum on C ∩D at x1. Thus, on one hand,

(x0 + z1) · y ≤ x1 · y,

that is, in view of relation (3.39),

(z1 · b2)(y · b2) ≤ ((x1 − x0) · b2) (y · b2);

combine this relation with the fact that z1 · b2 < (x1 − x0) · b2, and deduce that
y · b2 ≥ 0. On the other hand,

(x0 + z2) · y ≤ x1 · y,

that is, once more by virtue of relation (3.39),

(z2 · b2)(y · b2) ≤ ((x1 − x0) · b2) (y · b2);

in addition, as (x1 − x0) · b2 < z2 · b2, we get y · b2 ≤ 0.
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We may thus conclude that, when y · b1 = 0, it results that y · b2 = 0, and formula
(3.37) proves that y is the sum of two elements from ∂ιC(x1) and ∂ιD(x1).

Consider now the case when y · b1 �= 0, which, taking into account the fact that
the half-line (x0 + R+b1) is contained (as already remarked) within C ∩D, amounts
to saying that y · b1 < 0.

It is well known (see [12, Theorem 14.5]) that for every closed and convex set Z
containing 0, it holds σZ = γZ� . Use this relation for the set (P1 +S+Rb3)

� to obtain

σ(P1+S+Rb3)� = γP1+S+Rb3 ;

as (see 3.20) (P1 + S + Rb3)
� = (C ∩D) − x0, it follows that

(3.40) σ(C∩D)−x0
= γP1+S+Rb3 .

Similarly,

(3.41) σD−x0
= γF .

From relations (3.21), (3.40), and (3.41) it follows that there is some θ(y) ≥ 0
such that

σ(C∩D)−x0
(y) = σD−x0

(y − θ(y)b3);

thus

(3.42) σC∩D(y) = σD(y − θ(y)b3) + θ(y)x0 · b3.

As y ∈ ∂ιC∩D(x1), it results that σC∩D(y) = x1 · y; use relation (3.42) to see that

(3.43) σD(y − θ(y)b3) + θ(y)x0 · b3 = x1 · y.

Relation (3.13) reads x0 · b3 = x1 · b3. Equality (3.43) may thus be stated as

σD(y − θ(y)b3) + θ(y)x1 · b3 = x1 · y,

that is,

σD(y − θ(y)b3) = x1 · (y − θ(y)b3).

This means that (y − θ(y)b3) ∈ ∂ιD(x1).
Recall (see relation (3.34)) that λb3 ∈ ∂ιC(x1) for every λ ≥ 0, and express y as

y = θ(y)b3 + (y − θ(y)b3), that is, the sum of an element from ∂ιC(x1) and the sum
of another element from ∂ιD(x1).

We finally claim that the inf-convolution of the support functionals σC and σD is
not exact at b2

a , a fact which completes the proof of Theorem 3.1.
Proposition 3.7. It holds that

(3.44) σC�σD

(
b2
a

)
=

x0 · b2
a

+ 1,

while

(3.45) σC(y) + σD(z) >
x0 · b2

a
+ 1 ∀y + z =

b2
a
.
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Proof of Proposition 3.7. Use the fact that (x0+2ab2) and (x0−2ab2) both belong
to x0 + A, and thus to C, to deduce that

(3.46) σC(x) ≥ max ((x0 + 2ab2) · x, (x0 − 2ab2) · x) = x0 · x + 2a|x · b2|.

From relation (3.7) it follows that

γF (x) ≥ a|x · b2| ∀x ∈ L1.

Relation (3.41) reads σD−x0
= γF ; hence, it results that

(3.47) σD(x) = x0 · x + γF (x).

It follows that

(3.48) σD(x) ≥ x0 · x + a|x · b2| ∀x ∈ L1.

From relations (3.46) and (3.48) it results that

σC(x)+σD

(
b2
a

− x

)
(3.49)

≥ x0 · x + 2a|x · b2| + x0 ·
(
b2
a

− x

)
+ a

∣∣∣∣
(
b2
a

− x

)
· b2

∣∣∣∣
≥ x0 · b2

a
+ 1 + a|x · b2| ∀x ∈ X, x · b1 = 0.

By taking into account relations (3.6) and (3.49) we prove that

(3.50) σC�σD

(
b2
a

)
≥ x0 · b2

a
+ 1.

As x0 ∈ C ⊂ (x0 + E3), it follows that

σC(λb3) = λx0 · b3 ∀λ ≥ 0.

Use relation (3.47) to deduce that

σC(λb3) + σD

(
b2
a

− λb3

)

= λx0 · b3 +
x0 · b2

a
− λx0 · b3 + γF

(
b2
a

− λb3

)
.

From the previous equality, together with relation (3.9), it yields that

lim
λ→∞

(
σC(λb3) + σD

(
b2
a

− λb3

))
=

x0 · b2
a

+ 1,

which, combined with inequality (3.50), proves relation (3.44).
Finally, let x ∈ L1 be such that x · b2 = 0. Then (see relation (3.8))

γF

(
b2
a

− x

)
> 1,
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and, as obviously σC(x) ≥ x0 · x, it results that

σC(x) + σD

(
b2
a

− x

)
(3.51)

≥ x0 · x +
x0 · b2

a
− x0 · x + γF

(
b2
a

− x

)

>
x0 · b2

a
+ 1 ∀ x ∈ X, x · b1 = x · b2 = 0.

Use relation (3.49) to deduce that, for every x ∈ X such that x · b1 = 0 and
x · b2 �= 0, it holds that

(3.52) σC(x) + σD

(
b2
a

− x

)
>

x0 · b2
a

+ 1.

Relation (3.45) follows from relations (3.5), (3.52), and (3.51).
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[13] C. Zălinescu, A comparison of constraint qualifications in infinite-dimensional convex pro-

gramming revisited, J. Austral. Math. Soc. Ser. B, 40 (1999), pp. 353–378.



SIAM J. OPTIM. c© 2007 Society for Industrial and Applied Mathematics
Vol. 18, No. 3, pp. 853–877
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PORTFOLIOS∗

GIUSEPPE C. CALAFIORE†

Abstract. This paper deals with a problem of guaranteed (robust) financial decision-making
under model uncertainty. An efficient method is proposed for determining optimal robust portfolios
of risky financial instruments in the presence of ambiguity (uncertainty) on the probabilistic model
of the returns. Specifically, it is assumed that a nominal discrete return distribution is given, while
the true distribution is only known to lie within a distance d from the nominal one, where the
distance is measured according to the Kullback–Leibler divergence. The goal in this setting is to
compute portfolios that are worst-case optimal in the mean-risk sense, that is, to determine portfolios
that minimize the maximum with respect to all the allowable distributions of a weighted risk-mean
objective. The analysis in the paper considers both the standard variance measure of risk and the
absolute deviation measure.

Key words. worst-case financial risk, portfolio selection, asset allocation, statistical ambiguity,
robust optimization
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1. Introduction. A classical problem in computational finance is that of opti-
mally selecting a portfolio of finitely many risky assets so as to maximize the expected
return of the investment while keeping “risk” under control. In the mainstream ap-
proach, dating back to the seminal work of Markowitz [25], risk is measured according
to the variance of the portfolio return, and the determination of an optimal portfolio
amounts to the solution of a convex quadratic programming problem. Since the in-
troduction of this basic mean-variance model for portfolio selection, however, many
criticisms have been raised on its practical relevance, especially in regard to the sensi-
tivity of the optimal portfolios with respect to the statistical errors in the parameters
(the estimated expected returns and covariances of the assets), and possible remedies
have been proposed. An in-depth overview of this literature is out of the scope of the
present work, but the interested reader could find some useful pointers in [3, 6, 8, 26].

More recently, the issue of model uncertainty in portfolio optimization has been
the subject of study from different groups of researchers; see, for instance, [13, 18,
24, 34, 37]. Many of these recent contributions propose ideas and computational
tools derived from the robust convex optimization field [4, 14]. The general approach
in this setting is to model the uncertain market parameters (expected returns and
covariances) as deterministic unknown-but-bounded quantities, and then take a worst-
case approach where an optimal portfolio is sought that minimizes the worst risk
that the investor may face as the market parameters vary in any possible way inside
their admissible domains. These deterministic models are practically and theoretically
sound, since they either are naturally derived from confidence regions around the least-
squares estimates of the market parameters (see [18]) or may reflect an analyst feeling
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of the reliability of the parameter estimates. In this latter case, the uncertainty model
typically takes the form of elementwise bounds on some or all entries of the expected
return vector and covariance matrix; see [13, 34]. Specifically, El Ghaoui, Oks, and
Oustry in [13] consider the problem of computing and optimizing the worst-case value-
at-risk of a portfolio, under bounded uncertainty on the mean and covariance matrix of
the returns, and show how the computation can be efficiently performed by recasting
the problem in the form of a semidefinite optimization program [33, 35]. Goldfarb and
Iyengar in [18] develop a robust factor model for the returns, show how the uncertainty
description can be naturally obtained from confidence regions of standard statistical
estimation techniques, and pose the corresponding robust allocation problem in the
form of a convex second order cone program (SOCP); see [23]. Tütüncü and Koenig
in [34] propose the use of an interval uncertainty model for the return mean and
covariance and solve the resulting worst-case Markowitz problem via an ad hoc saddle-
point algorithm.

While the mentioned approaches are specific to portfolio selection problems, more
general models dealing with uncertainty in the underlying probability measures have a
long history and have been studied in different fields, such as economics, finance, and
stochastic optimization; see, e.g., [7, 11, 12, 32, 36]. Uncertainty in the probabilistic
model is usually referred to as ambiguity in the decision theory literature. The recent
work from Erdoğan and Iyengar [15] discusses ambiguous chance-constrained problems
and employs the Prohorov metric to describe the uncertainty “ball” of admissible
distributions. As we shall see in section 2.1, in this paper we adopt a similar approach
for describing the “ambiguity” set around a nominal distribution and employ the
Kullback–Leibler divergence function as a distance measure among distributions. This
distance measure has nice invariance and convexity properties, and the degree of
ambiguity in this metric can be estimated from samples; see [20].

The main goal of this paper is to present an efficient computational framework for
robust portfolio selection in the situation of asset returns described by an ambiguous
discrete joint probability distribution. We consider two risk measures (see [2, 30])
given by composite objectives of the form ρ(x, π) − γμ(x, π), where ρ(x, π) is either
the variance or the expected absolute deviation of the portfolio, μ(x, π) is the portfolio
expected return, and γ is a nonnegative parameter. Here, x denotes the portfolio mix
and π the discrete distribution of the returns (see section 2 for precise definitions and
notation). The measure based on the expected absolute deviation is (for γ ≥ 2) a
coherent measure of risk in the sense of Artzner et al. [2]. The measure based on the
variance is instead not coherent, since it violates a monotonicity condition; see [30].
However, the use of this latter measure is justified by both historical reasons and its
wide popularity.

In the nominal case—i.e., when the probability distribution π is known and
given—minimizing the above objectives is equivalent either to a standard Markowitz
problem (in the case of the variance-based risk measure) or to the absolute deviation
problem, discussed, for instance, in [21, 31]. It is well known that, in this latter case,
the optimal portfolio can be found by solving a linear programming problem.

The key point in this paper is to consider the return distribution π to be impre-
cisely known. In particular, we assume that a nominal value η for the distribution
is given, but that the actual π is only known to lie in a region at distance no larger
than d from its nominal value, where d is a user-definable parameter that quantifies
the (lack of) confidence in the nominal probability (the “index of ambiguity,” in the
terminology of [20]). To measure the distance among distributions, we use the stan-
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dard metric given by the Kullback–Leibler divergence. In this setting, we define the
worst-case risk of a portfolio x as the supremum of ρ(x, π)−γμ(x, π) for π that ranges
over its uncertainty set. An optimal worst-case portfolio is a composition vector x
that minimizes this worst-case risk.

We detail in the paper two numerical schemes that permit us to efficiently evaluate
and optimize the worst-case risk in both the variance and the absolute deviation
cases. For the variance-based risk measure, the worst-case optimal portfolio can be
determined using an interior-point barrier method, in conjunction with an analytic
center cutting plane technique. The absolute deviation-based risk measure poses a
slight additional complication, due to nonconcavity in π of this function. This issue
is here resolved by adding a suitable line search to the algorithm.

The paper is organized as follows. Section 2 sets the stage by providing the basic
definitions and introducing the distribution uncertainty model. Section 3 discusses a
barrier method for computing the worst-case variance-based risk of a given portfolio,
whereas section 4.1 describes the overall cutting plane algorithm for optimizing the
worst-case risk over the portfolio composition. Section 5 extends the methodology to
the absolute deviation-based risk measure. Some numerical examples are presented
in section 6, and conclusions are finally drawn in section 7. To improve readability,
some of the technical details have been relegated to appendices.

1.1. Notation. Whenever useful for notational compactness, we use MATLAB-
like notation for operations on vectors. If x, y are two vectors of compatible dimen-
sions, relational operators such as >,≥, etc., are to be intended elementwise (e.g.,
x > y means that all entries of vector x − y are positive). Similarly, powers and
operators +,−, ∗, / work elementwise, and the same holds for standard functions. For
example, log x/y denotes a vector whose ith entry is log xi/yi.

2. Preliminaries. Consider a collection of assets or asset classes a1, . . . , an and
let

r
.
=
[
r1 · · · rn

]�
be a random vector describing the returns of the considered assets over a fixed period
of time. Let r(1), . . . , r(T ) be T possible scenarios for the outcomes of the random
return vector r, and let πk be the probability associated to the scenario r(k), with
the obvious properties that

πk ≥ 0, k = 1, . . . , T,
T∑

k=1

πk = 1.

Defining the probability vector

π
.
= [π1 · · · πT ]�,

the two previous conditions are simply rewritten as π ≥ 0, 1�π = 1, where 1 denotes
a vector of ones of suitable dimensions. Now let

x
.
=
[
x1 · · · xn

]�
be a vector such that xi represents the fraction of an investor portfolio that is invested
in asset ai. We shall refer to x as the “portfolio composition,” or “portfolio mix.”
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The portfolio composition can be subject to various kinds of constraints, which we
assume to be representable by the condition

x ∈ X , where X is a given polytope.

For example, a typical form for the set X is

X =

{
x :

n∑
i=1

xi = 1, xi ≥ 0 for i = 1, . . . , n

}
,(2.1)

which reflects the standard situation where the investor cannot hold a negative amount
of an asset (i.e., short-selling is not allowed). However, the results in this paper are
not restricted to the specific admissible portfolios set in (2.1) and apply to the general
polytopic case.

With the positions above, the investor’s total return at the end of the investment
period is represented by the random variable

w
.
= r�x,(2.2)

whose expected value is

μ(x, π)
.
= E

{
r�x

}
=

T∑
k=1

πkr
�(k)x =

(
T∑

k=1

πkr
�(k)

)
x = r̂�(π)x,

where r̂(π)
.
= E {r} =

∑T
k=1 πkr(k).

The portfolio risk is quantified as a measure of variability of w around its expec-
tation. A classical measure of variability (see, e.g., [25]) is given by the variance

ρ2(x, π)
.
= E

{(
r�x− E

{
r�x

})2}
= x�Σ(π)x,(2.3)

where

Σ(π)
.
= E

{
(r − r̂(π))(r − r̂(π))�

}
=

T∑
k=1

πk(r(k) − r̂(π))(r(k) − r̂(π))�

is the covariance matrix of r. In this paper, we also consider an alternative measure
of risk, which is based on the expected absolute deviation, and whose justification in
the portfolio selection context is discussed, for instance, in [21, 31]:

ρ1(x, π)
.
= E

{∣∣r�x− E
{
r�x

}∣∣} =

T∑
k=1

πk|r�(k)x− μ(x, π)|.

Following a mean-risk approach, we introduce an objective function which repre-
sents a tradeoff between risk (variance or expected absolute deviation) and expected
return of the portfolio. Specifically, for given γ ≥ 0, we define an objective based on
the variance measure

Υ2(x, π)
.
= ρ2(x, π) − γμ(x, π)(2.4)

and one based on the absolute deviation measure

Υ1(x, π)
.
= ρ1(x, π) − γμ(x, π).(2.5)
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Notice that if the probability distribution π is known and given, then minimiz-
ing Υ2(x, π) over x ∈ X is a well-known Markowitz problem, whose solution can be
obtained by solving numerically a convex quadratic programming problem. Minimiz-
ing Υ1(x, π) in this same situation amounts instead to solving a linear programming
problem; see, for instance, [21, 31].

The point of this paper is to propose computationally efficient schemes for de-
termining optimal worst-case portfolios, when the probability distribution π is not
precisely known. To this end, we introduce in the next section an uncertainty model
for π and define the related robust risk functions.

2.1. Distribution ambiguity and robust measures of risk. Assume that a
nominal return probability distribution η is given, for instance, as a result of estima-
tion from samples. Then the Kullback–Leibler (KL) divergence (see [22]) represents a
natural measure of the expected amount of information in a sample from the unknown
distribution for discriminating against η [19], and it is a frequently used information-
theoretic “distance” measure between probability distributions; see, e.g., [1, 10]. If π,
η are two probability vectors in R

T , with η > 0 describing the nominal probability,
the KL distance between π and η is defined as

KL(π, η)
.
=

T∑
k=1

πk log
πk

ηk
.

We shall henceforth assume that the “true” probability π is only known to lie within
KL distance d ≥ 0 from η, i.e., π ∈ K(η, d), where

K(η, d)
.
= {π ∈ Π : KL(π, η) ≤ d},

Π being the probability simplex Π = {π : π ≥ 0, 1�π = 1}.
K(η, d) thus represents the ambiguity set for the return distribution, and d ≥ 0 is

the uncertainty level (radius of ambiguity). The risk functions (2.4), (2.5), with π ∈
K(η, d), are ambiguous risk functions. The nominal distribution η and the ambiguity
level may either be assigned by expert advice or estimated from data; see, for instance,
[20]. In what follows we shall not investigate further the issue of determination of η
and d and shall assume that these quantities are given data.

Remark 1 (domain, range, and convexity of KL(π, η)). Notice that, since πk log πk

is a convex function over the domain πk ≥ 0,1 then KL(π, η) is a convex function in
π over Π, and hence the uncertainty set K(η, d) is convex.

The function KL(π, η), with π ∈ Π, takes values in the interval [0, log 1/ηmin],
where ηmin = mink=1,...,T ηk. The lower end of the interval is attained for π = η,
whereas the higher end is attained for π = ei, where i is the index of the smallest
element in η, and ei is the ith vector in the standard basis of R

T .
Figure 2.1 gives a pictorial idea of the shape of the set K(η, d) in a three-

dimensional example where η is assumed to be the uniform distribution.
We pursue a worst-case approach in dealing with ambiguity in the risk functions.

Notice that it is known (see [30, Theorem 2]) that the risk functions (2.4), (2.5), for
a fixed probability π, can be represented in dual form as the result of a maximization

Υ(x, π) = max
ζ∈A(π)

[
〈ζ, r�x〉π − Υ∗(ζ)

]
,

1It is assumed by continuity that 0 log 0 = 0.
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Fig. 2.1. A visualization of the subsets K(η, d) of the probability simplex in a three-dimensional
example with η = [1/3 1/3 1/3] and d = 0.01, 0.05, 0.1, 0.2.

where A(π) is a closed convex set of measures, Υ∗ is the conjugate of Υ, and 〈ζ, w〉π =∑
i ζiwiπi. In the the worst-case approach that we follow in this paper, the “robust-

ness” of the nominal risk functions is improved by adding a second level of maximiza-
tion over a set of admissible probabilities K. That is, we shall consider robust risk
functions of the form

Υwc(x) = max
π∈K

Υ(x, π) = max
π∈K

max
ζ∈A(π)

[
〈ζ, r�x〉π − Υ∗(ζ)

]
.

Specifically, given the ambiguity model K(η, d) for the return distribution, we
define the following worst-case (or robust) measures of risk for a portfolio with com-
position x:

Υwc2(x)
.
= max

π∈K(η,d)
ρ2(x, π) − γμ(x, π)(2.6)

for the variance-based measure, and

Υwc1(x)
.
= max

π∈K(η,d)
ρ1(x, π) − γμ(x, π)(2.7)

for the absolute deviation-based measure.
The distribution πwc that attains the supremum in the above optimization prob-

lems is named the worst-case distribution, and the corresponding value function
Υwc(x) is the worst-case risk (to uncertainty level d) of the portfolio x. In the next
section we provide an efficient numerical scheme for solving (2.6). We anticipate that
the existence of a polynomial-time algorithm for computing the worst-case variance-
based risk is due to the fact that we can construct a self-concordant barrier for the
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convex domain K(η, d). Successively, in section 4, we develop a polynomial-time al-
gorithm that permits us to further optimize Υwc2(x) with respect to x, and hence to
find an optimal portfolio mix that minimizes the worst-case variance-based risk. In
section 5, we describe a similar approach for dealing with the absolute deviation-based
objective (2.7).

3. Computing the worst-case variance-based risk. Let the portfolio com-
position x be fixed, let w(k) = r�(k)x, k = 1, . . . , T , and define

w
.
=
[
w(1) · · · w(T )

]�
.

Then from (2.2)–(2.3) we have

ρ2(x, π) = E
{
(w − E {w})2

}
= E

{
w2
}
− E2{w} = π�w2 − π�Ωπ,

where Ω
.
= ww�. Since Ω is symmetric positive semidefinite, it follows that ρ2(x, π)

is a concave function of the probability vector π. Therefore, the objective function
(2.4),

Υ2(x, π) = ρ2(x, π) − γμ(x, π) = −π�Ωπ − π�(γw − w2),

is also concave in π; hence problem (2.6) can be written in the equivalent form of a
convex minimization problem as follows:

Υwc2 = −min
π

π�Ωπ + π�(γw − w2)(3.1)

subject to KL(π, η) ≤ d,(3.2)

π ≥ 0,(3.3)

1�π = 1.

We next develop an interior-point barrier method for solving problem (3.1).

3.1. A logarithmic barrier method. For a fixed portfolio x, we solve problem
(3.1) by solving a sequence of equality constrained problems of the form

min
π

f(π)
.
= tf0(π) + φ(π)(3.4)

subject to 1�π = 1(3.5)

for increasing values of t ≥ 0, where

f0(π)
.
= π�Ωπ + π�(γw − w2)

is the objective function of (3.1),

b(π)
.
=

T∑
k=1

πk log πk −
T∑

k=1

πk log ηk − d,(3.6)

and

φ(π)
.
= − log (−b(π)) −

T∑
k=1

log πk(3.7)
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is a logarithmic barrier for the inequality constraints (3.2), (3.3). For fixed t ≥ 0, we
denote by π∗(t) the corresponding optimal solution of (3.4). The central path is the
curve π∗(t) obtained varying t from 0 to ∞. A standard implementation of a barrier
method is hence the following.

Algorithm 1 (barrier method [5]).
Given strictly feasible π, set t = t(0) > 0, � > 1, tolerance ε > 0.
repeat

1. Centering step:
Compute π∗(t) by solving (3.4) using the Newton method, starting at π.

2. Update: π = π∗(t).
3. Stopping criterion: quit if (T + 1)/t < ε.
4. Increase t: t = �t.

Notice that since η > 0, an initial feasible point for the algorithm is simply
given by π = η. For this algorithm, π∗(t) tends to the optimal solution of problem
(3.1) as t → ∞. The convergence properties of the method are analyzed in terms of
the number of outer iterations (centering steps) needed to reach a solution with the
desired accuracy ε and the number of inner iterations (i.e., the iterations required by
the Newton method to compute each center, up to accuracy εnw). A standard result
states that the number of outer iterations (centering steps) is given exactly by (see
[5, section 11.3.3])

1 +

⌈
log(T + 1)/(εt(0))

log �

⌉
.

The analysis of complexity of each centering step relies on the property of self-
concordance of the objective function in (3.4), which is discussed next.

3.2. Centering step and self-concordance. In their seminal work [28], Nes-
terov and Nemirovskii provided a key condition under which the complexity of the
Newton method could be analyzed, that is, self-concordance of the objective func-
tion. We next show that the objective function in (3.4) is indeed self-concordant and
provide a bound on the number of Newton steps required in each centering phase.

We start with some definitions. A function of a scalar variable ψ(z) : R → R is
self-concordant if it is convex and

|ψ(3)(z)| ≤ kψ(2)(z)3/2

for all z in the domain of ψ, where ψ(2), ψ(3) denote the second and the third deriva-
tives of ψ, respectively, and k is a positive constant. A function ψ(z) of vector variable
z ∈ R

n is self-concordant if it is self-concordant along any line in its domain, i.e., if
the function of scalar variable ψ̃(α)

.
= ψ(z+αv) is a self-concordant function of α ∈ R

for all z in the domain of ψ and for all v.
The following proposition on the self-concordance of the barrier function (3.7)

holds; see Appendix A for a proof.
Proposition 3.1. The function φ(π) in (3.7) is a self-concordant barrier for the

domain

{(π, d) : π > 0, ϕ(π) < d}.

Since the sum of self-concordant functions is self-concordant, and since convex
quadratic functions are obviously self-concordant (they have zero third derivative;
see also some standard rules of “self-concordant calculus” in [5]), we deduce from
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Proposition 3.1 that the objective function in (3.4) is indeed self-concordant. It then
follows that using an (equality-constrained) Newton method with backtracking line-
search, each center can be computed up to accuracy εnw in at most (see, for instance,
[5, section 11])

(T + 1)(�− 1 − log �)


+ log2 log2

1

εnw

Newton steps, where  is a constant that depends on two technical parameters used in
the line-search phase of the algorithm. We conclude this section by reporting explicitly
the gradient and Hessian of the function f(π) in (3.4). We have

∇f(π) = t∇f0(π) + ∇φ(π),

∇2f(π) = t∇2f0(π) + ∇2φ(π)

with

∇f0(π) = 2Ωπ + (γw − w2),

∇φ(π) =
1

−b(π)
∇b(π) − π−1; ∇b(π) = 1 + log

π

η

and

∇2f0(π) = 2Ω,

∇2φ(π) =
1

−b(π)
diag(π−1) +

1

b2(π)
∇b(π)∇�b(π) + diag(π−2).

4. Minimizing the worst-case variance-based risk. In the previous section,
we described a numerically efficient technique for computing the worst-case risk of a
given portfolio mix x, i.e., for evaluating the function Υwc2(x) in (2.6). We now elab-
orate on this technique and develop an efficient algorithm for determining a portfolio
mix that minimizes the worst-case risk. That is, we now aim at solving the portfolio
design problem

min
x∈X

Υwc2(x).(4.1)

We shall do so by employing an analytic center cutting plane technique, which is
described in the next section. Notice preliminarily that function Υ2(x, π) in (2.4),

Υ2(x, π) = xTΣ(π)x− γr̂�(π)x,

is convex (and quadratic) in x for any given π, whence the function Υwc2(x), which
is defined as the pointwise maximum of Υ2(x, π) over π, is also convex in x. At any
given π, the gradient of Υ2(x, π) with respect to x is

∇xΥ2(x, π) = 2Σ(π)x− γr̂(π).(4.2)

The gradient defines a supporting hyperplane for the epigraph of Υ2(x, π), i.e.,

Υ2(z, π) ≥ Υ2(x, π) + [∇xΥ2(x, π)]�(z − x) ∀z ∈ X .(4.3)

Now let x be a given point and let π∗(x) be the probability vector that attains
the optimal value in problem (2.6) (such an optimal argument is attained, since the
feasible set is compact), so that

Υwc2(x) = Υ2(x, π
∗(x)).(4.4)
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Evaluating (4.3) in π = π∗(x), we get

Υ2(z, π
∗(x)) ≥ Υ2(x, π

∗(x)) + [∇xΥ2(x, π
∗(x))]�(z − x) ∀z ∈ X .

Since Υwc2(z) ≥ Υ2(z, π
∗(x)), continuing the previous inequality on the left and using

(4.4), we obtain

Υwc2(z) ≥ Υwc2(x) + [∇xΥ2(x, π
∗(x))]�(z − x) ∀z ∈ X ,(4.5)

which means that ∇xΥ2(x, π
∗(x)) is a subgradient of Υwc2(x) at the point x. Notice

that each time we solve problem (2.6)—or its equivalent formulation (3.1)—for a given
x, we get both the value of Υwc2(x) and the worst-case probability vector π∗(x), and
hence (evaluating (4.2) for π = π∗(x)) a subgradient of Υwc2(x) at x.

4.1. An analytic center cutting plane algorithm for optimizing the port-
folio mix. We now briefly describe an analytic center cutting plane (ACCP) method
for solving problem (4.1). An overview of ACCP techniques for convex optimization
can be found, for instance, in [29].

Let initially P1 = X , and compute the analytic center x(1) of P1. The analytic
center of a polytope can be efficiently computed by minimizing a logarithmic barrier
via a Newton-type algorithm; see, for instance, [17]. Then solve problem (2.6) to get
Υwc2(x

(1)), along with the worst-case probability π∗(x(1)) and a subgradient

g1
.
= ∇xΥ2(x

(1), π∗(x(1)))

of Υwc2(x) at x = x(1). Using inequality (4.5), notice next that for all points in the
hyperplane

{z : g�1 (z − x(1)) > 0}

we have that Υwc2(z) > Υwc2(x
(1)), hence all such points are worse than the current

point x(1) in terms of the objective value that we are trying to minimize. Therefore,
the optimal point should lie in the complementary hyperplane

H1
.
= {z : g�1 (z − x(1)) ≤ 0}.

Hence, we update the current polytope by adding the constraint H1 to P1, i.e., we set

P2 = P1 ∩H1

and iterate the whole process (compute the analytic center x(2) of P2, etc.).
The convergence of this method relies on the fact that the polytopes Pk shrink at

each iteration, thus eventually localizing the optimal solution x∗. The ACCP method
converges to a solution in polynomial time. A precise assessment of the numerical
complexity of the ACCP method and some of its variants has been discussed in several
papers; see, for instance, [16, 17].

In a practical implementation of the method, we may terminate the iterations if
either ‖x(k) −x(k−1)‖ goes below a given threshold εac or the Chebyshev radius of Pk

becomes sufficiently small.2

2The Chebyshev radius of a polytope is defined as the radius of the largest Euclidean hypersphere
contained in the polytope. Computing the Chebyshev radius amounts to solving a linear program-
ming problem; therefore checking the exit condition based on the Chebyshev radius requires some
additional numerical effort.
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A schematic implementation of an algorithm that permits us to solve (up to a
numerical tolerance) the robust portfolio design problem is given next.

Algorithm 2 (ACCP).

Given the exit tolerance εac > 0, and the initial polytope X , set P = X .
repeat

1. Centering step:
Compute the analytic center x of P.

2. Solve subproblem (2.6):
Compute Υwc2(x), π∗(x), and a subgradient g of Υwc2 at x.

3. Stopping criterion:
If Chebyshev-radius(P) < εac, then quit.

4. Update the polytope:

Set P = P ∩ {z : g�(z − x) ≤ 0}.

5. The worst-case absolute deviation-based risk. The robust design ap-
proach outlined in the previous section for the variance-based measure can be ex-
tended to the absolute deviation-based measure (2.7). In this section, we mainly
discuss how to evaluate the worst-case absolute deviation risk of a given portfolio x,

Υwc1(x)
.
= max

π∈K(η,d)
Υ1(x, π),(5.1)

and then hint at how to minimize Υwc1(x) over x ∈ X in section 5.1.1. This lat-
ter process is completely analogous to the one described for the variance-based risk
function.

The main technical difference with respect to the case considered previously
is that, contrary to the variance function ρ2(x, π), the absolute deviation function
ρ1(x, π) is not concave in π; see, e.g., Figure 5.1, and Appendix B for a proof. There-
fore, the inner problem (5.1) cannot be solved by directly using a logarithmic barrier
method such as the one described in section 3.1. However, we show in the next sec-
tion that (5.1) can still be solved efficiently to any given accuracy by using the barrier
method in conjunction with a one-dimensional search.

5.1. Evaluating the worst-case absolute deviation risk. We assume the
portfolio composition x to be fixed, and use the notation introduced in section 3. The
absolute measure and objective function in (5.1) are then

ρ1(π)
.
= ρ1(x, π) =

T∑
k=1

πk|w(k) − w�π|,(5.2)

Υ1(π)
.
= Υ1(x, π) =

T∑
k=1

πk|w(k) − w�π|,−γw�π.(5.3)

As we mentioned before, the function ρ1(x, π), and hence Υ1(x, π), is not concave
(nor convex) over π ∈ Π. However, Υ1(x, π) is concave (and actually linear) in π if
we fix the value of the expected value: w�π

!
= μ.

The solution idea is therefore the following one. First, determine the extreme
feasible values for the portfolio mean return:

μmin = min
π∈K(η,d)

w�π; μmax = max
π∈K(η,d)

w�π(5.4)
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Fig. 5.1. Projection of the superlevel sets of (5.2) on the π1, π2 plane in an example with T = 3
and w = [0.1 0.2 0.3]�.

(we show in Appendix C that these two values can be computed very quickly via a
scalar bisection algorithm). Then, for μ ∈ [μmin, μmax], define

ϕ(μ)
.
= max

π∈K(η,d)

T∑
k=1

πk|w(k) − μ| − γμ(5.5)

subject tow�π = μ.

Clearly, we have that

Υwc1(x) = max
π∈K(η,d)

Υ1(x, π) = max
μ∈[μmin, μmax]

ϕ(μ).(5.6)

In practice, we divide the interval [μmin, μmax] into N grid points μ1, . . . , μN ,
where N is chosen in accordance to the desired solution accuracy. For i = 1, . . . , N ,
computing ϕ(μi) is a convex optimization program that can be solved efficiently us-
ing, for instance, a barrier method such as the one described in section 3.1. An
approximate solution to (5.1) is hence given by

Υwc1(x) � max
i=1,...,N

ϕ(μi).

Notice that the main difficulty in (5.5) is due to the presence of the KL constraint.
It is instructive to detail the solution of (5.5) in the particular situation when this
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constraint is not present, since a closed-form solution is obtained in this case. The
solution in (5.7) is computed basically at no cost, and it is optimal for problem (5.5)
if the constraint KL(π, η) ≤ d happens to be inactive.

Proposition 5.1. Assume without loss of generality that the values w(1), . . . ,
w(T ) are arranged in increasing order, and let π be such that

π1 =
w(T ) − μ

w(T ) − w(1)
, π2 = 0, . . . , πT−1 = 0, πT =

μ− w(1)

w(T ) − w(1)
.(5.7)

If KL(π, η) ≤ d, then π is an optimal solution for problem (5.5), with corresponding
optimal value function

ϕ(μ) = 2
−μ2 + μ(w(1) + w(T )) − w(1)w(T )

w(T ) − w(1)
− γμ.(5.8)

A proof of this proposition is given in Appendix D.

5.1.1. Optimizing over the portfolio composition. The procedure described
in the previous section can further be wrapped by a cutting plane scheme, similarly
to the one described in section 4, in order to optimize Υwc1(x) over the portfolio mix
x.

Notice that the absolute deviation measure (2.5) is convex in x for any given π.
A subgradient of Υ1(x, π) at point x is given by

gx(x, π) =

T∑
k=1

πk(r(k) − r̂(π))sk − γr̂(π),

where

sk
.
=

{
1 if (r(k) − r̂)x ≥ 0,
−1 otherwise.

Now let π∗(x) denote the probability of attaining the optimum in problem (5.6): fol-
lowing steps similar to (4.2)–(4.5) we have that gx(x, π∗(x)) is a subgradient of Υwc1(x)
at x. This subgradient can be used in the cutting plane scheme of section 4.1, thus
providing an overall polynomial-time method to solve the worst-case design problem
minx∈X Υwc1(x).

6. Numerical examples. We considered a financial allocation problem over
five asset classes, where each class is represented by a sector index. We used the
following indices to represent the classes: (1) Russell 1000 Large Cap Growth Index
(RKGR), (2) Russell 1000 Large Cap Value Index (RKVA), (3) Russell 2000 Small
Cap Growth Index (R2KGR), (4) Russell 2000 Small Cap Value Index (R2KVA),
(5) Merrill Lynch Intermediate Bond Index (MACTX), with historical data of daily
logarithmic returns collected over the period from July 14, 2004 to December 30, 2005
(T = 371 scenarios). We assumed that the return on the next day after the observed
period can take on any of the historical values, with equal probability. This amounts
to choosing a uniform nominal distribution η on the scenarios, which also conforms
to the approach undertaken in [21, 31].

Return-risk analysis. We first analyze a fixed portfolio xfix which allocates 30% of
the wealth in bonds, and the rest equally distributed among the remaining assets. The
nominal expected return for this portfolio is μ(xfix, η) = 3.8782 × 10−4, the nominal
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Fig. 6.1. Upper and lower limits for the expected return of portfolio xfix as a function of the
percent uncertainty level (%u.l.).

variance is ρ2(xfix, η) = 3.3307 × 10−5, and the nominal absolute deviation risk is
ρ1(xfix, η) = 0.0046.

We can perform various worst-case analyses on this portfolio. First, we com-
puted the range of variation of the expected return, using the technique discussed
in Appendix C. The results are shown in Figure 6.1 (the uncertainty level in the
plots is expressed in percent units of the maximum allowable value of d, i.e., %u.l. =
100 d

log 1/ηmin
).

Next, we evaluated the worst-case variance-based risk (2.6) of portfolio xfix, with
γ = 0.1 and for increasing values of the percent uncertainty level; see Figure 6.2.
An analogous plot, obtained from the absolute deviation-based risk measure (2.7)
is instead shown in Figure 6.3. Notice from these plots that relatively low uncer-
tainty levels may induce significant variations in the risk measure, with respect to the
nominal (no uncertainty) situation.

Return-risk optimization. We next tested the ACCP algorithm described in sec-
tion 4.1 for optimizing the worst-case variance-based risk. We computed worst-case
optimal portfolios at different levels of uncertainty, which resulted in the plot shown
in Figure 6.4. The composition of the worst-case optimal portfolios is shown in Fig-
ure 6.5.

Numerical performance. In the previous numerical tests, based on nonoptimized
codes run under MATLAB 7.2 on an AMD Opteron 280 workstation, we experienced
times of less than one minute to compute a worst-case optimal portfolio to an εac =
10−5 accuracy.

As a further example, we considered the 30 assets composing the Dow Jones
Industrial Average Index (DJI) and collected T = 138 historical daily return scenarios
from March 24, 2006 to October 9, 2006. We ran the variance-based ACCP algorithm
on these data, setting γ = 0.2, %u.l. = 0.1, and exit accuracy εac = 10−5. Algorithm 2
executed 82 iterations before returning the optimal portfolio. The total execution
time was 23.9 seconds. Figure 6.6 shows the reduction in the Chebyshev radius of the
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Fig. 6.2. Worst-case variance-based risk measure of portfolio xfix as a function of %u.l.
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ambiguity level %u.l. = 0.01.

localization polytope versus the iteration count.
Finally, Figure 6.7 shows a discrete approximation of a portion of the nominal and

robust efficient frontiers for the DJI data. The frontiers have been computed at 20
discretized values of γ ∈ [0.005, 0.3]. The dashed curve plots the expected return and
standard deviation of efficient portfolios under the nominal distribution η (uniform).
The solid curve plots the expected return and standard deviation of efficient portfolios
under the worst-case distributions (each value of γ results in a different worst-case
distribution) for percent ambiguity level %u.l. = 0.01. The worst-case curve was
obtained in about 8.5 minutes.
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7. Conclusions. Following the recent stream in the literature dealing with sta-
tistical model uncertainty (ambiguity) in asset allocation problems, this work explores
the case where the ambiguity level in a discrete return distribution is measured accord-
ing to the Kullback–Leibler divergence. A methodology is proposed for assessing and
optimizing the worst-case risk of a portfolio under this type of uncertainty. Two stan-
dard risk measures (expected return composed with variance or absolute deviation)
are examined, and polynomial-time algorithms are developed for solving efficiently
the ensuing problems.

The proposed algorithms are based on interior-point barrier methods for convex
optimization, in conjunction with a cutting plane technique. Although it is known in
general that cutting plane methods have quite a high iterations-per-digit ratio, they
do provide polynomial-time guaranteed convergence to the global optimum to any
given practical accuracy. Moreover, in the specific application area discussed in this
paper, they permit one to decouple a portfolio analysis phase (step 2 in Algorithm 2)
from a mix optimization one (step 1). The numerical experiments show that worst-
case optimal portfolios can be computed in reasonable time on a modern computer,
and suggest that the proposed methods may be potentially useful in practice for
controlling analytically the effects of model uncertainty on financial risk.

Appendix A. Proof of Proposition 3.1. Consider the function

ϑ(π) =
T∑

k=1

πk log πk −
T∑

k=1

πk log ηk,

which is convex and three times differentiable over the domain π > 0, and let
D2ϑ(π)[h, h], D3ϑ(π)[h, h, h] denote, respectively, the second and third differentials
of ϑ(π), taken at π along the direction h ∈ R

T . That is,

D2ϑ(π)[h, h] =
d2

dt2
ϑ(π + th)

∣∣∣∣
t=0

=

T∑
k=1

h2
k

πk
,

D3ϑ(π)[h, h, h] =
d3

dt3
ϑ(π + th)

∣∣∣∣
t=0

=

T∑
k=1

−h3
k

π2
k

.

We have that

∣∣D3ϑ(π)[h, h, h]
∣∣ ≤ T∑

k=1

|hk|3
π2
k

=

T∑
k=1

h2
k

πk
· |hk|
πk

≤

√√√√ T∑
k=1

(
h2
k

πk

)2

·

√√√√ T∑
k=1

(
|hk|
πk

)2

≤
T∑

k=1

h2
k

πk
·

√√√√ T∑
k=1

(
|hk|
πk

)2

= D2ϑ(π)[h, h] ·

√√√√ T∑
k=1

h2
k

π2
k

,

where the first inequality in the chain is the triangle inequality, the second is Hölder’s
inequality, and the third follows from the inequality ‖x‖2 ≤ ‖x‖1 between the 2 and
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1 norms. Summarizing, the relation

∣∣D3ϑ(π)[h, h, h]
∣∣ ≤ D2ϑ(π)[h, h] ·

√√√√ T∑
k=1

h2
k

π2
k

holds for all π > 0 and h ∈ R
T . We now apply a known result on logarithmic barriers:

Due to the previous inequality, function ϑ(π) satisfies the hypotheses of Lemma 2 of
[9], from which it follows that the function

− log(d− ϑ(π)) −
T∑

k=1

log πk

(which coincides with function φ(π) defined in (3.7)) is a self-concordant barrier for
the domain {(π, d) : π > 0, ϑ(π) < d}, thus concluding the proof.

Appendix B. Nonconcavity of the absolute deviation function. Assume
without loss of generality that the data w(k) are arranged in increasing order. The
function

ρ1(π) =
∑
k

πk|w(k) − w�π|

is not only nonconcave over the simplex, but it is nonconcave also on the restricted
domains

Ri
.
= {π ∈ Π : w�π ∈ (w(i), w(i + 1))}.

For π ∈ Ri, we have that w(k) − w�π > 0 for k ∈ K+
.
= {i + 1, . . . , T} and w(k) −

w�π < 0 for k ∈ K−
.
= {1, . . . , i}. Hence, for π ∈ Ri, we may write

ρ1(π) =
∑

k∈K+

πk(w(k) − w�π) −
∑

k∈K−

πk(w(k) − w�π)

=
∑

k∈K+

πkw(k) −
∑

k∈K−

πkw(k) − w�π

⎛
⎝ ∑

k∈K+

πk −
∑

k∈K−

πk

⎞
⎠ .

From the latter expression, since
∑

k∈K−
πk = 1 −

∑
k∈K+

πk and
∑

k∈K−
πkw(k) =

w�π −
∑

k∈K+
πkw(k), we further have

ρ1(π) = 2
∑

k∈K+

πk(w(k) − w�π).

Now let πa, πb ∈ Ri and consider

ρ1

(
1

2
(πa + πb)

)
= 2

∑
k∈K+

πa
k + πb

k

2

(
w(k) − w�πa + πb

2

)

=
1

2

∑
k∈K+

πa
k(w(k) − w�πa) +

1

2

∑
k∈K+

πb
k(w(k) − w�πb)

+
1

2

∑
k∈K+

πa
k(w(k) − w�πb) +

1

2

∑
k∈K+

πb
k(w(k) − w�πa)
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=
1

2

∑
k∈K+

πa
k(w(k) − w�πa) +

1

2

∑
k∈K+

πb
k(w(k) − w�πb)

+
1

2

∑
k∈K+

πa
k(w(k) − w�πa) +

1

2
(w�πa − w�πb)

∑
k∈K+

πa
k

+
1

2

∑
k∈K+

πb
k(w(k) − w�πb) − 1

2
(w�πa − w�πb)

∑
k∈K+

πb
k

=
1

2
ρ1(π

a) +
1

2
ρ1(π

b) +
1

2
(w�πa − w�πb)

∑
k∈K+

(πa
k − πb

k).

The last term in the sum is sign-indefinite (in particular, it does not hold in general
that w�πa −w�πb > 0 implies

∑
k∈K+

πa
k −

∑
k∈K+

πb
k > 0); hence ρ1 is not concave

over the domain Ri. To see this latter point, take, for instance, πa all zero, except for
πa
i = πa

i+1 = 1/2, and πb all zero, except for πb
i−1 = 1/2 − ε, πb

i+1 = 1/2 + ε, with

max

(
0, εmax − 1

2

w(i + 1) − w(i)

w(i + 1) − w(i− 1)

)
< ε < εmax; εmax

.
=

1

2

w(i) − w(i− 1)

w(i + 1) − w(i− 1)
.

Then one can check by direct inspection that πa, πb ∈ Ri, w�πa − w�πb > 0, but∑
k∈K+

πa
k −

∑
k∈K+

πb
k < 0.

Appendix C. Computing the range for the expected return. We discuss
here an efficient technique for determining the extreme values (5.4) of the expected
return of a given portfolio. Consider the problem

μmin
.
= min

π
w�π(C.1)

subject to π ∈ K(η, d).

The Lagrangian for this problem is

L(π, λ(π), λ(kl), ν(1)) = w�π − λ(π)
�π + λ(kl)(KL(π, η) − d) + ν(1)(1

�π − 1),

where λ(π), λ(kl), ν(1) are Lagrange multipliers (dual variables). We assume henceforth
that λ(kl) is strictly positive.3 The Lagrange dual function is

g(λ(π), λ(kl), ν(1)) = inf
π

L(π, λ(π), λ(kl), ν(1))

= −λ(kl)d− ν(1) + inf
π

(
q�π + λ(kl) KL(π, η)

)
,

where

q
.
= w − λ(π) + ν(1)1.

Observe now that

∇π

(
q�π + λ(kl) KL(π, η)

)
= q + λ(kl)(1 + log π/η) = 0

for

πk = ηke
−qk/λ(kl)−1,

3When the KL constraint is inactive at optimum, the optimal value of the dual variable λ(kl) is
zero, due to the complementary slackness condition. However, in this case the solution to problem
(C.1) is trivially given by mink w(k).
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which yields

inf
π

(
q�π + λ(kl) KL(π, η)

)
= −λ(kl)

∑
k

ηke
−qk/λ(kl)−1,

and hence the dual function

g(λ(π), λ(kl), ν(1)) = −λ(kl)d− ν(1) − λ(kl)

∑
k

ηke
−qk/λ(kl)−1.

The dual to problem (C.1) is therefore

μmin
.
= max−λ(kl)d− ν(1) − λ(kl)

∑
k

ηke
−qk/λ(kl)−1

subject to λ(kl) > 0,

λ(π) ≥ 0

or, equivalently,

μmin
.
= −min λ(kl)d + ν(1) + λ(kl)

∑
k

ηke
−qk/λ(kl)−1(C.2)

subject to λ(kl) > 0,

λ(π) ≥ 0.

Notice that, for fixed λ(kl), λ(π), at the optimum the derivative of (C.2) with respect
to ν(1) must be zero, i.e.,

1 + λ(kl)

∑
k

ηke
−qk/λ(kl)−1 −1

λ(kl)

∂qk

∂ν(1)
= 1 −

∑
k

ηke
−qk/λ(kl)−1 = 0,

from which we obtain

e−ν(1)/λ(kl)

∑
k

ηke
(λ(π),k−w(k))/λ(kl)−1 = 1

⇓

ν(1) = λ(kl)

(
log

∑
k

ηke
(λ(π),k−w(k))/λ(kl) − 1

)
.

Substituting this latter expression into (C.2), we write the dual in the following re-
duced form:

− μmin
.
= minλ(kl)d + λ(kl) log

∑
k

ηke
(λ(π),k−w(k))/λ(kl)

subject to λ(kl) > 0,

λ(π) ≥ 0.

Observe further that, for any given λ(kl) > 0, the optimal choice for λ(π) is zero, which
finally yields the dual in the form of a univariate convex problem:

−μmin
.
= min fl(λ(kl))

.
= λ(kl)d + λ(kl) log

∑
k

ηke
− w(k)

λ(kl)

subject to λ(kl) > 0.



874 GIUSEPPE C. CALAFIORE

An identical reasoning can be applied for computing the upper limit μmax of the
mean range. In this case, we obtain

μmax
.
= min fu(λ(kl))

.
= λ(kl)d + λ(kl) log

∑
k

ηke
w(k)
λ(kl)(C.3)

subject to λ(kl) > 0.

Both problems can be readily solved via a bisection scheme (such as the one
sketched in Algorithm 3 below), given the gradient of the objective function

gl(λ)
.
=

∂fl
∂λ

=
1

λ

(
fl(λ) +

∑
k w(k)ηke

−w(k)/λ∑
k ηke

−w(k)/λ

)

for the lower mean limit, and

gu(λ)
.
=

∂fu
∂λ

=
1

λ

(
fu(λ) −

∑
k w(k)ηke

−w(k)/λ∑
k ηke

w(k)/λ

)

for the upper limit.
Algorithm 3 (bisection).

Given initial λl = 0, λr = 1 and tolerance ε > 0
1. while g(λr) < 0, let λr = 2λr, end while;
2. while λr − λl > ε

2.a let λ = 1
2 (λr + λl)

2.b if g(λ) > 0, let λr = λ; else let λl = λ, end if
3. end while
4. return λ.

A perhaps interesting observation is that the function appearing in (C.3)

λ(kl) log
∑
k

ηke
w(k)
λ(kl)

tends to maxk w(k) as λ(kl) → 0. Indeed, for λ(kl) > 0, this function is a “uniform
smooth approximation” of the max function, using the terminology introduced in [27].

Appendix D. Proof of Proposition 5.1. Consider problem (5.5) without the
KL constraint, and with the values w(k) arranged in increasing order (see Figure D.1):

ϕ(μ)
.
= max

π

T∑
k=1

πk|w(k) − μ|(D.1)

subject to w�π = μ,

1�π = 1,

π ≥ 0.

It is immediate by inspection that (5.7) is a feasible solution for (D.1). We next
show that this solution is actually optimal.

Let d(k)
.
= |w(k) − μ|. The Lagrangian for problem (D.1) is

L(π, λ, ν) = −
T∑

k=1

πkd(k) −
T∑

k=1

λkπk + ν1

(
T∑

k=1

πkw(k) − μ

)
+ ν2

(
T∑

k=1

πk − 1

)
.
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w(1) w(2) w(k)…

(w(T)+ w(1))/2

μ

d(1)
d(k)

d(T)

data mid-point:

w(T)

Fig. D.1. Data arranged in increasing order. The d(k) are the distances from the mean:
d(k)

.
= |w(k) − μ|.

For a feasible π to be optimal, the Karush–Kuhn–Tucker (KKT) condition

∇πL(π, λ, ν) = −

⎡
⎢⎣

d(1)
...

d(T )

⎤
⎥⎦−

⎡
⎢⎣

λ1

...
λT

⎤
⎥⎦+ ν1

⎡
⎢⎣

w(1)
...

w(T )

⎤
⎥⎦+ ν2

⎡
⎢⎣

1
...
1

⎤
⎥⎦ = 0(D.2)

must hold for some ν1, ν2 and λk ≥ 0, along with the complementary slackness con-
dition

λkπk = 0, k = 1, . . . , T.(D.3)

We now show that for the solution in (5.7) we can find ν1, ν2 and λk ≥ 0 such that
(D.2), (D.3) hold. From (D.2) we have

λk = ν1w(k) + ν2 − d(k), k = 1, . . . , T.(D.4)

Since π1 > 0, πT > 0, (D.3) implies λ1 = λT = 0, and hence

ν1w(1) + ν2 − d(1) = 0,

ν1w(T ) + ν2 − d(T ) = 0,

from which we obtain

ν1 =
d(T ) − d(1)

w(T ) − w(1)
, ν2 =

d(1)[w(T ) − w(1)] − w(1)[d(T ) − d(1)]

w(T ) − w(1)
.(D.5)

Substituting into (D.4), for k = 2, . . . , T − 1, we get

λk =
[d(T ) − d(1)][w(k) − w(1)] + [w(T ) − w(1)][d(1) − d(k)]

w(T ) − w(1)
.(D.6)

We now verify that these λk are nonnegative. Define K−
.
= {k : w(k) ≤ μ} and

K+
.
= {k : w(k) > μ}. For k ∈ K− we have that (see Figure D.1)

w(k) − w(1) = d(1) − d(k); w(T ) − w(1) = d(1) + d(T ),

which, once substituted in (D.6), give

λk =
[d(T ) − d(1)][d(1) − d(k)] + [d(1) + d(T )][d(1) − d(k)]

w(T ) − w(1)

=
2d(T )[d(1) − d(k)]

w(T ) − w(1)
≥ 0, k ∈ K−.
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Similarly, for k ∈ K+ we have that

w(k) − w(1) = d(1) + d(k); w(T ) − w(1) = d(1) + d(T ),

which, once substituted in (D.6), give

λk =
[d(T ) − d(1)][d(1) + d(k)] + [d(1) + d(T )][d(1) − d(k)]

w(T ) − w(1)

=
2d(1)[d(T ) − d(k)]

w(T ) − w(1)
≥ 0, k ∈ K+.

Overall, we have that the primal feasible solution (5.7), together with the dual feasible
variables (D.5), (D.6), satisfies the KKT conditions (D.2), (D.3), and hence (5.7) is
optimal for problem (D.1). If this solution satisfies the constraint KL(π, η) ≤ d, then
clearly the solution is also optimal for the original problem (5.5).

Substituting (5.7) into the objective (D.1), we easily obtain the optimal value
function in (5.8), which concludes the proof.
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de Genève, 2002.
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Abstract. Approximability of sliding motions for control systems governed by nonlinear finite-
dimensional differential equations is considered. This regularity property is shown to be equivalent to
Tikhonov well-posedness of a related minimization problem in the context of relaxed controls. This
allows the derivation of a general approximability result, which in the autonomous case has an easy to
verify geometrical formulation. In the second part of the paper, we consider nonapproximable sliding
mode control systems. In the flavor of regularization of ill-posed problems, we propose a method of
selection of well-behaved approximating trajectories converging to a prescribed ideal sliding.
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1. Introduction. Sliding mode control methods aim at fulfilling the control ob-
jective by constraining the system motion on a prescribed, suitably chosen manifold
S (reference books on theory and applications are [12, 16]). In real-life applications,
however, for various reasons the reaching of the ideal sliding (i.e., the evolution on S)
is prevented. In fact, the required finite-time global attractivity of S forces the use of
state-discontinuous feedback controllers. This is impossible in practice, both because
nonidealities in the actuators such as small delays, hysteresis, and so on have to be
taken into account and because discontinuity induces infinitely fast switching around
the sliding surface (chattering), which is potentially damaging for mechanical com-
ponents. Therefore the sliding condition can be only approximately satisfied, giving
rise to the so-called real sliding motions. Hence, a key issue in sliding mode control
theory is to establish conditions under which it is assured that real states enjoy the
same dynamical properties of the ideal sliding. In the literature this topic goes under
the broad definition of approximability [6, 7, 8, 9, 16, 17]. More precisely, a first
result about the convergence of real sliding motions to the evolution obtained with
the equivalent control method for affine control systems can be found in section 2.3
of [16]. A general mathematical formulation of approximability, requiring existence
and uniqueness of the equivalent control, was then given in [8]. The authors con-
sider nonlinear control systems, and approximability is proved for classes of systems
satisfying particular structural properties. In [9] a new definition of approximability,
called generalized approximability, is introduced: the new concept does not require
the existence of the equivalent control. Criteria guaranteeing generalized approxima-
bility are obtained, extending results in [8]. Approximability and related regularity
properties also have been investigated for second and higher order sliding modes in
[6, 7]. A new and more appropriate definition of real states is then given in [17]:
the class of approximating trajectories is enlarged to comprise both classical solutions
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†Dipartimento di Matematica, Università di Genova, Via Dodecaneso 35, 16146 Genova, Italy

(levaggi@dima.unige.it, villa@dima.unige.it).

878



ON THE REGULARIZATION OF SLIDING MODES 879

corresponding to continuous controls and evolutions generated by discontinuous feed-
back controls in the Filippov sense. The corresponding definition of approximability is
therefore strengthened. Moreover, as a main result, it is shown that approximability
is equivalent to Tikhonov well-posedness of a suitably defined minimization problem.
New approximability criteria are then obtained as a consequence of known results
characterizing well-posedness (for an introduction about this theory, see, e.g., [11]).

Nonapproximability is therefore a consequence of ill-posedness of a minimization
problem on the set of trajectories of the control system. This in general means that
there exist sequences of real sliding motions that either do not converge to a system
motion or can approach different sliding trajectories. Is it then possible to use a reg-
ularization procedure to suitably choose approximating sequences and thus partially
restore well-posedness? In this paper we are going to give a possible answer to this
question. A classical regularization method is Tikhonov regularization, i.e., to con-
sider approximate solutions of perturbed minimization problems obtained by adding
a small uniformly convex term to the objective function (see Chapter I, section 7
of [11]). However, a straightforward application of this procedure is not possible in
the setting of [17]. For example, it is not clear whether the set of trajectories W (x0),
issued from an arbitrary point x0, resulting from that choice of admissible controls is
closed in the norm of uniform convergence. The key result needed to prove this prop-
erty is contained in Theorem 2.1. There we show that, whenever the set of control
values U is compact, W (x0) can be characterized as the solution set of a differential
inclusion, which in turn coincides with the set of trajectories resulting from the ap-
plication of relaxed controls (see Corollary 2.3). Even if the use of relaxed controls
is a novelty in the context of sliding mode control theory, this result shows the ex-
istence of an underlying natural connection. In our paper we take advantage of this
characterization in order to both show the compactness of W (x0) and prove in a more
direct way the equivalence in [17] between approximability and well-posedness. The
use of relaxed controls in fact avoids distinctions between Carathéodory and Filip-
pov solutions, since these are now unified under a global framework. Moreover, by
the compactness of W (x0), approximability is equivalent to the existence of a unique
sliding motion. This, combined with the characterization of W (x0), allows us to ob-
tain as a main result a complete geometrical characterization of approximability for
regular autonomous sliding control systems. In these cases knowledge of both the ve-
locity vector field and the tangent cone to the sliding surface is sufficient to establish
whether approximability holds. Therefore, in contrast to previous results, a priori
knowledge of the solutions is not required, and we obtain well-posedness without con-
vexity assumptions. The compactness of W (x0) is furthermore exploited to devise a
regularization strategy, allowing more flexibility in the design of the perturbations of
the minimization problem. Theorem 4.1 gives a general, new regularization result,
essentially different from Tikhonov’s, inspired by variational convergences. The idea
is to construct a sequence of perturbations of the given problem in such a way that
the asymptotically minimizing sequences do converge to a well-defined sliding mode.
A general method for choosing these regularizing functionals is also given when an
equivalent control is known.

The paper is organized as follows: in section 2 we introduce the general setting
of the problem with the standing regularity hypotheses. Next, we study the set of
admissible trajectories W (x0), discussing in detail the choice of the class of admissible
controls U . We show in particular that, whenever U is compact and U is chosen as
in [17], the set W (x0) coincides with the evolutions of the controlled system through
the application of relaxed controls. This is contained in the main result of the sec-
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tion, Theorem 2.1 along with Corollary 2.3. Section 3 is devoted to the relationship
between approximability and well-posedness. The equivalence in our setting is proved
in Theorem 3.1 using relaxed controls. Then, in Theorem 3.4, we give a geometrical
characterization of approximability for regular autonomous systems, extending previ-
ous results. Finally, a class of control systems is presented for which approximability
holds under general regularity assumptions. Section 4 is dedicated to the regulariza-
tion of ill-posed sliding mode control systems. The classical nonapproximable model
problem proposed by Izosimov is presented under a new perspective, showing in de-
tail its main features. Then we give the main regularization result, Theorem 4.1, and
discuss its applications.

2. The sliding mode control system. In this section we introduce the class
of control systems and sliding manifolds we are going to consider, along with the
family U of admissible controls of [17]. U contains both Carathéodory and state-
discontinuous feedbacks, and the corresponding set W (x0) of admissible trajectories
for an arbitrary starting point x0 is made up of Carathéodory and Filippov solutions
of closed loop equations. Real sliding motions are then defined as evolutions generated
by admissible feedbacks, which fulfill only approximately the sliding constraint. Since
in what follows we will be interested in examining their limit behavior, a better
characterization of the sets W (x0) is very helpful. In Theorem 2.1 we show that

W (x0) = {x ∈ AC(0, T ; RN ) : ẋ(t) ∈ co f(t, x(t), U), for a.e. t, x(0) = x0}

for any x0, whenever the set of control values U is compact. The differential inclusion
in the above identity is related to relaxation techniques. In particular we can read
this equality as a dynamic equivalence between the application (in the Filippov sense)
of discontinuous feedbacks and relaxed controls.

Through the obtained characterization we are also able to directly prove the
compactness of W (x0) in the supremum norm, under the regularity hypotheses of
our setting. All subsequent results, not least the regularization of nonapproximable
sliding mode control systems, will depend upon this key property.

2.1. General setting and regularity assumptions. We consider the follow-
ing control system:

(1)

{
ẋ = f(t, x, u), x ∈ R

N , u ∈ U, t ∈ [0, T ],

x(0) = x0

with

f : [0, T ] × R
N × U → R

N

a Carathéodory function, U ⊂ R
M compact, and T fixed. Throughout the paper the

following assumptions on f will be assumed to hold:
(F1) There exist A,B ∈ L1(0, T ) such that

(2) |f(t, x, u)| ≤ A(t)|x| + B(t), for a.e. t, ∀x ∈ R
N , ∀u ∈ U.

(F2) For any compact subset Z of R
N there exists C ∈ L1(0, T ) such that

(3)
|f(t, x1, u) − f(t, x2, u)| ≤ C(t)|x1 − x2|, for a.e. t ∈ [0, T ], ∀x1, x2 ∈ Z, ∀u ∈ U.
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As for the sliding manifold, we suppose that, for any t, it is defined as the set of zeros
of a continuous function

s : [0, T ] × R
N → R

M ;

i.e., S(t) = {x ∈ R
N : s(t, x) = 0}.

2.2. The choice of admissible controls. In [17] the class U of admissible
feedback control laws u(t, x) is a subset of L⊗ B-measurable functions. Solutions of
the resulting closed loop equation are intended in either the Carathéodory or Filippov
sense, so that the set of trajectories of (1) corresponding to these admissible controls
is

(4)

W (x0) = {x ∈ AC(0, T ; RN ) : ∃u ∈ U s.t. ẋ = f(t, x, u(t, x)) for a.e. t, x(0) = x0,

or ẋ ∈ Fu(t, x) for a.e. t, x(0) = x0}.

Recall that for a feedback law u(t, x) the Filippov multifunction is defined as

(5) Fu(t, x) :=
⋂
ε>0

⋂
|N |=0

co f(t, B(x, ε) \N,u(t, B(x, ε) \N)),

where B(x, ε) is the ball of center x and radius ε in R
N and |N | is the Lebesgue

measure of the set N . More precisely, in [17],

U = {u : [0, T ]×R
N → U, L⊗B-meas., ‖u(·, x(·))‖∞ < ∞ ∀x ∈ W (x0), ∀x0 ∈ R

N}.

If U is compact, the condition ‖u(·, x(·))‖∞ < ∞ is unnecessary, and it is possible to
give a simpler characterization of W (x0).

Theorem 2.1. Let the hypotheses of the general setting be satisfied. Then

(6) W (x0) = {x ∈ AC(0, T ; RN ) : ẋ(t) ∈ co f(t, x(t), U), for a.e. t, x(0) = x0}.

Proof. Let z ∈ W (x0). If z is a Carathéodory solution of (1), it trivially belongs
to the right-hand side set of (6). It is also easy to see that for any admissible feedback
u the Filippov multifunction Fu in (5) satisfies Fu(t, x) ⊆ co f(t, x, U) because of the
continuity of f in the state variable. Since U is compact co f(t, x, U) = co f(t, x, U),
therefore W (x0) is included in {x ∈ AC(0, T ; RN ) : ẋ(t) ∈ co f(t, x(t), U), for a.e. t,
x(0) = x0}.

To prove that the converse is true, let x : [0, T ] → R
N be absolutely continuous

and such that

ẋ(t) ∈ co f(t, x(t), U), for a.e. t ∈ [0, T ], x(0) = x0.

Then, by Carathéodory’s convexity theorem, we can write

ẋ(t) =
N+1∑
i=1

λ̃i(t)f(t, x(t), ũi(t)), t /∈ E,

for some E with |E| = 0 and (λ̃(t), ũ(t)) ∈ [0, 1]N+1 × UN+1 =: X. Let

Γ(t) =

⎧⎪⎪⎨
⎪⎪⎩

{
(λ, u) ∈ X : ẋ(t) =

N+1∑
i=1

λif(t, x(t), ui)

}
, t /∈ E,

{(λ0, u0)}, t ∈ E,



882 LAURA LEVAGGI AND SILVIA VILLA

with (λ0, u0) ∈ [0, 1] × U arbitrarily fixed. Then obviously Γ has nonempty values.
Moreover, by Corollary 1Q in [15] Γ is a closed-valued, measurable multifunction,

since ẋ is measurable, λ �→
∑N+1

i=1 λif(t, x(t), ui) is continuous, and f is Carathéodory.
Therefore by Corollary 1C in [15] there exists a measurable selection (λ(t), u(t)) ∈ Γ(t)
for all t. Now we use the selected u(t) in order to define a feedback control law û
such that x(·) is a Filippov solution of the corresponding closed loop equation. The
required feedback û has to be discontinuous at every point of the trajectory x(t) and
be such that in any neighborhood of x(t) all values u1(t), . . . , uN+1(t) are taken on.
To this end we define the following partition of [0, T ] × R

N :

A1 = {(t, x) : x1 < x1(t), . . . , xN < xN (t)},
Ai = {(t, x) : xk > xk(t) for k < i, xr < xr(t) for r ≥ i}, i = 2, . . . , N,

AN+1 = {(t, x) : x1 > x1(t), . . . , xN > xN (t)},

A0 = �
(

N+1⋃
i=1

Ai

)
.

Note that for arbitrary t, ε > 0, Z ⊂ R
N , with |Z| = 0, the set B(x(t), ε) \ Z

has nonvoid intersection with every Ai, i = 1, . . . , N + 1. Now, if u0(t) = u0, it is
straightforward to see that the control law û,

û(t, x) =
N+1∑
i=0

ui(t) χAi(t, x),

where χ
Ai is the characteristic function of the set Ai, has the required features.

Thanks to the properties of the chosen partition, x(·) is a solution of the Filippov
differential inclusion (see (5))

ẋ(t) ∈ Fû(t, x(t)), for a.e. t, x(0) = x0.

It remains to prove that û is L ⊗ B-measurable, i.e., that all the sets Ai, i =
0, . . . , N +1, are measurable. Since the functions gj(t, x) = xj−xj(t) for j = 1, . . . , N
are continuous, the sets g−1

j (0,+∞) and g−1
j (−∞, 0) are Borel sets for any j. There-

fore the sets Ai are a finite intersection of Borel sets and hence measurable.
The next lemma establishes the compactness of W (x0), which will be extensively

used in what follows.
Lemma 2.2. Let x0 ∈ R

N and zn be any sequence in W (x0). Then zn is equi-
bounded and equicontinuous. Moreover, the set W (x0) is closed and thus compact as
a subset of C0(0, T ; RN ) endowed with the norm of uniform convergence.

Proof. The result depends upon the regularity properties of f and the compactness
of U . Since f is Carathéodory, the set-valued map F1(t, x) = f(t, x, U) has compact
values, is upper semicontinuous in x for a.e. t (see, e.g., Proposition 1.4.14 in [5]), and
is measurable in t for any x. Thus F (t, x) = coF1(t, x) enjoys the same properties,
plus convexity of its values. Moreover, the Carathéodory convexity theorem and (2)
yield

‖F (t, x)‖ = sup

{∣∣∣∣∣
N∑
i=0

αif(t, x, ui)

∣∣∣∣∣ : αi ∈ [0, 1],

N∑
i=0

α1 = 1, ui ∈ U

}

≤ C(t)(1 + |x|)
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for some C ∈ L1(0, T ). Therefore the hypotheses of Theorem 7.1 in [10] are satisfied,
and the result follows.

We have thus shown that if U is compact, the set in (4) is in fact the set of
solutions of the differential inclusion ẋ(t) ∈ co f(t, x(t), U). It is a classical result
(see, e.g., Theorem 13.4.1 in [13]) that the latter corresponds to the set of trajectories
of (1) under the action of relaxed control laws [1, 2, 13]. These are measure-valued
controls defined as functions μ(·):

μ : [0, T ] → Σ(U), μ ∈ L∞
w (0, T ;M(U)) = L1(0, T ;C(U))∗,

where C(U) is the set of continuous functions on U , M(U) = C(U)∗ is the space of
Borel measures on U , and Σ(U) = {μ ∈ M(U) : μ ≥ 0, μ(U) = 1} is the set of Borel
probability measures on U . Solutions of (1) under the application of a relaxed control
law μ are absolutely continuous functions x : [0, T ] → R

N such that

(7) x(t) = x0 +

∫ t

0

(∫
U

f(t, x(t), u) dμt

)
dt,

where μt denotes the measure μ(t) ∈ Σ(U). Therefore, we have the following corollary.
Corollary 2.3. Let assumptions (F1)–(F2) on the function f be satisfied and

U be compact. Call R(x0) the set of solutions of (7) as μ varies in the set of relaxed
controls. Then

W (x0) = {x ∈ AC : ẋ(t) ∈ co f(t, x(t), U), for a.e. t, x(0) = x0}(8)

= R(x0).

This result gives us the possibility of taking advantage of the mathematical struc-
ture offered by relaxed controls while retaining U as the class of admissible controls,
which is a more natural choice from a practical point of view.

3. Approximability and well-posedness. In this section we study the rela-
tionship between approximability of the sliding mode and Tikhonov well-posedness
of a suitable minimization problem. After giving the definitions of sliding states
and approximability for sliding motions, we introduce the concept of Tikhonov well-
posedness. As in [17] we then prove that these regularity notions are equivalent.
Moreover, we show that Tikhonov well-posedness (and thus approximability) has an
easy characterization in our setting. Then we specialize our results in the autonomous
case: for these systems, under some reasonable regularity assumptions, we are in fact
able to give a purely geometric necessary and sufficient condition for approximability
of the sliding mode control system. In the last part of the section we present a class
of systems and surfaces for which sliding is well-posed and to which approximability
criteria in [17] are not, in general, applicable.

3.1. Sliding modes approximability and Tikhonov well-posedness. Let
us now consider the control system (1) in the general setting described in section 2.1.
For any x0 ∈ R

N such that s(0, x0) = 0, we say that y ∈ W (x0) is a sliding state
issued from x0 if s(t, y(t)) = 0 for all t ∈ [0, T ]. In the terminology of [3, 4, 5], y
is a solution of the differential inclusion in (8), viable on the (time-varying) sliding
manifold.

As in [17] we introduce the following approximability property for sliding modes:

(A) for any x0 ∈ S(0) there exists a unique sliding state y issued from x0,
and for any sequences xn → x0, yn(·) ∈ W (xn) such that ‖s(·, yn(·))‖∞ → 0,
one has ‖yn − y‖∞ → 0.
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Property (A) is related to the Tikhonov well-posedness with value zero [11, Chap. 1]
of the following optimization problem:

min
x∈W (x0)

I(x), I(x) =

∫ T

0

|s(t, x(t))| dt,

where | · | is any norm in R
N . In what follows we will refer to the above problem

by writing (W (x0), I). The well-posedness requirement for (W (x0), I) consists in the
following condition:

(TWP) there exists a unique minimizer y ∈ W (x0) for I, I(y) = 0,
and any minimizing sequence zn ∈ W (x0) uniformly converges to y; i.e.,
I(zn) → 0 implies ‖zn − y‖∞ → 0.

Using Lemma 2.2 and the characterization (8) it is possible to prove the equivalence
of properties (A) and (TWP) as in Theorem 3.1 in [17] under a unified framework,
avoiding the distinction between different concepts of solution of (1).

Theorem 3.1. Let the hypotheses of the general setting be satisfied and x0 be
any vector such that s(0, x0) = 0. Then (W (x0), I) is Tikhonov well-posed with value
zero for any such x0 if and only if the approximability property (A) is fulfilled.

Proof. Let x0 be fixed; suppose that the problem (W (x0), I) satisfies property
(TWP). Let xn and yn be as in condition (A). Then by Corollary 2.3 there exist
relaxed controls μn such that

yn(t) = xn +

∫ t

0

(∫
U

f(s, yn(s), u) dμn
s

)
ds.

Then calling zn the solution of the integral equation

zn(t) = x0 +

∫ t

0

(∫
U

f(s, zn(s), u) dμn
s

)
ds,

using (3) and Lemma 2.2, and recalling that μn
s is a probability measure for any n

and s, we obtain

|yn(t) − zn(t)| ≤ |xn − x0| +
∫ t

0

sup
u∈U

|f(s, yn(s), u) − f(s, zn(s), u)|ds

≤ |xn − x0| +
∫ t

0

C(s)|yn(s) − zn(s)|ds,

and by Gronwall’s lemma ‖yn − zn‖∞ → 0. Thus ‖s(·, zn)‖∞ → 0, and a fortiori zn
is a minimizing sequence for (W (x0), I). Tikhonov well-posedness then implies the
convergence of zn, and thus of yn, to the unique sliding state y as desired.

Suppose now that the approximability property (A) holds. To show the well-
posedness of (W (x0), I), let zn be a minimizing sequence. Then by Lemma 2.2 any of
its subsequences admits a further subsequence which is uniformly convergent to some
z ∈ W (x0). Also, since s(·, zn(·)) → 0 in L1(0, T ), eventually passing to a further
subsequence (we do not relabel for simplicity), we have s(t, zn(t)) → 0 a.e. on [0, T ].
By continuity of s and uniform convergence,

s(t, zn(t)) → 0, s(t, zn(t)) → s(t, z(t)) uniformly in t.
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Approximability then implies that z coincides with the unique sliding state y. Since
this limit is independent of the chosen subsequence, we get the convergence of zn to
y as desired.

Another consequence of Lemma 2.2 is the following characterization of Tikhonov
well-posedness of (W (x0), I) and thus of the approximability of the associated sliding
mode control system.

Corollary 3.2. Property (TWP) is satisfied if and only if problem (W (x0), I)
admits a unique minimizer y with I(y) = 0.

We now show a geometric characterization of well-posedness in the above sense
for a general class of sliding mode control systems. Before stating this result we recall
the following lemma.

Lemma 3.3 (Lemma 4 in [14]). Let A ⊂ R
N be an open set, and let G and H

be two set-valued maps from A to R
N . Assume that G and H have nonempty convex

closed values, that G is continuous, and that H is lower semicontinuous. If

G(x) ∩H(x) �= ∅ ∀x ∈ A,

then there exists a continuous function f : A → R
N with

f(x) ∈ G(x) ∩H(x) ∀x ∈ A.

Also, recall that for a subset S of R
N the Bouligand tangent cone TS(x) is defined

as

TS(x) =

{
v ∈ R

N : lim inf
h→0+

d(x + hv, S)

h
= 0

}

and that S is sleek if the multivalued map x �→ TS(x) is lower semicontinuous (see,
e.g., section 4.1.4 in [5] for the definition and properties of sleek subsets).

Theorem 3.4. Let us consider a general autonomous control system of the form

(9)

{
ẋ = f(x, u),

x(0) = x0

with f satisfying conditions (F1)–(F2) and a time-independent sliding manifold S
which is a sleek subset of R

N . Then for any x0 ∈ S a sliding mode on S in W (x0)
exists if and only if

co f(x, U) ∩ TS(x) �= ∅ ∀x ∈ S.

Moreover, let the above condition be satisfied; then the corresponding sliding motion
is unique for any x0 ∈ S if and only if

(10) co f(x, U) ∩ TS(x) = {τ(x)} ∀x ∈ S

with τ : S → R
N such that any Cauchy problem associated with the differential equa-

tion ẋ = τ(x) admits a unique solution on [0, T ].
Proof. By (6), the set of sliding modes of (9) on S will be given by solutions of

ẋ(t) ∈ F (x(t)) := co f(x(t), U) such that x(t) ∈ S for all t. Therefore by Lemma 1.1.4
in [3] any sliding mode y(·) must satisfy

(11) ẏ(t) ∈ F (y(t)) ∩ TS(y(t)), for a.e. t.
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Also, by standard viability results (see, e.g., Proposition 4.2.1 and Theorem 4.2.1
in [4]) a sliding mode exists if and only if the intersection F (x)∩TS(x) is nonvoid for
any x ∈ S.

Moreover, if (10) is satisfied, from (11) the admissible sliding motions are the
solutions of ẋ = τ(x). Thus uniqueness depends on the regularity of τ .

Suppose now that a sliding mode exists, but the intersection in (10) is not single-
valued. By assumption (F2) we have Lipschitz continuity for F and thus continuity.
Let x0 ∈ S and y0 ∈ F (x0) ∩ TS(x0); now define H(x0) = {y0} and H(x) = TS(x)
otherwise. Then H is lower semicontinuous, and by Lemma 3.3 there exists a contin-
uous selection for the map x �→ F (x) ∩H(x). Therefore for any y0 ∈ F (x0) ∩ TS(x0)
we can construct a selection g of F (·) ∩ TS(·) such that g(x0) = y0. By continuity,
this shows that if the intersection between the velocity set F (x) and the tangent cone
TS(x) is not single-valued on S, different sliding modes exist in W (x0), since different
selections can be constructed.

As a consequence, by Theorem 3.1 and Corollary 3.2, we have the following corol-
lary.

Corollary 3.5. A sliding mode control problem with time-independent sleek
sliding manifold for an autonomous nonlinear system is approximable for every x0 ∈ S
if and only if condition (10) holds.

Let us show a very simple and classical example.
Let f(x, u) = Ax + Bu and S = {x ∈ R

N : Cx = 0} with A, B, and C ma-
trices of the right dimensions. Then TS(x) = S for all x ∈ S, and condition (10)
is satisfied if and only if the matrix CB is invertible. In this case there exists
a uniquely defined equivalent control ueq(x) = (CB)−1CAx inducing sliding on S,
τ(x) = [I −B(CB)−1C]Ax, and uniqueness of the sliding solution is obviously guar-
anteed. Note, however, that the existence and uniqueness of an equivalent control
are not necessary for approximability, as we will show in the next section. Moreover,
here, in contrast to results in [17], condition (10) depends just on the geometry of
the control problem and is verifiable a priori, once the velocity field and the sliding
manifold are known. Therefore the precise knowledge of the solution set W (x0) is
not required, while in general the uniqueness of the sliding motion, needed, for ex-
ample, in Corollary 4.1 of [17], has to be tested on the set of trajectories that can be
issued from a point of the sliding manifold applying any feedback control and using
the Filippov solution definition. This difference is the outcome of Theorem 2.1, which
gives a characterization of W (x0) in terms of the solution set of a regular differential
inclusion.

3.2. A class of well-posed sliding mode control systems. In this part of the
paper we present a family of control systems satisfying the approximability property,
in the spirit of Theorem 3.4 and Corollary 3.5. Also, we show that convexity of
f(x, U) is not required to belong to this class, in contrast to previous results, e.g.,
Corollary 4.1 in [17].

Let us consider the control system

(12)

{
ẋ1 = f1(x),

ẋ2 = f2(x, u)

where x = (x1, x2) ∈ R
N , x1 ∈ R

N−M , x2 ∈ R
M with M < N , u ∈ U ⊂ R

M , U
compact, f1 : R

N → R
N−M , and f2 : R

N × U → R
M . Then clearly

F (x) := co f(x, U) = {f1(x)} × co f2(x, U)
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for f : R
N × U → R

N , f(x, u) = (f1(x), f2(x, u)). Now letting h : R
N−M → R

M be a
C1 function, we define

(13) s : R
N → R

M , s(x) = x2 − h(x1)

and let the sliding surface S be the set {(x1, x2) ∈ R
N : x2 = h(x1)}. Then we have

Js(x) = [−Jh(x1), IM ], where we have used the symbol Jg for the Jacobian matrix
of g and IM is the identity matrix of dimension M . Then obviously Js is of maximal
rank at any point and TS(x), the Bouligand tangent cone to S at x, coincides with
the usual tangent space; i.e.,

TS(x) = {z ∈ R
N : Js(x)z = 0} = kerJs(x) ∀x ∈ S.

Therefore

F (x) ∩ TS(x) = {(f1(x), v) : v ∈ co f2(x, U), Js(x) (f1(x), v)T = 0}
= {(f1(x), v) : v ∈ co f2(x, U), v − Jh(x1)f1(x) = 0}

for any x = (x1, x2) ∈ S, so that

F (x) ∩ TS(x) =

{
∅ if Jh(x1)f1(x) /∈ co f2(x, U),

{(f1(x), Jh(x1)f1(x))} otherwise.

Thus from Theorem 3.4 a sliding mode on S exists if and only if

(14) Jh(x1)f1(x) ∈ co f2(x, U)

at any point x = (x1, h(x1)) with x1 ∈ R
N−M . Moreover, if this condition is satisfied,

sliding modes for (12)–(13) are given by the solutions of{
ẋ1 = f1(x), x1(0) = x1,

ẋ2 = Jh(x1)f1(x), x2(0) = h(x1)

or, equivalently, setting g(x1) = f1(x1, h(x1)),{
ẋ1 = g(x1), x1(0) = x1,

x2(t) = h(x1(t)).

Since h is C1, if f1 is Lipschitz continuous, the above differential equation admits a
unique solution, and by Corollary 3.5, sliding mode control system (12)–(13) enjoys
the approximability property (A).

In Corollary 4.1 in [17] it is proved that if f(x, U) is convex and the sliding mode
is unique, the approximability property is satisfied. We show here by an example that
for the above class of systems convexity of the velocity field is not required.

Example 3.1. Let N = 3, M = 2, x = (x1, x2, x3), u = (u1, u2) with |ui| ≤ 1,
f1 : R

3 → R, and ⎧⎪⎨
⎪⎩
ẋ1 = f1(x),

ẋ2 = u1,

ẋ3 = u1u2,

f(x, u) = (f1(x), u1, u1u2).
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(A) (B)

Fig. 1. In (A) we depicted the set {(u1, u1u2) : |ui| ≤ 1}, while the set co f(x, U) for fixed x is
shown in (B). Note that this set always belongs to the intersection between the dashed parallelepiped
and a plane orthogonal to the first axis, while for our choice of S the set TS(x) will always be a line
passing through the origin.

Then

f(x, U) =

{
f1(x)} × {(u1, u1u2) : |ui| ≤ 1} = {f1(x)} ×

⋃
|α|≤1

{(t, αt) : |t| ≤ 1

}

(see Figure 1). Then f(x, U) is not convex and co f(x, U) = {f1(x)} × [−1, 1]2.
In this example we define s : R

3 → R
2, s(x) = (x2, x3) − h(x1) with a regular

h : R → R
2 and S = {(x1, h(x1)) : x1 ∈ R}. Writing h(x1) = (h1(x1), h2(x1)),

we obtain Jh(x1) = (h′
1(x1), h

′
2(x1))

T . Letting g1(x1) = f1(x1, h1(x1), h2(x1)), the
necessary and sufficient condition (14) for the existence of a sliding motion on S is
Jh(x1)g1(x1) ∈ [−1, 1]2, i.e.,

|h′
i(x1)g1(x1)| ≤ 1, i = 1, 2.

For example, if h1 = h2 = 0, so that S is the first coordinate axis, the condition
is satisfied, and the only admissible sliding motion on S is the solution of a Cauchy
problem {

ẋ1 = f1(x1, 0, 0),

x1(0) = x1,
x2(t) = x3(t) = 0.

Note that in this case, for any starting point on S, any choice of a control law (0, u2)
with |u2| ≤ 1 is able to maintain the motion on S; i.e., the equivalent is not uniquely
defined.

4. Sliding modes, nonapproximability, and regularization. While in the
first part of the paper we discussed well-posedness and found classes of sliding mode
control systems satisfying the approximability property, here we focus our attention
on systems which do not enjoy this property for a given surface S. In section 4.1 we
discuss in detail an example, due to Izosimov1 and studied in [16]. This system was
considered by Utkin in order to show the existence of systems for which the sliding
motion along the sliding manifold is not uniquely defined. It turns out in [16] that
the motion on the manifold depends on the implemented sequence of real states and

1The same example has been dealt with in a different context in [6].



ON THE REGULARIZATION OF SLIDING MODES 889

(1,1,1)

(1,−1,−1)

(−1,−1,1)

(−1,1,−1)

Fig. 2. co f(U).

that it is possible to find different ideal sliding motions passing to the limit. Here we
study this example under different perspectives and we verify that in any case the
system does not satisfy property (A).

A natural idea to find a regularization would be to find a sequence of manifolds
Sn, converging to the starting one, for which the problem satisfies the approximability
property. However, by Theorem 3.4 we show that in general this is not possible,
and the aim of section 4.2 is to find an appropriate regularization of a sliding mode
control system (1) which does not satisfy the approximability property. The main
result is Theorem 4.1, which deals with the regularization of the integral functional
corresponding to the system, as explained in section 3.1. Using this theorem, we are
able to select special sequences of trajectories converging to an a priori chosen sliding
state.

Finally, we make some remarks on the theorem and propose some possible appli-
cations.

4.1. A model example. We consider the following sliding mode control system
(see [16], p. 35):

(15)

⎧⎪⎨
⎪⎩
ẋ1 = u1,

ẋ2 = u2,

ẋ3 = u1u2,

s(t, x1, x2, x3) = (x1, x2), S = {(0, 0, x3) : x3 ∈ R}

with x = (x1, x2, x3) ∈ R
3, u = (u1, u2) ∈ U := [−1, 1]2, t ∈ [0, 1], f(t, x, u) = f(u) =

(u1, u2, u1u2), and initial point x0 ∈ S.
The system defined by (15) fulfills the hypotheses stated in section 2.1. If we

take relaxed controls as admissible controls, we have to consider all solutions of the
differential inclusion ẋ(t) ∈ co f(U) and (see Figure 2)

(16) co f(U) = co{(1, 1, 1), (1,−1,−1), (−1,−1, 1), (−1, 1,−1)}.

Note that in this example co f(U) = Fû(x) for any x ∈ S if the control û is given by

û1(t, x) = sign(x1), û2(t, x) = sign(x2)

and Fû(x) is the corresponding Filippov multifunction, as defined in (5). Consider
now a sliding trajectory x(t) = (0, 0, x3(t)). Then by Theorem 3.4, x(·) satisfies

ẋ(t) ∈ co f(U) ∩ TS(x(t)), for a.e. t,
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where TS(x) = S in this case for every x ∈ S. We therefore get that the set of sliding
states with initial point x0 is

(17) {(0, 0, x3(t)) ∈ AC(0, T ; R3) : |ẋ3(t)| ≤ 1}.

Therefore in this case the sliding trajectory is not unique, and consequently the system
is not approximable. We remark that these sliding motions also were computed in [16],
using a different argument.

If we take into account only Carathéodory solutions of system (15), the unique
sliding state is the trajectory

x(t) = x0

for every t ∈ [0, 1], corresponding to the control (u1, u2) = (0, 0).
Let us show, however, that this does not imply approximability. Choose for

instance x0 = (0, 0, 0) and consider the sequence of controls

un
1 (t) =

{
1 if t ∈ Ink ,

−1 if t ∈ Dn
k ,

un
2 = un

1

and the corresponding trajectories solving system (15), starting from x0,

xn
1 (t) =

{
t− 2k

2n if t ∈ Ink ,

−t + 2k
2n if t ∈ Dn

k ,
xn

2 = xn
1 , xn

3 (t) = t,

where Ink = [2k/2n, (2k+1)/2n] for k ∈ {0, . . . , 2n−1−1} and Dn
k = [(2k−1)/2n, 2k/2n]

for k ∈ {1, . . . , 2n−1}. These trajectories are approaching the sliding manifold, be-
cause (xn

1 , x
n
2 ) is uniformly convergent to (0, 0), but the whole sequence is convergent

to x(t) = (0, 0, t), which is not the unique Carathéodory sliding state. Thus the system
does not satisfy property (A). Note that, in the same way, it is possible to construct
sequences of Carathéodory real sliding states approaching any of the relaxed sliding
solutions we found before.

The aim of the next section is to find a method to regularize such a system. One
possibility would be to find a sequence of surfaces Sn such that

(S1) the sliding mode control defined by (15) with sliding manifold Sn satisfies
property (A) for each n;

(S2) Sn → S in some sense;
(S3) Sn is of the “same kind” of S.

However, in this example, it is not possible. Consider condition (S3) and suppose we
look for sliding manifolds Sn such that

Sn = {x ∈ R : sn(x) = 0}

with sn : R
3 → R

2 a C2 function with Jacobian matrix Jsn(x) of maximal rank at any
point x ∈ Sn. With these assumptions, it follows that TSn(x) = {y ∈ R

3 : Jsn(x)y =
0}. Regardless of the choice of Sn, the cone TSn(x) is a line passing through the origin
for every x ∈ Sn. Recall that here co f(U) does not depend on x and is the polyhedral
set (16), containing the origin (see Figure 2). Thus TSn

(x) ∩ co f(U) is a segment of
positive length. According to Theorem 3.4, every x ∈ AC(0, T ) solving{

ẋ(t) ∈ TSn(x(t)) ∩ co f(U) for a.e. t,

x(0) ∈ Sn
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is a trajectory sliding on Sn. Since the right-hand side admits more than one contin-
uous selection, by Corollary 3.5, property (A) is not satisfied, regardless of the choice
of Sn. Therefore requirements (S1) and (S3) are not compatible, no matter what
convergence is chosen in (S2).

4.2. Regularization. As in the model problem, if a sliding mode exists, nonap-
proximability is the consequence of the lack of uniqueness of the sliding state (Corol-
lary 3.2). Our aim here is to find a method to select sequences of real states converging
to a prescribed sliding motion. Relying on the equivalence result in Theorem 3.1, what
we need is to devise a way to appropriately select minimizing sequences of the ill-posed
functional I,

(18) I(x) =

∫ T

0

|s(t, x(t))| dt,

on the set W (x0). This can be done by using regularization processes such as
Tikhonov’s (see [11]). A sequence of functionals In is defined by adding a small
uniformly convex term to I so that (W (x0), In) is well-posed for all n. Uniform con-
vexity then assures that minimizing sequences for I can be generated through In and
convergence to a fixed minimizer of I is guaranteed. In our setting, the compactness
property of W (x0) allows us to weaken the required regularity of the perturbations
and to obtain the following new regularization result.

Theorem 4.1. Assume that the set P := argmin(W (x0), I) is nonempty and let
J, Jn : W (x0) → R be lower semicontinuous functionals such that

(i) J has a unique minimizer y on the set P ; i.e., argmin(P, J) = {y} and
J(y) = 0;

(ii) J(y) ≤ lim inf Jn(yn) for every y and any sequence yn such that yn → y
uniformly;

(iii) there exists z ∈ P such that lim supJn(z) = 0.
Consider sequences an > 0, εn ≥ 0 such that an → 0, εn → 0, and (εn/an) → 0,
and define In = I + anJn. Then for every sequence yn ∈ W (x0) such that In(yn) ≤
εn + inf In, it follows that

(a) yn is a minimizing sequence for I;
(b) yn → y.
Proof. For any n ∈ N, let yn ∈ W (x0) be such that In(yn) ≤ εn + inf In. By the

compactness property proved in Lemma 2.2, up to subsequences, yn is convergent to
a certain y∗ ∈ W (x0).

From the definition it follows that

(19) I(yn) = In(yn) − anJn(yn) ≤ εn + inf In − anJn(yn);

by assumption (ii), lim inf Jn(yn) ≥ J(y∗) and it can be easily proved that inf In →
inf I = 0 (see Remark 4.1). Thus, passing to the upper limit in (19), we get

(20) lim sup I(yn) ≤ 0;

therefore yn is minimizing for I. Moreover, since I is continuous, we obtain I(y∗) = 0,
i.e., y∗ ∈ P ; therefore to show that y∗ = y, it is enough to prove that y∗ is a minimizer
of J on P . Since I ≥ 0 and an > 0, from (19) we get

(21) Jn(yn) ≤ Jn(yn) +
I(yn)

an
≤ εn

an
+

In(z)

an
=

εn
an

+ Jn(z).
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Thus, by assumptions (ii) and (iii), since (εn/an) → 0, we have

(22) 0 ≤ J(y∗) ≤ lim inf Jn(yn) ≤ lim supJn(yn) ≤ 0.

Putting together (20) and (22), from assumption (i) it follows that y∗ = y.

Remark 4.1. Assumptions (i), (ii), and (iii) imply variational convergence of the
sequence Jn to J . Therefore from [11, Theorem 5, p. 122] it follows that limn inf In =
inf I.

Example 4.1. Consider the nonapproximable sliding mode control system defined
in section 4.1 with x0 = (0, 0, 0). We show how to apply Theorem 4.1 in order to select
suitable minimizing sequences converging to a fixed sliding motion.

Since by (17) we have P = {(0, 0, x3(t)) : |ẋ3(t)| ≤ 1, x3(0) = 0}, a feasible choice
for J is

J(y) =

∫ 1

0

|y3(t)| dt.

This functional satisfies the hypotheses of Theorem 4.1; in fact it is lower semicontinu-
ous on W (x0) with respect to the uniform convergence, since it is lower semicontinuous
on the whole space AC(0, T ; R3) and it has the unique constant minimizer x(t) = x0

on the set of sliding states P . Then we can either take Jn = J for all n or define

Jn(y) =

∫ 1

0

gn(y3(t)) dt with gn(y3) =

{
|y3| if |y3| ≤ n,

0 otherwise.

In both cases, choosing z = x, condition (iii) is satisfied. Note also that J is not
uniformly convex, so that J is not an admissible perturbation of the Tikhonov type.

Supposing Jn = J , which kind of controls are then required in order to obtain
convergent asymptotically minimizing trajectories? Suppose that un is an admissible
control law such that the corresponding trajectory yn satisfies In(yn) ≤ εn. Since
εn/an → 0, from (15), it follows that

(23)
un

1

an
→ 0;

un
2

an
→ 0; un

1u
n
2 → 0 weakly in L2(0, T ).

Therefore ‖un
2‖ ≤ Man for some M > 0; i.e., un

2 → 0 in the L2 norm. The same
holds for un

1 . This is therefore a necessary condition that “regularizing” controls must
satisfy.

Conversely, let un fulfill condition (23) and let yn be a corresponding solution
of (15) with starting point “near” S. Then, by standard arguments we get that
yn → 0 pointwise. By the compactness property proved in Lemma 2.2, we get that
actually yn → 0 uniformly.

Consider an arbitrary sliding mode control system satisfying the hypotheses stated
in section 2.1. It is always possible to select sequences of real states converging to a
chosen sliding state y by choosing the distance functional, namely,

J(y) = Jn(y) =

∫ T

0

|y(t) − y(t)| dt.

There is at least another possible choice when an equivalent control ueq exists.
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Corollary 4.2. Let the hypotheses of the general setting of section 2.1 be sat-
isfied. Suppose that there exists an equivalent control ueq ∈ U , i.e., an admissible
feedback satisfying

∂s

∂t
+ Jxs(t, x)f(t, x, ueq(t, x)) = 0 ∀x ∈ S(t), for a.e. t ∈ [0, T ].

Suppose, moreover, that the corresponding sliding trajectory yeq is unique. Let

Jeq(y) =

∫ T

0

∣∣∣∣y(t) − x0 −
∫ t

0

f(s, y(s), ueq(s, y(s))) ds

∣∣∣∣ dt.
Then the sequence Jn = Jeq for any n fulfills the assumptions of Theorem 4.1.

When Jn are integral functionals satisfying suitable hypotheses, it is possible, in
some sense, to read Theorem 4.1 as a result in the direction outlined at the end of

the previous section. In fact if Jn(y) =
∫ T

0
gn(t, y(t)) dt, then

In(y) =

∫ T

0

[|s(t, y(t))| + angn(t, y(t))] dt.

If the integrand is positive, there exists sn : [0, T ] × R
N → R

M such that |sn(t, y)| =
|s(t, y)| + angn(t, y), and we can think of the sets of zeros of sn as an approximat-
ing sequence for the sliding manifold. This is not in contrast with the outcomes of
section 4.1. In fact, there we showed that the sliding mode control system is not
approximable whenever the sliding manifold is a fixed regular surface, while here we
see that this problem can be overcome by allowing time-dependent manifolds.

REFERENCES

[1] Z. Artstein, Rapid oscillations, chattering systems, and relaxed controls, SIAM J. Control
Optim., 27 (1989), pp. 940–948.

[2] Z. Artstein, Chattering variational limits of control systems, Forum Math., 5 (1993), pp. 369–
403.

[3] J.-P. Aubin, Viability theory, Systems Control Found. Appl., Birkhäuser Boston, Boston, MA,
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BANACH SPACES∗
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Abstract. We study autonomous differential inclusions with right-hand sides satisfying a one-
sided Lipschitz (OSL) condition in Banach spaces with uniformly convex duals. We first show that
the solution set is closed and obtain estimates for Euler-type discrete approximations. We then
use these results to derive an analogue of the exponential formula for the reachable set, as well as
results regarding the existence and approximation of a strongly invariant attractor in the case of a
negative OSL constant. As a by-product, conditions for controllability of the reverse-time system
are obtained.
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1. Introduction and preliminaries. We study the initial value problem

(1.1) ẋ(t) ∈ F (x(t)), x(0) = x0, t ∈ I,

in a Banach space E with a uniformly convex dual, where I is either the bounded
interval [0, T ] or [0,∞). A solution is any absolutely continuous function x(·) satisfying
(1.1) for a.a. t.

Here F : E ⇒ E is a multifunction with nonempty, convex and weakly compact
values. We assume that F (·) is one-sided Lipschitz (OSL), possibly discontinuous,
and, in the case of an infinite time interval, that the OSL constant is negative.

The OSL condition for multifunctions with values in Rn is studied in [7, 8, 9,
10, 17] and in infinite-dimensional spaces in [5, 6]. Under this condition, which is
considerably weaker than the classical Lipschitz one, we establish in the present paper
new results on the existence of solutions and stability of the solution set with respect
to perturbations of the right-hand side and the initial conditions, as well as the strict
contractivity of the reachable set mapping when the OSL constant is negative.

In the case of an infinite time domain, we obtain the existence of a strongly
invariant attractor set which is the limit of Euler-type set iterations. These results
extend those obtained in [9] for the finite-dimensional case. Our qualitative results
are obtained using Euler-type discrete approximations of (1.1) defined in [11].

The method of discrete approximations is frequently used to obtain existence of
solutions of differential equations and inclusions (see, e.g., [3, 4, 12, 16]) as well as
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necessary optimality conditions [18]. We also mention [13], where discrete approxima-
tions of singularly perturbed systems are studied. Applications of infinite-dimensional
differential equations and inclusions are presented in a number of papers and books;
see, e.g., [15, 19]. In particular, suitable modifications of the partial differential inclu-
sion described in [14, section I.7] and of the partial differential equation (4.1) in [19]
can serve as examples of applications of our results.

We also remark in passing that descent methods for minimizing a (convex) func-
tion f ,

xk+1 = xk + hkfk, fk ∈ F (xk) = −∂f(xk),

where ∂f is the subdifferential of f , may be regarded as Euler-type discrete approxi-
mations of (1.1) . Under certain conditions on f , such iterations approach an invariant
set for (1.1) containing the minimizers of f .

Our paper is organized as follows. In the next section a semidiscrete approxima-
tion of (1.1) is defined and error estimates for the solution and reachable sets, as well
as the nonemptiness and closedness of the solution set of (1.1), are derived. In the
third section these results are applied to obtain the main results of the paper on the
Euler approximation of (1.1) for finite and infinite time intervals. In the last section
we present conditions for controllability of the reverse-time system.

We now recall some definitions and notation and refer the reader to [3, 14, 15]
for all concepts used in this paper, but not explicitly discussed here. Define the
normalized duality mapping by J(x) = {l ∈ E∗ : 〈l, x〉 = |x|2 = |l|2}, x ∈ E. Since
E∗ is uniformly convex, J(·) is single-valued and uniformly continuous on bounded
sets (see [3, 15]). For M > 0 we denote by ω(δ,M) := sup{|J(x) − J(y)| : |x− y| ≤
δ, |x| ≤ M, |y| ≤ M} its modulus of continuity on the ball {x ∈ E : |x| ≤ M}.

The support function of the bounded set A is denoted by σ(y,A) := supx∈A〈x, y〉
and the Hausdorff distance between the (closed and bounded) sets A and C by
DH(A,C) = max{ex(A,C), ex(C,A)}, where ex(A,C) = supa∈A infb∈C |a − b|. The
multifunction R(·) is said to be upper hemicontinuous (UHC) when for every l ∈ E∗

the support function σ(l, R(·)) is USC as a real-valued function. Also, F (·) is said to
be lower semicontinuous (LSC) at y when for every f ∈ F (y) and every yi → y there
exists fi ∈ F (yi) with fi → f . The (multi)function R : I ⇒ E is said to be strongly
measurable if for every bounded interval [a, b] and every ε > 0, there exists a simple
function Ri(·) such that DH(Ri(t), R(t)) < ε for a.a. t ∈ [a, b]. Equivalently, R(·) is
strongly measurable if for every bounded interval [a, b] and every ε > 0, there exists a
compact Iε with meas(Iε) > b−a− ε such that R(·) is continuous on Iε (with respect
to the Hausdorff distance).

By diam(C) = sup{|a − b| : a, b ∈ C} we denote the diameter of the set C,
|C| = DH(C, {0}) is the “norm” of a bounded set, and by B we denote the open unit
ball in E.

We let GraphAF := {(x, y) : x ∈ A, y ∈ F (x)} be the graph of F on a set A.
Definition 1.1. The multifunction F : E ⇒ E is said to be OSL with a constant

L (not necessarily positive) when

σ(J(x− y), F (x)) − σ(J(x− y), F (y)) ≤ L|x− y|2

for every x, y ∈ E.
In this paper we assume that L < 0 when T = ∞.
Given a partition Δ = {0 = t0 < t1 < · · · < tn = T}, we set hΔ = max1≤i≤n(ti −

ti−1) (when T = ∞ we assume that n = ∞ and replace max by sup). The semidiscrete
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differential inclusion corresponding to (1.1) is

(1.2) ẋ(t) ∈ F (xi), x(0) = x0, xi = x(ti), t ∈ [ti, ti+1], i = 0, 1, . . . , n− 1.

Let A(t, x0) be the reachable set of (1.1) at the time t. The reachable set of (1.2) at
tk will be denoted by AΔ(k, x0) or by AΔ(k) when x0 is fixed. We denote by RΔ

2 the
solution set of (1.2) and by R1 the solution set of (1.1).

In the next section we study the connections between the solution set of (1.1) and
the solution set of (1.2) (the set of discrete trajectories of (1.1)).

We will use the following simple inequality:

(1.3)
∣∣|a|2 − |b|2

∣∣ ≤ |a− b|{|a| + |b|}.

2. Approximation of the solution set. In this section we estimate the Haus-
dorff distance between the solution sets of (1.1) and (1.2) and their reachable sets.
The more restrictive case of a compact-valued (and USC) F is studied in [4].

In particular, we present more general versions of some results of [6], when E is
not a Hilbert but a Banach space with a uniformly convex dual. We also extend to
infinite-dimensional spaces the main results of [9] and [10] .

We will make the following assumption.
A. F (·) is bounded on bounded sets and UHC.
Lemma 2.1. Let F be an OSL multifunction which satisfies assumption A. Then

there exist constants M and N such that |x(t)| ≤ M and |F (x(t) + B)| ≤ N for
a.e. t ∈ I and every solution x(·) of

(2.1) ẋ(t) ∈ co F (x(t) + B) + B, x(0) ∈ x0 + B.

Proof. This result is proved when F is also compact-valued in [4]. The proof
in our case is similar but is included here for the convenience of the reader. Let
R(x) := co F (x + B) + B. Note that R(·) is also OSL with constant L, and bounded
on bounded sets. Indeed, σ(l, F (x) + B) = σ(l, F (x)) + σ(l,B) for every l ∈ E∗.
Furthermore, for every x, y ∈ E and every ε > 0, there exists lε ∈ B such that
σ(J(x− y), F (x+ B)) ≤ σ(J(x− y), F (x+ lε)) + ε. Thus σ(J(x− y), F (x+ B) + B)−
σ(J(x − y), F (y + B) + B) ≤ σ(J(x − y), F (x + lε)) + ε − σ(J(x − y), F (y + lε)) ≤
L|x− y|2 + ε. Hence the mapping x → co F (x+ B) + B is also OSL with constant L.

If x(·) is a solution of (2.1), then

〈J(x(t)), ẋ(t) − 0〉 ≤ σ(J(x(t)), R(x(t))) − σ(J(x(t)), R(0))

+σ(J(x(t)), R(0)) ≤ L|x(t)|2 + |R(0)| · |x(t)|, i.e.,

d

dt
|x(t)|2 ≤ 2L|x(t)|2 + 2|R(0)| · |x(t)|.

Since |x(·)| is absolutely continuous, it is a.e. differentiable and, moreover, d
dt |x(t)|2 =

2|x(t)| ddt |x(t)|. Let J := {t : |x(t)| = 0}. If s ∈ J is a point of density where |x(·)| is

differentiable, then d
ds |x(s)| = 0. Thus d

dt |x(t)| ≤ L|x(t)| + |R(0)| for a.a. t ∈ I. But
|R(0)| ≤ M ′. Hence there exists a number M such that M ≥ |x(t)| for all t ∈ I and
for all solutions x(·) of (2.1). Since R is bounded on bounded sets, we can also find
N ≥ |R(MB)|.

It is easy to see that |x(t)| ≤ eLt(|x0| +
∫ t

0
e−Ls|R(0)|ds). Suppose L 	= 0. Then

|x(t)| ≤ eLt|x0| + eLt−1
L |R(0)|. Hence, in case L < 0, the constants M and N do not

depend on the time t > 0.
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Once M is determined, we let ωJ(δ) = ωJ(δ,M).
We will use the following properties of ωJ(·):
(a) The modulus ωJ(·) is increasing.
(b) If K ≥ 1, then ωJ(Kδ) ≤ KωJ(δ).
Indeed, given ε > 0, let |J(x) − J(y)| ≥ ωJ(Kδ) − ε. Therefore,∣∣∣J ( x

K

)
− J

( y

K

)∣∣∣ =
1

K
|J(x) − J(y)|.

However, one has
∣∣J (

x
K

)
− J

(
y
K

)∣∣ ≤ ωJ

(
δ, M

K

)
≤ ωJ(δ), i.e., ωJ(Kδ) − ε ≤ KωJ(δ).

Since ε is arbitrary, the result follows.
From now on we assume that F (·) has convex values.
Theorem 2.2. If F (·) is OSL and satisfies assumption A, then R1 is nonempty

and closed, and there exists a constant C = C(T ) such that

DH(RΔ
2 , R1) ≤ C

√
hΔ + ωJ(hΔ).

If L < 0, then C(∞) < ∞.
Proof. Let ẏ(t) ∈ F (y(t) + εB), i.e., ẏ(t) ∈ F (y(t) + h(t)), where |h(t)| ≤ ε, and

let Δ = {ti}ni=1 be a partition of [0, T ]. We look for a solution x(·) of the discrete
inclusion which is close to y(·). Let x(0) = x0. Assuming that x(·) is known on [0, ti],
we find x(·) on [ti, ti+1]. Denote xi = x(ti). The OSL condition implies that

σ(J(y(t) − xi + h(t)), F (y(t) + h(t))) − σ(J(y(t) − xi + h(t)), F (xi))

≤ L|y(t) − xi + h(t)|2.

It is easy to see that σ(J(y(t)−xi+h(t)), F (xi)) ≤ NωJ(ε)+σ(J(y(t)−xi), F (xi)) and
that σ(J(y(t)−xi +h(t)), F (y(t) +h(t))) ≥ σ(J(y(t)−xi), F (y(t) +h(t)))−NωJ(ε).

Let z̃(t) = y(t)− xi. Since the mapping t → z̃(t) is continuous, it follows that for
every δ > 0, there exists a strongly measurable selection fi(t) ∈ F (xi) (xi = x(ti)) on
the interval [ti, ti+1] such that

σ(J(z̃(t)), F (xi)) < 〈J(z̃(t)), fi(t)〉 + δ.

There is even such a continuous selection because for every μ > 0 the set-valued map
Gμ(t) = {y ∈ F (xi) : 〈J(z̃(t)), y〉 > σ(J(z̃(t)), F (xi)) − μ} is LSC with nonempty,
convex, and weakly compact values.

Setting x(t) = xi +
∫ t

ti
fi(τ) dτ and z(t) = y(t) − x(t), we obtain

σ(J(z̃(t)), F (y(t) + h(t))) − σ(J(z̃(t)), F (xi)) ≤ 2NωJ(ε) + L|z̃(t) + h(t)|2

and

L|z̃(t) + h(t)|2 ≤ L|z(t)|2 + |L|
∣∣|z̃ + h(t)|2 − |z(t)|2

∣∣ .
From the triangle inequality and (1.3) it follows that

σ(J(z̃(t)), F (y(t) + h(t))) − σ(J(z̃(t)), F (xi))(2.2)

≤ 2NωJ(ε) + L|z(t)|2 + |L||z̃(t) + h(t) − z(t)| (|z̃(t)| + |z(t)| + ε) .

Thus we have

〈J(z(t)), ż(t)〉 ≤ 〈J(z̃(t)), ż(t)〉 + |J(z(t)) − J(z̃(t))||ż(t)|
≤ σ(J(z̃(t)), F (y(t) + h(t))) − σ(J(z̃(t)), F (xi)) + δ + 2NωJ(|x(t) − xi|).
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Since 〈J(z(t)), ż(t)〉 = 1
2

d
dt |y(t) − x(t)|2, taking into account (2.2) we derive

d

dt
|y(t) − x(t)|2 ≤ 2L|y(t) − x(t)|2 + 4N2ωJ(hΔ) + 4NωJ(ε)

+2|L||x(t) − xi + h(t)|(4M + ε) + 2δ.

Hence |y(t) − x(t)|2 ≤ r(t), where r(0) = 0 and

ṙ(t) = 2Lr(t) + 2|L| (ε + NhΔ) (4M + ε) + 4NωJ(ε) + 4N2ω(hΔ) + 2δ.

Let S(T ) := maxt∈[0,T ] e
2Lt

∫ t

0
e−2Lτdτ . Clearly, S(∞) < ∞ for L < 0. Hence there

exists a constant C(T ) = S(T )C1(M,N) such that

(2.3) |y(t) − x(t)| ≤ C(T )
√
hΔ + ε + ωJ(ε + hΔ) + 2δ.

Clearly, if L < 0, then C(∞) < ∞.

Since δ, ε > 0 are arbitrary, we get ex(R1, R
Δ
2 ) ≤ C

√
hΔ + ωJ(hΔ).

Now we are to prove that the solution set of (1.1) is nonempty and C(I, E)

closed, and that ex(RΔ
2 , R1) ≤ C

√
hΔ + ωJ(hΔ). To this end, we construct a Cauchy

sequence of semidiscrete trajectories.
Let a partition Δ1 = {ti}Ki=1 with step h1 be given, and let Δ2 = {τ j}Pj=1 be a

refinement of Δ1 with step h2 ≤ h1

4 , satisfying ωJ(h2) ≤ ωJ (h1)
4 . Denote by RΔ1

2 and

RΔ2
2 the solution set of (1.2) with respect to Δ1 and Δ2. For a given x(·) ∈ RΔ1

2 , we
define y(·) ∈ RΔ2

2 as follows.
Suppose y(·) is already defined on [0, τ j ]. Let [τ j , τ j+1] ⊂ [ti, ti+1]. Put yj = y(τ j)

and xi = x(ti). For t ∈ [τ j , τ j+1], we find a strongly measurable f(t) ∈ F (yj), where
yj = y(τ j), such that

〈J(xi − yj), ẋ(t) − f(t)〉 ≤ L|xi − yj |2.

Indeed, one can take f(t) = lj , where 〈J(xi − yj), lj〉 = σ(J(xi − yj), F (yj)). Define

y(t) = yj +
∫ t

τj f(s) ds. Similarly, we obtain

〈J(x(t) − y(t)), ẋ(t) − ẏ(t)〉 ≤ L|x(t) − y(t)|2

+|J(xi − yj) − J(x(t) − y(t))||ẋ(t) − ẏ(t)| + |L|
∣∣|xi − yj |2 − |x(t) − y(t)|2

∣∣ .
Since |F (x(t) + B)| ≤ N and |x(t)| ≤ M , we have

|(xi − yj) − (x(t) − y(t))| ≤ N(h1 + h2); |ẋ(t) − ẏ(t)| ≤ 2N.

Hence

〈J(x(t)−y(t)), ẋ(t)− ẏ(t)〉 ≤ L|x(t)−y(t)|2 +2NωJ(N(h1 +h2))+ |L|4MN(h1 +h2).

By property (b) of ωJ , ωJ(N(h1 + h2)) ≤ NωJ(h1 + h2). Denoting r(t) =
|x(t) − y(t)|2, one derives

ṙ(t) ≤ 2Lr(t) + 4N2ωJ(h1 + h2) + 8MN |L|(h1 + h2).

To complete the proof, one has to consider an appropriate sequence of partitions

{Δk}∞k=1 with steps hk+1 ≤ hk

4 ≤ h1

4k , ωJ(hk+1) ≤ ωJ (hk)
4 , and the corresponding
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sequence of approximate solutions {xk(·)}∞k=1 such that |xk(t) − xk+1(t)|2 = rk(t).
Here

ṙk(t) ≤ 2Lrk(t) + 4N2ωJ

(
5hk

4

)
+ 10MN |L|hk

and

rk(t) ≤
Ce2Ltt

4k
(h1 + ωJ(h1)).

Hence
∑∞

k=1

√
rk(t) converges uniformly on [0, T ]. Consequently, {xk(·)}∞k=1 is a

Cauchy sequence and there exists x(t) = limk→∞ xk(t). Since F is UHC, it is standard
to show that x(·) is a solution of (1.1). The same method proves that the solution set
is closed.

Let sn := maxt∈[0,T ]

√
rn(t). Then

Ex(RΔ
2 , R1) ≤

∞∑
k+1

sn ≤ C(T )
√
hΔ + ωJ(hΔ).

Obviously, C(∞) < ∞ when L < 0.
The following corollary is a lemma of Filippov–Pliss type.
Corollary 2.3. If x(·) is a solution of

ẋ(t) ∈ F (x(t) + εB), x(0) = x0,

then there exists a constant C = C(T ) such that dist(x(·), R1) ≤ C
√
ε + ωJ(ε). Fur-

thermore, C(∞) < ∞ when L < 0.
Proof. Fix h > 0 and consider the uniform grid of I with length h. Replacing

δ in (2.3) by 0, we see that there exists a constant C1 such that dist(x(·), RΔ
2 ) ≤

C1

√
h + ε + ωJ(h + ε). By Theorem 2.2, there exists a constant C2 such that

DH(RΔ
2 , R1) ≤ C2

√
h + ωJ(h)

for each h > 0. Since dist(x(·), R1) ≤ dist(x(·), RΔ
2 ) +DH(RΔ

2 , R1), we can finish the
proof by letting h → 0.

After some standard calculations one can also prove the following extension of
Corollary 2.3.

If x(·) is a solution of

ẋ(t) ∈ co F (x(t) + εB), x(0) = x0,

then there exists a constant C = C(T ) such that dist(x(·), R1) ≤ C
√
ε + ωJ(ε).

Furthermore, C(∞) < ∞ when L < 0.
Corollary 2.4. Under the conditions of Theorem 2.2, DH(A(T, x0), A(T, y0)) ≤

eLT |x0 − y0|.
The proof is standard (one can follow the proofs of the previous corollary and the

second part of Theorem 2.2 (see, e.g., [7, 8])) and is therefore omitted.
If F (·) is compact-valued and USC, then the reachable set A(t, x0) is also compact

for every t > 0. When F is only weakly compact-valued or UHC, it is not clear if
A(t, x0) is always closed. Clearly, the solution set of (1.1) is C([0, T ], H) closed.
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The following result may be viewed as a “robustness” property of the OSL prop-
erty.

Lemma 2.5. Let F,Gn : E ⇒ E be bounded by N and suppose that for each
M > 0,

lim
n→∞

DH(GraphMB F,GraphMB Gn) = 0.

If each Gn is OSL with constant L (not depending on n), then F is also OSL with
the same constant L.

Proof. Given δ > 0, let DH(GraphMB F,GraphMB G) < δ, and let G be OSL
with a constant L. If x, y ∈ MB, then there exist lx, ly ∈ δB such that σ(J(x −
y), F (x)) < σ(J(x−y), G(x+lx))+δ and σ(J(x−y), F (y)) > σ(J(x−y), G(y+ly))−δ.
Consequently,

σ(J(x− y), F (x)) − σ(J(x− y), F (y))

≤ σ(J(x− y), G(x + lx)) − σ(J(x− y), G(y + ly)) + 2δ

≤ σ(J(x + lx − y − ly), G(x + lx)) − σ(J(x + lx − y − ly), G(y + ly))

+ 2N
∣∣∣J(x− y) − J(x + lx − y − ly)

∣∣∣ + 2δ

≤ L|x + lx − y − ly|2 + 4NωJ(δ) + 2δ

≤ L|x− y|2 + 4δ|L|(2M + δ) + 4NωJ(δ) + 2δ.

Since limδ→0 (4δ|L|(M + δ) + 4NωJ(δ) + 2δ) = 0, one has σ(J(x− y), F (x))− σ(J(x
−y), F (y)) ≤ L|x− y|2.

Denote hi = ti − ti−1. From Lemma 2.1 we know that there exist constants M
and N (depending on L and T ) such that |x(t)| ≤ M and |F (x(t)+B)| ≤ N for every
solution x(·) of (1.1), when F (x) is replaced by F (x(t)+B). Thus for hΔN < 1, every
solution of (1.2) is a solution of ẋ(t) ∈ F (t, x(t) + B).

To estimate the distance between the solution sets of (1.1) and (1.2), for a given
partition Δ of [0, T ], we fix x0 and set dk = DH(A(tk, x0), A

Δ(k)).
Corollary 2.6. Let F (·) be OSL, bounded on bounded sets, UHC, and convex

weakly compact-valued. If hk ≤ min
{
1, 1

N

}
, then there exists a constant C such that

for every 1 ≤ k ≤ n,

d2
k+1 ≤ e2Lhkd2

k + Chk(hk + ωJ(hk)).

Proof. We will modify the proof of Lemma 3.13 in [9]. Let x(·) be a solution
of (1.1) and let ε > 0 be given. We first find a solution y(·) of (1.2) such that
|x(tk)−y(tk)| < dist(x(tk), A

Δ(k))+ε. Since F (·) is OSL and convex weakly compact-
valued, there exists a strongly measurable selection f(t) ∈ F (y(tk)) on [tk, tk+1] such
that

〈J(x(t) − y(tk)), ẋ(t) − f(t)〉 ≤ L|x(t) − y(tk)|2.

For t ∈ [tk, tk+1], define y(t) = y(tk) +
∫ t

tk
f(τ) dτ . We have

〈J(x(t) − y(t)), ẋ(t) − ẏ(t)〉 ≤ L|x(t) − y(tk)|2

+|J(x(t) − y(t)) − J(x(t) − y(tk))| · |ẋ(t) − ẏ(t)|
≤ L|x(t) − y(tk)|2 + 2NωJ(N(t− tk)).
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Let r(t) = x(t) − y(t). Then 〈J(r(t)), ṙ(t)〉 ≤ L|x(t) − y(tk)|2 + 2N2ωJ(t − tk).
Furthermore, by (1.3) and Lemma 2.1,

|x(t) − y(tk)|2 ≤ |x(t) − y(t)|2 + 4MN(t− tk).

Consequently, 〈J(r(t)), ṙ(t)〉 ≤ L|r(t)|2 + 2N2ωJ(t − tk) + 4MN |L|(t − tk). Hence
d
dt |r(t)|2 ≤ 2L|r(t)|2 + C (ωJ(t− tk) + (t− tk)). By standard calculations one can

show that |r(tk+1)|2 ≤ e2Lhk |r(tk)|2 + O(hk(hk + ωJ(hk))). Therefore we derive

(dist(x(tk+1), A
Δ(k + 1)))2 ≤ e2Lhk(dist(x(tk), A

Δ(k)) + ε)2 + O (hk(hk + ωJ(hk))) .

Since ε > 0 is arbitrary, one may replace it by 0. The fact that for every solution y(·)
of (1.2),

(dist(y(tk+1), A(tk+1)))
2 ≤ e2Lhk(dist(y(tk), A(tk)))

2 + C(hk(hk + ωJ(hk)))

can be proved as in Theorem 2.2. Thus d2
k+1 ≤ e2Lhkd2

k + Chk(hk + ωJ(hk)).
Using the discrete Gronwall inequality, we obtain another corollary.
Corollary 2.7. Under the assumptions of the previous corollary, for a uniform

partition of the interval [0, T ] with step h and T = nh,

DH(A(T, x0), A
Δ(n, y0)) ≤ eLT |y0 − x0| + C

√
h + ωJ(h),

where C does not depend on T if L < 0.

3. The Euler method. We denote by (I + hF )(X0) =
⋃

x∈X0
{x + hF (x)} an

Euler step for the inclusion (1.1).
Higher powers of I + hF are defined by

(I + hF )
n+1

(X0) = (I + hF )
[(

I + hF
)n

(X0)
]
.

Consider the Euler discretization of (1.1) for a given partition Δ of [0, T ]:

(3.1) x(t) = xi + (t− ti)fi,

where fi ∈ F (xi), xi = x(ti), x(0) = x0, t ∈ [ti, ti+1], i = 0, 1, . . . .
Denote the reachable set of (3.1) at time t ∈ [0, T ] by ReachΔ(t, x0) or by

ReachΔ(t) for short.
The following corollary extends the exponential formula of Wolenski [20] and its

OSL extension in R
n [10] to the case of UHC differential inclusions in a Banach space.

Corollary 3.1 (exponential formula). Under the conditions of Theorem 2.2,
for every t ∈ [0, T ] we have

A(T, x0) = lim
n→∞

(
I +

T

n
F

)n

(x0) := eTFx0.

Proof. For the uniform partition ti = iT
n , i = 0, 1, . . . , n−1, with h = T

n , consider
the Euler polygons (3.1).

Since F (·) is convex weakly compact-valued, the reachable set of (3.1) coincides
at the points tk with the reachable set of (1.2), i.e., AΔ(tk, x0) = ReachΔ(tk, x0) =
(I + hF )k(x0). It follows from Corollaries 2.6 and 2.7 that

DH

(
A(T, x0),

(
I +

T

n
F

)n

(x0)

)
≤ C

√
1

n
+ ω

(
1

n

)
.
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The proof is therefore complete.
Next we assume that L < 0 and study the asymptotic behavior of the reachable

set when T → ∞.
The following theorem extends Theorems 3.1 and 3.5 of [9].
Theorem 3.2. Suppose that F (·) satisfies all the assumptions of Theorem 2.2

with L < 0. Then there exists a closed and bounded set A∞ such that A∞ =
limt→∞ A(t, x0). Moreover,

(i) A∞ is attracting the reachable sets; i.e., for bounded B 	= A∞, if T > 0, then
DH(A(T,B), A∞) < DH(B,A∞);

(ii) A(T,A∞) = A∞ for every T > 0;
(iii) A∞ does not depend on x0;
(iv) A∞ is a strongly invariant set for (1.1); i.e., every solution x(·) of (1.1) with

x(0) ∈ A∞ satisfies x(t) ∈ A∞ for every t > 0.
Proof. We will follow the proofs of Theorems 3.1 and 3.5 of [9]. Let 0 < t < s.

Since for every bounded B, the sets A(t, B) and A(s,B) are bounded subsets of MB,
by Corollary 2.4, DH(A(t, B), A(s,B)) ≤ DH(B,A((s − t), B))eL(s−t) ≤ 2MeL(s−t).
Thus the net {A(t, B)}t≥0 is a Cauchy net. Therefore, {A(t, B)}t≥0 is also a Cauchy
net. Since the set of closed and bounded subsets of E equipped with the Hausdorff
metric is a complete metric space, the limit A∞ exists. By Corollary 2.4, this limit
does not depend on the initial condition x0 and satisfies (i) because L < 0. Moreover,
for a given T > 0, the multivalued map B → A(T,B) is a set-valued contraction.
Hence there exists a unique nonempty closed set DT with A(T,DT ) = DT . As in [9],
it is easy to see that DT = A∞. Hence A(T,A∞) = A∞ for every T ≥ 0. Thus A∞

is a strongly invariant set. The rest of the proof is obvious.
Corollary 3.3. Under the conditions of Theorem 3.2, A∞ ⊂ B for every other

strongly invariant set B of (1.1).
Proof. By (i) of Theorem 3.2, we see that limt→∞ A(t, B) = A∞ ⊂ B, because B

is a strongly invariant set.
We call A∞ the fixed set (for (1.1)).
The next theorem shows that the fixed set may be approximated by the reachable

set ReachΔ(t, x0) of (3.1) for special time step sequences and may be regarded as an
infinite time exponential formula (cf. Corollary 3.15 of [9]) in the setting of Banach
spaces.

Theorem 3.4 (fixed set iterations). Under the conditions of Theorem 3.2, there
exists a partition Δ of [0,∞) such that the reachable set ReachΔ(t, x0) of (3.1) satisfies
limt→∞ DH(ReachΔ(t, x0), A

∞) = 0.
Proof. By (ii) of Theorem 3.2, A∞ = A(t, A∞). Furthermore, by Corollary 2.4

we know that

(3.2) DH(A(T,A0), A(T,A∞)) ≤ eLTDH(A0, A
∞).

One may suppose that the constant C(T ) in Theorem 2.2 is increasing; i.e., C(T ) ≤
C(∞).

We let A0 = {x0}, find T > 0 such that eLT < 1
4 , and set i := 0. Now we proceed

as follows.
Step A. Set Ki = DH(Ai, A

∞). Hence DH(A∞, A(T,Ai)) < Ki

4 . Let hi be so

small that for hi := T
ki

one has C(∞)
√
hi + ωJ(hi) < Ki

4 . Let Δi be the uniform
partition of [iT, (i + 1)T ] corresponding to hi. It follows from Corollary 3.1 that

DH(A(T,Ai), ReachΔi(T,Ai)) ≤ C(∞)
√
hi + ωJ(hi) <

Ki

4
.
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Let Ai+1 := ReachΔi(T,Ai). Consequently,

(3.3) DH(Ai+1, A
∞) ≤ DH(Ai+1, A(T,Ai)) + DH(A(T,Ai), A

∞) < 2
Ki

4
=

Ki

2
.

End of Step A.
Since the system is autonomous, one can start from A1 and repeat Step A with

A0 replaced by A1 and K0 replaced by K1

(
hence K1 < K0

4

)
. We find h1 < h0 and

A2 such that DH(A2, A
∞) < K1

2 < K0

4 . Notice that A2 is the reachable set of (3.1)
for the time 2T , where the partition Δ of the interval [0, 2T ] has step h0 on [0, T ] and
step h1 on [T, 2T ].

Now we repeat Step A n times and derive a sequence {An}∞n=1 where An is the

reachable set of (3.1) for the time nT :=
∑n−1

i=0 T and DH(An, A
∞) < K0

2n . It is easy

to see that limn→∞ nT = ∞ and limn→∞ An = A∞, which yields the assertion of the
theorem.

Note that the choice of the time steps above depends on the modulus ω and
therefore cannot be the same as in the corresponding result of [9].

4. Controllability of other-sided Lipschitz systems. We will call the mul-
timap F : E ⇒ E other-sided (backward-sided) Lipschitz (BSL) when

σ(J(x− y), F (x)) − σ(J(x− y), F (y)) ≥ L|x− y|2 for all x, y ∈ E.

It is easy to see that F (·) is BSL if and only if the mapping −F (·) is OSL.
Consider the differential inclusion

(4.1) ẋ(t) ∈ F (x), x(0) = x0 ∈ K.

If F (·) is BSL, it is not possible to prove either existence of solutions or qualitative
properties. However, changing the time direction by setting t = −s, we obtain an OSL
differential inclusion. Let F (·) be BSL with constant L > 0. In this case −F (·) is
OSL with constant −L. Assume that F (·) has nonempty, convex, and weakly compact
values and is bounded on bounded sets. By Theorem 3.2, there exists a backward
fixed set A−∞ = limt→−∞ A(t, x0) such that

(i) A−∞ is a backward attractor of the reachable sets; that is, if B 	= A−∞ is
bounded and T < 0, then DH(A(T,B), A∞) < DH(B,A∞);

(ii) A(T,A−∞) = A−∞ for every T < 0;
(iii) A−∞ does not depend on x0;
(iv) A−∞ is a strongly backward invariant set for (1.1); i.e., every solution x(·) of

(1.1) with x0 ∈ A−∞ satisfies x(t) ∈ A−∞ for every t < 0.
Note that the above assertions are those of Theorem 3.2 rewritten in the back-

ward time direction. As a corollary we derive the following criterion for complete
controllability.

Theorem 4.1. Let F (·) be UHC, with nonempty, convex, and weakly compact
values, bounded on bounded sets, and BSL with positive constant L.

(i) If K is an open set such that K
⋂
A−∞ 	= ∅, then for every z ∈ E, there exist

x0 ∈ K and a finite time T (z) such that z belongs to the reachable set of (4.1) at time
T (z); i.e., (4.1) is completely quasi-controllable.

(ii) If K is an open set such that K
⋂
A−∞ = ∅, then there exists z ∈ E which can-

not be reached in finite time from K; i.e., (4.1) is not completely quasi-controllable.
Finally, we present an example of a Hilbert space differential inclusion to which

our results can be applied.
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Example 4.1. Let E = l2 be the Hilbert space of all square summable real
sequences.

Consider the following system:

ẋ0(t) ∈ −x0(t) + [−1, 1], x0(0) = 0,

ẋ1(t) ∈ −x1(t) −
5
√
x3

1
3
√

1
+

1

2
[−|x0(t)|, |x0(t)|], x1(0) = 0,

. . .(4.2)

ẋn(t) ∈ −xn(t) −
5
√
x3
n

3
√
n

+
1

2
[−|xn−1(t)|, |xn−1(t)|], xn(0) = 0,

. . . .

It is not difficult to see that the right-hand side F of (4.2) is OSL with a constant
L = − 1

2 . We claim that F maps l2 into l2. If �x ∈ l2, then obviously −�x ∈ l2, too. Also,
if �x ∈ l2 with �x = (x0, x1, . . . , xn, . . . ), then �y = (0, |x0|, |x1|, . . . , |xn|, . . . ) ∈ l2. Thus

we have only to check that if �x = (x0, x1, . . . , xn, . . . ) ∈ l2, then
∑∞

n=0

5
√

x6
n

3√
n2

converges.

But this is a trivial consequence of the Cauchy–Schwarz inequality (〈�x, �y〉 ≤ |�x||�y|) and

the fact that the series
∑∞

n=1
5
√
x12
n and

∑∞
n=1

3
√
n−4 converge.

Note that in this example F (·) is continuous (not Lipschitz) with convex (strongly)
compact values. The existence of solutions to the system (4.2) is proved in [4]. This
existence also follows from Theorem 2.2.

Acknowledgments. All the authors thank the referees for many valuable com-
ments and suggestions.
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Abstract. We prove sharpness of efficient solutions xk to vector optimization problems resulting
from Ekeland vector variational principles. We achieve this by sharpening some of the existing vector
variational principles and showing that xk remains efficient not only for perturbations in the direction
k but also for other directions of perturbations.
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1. Introduction. In its classical formulation, the Ekeland variational principle
[3] states that in a vicinity of an ε-solution to the minimization problem of a lower
semicontinuous (lsc) bounded below real-valued function f defined on a complete
metric space, one can always find a strict solution to a minimization problem with
slightly perturbed function f . There exist many generalizations of this theorem, to
metric spaces, e.g., [2, 8, 13], to locally convex topological spaces and to general
topological spaces [4]. A parametrized version of Ekeland’s variational principle was
proved in [7].

In recent years variational principles for vector-valued functions taking values in
partially ordered spaces have been studied by several authors [5, 6, 10, 11, 12, 16].

The following vector variational principle was proved in [5] and [16].
Theorem 1.1 (see Theorem 8 in [5]). Let X and Z be real Banach spaces and Z

be partially ordered by a closed convex pointed cone K. An element +∞ /∈ Z is such
that z ≤ +∞ for all z ∈ Z. Let f : X → Z ∪ {+∞} be a quasi-lsc, bounded below
proper function, x̄ ∈ D(f), and let k ∈ K \ {0}. If f(X) ∩ (f(x̄) − εk −K \ {0}) = ∅
for some ε > 0, then for every λ > 0 there exists xk such that

(i) f(xk) ≤ f(x̄),
(ii) ‖x̄− xk‖ ≤ λ,
(iii) xk ∈ E(f(xk,k)), where f(xk,k)(x) := f(x) + ε

λ‖x− xk‖k.
The following theorem [9, 10] relaxes the requirement for f to be bounded below,

strengthens assertion (iii), and puts less stringent assumptions on X, Y , and K.
Theorem 1.2 (see Corollary 3.10.14 in [9]). Let (X, d) be a complete metric space

and Y be a separated locally convex space ordered by a closed cone K. An element
+∞ /∈ Y is such that y ≤ +∞ for all y ∈ Y . Let f : X → Y ∪ {+∞} be a proper
function, x̄ ∈ D(f), and let k ∈ K \ (−K). Suppose that for every r ∈ R the set
{x ∈ X | f(x) ≤ f(x̄) + rk} is closed. If f(X) ∩ (f(x̄) − εk − K \ {0}) = ∅ for some
ε > 0, then for every λ > 0 there exists xk such that

(i) f(xk) + λ−1εd(xk, x̄)k ≤ f(x̄), d(xk, x̄) ≤ λ,
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(ii) if f(x) + λ−1εd(xk, x)k ≤ f(xk), then x = xk.
In [6], Finet, Quarta, and Troestler introduced the notion of the order lower semi-

continuity and deduced the vector-valued Ekeland variational principle for an order
lower semicontinuous bounded below function f directly from the Deville–Godefroy–
Zizler perturbed minimization principle (Corollary 31 of [6]). In [11] and [12], a rela-
tion between nuclearity of cones in product spaces and Ekeland’s variational principle
is considered.

Sharp efficiency can be viewed as one of the weakest types of proper efficiency
and plays a crucial role in investigating stability to perturbed vector optimization
problems (cf. [1]).

In the present paper we prove that xk is a sharp efficient solution (in the sense of
[1]) to function f(xk,k)(x) = f(x)+ ε

λ‖x−xk‖. Moreover, we introduce the new concept
of ε-solutions to vector optimization problems with respect to Bishop–Phelps cones.
By using this concept we derive another form of vector variational principle which
gives an efficient solution x0 to functions f(x0,k) for all k ∈ intKα with ϕ(k) − α‖k‖
sufficiently large and we prove the sharpness of x0.

The organization of the paper is as follows. In section 3 we introduce a new
concept of ε-efficient solutions for f taking values in spaces ordered by Bishop–Phelps
cones Kα. This concept strengthens some of the existing definitions of ε-efficiency and
allows us to prove the vector-valued Ekeland variational principle for any k ∈ intKα

and to deduce the sharpness of solutions xk. In section 4 we prove our main results,
which are in Theorems 4.1 and 4.2.

2. Preliminaries. Let X = (X, d) be a complete metric space. Let Z be a
separated locally convex space ordered by the relation ≤ (≥) induced by a closed
cone K in the usual way; i.e., for any z, y ∈ Z we put z ≤ y (y ≥ z) iff y − z ∈ K.

Let Z̄ := Z ∪ {+∞}, where +∞ /∈ Z is such that z ≤ +∞ for any z ∈ Z and let
f be a function from X to Z̄. The domain D(f) of f is defined as D(f) := {x ∈ X |
f(x) �= +∞} and f is called proper if D(f) �= ∅. Consider the vector minimization
problem

(P )
f(x) →K min
subject to x ∈ X.

A point x̄ ∈ X is an efficient solution to (P ) if

(f(x̄) −K) ∩ f(X) ⊂ f(x̄) + K.

We denote by E(f) the set of all efficient solutions to (P ).
A function f : X → Z̄ is quasi-lsc at x0 ∈ X [5], if for all b ∈ Z such that

b � f(x0) there exists a neighborhood U of x0 in X such that b � f(x) for all x ∈ U .
f is quasi-lsc if f is quasi-lsc at each point of X. f is quasi-lsc iff for all b ∈ Z the
sets {x ∈ X | f(x) ≤ b} are closed in X.

A function f : X → Z̄ is lsc at x0 ∈ D(f) if for each neighborhood W of f(x0)
there exists a neighborhood V of x0 such that f(V ) ⊂ W + (K ∪ +∞). If f is lsc at
x0, then f is quasi-lsc at x0.

Definition 2.1 (see [16]). For given ε > 0 and k ∈ K \ {0}, a point x̄ ∈ D(f) is
ε-approximately efficient in the direction k if (f(x̄) − εk −K \ {0}) ∩ f(X) = ∅.

The notion of ε-approximately efficient points is essential in proving Theorems
1.2 and 1.1 (see also [5, 9, 10, 16]).

Let Z∗ be the dual space of all continuous linear functionals defined on Z and
K∗ := {z∗ ∈ Z∗ | ∀ z ∈ K z∗(z) ≥ 0} the dual cone of K. Since K is pointed, for any
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k ∈ K \ {0}, by the Hahn–Banach theorem there exists k∗ ∈ K∗ such that k∗(k) = 1.
The functional k∗ is order-preserving. Let us recall that a function f : X → Z is said
to be bounded below if there exists z ∈ Z such that z ≤ f(x) for all x ∈ X. If f is
bounded below, then k∗ ◦ f is bounded below on X and k∗(z) ≤ (k∗ ◦ f)(x) for all
x ∈ X and any k∗ ∈ K∗; on the other hand the function k∗ ◦ f may not be lsc.

3. The variational principle for Bishop–Phelps cones. Let 0 < α < 1 be
given. For an arbitrary ϕ ∈ Z∗, ‖ϕ‖ = 1 we define

Kα := {z ∈ Z | ϕ(z) ≥ α‖z‖}.

Let us notice that Kα is a closed convex pointed cone with nonempty interior intKα =
{z ∈ Z | ϕ(z) > α‖z‖} and a bounded base Θ = {k ∈ Kα | ϕ(k) = 1}. The cone Kα

is called a Bishop–Phelps cone [14, 15].
In what follows we assume that Z is a real Banach space partially ordered by a

cone Kα.
In what follows we use the functions g : Z̄ → R̄ := R ∪ {+∞} defined by

g(z) :=

{
ϕ(z) − α‖z‖ for z ∈ Z,
+∞ for z = +∞,

and the function v : X → R̄ defined by v := g ◦ f :

(3.1) v(x) := ϕ(f(x)) − α‖f(x)‖.

The function g is order-preserving since for any z1 ≤ z2 we have g(z1) ≤ g(z2). In
consequence, if f is bounded below on X, i.e., z ≤ f(x) for any x ∈ X, the function v
is also bounded below on X and g(z) ≤ v(x) for all x ∈ X. The converse is not true.

Moreover,

S(v) := argmin{v(x) : x ∈ X} ⊂ WE(f),

where WE(f) denotes the set of all weakly efficient solutions to (P ), i.e., x̄ ∈ WE(f)
if (f(x̄) − intKα) ∩ f(X) = ∅. To see this, take any x̄ /∈ WE(f). There exists x ∈ X
such that f(x̄) − f(x) ∈ intKα and, consequently,

ϕ(f(x̄)) − α‖f(x̄)‖ > ϕ(f(x)) − α‖f(x)‖

which proves that x̄ /∈ S(v). Since g is not strongly increasing (i.e., z1 ≥ z2 and
z1 �= z2 does not imply that g(z1) > g(z2)), we cannot prove that S(v) ⊂ E(f).

We introduce the following notion of ε-approximate efficiency with respect to
Bishop–Phelps cones.

Definition 3.1. Let ε > 0 be given and 0 < α < 1. A point x̄ ∈ X is an
ε-efficient solution with respect to Kα if

v(x̄) < inf
x∈X

v(x) + ε,

where the function v is defined by (3.1).
This means that x̄ is an ε-solution of the scalar-valued function v.
The next lemma establishes the relationship between the ε-efficiency with respect

to Kα and the ε-approximate efficiency in the sense of Definition 2.1.
Lemma 3.2. An ε-efficient solution x̄ ∈ X with respect to Kα is ε0-approximately

efficient in any direction k ∈ intKα with ε0 ≥ ε/g(k).
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Proof. Suppose on the contrary that x̄ ∈ X is not ε0-approximately efficient in
the direction k ∈ intKα. Therefore, by the definition of the ε0-approximate efficiency
there exists x ∈ X which satisfies

ϕ(f(x̄) − (f(x) + ε0k)) ≥ α‖f(x̄) − (f(x) + ε0k)‖.

Hence in view of the definition of v we obtain the inequality

v(x̄) ≥ v(x) + ε0g(k),

which contradicts the fact that x̄ is a ε-efficient solution with respect to Kα. This
completes the proof.

Now we are ready to prove the following vector-valued Ekeland variational prin-
ciple for a quasi-lsc function taking values in Banach spaces partially ordered by
Bishop–Phelps cones.

Theorem 3.3. Let f : X → Z ∪ {+∞} be a quasi-lsc, bounded below function
such that D(f) �= ∅. Let ε > 0 be given and let x̄ ∈ X be an ε-efficient solution with
respect to Kα.

Then for any k ∈ intKα there exists xk ∈ X such that for any l ≥ k the following
conditions hold:

(i) f(xk) ≤ f(x̄),
(ii) ‖x̄− xk‖ ≤ 1/g(k),
(iii) for any x ∈ X the relation f(x) + ε‖x− xk‖l ≤ f(xk) implies x = xk.
Proof. Take any k ∈ intKα. Since x̄ is an ε-efficient solution with respect to Kα,

by Lemma 3.2 x̄ is ε0-approximately efficient in the direction k and ε0 = ε/g(k). By
Theorem 1.2, taking λ = 1/g(k), there exists xk ∈ X such that

(i) f(xk) ≤ f(x̄),
(ii) ‖x̄− xk‖ ≤ 1/g(k),
(iii) for any x ∈ X the relation f(x) + ε‖x− xk‖k ≤ f(xk) implies x = xk.

Let l ≥ k. Since f(x) + ε‖x − xk‖k ≤ f(x) + ε‖x − xk‖l, then the relation f(x) +
ε‖x− xk‖l ≤ f(xk) implies x = xk.

Theorem 3.4. Let X and Z be Banach spaces and let f : X → Z̄ be an lsc proper
function. Let ε > 0 and λ > 0 be given and let x̄ ∈ X be an ε-efficient solution with
respect to Kα.

There exists x0 ∈ D(f) such that for any k ∈ intKα such that g(k) ≥ 1
λ the

following conditions hold:
(i) v(x0) + ε

λ‖x̄− x0‖ ≤ v(x̄),
(ii) ‖x̄− x0‖ ≤ λ,
(iii) for all x ∈ X the relation f(x) + ε‖x− x0‖k ≤ f(x0) implies x = x0.
Proof. As v is a bounded below lsc function and x̄ is an ε-solution to v, by the

Ekeland variational principle there exists x0 ∈ D(f) such that v(x0) + ε
λ‖x̄ − x0‖ ≤

v(x̄), ‖x̄− x0‖ ≤ λ, and

∀ x ∈ X v(x) +
ε

λ
‖x− x0‖ ≤ v(x0) ⇒ x = x0.

Take any k ∈ Kα such that g(k) ≥ 1
λ . Since g(z + γk) ≥ g(z) + γg(k) for z ∈ Z and

γ ∈ R+,

∀ x ∈ X g(f(x) + ε‖x− x0‖k) ≤ g(f(x0)) ⇒ x = x0.

Since g is order-preserving, for any x ∈ X the relation f(x) + ε‖x, x0‖k ≤ f(x0)
implies g(f(x) + ε‖x− x0‖k) ≤ g(f(x0)), which proves (iii).
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4. Sharp efficiency. In this section we assume that X and Z are normed spaces.
In [1], Bednarczuk investigates the following notion of sharp efficiency: an x̄ ∈ D(f)
is a sharp efficient solution of order 1 to (P ) if there exists a constant τ > 0 such
that

f(x) /∈ f(x̄) + τ‖x− x̄‖BZ −K for x ∈ X, x �= x̄,

where BZ is open unit ball in Z. We denote the set of all sharp solutions of order 1 to
(P ) by St1(f). Let us note that if x̄ ∈ St1(f), then for all x ∈ X f(x) ≤ f(x̄) ⇒ x = x̄.

The following theorem sharpens the conclusion (iii) of Theorem 1.2 for cones with
nonempty interiors.

Theorem 4.1. Let X and Z be normed spaces with Z ordered by a closed pointed
cone K, intK �= ∅. Let f : X → Z̄ be a quasi-lsc proper function. Let ε > 0, λ > 0,
and k ∈ intK. Let x̄ ∈ D(f) be an ε-approximately efficient point in the direction
k ∈ intK.

There exists xk ∈ D(f) such that the following conditions hold:
(i) f(xk) ≤ f(x̄),
(ii) ‖xk − x̄‖ ≤ λ,
(iii) xk ∈ St1(f(xk,l)) for any l ≥ 2k, where f(xk,l)(x) := f(x) + ε

λ‖x− xk‖l.
Proof. By assumption, there exists xk ∈ X satisfying the conditions (i), (ii),

and (iii) of Theorem 1.2. Since k ∈ intK, there exists a number τ > 0 such that
2k − λτ

ε b ≥ k for any b ∈ BZ . Take any l ≥ 2k, then l − λτ
ε b ≥ k for any b ∈ BZ . By

Theorem 1.2(iii),

f(xk) − f(x) − ε

λ
‖x− xk‖

(
l − λτ

ε
b

)
/∈ K ∀ x �= xk.

Since the relation holds for any b ∈ BZ we have

f(x) +
ε

λ
‖x− xk‖l /∈ f(xk) + τ‖x− xk‖BZ −K ∀ x �= xk,

which proves that xk ∈ St1(f(xk,l)) with the constant τ .
For K = Kα we get the estimation of the distance ‖xk − x̄‖ in terms of g(k) and

the estimation of constant τ . This is the content of the next theorem.
Theorem 4.2. Let f : X → Z̄ be a quasi-lsc proper function. Let ε > 0 and let

x̄ ∈ D(f) be an ε-efficient solution with respect to Kα.
For any k ∈ intKα there exists xk ∈ X such that the following conditions are

satisfied:
(i) f(xk) ≤ f(x̄),
(ii) ‖x̄− xk‖ ≤ 1/g(k),
(iii) xk ∈ St1(f(xk,l)) for any l ≥ 2k, where f(xk,l)(x) := f(x) + ε‖x− xk‖l.
Proof. Take any k ∈ intK. Let τ > 0 be such that τ ≤ εg(k)/(‖ϕ‖ + α). We will

show that for any b ∈ BZ the inequality 2k − τ
ε b ≥ k holds. Indeed

ϕ
(
k − τ

ε
b
)
− α

∥∥∥k − τ

ε
b
∥∥∥ ≥ g(k) − τ

ε
(ϕ(b) + α‖b‖) ≥ g(k) − τ

ε
(‖ϕ‖ + α) ≥ 0,

hence 2k − τ
ε b ≥ k for all b ∈ BZ . Take any l ≥ 2k, then l − τ

ε b ≥ k for any b ∈ BZ .
By Theorem 3.3 (iii), f(xk) − f(x) − ε‖x − xk‖(l − τ

ε b) /∈ Kα for x �= xk. Since the
relation holds for any b ∈ BZ we have

f(x) + ε‖x− xk‖l /∈ f(xk) + τ‖x− xk‖BZ −Kα ∀ x �= xk,
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which completes the proof.
We close this section by showing two necessary conditions for sharp efficiency.

In [6], Finet, Quarta, and Troestler give the following definition of strong efficient
solutions.

Definition 4.3 (see [6]). An x̄ ∈ E(f) is a strong efficient solution if for any
(xn)n≥1 ⊂ D(f) such that ‖f(xn)−f(x̄)‖ → 0, the sequence (xn)n≥1 converges to x̄.

Let x̄ ∈ E(f), f(x̄) = η, ε ∈ K0 := intK ∪ {0}. Let π : K0
→→ Z̄ be a set-valued

mapping defined as follows:

π(ε) = f−1(f(x̄) + ε−K).

Proposition 4.4. Let X and Z be normed spaces and let Z be ordered by a
closed cone K, intK �= ∅. Let f : X → Z̄ be a proper function. Let f(x̄) = η and
f−1(η) = {x̄}. If x̄ ∈ St1(f), then π is upper Lipschitz at ε = 0, i.e., there exist
constants L > 0 and t > 0 such that

f−1(f(x̄) + ε−K) ⊂ x̄ + L‖ε‖BX

for ε ∈ tBZ ∩ K0.
Proof. Suppose that π is not upper Lipschitz at ε = 0. For every n ≥ 1 there

exists εn ∈ intK, εn → 0, such that

f(xn) ∈ f(x̄) + εn −K, ‖xn − x̄‖ ≥ n‖εn‖.

Hence, f(xn) ∈ f(x̄) + 1
n‖xn − x̄‖BZ −K which proves that x̄ is not sharp.

Theorem 4.5. If x̄ ∈ St1(f), then x̄ is strong in the sense of Definition 4.3.
Proof. Let x̄ ∈ St1(f). Then ‖f(x) + k − f(x̄)‖ ≥ τ‖x− x̄‖ for all x ∈ D(f) and

k ∈ K. In particular ‖f(x) − f(x̄)‖ ≥ τ‖x − x̄‖ for all x ∈ D(f), which proves the
assertion.

In a straightforward way we get the following corollary.
Corollary 4.6. Let X be a Banach space and let Z be a normed space ordered

by a closed pointed cone K, intK �= ∅. Let f : X → Z̄ be a quasi-lsc proper function.
Let ε > 0 and let x̄ ∈ D(f) be an ε-efficient solution in the direction k ∈ K.

For any k ∈ intK there exists xk ∈ X such that for any l ≥ 2k a point xk is a
strong efficient solution of f(xk,l)(x) = f(x) + ε

λ‖x− xk‖l.
Proof. Take any k ∈ intK and l ≥ 2k. By Theorem 4.1 we obtain that xk ∈

St1(f(xk,l)) and therefore by Theorem 4.5 a solution xk is strong in the sense of
Definition 4.3 for any l ≥ 2k.
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ments and remarks which helped us to improve the results of this paper.
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DERIVING THE CONTINUITY OF MAXIMUM-ENTROPY BASIS
FUNCTIONS VIA VARIATIONAL ANALYSIS∗

N. SUKUMAR† AND R. J.-B. WETS‡

Abstract. In this paper, we prove the continuity of maximum-entropy basis functions using
variational analysis techniques. The use of information-theoretic variational principles to derive
basis functions is a recent development. In this setting, data approximation is viewed as an inductive
inference problem, with the basis functions being synonymous with a discrete probability distribution,
and the polynomial reproducing conditions acting as the linear constraints. For a set of distinct
nodes {xi}ni=1 in R

d, the convex approximation of a function u(x) is uh(x) =
∑n

i=1 pi(x)ui, where
{pi}ni=1 are nonnegative basis functions, and uh(x) must reproduce affine functions

∑n
i=1 pi(x) = 1,∑n

i=1 pi(x)xi = x. Given these constraints, we compute pi(x) by minimizing the relative entropy
functional (Kullback–Leibler distance), D(p‖m) =

∑n
i=1 pi(x) ln

(
pi(x)/mi(x)

)
, where mi(x) is a

known prior weight function distribution. To prove the continuity of the basis functions, we appeal
to the theory of epiconvergence.

Key words. maximum entropy, relative entropy, convex approximation, meshfree methods,
epiconvergence
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1. Background and formulation. Consider a set of distinct nodes in R
d that

are located at xi (i = 1, 2, . . . , n), with D = con(x1, . . . , xn) ⊂ R
d denoting the

convex hull of the nodal set (Figure 1). For a real-valued function u(x) : D → R, the
numerical approximation for u(x) is written as

(1) uh(x) =

n∑
i=1

pi(x)ui,

where pi(x) is the basis function associated with node i, and ui are coefficients. If
pi(x) is a cardinal basis, pi(x

j) = δij , then uh(xi) = u(xi) = ui.

In the univariate case, Lagrange and spline bases are well known, whereas for
multivariate approximation, tensor-product splines, moving least squares (MLS) ap-
proximates [17], and radial basis functions [30] are popular. The need for scattered
data approximation arises in many fields, for example, curve and surface fitting, com-
puter graphics and geometric modeling, finite elements, and meshfree methods. Over
the past decade, meshfree approximation schemes have been adopted in Rayleigh–Ritz
(Galerkin) methods for the modeling and simulation of physical phenomena; see [4] for
a review of meshfree methods and [28] for a review of meshfree basis functions. For
second-order partial differential equations (PDEs), approximates that possess con-
stant and linear precision are sufficient for convergence in a Galerkin method (cf., for
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Fig. 1. Nodal locations xi. (a) One dimension; (b) pentagon; and (c) scattered nodes within a
square.

example, [25, Chapter 2]):

(2) ∀x,
n∑

i=1

pi(x) = 1 and

n∑
i=1

pi(x)xi = x.

Furthermore, if the nonnegative restriction is imposed on the basis functions (convex
combination), namely,

(3) pi(x) ≥ 0 ∀i, x,

then (1) is a convex approximation scheme [1] with many desirable properties: it
satisfies the convex hull property, is not prone to the Runge phenomena, interior nodal
basis functions pi(x) (xi /∈ bdryD) vanish on bdryD, which facilitates the imposition
of linear Dirichlet boundary conditions in a Galerkin method, and, in addition, optimal
conditioning can be established for nonnegative basis functions [8, 19].

In meshfree Galerkin methods, an approximation of the form in (1) is used, with
MLS being the most common choice. A recent development in this direction has been
the construction of maximum-entropy approximates [1, 26, 27]; continuity was ob-
tained by Arroyo and Ortiz [1] for the case when the prior distributions are Gaussian.
In this paper, we rely on variational analysis techniques, in particular on the theory
of epiconvergence, to establish the continuity of maximum-entropy basis functions for
any continuous prior distribution.

1.1. Minimum relative entropy principle. In information theory [7], the
notion of entropy as a measure of uncertainty or incomplete knowledge was introduced
by Shannon [22]. The Shannon entropy of a discrete probability distribution is

(4) H(p) = 〈− ln p〉 = −
n∑

i=1

pi ln pi,

where 〈·〉 is the expectation operator, pi ≡ p(xi) is the probability of the occurrence
of the event xi, p ln p

.
= 0 if p = 0, and the above form of H satisfies the axiomatic

requirements of an uncertainty measure; cf., for example, [14, Chapter 1].
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Jaynes used the Shannon entropy measure to propose the principle of maximum
entropy [11], in which it was shown that maximizing entropy provides the least-biased
statistical inference when insufficient information is available. It was later recognized
that for H to be invariant under invertible mappings of x, the general form of the
entropy should be [12, 15, 23]

(5) H(p,m) = −
∫

p(x) ln

(
p(x)

m(x)

)
dx or H(p,m) = −

n∑
i=1

pi ln

(
pi
mi

)
,

where m is a prior distribution that plays the role of a p-estimate. In the literature,
the quantity D(p‖m) = −H(p,m) is also referred to as the Kullback–Leibler distance
(directed- or I-divergence) [16], and the variational principle is known as the principle
of minimum relative entropy [23]. If a uniform prior, mi = 1/n, is used in (5), then
the Shannon entropy (modulo a constant) given in (4) is recovered. The nonnegativity
of the relative entropy, D(p‖m) ≥ 0, is readily derived from Jensen’s inequality (cf.,
for example, [7, p. 25]).

Given a set of � + 1 linear constraints on an unknown probability distribution p
and a prior m, which is an estimate for p, the minimum relative entropy principle is
a rule for the most consistent (minimum-distance or -discrepancy from the prior m)
assignment of the probabilities pi [12]:

min
p∈Rn

+

(
D(p‖m) =

n∑
i=1

pi ln

(
pi
mi

))
so that

n∑
i=1

pi = 1,(6a)

n∑
i=1

pigr(x
i) = 〈gr(x)〉, r = 1, 2, . . . , �,(6b)

where gr(x) and 〈gr(x)〉 are known, and R
n
+ is the nonnegative orthant.

The initial emphasis of the principle of maximum entropy was on equilibrium and
nonequilibrium statistical mechanics [12], but it is equally applicable to any problem in
inductive inference. The interested reader can refer to [13] and [24] for the Bayesian
perspective on probability theory and rationale inference. The maximum entropy
and minimum relative entropy principles have found applications in many areas of
science and engineering—image reconstruction [10], natural language modeling [5],
microstructure reconstruction [18], and nonparametric supervised learning [9] are a
few examples.

Variational principles, which are used in finite element formulations, conjugate
gradient methods, graphical models, dynamic programming, and statistical mechan-
ics, also have strong roots in data approximation. For instance, kriging, thin-plate
splines, B-splines, radial basis functions [30], MLS approximates [17], and Delaunay
interpolates [20] are based on the extremum of a functional. In the same spirit, we
now present the variational formulation to construct entropy approximates, and in so
doing demonstrate its potential merits as a basis for the solution of PDEs.

1.2. Variational formulation for entropy approximates. To obtain the
maximum-entropy principle, the Shannon entropy functional and a modified entropy
functional were used in [26] and [1], respectively. In [27], as a unifying framework
and generalization, the relative entropy functional with a prior was used—a uniform
prior leads to Jaynes’s maximum-entropy principle, and use of a Gaussian (radial
basis function) prior, mi(x) = exp(−β|xi − x|2), results in the entropy functional
considered in [1]. The prior in the present context is a nodal weight function, and
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the variational principle in effect provides a “correction” that minimally modifies
the weight functions to form basis functions that also satisfy the linear constraints.
Clearly, if mi(x) a priori satisfies all the constraints, then one obtains pi(x) = mi(x)
for all i. The flexibility of choosing different prior distributions (for example, radial
basis functions, compactly supported weight functions used in MLS, etc.) within the
minimum relative entropy formalism would lead to the construction of a wider class of
convex approximation schemes. The parallels between the conditions on pi in (2) and
(3) and those on pi in a maximum-entropy formulation are evident. Unlike univariate
Bernstein basis functions (terms in the binomial expansion), where a probabilistic
interpretation in relation to the binomial distribution [24, Chapter 5] is natural, here
the connection is less transparent. Referring to the nodal sets shown in Figure 1, we
note that the basis function value pi(x) is viewed as the “probability of influence of a
node i at x.” With a uniform prior, global basis functions are obtained, which do not
lead to sparse system matrices in the numerical solution of PDEs. With a compactly
supported prior, the basis functions pi(x) also inherit the support properties of the
prior and hence are suitable in the Galerkin solution for PDEs. Entropic regulariza-
tion with a prior is a novel approach to constructing convex approximation schemes
with many desirable properties.

The variational formulation for entropy approximates is as follows: Find x �→
p(x) : R

d → R
n
+ as the solution of the constrained convex optimization problem

min
p∈Rn

+

f(x; p), f(x; p) =

n∑
i=1

pi(x) ln

(
pi(x)

mi(x)

)
,(7a)

subject to the constraint set from (2) and (3):

κ(x) =

{
p ∈ R

n
+

∣∣∣∣∣
n∑

i=1

pi = 1,

n∑
i=1

pix
i = x

}
,(7b)

where mi(x) is a prior estimate, and the constraints form an underdetermined linear
system. By introducing the Lagrange multipliers, one can write the solution of the
variational problem as

pi(x) =
Zi(x)

Z(x)
, Zi(x) = mi(x) exp(−xi · λ),

where λ ∈ R
d, and Z(x) =

∑
j Zj(x) is known as the partition function in statistical

mechanics. The pi(x) in the preceding equation must satisfy the d linear constraints in
(7b). This yields d nonlinear equations. On using shifted nodal coordinates x̃i = xi−x
and considering the dual formulation, we can write the solution for the Lagrange
multipliers as (cf., for example, [21, Exercise 11.12] and [6, p. 222])

λ = arg min lnZ(λt),

where Z is appropriately redefined. Convex optimization algorithms (gradient de-
scent, Newton’s method, etc.) are suitable for computing these basis functions. Nu-
merical experimentation suggests that such basis functions may very well be contin-
uous on D [1, 26], and this will be confirmed here by variational analysis techniques.
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2. Continuity of the basis functions. One can always represent an opti-
mization problem, involving constraints or not, as one of minimizing an extended
real-valued function. In the case of a constrained-minimization problem, simply re-
define the effective objective as taking on the value ∞ outside the feasible region,
with the set determined by the constraints. In this framework, the canonical problem
can be formulated as one of minimizing on all of R

n an extended real-valued function
f : R

n → R. Approximation issues can consequently be studied in terms of the con-
vergence of such functions. This has led to the notion of epiconvergence (cf. [2, 3] and
[21, Chapter 7]; the latter will serve here as our basic reference). We provide a very
brief survey and some relevant refinements of this theory.

Thus, at a conceptual level, it is convenient to think of optimization problems as
elements of

fcns(Rn) =
{
f : R

n → R
}
,

the set of extended real-valued functions that are defined on all of R
n, even allowing for

the possibility that they are nowhere finite valued; definitions, properties, limits, etc.,
usually do not refer specifically to the domain on which they are finite. The effective
domain of f is dom f =

{
x ∈ R

n
∣∣ f(x) < ∞

}
. The epigraph of a function f is the set

of all points in R
n+1 that lie on or above the graph of f , epi f =

{
(x, α) ∈ R

n+1
∣∣α ≥

f(x)
}
. A function f is lsc (lower semicontinuous) if and only if its epigraph is closed

as a subset of R
n+1, i.e., epi f = cl(epi f) with cl denoting closure [21, Theorem 1.6].

The lsc-regularization of f is cl f defined by the identity epi cl f = cl epi f .
Definition 2.1 (epiconvergence and tight epiconvergence). Let

{
f, fν , ν ∈ N

}
be a collection of functions in fcns(Rn). Then, fν →e f if and only if the following
conditions are satisfied:

(a) For all xν → x, liminfν f
ν(xν) ≥ f(x).

(b) For all x, ∃xν → x such that limsupν f
ν(xν) ≤ f(x).

The sequence epiconverges tightly to f if, in addition, for all ε > 0, there exist a
compact set Bε and an index νε such that

∀ ν ≥ νε : infBε f
ν ≤ inf fν + ε.

Note that functions can be “epiclose” while “pointwise-far” (measured, for exam-
ple, in term of the �∞-norm); e.g., consider the two step-functions f(x) = 0 if x < 0,
f(x) = 1 when x ≥ 0, and g(x) = f(x− ε) with ε > 0 arbitrarily small.

The name “epiconvergence” is attached to this convergence notion because it
coincides [21, Proposition 7.2] with the set-convergence, in the Painlevé–Kuratowski
sense [21, section 4.B] of the epigraphs. It is known that (i) whenever C is a limit-set,
it is closed [21, Proposition 4.4]; (ii) C = ∅ if and only if the sequence Cν eventually
“escapes” from any bounded set [21, Corollary 4.11]; and (iii) if the sequence Cν → C
consists of convex sets, then also C is convex [21, Proposition 4.15]. This means that
when fν →e f , (i) f is lsc; (ii) f ≡ ∞(dom f = ∅) if and only if given any κ > 0,
fν ≥ κ for ν large enough; and (iii) the epilimit of convex functions is convex, if it
exists.

Theorem 2.2 (convergence of the minimizers and infimums). Let fν →e f , all in
fcns(Rn), with inf f finite. If fν →e f , xk ∈ argmin fνk for some subsequence {νk}k∈N

and xk → x̄, then x̄ ∈ argmin f and min fνk → min f .1

1One writes min when the infimum is actually attained.
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If argmin f is a singleton, then every convergent subsequence of minimizers con-
verges to argmin f .

They epiconverge tightly if and only if inf fν → inf f .
Proof. The first two assertions follow from [21, Proposition 7.30, Theorem 7.33],

and one can deduce the last one from [21, Theorem 7.31].
Let us conclude this review by a compilation of the facts that are going to be of

immediate relevance to the problem at hand.
Corollary 2.3 (epiconvergence under strict convexity). Suppose

{
fν : R

n →
(−∞,∞]

}
ν∈N

is a collection of convex functions such that

(a) for all ν, dom fν ⊂ B, where B and each dom fν are compact;
(b) the functions fν are finite valued, lsc, and strictly convex on dom fν . Then,

for all ν, ∅ �= argmin fν is a singleton.
Moreover, if fν →e f and argmin f is also a singleton, then argmin fν → argmin f .
Proof. In view of (a) and (b), for each ν the minimization of fν is equivalent

to minimizing a finite-valued, lsc, strictly convex function on a compact set, and
such a problem always has a unique solution. Moreover, because for all ν, dom fν

is a (compact) subset of the compact set B, fν →e f implies that they epiconverge
tightly. The convergence of argmin fν → argmin f follows from combining the two
last assertions of Theorem 2.2.

Our task now is to show that the continuity of the basis functions can be derived
as a consequence of this corollary. We begin with the strict convexity of the criterion
function. The Kullback–Leibler criterion is a separable function, i.e.,

k(x; p) =
n∑

i=1

ki(x; pi), where ki(x; pi) = pi ln(pi/mi(x)),

and its properties can be directly derived from those of the one-dimensional functions
ki(x; ·) : R+ → [0,∞].

• When mi(x) > 0, ki(x, ·) is finite valued, continuous, and strictly convex
on R+; recall that 0 ln(0) = 0. Indeed, the second derivative on (0,∞) is
1/pi > 0, which implies strict convexity [21, Theorem 2.13(c)]. The quantity
pi ln(pi/mi(x)) is strictly increasing and converges to 0 as pi ↘0, yielding
both strict convexity and continuity on R+.

• When mi(x) = 0, ki(x; pi) = ∞ unless pi = 0 and then ki(x; 0) = 0.
It is conceivable, but certainly not reasonable, that the (continuous) weight functions{
mi : R

n → R+, i = 1, . . . , n
}

have been chosen so that for some x ∈ D, mi(x) = 0
for all i = 1, . . . , n. In such a situation, in the process of minimizing the Kullback–
Leibler criterion, we would be led to choosing p = 0 and, of course, this would make
it impossible to satisfy the constraint

∑n
i=1 pi = 1; i.e., the problem, so formulated,

would be infeasible! This brings us to the following assumption, in which we let
• s-suppmi =

{
x ∈ R

d
∣∣mi(x) > 0

}
denote the strict support of mi, and

• suppmi = cl(s-suppmi) the support of mi.
Assumption 2.1 (well-posed assumption). For each i = 1, . . . , n, the function

mi : R
n → R+ is continuous such that s-suppmi, and consequently also suppmi, is

nonempty.2 Moreover, with I=0 =
{
i
∣∣mi(x) = 0

}
and I>0 =

{
i
∣∣mi(x) > 0

}
,

∀ x ∈ D : x ∈ con(xi
∣∣ i ∈ I>0).

2Note that the continuity of mi implies that s-suppmi is an open subset of R
d, and thus so is⋃n

i=1 s-suppmi.
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This assumption requires that every x ∈ D be obtained as a convex combination of
some subcollection of the nodal locations xi that are associated with weight functions
mi that have mi(x) > 0. In particular, this implies that κ(x) is never empty, or
equivalently, that the constraints (7b) are certainly satisfied whenever x ∈ D.

Proposition 2.4 (the Kullback–Leibler criterion). Under the well-posed As-
sumption 2.1, for all x ∈ D, the Kullback–Leibler criterion p �→ k(x; p) =

∑n
i=1 pi ln

(pi/mi(x)) is a strictly convex, lsc function on R
n
+, taking into account the identity

0 ln(0) = 0.
Proof. Convexity is well known; see [7, p. 30], [21, Exercise 3.51], for example.

Again, with I=0 =
{
i
∣∣mi(x) = 0

}
and I>0 =

{
i
∣∣mi(x) > 0

}
,

k(x; p) =
∑
i∈I=0

ki(x; pi) +
∑
i∈I>0

ki(x; pi),

dom k(x; ·) =
∏

I=0
{0} ×

∏
I>0

R+, and I>0 nonempty by Assumption 2.1. From our

analysis of the functions ki(x; ·), it follows that k(x; ·) is strictly convex, continuous
on its effective domain dom k(x; ·).

The tools are now at hand to derive our main result.
Theorem 2.5 (continuity of the basis functions). For x ∈ D, as in the formula-

tion of maximum entropy (7), let

f(x; p)) =

{∑n
i=1 pi ln(pi/mi(x)) if p ∈ κ(x),

∞ otherwise,

where

κ(x) =

{
p ∈ R

n
+

∣∣∣∣∣
n∑

i=1

pi = 1,

n∑
i=1

pix
i = x

}
,

and where

p(x) = (p1(x), . . . , pn(x)) = argmin f(x; ·).

Under the well-posed Assumption 2.1, when xν → x̄ with xν ∈ D, κ(x̄) is nonempty
and

f(xν ; ·)→e f(x̄; ·) and p(xν) → p(x̄).

In other words, the basis functions p(·) are continuous on D.
Proof. Since for all x ∈ D, κ(x) is a compact, nonempty subset of the unit

simplex Δ =
{
p ∈ R

n
+

∣∣ ∑n
i=1 pi = 1

}
, it follows that for all x ∈ D, dom f(x; ·) ⊂ Δ

and, consequently, condition (a) of Corollary 2.3 is trivially satisfied. The rest of the
proof is concerned with condition (b) and the epiconvergence of the sequence f(xν ; ·)
to f(x̄; ·) when xν → x̄.

The functions f(xν ; ·) and f(x̄; ·) can be written as k(xν ; ·) + ικ(xν) and k(x̄; ·) +
ικ(x̄), where k(x; p) is the Kullback–Leibler criterion defined on R

n
+ and ιC is the

indicator function of the set C ⊂ R
n with ιC = 0 on C; otherwise, ιC = ∞ on R

n \C.
The epiconvergence of f(xν ; ·) to f(x̄; ·) follows from [21, Theorem 7.46(b)], which

asserts that the sum of two sequences of functions epiconverge to the sum of their
limits if one sequence epiconvergences and the other converges continuously.
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To obtain the epiconvergence of the indicator functions, or equivalently [21,
Proposition 7.4(f)] the set convergence of the sets κ(xν) → κ(x̄) with κ(x̄) �= ∅,
we exploit the fact that these are polyhedral sets and that, on the bounded polyhe-
dral set D = con(x1, . . . , xn) ⊂ R

d, the mapping x �→ κ(x) is Lipschitz continuous
with respect to the Pompeiu–Hausdorff distance dl∞, i.e.,

∀x, x′ ∈ D : dl∞(κ(x), κ(x′)) ≤ M |x− x′|
for some constant M > 0; here | · | denotes the Euclidean norm; cf. [29, Theorem 1];
see also [21, Example 9.35]. Of course, this means that κ is continuous on D and, in
particular, for any xν → x̄ in D, given any sequence pν ∈ κ(xν) → p̄, then p̄ ∈ κ(x̄).

Thus, to assert continuous convergence of the functions k(xν ; ·) to k(x̄), one needs
to show that k(xν ; pν) → k(x̄; p̄) for such pairs (xν , pν). Let I=0 =

{
i
∣∣mi(x̄) =

0
}

and I>0 =
{
i
∣∣mi(x̄) > 0

}
. By Assumption 2.1, κ(x̄)

⋂
(
⋃

I>0
s-suppmi) �= ∅.

Furthermore, the open set
⋃

I>0
s-suppmi not only includes x̄ but also xν for all

ν large enough. Thus, for all i ∈ I>0, pνi ln(pνi )/mi(x
ν) → p̄i ln(p̄i)/mi(x̄). When

i ∈ I=0, again for ν large enough, pνi = 0 = p̄i; otherwise the corresponding vectors
pν and p̄ would not belong to dom k(xν ; ·) or dom k(x̄; ·). Hence, k(xν ; pν) → k(x̄; p̄).
So, f(xν ; ·) → f(x̄, ·).

There only remains to observe that, for ν large enough, argmin f(xν ; ·) is unique,
i.e., for i /∈ I>0, p

ν
i (x

ν) = 0, whereas for i ∈ I>0, p
ν
i (x

ν) = argminpi≥0 pi ln(pi/mi(x
ν);

the strict convexity guarantees that argmin is a singleton. Since the same holds for
x̄, we are in the framework of Corollary 2.3, and thus p(xν) = argmin f(xν ; ·) →
argmin f(x̄; ·) = p(x̄).

3. Numerical experiments. To illustrate Theorem 2.5, we present basis
function plots to confirm the continuity of maximum-entropy basis functions. First,
one-dimensional basis function plots are considered, and then two-dimensional basis
function plots are presented.

To demonstrate a simple closed-form computation, consider one-dimensional ap-
proximation in D = [0, 1] with three nodes located at x1 = 0, x2 = 1/2, and x3 = 1.
On using (7), the solution for pi(x) is obtained by solving a quadratic equation:

p1(x) =
1

Z
, p2(x) =

η

Z
, p3(x) =

η2

Z
, η ≡ η(x) =

2x− 1 +
√

12x(1 − x) + 1

4(1 − x)
,

where Z = 1 + η + η2. These basis functions are presented in Figure 2(a). For four
equispaced nodes in [0, 1], a cubic equation must be solved. In general, a numerical
method is required to compute these basis functions; in our computations, we use
a one-dimensional MATLAB implementation, whereas in two dimensions, a gradient
descent algorithm [26, p. 2165] is adopted. Figure 2 depicts basis function plots on
a uniform grid consisting of three nodes and five nodes (nodal locations are shown
in Figure 1(a)). The plots are presented for a Gaussian prior distribution, mi(x) =
exp(−β(|xi − x|2), with varying β. The value β = 0 corresponds to a uniform prior,
and for large β (theoretically when β → ∞), the entropy basis functions tend to the
finite element Delaunay interpolant [1]. From Figures 2(a) and 2(d), we observe that
nodal interpolation is realized on the boundary but not at the interior nodes. However,
as β is increased, the support of the basis functions shrinks and the basis functions
become closer to being an interpolant at the interior nodes. For β = 100, the entropy
basis functions are proximal to piecewise linear finite element basis functions (Figures
2(c) and 2(f)). The plots in Figure 2 evince the continuity of the basis functions,
which provides numerical evidence in support of the theoretical proof in Theorem 2.5.
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Fig. 2. Entropy basis functions with a Gaussian prior. (a)–(c) show n = 3 and β = 0, 10, 100;
and (d)–(f) show n = 5 and β = 0, 10, 100. The nodal locations along the x-axis are depicted by
filled circles.

In Figure 3(a), a contour plot of p1(x) for node 1 in a regular pentagon (see
Figure 1(b) for the nodal locations) is shown, whereas in Figure 3(b), the three-
dimensional plot is illustrated. The variation of the maximum entropy within the
pentagon is depicted in Figure 3(c), with the maximum value of ln 5 being attained at
the centroid of the pentagon. The basis function p1(x) satisfies the cardinal property,
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Fig. 3. Entropy basis function p1(x) and variation of maximum entropy within a regular
pentagon. (a) Contour plot; (b) three-dimensional plot; and (c) Hmax.

pi(x
j) = δij , which is also met by all n nodal basis functions in a convex polygon

[26]. Next, we consider the grid shown in Figure 1(d), where D = [0, 1]2. The basis
functions for nodes 1 and 8 are plotted using a uniform prior, a Gaussian prior with
β = 20, and a compactly supported C2 quartic radial basis function as a prior. The
quartic prior is given by mi(r) = 1 − 6r2 + 8r3 − 3r4 if r = |xi − x| ≤ 1, and zero
otherwise. The contour plots are illustrated in Figure 4, and once again we observe
that the basis functions are continuous in D. Furthermore, the interior basis functions
(for example, p8(x)) vanish on bdryD, which enables the direct imposition of Dirichlet
boundary conditions in Galerkin methods [1]. The one- and two-dimensional basis
function plots provide numerical proof in support of Theorem 2.5, thereby establishing
the continuity of pi(x) for x ∈ D.
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Fig. 4. Two-dimensional entropy basis functions within a unit square. (a) and (b) show p1(x)
with a uniform prior and a Gaussian prior (β = 20); (c) and (d) show p8(x) with a uniform prior
and a Gaussian prior (β = 20); and (e) shows p8(x) with a compactly supported C2 radial basis
function.
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Abstract. There is considered a family of nonlinear optimal control problems depending on
a functional parameter. The problems are subject to state constraints. Conditions are derived
under which the solutions and Lagrange multipliers are locally Lipschitz continuous functions of the
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1. Introduction. In stability analysis for optimal control problems, conditions
are investigated under which the solutions and Lagrange multipliers are locally Lips-
chitz continuous functions of the parameter. It is know that two types of assumptions
are crucial in that analysis: constraint qualifications and a second order optimality
condition (coercivity of the Hessian of Lagrangian). For control-constrained prob-
lems, a full characterization of stability properties was obtained in [4] (see also [9])
under the provision that the parameters are functions of time and the dependence
of data on the parameter is strong. The situation was different for state-constrained
problems. In papers [8, 3], devoted to stability analysis for that class of problems, a
strong second order optimality condition (coercivity condition) was assumed, where
the active state constraints were ignored. In the recent paper [11] of the author, an
example was constructed in which the Lipschitz stability property was satisfied, but
the strong second order condition of [8, 3] was violated. It shows that this condition
is too strong. Note that, in the above mentioned example, the parameter is a function
of time. In [11] a new second order condition was introduced, which was weakened
by taking into account the strongly active state constraints, i.e., those active con-
straints for which the pointwise strict complementarity condition was satisfied with
the margin α > 0. It was shown in [11] and [12] that, under this weakened condition,
the solutions and Lagrange multipliers for linear-quadratic optimal control problems
remain stable under small perturbations. The crucial point in the proof of this re-
sult was the analysis of stability of the coercivity condition in a neighborhood of the
reference point.

In the present paper, we still further weaken the second order condition used in [11]
and we extend the stability results to nonlinear problems. Thus, our assumptions are
essentially weaker than those in [8] and [3]. This weakening turns out to be crucial. As
it will be shown in a forthcoming paper of the author, the new conditions are not only
sufficient, but also necessary for Lipschitz stability and directional differentiability
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of the solutions and Lagrange multipliers for a class of parametric optimal control
problems, subject to the first order state constraints.

In the stability analysis for nonlinear optimal control problems, we follow [8] and
[3] and use the implicit function theorem for strongly regular generalized equations
[16, 2]. The crucial point in this approach is to show that the stationary points of the
accessory problems are Lipschitz stable under sufficiently regular small perturbations.
We use here the approach similar to that developed for linear-quadratic problems in
[11].

The organization of this paper is the following. In section 2, some stability results
for cone-constrained optimization problems are recalled. In section 3, the considered
optimal control problem is formulated and the needed assumptions are introduced.
Some basic results concerning state-constrained optimal control problems are pre-
sented. In particular, they include a coercivity condition, which is weakened by tak-
ing into account the strongly active state constraints. Following the idea developed in
the paper [1], it is shown in the appendix that this coercivity condition constitutes a
second order sufficient optimality condition. In section 4 the basic auxiliary lemmas
and stability results are formulated. They are proved in section 5.

We use the following notations: Capital letters X,Y, V, etc., with superscripts
denote Banach or Hilbert spaces. The norms are denoted by ‖ · ‖ with a subscript
referring to the space. BX

ρ (x0) := {x ∈ X | ‖x− x0‖X < ρ} is the open ball in X of
radius ρ, centered at x0. Asterisks denote dual spaces as well as adjoint operators. For
f : X×Y → Z, Dxf(x, y), Dyf(x, y), D2

x,yf(x, y), etc., denote the Fréchet derivatives
in the respective variables.

R
n is the n-dimensional Euclidean space, with the inner product denoted by 〈x, y〉

and the norm |x| = 〈x, x〉 1
2 . Transposition is denoted by ∗.

Lp(0, 1; Rn) is the Banach space of measurable functions f : [0, 1] → R
n, supplied

with the norm

‖f‖p =

⎧⎨
⎩
[∫ 1

0
|f(t)|pdt

]1/p
for p ∈ [1,∞),

ess supt∈[0,1] |f(t)| for p = ∞.

W 1,p(0, 1; Rn) denotes the Sobolev space of functions f absolutely continuous on [0, 1]
with the norm

‖f‖1,p =

{
[|f(0)|p + ‖ḟ‖pp]1/p for p ∈ [1,∞),

max{|f(0)|, ‖ḟ‖∞} for p = ∞.

We will need the subspace W 1,p
0 (0, 1; Rn) := {f ∈ W 1,p(0, 1; Rn) | f(0) = 0}.

The inner product and the norm in L2(0, 1; Rn) are denoted by (·, ·) and ‖x‖2 =
(x, x)1/2, respectively. Similarly, for W 1,2(0, 1; Rn) we denote (·, ·)1,2 and ‖x‖1,2 =

(x, x)
1/2
1,2 . c, k, l, and � are generic constants, not necessarily the same in different

places.

2. Stability results for cone-constrained problems. In this section we recall
some results for parametric cone-constrained optimization problems, which will be
used in stability analysis for optimal control problems.

Let H ⊂ Z,X, and Y be Banach spaces of parameters, arguments, and con-
straints, respectively, where the inclusion H ⊂ Z is dense and continuous. In the
space Y there is given a closed convex cone K, which induces a partial order in Y .
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Further, G : X × Z → R and φ : X × Z → Y are given functions. Consider the
family of the following optimization problems depending on the parameter h ∈ H:

(P)h min
ξ∈X

G(ξ, h) subject to φ(ξ, h) ∈ K.

Assume the following:
(B1) For each h ∈ H the functions G(·, h) and φ(·, h) are Fréchet differentiable on

X.
Let us introduce the following Lagrangian for (P)h:

L : X ×K+ ×H → R, L(ξ, λ;h) := G(ξ, h) + (λ, φ(ξ, h)),(2.1)

where K+ := {λ ∈ Y ∗ | (λ, ξ) ≤ 0 for all ξ ∈ K} is the cone polar to K.
The first order optimality system for (P)h can be written in the form

DξL(ξ, λ;h) := DξG(ξ, h) + Dξφ
∗(ξ, h)λ = 0,

φ(ξ, h) ∈ NK+(λ),
(2.2)

where

NK+(λ) =

{
y ∈ Y

∣∣∣∣
{

(μ− λ, y) ≤ 0 ∀μ ∈ K+ if λ ∈ K+

∅ if λ ∈ K+

}
(2.3)

is the normal cone to K+. For the sake of simplicity, we denote⎧⎪⎨
⎪⎩

F : X × Y ∗ ×H → X∗ × Y, T : Y ∗ → 2X
∗×Y ,

F(ξ, λ, h) =

[
DξL(ξ, λ;h)

φ(ξ, h)

]
, T (λ) =

[
0

NK+

]
.

(2.4)

Then (2.2) can be written in the form of the following inclusion (generalized equation):

F(ξ, λ, h) ∈ T (λ).(2.5)

Let Ξ ⊂ X and Λ ⊂ Y ∗ be some closed and convex subsets. These subsets, en-
dowed with the metric of X and Y ∗, respectively, can be treated as complete nonlinear
metric spaces (see Lemma 2.1 in [3]). In applications, Ξ and Λ are chosen as some sets
of sufficiently regular functions. We will denote BΞ×Λ

τ (·, ·) := (Ξ × Λ) ∩ BX×Y ∗

τ (·, ·).
In addition to (B1) we assume the following:
(B2) There exist closed convex sets Ξ ⊂ X and Λ ⊂ Y ∗ such that, for a fixed

reference value ĥ of the parameter, there exists a pair (ξ̂, λ̂) ∈ Ξ × Λ, which
satisfies (2.2).

(B3) For any h ∈ H, G(·, h) and φ(·, h) are twice Fréchet differentiable on Ξ.
(B4) For any τ > 0, there exists k > 0 such that

‖F(ξ, λ, h′) −F(ξ, λ, h′′)‖X∗×Y ≤ k‖h′ − h′′‖Z
∀ (ξ, λ) ∈ BΞ×Λ

τ (ξ̂, λ̂) and all h′, h′′ ∈ H.
(2.6)

Note that in (B4) both spaces Z and H are involved. We require that the estimate
(2.6) hold for h′, h′′ ∈ H, whereas, on the right-hand side of this estimate, we have
the norm of the space Z, which may be weaker than that of H.
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Let us introduce the following perturbed linearization of (2.5):

F(ξ̂, λ̂, ĥ) + DξF(ξ̂, λ̂, ĥ)(η − ξ̂) + DλF(ξ̂, λ̂, ĥ)(κ− λ̂) − δ ∈ T (κ),(2.7)

where δ := (δ1, δ2) ∈ X∗ × Y is a perturbation. Note that, for δ = 0, (η0, κ0) = (ξ̂, λ̂)
is a solution of (2.7).

In view of (2.4), inclusion (2.7) can be interpreted as the optimality system for
the following accessory optimization problem, depending on the perturbation δ:

(AP)δ minη∈X

{
1

2
(η,D2

ξξL(ξ̂, λ̂; ĥ)η) − (δ̂1 + δ1, η)

}
subject to Dξφ(ξ̂, ĥ)η − (δ̂2 + δ2) ∈ K,

where

δ̂1 = D2
ξξL(ξ̂, λ̂; ĥ)ξ̂ −DξF (ξ̂; ĥ), δ̂2 = Dξφ(ξ̂, ĥ)ξ̂ − φ(ξ̂; ĥ).(2.8)

Let us define the following function:

m(ξ, λ, h) = F(ξ̂, λ̂, ĥ)+DξF(ξ̂, λ̂, ĥ)(ξ− ξ̂)+DλF(ξ̂, λ̂, ĥ)(λ− λ̂)−F(ξ, λ, h).(2.9)

Our last assumptions are as follows:
(B5) There exist constants θ > 0, τ ′ > 0, π′ > 0, and l > 0, as well as a subset

Δ ⊂ X∗ × Y such that for each δ ∈ BΔ
θ (0) := Δ ∩ BX∗×Y

θ (0) there exists a

unique stationary point (ηδ, κδ) ∈ BΞ×Λ
τ ′ (ξ̂, λ̂) of (AP)δ and

‖ηδ′ − ηδ′′‖X , ‖κδ′ − κδ′′‖Y ∗ ≤ l‖δ′ − δ′′‖X∗×Y ∀δ′, δ′′ ∈ BΔ
θ (0).

(B6) The inclusion m(ξ, λ, h) ∈ Δ is satisfied for all (ξ, λ) ∈ BΞ×Λ
τ ′ (ξ̂, λ̂) and all

h ∈ BH
π′(ĥ).

The following theorem will be the main tool in the stability analysis for nonlinear
optimal control problems.

Theorem 2.1. Assume that (B1)–(B6) are satisfied. Then, there exist constants

π > 0, τ > 0, and � > 0 such that for each h ∈ BH
π (ĥ) there is a stationary point

(ξh, λh) of (P)h, unique in BΞ×Λ
τ (ξ̂, λ̂), and

‖ξh′ − ξh′′‖X , ‖λh′ − λh′′‖Y ∗ ≤ �‖h′ − h′′‖H ∀h′, h′′ ∈ BH
π (ĥ).(2.10)

Remark 2.2. Theorem 2.1 is a slight modification of Robinson’s implicit function
theorem for strongly regular generalized equations (see Theorem 2.1 in [16]). The
difference is that, in Theorem 2.1, there are considered subsets Δ ⊂ X∗ × Y and
Ξ × Λ ⊂ X × Y ∗ rather than the whole spaces. In applications to optimal control
problems, this modification allows us to overcome the difficulty connected with the so-
called two-norm discrepancy [13] by exploiting the regularity of the stationary points.
The proofs of Theorem 2.1 are based on some modifications of the original Robinson’s
proof and they can be found in [7] (Theorem 2.2) and in [3] (Lemma 2.1).

3. Optimal control problem. In this section our model optimal control prob-
lem is formulated and basic assumptions are introduced. Let{

H = W 2,∞(0, 1; R) := {h ∈ L∞(0, 1; R) | ḧ ∈ L∞(0, 1; R)} and

Xp = W 1,p
0 (0, 1; Rn) × Lp(0, 1; Rm), p ∈ [1,∞],

(3.1)
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be the spaces of parameters and arguments, respectively.
Consider the family of the following optimal control problems depending on h ∈

H:

(O)h Find (xh, uh) ∈ X2 such that

F (xh, uh, h) = min

{
F (x, u, h) :=

∫ 1

0

ϕ(x(t), u(t), h(t))dt

}
(3.2)

subject to

ẋ(t) − f(x(t), u(t), h(t)) = 0 for almost all t ∈ [0, 1],(3.3)

x(0) = 0,(3.4)

ϑ(x(t), h(t)) ≤ 0 ∀ t ∈ [0, 1],(3.5)

where ϕ : R
n × R

m × R → R, f : R
n × R

m × R → R
n, ϑ : R

n × R → R.
Remark 3.1. To minimize technicalities, we consider the simple homogeneous

initial condition. However, the same approach can be applied to general two-point
boundary value problems. Also vector-valued state constraints can be considered and
additional control constraints can be included.

The following standing assumptions are assumed to be satisfied throughout the
paper:

(I) There exist open sets Rn ⊂ R
n and Rm ⊂ R

m such that the functions ϕ(·, ·, ·),
Dxϕ(·, ·, ·), and Duϕ(·, ·, ·) as well as f(·, ·, ·), Dxf(·, ·, ·), and Duf(·, ·, ·) are
Fréchet differentiable in (x, u, h) on Rn ×Rm × R. The functions ϑ(·, ·) and
Dxϑ(·, ·) are twice Fréchet differentiable in (x, h) on Rn × R.

(II) For a given reference value ĥ ∈ H of the parameter there exists a reference
solution (x̂, û) of (O)ĥ, where û ∈ C(0, 1; Rm) and (x̂(t), û(t)) ∈ Rn×Rm for
all t ∈ [0, 1].

To simplify notation, the functions evaluated at the reference solution will be
denoted by a hat, e.g., ϕ̂ := ϕ(x̂, û, ĥ), ϑ̂ := ϑ(x̂, ĥ). Let us define the spaces of
multipliers

Y p = Lp(0, 1; Rn) ×W 1,p(0, 1; R), p ∈ [1,∞],(3.6)

and introduce the Lagrangian and Hamiltonian for (O)h:

L : X2 × Y 2 ×H → R, H : R
n × R

m × R
n × R × R × R → R,

{
L(x, u, p, μ;h) = F (x, u, h) − (p, ẋ− f(x, u, h))

+μ(0)ϑ(x(0), h(0)) + (μ̇,Dxϑ(x, h)f(x, u, h) + Dhϑ(x, h)ḣ),
(3.7)

{
H(x(t), u(t), p(t), μ̇(t);h(t), ḣ(t)) = ϕ(x(t), u(t)) + 〈p(t), f(x(t), u(t), h(t))〉

+μ̇(t)(Dxϑ(x(t), h(t))f(x(t), u(t), h(t)) + Dhϑ(x(t), h(t))ḣ(t)).
(3.8)

Remark 3.2. Lagrangian (3.7) is normal; i.e., the Lagrange multiplier corre-
sponding to the functional F (x, u, h) is different from zero. The Lagrangian is in the
so-called indirect or Pontryagin form, with the absolute continuous adjoint variable
(see section 5 in [6], as well as [5] and [14]). The state constraints are considered
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in the space W 1,2(0, 1; R), where the general form of a linear functional is given by
μ(0)y(0) + (μ̇, ẏ), with μ ∈ W 1,2(0, 1; R). Hence, using the state equation, we get

μ(0)ϑ(x(0), h(0)) +

(
μ̇,

d

dt
ϑ(x, h)

)
= μ(0)ϑ(x(0), h(0)) + (μ̇,Dxϑ(x, h)f(x, u, h) + Dhϑ(x, h)ḣ).

It turns out that, in stability analysis, the Lagrangian in indirect form is more con-
venient than that in direct form, thanks to the regularity of the Lagrange multiplier
μ.

Denote by K = {d ∈ W 1,2(0, 1; R) | d(t) ≤ 0} the cone of nonpositive functions
in W 1,2(0, 1; R). The cone polar to K is given (see, e.g., [15]) by

K+ =

{
μ ∈ W 1,2(0, 1; R)

∣∣∣∣
{

μ(0) − μ̇(0+) ≥ 0, μ̇(t) ≥ 0

and μ̇(·) is nonincreasing

}
.(3.9)

Clearly, if μ ∈ W 2,2(0, 1; R), the last condition in (3.9) reduces to μ̈i(t) ≤ 0 for almost
all t ∈ [0, 1]. By

NK+(μ) :=

{ {y ∈ W 1,2(0, 1; R) | (y, ν − μ)1.2 ≤ 0 ∀ν ∈ K+} if μ ∈ K+,

∅ if μ ∈ K+,
(3.10)

we denote the normal cone to K+ at μ.
The stationary conditions of Lagrangian (3.7) can be expressed by the following

system:⎧⎪⎪⎨
⎪⎪⎩

ṗ + DxH(x, u, p, μ̇;h, ḣ)
= ṗ + Dxf

∗(x, u, h)p + Dxϕ(x, u, h) + (Dxf
∗(x, u, h)Dxϑ

∗(x, h)

+D2
xxϑ(x, h)f(x, u, h) + D2

hxϑ(x, h)ḣ)μ̇ = 0,
p(1) = 0,

(3.11)

{
DuH(x, u, p, μ̇;h, ḣ)

= Duϕ(x, u, h) + Duf
∗(x, u, h)p + Duf

∗(x, u, h)Dxϑ
∗(x, h)μ̇ = 0,

(3.12)

ϑ(x, h) ∈ NK+(μ).(3.13)

Note that condition (3.13) is equivalent to the standard Karush–Kuhn–Tucker sign
and complementarity conditions for the inequality constraints. For the sake of sim-
plicity, we will denote ξ = (x, u) ∈ X2, λ = (p, μ) ∈ Y 2.

The purpose of this paper is to study the local properties of the map H � h �→
(ζh, λh) ∈ X2 × Y 2. More precisely, we are looking for conditions under which there
exist a constant π > 0 and a subset Z ⊂ X2 × Y 2, containing the reference point
(ζ̂, λ̂) such that for each h ∈ BH

π (ĥ) there exists a unique stationary point (ζh, λh) ∈ Z,
which is a Lipschitz continuous function of h.

To cope with this problem, we will need several assumptions to be satisfied at the
reference point. These assumptions consist of constraint qualifications and coercivity
conditions. To formulate constraint qualifications, for a fixed α ≥ 0 we introduce the
sets of α-active constraints:

Mα = {t ∈ [0, 1] | ϑ(x̂(t), ĥ(t)) ≥ −α}.(3.14)

Assume the following:
(H1) There exist α > 0 such that 0 ∈ Mα.
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(H2) (linear independence). There exist α > 0 and χ > 0 such that

|Duf̂
∗(t)Dxϑ̂

∗(t)| ≥ χ ∀ t ∈ Mα.

Note that by (H2) the analysis is restricted to the so-called first order state con-
straints [6].

It will be more convenient to modify assumption (H2). To this end, for α ≥ 0
denote

Tα(t) = min{ϑ̂(t) + α, 0}.(3.15)

It can be easily shown (see Lemma 2.1 in [9]) that (H2) is equivalent to the following
condition:

(H2′) There exists α′ > 0 and χ′ > 0 such that∣∣∣∣∣ Duf̂
∗(t)Dxϑ̂

∗(t)

Tα′(t)

∣∣∣∣∣ ≥ χ′ ∀ t ∈ [0, 1].

Let us introduce the map

Cα : X2 ×W 1,2(0, 1; R) → L2(0, 1; Rn) ×W 1,2(0, 1; R),

Cα

⎡
⎣ y

v
κ

⎤
⎦ =

[
ẏ −Dxf̂y −Duf̂v

Dxϑ̂y + Tακ

]
.

(3.16)

By Lemma 4.1 and Theorem 4.3 in [10], we obtain the following.
Lemma 3.3. If assumptions (H1) and (H2′) are satisfied, then the map Cα′ is

surjective.
Lemma 3.4. If assumptions (H1) and (H2′) are satisfied, then there exists a

unique Lagrange multiplier λ̂ = (p̂, μ̂) ∈ Y 2 such that the first order optimality condi-
tions (3.11)–(3.13) hold at (x̂, û, p̂, μ̂).

In addition to the constraint qualifications, we will need some coercivity condi-
tions. Assume the following:

(H3) (Legendre–Clebsch condition). There exists γ̄ > 0 such that

〈v,D2
uuL̂ v〉 ≥ γ̄|v|2 ∀ v ∈ R

m and all t ∈ [0, 1].

The following regularity result follows from Theorem 2.1 in [5] (see Proposition
6.6 in [8]).

Lemma 3.5. If assumptions (H1)–(H3) are satisfied, then ˙̂x, û, ˙̂p, ˙̂μ are Lipschitz
continuous on [0, 1], with the Lipschitz modulus denoted by ς̂ > 0.

In view of the uniqueness and regularity of μ̂, we can introduce the following sets,
depending on the parameter α > 0:

Nα = [0, 1] \ {t ∈ [0, 1] | − ¨̂μ(t) ≤ α}, as well as N0 =
⋃
α>0

Nα.(3.17)

The sets Nα are open in [0, 1]. Define the following subspace of X2:

Eα =

⎧⎪⎨
⎪⎩(y, v) ∈ X2

∣∣∣∣∣
⎧⎪⎨
⎪⎩

ẏ(t) −Dxf̂(t)y(t) −Duf̂(t)v(t) = 0,

〈Dxϑ̂(t), y(t)〉 = 0 ∀ t ∈ Nα,

〈Dxϑ̂(1), y(1)〉 = 0 if ˙̂μ(1) > 0.

⎫⎪⎬
⎪⎭(3.18)
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For the sake of simplicity we will denote D2L̂ := D2
(x,u)(x,u)L (x̂, û, p̂, μ̂; ĥ).

Assume the following:
(H4) (coercivity). There exist constants α > 0 and γ > 0 such that(

(y, v), D2L̂ (y, v)
)
≥ γ(‖y‖2

1,2 + ‖v‖2
2) ∀ (y, v) ∈ Eα.(3.19)

Remark 3.6. The coercivity condition (H4) takes into account strongly active
state constraints. It is weaker than the strong coercivity condition, where the active
inequality constraints are ignored. The latter condition was used in stability analysis
in [8] and in [3]. The application of the weaker condition (H4) is the main new
contribution of this paper. It turns out that the weakening of the coercivity condition
is crucial. Namely, as it will be shown in a forthcoming paper of the author, conditions
of the form (H1)–(H4) are not only sufficient, but also necessary, for Lipschitz stability
and directional differentiability of the solutions and Lagrange multipliers for a class of
state-constrained optimal control problems. Thus, they constitute a characterization
of these properties.

The following result is a slight modification of Theorem 4.1 in [1].
Lemma 3.7. Suppose that (H1)–(H3), as well as (H4) with α = 0, hold. Then

there exist ρ > 0 and c > 0 such that

F (x, u, ĥ) − F (x̂, û, ĥ) ≥ c(‖x− x̂‖2
1,2 + ‖u− û‖2

2),

∀ (x, u) ∈ BX∞

ρ (x̂, û) feasible for (O)ĥ.
(3.20)

Thus (x̂, û) is a second order local minimizer of (O)ĥ.
For the sake of completeness, the proof of Lemma 3.7 is given in Appendix A.

4. Stability analysis. In this section the abstract Theorem 2.1 will be applied
to the optimal control problems (O)h. To this end, we have to express (O)h in terms
of the cone-constrained problem (P)h. We set⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Z = W 1,2(0, 1; R), H = W 2,∞(0, 1; R), X = X2, Y = Y 2,

(X2)∗ = L2(0, 1; Rn) × L2(0, 1; Rm), (Y 2)∗ = Y 2,

ξ = (x, u), λ = (p, μ), K = {0} ×K,

G(ξ, h) = F (x, u, h), φ(ξ, h) =

[
ẋ− f(x, u, h)

ϑ(x, h)

]
.

(4.1)

It can be easily checked that by (I), condition (B1) is satisfied. In order to verify
the remaining assumptions of Theorem 2.1, we have to introduce the sets Ξ and Λ
needed in (B2)–(B6). We define

Ξ = {(x, u) ∈ X | ||ẍ‖∞, ‖u̇‖∞ ≤ ς}, Λ = {(p, μ) ∈ Y ∗ | ||p̈‖∞, ‖μ̈‖∞ ≤ ς},(4.2)

where the constant ς > ς̂ will be given later.
It can be easily seen that the sets Ξ and Λ are convex and closed, and they can

be treated as complete nonlinear metric spaces (see [3]). Thus in view of (II) and
Lemma 3.5, condition (B2) is satisfied. Moreover, by (I), G(·, h) and φ(·, h) are twice
Fréchet differentiable on Ξ, for any h ∈ H. So condition (B3) holds. Similarly, (B4)
is satisfied.

To verify (B5), we have to construct the accessory problem (AO)δ for (O)h. To
this end, we introduce perturbations{

δ = (δ1, δ2, δ3, δ4) ∈ (X2)∗ × Y 2, where

(δ1, δ2, δ3, δ4) ∈ L2(0, 1; Rn) × L2(0, 1; Rm),×L2(0, 1; Rn) ×W 1,2(0, 1; R).
(4.3)



934 K. MALANOWSKI

The accessory problem takes the form of the following linear-quadratic optimal con-
trol:

(AO)δ Find ηδ := (yδ, vδ) ∈ X2 such that

J(yδ, vδ; δ) = minJ(y, v; δ) subject to

ẏ(t) −Dxf̂(t)y(t) −Duf̂(t)v(t) − (δ̂3 + δ3(t)) = 0,

Dxϑ̂(t)y(t) − (δ̂4(t) + δ4(t)) ≤ 0 ∀ t ∈ [0, 1],

where

J(y, v; δ) =
1

2
((y, v), D2L̂ (y, v)) − (δ̂1 + δ1, y) − (δ̂2 + δ2, v)

δ̂1(t) = D2
xxĤ(t)x̂(t) + D2

xuĤ(t)û(t) −Dxϕ̂(t),

δ̂2(t) = D2
uxĤ(t)x̂(t) + D2

uuĤ(t)û(t) −Duϕ̂(t),

δ̂3(t) = f̂(t) −Dxf̂(t)x̂(t) −Duf̂(t)û(t),

δ̂4(t) = Dxϑ̂(t)x̂(t) − ϑ̂(t).

(4.4)

Note that, in view of (I) and Lemma 3.5, there exists a constant s > 0 such that

‖ ˙̂
δ1‖∞, ‖ ˙̂

δ2‖∞, ‖ ˙̂
δ3‖∞, ‖¨̂δ4‖∞ ≤ s.(4.5)

The set Δ needed in (B5)–(B6) is defined as

Δ = {(δ1, δ2, δ3, δ4) ∈ X∗ × Y | ‖δ̇1‖∞, ‖δ̇2‖∞, ‖δ̇3‖∞, ‖δ̈4‖∞ ≤ s},(4.6)

where s > 0 is given in (4.5). To verify (B5), we have to show the existence, stability,
and regularity of the stationary points of (AO)δ, for δ ∈ Δ.

To get the needed existence and stability results for (AO)δ, we will use two impor-
tant lemmas. To formulate them, for any open set D ⊂ [0, 1], introduce the following
superspace of the subspace Eα defined in (3.18):

Eα,D =

⎧⎪⎨
⎪⎩(y, v) ∈ X2

∣∣∣∣∣
⎧⎪⎨
⎪⎩

ẏ(t) −Dxf̂(t)y(t) −Duf̂(t)v(t) = 0,

〈Dxϑ̂(t), y(t)〉 = 0 ∀ t ∈ Nα \D,

〈Dxϑ̂(1), y(1)〉 = 0 if ˙̂μ(1) > 0.

⎫⎪⎬
⎪⎭(4.7)

Lemma 4.1. Suppose that (H1)–(H4) hold. There exist constant β > 0 and γ̃ > 0
such that, if Nα ∩D does not contain any subinterval (t′, t′′) of the length larger than
β, that is, if

|t′′ − t′| ≤ β ∀ (t′, t′′) ∈ Nα ∩D,(4.8)

then (
(y, v), D2L̂ (y, v)

)
≥ γ̃(‖y‖2

1,2 + ‖v‖2
2) ∀ (y, v) ∈ Eα,D.(4.9)

The second lemma concerns a property of elements of W 1,2
0 (0, 1; R), in a neigh-

borhood of μ̂. For an arbitrary ν ∈ W 1,2
0 (0, 1; R) denote

Dν = {t ∈ [0, 1]| ν̇(·) = const a.e. in a neighborhood of t}.(4.10)
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Lemma 4.2. Choose any η > 0 and let ν ∈ W 1,2
0 (0, 1; R) be such that

‖ν − μ̂‖1,2 ≤ η.

Let (t′, t′′) ⊂ Nα ∩Dν be any subinterval belonging to Nα ∩Dν . Then

meas (t′, t′′) ≤
(

12
( η
α

)2
)1/3

.(4.11)

Using Lemmas 4.1 and 4.2, we get the following.
Lemma 4.3. If assumptions (H1)–(H4) are satisfied, then there exist constants

θ > 0, τ > 0, and r > 0 such that, for each δ ∈ BX∗×Y
θ (0), there is a unique stationary

point (yδ, vδ, qδ, νδ) ∈ BX2×Y 2

τ (ξ̂, λ̂) of (AO)δ, and

‖yδ − x̂‖1,2, ‖vδ − û‖2, ‖qδ − p̂‖1,2, ‖νδ − μ̂‖1,2 ≤ r‖δ‖X∗×Y

∀ δ ∈ BX∗×Y
θ (0).

(4.12)

Moreover, there exists ς > ς̂ such that

‖ÿδ‖∞, ‖v̇δ‖∞, ‖q̈δ‖∞, ‖ν̈δ‖∞ ≤ ς ∀ δ ∈ BΔ
θ (0).(4.13)

In definition (4.2) of Ξ and Λ, we choose ς given in Lemma 4.3. Thus we get

(yδ, vδ) ∈ Ξ, (qδ, vδ) ∈ Λ ∀ δ ∈ BΔ
θ (0).

Using Lemma 4.3 together with Lemmas 4.1 and 4.2, we arrive at the following sta-
bility result for (AO)δ.

Proposition 4.4. If assumptions (H1)–(H4) are satisfied, then there exist con-

stants θ > 0, τ > 0, and l > 0 such that, for each δ ∈ BX∗×Y
θ (0), there is a unique

stationary point (yδ, vδ, qδ, νδ) ∈ BΞ×Λ
τ (ξ̂, λ̂) of (AO)δ, and

‖yδ′ − yδ′′‖1,2, ‖vδ′ − vδ′′‖2, ‖qδ′ − qδ′′‖1,2, ‖νδ′ − νδ′′‖1,2

≤ l‖δ′ − δ′′‖X∗×Y ∀ δ′, δ′′ ∈ BΔ
θ (0).

(4.14)

By Proposition 4.4, condition (B5) holds. To apply Theorem 2.1, we still have to
verify (B6). The function m, given in (2.9), can be rewritten as follows:

m(ξ, λ, h) =

∫ 1

0

[
DξF(ξ̂, λ̂, ĥ) −DξF(ξβ , λβ , ĥ)

]
dβ (ξ − ξ̂)

+

∫ 1

0

[
DλF(ξ̂, λ̂, ĥ) −DλF(ξβ , λβ , ĥ)

]
dβ (λ− λ̂)

−
∫ 1

0

DhF(ξ, λ, hβ)dβ (h− ĥ),

(4.15)

where F is as defined in (2.4), with G and φ as given in (4.1), whereas ξβ = (1−β)ξ̂+

βξ, λβ = (1− β)λ̂+ βλ, hβ = (1− β)ĥ+ βh. By straightforward calculations, we get
the following result, which shows that assumption (B6) holds.

Lemma 4.5. If assumptions (H1)–(H4) are satisfied, then there exist π′ > 0

and τ > 0 such that m(ξ, λ, h) belongs to Δ, for any (ξ, λ) ∈ BΞ×Λ
τ (ξ̂, λ̂) and any

h ∈ BH
π′(ĥ).
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Thus, all assumptions of Theorem 2.1 hold and, by that theorem, we obtain the
following principal stability result of this paper.

Theorem 4.6. If assumptions (H1)–(H4) are satisfied, then there exist constants

π > 0, τ > 0, and � > 0 such that, for each h ∈ BH
π (ĥ), there is a unique stationary

point (ξh, λh) := (xh, uh, ph, μh) ∈ BΞ×Λ
τ (ξ̂, λ̂) of (O)h and

‖xh′ − xh′′‖1,2, ‖uh′ − uh′′‖2, ‖ph′ − ph′′‖1,2, ‖μh′ − μh′′‖1,2 ≤ �‖h′ − h′′‖Z
∀ h′, h′′ ∈ BH

π (ĥ).
(4.16)

In view of the regularity (4.2) of (xh, uh, ph, μh), the estimate (4.16) implies (see
Lemma 3.1 in [3]) the following.

Corollary 4.7. If the assumptions of Theorem 4.6 hold, then there exist π > 0
and �∞ > 0 such that

‖xh′ − xh′′‖1,∞, ‖uh′ − uh′′‖∞, ‖ph′ − ph′′‖1,∞, ‖μh′ − μh′′‖1,∞ ≤ �∞‖h′ − h′′‖2/3
Z

∀ h′, h′′ ∈ BH
π (ĥ).

(4.17)

Using Theorem 4.6 and Lemma 3.7, we show that (xh, uh) in Theorem 4.6 is a
solution of (O)h. Thus we get the following.

Corollary 4.8. If assumptions (H1)–(H4) are satisfied, then, for π > 0 suffi-
ciently small, the stationary point (ξh, λh) in Theorem 4.6 corresponds to the solution
and Lagrange multiplier of (O)h.

5. Proofs. In this section we present the proofs of the stability results formulated
in section 4.

Proof of Lemma 4.1. Suppose that the assertion of the lemma is not true. Then,
for each βi > 0 and γi > 0 there exist an open set Di ⊂ [0, 1] and a pair (yi, vi) ∈ Eα,Di

,
with ‖vi‖2 = 1 such that

|t′′ − t′| ≤ βi ∀ (t′, t′′) ⊂ Nα ∩Di(5.1)

and (
yi, vi), D

2L̂ (yi, vi)
)
< γi(‖yi‖2

1,2 + ‖vi‖2
2).(5.2)

Let us choose a sequence {(βi, γi)} → (0, 0) and let {(yi, vi)} be the corresponding
sequence of normalized pairs (yi, vi) ∈ Eα,Di satisfying (5.1) and (5.2). From {(yi, vi)},
we can extract a weakly convergent subsequence, still denoted by {(yi, vi)}. Thus,
there exists (ỹ, ṽ) ∈ X2 such that

{
vi ⇀ ṽ weakly in L2(0, 1; Rm),

yi ⇀ ỹ weakly in W 1,2(0, 1; Rn), i.e., strongly in C(0, 1; Rn).
(5.3)

Since (
(y, v), D2L̂ (y, v)

)
= (y,D2

xxL̂ y) + 2(y,D2
xuL̂ v) + (v,D2

uuL̂ v),(5.4)

by (5.3), the first two components on the right-hand side of (5.4) are continuous
in the weak topology of X2, whereas by assumption (H3), the third component is
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weakly lower semicontinuous in L2(0, 1; Rm). Hence ((y, v), D2L̂ (y, v)) is weakly lower
semicontinuous in X2. Thus, from (5.2) we obtain(

(ỹ, ṽ), D2L̂ (ỹ, ṽ)
)

≤ lim inf
(
(yi, vi), D

2L̂ (yi, vi)
)

≤ lim sup
(
(yi, vi), D

2L̂ (yi, vi)
)
≤ 0.

(5.5)

On the other hand, from (5.1) and (5.3) we get (ỹ, ṽ) ∈ Eα. Hence, in view of (H3), we

obtain from (5.5) that 0 = ((ỹ, ṽ), D2L̂ (ỹ, ṽ)), which by (H4) implies (ỹ, ṽ) = (0, 0).

Thus, by (5.3) and (5.4), we get from (5.5) that 0 = (ṽ, D2
uuL̂ṽ) = lim(vi, D

2
uuL̂vi).

By coercivity of D2
uuL̂, that is equivalent to 0 = ‖ṽ‖2

2 = lim ‖vi‖2
2, which, together

with (5.3) implies that vi → ṽ strongly in L2(0, 1; Rm). Since ‖vi‖2 = 1, the strong
convergence contradicts the fact that ṽ = 0 and completes the proof.

Proof of Lemma 4.2. Using definitions (3.17) and (4.10), we obtain

η2 ≥ ‖ν − μ̂‖2
1,2 ≥

∫ t′′

t′
(ν̇(t) − ˙̂μ(t))2dt ≥ min

c∈R

∫ t′′

t′
[c− α t]2dt

≥ 1

12
α2 (meas ([t′, t′′]))3,

which implies (4.11).
Proof of Lemma 4.3. Denote by Dβ the family of all open subsets D of (0, 1)

such that (4.8) holds. For a fixed D ∈ Dβ , we introduce the following modification of
problem (AO)δ:

(AO)
D
δ Find ηDδ := (xD

δ , uD
δ ) ∈ X2 such that

J(xD
δ , uD

δ ; δ) = minJ(y, v; δ) subject to

ẏ(t) −Dxf̂(t)y(t) −Duf̂(t)v(t) − (δ̂3(t) + δ3(t)) = 0,

Dxϑ̂(t)y(t) − (δ̂4(t) + δ4(t))

{
= 0 for t ∈ Nα \D,
≤ 0 for t ∈ [0, 1] \ (Nα \D).

Note that (AO)Dδ differs from (AO)δ only in the form of the inequality constraints.
In view of Lemma 4.1, the quadratic term in the cost functional J(y, v, ; δ) of (AO)Dδ
satisfies the coercivity condition (4.9) on the linear hull of the feasible set. Stability of
coercive linear-quadratic problems was studied in, among others, [3]. By Lemmas 3.8
and 3.10 in [3], the coercivity condition (4.9), together with the constraint qualifica-
tions (H1) and (H2), ensures that there exists ρ > 0 such that for each δ ∈ BX∗×Y

ρ (0)

there is a unique stationary point (xD
δ , uD

δ , pDδ , μD
δ ) of (AO)Dδ , where (xD

δ , uD
δ ) is the

solution. Moreover, there is a constant r > 0 such that

‖xD
δ′ − xD

δ′′‖1,2, ‖uD
δ′ − uD

δ′′‖2, ‖pDδ′ − pDδ′′‖1,2, ‖μD
δ′ − μD

δ′′‖1,2 ≤ r‖δ′ − δ′′‖X∗×Y

∀ δ′, δ′′ ∈ BX∗×Y
ρ (0).

(5.6)

Constants ρ and r depend on χ and γ̃ in (H2) and (4.9), respectively; however, they
can be chosen independently of D ∈ Dβ .

Note that (x̂, û, p̂, μ̂) is a stationary point of (AO)D0 . So (5.6) implies, in particular,

‖μD
δ − μ̂‖1,2 ≤ r‖δ‖X∗×Y .(5.7)

Set

θ ∈
(

0,min

{
ρ,

α

4r

√
β3

6

})
,(5.8)
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where β > 0 is given as in (4.8). Choose an arbitrary δ ∈ BX∗×Y
θ (0) and an arbitrary

D ∈ Dβ . Denote

PD
δ := {t ∈ [0, 1] | μ̇D

δ (·) = const a.e. in a neighborhood of t}.

By Lemma 4.2 and (5.7)–(5.8), there exists β′ ∈ (0, β/2) such that

meas ([t′, t′′] ∩Nα) ≤ β′ < β/2 for any [t′, t′′] ⊂ PD
δ .(5.9)

Thus condition (4.8) is satisfied with a margin.

Let {ζDδ := (xD
δ , uD

δ )} be a sequence of solutions to (AO)Dδ minimizing J(xD
δ , uD

δ ; δ)
with respect to D ∈ Dβ , i.e.,

lim
D

J(xD
δ , uD

δ ; δ) = inf
D∈Dβ

J(xD
δ , uD

δ ; δ) := J̄δ.(5.10)

It follows from (4.9) and (5.6) that J̄δ is finite and the set {(xD
δ , uD

δ ) ∈ X2 | D ∈ Dβ}
is weakly compact in X2. Hence we can extract a weakly convergent subsequence,
still denoted by {(xD

δ , uD
δ )}. Thus, there exists an element ηδ := (yδ, vδ) ∈ X2 such

that {
uD
δ ⇀ vδ weakly in L2(0, 1; Rm),

xD
δ ⇀ yδ weakly in W 1,2

0 (0, 1; Rn), i.e., strongly in C(0, 1; Rn).
(5.11)

Clearly, (yδ, vδ) satisfies the state equation. Moreover, in view of the strong conver-

gence xD
δ → yδ in C(0, 1; Rn), Dxϑ̂(t)yδ(t) − (δ̂4(t) + δ4(t)) ≤ 0 for all t ∈ [0, 1] and

the set

Dδ := {t ∈ [0, 1] | Dxϑ̂(t)yδ(t) − (δ̂4(t) + δ4(t)) < 0}(5.12)

satisfies condition (5.9). Hence (yδ, vδ) is feasible for (AO)Dδ

δ and Dδ ∈ Dβ . We will

show that (yδ, vδ) is the solution of (AO)Dδ

δ . Indeed, taking (xD
δ , vDδ ) ∈ {(xD

δ , vDδ )},
passing to the limit, and using (5.10) and (5.11), as well as (5.4) and (H3), we get

J̄δ − J(yδ, vδ; δ) = limD

{
J(xD

δ , uD
δ ; δ) − J(yδ, vδ; δ)

}

= limD

{
1

2
((xD

δ , uD
δ ), D2L̂ (xD

δ , uD
δ )) − 1

2
((yδ, vδ), D

2L̂ (yδ, vδ))

− (δ̂1 + δ1, x
D
δ − yδ) + (δ̂2 + δ2, u

D
δ − vδ)

}

= limD
1

2

(
(uD

δ , D2
uuL̂ uD

δ ) − (vδ, D
2
uuL̂ vδ)

)
= limD

1

2

(
(uD

δ − vδ), D
2
uuL̂ (uD

δ − vδ)
)
≥ 0.

(5.13)

Since (yδ, vδ) is feasible for (AO)Dδ

δ , (5.10) together with (5.13) implies

J(yδ, vδ; δ) = J̄δ,(5.14)

which shows that (yδ, vδ) is the solution of (AO)Dδ

δ .
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Denote by (qδ, νδ) ∈ Y 2 the unique Lagrange multiplier of (AO)Dδ

δ associated
with (yδ, vδ). We will show that (yδ, vδ, qδ, νδ) is a stationary point of (AO)δ. The
stationarity conditions for (AO)Dδ

δ take the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̇δ(t) + Dxf̂
∗(t)qδ(t) + DxJ(yδ, vδ; δ)(t)

+(Dxf̂
∗(t)Dxϑ̂

∗(t) + D2
xxϑ̂(t)f̂(t) + D2

hxϑ̂(t)
˙̂
h)ν̇δ(t) = 0,

qδ(1) = 0,

DuJ(yδ, vδ; δ)(t) + Duf̂
∗(t)qδ(t) + Duf̂

∗(t)Dxϑ̂
∗(t)ν̇δ(t) = 0,

νδ(0)(Dxϑ̂(0)yδ(0) − (δ̂4(0) + δ4(0)))

+

∫ 1

0

ν̇δ(t)
d

dt

(
Dxϑ̂(t)yδ(t) − (δ̂4(t) + δ4(t))

)
dt = 0,

(5.15)

where νδ ∈ K+
Dδ

, with

K+
Dδ

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
μ ∈ W 1,2(0, 1; R)

∣∣∣∣∣
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ(0) − μ̇(0) ≥ 0, μ̇(·) is nonincreasing on

each subinterval of [0, 1] \ (Nα \Dδ);

if 1 ∈ Nα \Dδ, then there is a

subinterval (τ, 1) such that μ̇(t) ≥ 0 for t ∈ (τ, 1).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.16)
It follows from (5.15) that to prove that (yδ, vδ, qδ, νδ) is a stationary point of

(AO)δ, it is enough to show that νδ ∈ K+, where K+ is defined as in (3.9). Hence,
we have to show that the sign and monotonicity conditions are satisfied by ν̇δ(·) on
(0, 1). Choose any τ ∈ (0, 1). In view of (5.9), there is a neighborhood O(τ) ⊂
(0, 1) of τ such that there exists D(τ) ∈ Dβ with the property that Dδ ∪ O(τ) ⊂
D(τ), where Dδ is defined as in (5.12). Consider problem (AO)

D(τ)
δ . It has a unique

stationary point (x
D(τ)
δ , u

D(τ)
δ , p

D(τ)
δ , μ

D(τ)
δ ), where (x

D(τ)
δ , u

D(τ)
δ ) is the solution. Note

that (yδ, vδ) is feasible for (AO)
D(τ)
δ . Hence, by (5.14) it is the solution of that

problem, i.e., (x
D(τ)
δ , u

D(τ)
δ ) = (yδ, vδ). Since, for a fixed (x

D(τ)
δ , u

D(τ)
δ ), the element

(p
D(τ)
δ , μ

D(τ)
δ ) satisfying (5.15) is unique, we find that (qδ, νδ) = (p

D(τ)
δ , μ

D(τ)
δ ) is

the unique multiplier of (AO)
D(τ)
δ . In view of (5.16), it shows that ν̇δ(·) must be

nonincreasing on O(τ). Since τ ∈ (0, 1) is arbitrary, ν̇δ(·) must be nonincreasing on
(0, 1). Suppose now that ν̇δ(t) is negative at some t ∈ (0, 1); then, by the monotonicity
of ν̇(·), it must be negative on a subinterval O left of the final point 1, and we must

have Dxϑ̂(t)yδ(t)− (δ̂4(t)+ δ4(t)) = 0 on O. There are two possible situations: either
1 ∈ Nα \Dδ or 1 ∈ Nα \Dδ. In the first case, (5.16) implies that there exists a
subinterval (τ, 1) such that ν̇δ(t) ≥ 0 for t ∈ (τ, 1). In the second case, by (5.9) there
exists τ < 1 such that D(τ) := (Dδ ∪ (τ, 1)) ∈ Dβ . Hence (yδ, vδ) is the solution of

(AO)
D(τ)
δ , and by (5.16) we must have again ν̇δ(t) ≥ 0 for t ∈ [τ, 1]. This contradicts

the assumption that ν̇δ(t) < 0 for some t ∈ (0, 1) and proves that (yδ, vδ, qδ, νδ) is
a stationary point of (AO)δ. Finally, since condition (4.9) is satisfied for D = Dδ,
Lemma 3.7 implies that (yδ, vδ) is a solution of (AO)δ.

Clearly, (5.6) implies (4.12). To show (4.13), note that it follows from (4.12) and

(3.14) that, for θ > 0 sufficiently small, we have {t ∈ [0, 1] | ϑ̂(t)yδ(t)−(δ̂4(t)+δ4(t)) =
0} ⊂ Mα. Hence, using (H2) and (H3), as well as the regularity (4.6) of δ, we can
repeat the proof of Proposition 6.6 in [8], and we arrive at (4.13). In view of Lemma
3.5, ς > ς̂.
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Proof of Proposition 4.4. Let δ ∈ BΔ
θ (0), where θ is given as in Lemma 4.3, and

let (yδ, vδ, qδ, νδ) be a corresponding stationary point of (AO)δ, satisfying (4.12). In
view of (4.13), we have νδ ∈ W 2,2

0 (0, 1; R). Hence, in a similar way as in (3.17) and
(3.18), we can define

N δ
α/2 = [0, 1] \ {t ∈ [0, 1] | − ν̈δ ≤ α

2 },

Eδ
α/2 =

⎧⎪⎨
⎪⎩(y, v) ∈ X2

∣∣∣∣∣
⎧⎪⎨
⎪⎩

ẏ(t) −Dxf̂(t)y(t) −Duf̂(t)v(t) = 0,

〈Dxϑ̂(t), y(t)〉 = 0 ∀t ∈ N δ
α/2,

〈Dxϑ̂(1), y(1)〉 = 0 if ˙̂μ(1) > 0.

⎫⎪⎬
⎪⎭

Using (5.7) and the same argument as in the proof of Lemma 4.2, we find that, for
any subinterval (t′, t′′) ⊂ Nα \N δ

α/2, the following estimate holds:

|t′′ − t′| ≤
(

12

(
‖νδ − μ̂‖1,2

α/2

)2
)1/3

≤
(

48
( r
α

)2

‖δ‖2
X∗×Y

)1/3

.

If necessary, shrink θ > 0, so that

θ ≤
(

1

6

)1/2(
β

4

)3/2
α

r
,

where β is given in (4.8). Hence we get

|t′′ − t′| ≤ β

2
for any (t′, t′′) ⊂ Nα \N δ

α/2 and any δ ∈ BΔ
θ (0).

Therefore, by Lemma 4.1 there exists a constant γ̃ > 0 such that(
(y, v), D2L̂ (y, v)

)
≥ γ̃(‖y‖2

1,2 + ‖v‖2
2)

∀ (y, v) ∈ Eδ
α/2 and all δ ∈ BΔ

θ (0).
(5.17)

Using (5.17) and repeating the argument of the proof of (4.12), but around δ rather
than around 0, we find that there exists θ(δ) > 0, as well as l > 0 independent of δ,
such that

‖yφ − yδ‖1,2, ‖vφ − vδ‖2, ‖qφ − qδ‖1,2, ‖νφ − νδ‖1,2

≤ l ‖φ− δ‖X∗×Y ∀ φ ∈ BΔ
θ(δ)(δ).

(5.18)

Let us choose any δ′, δ′′ ∈ BΔ
θ (0). For each δσ := (1 − σ)δ′ + σδ′′, σ ∈ [0, 1], there

exists θ(δσ) such that (5.18) holds. The family {BΔ
θ(δσ)(δσ) | σ ∈ [0, 1]} constitutes a

cover of the compact set {δσ ∈ Δ | σ ∈ [0, 1]}. From this cover we can extract a finite
cover {BΔ

θ(δσi
)(δσi

) | σ = 1, . . . , q}, where δσ1
= δ′ and δσq

= δ′′. For any 1 ≤ j < q,

we can choose σ̄j ∈ (σj , σj+1) such that δσ̄j
∈ BΔ

θ(δrσ )(δσj ) ∩ BΔ
θ(δσj+1

)(δσj+1). From

(5.18), we get

‖yδσ̄j
− yδσj

‖1,2, ‖vδσ̄j
− vδσj

‖2, ‖qδσ̄j
− qδσj

‖1,2, ‖νδσ̄j
− νδσj

‖1,2

≤ l ‖δσ̄j
− δσj

‖X∗×Y = (σ̄j − σj) l ‖δ′′ − δ′‖X∗×Y ,

‖yδσj+1
− yδσ̄j

‖1,2, ‖vδσj+1
− vδσ̄j

‖2, ‖qδσj+1
− qδσ̄j

‖1,2, ‖νδσj+1
− νδσ̄j

‖1,2

≤ (σj+1 − σ̄j) l ‖δ′′ − δ′‖X∗×Y .



STABILITY ANALYSIS FOR OPTIMAL CONTROL 941

Thus

‖yδσj+1
− yδσj

‖1,2, ‖vδσj+1
− vδσj

‖2, ‖qδσj+1
− qδσj

‖1,2, ‖νδσj+1
− μδσj

‖1,2

≤ (σj+1 − σj) l ‖δ′′ − δ′‖X∗×Y .

Summing this inequality over j = 1, . . . , q − 1, we arrive at (4.14). In particular, it
implies that, for each δ ∈ BΔ

θ (0), the stationary point (yδ, vδ, qδ, νδ) of (AO)δ is unique

in BX2×Y 2

τ (x̂, û, p̂, μ̂), where τ = l θ.

Proof of Lemma 4.5. We have to show that each component mi(ξ, λ, h), i =
1, . . . , 4, of the vector function m(ξ, λ, h) satisfies conditions (4.6). Let us confine our-
selves to checking the needed properties of m4(ξ, λ, h). For the remaining components
the estimates are similar. From (4.15) we get

m4(ξ, λ, h) =

∫ 1

0

[
Dxϑ(x̂, ĥ) −Dxϑ(xβ , ĥ)

]
dβ (x− x̂) −

∫ 1

0

Dhϑ(x, hβ)dβ (h− ĥ).

Hence we have

d2

dt2
m4(ξ, λ, h)(t) =

∫ 1

0

d2

dt2

[
Dxϑ(x̂(t), ĥ(t)) −Dxϑ(xβ(t), ĥ(t))

]
dβ (x(t) − x̂(t))

+2

∫ 1

0

d

dt

[
Dxϑ(x̂(t), ĥ(t)) −Dxϑ(xβ(t), ĥ(t))

]
dβ (ẋ(t) − ˙̂x(t))

+

∫ 1

0

[
Dxϑ(x̂(t), ĥ(t)) −Dxϑ(xβ(t), ĥ(t))

]
dβ (ẍ(t) − ¨̂x(t))

−
∫ 1

0

d2

dt2
Dhϑ(x(t), hβ(t))dβ (h(t) − ĥ(t))

−2

∫ 1

0

d

dt
Dhϑ(x(t), hβ(t))dβ (ḣ(t) − ˙̂

h(t))

−
∫ 1

0

Dhϑ(x(t), hβ(t))dβ (ḧ(t) − ¨̂
h(t)).

(5.19)

It can be easily seen that, in view of (I), the first three components on the right-hand
side of (5.19) tend to zero as ‖x − x̂‖1,2 → 0, provided that condition (4.2) is satis-
fied. Similarly, it follows from (3.1) and (4.2) that the remaining three terms tend

to zero as ‖h − ĥ‖H → 0. Thus, choosing τ > 0 and π′ > 0 sufficiently small, we
get ‖d2/dt2 m4(ξ, λ, h)‖∞ ≤ s. Using the same argument, we find that the remain-
ing components of m(ξ, λ, h) also satisfy the required regularity conditions. Hence
m(ξ, λ, h) belongs to Δ and condition (B6) is satisfied.

Proof of Corollary 4.8. Let us set � = min{π, α
�

√
β3

12 }. By Theorem 4.6, for any

h ∈ BH
� (ĥ), there is a unique stationary point (xh, uh, ph, μh), whereas by (4.16) and

Lemma 4.2 the sets Dh := {t ∈ [0, 1] | ϑ(xh(t), h(t)) < 0} satisfy condition (4.8).
Hence, by Lemma 4.1 we get

(
(z, w), D2L̂ (z, w)

)
≥ γ̃(‖z‖2

1,2 + ‖w‖2
2)

∀ (z, w) ∈ Eα,Dh
and all h ∈ BH

� (ĥ).
(5.20)
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Denote

D2Lh = D2
(x,u)(x,u)L(xh, uh, ph, μh;h),

Eh
α =

⎧⎪⎨
⎪⎩(y, v) ∈ X2

∣∣∣∣∣
⎧⎪⎨
⎪⎩

ẏ(t) −Dxf(xh, uh, h)(t)y(t) −Duf(xh, uh, h)(t)v(t) = 0,

〈Dxϑ(xh, h)(t), y(t)〉 = 0 ∀t ∈ Nα \Dh,

〈Dxϑ(xh, h)(t), y(t)〉 = 0 if μ̇δ(1) > 0,

⎫⎪⎬
⎪⎭

Ch
α

⎡
⎣ y

v
κ

⎤
⎦ =

[
ẏ −Dxf(xh, uh, h)y −Duf(xh, uh, h)v

Dxϑ(xh, h) y + Tακ

]
.

We are going to show that, for � > 0 sufficiently small(
(y, v), D2Lh(y, v)

)
≥ 1

2
γ̃(‖y‖2

1,2 + ‖v‖2
2) ∀ (y, v) ∈ Eh

α ,(5.21)

which, by Lemma 3.7 shows that (xh, uh) is a second order local minimizer of (O)h.
Thus, the corollary will be proved.

By Lemma 3.3 the map

CαC∗
α : L2(0, 1; Rn) ×W 1,2(0, 1; R) → L2(0, 1; Rn) ×W 1,2(0, 1; R)

is invertible. For any (y, v) ∈ X2 define the following new variable:⎡
⎣ z

w
κ

⎤
⎦ =

[
C∗
α (CαC∗

α)
−1 Ch

α +
(
I − C∗

α(CαC∗
α)−1Cα

)]⎡⎣ y
v
0

⎤
⎦ .

We get

Cα

⎡
⎣ z

w
κ

⎤
⎦ = Ch

α

⎡
⎣ y

v
0

⎤
⎦ .

Since in view of (3.15), Tα(t) = 0 for t ∈ Mα, then for (y, v) ∈ Eh
α we get

ż −Dxf̂ z −Duf̂ w = ẏ −Dxf(xh, uh, h)y −Duf(xh, uh, h)v = 0,

Dxϑ̂(t)z(t) = Dxϑ(xh(t), h(t))y(t) = 0 for t ∈ Nα \Dh.

Moreover, it follows from (4.17) that, if ˙̂μ(1) > 0, then there exists � > 0 such

that μh(1) > 0 for all h ∈ BH
� (ĥ). That implies 〈ϑ(xh(1), h(1)), z(1)〉 = 0. Thus,

(z, w) ∈ Eα,Dh
, i.e., it satisfies (5.20). On the other hand⎡

⎣ Δy
Δv
−κ

⎤
⎦ :=

⎡
⎣ y

v
0

⎤
⎦−

⎡
⎣ z

w
κ

⎤
⎦ = C∗

α (CαC∗
α)

−1 (Cα − Ch
α

)⎡⎣ y
v
0

⎤
⎦ .(5.22)

Using Young’s inequality, we get(
(y, v), D2Lh (y, v)

)
=
(
(y, v), (D2Lh −D2L̂) (y, v)

)
+
(
(z, w), D2L̂ (z, w)

)
+ 2

(
(z, w), D2L̂ (Δy,Δv)

)
+
(
(Δy,Δv), D2L̂ (Δy,Δv)

)
≥ 3

4

(
(z, w), D2L̂ (z, w)

)
−
∣∣∣((y, v), (D2Lh −D2L̂) (y, v)

)∣∣∣
−3
∣∣∣((Δy,Δv), D2L̂ (Δy,Δv)

)∣∣∣ .
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By (4.17) and (5.22) we have∣∣∣((y, v), (D2Lh −D2L̂) (y, v)
)∣∣∣→ 0 and ‖(Δy,Δv)‖X2 → 0,

uniformly in h, as h → 0. Hence, in view of (5.20), condition (5.21) is satisfied,
provided that � is sufficiently small.

Appendix A. Proof of Lemma 3.7. In the indirect proof, we follow the
proof of Theorem 4.1 in [1]. Suppose that (3.19) is satisfied for α = 0, but (3.20) is
violated. Then, there exists a sequence {(xj , uj)} of feasible pairs (xj , uj) ∈ X∞ such
that (xj , uj) → (x̂, û) and

F (xj , uj , ĥ) ≤ F (x̂, û, ĥ) + o(‖(xj − x̂, uj − û)‖2
X2).(A.1)

Denote εj := ‖uj − û‖2 and set vj = ε−1
j (uj − û). Thus, ‖vj‖2 = 1. Let zj be the

solution of the linearized equation

żj(t) −Dxf̂(t)zj(t) −Duf̂(t)vj(t) = 0, zj(0) = 0.(A.2)

By the well-known result for differential equations we have

‖(xj − x̂)‖1,2 = O(εj) and ‖(xj − x̂) − εjzj‖1,2 = o(‖xj − x̂‖1,2) = o(εj).(A.3)

From (A.1) and (A.3) we obtain

(DxF (x̂, û, ĥ), zj) + (DuF (x̂, û, ĥ), vj) ≤ O(‖(xj − x̂, uj − û)‖X2) = O(εj).(A.4)

Since ‖vj‖2 = 1, we can extract from {vj} a weakly convergent subsequence, still
denoted by {vj}. So, there is a pair (ȳ, v̄) such that

{
vj ⇀ v̄ weakly in L2(0, 1,Rm),

zj ⇀ z̄ weakly in W 1,2(0, 1,Rn), i.e., strongly in C(0, 1; Rn),
(A.5)

where (z̄, v̄) is a solution of (A.2). Passing to the limit in (A.4), we find that

(DxF (x̂, û, ĥ), z̄) + (DuF (x̂, û, ĥ), v̄) ≤ 0.

Note that, by stationarity of the Lagrangian we have

(DxF (x̂, û, ĥ), z̄)+(DuF (x̂, û, ĥ), v̄) = −
(

˙̂μ,
d

dt
(Dxϑ̂z̄)

)
= − ˙̂μ(1)Dxϑ̂(1)z̄(1)+(¨̂μ,Dxϑ̂z̄).

Hence

− ˙̂μ(1)Dxϑ̂(1)z̄(1) + (¨̂μ,Dxϑ̂z̄) ≤ 0.(A.6)

From the definition (3.14) we have ϑ(xj(t)) − ϑ(x̂(t)) ≤ 0 for all t ∈ M0. Hence, by

(A.3) and (A.5) we get Dxϑ̂(t)z̄(t) ≤ 0 for all t ∈ M0. Similarly, if ˙̂μ(1) > 0, then

ϑ(xj(1))−ϑ(x̂(1)) ≤ 0, and hence Dxϑ̂(1)z̄(1) ≤ 0. Thus, in view of (3.17) and (3.18),
(A.6) implies

Dxϑ̂(t)z̄(t) = 0 for t ∈ N0 and Dxϑ̂(1)z̄(1) = 0 if ˙̂μ(1) > 0,
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which together with (A.2) shows that (z̄, v̄) ∈ E0.
Since μ̂ ∈ K+, it follows from (3.7) and (A.3) that

F (xj , uj , ĥ) − F (x̂, û, ĥ) ≥ L(xj , uj , p̂, μ̂) − L(x̂, û, p̂, μ̂)

=
1

2

(
(xj − x̂, uj − û), D2L̂ (xj − x̂, uj − û)

)
+ o(‖(xj − x̂, uj − û)‖2

X2)

=
1

2
ε2j

(
((zj , vj), D

2L̂ (zj , vj)) + O(εj)
)
.

(A.7)

Substituting (A.1) into (A.7) and passing to the limit, we get

lim inf
j→∞

(
(zj , vj), D

2L̂ (zj , vj)
)
≤ lim sup

j→∞

(
(zj , vj), D

2L̂ (zj , vj)
)
≤ 0.

Since, in view of (5.4) and (H3), ((z, v), D2L̂ (z, v)) is weakly lower semicontinuous in
X2, by (A.5) we get

0 ≥ lim inf
j→∞

(
(zj , vj), D

2L̂ (zj , vj)
)
≥
(
(z̄, v̄), D2L̂ (z̄, v̄)

)
.

Since (z̄, v̄) ∈ E0, (3.19) implies that

(z̄, v̄) = (0, 0).(A.8)

Thus

lim
j→∞

(
(zj , vj), D

2L̂ (zj , vj)
)

= 0 =
(
(z̄, v̄), D2L̂ (z̄, v̄)

)
.

In particular we get limj→∞(vj , D
2
uuL̂ vj) = (v̄, D2

uuL̂ v̄). By (H3) and (A.5), it
implies that vj → v̄ strongly in L2(0, 1; Rm). Since ‖vj‖2 = 1, we get ‖v̄‖2 = 1, which
contradicts (A.8) and completes the proof.
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ASPLUND DECOMPOSITION OF MONOTONE OPERATORS∗

JONATHAN BORWEIN† AND HERRE WIERSMA‡

Abstract. We establish representations of a monotone mapping as the sum of a maximal
subdifferential mapping and a “remainder” monotone mapping, where the remainder is “acyclic” in
the sense that it contains no nontrivial subdifferential component. This is the nonlinear analogue of
a skew linear operator. Examples of indecomposable and acyclic operators are given. In particular,
we present an explicit nonlinear acyclic operator.

Key words. monotone operators, cyclic monotonicity, decompositions, convex subgradients,
acyclic operators
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1. Introduction. Let X be a Banach space and X∗ its topological dual. We
denote the closed unit ball in X by BX or B. Recall that a monotone operator
T : X ⇒ X∗ is a mapping that satisfies

〈x∗ − y∗, x− y〉 ≥ 0

whenever x∗ ∈ T (x) and y∗ ∈ T (y).

The domain of T is domT = {x ∈ R
n | T (x) �= ∅}, and the range of T is

ranT = {x∗ ∈ R
n | x∗ ∈ T (x) for some x ∈ domT}. The graph of T is the set

grT := {(x, x∗) ∈ R
n×R

n | x∗ ∈ T (x)}. Of particular interest are maximal monotone
operators: T is said to be maximal monotone if grT ⊂ grS with S monotone implies
that T = S.

In general, T could be a multivalued mapping on an infinite-dimensional space;
however, the phenomena we wish to discuss are poorly understood, even for sin-
gle valued mappings in R

n. We will restrict ourselves largely to this setting where
T is single valued, and X and X∗ both are R

n; in the following, the notation
T : domT ⊂ X → X∗ (single arrow) always denotes a single valued operator. This is
not an unreasonable restriction, since the results that hold in R

n, such as continuity
or differentiability theorems, usually have a reasonable extension at least to separa-
ble Asplund spaces [4]. Moreover, in R

n, T is almost everywhere single valued on
int domT , from which most of our results naturally extend to the multivalued case.
Further background and references may be found in [2, 3, 4, 5].

One important instance of a maximal monotone operator is the subdifferential of
a convex function. Let f be a proper convex lower semicontinuous function on R

n.
Then the subdifferential ∂f : dom ∂f ⊂ R

n ⇒ R
n is the monotone mapping

∂f(x) = {x∗ ∈ R
n | 〈x∗, y − x〉 + f(x) ≤ f(y) for all y ∈ R

n}.
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Subdifferential mappings enjoy a variety of nice properties: they are single valued on
large sets and automatically maximal monotone [11, 4, 14] and seemingly belong to
all classes of well-behaved maximal monotone operators in nonreflexive spaces (see
[8, 9, 12, 13, 14]. Thus, it appears that if T = ∂f + R possesses any pathology, it is
contributed by R. For an arbitrary monotone mapping T , it is therefore appealing
to consider decompositions of the form T = ∂f + R, where R is a “remainder” to be
made as small as possible in some sense. This is an extension of the decomposition of
a linear operator into its symmetric and skew parts: L = (L + L∗)/2 + (L− L∗)/2.

The “nicest” form for R to take is the zero mapping, in which case T is just a
subdifferential map. Barring that, perhaps the next simplest form for R to take is a
skew or skew-like mapping. We investigate in section 2 when such a decomposition
is possible. Examples of operators for which this decomposition is not possible are
given in section 3. Even if R does not take such a simple form, a modernized version
of a 1970 result of Asplund (see [1, 4]) shows that we can find a decomposition with
R “acyclic,” as described in section 4. Little is known about the properties of such
acyclic mappings, however. We give the first explicit example of a nonlinear acyclic
operator Ŝ : R

2 → R
2 in section 5. We further explore this mapping in section 6 and

conclude with some open questions.

Since our central goal is to better understand acyclicity, little will be lost if the
reader assumes throughout that every monotone operator is everywhere defined and
single valued.

2. Skew decompositions. In this section we introduce various weakenings of
the notion of a skew symmetric linear mapping and then link them to the properties of
an associated function fT due to Fitzpatrick as defined later in this paper. A mapping
SL : domSL ⊂ R

n ⇒ R
n is said to be skew-like if 〈x∗, x〉 = 0 for all (x, x∗) ∈ grSL,

and S : domS ⊂ R
n → R

n is skew if it is linear and 〈Sx, x〉 = 0 for all x ∈ domS.

We allow that domS �= R
n; in this case we require that S = Ŝ|domS for some skew

linear Ŝ : R
n → R

n. Thus, skew mappings are ab initio restrictions of skew and linear
mappings.

Fact 1. Let 0 ∈ int domS.

(1) If S : domS ⊂ R
n ⇒ R

n is monotone and skew-like, then it is skew linear on
domS.

(2) If S : domS ⊂ R
n ⇒ R

n is monotone, and −S is monotone with 0 ∈ S(0),
then S is skew linear on domS.

Proof. (1) Using monotonicity and the fact that 〈x, x∗〉 = 0 when x∗ ∈ S(x), we
have 〈x∗, y〉 ≤ −〈y∗, x〉 for all (x, x∗), (y, y∗) ∈ grS.

Choose ε > 0 so that εB ⊂ int domS, where B is the closed unit ball in R
n. For

y, z ∈ εB choose y∗1 ∈ S(y), y∗2 ∈ S(−y), and z∗ ∈ S(z). Then 〈y∗1 , z〉 ≤ −〈z∗, y〉 and
〈z∗,−y〉 ≤ −〈y∗2 , z〉, which combine to give

〈y∗1 + y∗2 , z〉 ≤ 0 for all z ∈ εB.

Hence y∗1 = −y∗2 for all y∗1 ∈ S(y) and y∗2 ∈ S(−y), so S(y) is singleton with S(y) =
−S(−y) whenever y ∈ εB.

Let (x, x∗) ∈ grS, y ∈ εB. Then

〈x∗, y〉 ≤ −〈S(y), x〉 = 〈S(−y), x〉 ≤ −〈x∗,−y〉 = 〈x∗, y〉,
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so 〈x∗, y〉 = −〈S(y), x〉. Suppose (x1, x
∗
1), (x2, x

∗
2), (αx1 + βx2, w

∗) ∈ grS. Then

〈w∗, y〉 = −〈S(y), αx1 + βx2〉 = −α〈S(y), x1〉 − β〈S(y), x2〉
= α〈x∗

1, y〉 + β〈x∗
2, y〉 = 〈αx∗

1 + βx∗
2, y〉

for all y ∈ εB, so that w∗ = αx∗
1 + βx∗

2. Choosing x2 = x1 and α + β = 1 shows
that S is single valued on domS. That is, S(αx + βy) = αS(x) + βS(y) whenever
x, y, αx + βy ∈ domS.

Since εB ⊂ domS, it is clear that there is a unique skew linear extension Ŝ of S
to the whole space: Ŝ(x) = (‖x‖/ε)S(εx/‖x‖).

(2) If x∗ ∈ S(x), then

〈x∗, x〉 = 〈x∗ − 0, x− 0〉 = 0

since 0 ∈ S(0) and both S and −S are monotone. So S is skew-like and monotone,
and we can apply (1) to see that S is skew linear on domS.

We will say that a monotone operator T : domT ⊂ R
n ⇒ R

n is weakly decom-
posable if it can be written as the sum of a (possibly zero) skew-like operator and
the subgradient of a proper lower semicontinuous convex function: T = S + ∂f ; and
decomposable if the skew-like part is actually skew. If T is not decomposable, we
say that it is indecomposable. For example, the addition of a skew mapping to the
subgradient of any norm produces a multivalued decomposable maximal monotone
mapping.

Note that a skew-like operator need not be monotone. Note also that if T (x) is
single valued and nonempty, so necessarily is S(x) and ∂f(x).

For the following, we use the notation DT (x) for the Jacobian matrix of T :
R

n → R
n at x, and we note that T is C1 (Fréchet or, equivalently in finite dimensions,

Gâteaux) on an open set C if and only if the mapping x → DT (x) is continuous on
C.

Fact 2. Let T : domT ⊂ R
n → R

n be a continuously Fréchet differentiable
maximal monotone mapping on an open domain. Then the decomposition T = S+∇f
into a skew component S and a subdifferential component ∂f = {∇f} is unique when
it exists.

Proof. From now on we will identify {∇f} and ∇f . Suppose T = S + ∇f =
S1 + ∇g. Then S(x) − S1(x) = ∇g(x) −∇f(x). Differentiating gives

S − S1 = ∇2(g − f)(x);

the left-hand side is a skew matrix, and the right-hand side is symmetric, so both
must be zero matrices.

A useful observation is the following.
Fact 3. Let T : domT ⊂ R

n → R
n be continuously Fréchet differentiable on an

open convex set C ⊂ domT with 0 ∈ C and T (0) = 0. Then T is monotone (resp.,
skew) on C if and only if DT (z) is positive semidefinite (resp., skew) throughout C.

Proof. We prove only the skew case; the monotone case is similar. Let DT (z) be
skew for each z in the interior of C, and take x, y ∈ C ⊂ domT . The mean-value
theorem then provides z ∈ [x, y] with

〈T (x) − T (y), x− y〉 = 〈DT (z)(x− y), x− y〉 = 0,

so T and −T are monotones. Fact 1 shows that T is skew linear. On the other hand,
suppose T is skew, with x ∈ int domT . Fixing h, we see that

〈th,DT (x + sh) th〉 = 〈T (x + th) − T (x), th〉 = 0
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for some 0 < s < t. Thus

〈h,DT (x + sh) h〉 = 0;

letting t → 0 shows that DT (x) is skew.
Define Fitzpatrick’s last function fT relative to a point a ∈ int domT by

fT (x; a) :=

∫ 1

0

〈T
(
a + t(x− a)

)
, x− a〉 dt.

(This construction was suggested to the authors by Simon Fitzpatrick just months
before his death in 2004.) We use the notation fT (x) := fT (x; 0), where 0 ∈ int domT .

We may use fT to characterize both weak decomposability and decomposability.
We start with a technical lemma.

Lemma 1. For any continuously Fréchet differentiable monotone operator T :
domT ⊂ R

n → R
n with 0 ∈ int domT , it is always the case that S := T − ∇fT is

skew-like on int domT .
Proof. Fix x, y ∈ int domT , and define

h(t) := 〈T (tx), ty〉.

We check that

〈T (x), y〉 = h(1) − h(0) =

∫ 1

0

t 〈DT (tx)x, y〉 dt +

∫ 1

0

〈T (tx), y〉 dt(2.1)

and

〈∇fT (x), y〉 =

∫ 1

0

t 〈DT (tx)Tx, y 〉 dt +

∫ 1

0

〈T (tx), y〉 dt;(2.2)

we can switch the order of integration and differentiation since (x, t) → 〈T (tx), x〉 is
continuous. Then S := T −∇fT is skew-like, since 〈T (x), x〉 = 〈∇fT (x), x〉.

Throughout the rest of this section we assume domT is open so as to avoid
technical complications at boundary points.

Theorem 2 (weak decomposability). Suppose T is a continuously Fréchet differ-
entiable maximal monotone operator T : domT ⊂ R

n → R
n for which 0 ∈ int domT =

domT. Then the following are equivalent:
(1) T is weakly decomposable on domT ,
(2) fT is convex on domT .
Proof. Letting S := T −∇fT , Lemma 1 shows that S is skew-like. Hence if fT is

convex, T is weakly decomposable.
Conversely, suppose that T = ∇g + S with g convex and S skew-like. Then

f∇g = fT as is seen by writing h(1) − h(0) =
∫ 1

0
h′(t) dt with h := t → g(xt), which

implies that g − g(0) = fT and we are done.
Theorem 3 (decomposability). Suppose we have a continuously differentiable

maximal monotone operator T : domT ⊂ R
n → R

n for which 0 ∈ int domT = domT .
Then T is decomposable on domT if and only if T −∇fT is skew on domT .

Proof. Without loss of generality, we may assume T (0) = 0.
If T −∇fT is skew, then

〈∇fT (x) −∇fT (y), x− y〉 = 〈T (x) − T (y), x− y〉 ≥ 0,
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so ∇fT is monotone. By Theorem 12.17 in [12] fT is convex, so T is decomposable.
On the other hand, suppose T = ∇g + S for some convex g and skew S. Then

fT (x) =

∫ 1

0

〈∇g(tx) + S(tx), x〉dt

=

∫ 1

0

〈∇g(tx), x〉dt = g(x) − g(0),

so T −∇fT = T −∇g = S is skew.
So far we have not explicitly established that (weakly) indecomposable monotone

operators actually exist. We address this in the next section.

3. Indecomposable examples. The next example specifies an entire class of
everywhere-defined indecomposable operators. We require the following lemma.

Lemma 4. Let T : R
n → R

n be C1 and monotone. If there exist x, y ∈ R
n

and 1 ≤ i < j ≤ n such that DT (x)ij − DT (x)ji �= DT (y)ij − DT (y)ji, then T is
indecomposable on R

n.
Proof. Suppose that T = ∇f + S with f convex and S skew. Then the Hessian

matrix ∇2f(z) = DT (z) − S is symmetric for each z ∈ R
n. Setting Δij = Sij − Sji,

we have

DT (x)ij = DT (x)ji + Δij and DT (y)ij = DT (y)ji + Δij ,

which implies DT (x)ij −DT (x)ji = DT (y)ij −DT (y)ji, a contradiction.
Proposition 5. Let g ≥ 0 be a nonconstant and continuous real function such

that either g(x) ≥ 1 = g(0) or g(x) ≤ 1 = g(0). Let

G(x) :=

∫ x

0

g and K(x) :=

∫ x

0

{
(1 + g)

2

}2

.

Then
(1) T (x, y) := (K(x) −G(y),K(y) −G(x)) is both continuously differentiable and

maximal monotone R
2;

(2) T is indecomposable on R
2.

Proof. To check that T is monotone, we check that the symmetric part of the
Jacobian DT of T is positive semidefinite as required by Fact 3. First we compute

DT =

⎛
⎜⎝
(

1+g(y)
2

)2

−g(y)

−g(x)
(

1+g(x)
2

)2

⎞
⎟⎠ ,

so

DTsym =
DT + DTT

2
=

⎛
⎜⎝
(

1+g(x)
2

)2

− g(x)+g(y)
2

− g(x)+g(y)
2

(
1+g(y)

2

)2

⎞
⎟⎠ .

Since
( 1+g(x)

2

)2 ≥ 0, we need only check that DetDTsym ≥ 0:

16 DetDTsym = (1 + g(x))
2
(1 + g(y))

2 − 4 (g(x) + g(y))
2

= (g(x) − 1)(g(y) − 1)
(
(g(x) + 1)(g(y) + 1) + 2(g(x) + g(y))

)
≥ 0.
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The maximality of T is a consequence of Example 12.7 in [12]. Lemma 4 with i =
1, j = 2 shows that T is indecomposable, since g is nonconstant.

Example 6. If g := x2+1 and T is constructed as in Proposition 5, then T (x, y) =
(x+1/20x5 +1/3x3−1/3 y3−y, y+1/20 y5 +1/3 y3−1/3x3−x) is indecomposable.
We have

fT (x, y) =
1

120
x6 +

1

120
y6 +

1

12
x4 +

1

12
y4 − 1

12
xy3 − 1

12
yx3 +

1

2
x2 − xy +

1

2
y2,

and the Hessian of fT is

∇2fT (x, y) =

[
1/4x4 + x2 − 1/2xy + 1 −1/4x2 − 1/4 y2 − 1

−1/4x2 − 1/4 y2 − 1 1/4 y4 + y2 − 1/2xy + 1

]
;

since ∇2fT (x, y)11 < 0 for large y and small positive x, fT is not convex.
By Theorem 2, T is also not weakly decomposable.
Example 7. Consider the mapping

T (x, y) :=
(
sinh(x) − α y2/2, sinh(y) − αx2/2)

)
.

Then

DT =

(
cosh(x) −αy
−αx cosh(y)

)

which is monotone if and only if

α2 ≤ cosh(x)

x

cosh(y)

y

for all x, y > 0. The right-hand side is a separable convex function, and is minimized
at x = y = x0 = coth(x0) = 1.199678 . . . . So T is monotone if and only if α2 ≤
sinh2(x0) = 2.276717 . . . .

As before, since the difference between the off-diagonal entries of DT is noncon-
stant, T is indecomposable by Lemma 4.

We may now turn to the more general notion of an acyclic decomposition.

4. Acyclic decompositions. In this section, we reconstruct a modern version
of a decomposition result found in [1]. We first need to recall some additional mono-
tonicity notions. A mapping T : domT ⊂ R

n → R
n is said to be N -monotone for

N ≥ 2 if for every x1, x2, . . . , xN ∈ domT we have

(4.1)
N∑
i=1

〈T (xi), xi − xi−1〉 ≥ 0,

where x0 := xN . Note that 2-monotonicity is just monotonicity. We write S ≤N T
to indicate that T = S + R for some N -monotone R. In particular, this means that
domT ⊂ domS.

By duplicating entries in (4.1), it is easy to see that an N -monotone mapping is
also M -monotone for M ≤ N ; in particular, an N -monotone mapping is monotone.
Asplund [1] showed that these classes are distinct via the following example.

Example 8. For N ≥ 2 define a 2 × 2 matrix TN by

TN =

(
cos(π/N) − sin(π/N)
sin(π/N) cos(π/N)

)
.
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Then x → TN (x) is N -monotone, but not (N + 1)-monotone. A more explicit proof
to this surprisingly difficult proposition can be found in [2, 3].

An operator that is N -monotone for every N ≥ 2 is called cyclically monotone or
ω0-monotone. It is easy to see that subdifferential mappings are cyclically monotone;
in fact, a classical result by Rockafellar [10] shows that subdifferential mappings are
the only cyclically monotone mappings.

Theorem 9 (maximal cyclic monotonicity [4, 10]). Suppose C : domC ⊂ R
n ⇒

R
n is cyclically monotone. Then C has a maximal cyclically monotone extension

Ĉ of the form Ĉ = ∂f for some proper lower semicontinuous convex function f .
Furthermore, ran Ĉ ⊂ conv ranC.

The fact that Ĉ preserves the range of C is implicit in the proof of Theorem 1 in
[10], where the convex function f is of the form f(x) = sup{〈x∗

α, x〉−rα | x∗
α ∈ ranC}.

For clarity, we prove the following lemma.
Lemma 10. Let X be a Banach space and let x∗

α ∈ X∗ for α ∈ A and with each
rα real. Let f(x) = sup{〈x∗

α, x〉 − rα | α ∈ A}. Then ran ∂f ⊂ conv ∗{x∗
α | α ∈ A}.

Proof. Consider the convex function g defined on X∗ by

g(x∗) := inf
{∑

λαi
rαi

:
∑

λαi
xαi

= x∗,
∑

λαi
= 1, λαi

> 0
}
,

as we range over all finite subsets of {(x∗
α, rα) | α ∈ A}. It is easy to check that

g∗|X = f , and f∗ = g∗∗ viewed in σ(X∗, X). Now when x∗ ∈ ∂f(x) we have
f(x) + f∗(x∗) = 〈x∗, x〉. Since x ∈ dom f , we see that g∗∗(x∗) is finite and we

are done since dom g∗∗ ⊂ dom g
∗
.

Alternative proof. If the conclusion fails we may find x∗ ∈ ∂f(x), ε > 0, and
h ∈ X such that

〈x∗, h〉 > ε + sup
α∈A

〈x∗
α, h〉,(4.2)

by the Hahn–Banach theorem. Thus, for each α ∈ A we have

〈x∗, h〉 ≥ ε + 〈x∗
α, x〉 = ε + (〈x∗

α, x + h〉 − rα) − (〈x∗
α, x〉 − rα)

≥ ε + 〈x∗
α, x + h〉 − rα − f(x).

Now f(x) is finite and so supremizing over α ∈ A yields

〈x∗, h〉 ≥ ε + f(x + h) − f(x),

in contradiction to x∗ ∈ ∂f(x).
Another range-preserving extension theorem we shall require is the following cen-

tral case of the Debrunner–Flor theorem.
Theorem 11 (Debrunner–Flor extension [4, 6]). Suppose T : domT ⊂ R

n ⇒ R
n

is monotone with range in MBX∗ for some M > 0. Then T has a bounded monotone
extension T̂ with dom T̂ = R

n and ran T̂ ⊂ conv ranT.
The proof of the decomposition below hinges on a kind of monotone convergence

theorem. We require the following definition: a monotone operator T is 3−-monotone
if

〈T (x), y〉 ≤ 〈T (x), x〉 + 〈T (y), y〉

for all x, y ∈ domT . In particular, this holds if T is N -monotone for N ≥ 3, and
0 ∈ T (0).
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Theorem 12 (monotone convergence [1, 4]). Let N be one of 3−, 3, 4, . . . , or ω0.
Consider an increasing net of monotone operators Tα : domTα ⊂ R

n → R
n satisfying

0 ≤N Tα ≤N Tβ ≤2 T,

whenever α < β ∈ A, for some monotone T : domT ⊂ R
n → R

n. Suppose that
T (0) = 0, Tα(0) = 0 for all α, and that 0 ∈ int domT . Then

(i) there is an N -monotone operator TA with

Tα ≤N TA ≤2 T

for all α ∈ A;
(ii) if T is maximal monotone and ranT ⊂ MB for some M > 0, then one may

assume ranTA ⊂ MB.
Proof. (i) Let α < β. Since T (0) = 0 and 0 ≤2 Tα ≤2 Tβ ≤2 T , we have

(4.3) 0 ≤ 〈x, Tα(x)〉 ≤ 〈x, Tβ(x)〉 ≤ 〈x, T (x)〉

for x ∈ domT . So limα→∞〈x, Tα(x)〉 exists.
Writing Tβα = Tβ − Tα and using Tβα ≥3− 0, we get

(4.4) 〈y, Tβα(x)〉 ≤ 〈x, Tβα(x)〉 + 〈y, Tβα(y)〉

for x, y ∈ domT . A monotone operator is locally bounded on the interior of its domain
(see [4]) and 0 ∈ int domT , so there exist ε > 0 and M > 0 with T (εB) ⊂ MB and
εB ⊂ domT . Then

(4.5) 0 ≤ 〈y, Tβα(y)〉 ≤ 〈y, T (y)〉 ≤ εM

when ‖y‖ ≤ ε.
For x ∈ domT , we may choose γ(x) so that

(4.6) 0 ≤ 〈x, Tβα(x)〉 ≤ ε2

whenever β > α > γ(x), since 〈x, Tα(x)〉 is convergent.
Combining (4.4), (4.5), and (4.6) gives

〈y, Tβα(x)〉 ≤ 〈x, Tβα(x)〉 + 〈y, Tβα(y)〉 ≤ (M + ε)ε

for all ‖y‖ ≤ ε and β > α > γ(x). This shows that

〈y, Tβα(x)〉 → 0

for all y ∈ R
n, so

(
Tα(x)

)
α

is Cauchy, and thus has a limit. Setting TA(x) to this
limit, it is clear from the definitions that TA is N -monotone. It is straightforward to
check Tα ≤N TA ≤2 T .

(ii) The Debrunner–Flor result shows that domT = R
n, since T is maximal.

Fixing x ∈ R
n, we know that

〈Tα(x), y〉 ≤ 〈Tα(x), x〉 + 〈Tα(y), y〉
≤ 〈T (x), x〉 + 〈T (y), y〉

for all y ∈ domT = R
n.
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From ‖T (y)‖ ≤ M we get

‖Tα(x)‖ ‖y‖ ≤ 〈T (x), x〉 + M‖y‖

for all y ∈ R
n. Letting ‖y‖ → ∞ in this expression gives ‖Tα(x)‖ ≤ M .

The maximality condition in part (ii) of Theorem 12 cannot be removed for N �=
ω0. Indeed, for a fixed N ≥ 3 and TN as in Example 8, define maps Tα and T on
the unit ball B by Tα(x) := TN (x) for each α in some directed set A and T (x) :=(TN+TT

N

2

)
x = cos(π/N)Ix. Then 0 ≤N Tα ≤ Tβ ≤ T for α < β, and TA = Tα, but

ranTA = TA(B) = B � cos(π/N)B = ranT.

Now we are ready to present an updated version of a decomposition result pro-
vided in [1]. In this case, the decomposition takes the form of a subdifferential com-
ponent, as before, and an acyclic (termed irreducible in [1]) remainder A.

Given a set C ⊂ R
n, a monotone operator A : R

n → R
n is said to be acyclic with

respect to C if A = ∂f + R with R monotone implies that ∂f is constant on C (i.e.,
f is affine on C). That is, A|C has no nontrivial subdifferential component. If no set
C is given, then C = domA is implied.

Theorem 13 (Asplund decomposition [1, 4]). Suppose we are given a (single-
valued) maximal monotone operator T : domT ⊂ R

n → R
n with int domT �= ∅.

(i) T may be decomposed as

T = ∇f + A,

where f is lower semicontinuous and convex, while A is acyclic with respect
to domT .

(ii) If ranT ⊂ MB, we may assume that f is M -Lipschitz.
Proof. (i) First, shift the graph of T so that 0 ∈ int domT . Consider the set

C := {C | 0 ≤ω0
C ≤2 T, C(0) = 0},

ordered by the partial order ≤ω0 . Every chain in C has an upper bound TA by Theorem
12, and C is nonempty since it contains the zero mapping, so Zorn’s lemma provides
a ≤ω0-maximal Ĉ in C with

0 ≤ω0 Ĉ ≤2 T.

So T = Ĉ+A for some monotone A. To show that A is acyclic, suppose A = ∂g+M .
Then

T = (Ĉ + ∂g) + M,

so, by adding a constant to ∂g and subtracting it from M if necessary, we have
∂g+Ĉ ∈ C. Since Ĉ is ≤ω0

-maximal, we have Ĉ+∂g ≤ω0 Ĉ, so gr(−∂g|domT ) ⊂ gr ∂h
for some lower semicontinuous convex h : R

n → R. Thus g is both convex and concave,
hence affine, on domT , and A is therefore acyclic with respect to domT .

Now, Ĉ is cyclically monotone, so Rockafellar’s result shows that gr Ĉ ⊂ gr ∂f
for some proper convex lower semicontinuous f . This gives

grT = gr(Ĉ + A) ⊂ gr(∂f + A),

but ∂f + A is monotone, and T is maximal monotone, so T = ∂f + A, as required.
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(ii) Part (ii) of Theorem 12 shows that one may assume that ran Ĉ ⊂ MB, so
ran ∂f ⊂ MB by Rockafellar’s result. It is straightforward to show that this implies
that f is M -Lipschitz.

An immediate corollary of this decomposition is the following.
Corollary 14 (nonlinear acyclicity). Under the hypotheses of Theorem 13, if

T : domT ⊂ R
n → R

n is maximal monotone with bounded range, then the acyclic
part of the Asplund decomposition of T is either nonlinear or zero. In other words, A
is nonlinear unless T is cyclically monotone.

Proof. Since T is maximal monotone with bounded range, domT = R
n. The

decomposition T = ∂f + A shows that dom ∂f = domA = R
n, and we know that

the range of ∂f is bounded as well. If A is nonzero and linear, then the range of A is
unbounded, which is impossible.

Corollary 14 immediately implies the existence of many nonlinear acyclic oper-
ators, but it does not exhibit any explicitly. We remedy this in the next and final
section.

5. Explicit acyclic examples. Skew linear mappings are canonical examples of
monotone mappings that are not subdifferential mappings. It is therefore reassuring
to know that they are acyclic.

Proposition 15. Suppose that S : R
n → R

n is a continuous linear operator
satisfying 〈S(x), x〉 = 0 for all x ∈ R

n. Then S is acyclic.
Proof. Let S = F + R, where F is a subdifferential mapping and R is maximal

monotone. Since S is single valued, F and R are single valued. In particular, F = ∇f
for some convex differentiable f . Since R is monotone, we have

0 ≤ 〈R(x) −R(y), x− y〉 = 〈S(x) − S(y), x− y〉 − 〈F (x) − F (y), x− y〉
= −〈F (x) − F (y), x− y〉 = 〈∇(−f)(x) −∇(−f)(y), x− y〉.

This shows that −f is convex, so f is convex and concave, hence linear on its domain.
But dom f ⊃ domS = R

n, so f ∈ R
n . So F = ∇f is constant. In fact, by subtracting

from F and adding to R, we may assume that F = 0.
We leave it to the reader to check that the sum of an acyclic operator and a skew

linear operator is still acyclic. It is not clear that the sum of two acyclic operators
must be acyclic. For continuous linear monotone operators, then, the usual decompo-
sition into symmetric and skew parts is the same as the Asplund decomposition into
subdifferential and acyclic parts.

We recall that Asplund was unable to find explicit examples of nonlinear acyclic
mappings [1], and we have found this quite challenging as well. In particular, we wish
to determine a useful characterization of acyclicity. We make some progress in this
direction by providing an explicit and, to our mind, surprisingly simple example: we
present a nonlinear acyclic monotone mapping Ŝ : R

2 → R
2.

Precisely, Ŝ is constructed by restricting the range of the skew mapping S(x, y) =
(−y, x) to the unit ball and taking a range-preserving maximal monotone extension
of the restriction. This extension is unique, as we see from the following corollary of
Proposition 14 from [4], work that originates in [7].

Corollary 16 (unique extension [4, 7]). Suppose T : R
n → R

n is maximal
monotone and suppose that ranT ∩ intB �= ∅. Then there is a unique maximal
monotone mapping T̂ such that T (x) ∩B ⊂ T̂ (x) ⊂ B. Furthermore,

(5.1) T̂ (x) = {x∗ ∈ B | 〈x∗ − y∗, x− y〉 ≥ 0 for all y∗ ∈ T (y) ∩ intB}.
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Note that T̂ is either a Lipschitz subgradient or it has a nonlinear acyclic part: the
acyclic part is bounded so it cannot be nontrivially linear. Hence in the construction
of Proposition 17 we know that Ŝ has nonlinear acyclic part, which we shall eventually
show in Proposition 20 to be Ŝ itself.

Proposition 17. Define S : R
2 → R

2 by S(x, y) = (−y, x) for x2 + y2 ≤ 1.

Then the unique maximal monotone extension Ŝ of S with range restricted to the unit
disc is

Ŝ(x) =

{
S(x), ‖x‖ ≤ 1,√

1 − 1
‖x‖2

x
‖x‖ + 1

‖x‖S
(

x
‖x‖

)
, ‖x‖ > 1.

Proof. From Corollary 16, we know that Ŝ exists and is uniquely defined. In the
interior of the unit ball, (5.1) shows that Ŝ(x) = S(x). Indeed, let t > 0 be so small
that z = x + ty ∈ B for all unit length y. Then

〈S(x + ty) − Ŝ(x), y〉 ≥ 0

for all unit y. Letting t → 0 shows that Ŝ(x) = S(x). To determine (u, v) = Ŝ(x) for
‖x‖ ≥ 1, it suffices by rotational symmetry to consider points x = (a, 0) with a ≥ 1.
Then monotonicity requires that

〈Ŝ(x) − S(z), x− z〉 ≥ 0

for all ‖z‖ ≤ 1. Let z =
(

1
a ,−

√
a2−1
a

)
so that Ŝ(z) = S(z) =

(√
a2−1
a , 1

a

)
. Then

〈
(u, v) −

(√
a2 − 1

a
,
1

a

)
, (a, 0) −

(
1

a
,−

√
a2 − 1

a

)〉
≥ 0.

Expanding this gives

u

(
a− 1

a

)
+

√
1 − 1

a2
(v − a) ≥ 0,

and noting that u ≤
√

1 − v2 gives√
1 − v2(a2 − 1) +

√
a2 − 1(v − a) ≥ 0

which reduces to (av − 1)2 ≤ 0, that is, v = 1/a. Similarly, setting z = ( 1
a ,−

√
a2−1
a )

also shows that u =
√

1 − 1/a2.
So

Ŝ(x) = Ŝ(a, 0) =

(√
1 − 1

a2
,
1

a

)
=

√
1 − 1

‖x‖2

x

‖x‖ +
1

‖x‖S
(

x

‖x‖

)
.

The same result holds for general ‖x‖ ≥ 1 by considering the coordinate system given
by the orthogonal basis {x, S(x)}.

Figure 1 shows the graph of the vector field Ŝ. Having computed Ŝ, we commence
to show that it is acyclic, with the aid of two technical lemmas.

Lemma 18. Ŝ(x + tS(x)) = S(x) for all t ≥ 0 and all ‖x‖ = 1.
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Fig. 1. A field plot of Ŝ.

Proof.

Ŝ(x + tS(x)) =

√
1 − 1

1 + t2
x + tS(x)√

1 + t2
+

1

1 + t2
S(x + tS(x))

=
t

1 + t2
(x + tS(x)) +

1

1 + t2
(S(x) − tx) = S(x),

since S2 = −I.

This construction does not extend immediately to all skew mappings, since it
assumes that S2 = −I, which can occur only in even dimensions.

Fact 4. Skew orthogonal matrices exist only in even dimensions.

Proof. DetS = Det(S�) = Det(−S) = (−1)n DetS.

However, such mappings do exist for each even-dimensional R
2n, and these can

be embedded in R
2n+1 in an obvious way. Thus, our construction provides an acyclic

nonlinear mapping for each R
n, n > 1.

To show that Ŝ is acyclic, we suppose that Ŝ = F + R, where F = ∂f for some
convex proper lower semicontinuous function f and R is maximal monotone, and we
show that F is constant.

Lemma 19. Let ‖x‖ = 1, t ≥ 0, and y(t) = x + tS(x). Then 〈F (y(t)), S(x)〉 =
c(x) for some constant c(x).
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Proof. Suppose t1 �= t2. Then Ŝ(y(t1)) = Ŝ(y(t2), by Lemma 18, so

0 ≤ 〈R(y(t1)) −R(y(t2)), y(t1) − y(t2)〉
= 〈Ŝ(y(t1)) − Ŝ(y(t2)), y(t1) − y(t2)〉 − 〈F (y(t1)) − F (y(t2)), y(t1) − y(t2)〉
= −〈F (y(t1)) − F (y(t2)), y(t1) − y(t2)〉 ≤ 0,

and so

〈F (y(t1)) − F (y(t2)), x + t1S(x) − (x + t2S(x))〉 = 0;

that is,

〈F (y(t1)), S(x)〉 = 〈F (y(t2)), S(x)〉

for any t1, t2.
Proposition 20. The extension mapping Ŝ given explicitly in Proposition 17 is

nonlinear and acyclic with bounded range and full domain.
Proof. First note that if Ŝ = F +R with R monotone and F = ∂f , then both are

single valued, so F = ∇f . As in Proposition 15, we can assume that f(x) = 0 when
‖x‖ ≤ 1.

Let ‖y‖ > 1. Then there are a unit vector x and a t such that y = x + tS(x):

x = x̂(y) :=
y

‖y‖2
−
√

1

‖y‖2
− 1

‖y‖4
S(y),

t = t(y) =
√
‖y‖2 − 1,

and we note that y → x̂(y) is continuous. We will determine f(y) by integrating F
along the ray s → x + sS(x). Using Lemma 19, we have

f(y) − f(x) =

∫ t

0

〈∇f(x + sS(x)), S(x)〉ds

=

∫ t

0

c(x)ds = c(x)t.

Since f is continuous and convex, c is continuous and positive, so y → c(x̂(y)) is
continuous and positive.

Plugging in t(y) gives f(y) = c(x̂(y))
√
‖y‖2 − 1 when ‖y‖ > 1 and f = 0 for

‖y‖ ≤ 1. Suppose c(y) > 0 for some ‖y‖ = 1. Then for f to be convex on the segment
[y, 2y] we require that

(1 − λ)f(y) + λf(2y) ≥ f
(
(1 + λ)y

)
for all λ ∈ (0, 1).

This means that

0 + λc
(
x̂(2y)

)√
3 ≥ c(x̂

(
(1 + λ)y

))√
λ2 + 2λ

or

c
(
x̂(2y)

)√
3 ≥ c

(
x̂
(
(1 + λ)y

))√
1 +

2

λ
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for all λ ∈ (0, 1). Letting λ → 0, we get x̂
(
(1+2λ)y

)
→ y, so c

(
x̂
(
(1+λ)y

))
→ c(y) >

0. Since
√

1 + 2/λ → ∞, the inequality does not hold for small λ unless c(y) = 0.
For f to be convex and everywhere defined, then, we require c(y) = 0 for all

‖y‖ = 1. That is, f is identically zero.
It seems probable that the construction above applied to any nontrivial skew

linear mapping always leads to an acyclic mapping—and that more ingenuity will
allow some reader to prove this. We conclude the paper by exploring Fitzpatrick’s
last function for Ŝ as above.

6. Computing fŜ. We can also explicitly compute Fitzpatrick’s last function
fŜ as in the previous section. We have the following proposition.

Proposition 21. With Ŝ as before, we have

fŜ(x) =

⎧⎨
⎩

0, ‖x‖ ≤ 1,√
‖x‖2 − 1 + arctan

(
1√

‖x‖2−1

)
− π

2 , ‖x‖ > 1.

Proof. It is immediate from the definition that fŜ(x) = 0 when ‖x‖ ≤ 1. For
‖x‖ > 1, we get

fŜ(x) =

∫ 1

0

〈x, Ŝ(tx)〉dt

=

∫ 1
‖x‖

0

t〈x, S(x)〉dt +

∫ 1

1
‖x‖

√
1 − 1

t2‖x‖2

1

‖x‖〈x, x〉dt +

∫ 1

1
‖x‖

1

t‖x‖2
〈S(x), x〉dt

=

∫ 1

1
‖x‖

√
1 − 1

t2‖x‖2
‖x‖dt

=

∫ ‖x‖

1

√
1 − 1

s2
ds

=
√
‖x‖2 − 1 + arctan

(
1√

‖x‖2 − 1

)
− π

2
.

Note that fŜ is convex, since it is a composition of the norm x → ‖x‖ with the

increasing convex function t →
∫ t
1

√
1 − 1/s2ds. So Ŝ is weakly decomposable as

Ŝ = ∇fŜ + SL where SL is skew-like. To determine SL, we compute

∇fŜ(x) =

{
0, ‖x‖ < 1,√

1 − 1
‖x‖2

x
‖x‖ , ‖x‖ ≥ 1.

So Ŝ(x) = ∇fŜ(x) + h(‖x‖)S(x), where

h(t) =

{
1, t ≤ 1,
1
t2 , t ≥ 1.

So Ŝ is not decomposable, but is weakly decomposable, since SL = x → h(‖x‖)S(x)
is clearly skew-like. Note finally that SL is not monotone.



960 JONATHAN BORWEIN AND HERRE WIERSMA

7. Conclusion. In this paper, we have provided some tools for the decompo-
sition of monotone operators. This was originally motivated by observing that the
classical counterexamples in monotone operator theory (see section 6 of [4]) are built
from skew operators; in some sense, subgradients (“symmetric” operators) and acyclic
mappings (“skew” operators) represent the extreme points of the space of monotone
operators. The results we have given in this paper make this more concrete.

We remain convinced that a better understanding of acyclic operators will shed
light on a number of open questions. For instance, if a Banach space has good
differentiability properties, do all monotone operators defined on the space inherit
these properties? Are such properties determined by the behavior of the acyclic part?
In a more limited fashion it seems important to answer the following questions: (1)
Is there an iterative construction to compute the acyclic part of a monotone operator
in finite-dimensional space? (2) Is there an effective characterization of acyclicity
that allows one to easily determine whether a given operator is acyclic? (3) When is
the sum of acyclic mappings acyclic? (4) Can one exhibit an acyclic mapping whose
domain is not the whole space?

Acknowledgments. We would like to thank Heinz Bauschke and the referees
whose very careful reading greatly improved the paper’s exposition.
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Abstract. An analysis of convex stochastic programs is provided when the underlying probabil-
ity distribution is subjected to (small) perturbations. It is shown, in particular, that ε-approximate
solution sets of convex stochastic programs behave Lipschitz continuously with respect to certain
distances of probability distributions that are generated by the relevant integrands. It is shown
that these results apply to linear two-stage stochastic programs with random recourse. We discuss
the consequences on associating Fortet–Mourier metrics to two-stage models and on the asymptotic
behavior of empirical estimates of such models, respectively.
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1. Introduction. Stochastic programming deals with models for optimization
problems under (stochastic) uncertainty that require a decision on the basis of prob-
abilistic information about random data. Typically, deterministic equivalents of such
models are finite- or infinite-dimensional nonlinear programs depending on the prop-
erties of the distribution of the random components of the problems. Their solutions
depend on the probability distribution of the random data via certain expectation
functionals. Many deterministic equivalents of stochastic programming models take
the form

(1.1) min

{
E
P f0(x) :=

∫
Ξ

f0(ξ, x)P (dξ) : x ∈ X

}
,

where X is a closed convex subset of R
m, Ξ is a closed subset of R

s, P is a Borel
probability measure on Ξ, and E

P denotes expectation with respect to P . The function
f0 from R

m × Ξ to R = [−∞,∞] is a convex random lower semicontinuous (lsc)
function,1 and, in particular, this means

• (ξ, x) �→ f0(ξ, x) is Borel measurable, and
• for all ξ ∈ Ξ, f0(ξ, ·) is lsc and convex.

It is part of the stochastic programming folklore, repeatedly observed in practice,
that the solutions, or at least the approximating solutions, are quite robust with
respect to reasonable perturbations of the probability distribution of the random
components of the problem. In this paper, we substantiate this belief by focusing
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published electronically October 4, 2007. This work was supported by the DFG Research Center
Matheon Mathematics for key technologies in Berlin and by an NSF grant of the second author.
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1The concept of a random lsc function is due to Rockafellar [21], who introduced it in the context

of the calculus of variations under the name of “normal integrand.” Further properties of random lsc
functions are set forth in [23, Chapter 14], [33].

961
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our analysis on the approximating solutions for which we are able to derive Lipschitz
continuity without even requiring fixed (deterministic) recourse.

In the following, we denote by P(Ξ) the set of all Borel probability measures on
Ξ and by v(P ), S(P ), and Sε(P ) (ε ≥ 0) the infimum, the solution set, and the set of
ε-approximate solutions to (1.1), i.e.,

v(P ) := inf E
P f0 := inf

{
E
P f0(x) : x ∈ X

}
,

Sε(P ) := ε-argmin E
P f0 :=

{
x ∈ X : E

P f0(x) ≤ v(P ) + ε
}
,

S(P ) := argmin E
P f0 := S0(P ).

Since, in practice, the underlying probability distribution P is often not known pre-
cisely, the stability behavior of the stochastic program (1.1) when changing (perturb-
ing, estimating, approximating) P is important. Here, stability refers to continuity
properties of the optimal value function v(.) and of the set-valued mapping Sε(.) at
P , where both v(.) and Sε(.) are regarded as mappings given on certain subsets of
P(Ξ) equipped with some probability (semi)metric.

Early work on stability of stochastic programs is reported in [11, 19, 27] and later
in [1]. Quantitative stability of two-stage models was studied, e.g., in [25, 26, 29, 18].
A recent survey of stability results in stochastic programming is given in [24]. Most
of the recent contributions to (quantitative) stability use the general framework and
the results of [3, 14] and [23, Chapter 7J], respectively.

In the present paper, we take up an issue brought to the fore in [38, section
4]. Since solutions derived, when actually solving (1.1), are usually ε-approximate
solutions of an approximating problem where P has been replaced by an approximat-
ing measure Q, it is crucial to investigate the (quantitative) continuity properties of
the (set-valued) mapping ε-argmin as a function of P , i.e., P �→ Sε(P ), from P of
probability measures to the space of closed convex subsets of R

m.
Quantitative perturbation results for ε-approximate solutions in optimization are

given in [4] and [23, Chapter 7J]. The corresponding estimates make use of the epi-
distance between the objective functions of (1.1) and its perturbations. In our analysis,
the corresponding subset P of probability measures is determined by satisfying certain
moment conditions that are related to growth properties of the integrand f0 with
respect to ξ. The epi-distances of the objective functions can be bounded by some
probability semimetric of the form

(1.2) dF (P,Q) = sup

{∣∣∣∣
∫

Ξ

f(ξ)P (dξ) −
∫

Ξ

f(ξ)Q(dξ)

∣∣∣∣ : f ∈ F
}
,

where F is an appropriate class of measurable functions from Ξ to R and P , Q
are probability measures in P. First, we show in section 2 that classes of the form
Fρ = {f0(·, x) : x ∈ X ∩ ρB} for some ρ > 0 and B denoting the unit ball in R

m and
the corresponding distance dFρ are suitable to derive the desired stability results.

In section 3 we then provide characterizations of the function classes Fρ for two-
stage models with random recourse. Two-stage stochastic programs arise as deter-
ministic equivalents of improperly posed random linear programs of the form

min{cx : x ∈ X,T (ξ)x = h(ξ)},

where X is polyhedral and the (technology) matrix T (ξ) and the vector h(ξ) depend
on a random vector ξ. Given a realization of ξ, a possible deviation h(ξ) − T (ξ)x
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is compensated for by the additional cost q(ξ)y(ξ), where y = y(ξ) belongs to a
polyhedral set Y and satisfies W (ξ)y = h(ξ) − T (ξ)x. Here, the cost coefficient q(ξ)
and the compensation or recourse matrix W (ξ) (may) depend on the realization. The
modeling idea consists in adding the expected compensation cost E[q(ξ)y(ξ)] to cx.
By minimizing the objective function cx + E[q(ξ)y(ξ)] first with respect to y(ξ), we
arrive at the function

f0(ξ, x) := cx + inf{q(ξ)y : y ∈ Y,W (ξ)y = h(ξ) − T (ξ)x},

whose expectation has to be minimized with respect to x ∈ X. Since the decisions
x and y(ξ) are made before or after the realization of ξ, they are called first- and
second-stage decisions, respectively.

While Lipschitz continuity properties of the integrands f0 with respect to ξ are
well understood for fixed recourse [36], much less is known for random recourse. In
section 3 we deal with the following two cases: (i) full random recourse by imposing
local Lipschitz continuity of the (second-stage) dual feasibility mapping and (ii) a
specific lower diagonal randomness of the recourse matrix. The latter situation occurs,
for example, in the following two important cases.

Let us first consider a dynamical decision process, as in a variety of applica-
tions, where the compensation idea is repeated l times after the realization of a new
random vector ξj , j = 1, . . . , l. Then we have second-stage decisions yj = yj(ξj)
with corresponding cost qj(ξj)yj which satisfy the constraints yj ∈ Yj and Wjjyj =
hj(ξj)−Wjj−1(ξj)yj−1 for j = 1, . . . , l, where l ∈ N, y0 is the first-stage decision and
Wjj−1(ξj) are (random) technology matrices. This leads to the function

f0(ξ, y0) = cy0+inf

⎧⎨
⎩

l∑
j=1

qj(ξ)yj : Wjjyj = hj(ξ) −Wjj−1(ξ)yj−1, yj ∈ Yj , j = 1, . . . , l

⎫⎬
⎭ ,

where ξ = (ξ1, . . . , ξl) and qj(ξ) := qj(ξj), etc. The expectation of this function
is to be minimized in multiperiod two-stage stochastic programming models. If we
introduce the second-stage decision vector y = (y1, . . . , yl), the corresponding recourse
matrix W (ξ) is a block lower triangular matrix containing Wjj , j = 1, . . . , l, in the
main diagonal and Wjj−1(ξ), j = 1, . . . , l, in the lower diagonal (see section 4). Hence,
the recourse matrix W (ξ) may be random even if the jth recourse matrix Wjj for the
decision yj is fixed, but (at least) one of the technology matrices Wjj−1(ξ) is random.

Another interesting case appears, second, in risk averse two-stage stochastic pro-
gramming models, if risk functionals (e.g., the conditional value-at-risk [22]) are incor-
porated into two-stage stochastic programs. The conditional or average value-at-risk
(at level α ∈ (0, 1]) may be defined by

AV aRα(z) =
1

α

∫ α

0

V aRγ(z)dγ = inf

{
r +

1

α
E[max{0,−r − z}] : r ∈ R

}

= inf

{
r1 +

1

α
E[r

(2)
2 ] : r1 ∈ R, r2 ∈ R+ × R+, r

(1)
2 − r

(2)
2 = z + r1

}
,(1.3)

where z is a real random variable on some probability space. If the average value-at-
risk replaces the expectation in a two-stage model with fixed recourse, the latter is of
the form

(1.4) min {cx + AV aRα(q(ξ)y) : x ∈ X, y ∈ Y,Wy = h(ξ) − T (ξ)x} .
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Using the two-stage representation (1.3) of AV aRα, the preceding optimization prob-
lem is equivalent to (1.1) with

f0(ξ, (x, r1)) := cx + r1 + inf

{
1

α
r

(2)
2 : y ∈ Y, r2 ≥ 0, r

(1)
2 − r

(2)
2 = q(ξ)y + r1,

Wy= h(ξ) − T (ξ)x

}
,

where (x, r1) is the first-stage decision varying in X × R. When introducing the
second-stage decision (y, r2), the recourse cost qavar(ξ), recourse matrix Wavar(ξ), and
cone Yavar take on the form
(1.5)

qavar(ξ) =

⎛
⎝ 0

0
α−1

⎞
⎠ , Wavar(ξ) =

(
W 0 0

q(ξ)� −1 1

)
, and Yavar = Y × R

2
+ .

Hence, the recourse matrix gets random if the recourse cost of the original model is
random. The same lower diagonal randomness effect appears if general polyhedral
convex risk measures are used instead of AV aR (see [7, section 4.1.1]).

In sections 3 and 4 we characterize the local Lipschitz continuity behavior of the
functions Fρ. We also show that the distances dFρ

are bounded by Fortet–Mourier
(type) metrics and that the metric entropy of Fρ in terms of bracketing numbers is
reasonably “small.” In this way, we obtain new results on stability (Corollaries 3.6
and 4.3 for the cases (i) and (ii), respectively) and on the asymptotic behavior of
nonparametric statistical estimates (Theorem 5.2) of random recourse models.

2. Quantitative stability. Given the original probability measure P and a per-
turbation Q of P we will give quantitative estimates of the distance between (v(Q),
Sε(Q)) and (v(P ), Sε(P )) in terms of a probability metric of the type (1.2). Our
analysis will be based on the general perturbation results for optimization models in
[23, section 7J].

Let us now introduce functions, spaces, and probability measures that are useful
for characterizing classes of probability distributions such that the stochastic program
(1.1) is well defined and one can proceed with the perturbation analysis. We consider

F = {f0(·, x) : x ∈ X},

PF =

{
Q ∈ P(Ξ) :

∫
Ξ

inf
x∈X∩ρB

f0(ξ, x)Q(dξ) > −∞ ,

sup
x∈X∩ρB

∫
Ξ

f0(ξ, x)Q(dξ) < ∞ ∀ ρ > 0

}
,

where B is the closed unit ball in R
m. We note that the infimum function ξ �→

infx∈X∩ρB f0(ξ, x) is measurable for each ρ > 0 as f0 is a random lsc function; cf. [23,
Theorem 14.37].

For any ρ > 0 and probability measures P, Q ∈ PF we consider their dF,ρ-distance
defined by

dF,ρ(P,Q) = sup
x∈X∩ρB

∣∣EP f0(x) − E
Qf0(x)

∣∣ .
Hence, dF,ρ is a distance of type (1.2), where the relevant class of functions is Fρ =
{f0(·, x) : x ∈ X ∩ ρB}. It is nonnegative, finite, and symmetric and satisfies the
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triangle inequality; i.e., it is a semimetric on PF . In general, however, the class Fρ

will not be rich enough to guarantee that dF,ρ(P,Q) = 0 implies P = Q. A valuable
consequence of the definition of the class PF is that the function x �→ E

Qf0(x) =∫
Ξ
f0(ξ, x)Q(dξ) is lsc at any Q belonging to PF by appealing to Fatou’s lemma.

Moreover, it is convex on R
m and finite on X for any such Q.

Since our statements and proofs rely extensively on estimates for the epi-distance
between (lsc) functions, we include a brief review of the relevant definitions and im-
plications. Let dC(x) = d(x,C) denote the distance of a point to a nonempty closed
set. The ρ-distance between two nonempty closed sets is by definition

dlρ(C,D) = sup
||x||≤ρ

|dC(x) − dD(x)|.

In fact, it is just a pseudodistance from which one can build a metric on the hyperspace
of closed sets, for example, by setting dl(C,D) =

∫∞
0

dlρ(C,D)e−ρ dρ. Estimates for
the ρ-distance can be obtained by relying on a “truncated” Pompeiu–Hausdorff-type
distance:

d̂lρ(C,D) = inf{η ≥ 0 : C ∩ ρB ⊂ D + ηB, D ∩ ρB ⊂ C + ηB} .

Indeed one always has [23, Proposition 4.37(a)]

d̂lρ(C1, C2) ≤ dlρ(C1, C2) ≤ d̂lρ′(C1, C2)

for ρ′ ≥ 2ρ + max {dC1(0), dC2(0) }. Our main result is stated in terms of this latter
distance notion. If we let ρ → ∞, we end up with the Pompeiu–Hausdorff distance

dl∞(C,D) = lim
ρ→∞

dlρ(C,D) = lim
ρ→∞

d̂lρ(C,D)

between the closed nonempty sets C and D; see [23, Corollary 4.38].
The distance between (lsc) functions is measured in terms of the distance between

their epi-graphs, so for ρ > 0,

dlρ(f, g) = dlρ(epi f, epi g), d̂lρ(f, g) = d̂lρ(epi f, epi g),

and dl(f, g) = dl(epi f, epi g). However, since our sets are epi-graphs (in R
m+1), it is

convenient to rely on the “unit ball” to be B× [−1, 1]; this brings us to an “auxiliary”

distance d̂l
+

ρ (f1, f2) defined as the infimum of all η ≥ 0 such that for all x ∈ ρB,

min
y∈B(x,η)

f2(y) ≤ max{f1(x),−ρ} + η, min
y∈B(x,η)

f1(y) ≤ max{f2(x),−ρ} + η.

For lsc f1, f2 : R
n → R, not identically ∞, one has [23, Theorem 7.61]

d̂l
+

ρ/
√

2
(f1, f2) ≤ d̂lρ(f1, f2) ≤

√
2 d̂l

+

ρ (f1, f2).

Our first stability result, already announced in [5], is concerned with the solution set
S(P ), rather than Sε(P ), which will be dealt with later.

Theorem 2.1. Let P ∈ PF , and suppose S(P ) is nonempty and bounded. Then
there exist constants ρ > 0 and δ > 0 such that

|v(P ) − v(Q)| ≤ dF,ρ(P,Q),

∅ = S(Q) ⊂ S(P ) + ΨP (dF,ρ(P,Q))B
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hold for all Q ∈ PF with dF,ρ(P,Q) < δ, where ΨP is a conditioning function asso-
ciated with our given problem (1.1); more precisely,

ΨP (η) := η + ψ−1
P (2η), η ≥ 0,

with

ψP (τ) := min
{
E
P f0(x) − v(P ) : d(x, S(P )) ≥ τ, x ∈ X

}
, τ ≥ 0.

Proof. For any Q ∈ PF , the function E
Qf0 is lsc, proper, and convex. Define

FQ(x) :=

{
E
Qf0(x), x ∈ X,
+∞ else

for each Q ∈ PF and rely on [23, Theorem 7.64] to derive the result. Let ρ̄ > 0 be
chosen such that S(P ) ⊂ ρ̄B and v(P ) ≥ −ρ̄. For ρ > ρ̄ and δ such that 0 < δ <
min{ 1

2 (ρ − ρ̄), 1
2ψP ( 1

2 (ρ − ρ̄))}, since FQ and FP are convex, Theorem 7.64 of [23]
yields the estimates

|v(P ) − v(Q)| ≤ d̂l
+

ρ (EP f0,E
Qf0),

∅ = S(Q) ⊆ S(P ) + ΨP (d̂l
+

ρ (EP f0,E
Qf0))B

for any Q ∈ PF with d̂l
+

ρ (EP f0,E
Qf0) < δ.

Now, let η be chosen such that η ≥ maxx∈X∩ρB |EP f0(x)−E
Qf0(x)|. Clearly, the

inequalities

min
y∈x+ηB

FQ(y) ≤ max{FP (x),−ρ} + η,

min
y∈x+ηB

FP (y) ≤ max{FQ(x),−ρ} + η

are trivially satisfied when x ∈ X. When x ∈ X ∩ ρB, we have

min
y∈x+ηB

FQ(y) ≤ FQ(x) ≤ FP (x) + η = max{FP (x),−ρ} + η,

min
y∈x+ηB

FP (y) ≤ FP (x) ≤ FQ(x) + η ≤ max{FQ(x),−ρ} + η,

and, thus, d̂l
+

ρ (FP , FQ) ≤ η. Letting η pass to its lower limit leads to

(2.1) d̂l
+

ρ (FP , FQ) ≤ max
x∈X∩ρB

|EP f0(x) − E
Qf0(x)| = dF,ρ(P,Q).

Since the function ΨP is increasing, the proof is complete.
Simple examples of two-stage stochastic programs show that, in general, the set-

valued mapping S(.) is not inner semicontinuous at P (cf. [24, Example 26]). Further-
more, explicit descriptions of conditioning functions ψP of stochastic programs (like
linear or quadratic growth at solution sets) are known only in some specific cases—for
example, for linear two-stage stochastic programs with finite discrete distribution or
with strictly positive densities of random right-hand sides [28].

As we shall see, we are in much better shape when we consider the stability
properties of the sets Sε(·) of ε-approximate solutions. Indeed, Sε(·) even satisfies a
Lipschitz property under rather mild assumptions.
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Theorem 2.2. Let P,Q ∈ PF and such that the corresponding solution sets S(P )
and S(Q) are nonempty. Then there exist constants ρ > 0 and ε̄ > 0 such that

d̂lρ(Sε(P ), Sε(Q)) ≤ 4ρ

ε
dF,ρ+ε(P,Q)

holds for any ε ∈ (0, ε̄), where dF,ρ+ε(P,Q) < ε.
Proof. The assumptions imply that both E

P f0 and E
Qf0 are proper, lsc, and

convex on R
m. Let ρ0 be chosen such that both S(P ) ∩ ρ0B and S(Q) ∩ ρ0B are

nonempty and min{v(P ), v(Q)} ≥ −ρ0. For ρ > ρ0 and 0 < ε < ε̄ = ρ − ρ0, one
obtains, from the proof of [23, Theorem 7.69], the inclusion

Sε(P ) ∩ ρB ⊆ Sε(Q) +
2η

ε + 2η
2ρB ⊆ Sε(Q) +

4ρ

ε
ηB

for all η > d̂l
+

ρ+ε(E
P f0,E

Qf0). This implies

Sε(P ) ∩ ρB ⊆ Sε(Q) +
4ρ

ε
d̂l

+

ρ+ε(E
P f0,E

Qf0)B.

The same argument works with P and Q interchanged. Finally, we appeal to the
estimate (2.1) to complete the proof.

The above estimate for ε-approximate solution sets allows for the solution sets to
be unbounded and, thus, extends [24, Theorem 13]. The result becomes somewhat
more tangible if the original solution set S(P ) is assumed to be bounded.

Corollary 2.3. Let P ∈ PF and S(P ) be nonempty and bounded. Then there
exist constants ρ̂ > 0 and ε̂ > 0 such that

dl∞(Sε(P ), Sε(Q)) ≤ 4ρ̂

ε
dF,ρ̂+ε(P,Q)

holds for any ε ∈ (0, ε̂) and Q ∈ PF such that dF,ρ̂+ε(P,Q) < ε.
Proof. Let δ and ρ be the constants from Theorem 2.1, and put ε̂ = δ. Let

ε ∈ (0, ε̂) and Q ∈ PF such that dF,ρ+ε(P,Q) < ε . Then S(Q) is also nonempty and
bounded. Since the functions E

P f0 and E
Qf0 are lsc and convex, the level sets Sε̂(P )

and Sε̂(Q) are bounded since the sets S0(P ) and S0(Q) are bounded (cf. [20, Corollary
8.7.1]). Next we choose ρ0 as in Theorem 2.2 and ρ̂ such that ρ̂ > max{ρ, ρ0 + ε̂} and
both level sets Sε̂(P ) and Sε̂(Q) are contained in ρ̂B. Then the result follows from
Theorem 2.2 by taking into account that

d̂lρ̂(Sε(P ), Sε(Q)) = dl∞(Sε(P ), Sε(Q))

holds because of the choice of ρ̂.
The results illuminate the role of the probability distances dF,ρ given that the

parameter ρ > 0 is properly chosen. These probability metrics process the minimal
information about problem (1.1) and allow us to derive remarkable stability properties
for the optimal values and (approximate) solutions. Clearly, the preceding stability
results remain valid if the set Fρ is enlarged to a set F̂ and the set PF is reduced to
a subset on which the new distance dF̂ is finite and well defined.

Hence, it is important to identify classes F̂ of functions that contain {f0(·, x) :
x ∈ X ∩ ρB} for any ρ > 0. For many convex stochastic programming problems the
functions f0(·, x), x ∈ X, are locally Lipschitz continuous on Ξ with certain Lipschitz
constants L(r) on the sets {ξ ∈ Ξ : ‖ξ − ξ0‖ ≤ r} for some ξ0 ∈ Ξ and any r > 0. In
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many cases, the growth modulus L(r) does not depend on x, particularly when x is
varying only in a bounded subset of R

m. Hence, function classes of the form

FH := {f : Ξ → R : f(ξ)−f(ξ̃) ≤ max{1, H(‖ξ− ξ0‖), H(‖ξ̃− ξ0‖)}‖ξ− ξ̃‖ ∀ξ, ξ̃ ∈ Ξ}

are of particular interest, where H : R+ → R+ is nondecreasing, H(0) = 0, and
ξ0 ∈ Ξ. The distances introduced in (1.2), but with F = FH , i.e.,

dFH
(P,Q) = sup

{∣∣∣∣
∫

Ξ

f(ξ)P (dξ) −
∫

Ξ

f(ξ)Q(dξ)

∣∣∣∣ : f ∈ FH

}
,

are so-called Fortet–Mourier metrics, denoted by ζH and defined on

(2.2) PH(Ξ) :=

{
Q ∈ P(Ξ) :

∫
Ξ

max{1, H(‖ξ − ξ0‖)}‖ξ − ξ0‖Q(dξ) < ∞
}

(cf. [8, 17]). Important special cases come to light when the function H has the
polynomial form H(t) := tr−1 for r ≥ 1. The corresponding function classes and
distances are denoted by Fr and ζr, respectively. The distances ζr are well defined
on the set

(2.3) Pr(Ξ) :=

{
Q ∈ P(Ξ) :

∫
Ξ

‖ξ‖rQ(dξ) < ∞
}

of probability measures having finite rth order moments.

3. Stability of two-stage recourse models. We consider the linear two-stage
stochastic program with recourse,

(3.1) min

{
cx +

∫
Ξ

q(ξ)y(ξ)P (dξ) : W (ξ)y(ξ) = h(ξ) − T (ξ)x, y(ξ) ∈ Y, x ∈ X

}
,

where c ∈ R
m, X ⊆ R

m, and Ξ ⊆ R
s are polyhedral, Y ⊆ R

m is a polyhedral
cone, and P ∈ P(Ξ). We assume that q(ξ) ∈ R

m, h(ξ) ∈ R
d, the recourse matrix

W (ξ) ∈ R
d×m, and the technology matrix T (ξ) ∈ R

d×n may depend affinely on ξ ∈ Ξ.
Denoting by Φ(ξ, q(ξ), h(ξ)−T (ξ)x) the value of the optimal second-stage decision,

problem (3.1) may be rewritten equivalently as a minimization problem with respect
to the first stage decision x. We define the function f0 : Ξ × R

m → R by

f0(ξ, x) =

{
cx + Φ(ξ, q(ξ), h(ξ) − T (ξ)x) if h(ξ) − T (ξ)x ∈ W (ξ)Y, D(ξ) = ∅,
+∞ otherwise,

where the optimal value function Φ and the dual feasible set D(ξ) are given by

Φ(ξ, u, t) := inf {uy : W (ξ)y = t, y ∈ Y } , (ξ, u, t) ∈ Ξ × R
m × R

d,

D(ξ) :=
{
z ∈ R

d : W (ξ)�z − q(ξ) ∈ Y ∗} , ξ ∈ Ξ,

with W (ξ)� denoting the transpose of W (ξ) and Y ∗ the polar cone of Y .
The (equivalent) minimization problem can thus be expressed as

(3.2) min

{∫
Ξ

f0(ξ, x)P (dξ) : x ∈ X

}
.

In order to utilize the general stability results of section 2, we first recall some well-
known properties of the function Φ (cf. [34]).
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Lemma 3.1. For any ξ ∈ Ξ, the function Φ(ξ, ·, ·) is finite and continuous on the
polyhedral set D(ξ)×W (ξ)Y , where D(ξ) := {u ∈ R

m : {z ∈ R
d : W (ξ)�z−u ∈ Y ∗} =

∅}. Furthermore, the function Φ(ξ, u, ·) is piecewise linear convex on the polyhedral
set W (ξ)Y for fixed u ∈ D(ξ), and Φ(ξ, ·, t) is piecewise linear concave on D(ξ) for
fixed t ∈ W (ξ)Y .

We impose the following conditions on problem (3.2).

(A1) Relatively complete recourse: For any (ξ, x) ∈ Ξ ×X, h(ξ) − T (ξ)x ∈ W (ξ)Y .
(A2) Dual feasibility: D(ξ) = ∅ holds for all ξ ∈ Ξ.

Conditions (A1) and (A2) are standard and render problem (3.2) well defined. Due to
Lemma 3.1 they imply that f0 is a convex random lsc function with Ξ×X ⊆ dom f0.
As earlier, with the notation

(3.3) Fρ := {f0(·, x) : x ∈ X ∩ ρB},

we obtain our first stability result for model (3.1) as immediate consequences of The-
orem 2.1 and Corollary 2.3.

Theorem 3.2. Suppose the stochastic program satisfies the relatively complete
recourse (A1) and the dual feasibility (A2) conditions, P ∈ PF , and S(P ) is nonempty
and bounded. Then there exist constants ρ > 0 and ε̂ > 0 such that

|v(P ) − v(Q)| ≤ dF,ρ(P,Q),

dl∞(Sε(P ), Sε(Q)) ≤ 4ρ

ε
dF,ρ+ε(P,Q)

hold for any ε ∈ (0, ε̂) and each Q ∈ PF such that dF,ρ+ε(P,Q) < ε.

The theorem establishes Lipschitz stability of v(.) and Sε in the two-stage case
for fairly general situations. It extends the results in [24, section 3.1] to two-stage
models with random recourse. However, the set of (perturbed) probability measures
PF and, in particular, the metrics dF,ρ are rather sophisticated and could be difficult
to use in applications.

To overcome this difficulty, we need to explore quantitative continuity properties
of the integrand f0. Such properties are well known in case of fixed recourse, i.e., in
case W (ξ) ≡ W [36], and have been used to analyze quantitative stability in [18].
Our first result for random recourse matrices follows the ideas in [37]. There, it
is shown that (semi)continuity properties of parametric optimal value functions are
consequences of the (semi)continuity of the primal and dual feasibility mapping with
respect to the relevant parameters. Next, we verify that a local Lipschitz property
of the dual feasible set-valued mapping ξ �→ D(ξ) in addition to (A1) implies local
Lipschitz continuity of f0(·, x) with the modulus not depending on having x vary only
in a bounded set.

Proposition 3.3. Suppose the stochastic program satisfies the relatively complete
recourse (A1) and the dual feasibility (A2) conditions. Assume also that the mapping
ξ �→ D(ξ) is bounded-valued and locally Lipschitz continuous on Ξ with respect to
the Pompeiu–Hausdorff distance (on the subsets of R

d); i.e., there exists a constant
L > 0, an element ξ0 ∈ Ξ, and a nondecreasing function h : R+ → R+ with h(0) = 0
such that

(3.4) dl∞(D(ξ), D(ξ̃)) ≤ L max{1, h(‖ξ − ξ0‖), h(‖ξ̃ − ξ0‖)}‖ξ − ξ̃‖

holds for all ξ, ξ̃ ∈ Ξ.
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Then, for any ρ > 0, there exist constants L̂ > 0 and L̂(ρ) > 0 such that

f0(ξ, x) − f0(ξ̃, x) ≤ L̂(ρ) max{1, H(‖ξ − ξ0‖), H(‖ξ̃ − ξ0‖)}‖ξ − ξ̃‖,(3.5)

f0(ξ, x) − f0(ξ, x̃) ≤ L̂max{1, H(‖ξ − ξ0‖)‖ξ − ξ0‖}‖x− x̃‖(3.6)

for all ξ, ξ̃ ∈ Ξ, x, x̃ ∈ X ∩ ρB, where H is defined by

(3.7) H(t) := h(t)t ∀t ∈ R+.

Proof. Let ρ > 0. Due to (A1) and (A2), the function f0(·, x) is real-valued for
every x ∈ X. For any x, x̃ ∈ X ∩ ρB, and ξ, ξ̃ ∈ Ξ, one has the estimate

(3.8) f0(ξ, x) − f0(ξ̃, x̃) ≤ cx + (h(ξ) − T (ξ)x)z∗(ξ) − (h(ξ̃) − cx̃− T (ξ̃)x̃)z(ξ̃),

where z∗(ξ) ∈ D(ξ) is a dual solution of the second-stage problem and z(ξ̃) is some
element in D(ξ̃). We denote by z̄(ξ̃; ξ) the projection of z∗(ξ) onto D(ξ̃), i.e.,

d(z∗(ξ), D(ξ̃)) = ‖z∗(ξ) − z̄(ξ̃; ξ)‖,

yielding

(3.9) ‖z∗(ξ)−z̄(ξ̃; ξ)‖ ≤ dl∞(D(ξ), D(ξ̃)) ≤ Lmax{1, h(‖ξ−ξ0‖), h(‖ξ̃−ξ0‖)}‖ξ− ξ̃‖.

As D(ξ0) is bounded, there exists r > 0 such that ‖z‖ ≤ r for each z ∈ D(ξ0). As the
estimate

d(z̄(ξ̃; ξ), D(ξ0)) ≤ Lmax{1, h(‖ξ̃ − ξ0‖)}‖ξ̃ − ξ0‖

holds for all ξ, ξ̃ ∈ Ξ, according to (3.4), we have

(3.10) ‖z̄(ξ̃; ξ)‖ ≤ max{r, L}max{1, h(‖ξ̃ − ξ0‖)}‖ξ̃ − ξ0‖.

Now, we proceed with our estimate (3.8) when x = x̃, exploiting the affine linearity
of h(·) and T (·), (3.9) and (3.10). Setting z(ξ̃) := z̄(ξ̃; ξ) we obtain

f0(ξ, x)−f0(ξ̃, x) ≤ (h(ξ) − T (ξ)x)(z∗(ξ) − z̄(ξ̃; ξ))

− ((h(ξ̃) − h(ξ)) − (T (ξ̃) − T (ξ))x)z̄(ξ̃; ξ)

≤ ‖h(ξ) − T (ξ)x‖‖z∗(ξ) − z̄(ξ̃; ξ)‖
+ (‖h(ξ̃) − h(ξ)‖ + ‖T (ξ̃) − T (ξ)‖‖x‖)‖z̄(ξ̃; ξ)‖

≤
(
KL(1 + ρ) max{1, ‖ξ − ξ0‖}max{1, h(‖ξ − ξ0‖), h(‖ξ̃ − ξ0‖)}

+ K̃ max{r, L}(1 + ρ) max{1, h(‖ξ̃ − ξ0‖)}‖ξ̃ − ξ0‖
)
‖ξ − ξ̃‖

≤ L̄(1 + ρ) max{1, H(‖ξ − ξ0‖), H(‖ξ̃ − ξ0‖)}‖ξ − ξ̃‖

for each ξ, ξ̃ ∈ Ξ, and some positive constants K, K̃, and L̄. Thus, (3.5) is proved
with L̂(ρ) = L̄(1+ρ). Finally, we return to (3.8) in case ξ = ξ̃; choosing z̄(ξ) = z∗(ξ),
we arrive at the estimate

f0(ξ, x) − f0(ξ, x̃) ≤ c(x− x̃) + T (ξ)(x̃− x)z∗(ξ) ≤ (‖c‖ + ‖T (ξ)‖‖z∗(ξ)‖)‖x− x̃‖
≤ L̂max{1, H(‖ξ − ξ0‖)‖ξ − ξ0‖}‖x− x̃‖
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for some constant L̂ > 0 and all ξ ∈ Ξ, x, x̃ ∈ X ∩ρB. Here, we used that ‖z∗(ξ)‖ can
be bounded in the same way as z̄(ξ̃; ξ) in (3.10).

The next examples illustrate the local Lipschitz continuity property (3.4) of the
dual feasibility mapping D.

Example 3.4. Let m = 4, d = 2, Y = R
4
+, and Ξ = R, and consider the random

recourse costs and matrix

W (ξ) =

(
1 −1 0 0
−ξ 0 1 −1

)
, q(ξ) =

⎛
⎜⎜⎝

0
0
ξ
−ξ

⎞
⎟⎟⎠ .

Then W (ξ)Y = R
2 (complete recourse) and D(ξ) = [0, ξ2]×{ξ}. Hence, the conditions

(A1) and (A2) and (3.4) are satisfied with h(t) ≡ t.
Example 3.5. We consider the second-stage program arising in the equivalent

optimization problem to AVaR minimization (1.4) in section 1. Its dual feasible set
is of the form

Davar(ξ) =
{
z = (z1, z2) ∈ R

d × R : Wavar(ξ)
�z − qavar(ξ) ∈ Y ∗

avar

}
=

{
(z1, z2) ∈ R

d × [0, α−1] : W�z1 + q(ξ)z2 ∈ Y ∗}
=

{
(z1, u) ∈ R

d × R
m : W�z1 + u ∈ Y ∗, u ∈ [0, α−1]q(ξ)

}
due to (1.5), where u ∈ [0, α−1]q(ξ) means that, for every j = 1, . . . ,m, 0 ≤ uj ≤
α−1qj(ξ) holds if qj(ξ) ≥ 0 and α−1qj(ξ) ≤ uj ≤ 0 otherwise. Hence, if (A2) is
satisfied, the set-valued mapping ξ → Davar(ξ) is Lipschitz continuous on Ξ with
respect to the Pompeiu–Hausdorff distance dl∞ since its graph is convex polyhedral
[35]. This means that Proposition 3.3 applies with h(t) ≡ 1.

We can reformulate the conclusions of the preceding proposition in terms of the
Fortet–Mourier metrics defined on PH(Ξ), the space (2.2) of probability measures.

Corollary 3.6. Let the assumptions of Proposition 3.3 be satisfied, P ∈ PH(Ξ),
and S(P ) be nonempty and bounded. Then there exist constants L̂ > 0, ρ > 0, and
ε̂ > 0 such that

|v(P ) − v(Q)| ≤ L̂ζH(P,Q),

dl∞(Sε(P ), Sε(Q)) ≤ 4ρL̂

ε
ζH(P,Q)

hold for any ε ∈ (0, ε̂) and each Q ∈ PH(Ξ) such that ζH(P,Q) < ε, where H is
defined by (3.7), and ζH(P,Q) is the Fortet–Mourier metric on PH(Ξ).

Proof. The estimate (3.5) implies dF,ρ(P,Q) ≤ L̂ζH(P,Q) with L̂ = L̂(ρ), and,
hence, the result follows from Theorem 3.2.

When W (ξ) ≡ W , the mapping ξ �→ D(ξ) is even Lipschitz continuous with
respect to the Pompeiu–Hausdorff distance dl∞ due to [35]. Hence, H(t) ≡ t and
FH = F2, and then the previous result boils down to [18, Proposition 3.2].

4. Two-stage multiperiod models. If the second stage of a stochastic pro-
gram with recourse models a (stochastic) dynamical decision process (see section 1),
our two-stage problem takes on the form
(4.1)

min

⎧⎨
⎩cy0 +

l∑
j=1

qj(ξ)yj :y0 ∈ X, yj ∈ Yj ,Wjjyj = hj(ξ) −Wjj−1(ξ)yj−1, j = 1, . . . , l

⎫⎬
⎭ ,
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where for j = 1, . . . , l, Yj ∈ R
mj are polyhedral sets for some finite l and first-stage

decision x := y0; the matrices Wj,j−1(ξ) are (potentially) stochastic. Then the second-
stage program has separable block structure; i.e., the recourse variable y has the form
y = (y1, . . . , yl), the polyhedral set Y is the Cartesian product of polyhedral sets
Yj ∈ R

mj , j = 1, . . . , l, the element T (ξ)x has the components T1(ξ)x := W10(ξ)x
and Tj(ξ)x = 0, j = 2, . . . , l, and the random recourse matrix W (ξ) is of the form

(4.2) W (ξ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

W11 0 0 0 · · · 0 0 0
W21(ξ) W22 0 0 · · · 0 0 0

0 W32(ξ) W33 0 · · · 0 0 0
...

...
...

...
...

...
...
...

0 0 0 0 · · · Wl−1l−2(ξ) Wl−1l−1 0
0 0 0 0 · · · 0 Wll−1(ξ) Wll

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

i.e., all matrices Wjj , j = 1, . . . , l, in the diagonal of W (ξ) are nonstochastic. Denoting
by qj(ξ) and hj(ξ) the components of q(ξ) and h(ξ), respectively, the integrand f0 is
of the form

f0(ξ, x) = cx + inf

⎧⎨
⎩

l∑
j=1

qj(ξ)yj : Wjjyj = hj(ξ) −Wjj−1(ξ)yj−1, yj ∈ Yj , j = 1, . . . , l

⎫⎬
⎭

=: cx + Ψ1(ξ, x),

where the function Ψ1 is given by the recursion

Φj(ξ, uj−1) := inf {qj(ξ)yj + Ψj+1(ξ, yj) : Wjjyj = uj−1, yj ∈ Yj} ,(4.3)

Ψj(ξ, yj−1) := Φj(ξ, hj(ξ) −Wjj−1(ξ)yj−1)(4.4)

for j = l, . . . , 1, where y0 = x and Ψl+1(ξ, yl) ≡ 0.
While the continuity and growth properties of the function f0(·, x) in case l = 1

may be derived from Lemma 3.1, we need an extended result for establishing Lipschitz
continuity properties of the inf-projection Φj for j = 1, . . . , l. The results in [39] were
developed precisely to deal with the present situation. To state the result, we denote
by D∞ the recession cone of a convex set D ⊆ R

m. It consists of all elements xd ∈ R
m

such that x + λxd ∈ D for all x ∈ D and λ ∈ R+. Clearly, we have D∞ = {0} if D
is bounded. Furthermore, D∞ is polyhedral if D is polyhedral. Next we record [39,
Proposition 4.4] and provide a self-contained proof for the convenience of the reader.

Lemma 4.1. Let h ∈ R
d, W ∈ R

d×n, and Y ⊆ R
n be polyhedral. Let u =

(u1, u2) ∈ R
n × R

d and

Φ(u) := inf{f(u1, y) : Wy = h− u2, y ∈ Y }.

Assume that ker (W ) ∩ Y ∞ = {0} and that f is Lipschitz continuous on {(u1, y) ∈
R

n × Y : ‖u1‖ ≤ r, ‖y‖ ≤ r} with constant L(r) for every r > 0. Then, Φ(·)
is Lipschitz continuous on {(u1, u2) ∈ dom Φ : ‖u1‖ ≤ r, ‖u2‖ ≤ r} with constant
LML(KM max{1, r}) for every r > 0, where LM ≥ 1 and KM ≥ 1 are constants
depending only on the set-valued mapping M(u2) := {y ∈ Y : Wy = h− u2} from R

d

to R
n.
Proof. The condition ker (W )∩Y ∞ = {0} is equivalent to the local boundedness of

the mapping M . M is Lipschitz continuous with respect to the Pompeiu–Hausdorff
distance dl∞ (with constant LM ≥ 1) since its graph is polyhedral [23, Example
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9.35]. Since the set M(u2) is compact, Φ is finite for all pairs (u1, u2) such that
u2 ∈ domM . Now, let r > 0 and u = (u1, u2), ũ = (ũ1, ũ2) ∈ dom Φ ∩ {(u1, u2) ∈
R

n × R
d : ‖u1‖ ≤ r, ‖u2‖ ≤ r}. Then there exist y(u2) ∈ M(u2) and y(ũ2) ∈ M(ũ2)

such that Φ(u) = f(u1, y(u2)) and ‖y(u2) − y(ũ2)‖ ≤ LM‖u2 − ũ2‖. In particular,
there exists a constant KM ≥ 1 such that

max{‖y(u2)‖, ‖y(ũ2)‖} ≤ KM max{1, ‖u2‖, ‖ũ2‖} ≤ KM max{1, r}.

We obtain

Φ(ũ) − Φ(u) ≤ f(ũ1, y(ũ2)) − f(u1, y(u2))

≤ L(KM max{1, r})(‖ũ1 − u1‖ + ‖y(ũ2) − y(u2)‖)
≤ LML(KM max{1, r})(‖ũ1 − u1‖ + ‖ũ2 − u2‖),

and that completes the proof.
Proposition 4.2. Let W (ξ) be as described by (4.2). Assume the relatively

complete recourse condition (A1) is satisfied and that ker (Wjj) ∩ Y ∞
j = {0} for j =

1, . . . , l − 1. Then, there exist constants L > 0, L̂ > 0, and K > 0 such that the
following holds for all ξ, ξ̃ ∈ Ξ and x, x̃ ∈ X ∩ ρB:

|f0(ξ, x) − f0(ξ̃, x)| ≤ Lmax{1, ρ, ‖ξ‖l, ‖ξ̃‖l}‖ξ − ξ̃‖,
|f0(ξ, x) − f0(ξ, x̃)| ≤ L̂max{1, ‖ξ‖l+1}‖x− x̃‖,

|f0(ξ, x)| ≤ K max{1, ρ, ‖ξ‖l+1}.

Proof. Due to the assumptions, all sets of the form Mj(vj) := {yj ∈ Yj : Wjjyj =
vj} are bounded polyhedra for all vj ∈ R

rj and j = 1, . . . , l. Furthermore, the
set-valued mappings Mj from R

rj to R
mj are Lipschitz continuous on domMj with

constant Lj . Due to (A1), we have recursively hj(ξ) − Wjj−1(ξ)yj−1 ∈ domMj for
all yj−1 ∈ Yj−1, y0 = x ∈ X, ξ ∈ Ξ, and j = 2, . . . , l. Hence, if Lemma 4.1 is used
recursively by setting Φ = Φj , fj(u1, yj) := qj(ξ)yj + Ψj+1(ξ, yj) with u1 = ξ and
u2 = uj−1, each subproblem (4.3) is solvable. First we consider the functions Φl and
Ψl:

Φl(ξ, ul−1) = inf{ql(ξ)yl : Wllyl = ul−1, yl ∈ Yl},
Ψl(ξ, yl−1) = Φl(ξ, hl(ξ) −Wll−1(ξ)yl−1).

Then the Lipschitz constant of fj on {(ξ, yl) ∈ Ξ×Yl : ‖ξ‖ ≤ r, ‖yl‖ ≤ r} has the form

Ll max{1, r} and Lemma 4.1 implies that Φl has the Lipschitz constant L̂l max{1, r}
on {(ξ, ul−1) ∈ Ξ × domMl : ‖ξ‖ ≤ r, ‖ul−1‖ ≤ r}. Due to the term Wll−1(ξ)yl−1 in
the definition of Ψl, however, the function Ψl has the Lipschitz constant L̃l max{1, r2}
on {(ξ, yl−1) ∈ Ξ × Yl−1 : ‖ξ‖ ≤ r, ‖yl−1)‖ ≤ r}. Since Ψl enters the definition of
fl−1 and the infimum, Φl−1 is Lipschitz continuous with constant L̂l−1 max{1, r2} on
{(ξ, ul−2) ∈ Ξ × domMl−1 : ‖ξ‖ ≤ r, ‖ul−2‖ ≤ r} according to Lemma 4.1. Due
to the term Wl−1l−2(ξ)yl−2, the function Ψl−1 is Lipschitz continuous with constant
L̃l−1 max{1, r3} on {(ξ, yl−2) ∈ Ξ × Yl−2 : ‖ξ‖ ≤ r, ‖yl−2)‖ ≤ r}, etc. This process
may be continued until one concludes that Φ1 is Lipschitz continuous with constant
L̂1 max{1, rl} on {(ξ, u0) ∈ Ξ× domM1 : ‖ξ‖ ≤ r, ‖u0‖ ≤ r}. Hence, the function Ψ1

depending on (ξ, x) satisfies the Lipschitz continuity property

|Ψ1(ξ, x) − Ψ1(ξ̃, x̃)| ≤ L̃1 max{1, ρ, rl}(max{1, ρ}‖ξ − ξ̃‖ + max{1, r}‖x− x̃‖)
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on the set {(ξ, x) ∈ Ξ ×X : ‖ξ‖ ≤ r, ‖x‖ ≤ ρ}.
This yields the assertions about f0 and completes the proof.

Due to the previous result we obtain

PF ⊇ Pl+1(Ξ)={Q ∈ P(Ξ) :

∫
Ξ

‖ξ‖l+1Q(dξ) < ∞}

and
1

Lmax{1, ρ}f0(x, ·) ∈ Fl+1(Ξ)

for each x ∈ X ∩ ρB, and arrive, after specializing Theorem 3.2, at the following.

Corollary 4.3. Let W (ξ) be as described by (4.2). Assume the relatively
complete recourse condition (A1) is satisfied and that ker (Wjj) ∩ Y ∞

j = {0} for
j = 1, . . . , l − 1.

Then there exist constants L > 0 and ε̂ > 0 such that for any ε ∈ (0, ε̂) the
estimates

|v(P ) − v(Q)| ≤ Lζl+1(P,Q),

dl∞(Sε(P ), Sε(Q)) ≤ L

ε
ζl+1(P,Q)

hold whenever Q ∈ Pl+1(Ξ) and ζl+1(P,Q) < ε.

The case l = 1 corresponds to the situation of two-stage models with fixed re-
course, and that situation was already covered by [24, Theorem 24]. We note that
the corollary remains valid for the slightly more general situation that Wjj−1(ξ)yj−1

in (4.1) is replaced by
∑j−1

i=1 Wji(ξ)yi, and, hence, all lower diagonal blocks of W (ξ)
are random. We also note that the corollary applies to recourse matrices of the form
(1.5) in risk averse two-stage models with polyhedral convex risk functionals.

If the recent stability result [10, Theorem 2.1] for linear multistage models is
restricted to the two-stage model (4.1), it implies the existence of positive constants
L and δ such that

(4.5) |v(P ) − v(Q)| ≤ L l+1(P,Q)

holds for every Q ∈ Pl+1(Ξ) with l+1(P,Q) < δ; the distance r denotes the Lr-
minimal or Wasserstein metric
(4.6)

r(P,Q) :=

(
inf

{∫
Ξ×Ξ

‖ξ − ξ̃‖rη(dξ, dξ̃) : η ∈ P(Ξ × Ξ), π1η = P, π2η = Q

})1/r

on Pr(Ξ) for any r ≥ 1, where π1 and π2 denote the projections onto the first and
second components, respectively. It is known that sequences in Pr(Ξ) converge with
respect to both metrics ζr and r if they converge weakly and if their rth order
absolute moments converge. To derive a quantitative estimate, let η∗ ∈ P(Ξ × Ξ) be
a solution of the minimization problem on the right-hand side of (4.6). Such solutions
exist according to [17, Theorem 8.1.1]. Then the duality theorem [17, Theorem 5.3.2]
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for the Fortet–Mourier metric of order r implies, via Hölder’s inequality, the estimate

ζr(P,Q) ≤
∫

Ξ×Ξ

max{1, ‖ξ‖, ‖ξ̃‖}r−1‖ξ − ξ̃‖η∗(dξ, dξ̃)

≤
(∫

Ξ×Ξ

max{1, ‖ξ‖, ‖ξ̃‖}rη∗(dξ, dξ̃)
) r−1

r
(∫

Ξ×Ξ

‖ξ − ξ̃‖rη∗(dξ, dξ̃)
) 1

r

=
(∫

Ξ×Ξ

max{1, ‖ξ‖, ‖ξ̃‖}rη∗(dξ, dξ̃)
) r−1

r

r(P,Q)

≤
(
1 +

∫
Ξ

‖ξ‖r(P + Q)(dξ)
) r−1

r

r(P,Q).

Since the convergence of probability measures with respect to r and ζr implies the
convergence of their rth order absolute moments, the stability result for optimal
values obtained in Corollary 4.3 implies (4.5) (with some constant L > 0). However,
the convergence of ζr(P, Pn) to 0 may be faster than r(P, Pn) for some sequence (Pn)
of probability measures, as illustrated in [18, Example 3.4]. Hence, the stability result
for optimal values in Corollary 4.3 strictly extends the estimate (4.5) for multiperiod
two-stage stochastic programs.

5. Empirical approximations of two-stage models. Let ξ1, ξ2, . . . , ξn, . . . be
independent and identically distributed Ξ-valued random variables on some probabil-
ity space (Ω,A,P) having the common distribution P , i.e., P = Pξ−1

1 . We consider
the empirical measures

Pn(ω) :=
1

n

n∑
i=1

δξi(ω) (ω ∈ Ω; n ∈ N)

and the empirical approximation of the stochastic program (1.1) with sample size n,
i.e.,

(5.1) min

{
1

n

n∑
i=1

f0(ξi(·), x) : x ∈ X

}
.

Since the objective function of (5.1) is a random lsc function from R
m × Ω to R,

the optimal value v(Pn(·)) of (5.1) is measurable from Ω to R and the ε-approximate
solution set Sε(Pn(·)) is a closed-valued measurable set-valued mapping from Ω to
R

m (see Chapter 14 and, in particular, Theorem 14.37 of [23]).
Qualitative and quantitative results on the asymptotic behavior of solutions to

(5.1) are given, e.g., in [2, 6, 13] and [12, 15, 16, 18, 30], respectively.
Due to the results in the previous sections, the asymptotic behavior of v(Pn(·))

and Sε(Pn(·)) is closely related to uniform convergence properties of the empirical
process {

√
n(Pn(·) − P )f =

1√
n

n∑
i=1

(f(ξi(·)) − Pf)

}
f∈F

indexed by the class F = {f0(x, ·) : x ∈ X}. Here, we set Qf :=
∫
Ξ
f(ξ)Q(dξ) for any

Q ∈ P(Ξ) and f ∈ F . Uniform convergence properties refer to the convergence, or to
the convergence rate, of

(5.2) dF (Pn(·), P ) = sup
f∈F

|Pn(·)f − Pf |
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to 0 in terms of some stochastic convergence. Since the supremum in (5.2) is non-
measurable in general, the outer probability P

∗ (defined by P
∗(B) = inf{P(A) : B ⊂

A,A ∈ A} for any subset B of Ω) is used to describe convergence in probability and
almost surely, respectively (cf. [32]).

The class F is called a P–Glivenko–Cantelli class if the sequence (dF (Pn(·), P )) of
random variables converges to 0 P

∗-almost surely or, equivalently, in outer probability.
The empirical process is called uniformly bounded in outer probability with tail CF (·)
if the function CF (·) is defined on (0,∞) and decreasing to 0, and the estimate

(5.3) P
∗({ω :

√
ndF (Pn(ω), P ) ≥ ε}) ≤ CF (ε)

holds for all ε > 0 and n ∈ N.
Whether a given class F is a P–Glivenko–Cantelli class or the empirical process

is uniformly bounded in outer probability depends on the size of the class F mea-
sured in terms of bracketing numbers, or of the corresponding metric entropy numbers
defined as their logarithms (see [32]). To introduce this concept, let F be a subset
of the normed linear space Lp(Ξ, P ) (for some p ≥ 1) equipped with the usual norm

‖f‖P, p = (P |f |p) 1
p . The bracketing number N[ ](ε,F , Lp(Ξ, P )) is the minimal num-

ber of brackets [l, u] = {f ∈ Lp(Ξ, P ) : l ≤ f ≤ u} with ‖l − u‖P, p < ε needed to
cover F . The following result provides criteria for the desired properties in terms of
bracketing numbers. For its proof we refer to [32, Theorem 2.4.1] and [31, Theorem
1.3].

Theorem 5.1. Let F be a class of real-valued functions on Ξ. If

(5.4) N[ ](ε,F , L1(Ξ, P )) < ∞

holds for every ε > 0, then F is a P–Glivenko–Cantelli class.
If F is uniformly bounded and there exist constants r ≥ 1 and R ≥ 1 such that

(5.5) N[ ](ε,F , L2(Ξ, P )) ≤
(R
ε

)r

for every ε > 0, then the empirical process indexed by F is uniformly bounded in outer
probability with exponential tail CF (ε) = (K(R)εr−

1
2 )r exp(−2ε2) with some constant

K(R) depending only on R.
Next we consider the class F := Fρ of integrands defined by (3.3) in section

3 and derive conditions implying the assumptions of Theorem 5.1, particularly the
assumptions (5.4) and (5.5) for the bracketing numbers N[ ](ε,Fρ, Lp(Ξ, P )) with p ∈
{1, 2}.

Theorem 5.2. Let the assumptions of Proposition 3.3 be satisfied and H : R+ →
R+ be defined by (3.7). If P ∈ PH(Ξ), then Fρ = {f0(·, x) : x ∈ X ∩ ρB} is a
P -Glivenko–Cantelli class for any ρ > 0, i.e.,

(5.6) lim
n→∞

sup
x∈X∩ρB

∣∣∣∣
∫

Ξ

f0(ξ, x)Pn(ω)(dξ) −
∫

Ξ

f0(ξ, x)P (dξ)

∣∣∣∣ = 0 P- a.s.

If, in addition, Ξ is bounded, then the empirical process indexed by Fρ is uniformly
bounded in probability with exponential tail; i.e.,
(5.7)

P

({
ω :

√
n sup

x∈X∩ρB

∣∣∣∣
∫

Ξ

f0(ξ, x)(Pn(ω) − P )(dξ)

∣∣∣∣ ≥ ε

})
≤ (K(R)εr−

1
2 )r exp(−2ε2)
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holds for some constant K(R) > 0, any ε > 0, and n ∈ N.

Proof. According to (3.6) in Proposition 3.3, the functions f0(ξ, ·) satisfy the
Lipschitz property

f0(ξ, x) − f0(ξ, x̃) ≤ L̂max{1, H(‖ξ − ξ0‖)‖ξ − ξ0‖}‖x− x̃‖

for all x, x̃ ∈ X ∩ ρB, and ξ ∈ Ξ. Setting F (ξ) := L̂max{1, H(‖ξ − ξ0‖)‖ξ − ξ0‖} for
all ξ ∈ Ξ, we conclude from [32, Theorem 2.7.11] that

(5.8) N[ ](2ε‖F‖P, 1,Fρ, L1(Ξ, P )) ≤ N(ε,X ∩ ρB,Rm) ≤ Kε−m

holds for some K > 0 and all ε > 0. Since ‖F‖P, 1 is finite, we may replace ε by
ε/2‖F‖P, 1 in (5.8) and obtain that N[ ](ε,Fρ, L1(Ξ, P )) is finite for all ε > 0. Thus,
condition (5.4) in Theorem 5.1 is satisfied.

If Ξ is bounded, the class Fρ is uniformly bounded and condition (5.5) in Theorem
5.1 is also satisfied due to (5.8). It remains to note that the supremum supx∈X∩ρB

may be replaced by a supremum with respect to a countable dense subset of X ∩ ρB.
Hence, the suprema in (5.6) and (5.7) are measurable with respect to A and, thus,
the outer probability P

∗ can be replaced by P.

When combining the previous result with Theorem 3.2, we arrive at conditions
implying a Glivenko–Cantelli result and a large deviation result for the distances of
empirical ε-approximate solution sets Sε(Pn(·)) to Sε(P ) in the case of the two-stage
model (3.2) with random recourse.

6. Conclusions. The quantitative stability results of section 3 extend earlier
work for two-stage models with fixed recourse [18] and for multiperiod two-stage
models [10]. Since Theorem 3.2 is stated in terms of the (uniform) semidistances
dFρ , it allows two types of applications. First, it is possible to utilize metric entropy
results and to quantify the asymptotic behavior of statistical approximations to two-
stage stochastic programs with random recourse. Second, the analysis of continuity
properties of the convex random lsc functions f0 enables bounding semidistances by
appropriate Fortet–Mourier metrics. Such metrics are easier to handle due to their
relations to mass transportation problems and their dual representations, particularly
for computational purposes (e.g., in scenario reduction algorithms developed in [5, 9]).

The general stability results for model (1.1) in section 2 provide continuity prop-
erties of infima and (approximate) solution sets relative to changes of the original
probability distribution. They are simple consequences of general perturbation re-
sults for optimization problems. Presently, they are stated in terms of the uniform
probability semidistance dFρ on the space of probability measures, although the same

results would be valid in terms of the corresponding epi-distances d̂lρ or dlρ, too.
Such epi-distances would allow for richer spaces of probability measures PF and for
extended real-valued objective functions E

P f0(x) with different effective domains,
respectively. But, since a theory for epi-counterparts of uniform distances of Fortet–
Mourier type and of uniform large deviation results (see (5.3)) is not yet developed,
the achieved generality would appear to be wasted. If, however, these gaps are filled
in the future, the framework developed in section 2 forms the basis for extending the
present results in sections 3, 4, and 5.
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Ruszczyński and A. Shapiro, eds., Handbooks Oper. Res. Management Sci. 10, Elsevier,
Amsterdam, 2003, pp. 483–554.

[25] W. Römisch and R. Schultz, Stability analysis for stochastic programs, Ann. Oper. Res., 30
(1991), pp. 241–266.

[26] W. Römisch and R. Schultz, Lipschitz stability for stochastic programs with complete re-
course, SIAM J. Optim., 6 (1996), pp. 531–547.

[27] W. Römisch and A. Wakolbinger, Obtaining convergence rates for approximations in
stochastic programming, in Parametric Optimization and Related Topics, J. Guddat, H. Th.
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Abstract. The practical motivation for this paper is provided by the recruitment problem faced
by many organizations of fixed size: to keep the average age young (and thus keep innovation and
productivity high) while at the same time keeping levels of recruitment high. A typical example is
an academy of sciences. The problem is formalized by an infinite horizon optimal control model for
a first order PDE with nonlocal dynamics (a McKendrick-type equation). Based on the nonstandard
necessary optimality condition proved in the paper, the following results are established: (i) station-
arity of the optimal recruitment density; (ii) strong ergodicity of the optimal solution; (iii) principle
of “bipolar” recruitment in the case where the productivity of the organization is measured by the
average age of the members. The analysis involves a new type of transversality condition for the
costate system, the stability with respect to perturbations of the optimal solution of a noncoercive
(bang-bang type) problem, boundedness, and stability of the solution of a specific Volterra integral
equation of the second kind.

Key words. optimal control, distributed control, population dynamics, ergodicity, McKendrick
equation, infinite horizon problems, stability analysis
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1. Introduction. The dynamics of populations of fixed size plays an important
role in demography (e.g., migration to guarantee zero population growth for below-
replacement fertility) and in manpower planning; see, e.g., [28, 16, 27, 5, 17, 29].
Optimal investment problems in a fixed-size firm with age-structured physical capital
and fixed or variable scrapping age (in the framework of, e.g., [10]) lead to technical
issues similar to the ones involved below.

The practical motivation for the fixed-size problem investigated in this paper is
the following. It has been observed that in many organizations of fixed size, such
as academies of sciences in many countries, the average age of the members has
increased in past decades [24]. Therefore, the question of appropriate recruitment
strategy arises, i.e., that of ensuring a reasonably low average age of the members of
the organization while at the same time providing a reasonably high recruitment rate
which is desirable for several reasons.1 These two objectives turn out to be conflicting
[24]. More generally, we consider the average productivity of the organization as
one of the objectives to be maximized, the recruitment intensity being the second
objective, where we assume that the productivity of the members of the organization
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1For an academy of sciences, for example, a too-small number of elections would frustrate the
scientists outside the academy and would decrease the stimulative role of the academy. Moreover,
the new members bring new ideas, represent new areas, etc.
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depends on the age. The following model for the dynamics of the age-structure of the
organization involves a nonstandard version of the McKendrick equation [26, 33, 2]:

Mt(t, a) + Ma(t, a) = −μ(t, a)M(t, a) + R(t)u(t, a),(1.1)

R(t) = M(t, ω) +

∫ ω

0

μ(t, a)M(t, a) da,(1.2)

with the side conditions

M(0, a) = M0(a), M(t, 0) = 0,(1.3)

and the state constraint

M(t, a) ≥ 0.

Here M(t, ·) is the age-density of the members of the organization at time t; μ(t, a)
is the mortality rate at time t and age a; R(t) is the intensity of recruitment at time
t; u(t, ·) is the age-density2 of recruitment at time t; M0(·) is the initial age-density of
members; ω is the (fixed) retirement age of members; and Mt +Ma is the sum of the
partial derivatives of M (strictly speaking, this is the derivative of M in the direction
(1, 1) in the (t, a)-plane).

The dynamics is given by the classical McKendrick equation (1.1), while (1.2)
means that the size of the organization is fixed and equals M̄ =

∫ ω

0
M0(a) da (this

can be easily seen by integrating (1.1) in a and utilizing the assumption for fixed
size3).

The following constraints are posed for the recruitment density, u(t, ·), which is
considered further as a control variable:

0 ≤ u(t, a) ≤ ū(a),

∫ ω

0

u(t, a) da = 1.(1.4)

The upper bound, ū(a), for the control has a different meaning in different practical
situations and is discussed in detail in [14] for the case of an academy of sciences.
It will be proved in section 2 that the state constraint M(t, a) ≥ 0 is automatically
satisfied for any admissible control function u; therefore we do not refer to it further.

As mentioned above, we focus our analysis on two objectives that are to be
maximized:

• the average productivity of the organization,
∫ ω

0
p(t, a)M(t, a) da, and

• the recruitment intensity, R(t).
Here p(t, a) is the productivity of the members of age a. Productivity may have
different meanings in different contexts, but for this paper it matters only that it
depends on age. The average age of the members is a special case where p(t, a) =
−a/M̄ (taken with a minus sign since it is to be minimized).

A study of the above multiobjective and state-constrained problem in the spirit
of the viability theory for age-structured systems [7] will be presented by the second
author elsewhere.

2To avoid misunderstanding, we stress that M(t, ·) need not be a probabilistic density, while
u(t, ·) is assumed to be a probabilistic density, in the sense given by the equality in (1.4) below.

3The extension for organizations with smoothly changing size is straightforward. The same
applies to a time-dependent control constraint in (1.4) below (excepting the results in section 5).
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In this paper we employ the Pareto optimization framework, considering the ob-
jective function

max

∫ ∞

0

e−rt

[
αR(t) + β

∫ ω

0

p(t, a)M(t, a) da

]
dt,(1.5)

where r > 0 is a time-preference rate, and α > 0 and β > 0 are weights attributed to
the two objectives.

Although the above problem is a rather specific one, it is of substantial interest
and reflects the intensive policy-oriented discussions that have taken place in many
academies of sciences during the past few years [24, 15]. What is more important
for the present paper is that the problem provides a number of challenges: (i) it is
nonlinear (although bilinear); (ii) the time horizon is infinite, which creates substantial
difficulties in obtaining appropriate transversality conditions for the costate system
which are strong enough to facilitate the stability analysis needed for the main results4;
(iii) due to (1.2) the dynamics in (1.1) is nonlocal; and (iv) the optimal solution is
of bang-bang type, which is known to create substantial difficulties in the stability
analysis of the optimal control also for ODEs (cf., e.g., [23, 19]).

The main results are (i) time-invariance of the optimal recruitment distribution
in the case of time-invariant data (section 5); (ii) strong ergodicity of the optimal
solution (section 6); and (iii) characterization of the optimal control in a case of
particular practical interest by the principle of bipolar recruitment (section 7).

All these results are based on the nonstandard optimality condition of Pontryagin
type obtained in section 3, with a rather strong transversality condition, which is
crucial for the main result (compare with the transversality conditions in the state-of-
the-art paper [6]). The proof of the transversality condition is given in the appendix.
Some basic properties of the problem under consideration are presented in section 2,
and a basic auxiliary result is proved in section 4.

2. Basic properties. In this section we consider a somewhat more general ob-
jective function which arises in other models of organizations with fixed size:

max

∫ ∞

0

e−rt

[
αR(t) + β

∫ ω

0

A(t, a,M(t, a), R(t)u(t, a)) da

]
dt,(2.1)

subject to (1.1)–(1.4) (the sign “∞” means everywhere “+∞”). Assuming A is de-
pendent on the size of the inflow w = Ru is reasonable due to possible adjustment
costs.

Denote for brevity Ω = [0, ω], D = [0,∞) × [0, ω].

Standing assumptions. μ : D �→ [0, μ̄] is measurable; ū : Ω �→ [0, v̄] is measurable,∫
Ω
ū(a) da > 1; M0 : Ω �→ [0,∞) is measurable and bounded; A : D × R × R is

bounded (locally in (M,w)), measurable in t, a, concave in (M,w), and differentiable
in M and w; and the derivatives AM and Aw are bounded and Lipschitz continuous
in (M,w) uniformly in (t, a). Here μ̄ ≥ 0 and v̄ > 0 are constants.

By definition, M ∈ Lloc
∞ (D) is a solution of (1.1) (for given measurable functions

R and u) if it can be represented by a function which is absolutely continuous on

4 Out of many papers that consider optimal control of McKendrick equations, only [25] studies
the asymptotic behavior of the adjoint variable for a special system (not including the problem
considered here), but the transversality condition obtained there is based on an implicit assumption,
the verification of which is, actually, the main trouble. Our approach is substantially different.
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almost every (a.e.) characteristic line t − a = const and satisfies (1.1) almost ev-
erywhere on a.e. characteristic line, where the symbol Mt + Ma is interpreted as the
directional derivative in direction (1, 1). Notice that the trace of a solution, M , on
every straight line which is transversal to the characteristic lines is well defined; in
particular, M(·, ω), M(0, ·), M(t, 0), etc. are well-defined elements of Lloc

∞ . Conse-
quently, the side conditions (1.3) are understood as equalities in Lloc

∞ (more details
are given in [18]; see also [33, 2]). Equation (1.2) has the meaning of an equality
between L∞-functions.

Lemma 2.1. For every measurable function u satisfying (1.4), the system (1.1)–
(1.3) has a unique solution in D; the solution is essentially bounded (uniformly in u)
and satisfies M(t, a) ≥ 0.

Proof. For a given function R ∈ Lloc
∞ (0,∞), the solution of (1.1), (1.3) has the

following explicit representation, obtained by application of the Cauchy formula on
the characteristic lines t− a = const:

M(t, a) = ψ(0, a, t)χΩ(a− t)M0(a− t)(2.2)

+

∫ t

0

ψ(τ, a, t)χΩ(a− t + τ)R(τ)u(τ, a− t + τ) dτ,

where χΩ is the characteristic function of the set Ω, and

ψ(τ, a, t) = e−
∫ t
τ
μ(θ,a−t+θ) dθ.(2.3)

Plugging this into (1.2) and changing the order of integration we obtain the following
equation for R:

R(t) = f(t) +

∫ t

0

K(t, τ)R(τ) dτ,(2.4)

where

f(t) = ψ(0, ω, t)χΩ(ω − t)M0(ω − t) +

∫
Ω

μ(t, a)ψ(0, a, t)χΩ(a− t)M0(a− t) da,

K(t, τ) = ψ(τ, ω, t)χΩ(ω − t + τ)u(τ, ω − t + τ)

+

∫
Ω

μ(t, a)ψ(τ, a, t)χΩ(a− t + τ)u(τ, a− t + τ) da.

Since this is a Volterra integral equation of the second kind, it has a solution in
Lloc
∞ (0,∞) (see, e.g., [20, Theorem 4.2, Chapter 9]). It remains to prove that R ∈

L∞(0,∞), which is the main message of the lemma.

As already mentioned in the introduction, (1.2) is equivalent to

∫ ω

0

M(t, a) da = M̄, where M̄ =

∫ ω

0

M0(a) da.

Due to the conditions (1.4) for u, there exists θ > 0 such that
∫ ω−θ

0
u(t, s) ds ≥ 1/2

for every t. Then, using (2.2), we have

M̄ ≥
∫ ω

0

∫ t

0

ψ(τ, a, t)χΩ(a− t + τ)R(τ)u(τ, a− t + τ) dτ da.
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If we extend R as R(t) = 0 for t < 0, we have

M̄ ≥
∫ t

t−ω

∫ ω

t−τ

ψ(τ, a, t)R(τ)u(τ, a− t + τ) dadτ ≥ c

∫ t

t−ω

∫ ω−t+τ

0

R(τ)u(τ, s) dsdτ,

where c is a lower bound for ψ(τ, a, t), which is positive since t− τ ≤ ω. Hence,

M̄ ≥ c

∫ t

t−θ

∫ ω−t+τ

0

R(τ)u(τ, s) dsdτ ≥ c

2

∫ t

t−θ

R(τ) dτ.

Since this inequality holds for every t > 0, we have

∫ t

t−ω

R(τ) dτ ≤
∫ t

t−θ

+

∫ t−θ

t−2θ

+ · · · +
∫ t−(k−1)θ

t−kθ

≤ 2k

c
M̄,

where k is the smallest natural number satisfying kθ ≥ ω. Then formula (2.2), in
which the integration is, in fact, carried out on the interval [t− a, t] ⊂ [t− ω, t] (due
to the presence of the characteristic function of Ω), implies that

M(t, a) ≤ ‖M0‖L∞(Ω) +
2kū

c
M̄ almost everywhere.

The essential boundedness of R follows from (1.2).
To prove that M(t, a) ≥ 0 we note that K(t, a) ≥ 0 and f(t) ≥ 0; hence R(t) ≥ 0

[20, Proposition 8.1, Chapter 9]. Then (2.2) implies M(t, a) ≥ 0.
Proposition 2.1. Problem (1.1)–(1.4), (2.1) has a solution. In particular, prob-

lem (1.1)–(1.5) has a solution.
The proof is given in the appendix. Although the idea of the proof is applicable

only to a rather restricted class of problems, it could be useful beyond the specific
problem (1.1)–(1.4), (2.1).

Uniqueness of the optimal solution is proved under additional conditions in Theo-
rem 5.1. In general, uniqueness is not granted, as Example 1 in section 5 shows. Here
we mention only that the function “admissible control” −→ “objective value” is not
necessarily concave with respect to the control5; therefore, the uniqueness requires
some additional assumptions such as the one formulated in section 5.

3. Optimality conditions. Problem (1.1)–(1.4), (2.1) is on the infinite horizon
and involves the “advanced” term M(t, ω) in the right-hand side of the differential
equation. For each of these two reasons the maximum principle obtained in [11, 18],
and the other known optimality conditions for McKendrick-type control systems (see
the references in [18] and footnote 4) are not applicable.

5The claim that the function “admissible control u” −→ “objective value J(u)” is not concave
is nonobvious. We have a (generic) counterexample with μ(a) = 0, A = −aM , but the argument
behind it is too long, and we skip it due to the page limitation. The main idea is first to consider
the steady-state version of the problem, where (1.1)–(1.3) (with Mt = 0) are analytically solvable.
This allows us to represent J(u) in the form

J(u) =
c + dμ2(u)

ω − μ1(u)
, c, d > 0,

where μ1(u) and μ2(u) are the first and the second integral moments of u. It is easy to see that
the above function is strictly convex on the segment between two controls u1 and u2 for which
μ1(u1) = μ2(u1) and μ1(u2) = μ2(u2). After that we consider the intertemporal problem (1.1)–
(1.4), (2.1) and argue that the nonconcavity is preserved there if the discount r is sufficiently small.
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To obtain a necessary optimality condition we introduce the following adjoint
system for given reference L∞-functions M and u:

ξt(t, a) + ξa(t, a) = (r + μ(t, a))ξ(t, a) − μ(t, a)η(t)(3.1)

− βAM (t, a,M(t, a), R(t)u(t, a)),

η(t) = α +

∫ ω

0

ξ(t, a)u(t, a) da +

∫ ω

0

Aw(t, a,M(t, a), R(t)u(t, a))u(t, a) da,(3.2)

with the boundary condition

ξ(t, ω) = η(t).(3.3)

The meaning of a solution is the same as for the primal system (1.1)–(1.3). However,
the issue of existence and uniqueness here is much more complicated. Actually the
above system has infinitely many solutions in Lloc

∞ (D), while it has exactly one solution
belonging to L∞(D). The proof of the next lemma is given in the appendix.

Lemma 3.1. Let u be a control function satisfying (1.4). Then system (3.1)–(3.3)
has a unique solution (ξ, η) in the space L∞(D) × L∞(0,∞).

Remark 3.1. In general, certain transversality conditions are needed to ensure
uniqueness of the solution of the adjoint system for infinite horizon optimal control
problems. The usual form of the transversality condition for a discounted objective
integrand (see [6]) adapted to our problem would be limt→∞ e−rt‖ξ(t, ·)‖L∞(Ω) = 0.
Notice that the condition ξ ∈ L∞(D) represents a stronger transversality condition
which obviously implies the above one. This strong transversality condition plays a
key role in the subsequent analysis.6

Theorem 3.1. Let (u,M,R) be an optimal solution, and let ξ be the unique
solution of the adjoint system (3.1)–(3.3) in L∞(D). Then for a.e. t the optimal
control, u(t, ·), maximizes the integral∫ ω

0

[ξ(t, a)R(t)v(a) + βA(t, a,M(t, a), R(t)v(a))] da

on the set of functions v(·) satisfying

0 ≤ v(a) ≤ ū(a),

∫ ω

0

v(a) da = 1.(3.4)

The main difficulty is encapsulated in Lemma 3.1; therefore, below we only sketch
the rest of the proof, which is a matter of technical manipulations with an appropriate
needle variation.

Proof. Let us fix an arbitrary s > 0 which is a Lebesgue point of the functions

t −→
∫

Ω

ξ(t, a)R(t)u(t, a) da and t −→
∫

Ω

A(t, a,M(t, a), u(t, a)) da,

and also of every function of the form

t −→
∫

Ω

ξ(t, a)R(t)ũ(a) da and t −→
∫

Ω

A(t, a,M(t, a), ũ(a)) da,

6One of the referees suggested that boundedness of the adjoint variable might be possible to
prove also using the Lipschitz continuity of the value function of the problem and employing the
Barron–Jensen [9, 8] approach for proving the maximum principle.



986 GUSTAV FEICHTINGER AND VLADIMIR M. VELIOV

where ũ ∈ L∞(Ω) satisfies (3.4). Elementary measure-theoretic considerations, to-
gether with the separability of L1(Ω) and the boundedness of R, M , and ξ, yield that
a.e. s is a Lebesgue point of all these functions. The main point is to observe (we skip
the easy proof of this) that if s is a Lebesgue point of the last two groups of functions
for any u = uj belonging to a countable dense set in L1(Ω), then it is a Lebesgue
point for these functions for every u ∈ L1(Ω) also.

Denote T = s + ω. Let h ∈ (0, s) ∩ Ω be a “small” parameter, and denote
Sh := [s − h, s + h] × Ω. Let v be an arbitrary measurable function satisfying (3.4).
Consider the variation

Δu(t, a) =

{
0 for (t, a) �∈ Sh,
v(a) − u(t, a) for (t, a) ∈ Sh.

Obviously u+Δu satisfies (3.4) and therefore is an admissible control. For the solution
(M + ΔM,R + ΔR) of (1.1)–(1.3) corresponding to u + Δu it holds that

DΔM = −μΔM+ΔR(t)(u+Δu)+R(t)Δu, ΔM(0, a) = 0, ΔM(t, 0) = 0,(3.5)

ΔR(t) = ΔM(t, ω) +

∫ ω

0

μ(t, a)ΔM(t, a) da,(3.6)

where D is the derivative in the direction (1, 1), and we skip the arguments (t, a).
Applying formula (2.2) to (3.5) and then substituting ΔM in (3.6) we obtain (as in
the proof of Lemma 2.1) a Volterra equation of the second kind for ΔR:

ΔR(t) = f(t) +

∫ t

0

K(t, τ)ΔR(τ) dτ,

where K(t, τ) ≤ C(s) (here and below C(s), C1(s), . . . denote numbers that may
depend on s but not on h) for 0 ≤ τ ≤ t ≤ T , and

f(t) =

∫ t

0

ψ(τ, ω, t)χΩ(ω − t + τ)R(τ)Δu(τ, ω − t + τ) dτ

+

∫ t

0

∫ ω

0

μ(t, a)ψ(τ, a, t)χΩ(a− t + τ)R(τ)Δu(τ, a− t + τ) dτ da.

From here one can estimate

|f(t)| ≤ C1h.

Since the above Volterra equation has a locally bounded resolvent kernel (see, e.g.,
[20, Corollary 4.3, Chapter 9]), H(t, τ), we may express

ΔR(t) = f(t) +

∫ t

0

H(t, τ)f(τ) dτ.

Hence |ΔR(t)| ≤ C2(s)h. Then we have∫
D

|ΔR(t)Δu(t, a)|d(t, a) ≤
∫
Sh

|ΔR(t)Δu(t, a)|d(t, a) = Os(h
2),

where Os(h
2) ≤ C3(s)h

2.
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We multiply (3.5) by e−rtξ(t, a) and integrate on D:∫
D

e−rtξ(t, a)DΔM(t, a) d(t, a)

=

∫
D

e−rtξ(t, a)[−μ(t, a)ΔM(t, a) + ΔR(t)u(t, a) + R(t)Δu(t, a)] d(t, a) + Os(h
2).

Due to the relations ΔM(t, 0) = 0, ΔM(0, a) = 0, and ξ ∈ L∞(D), simple calculations
that we skip transform the left-hand side to∫ ∞

0

ξ(t, ω)ΔM(t, ω) dt−
∫
D

e−rt [−rξ(t, a) + Dξ(t, a)] ΔM(t, a) d(t, a).(3.7)

Due to (3.6), the right-hand side becomes

∫
D

e−rt

[
−μ(t, a)ξ(t, a) + μ(t, a)

∫
Ω

ξ(t, b)u(t, b) db

]
ΔM(t, a) d(t, a)(3.8)

+

∫
D

e−rtξ(t, a)ΔM(t, ω)u(t, a) d(t, a) +

∫
D

e−rtξ(t, a)R(t)Δu(t, a) d(t, a) + Os(h
2).

Since u is optimal, for the difference of the objective values, J(u+Δu)−J(u) ≤ 0,
we have

0 ≥
∫ ∞

0

e−rtαΔM(t, ω) dt

+

∫ ∞

0

e−rt

∫ ω

0

[αμ(t, a)ΔM(t, a) + βAM (t, a)ΔM(t, a) + βAw(t, a)ΔR(t)u(t, a)

+β (A(t, a,M(t, a), R(t)(u(t, a) + Δu(t, a))) −A(t, a))] dadt + Os(h
2),

where here and below the argument (t, a) of the functions A, Aw, and Aw is a sub-
stitution for (t, a,M(t, a), R(t)u(t, a)). We subtract from the right-hand side of the
above inequality the expression in (3.7) and add the expression (3.8) which has the
same value. Rearranging the terms and taking into account that ξ is the solution of
the adjoint system (3.1)–(3.3), we obtain

Os(h
2) ≥

∫
D

e−rt[ξ(t, a)R(t)Δu(t, a)

+β (A(t, a,M(t, a), R(t)(u(t, a) + Δu(t, a))) −A(t, a))] d(t, a).

This is equivalent to

1

2h

∫ s+h

s−h

e−rt

∫ ω

0

[ξ(t, a)R(t)u(t, a) + βA(t, a,M(t, a), R(t)u(t, a))] dadt

≥ 1

2h

∫ s+h

s−h

e−rt

∫ ω

0

[ξ(t, a)R(t)v(a) + βA(t, a,M(t, a), R(t)v(a))] dadt−Os(h).

Then the claim of the theorem follows by taking the limit with h → 0 and using the
definition of a Lebesgue point.
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4. An auxiliary result. From now on we consider only the original problem
(1.1)–(1.5).

Since for the objective (1.5) the function A = p(t, a)M is independent of u, when-
ever R(t) > 0 we may equivalently rewrite the maximization condition in Theorem 3.1
as ∫ ω

0

ξ(t, a)u(t, a) da = max
v:(3.4)

∫ ω

0

ξ(t, a)v(a) da,(4.1)

where (as indicated) the maximization is carried out on the set of functions v ∈ L∞(Ω)
satisfying (3.4). If R(t) = 0 the value of u is of no meaning. For convenience we define
in this case u(t, ·) as an arbitrary maximizer in (4.1), so that with this convention
(4.1) holds for every optimal control for a.e. t.7

Denote

σ(λ) = max
v

∫ ω

0

λ(a)v(a) da, λ ∈ L∞(Ω).

Then the adjoint system (3.1) can be rewritten in the following closed (feedback)
form:

ξt + ξa = (r + μ(t, a))ξ − μ(t, a)(α + σ(ξ(t, ·))) − βp(t, a),(4.2)

ξ(t, ω) = α + σ(ξ(t, ·)).(4.3)

The existence of a solution to (1.1)–(1.5) and the necessity of the maximum
principle imply that the above functional-differential system has at least one solution
in L∞(D). It will be useful to study the stability of the solution with respect to
perturbations in the right-hand side.

Lemma 4.1. Let ξ ∈ L∞(D) be a solution of (4.2), (4.3). Let ξδ ∈ L∞(D) be a
solution of (4.2), (4.3) (if such exists) with a perturbation δ ∈ L∞(D) added to the
right-hand side of (4.2). Then for every T > 0

‖ξδ − ξ‖L∞([T,∞)×Ω) ≤
‖δ‖L∞([T,∞)×Ω)

1 − q
,

where q ∈ (0, 1) is a number depending only on ω, r, and μ.
Proof. First we shall prove that σ is Lipschitz continuous with a Lipschitz constant

equal to one. Indeed, for λ1, λ2 ∈ L∞(Ω) we have (having in mind (3.4))

σ(λ1) = max
v

∫
Ω

λ1(a)v(a) da = max
v

[∫
Ω

λ2(a)v(a) da +

∫
Ω

(λ1(a) − λ2(a))v(a) da

]

≤ max
v

∫
Ω

λ2(a)v(a) da + max
v

∫
Ω

|λ1(a) − λ2(a)|v(a) da = σ(λ2) + ‖λ1 − λ2‖L∞(Ω).

If a solution ξδ exists, we consider ξδ(t, ω) as known, and solve (4.2) along the
characteristic lines, which gives for a.e. (t, a)

ξδ(t, a) = ϕ(t, a, t + ω − a)(α + σ(ξδ(t + ω − a, ·)))

7 This convention allows us to claim uniqueness of the optimal control later, without excluding the
possibility that R(t) = 0 for some t. Without this convention the uniqueness of the optimal control
proved later should be understood in the sense that for every optimal u(t, a) the corresponding
function R(t) is the same, and the values u(t, a) are also the same if R(t) is strictly positive.



OPTIMAL CONTROL OF A FIXED-SIZE POPULATION 989

+

∫ t+ω−a

t

ϕ(t, a, τ)
[
μ(τ, a− t + τ)(α + σ(ξδ(τ, ·)))

+βp(τ, a− t + τ) − δ(τ, a− t + τ)
]
dτ,

where ϕ is defined in (A.5) in the appendix.
Using the above formula also for δ = 0 and taking the difference, we obtain for

a.e. t ≥ T and a ∈ Ω that

|ξδ(t, a) − ξ(t, a)| ≤ ϕ(t, a, t + ω − a)|σ(ξδ(t + ω − a, ·)) − σ(ξ(t + ω − a, ·))|

+

∫ t+ω−a

t

ϕ(t, a, τ)
[
μ(τ, a− t + τ)|σ(ξδ(τ, ·)) − σ(ξδ(τ, ·))| + |δ(τ, a− t + τ)|

]
dτ

≤
[
ϕ(t, a, t + ω − a) +

∫ t+ω−a

t

ϕ(t, a, τ)μ(τ, a− t + τ) dτ

]
‖ξδ − ξ‖L∞([t,t+ω]×Ω)

+

∫ t+ω−a

t

|δ(τ, a− t + τ)|dτ ≤ q‖ξδ − ξ‖L∞([t,t+ω]×Ω) + ‖δ‖L∞([T,∞)×Ω),

where

q = ϕ(t, a, t + ω − a) +

∫ t+ω−a

t

ϕ(t, a, τ)μ(τ, a− t + τ) dτ.

Since from (A.5) we have

ϕτ (t, a, τ) = −ϕ(t, a, τ)(r + μ(τ, a− t + τ)),

it is an elementary exercise to prove that

q ≤ 1 − r

r + μ̄

(
1 − e−ω(r+μ̄)

)
< 1.

Denote ε = ‖δ‖L∞([T,∞)×Ω). Since the above (t, a) are arbitrary (with t > T ), we
estimate successively

|ξδ(t, a) − ξ(t, a)| ≤ ε + q‖ξδ − ξ‖L∞([t,t+ω]×Ω) ≤ ε + q(ε + q‖ξδ − ξ‖L∞([t,t+2ω]×Ω))

≤ · · · ≤ ε + q(ε + q(ε + (. . .))) ≤ ε

1 − q
.

Here we have used that ξδ − ξ ∈ L∞(D), so that qk‖ξδ − ξ‖L∞([t,t+kω]×Ω) → 0. The
above estimation implies the lemma.

Corollary 4.1. Equations (4.2), (4.3) have a unique solution in L∞(D).
Proof. It is enough to apply the above lemma with δ = 0.

5. Time-invariance and stability of the optimal control for stationary
data. In this section we prove that in the case of stationary (independent of t) data
μ and p, the optimal control of problem (1.1)–(1.5) is also stationary. (Of course,
the recruitment intensity, R(t), and the state density, M(t, ·), are time-dependent in
general.) This (at first glance) surprising property is a consequence of the linearity
of the system with respect to the state, M , and of the stability with respect to
perturbations of the closed-loop adjoint system (4.2), (4.3), established in Lemma
4.1. We also prove uniqueness of the optimal control and stability with respect to
data perturbations, which plays a crucial role for the ergodicity theorem in the next
section. Notice that the problem we consider has a bang-bang type solution; therefore,
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the issue of stability of the optimal control is complicated (cf., e.g., the recent papers
[19, 32]). Below we introduce an additional condition that implies the stability and,
in fact, also implies sufficiency of the maximum principle, an issue which is still under
investigation, also for bang-bang type ODEs (see, e.g., [31, 1, 23]).

Regularity assumption. For all real numbers d > 0 and e it holds that

meas{a ∈ Ω : μ(a) + dp(a) = e} = 0.

Important cases where the regularity assumption is fulfilled are discussed in sec-
tion 7.

Theorem 5.1. Let the regularity assumption hold. Let μ(t, a) = μ(a) and
p(t, a) = p(a) be time-invariant. Then the optimal control for problem (1.1)–(1.5)
is unique (see footnote 7) and time-invariant (that is, u(t, a) = u(a)) and satisfies the
following two conditions:

(i)

∫
Ω

λ(a)u(a) da = max
v

∫
Ω

λ(a)v(a) da,(5.1)

subject to (3.4), and

(ii)

∫
Ω

λ(a)u(a) da = −α,(5.2)

where λ is the solution of the equation

λ̇ = (r + μ(a))λ− βp(a) + ν, λ(ω) = 0,(5.3)

and ν is a “free” parameter.
In fact, the free parameter, ν, in the above formulation should be determined in

such a way that the solution of (5.1), (3.4) for this value of ν also satisfies the equality
(5.2) (with λ solving (5.3)). It is worth mentioning that the theorem implies that the
optimal control is independent of the initial condition M0. As a consequence of the
linearity of (1.1), (1.2), where the optimal u is plugged, the discounted value function
of the problem is linear. This fact does not seem to be obvious a priori.

Proof. For stationary data μ and p the adjoint system (4.2), (4.3) is also station-
ary. This alone does not imply that any solution is stationary, but below we prove
first that a stationary solution ξ(t, a) = ξ(a) exists.

Consider the equation

ξa(a) = (r + μ(a))ξ(a) − μ(a)(α + σ(ξ(·))) − βp(a), ξ(ω) = α + σ(ξ(·)).(5.4)

Denote η = α+σ(ξ(·)). For a fixed (given) η the unique solution of the above equation
can be explicitly written by the Cauchy formula. Replacing the expression for ξ in
the implicit end-point condition ξ(ω) = α+σ(ξ(·)), we obtain one linear equation for
η: bη = c, where the coefficient b has the form

b = 1 −
∫

Ω

[
ϕ(a, a, ω)u(a) −

∫ ω

a

ϕ(a, a, τ)μ(τ)u(τ) dτ

]
da

(see (A.5) for the definition of ϕ). Using the specific form of ϕ and the inequality
r > 0 one can easily prove that the above expression is strictly positive. This proves
existence of a solution, ξ, of (5.4).
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Obviously the extension of ξ(a) on D as a time-invariant function, ξ(t, a) = ξ(a),
satisfies the adjoint system (4.2), (4.3), and according to Corollary 4.1, it is its unique
solution. Then the maximum principle (Theorem 3.1) claims that for every optimal
control and for a.e. fixed t, the function u(a) = u(t, a) satisfies for a.e. t the conditions∫

Ω

ξ(a)u(a) da = max
v:(3.4)

∫
Ω

ξ(a)v(a) da = σ(ξ).(5.5)

For the time-invariance of u(t, a) it remains to prove that (5.5) has a unique solution,
u(a) (that is, u(t, a) must be the same for all t).

Introducing the function λ(a) = ξ(a) − η (where η = α + σ(ξ(·))) we easily see
that (5.3) (with ν = rη) is satisfied, and equalities (5.2) and (5.1) follow from (5.5).
Corollary 5.2 formulated below claims the uniqueness of the solution of (5.5) and
completes the proof.

Corollary 5.1. Let the measurable and bounded functions λ and u on Ω satisfy
conditions (i) and (ii) in Theorem 5.1. Then there is l < 0 such that the optimal
control u(a) has the following structure:

u(a) = 0 for a ∈ Ω−(l), u(a) = ū(a) for a ∈ Ω+(l),(5.6)

where Ω−(l) = {a ∈ Ω : λ(a) < l}, Ω+(l) = {a ∈ Ω : λ(a) > l}.
Proof. We may apply the Kuhn–Tucker-type result in Theorem 4 [21, 22, Chapter

1] (in the space L1(Ω)). The inequality for ū in the standing assumptions imply that
the Lagrange multiplier to the objective function can be taken equal to one. Then
the theorem claims that there exists l ∈ R (a Lagrange multiplier for the equality
constraint in (3.4)) such that u solves the problem

max
v

∫
Ω

[λ(a)v(a) − lv(a)] da

subject to 0 ≤ v(a) ≤ ū(a). Then (5.6) is obvious. Moreover, if l > 0 then u(a) may
happen only if λ(a) ≥ 0 and (5.2) cannot be fulfilled.

Clearly, if λ is constant on some subset of Ω, then it may happen that u(a) is
not uniquely determined for such a and furthermore may have an arbitrary value in
[0, ū(a)]. This will be the case in Example 1 given at the end of the section.

Lemma 5.1. Let the regularity assumption be fulfilled. Let λ be a solution of (5.3)
(with some ν) and u be a solution of the problem (5.1), (3.4). Assume that (5.2) is
fulfilled. Then for every ε > 0 there exists δ > 0 such that for every λ̃ ∈ L∞(Ω) for
which ‖λ̃− λ‖L∞(Ω) < δ and for every corresponding solution, ũ, of (5.1), (3.4) (with

λ̃ substituted for λ) it holds that

meas{a ∈ Ω : ũ(a) �= u(a)} < ε.

Proof. Assume that the claim is false. Then there exist ε > 0 and a sequence
λk ∈ L∞(Ω) such that ‖λk − λ‖L∞(Ω) < 1/k, and there are corresponding solutions
uk of (5.1), (3.4) such that

meas{a ∈ Ω : uk(a) �= u(a)} ≥ ε.

We apply Corollary 5.1 to u. The regularity assumption implies that the set Ω0(l) =
Ω\ (Ω−(l)∪Ω+(l)) has measure zero. Indeed, in the opposite case there would exist a
subset of Ω0(l) on which λ′(a) exists and equals zero. That is, (r+μ(a))l−βp(a)+ν = 0
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on a set of positive measure, which contradicts the regularity assumption since l < 0;
hence d = −β/l > 0.

Applying Corollary 5.1 to uk and λh, we define the sets Ωk
−(lk) and Ωk

+(lk) de-
termining the structure of uk. Then we have

{a ∈ Ω : uk(a) �= u(a)} ⊂ Ω0(l) ∪ (Ω−(l) \ Ωk
−(lk)) ∪ (Ω+(l) \ Ωk

+(lk)).(5.7)

If Ω−(l)\Ωk
−(lk) has a positive measure, than on this set l > λ(a) ≥ λk(a)−1/k ≥

lk − 1/k. Similarly, if Ω+(l) \ Ωk
+(lk) is of positive measure, then l < lk + 1/k.

Since the set in the right-hand side of (5.7) has a measure at least ε, and Ω0(l)
is of measure zero, at least one of the other two sets in (5.7) is of positive measure.
However, since u and uk satisfy the equality in (3.4), a standard measure-theoretic
exercise shows that if one of the last two sets in (5.7) is of positive measure, then
the other must also be of positive measure. Hence, from the paragraph after (5.7) we
obtain that

|lk − l| ≤ 1

k
.

Due to Corollary 5.1 applied to u and uk, we have that for a.e. a for which u(a) �= uk(a)
we have either(

λ(a) > l and λk(a) ≤ lk ≤ l +
1

k

)
or

(
λ(a) < l and λk(a) ≥ lk ≥ l − 1

k

)
.

Having in mind that ‖λk − λ‖L∞(Ω) < 1/k, we obtain that for every k

|λ(a) − l| ≤ 2

k

on a set of measure ε. In a standard way this implies that Ω0(l) is of positive measure,
which is a contradiction.

Corollary 5.2. Let λ be as in Lemma 5.1. Then problem (5.1) subject to (3.4)
has a unique solution.

Proof. It is enough to apply the above lemma for λ̃ = λ.
Example 1. We shall define an example that will provide several counterfacts

showing that the regularity assumption is essential. Let ω > 1, ū(a) = 1, β = 1, and
μ(a) = 0. Let us fix κ ∈ (0, 1) and θ = ω − 1 + κ. Define p(a) = 0 for a ∈ [θ, ω]. The
value of p(a) for a < θ will be defined below. For a given ν > 0 denote by λ[ν] the
solution of (5.3) on [θ, ω]. Moreover, define

α = −κλ[1](θ) −
∫ ω

θ

λ[1](a) da, p(a) = p0 := rλ[1](θ) + 1 for a ∈ [0, θ).

This completes the definition of the problem. One can check directly that the solution
λ[1](a) of (5.3) with κ = 1 is constant and equals λ[1](θ) on [0, θ]. Let u∗ : [0, θ] �→
[0, 1] be any measurable function such that

∫
u∗(a) da = κ. Define

u(a) =

{
u∗(a) for a ∈ [0, θ),
1 for a ∈ [θ, ω].

(5.8)

Since κ+(ω−θ) = 1, u is an admissible control. Moreover, due to the time-invariance
of λ[1] on [0, θ] and the inequality λ[1](θ) < λ[1](a) for a > θ, u satisfies (5.1). Equality
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(5.2) is also satisfied due to the choice of α. Thus u satisfies the necessary condition
formulated in Theorem 5.1.

Now we shall perturb the function p on [0, θ] in the following way: for a “small”
(in absolute value) real number δ, and for a given value of the parameter ν > 0 we
define

p[ν, δ](a) = νp0 + (1 + r(θ − a))δ, a ∈ [0, θ].

If we solve (5.3) for any ν and the above p[ν, δ] we obtain for the solution λ[ν, δ]

λ[ν, δ](a) = νλ[1](a), t ∈ [θ, ω], λ[ν, δ](a) = νλ[1](a) + (θ − a)δ, a ∈ [0, θ).

Hence, there is a unique maximizer u[ν, δ] in (5.1), and in the case of δ > 0 its
structure is

u[ν, δ](a) =

{
1 if a ∈ [0, x(ν, δ)] ∪ [y(ν, δ), ω],
0 elsewhere,

while in the case δ < 0 (in which case λ[ν, δ] is monotone increasing) it is

u[ν, δ](a) =

{
1 if a ∈ [ω − 1, ω],
0 elsewhere.

The values x(ν, δ) and y(ν, δ) can be specified as the solutions of the system of tran-
scendent equations

λ[ν, δ](x) = λ[ν, δ](y),

x + (ω − y) = 1.

The last system is rather easy to investigate and one can prove that x(ν, δ) = κ +
O(|δ| + |ν − 1|), y(ν, δ) = θ + O(|δ| + |ν − 1|). Then we chose ν from (5.2). This has
a unique solution ν(δ), and ν(δ) −→ 1 as δ −→ 0. We skip the obvious details of the
above construction.

Denote uδ = u[ν(δ), δ], δ �= 0. The problem with δ �= 0 satisfies the regularity
assumption, and uδ is by its construction the only admissible control satisfying the
maximum principle (4.1)–(4.3) for the function pδ = p[ν(δ), δ](a). Hence uδ is optimal.
We have that pδ converges uniformly to p0 and uδ converges in measure (and even
stronger) to either

u+(a) =

{
1 if a ∈ [0, κ] ∪ [θ, ω],
0 elsewhere,

or u−(a) =

{
1 if a ∈ [ω − 1, ω],
0 elsewhere

(depending on whether δ > 0 or δ < 0). Then a standard upper semicontinuity
argument for the solution set implies that both u+ and u− are optimal controls for
the problem with p = p0. So if the regularity assumption is violated we obtain the
following.

Counterfact 1. The uniqueness claim in Theorem 5.1 is false.
Since each of u− and u+ is optimal independently of the initial state, then

u(t, a) =

{
u−(a) for t ∈ [2kω, (2k + 1)ω),
u+(a) for t ∈ [(2k + 1)ω, (2k + 2)ω), k = 0, 1, . . .

is also optimal. We obtain the following.
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Counterfact 2. The time-invariance claim in Theorem 5.1 is false.
Counterfact 3. There is an optimal control u such that neither u(t, ·) nor the

corresponding trajectory (M(t, ·), R(t)) converges with t −→ ∞.
The question remains whether a convex combination of u− and u+ is also a

solution. The answer need not be positive because the objective value J(u) need not
be a concave functional of the control u (see footnote 5). We investigated this question
numerically and found that J(0.5(u− + u+)) << J(u−) = J(u+).

Numerical “counterfact” 4. If the regularity assumption is violated, then the
maximum principle is not a sufficient condition.

6. Strong ergodicity of the optimal solution. It is accepted in the popu-
lation dynamics (see, e.g., [13, 4]) that weak ergodicity means that two populations
with different initial age-distributions and the same (time-dependent) data become
asymptotically identical (although a limit may fail to exist). Strong ergodicity means
that the age-density of the population tends to a steady-state, which is independent of
the initial density, if the data of the problem are convergent at infinity. In this section
we obtain a strong ergodicity result for the optimal control of problem (1.1)–(1.5).
Having this result, the issue of the asymptotic convergence of the corresponding op-
timal trajectory becomes a classical one (cf. [12, 20]).8 The issue of weak ergodicity
of the optimal solution is more complicated, requires additional conditions, and will
not be discussed in this paper.

Theorem 6.1 (strong ergodicity of the optimal control). Let (M̃0, μ̃, p̃) and
(M0, μ, p) be two triples of data for which the standing assumptions are fulfilled. Let
(μ, p) be time-invariant (i.e., independent of t) and satisfy the regularity assumption.
Assume, moreover, that

lim
T→∞

‖(μ̃, p̃) − (μ, p)‖L∞([T,∞)×Ω) = 0.(6.1)

Then for any optimal control, ũ, corresponding to (M̃0, μ̃, p̃), and for the unique con-
trol, u, corresponding to (M0, μ, p), it holds that

lim
t→∞

meas{a : ũ(t, a) �= u(a)} = 0.

Proof. As shown in section 4, the standing assumptions imply that the closed
adjoint system (4.2), (4.3) for the problem with “˜” has a solution ξ̃ in L∞(D). This
solution satisfies (4.2), (4.3) also for the data (μ, p), with an additional term

δ(t, a) = (μ̃− μ)ξ̃ − (μ̃− μ)(α + σ(ξ̃)) − β(p̃− p).

Since ‖δ‖L∞([T,∞)×Ω) = 0 due to ξ̃ ∈ L∞(D) and (6.1), we obtain from Lemma 4.1
that

lim
T→∞

‖ξ̃ − ξ‖L∞([T,∞)×Ω) = 0.

We know from Theorem 5.1 that ξ is time-invariant. In the proof of this theorem we
have seen that λ in the formulation of that theorem differs from ξ by a constant. The

8For example, in the stationary case, and with the optimal u(a) plugged into (1.1), equation (2.4)
for R(t) is a convolution renewal equation and its solution is convergent with t −→ ∞ according to
[20, Theorem 7.1, Chapter 15]. We note that the convergence of R may fail in a discrete-time model
with a stationary mortality rate and a stationary recruitment rule. A trivial example is the one of
recruitment only at age zero. In our considerations such behavior is prohibited by the constraint
u(t, a) ≤ ū(a).
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maximum principle (Theorem 3.1) claims that for a.e. t the functions ũ(t, ·) and u(·)
maximize ∫

Ω

ξ̃(t, a)v(a) da and

∫
Ω

ξ(a)v(a) da,

respectively, subject to (3.4). Moreover, for every δ > 0 we have

‖ξ̃(t, ·) − ξ(·)‖L∞(Ω) < δ

for a.e. sufficiently large t. Then Lemma 5.1 implies the claim of the theorem.

Remark 6.1. Counterfact 4 in Example 1, section 5, shows that the strong ergod-
icity does not hold unless an appropriate additional assumption, such as the regularity
assumption, is posed.

7. The principle of bipolar recruitment. In the previous section we proved
that under the regularity assumption the optimal solution with time-dependent data
approaches (in the sense specified in Theorem 6.1) the solution for the limit (time-
invariant) data if the data (μ, p) converge with time (in the sense of Theorem 6.1). On
the other hand, in section 5 we proved that the optimal control (i.e., the recruitment
density) for time-invariant data is time-invariant and (thanks to this) is characterized
in terms of an ODE (see (5.3)). Therefore, in this section we study in more detail the
structure of the optimal control for stationary data, focusing on the case p(a) = −a.
In this case the meaning of the problem (1.1)–(1.5) is that two objectives are to be
optimized in the Pareto sense: the number of recruitments are to be high, and the
average age of the organization is to be low. As suggested in [24] these two objectives
are contradictory, which makes the problem interesting. The reason for which we
focus the analysis on the average age is that this specific problem is under intensive
discussion in many European academies of sciences due to the considerable aging of
their members [24, 14, 15]. The analysis for other reasonable productivity functions,
p(a), such as a concave first-increasing-then-decreasing-with-age productivity (which
is reasonable, according to [30]) gives also interesting qualitative results under specific
joint conditions for μ and p, which we do not present here.

Proposition 7.1 (bipolar recruitment principle). Consider problem (1.1)–(1.5)
with p(t, a) = −a. Assume that μ(t, a) = μ(a) is a time-invariant, continuously differ-
entiable, and nondecreasing function which equals zero on some interval [0, a0) and is
strongly convex on (a0, ω]. Then the optimal recruitment density, u, is unique, time-
invariant, and independent of the initial density M0 and has the following structure.
There are numbers 0 ≤ θ < τ < ω such that

u(a) =

{
ū(a) for a ∈ [0, θ) ∪ (τ, ω],
0 for a ∈ [θ, τ ].

(7.1)

Remark 7.1. The natural mortality rate in the ages above 30 satisfies the assump-
tions for μ. We stress also the remarkable fact that the second interval of recruitment
is always nondegenerate: τ < ω.

Proof. We apply Theorem 5.1 and characterization (5.6) of the optimal control.
The regularity assumption is apparently fulfilled, since the function μ(a) + dp(a) = e
may have at most two zeros.

Since λ is twice continuously differentiable, all we have to prove is that λ has no
local maxima in (0, ω).
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Assume that a ∈ (0, ω) is a local maximizer of λ, and λ(a) ≥ 0. Then

λ′′(a) = μ′(a)λ(a) + β > 0,

which is a contradiction. Now assume that λ(a) < 0. Since λ(ω) = 0, there must be
a local minimizer b ∈ [a, ω) with λ(b) ≤ λ(a). Then

0 ≥ λ′′(a) = μ′(a)λ(a) + β ≥ μ′(b)λ(a) + β ≥ μ′(b)λ(b) + β = λ′′(b) ≥ 0.

Then all the inequalities must be equalities. Since λ(a) < 0, this implies μ′(a) = μ′(b),
which yields a ∈ (0, a0]. Since μ is identically zero on [0, a0), we have λ′′(a) = β, which
is a contradiction. Thus the optimal u(a) has the structure (7.1). It remains only to
prove that τ < ω. If this is not the case, then λ(a) ≥ 0 for all a, for which u(a) > 0.
This contradicts (5.2).

Now we give an intuitive argument showing that the additional assumptions in
the above theorem are essential (although not necessary) for the obtained bipolar
recruitment principle. If μ is a bounded approximation of the δ-function concentrated
at ω/2, then the age ω/2 would appear as a premature retirement age, similarly to
ω. Then by the same argument as in Proposition 7.1 u(t, a) would be positive shortly
before ω/2. It would be positive also before ω (since μ is bounded). If ω is sufficiently
large, then three disjoint intervals with u(t, a) > 0 would appear.

We stress that in practical applications the principle of bipolar recruitment should
not be taken in an absolute sense, as far as usually many other criteria (different than
the recruitment intensity and the average age of the members of the organization)
are taken into account. The essence of the result is that if the last mentioned two
criteria matter for the organization (which is, indeed, the case for many organizations
such as academies of sciences or academies of awards), then they have a polarizing
effect on the optimal recruitment policy: they shift the recruitment partly to younger
and partly to older ages, decreasing in this way the middle-age recruitment. An
interesting interpretation of this result is given by Warren Sanderson.9 The essence
is that an academy of awards should focus on awarding relatively young talents for
recent outstanding achievements and, on the other hand, old persons for their life-long
contributions. Detailed policy-oriented considerations and interpretations are given
in the forthcoming paper [14].

Appendix. First we prove Proposition 2.1.
Proof. The proof uses the idea from [3]. This idea is substantially modified to

fit to our problem; therefore, we present a detailed proof, as required by one of the
referees.

As before we use the notation D = [0,∞)×Ω and also DT = [0, T ]×Ω. Consider
a maximizing sequence {uk} of admissible controls such that

J(uk) ≥ J∗ − 1

k
,(A.1)

where J(uk) is the objective value for uk, together with the corresponding solution
(Mk, Rk) of (1.1)–(1.3), and J∗ is the supremum of the objective function in the set of
admissible controls. According to Lemma 2.1 the sequence {Mk} is well defined in D,
and the functions Mk are bounded uniformly in k. Then the sequence e−rtMk ∈ L1(D)

9Warren Sanderson, Professor of Economics, SUNY-Stony Brook, Stony Brook, NY 11794-4384,
USA. Personal communications with the authors.
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is weakly relatively compact due to the Dunford–Pettis criterion.10 Therefore, there
exists a subsequence, denoted also by Mk, such that

e−rtMk −→ e−rtM0 L1(D)-weakly.

Clearly M0 is bounded by the same constant as Mk. According to the Mazur theorem
there exists a sequence

e−rtM̃k =

nk∑
i=k

pki e
−rtMi, pki ≥ 0,

nk∑
i=k

pki = 1,

convergent to e−rtM0 in L1(D). Clearly M̃k are uniformly bounded, and M̃k −→ M0

in L1(DT ) for every T > 0. Define

R̃k(t) =

nk∑
i=k

pkiRi(t) = M̃k(t, ω) +

∫
Ω

μ(t, a)M̃k(t, a) da.(A.2)

Let ũ0 : Ω �→ R be an arbitrary measurable function satisfying the control con-
straints (1.4). Let us define

ũk(t, a) =

{ ∑nk

i=k
pk
i Ri(t)ui(t,a)

R̃k(t)
if R̃k(t) > 0,

ũ0(a) elsewhere.

Obviously ũk satisfies (1.4); therefore, it is an admissible control. We have

∂M̃k

∂t
+

∂M̃k

∂a
=

nk∑
i=k

pki (−μMi + Riui) = −μM̃k +

nk∑
i=k

pkiRiui = −μM̃k + R̃kũk.

Thus (ũk, M̃k, R̃k) is an admissible control-trajectory triple, for which M̃k −→ M0 in
L1(DT ) and e−rtM̃k −→ e−rtM0 in L1(D). Moreover, passing to a subsequence, we
may assume that M̃k converges to M0 almost everywhere and that e−rtũk converges
to some e−rtu0 weakly in L1(D). In the next paragraph we prove that u0 is an
admissible control.

For every measurable and bounded set Γ ⊂ [0,∞) we have that∫
Γ

∫
Ω

ũk(t, a) dadt −→
∫

Γ

∫
Ω

u0(t, a) dadt.

Since ũk satisfies (1.4), the left-hand side equals meas(Γ); hence∫
Γ

∫
Ω

u0(t, a) dadt = meas(Γ).

Since Γ is an arbitrary measurable and bounded set, this implies that u0 satisfies the
equality in (1.4) for a.e. t. The inequality in (1.4) is obviously also satisfied.

Next we prove that the sequence {e−rtR̃k} is convergent in L1(0,∞). According
to the definition of a solution and Lemma 2.1 on a.e. characteristic line {(t − s, ω −
s)}s∈[0,min{t,ω}] the functions M̃k are Lipschitz continuous uniformly in k and t. On

10One can work in the space L1 weighted by the factor e−rt, but we prefer to keep this factor
explicit.



998 GUSTAV FEICHTINGER AND VLADIMIR M. VELIOV

the other hand, M̃k(t − ·, ω − ·) converges pointwise to M0(t − ·, ω − ·) for a.e. t.
Then M̃k(t − ·, ω − ·) converges to M0(t − ·, ω − ·) uniformly; hence the latter func-
tion is Lipschitz with the same constant as M̃k(t − ·, ω − ·). Then M0(t, ω) is well
defined in L∞(0,∞). Moreover, M̃k(·, ω) converges to M0(·, ω) almost everywhere;
hence e−rtM̃k(·, ω) −→ e−rtM0(·, ω) in L1(0,∞). Due to (A.2), the sequence R̃k(t)
converges almost everywhere to

R0(t) = M0(t, ω) +

∫ ω

0

μ(t, a)M0(t, a) da;

hence e−rtR̃k converges to e−rtR0 in L1(0,∞). To verify that (u0,M0, R0) satisfies
(1.1) we integrate in a the representation (2.2) for the solution triple (ũk, M̃k, R̃k)
on a measurable set Γ ⊂ Ω. Due to the established properties of this sequence we
may pass to the limit, (u0,M0, R0). Since Γ is arbitrary, we obtain that (u0,M0, R0)
satisfies (2.2) for a.e. (t, a); hence it is a solution of (1.1).

From the convexity of A with respect to (M,w) we have

J(ũk) =

∫ ∞

0

e−rt

[
αR̃k(t) + β

∫
Ω

A(t, a, M̃k(t, a), R̃k(t)ũk(t, a)) da

]
dt

=

∫ ∞

0

e−rt

[
α

nk∑
i=k

pkiRi(t)

+ β

∫
Ω

A

(
t, a,

nk∑
i=k

pkiMi(t, a),

nk∑
i=k

pkiRi(t)ui(t, a)

)
da

]
dt

≥
nk∑
i=k

pki J(ui) ≥
nk∑
i=k

pki

(
J∗ − 1

i

)
≥ J∗ − 1

k
.

Finally, from the upper semicontinuity of the objective function with respect to u in
the L1(T )-weak topology (due to the concavity of A in w), the Lipschitz continuity
of A in (M,w), the L1-convergence of M̃k and R̃k, and the boundedness of A in the
domain of integration below, we obtain for every T > 0

J∗ ≤ limsup
k

(
J(ũk) +

1

k

)
= limsup

k
J(ũk)

= limsup
k

∫ ∞

0

e−rt

[
αR̃k(t) + β

∫
Ω

A(t, a, M̃k(t, a), R̃k(t)ũk(t, a)) da

]
dt

=

∫ ∞

0

e−rtαR0(t) + β limsup
k

∫ ∞

0

∫
Ω

e−rtA(t, a,M0(t, a), R0(t)ũk(t, a)) dadt

≤
∫ ∞

0

e−rtαR0(t) + β limsup
k

∫ T

0

∫
Ω

e−rtA(t, a,M0(t, a), R0(t)ũk(t, a)) dadt

+
β

r
e−rTC

≤
∫ ∞

0

e−rtαR0(t) + β

∫ T

0

∫
Ω

e−rtA(t, a,M0(t, a), R0(t)u0(t, a)) dadt +
β

r
e−rTC

≤ J(u0) +
2β

r
e−rTC.

Since T is an arbitrary positive number, we obtain that J∗ ≤ J(u0); hence u0 is an
optimal control.
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Below we prove Lemma 3.1.
Proof. The proof is split into several steps.
Step 1. Let us fix a function η ∈ L∞(0,∞) and a positive number T and consider

(3.1) in the domain DT = [0, T ] × Ω, with the side conditions (3.3) and

ξ(T, a) = 0, a ∈ Ω.(A.3)

This equation is linear and can be solved along the characteristics, which results in
the following explicit formula:

ξ(t, a) = ϕ(t, a, t + ω − a)χ[0,T ](t + ω − a)η(t + ω − a)(A.4)

+

∫ T

t

ϕ(t, a, τ)χΩ(a− t + τ)[μ(τ, a− t + τ)η(τ) − βAM (τ, a− t + τ)] dτ,

where here and below the argument (t, a) of the function AM is a substitution for
(t, a,M(t, a), u(t, a)), χS is the indicator function of the set S, and

ϕ(t, a, τ) = e−
∫ τ
t

(r+μ(θ,a−t+θ)) dθ.(A.5)

We shall determine η(t) = ηT (t) in such a way that (3.2) is also fulfilled. Due to
formula (A.4) for ξ, (3.2) becomes

η(t) = α +

∫
Ω

ϕ(t, a, t + ω − a)χ[0,T ](t + ω − a)η(t + ω − a)u(t, a) da

+

∫
Ω

∫ T

t

ϕ(t, a, τ)χΩ(a− t + τ)[μ(τ, a− t + τ)η(τ) − βAM (τ, a− t + τ)]u(t, a) dτ da

+β

∫
Ω

Aw(t, a)u(t, a) da.

Changing the variable t + ω − a = τ in the first integral and changing the order of
integration in the second one, we obtain that η has to satisfy the integral equation

η(t) = fT (t) +

∫ T

t

K(t, τ)η(τ) dτ,(A.6)

where

fT (t) = α− β

∫ T

t

∫
Ω

ϕ(t, a, τ)χΩ(a− t + τ)AM (τ, a− t + τ)u(t, a) dadτ

+β

∫
Ω

Aw(t, a)u(t, a) da,

K(t, τ) = ϕ(t, t + ω − τ, τ)χ[0,t+ω](τ)u(t, t + ω − τ)

+

∫
Ω

ϕ(t, a, τ)χΩ(a− t + τ)μ(τ, a− t + τ)u(t, a) da.

Clearly, (A.6) is a Volterra equation of the second kind (inverse in time); therefore, it
has a unique solution ηT ∈ L∞(0, T ).

Step 2. Next we shall prove uniform boundedness of ηT (t) when T −→ ∞. First,
since ϕ(t, a, τ) ≤ 1 and u satisfies (1.4), we have

|fT (t)| ≤ α + βĀ

∫ T (t)

t

∫ t+ω−τ

0

u(t, a) dadτ + βĀ ≤ α + βωĀ + βĀ =: c0,(A.7)
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where T (t) = min{T, t+ ω} and Ā is a bound for the derivatives AM and Aw. More-
over, obviously

K(t, τ) ≤ ū + ωμ̄ =: c1.(A.8)

Define the operator FT : L∞(0, T ) �→ L∞(0, T ) by

FT (η)(t) =

∫ T

t

K(t, τ)η(τ) dτ.

Since K is nonnegative we have

‖FT (η)‖∞ ≤ ess sup
t∈[0,T ]

∫ T

t

K(t, τ) dτ‖η‖∞.(A.9)

For t ≤ T − ω we have∫ T

t

K(t, τ) dτ =

∫ t+ω

t

ϕ(t, t + ω − τ, τ)u(t, t + ω − τ) dτ

+

∫ t+ω

t

∫ t+ω−τ

0

ϕ(t, a, τ)μ(τ, a− t + τ)u(t, a) dadτ.

Consider the expression

G(t) =

∫ t+ω

t

∂

∂τ

∫ t+ω−τ

0

ϕ(t, a, τ)u(t, a) dadτ

= −
∫ t+ω

t

[
ϕ(t, t + ω − τ, τ)u(t, t + ω − τ) −

∫ t+ω−τ

0

∂ϕ

∂τ
(t, a, τ)u(t, a) da

]
dτ

= −
∫ t+ω

t

[
ϕ(t, t + ω − τ, τ)u(t, t + ω − τ)

+

∫ t+ω−τ

0

ϕ(t, a, τ)(r + μ(τ, a− t + τ))u(t, a) da

]
dτ.

Hence, ∫ T

t

K(t, τ) dτ = −G(t) − r

∫ t+ω

t

∫ t+ω−τ

0

ϕ(t, a, τ)u(t, a) dadτ.

On the other hand, having in mind (1.4) and that ϕ(t, a, t) = 1 we obtain that

G(t) :=

∫ t+ω−τ

0

ϕ(t, a, τ)u(t, a) da |t+ω
t = −1.

Thus ∫ T

t

K(t, τ) dτ ≤ 1 − r

∫ t+ω

t

∫ t+ω−τ

0

ϕ(t, a, τ)u(t, a) dadτ.

We estimate

r

∫ t+ω

t

∫ t+ω−τ

0

ϕ(t, a, τ)u(t, a) dadτ ≥ r

∫ t+ω

t

∫ t+ω−τ

0

e−(τ−t)(r+μ̄)u(t, a) dadτ

≥ re−ω(r+μ̄)

∫ ω

0

∫ t+ω−a

t

dτu(t, a) da = re−ω(r+μ̄)

∫ ω

0

(ω − a)u(t, a) da.
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The value of the last integral is at least

d :=

∫ ω

ω−s

(ω − a)ū(a) da > 0,

where s is determined from the equality∫ ω

ω−s

ū(a) da = 1.

Thus for t ≤ T − ω ∫ T

t

K(t, τ) dτ ≤ 1 − γ,(A.10)

where

0 < γ := re−ω(r+μ̄)d.

Due to (A.7) and (A.8) it is standard to prove that the solution of the Volterra
equation (A.6) is bounded on the interval [T − ω, T ], uniformly in T , by a constant
c2. Combining this with (A.10) and using (A.9) we obtain

|ηT (t)| ≤ c0 + ‖FT (η)‖ ≤ c0 + max{(1 − γ)‖ηT ‖, c1c2}.

Hence,

|ηT (t)| ≤ max

{
c0
γ
, c0 + c1c2

}
.

This proves the uniform boundedness of ηT in L∞.
Step 3. Now we prove the following property: for every ε > 0 and T > 0 there

exists T̄ > T such that for every T ′, T ′′ ≥ T̄ it holds that

‖ηT ′ − ηT ′′‖L∞([0,T ]) ≤ ε.(A.11)

Let us take T ′′ > T ′ ≥ T̄ , where T̄ will be defined later, assuming now only that
T̄ ≥ T + ω.

Denote Δ(t) = ηT ′′(t) − ηT ′(t). For t ≤ T̄ − ω it holds that fT ′(t) = fT ′′(t) and
for τ > t + ω it holds that K(t, τ) = 0. Therefore, for t ≤ T̄ − ω we have that

Δ(t) = fT ′′(t) − fT ′(t) +

∫ T ′′

t

K(t, τ)ηT ′′(τ) dτ −
∫ T ′

t

K(t, τ)ηT ′(τ) dτ

=

∫ t+ω

t

K(t, τ)Δ(τ) dτ.

Denote tk = T̄ − kω, k = 0, . . . , and for the first k = k̄ for which tk ≤ 0 we redefine
tk̄ = 0. Then consider

Δk = ess sup{Δ(t) : t ∈ [tk+1, tk]}, k = 0, . . . , k̄.

From Step 2 of the proof we know that Δ0 ≤ c, where c is independent of T, T̄ , T ′, T ′′.
Moreover,

Δk = ess sup
t∈[tk+1,tk]

Δ(t) ≤ ess sup
t∈[tk+1,tk]

∫ tk

t

K(t, τ)Δ(τ) dτ +

∫ t+ω

tk

K(t, τ)Δ(τ) dτ

≤ max{Δk,Δk−1}
∫ t+ω

t

K(t, τ) dτ ≤ (1 − γ) max{Δk,Δk−1},
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which implies that

Δk ≤ (1 − γ)Δk−1 ≤ · · · ≤ (1 − γ)kc.

Now, given ε > 0 and T , we choose T̄ in such a way that for k > (T̄ − T )/ω it holds
that (1 − γ)kc < ε. Then we have

|Δ(t)| ≤ ε for t ≤ T.

Step 4. The uniform boundedness of ηT and (A.4) imply that the solution ξT of
(3.1) on DT with η = ηT is also bounded uniformly in T .

Now we shall prove that ξT has the same property as that established in Step 5
for ηT : for every ε > 0 and T > 0 there exists T̄ > T such that for every T ′, T ′′ ≥ T̄
it holds that

‖ξT ′ − ξT ′′‖L∞(DT ) ≤ ε.(A.12)

Let T̄ , T ′, and T ′′ be chosen as in Step 3, but for the numbers T+ω and ε/(1+ωμ̄)
(instead of T and ε). Then we have

|Δ(t)| = |ηT ′′(t) − ηT ′(t)| ≤ ε

(1 + ωμ̄)
for t ≤ T + ω.

Using (A.4) we obtain that for t ≤ T and a ∈ [0, ω]

|ξT ′′(t, a) − ξT ′(t, a)| ≤
(

1 +

∫ t+ω

t

μ̄dτ

)
‖Δ‖L∞(0,T+ω) ≤ ε.

Step 5. The properties of ηT and ξT proven in steps 3 and 4 imply that the
sequence of restrictions {(ξTN

, ηTN
)|[0,T ]}N (with TN → +∞) is fundamental. From

the completeness of L∞ the limit exists, and letting T → ∞, we extend it to [0,∞)
(notice that the extension remains in L∞ due to the uniform boundedness of ξTN

and
ηTN

). For this limit function (ξ, η) ∈ L∞ it holds that for every ε > 0 and every T > 0
one can find T̄ > T such that for every T̃ ≥ T̄

‖η − ηT̃ ‖L∞([0,T ]) + ‖ξ − ξT̃ ‖L∞(DT ) ≤ ε.

From here it easily follows that ξ is a solution of (3.1) in D, and η satisfies (3.2)
almost everywhere in [0,∞).

Step 6. It remains to prove uniqueness of the solution. We skip this proof since
it is identical to the proof of uniqueness for the closed adjoint system given in Corol-
lary 4.1.
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Abstract. A discrete stability theorem for set-valued Euler’s method with state constraints
is proved. This theorem is combined with known stability results for differential inclusions with
so-called smooth state constraints. As a consequence, order of convergence equal to 1 is proved for
set-valued Euler’s method, applied to state-constrained differential inclusions.
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1. Introduction and preliminaries. Differential inclusions appear in various
fields of applications, e.g., in the study of (deterministic) perturbations of differential
equations, in dynamical systems with discontinuous system equations, optimal control
problems, viability theory, and especially climate impact research; cf., e.g., [2, 3, 14,
10, 1, 6].

An important subclass consists of differential inclusions with additional mono-
tonicity properties which, in general, guarantee uniqueness of the solution of the
initial value problem (cf., e.g., [2, 3, 4, 5, 20, 21]). Differential inclusions with Lip-
schitz right-hand sides (with respect to Hausdorff distance) in the usual sense form
another important subclass. This latter subclass is the principal focus of this paper,
which deals with stability and convergence properties of set-valued Euler’s method
for differential inclusions with state constraints.

The main result of this paper is the proof of a discrete stability theorem for a
difference inclusion with state constraints in section 3, which serves as a basis for
the convergence analysis for set-valued Euler’s method in section 4. Intrinsically,
this result is a variant of the Gronwall–Filippov–Wazewski theorem and, in fact, an
existence theorem as well. Whereas the proofs for explicit difference inclusions with
appropriate Lipschitz properties offer no difficulties, additional state constraints cause
essential problems.

Fortunately, remarkable stability results for state-constrained differential inclu-
sions have become available in the literature; cf. [22, 15, 17, 18, 7, 8, 23]. But discrete
analogues for the approximation of all feasible trajectories under comparably weak
conditions are still missing. Therefore, we concentrate on the so-called smooth case,
where the state constraint is described by a single scalar inequality, resp., by a smooth
signed distance function. This case has already been treated in [6], but contrary to [6]
we allow time-dependent state constraints and improve the final error estimate.

In section 3 we give a rather complete analysis of the discrete situation, which
heavily relies on the proof strategy in [15, Theorem 4.1] for the continuous problem.
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In some respects, the discrete analysis is rather technical, and some additional diffi-
culties have to be overcome. In particular, a discrete solution might not hit exactly
the boundary of the state constraints, neighboring continuous solutions of feasible dis-
crete solutions could violate the state constraints outside the grid, and consequently
additional error terms appear in Taylor expansions.

However, we want to urgently emphasize the fact that only both stability results,
the continuous and the discrete one together, will give us convergence results for dis-
crete approximations of state-constrained differential inclusions. This is the essential
subject of section 4, where order of convergence O(h) with respect to the step-size h
is proved for set-valued Euler’s method in the presence of state constraints.

In section 5, the results are applied to a differential inclusion resulting from a
state-constrained bilinear control problem, which originally served as an academic test
example for unconstrained problems and was communicated to us by Petar Kenderov.
The order of convergence of the reachable sets of Euler’s difference inclusion with state
constraints to the corresponding reachable sets of the differential inclusion is visualized
by computer tests. For a more detailed discussion and applications to climate impact
research, see [6].

Hence, the main objective of this paper is the discrete approximation of the whole
solution set of state-constrained differential inclusions, especially the whole feasible
set of state-constrained optimal control problems. But, in addition, the authors are
convinced that this methodology, if combined with sufficient optimality conditions,
could turn out to be another conceptual approach to order of convergence proofs for
numerical methods for the direct computation of optimal solutions; cf., e.g., [13, 12].

Naturally, convergence of the whole set of discrete solutions to the solution set
of the continuous differential inclusion implies the convergence of the corresponding
reachable sets. Hence, at least for set-valued Euler’s method, we need not distinguish
between these two aspects, but in this connection see the papers [24, 25], which extend
the results in [11] for set-valued Euler’s method to Runge–Kutta methods of order at
least equal to 2 for problems without state constraints.

We denote by AC(I) the set of all absolutely continuous functions y : I → R
n

and by Θ : I ⇒ R
n a set-valued map with nonempty subsets of R

n as images.
Problem 1.1. Given an interval I = [t0, T ], a nonempty set Y0 ⊂ R

n, and
set-valued maps F : I × R

n ⇒ R
n and Θ : I ⇒ R

n with nonempty images, find
all absolutely continuous solutions y(·) of the state-constrained differential inclusion
(DIC)

y′(t) ∈ F (t, y(t)) (a.e. t ∈ I),(1.1)

y(t) ∈ Θ(t) (t ∈ I),(1.2)

y(t0) = y0 ∈ Y0.(1.3)

Clearly, we must have y0 ∈ Θ(t0) as well.
The unconstrained problem (DI) is given by (1.1), (1.3). The set of solutions of

(DI) and (DIC) is denoted by Y[T, t0, Y0], resp., YΘ[T, t0, Y0].
Algorithm 1.2. Euler’s method for (DIC) in Problem 1.1 with number of sub-

intervals N ∈ N and step-size h = T−t0
N is given by

YΘ
N [t0, t0, Y0] := Y0 ∩ Θ(t0),(1.4)

YΘ
N [tj+1, t0, Y0] :=

⋃
ηj∈YΘ

N [tj ,t0,Y0]

(
ηj + hF (tj , ηj)

)
∩ Θ(tj+1)(1.5)
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for j = 0, . . . , N − 1.
Problem (DDIC) describes the solution of (1.4)–(1.5); its set of solutions is de-

noted by YΘ
N [T, t0, Y0]. In the absence of state constraints, the problem is called (DDI)

and YN [T, t0, Y0] denotes the corresponding set of solutions.
To measure distances, we define for η = (ηj)j=0,...,N ∈ YΘ

N [T, t0, Y0],

dist∞(y(·),YΘ
N [T, t0, Y0]) := inf

{
sup

j=0,...,N
‖y(tj) − ηj‖ : η ∈ YΘ

N [T, t0, Y0]

}
,

dist∞(η,YΘ[T, t0, Y0]) := inf

{
sup

j=0,...,N
‖ηj − y(tj)‖ : y(·) ∈ YΘ[T, t0, Y0]

}
,

dH,∞(YΘ[T, t0, Y0],YΘ
N [T, t0, Y0]) := max

{
sup

y(·)∈YΘ[T,t0,Y0]

dist∞(y(·),YΘ
N [T, t0, Y0]),

sup
η∈YΘ

N [T,t0,Y0]

dist∞(η,YΘ[T, t0, Y0])

}
.

Here, the Euclidean vector norm on R
n is denoted by ‖ · ‖. For a subset U ⊂ R

n,
we denote by dist(x, U) the infimum of all Euclidean distances of the point x ∈ R

n to
the points in U . We denote by d(U, V ) = supu∈U dist(u, V ) the one-sided Hausdorff
distance from a subset U ⊂ R

n to another subset V ⊂ R
n, and dH(U, V ) is the

Hausdorff-distance defined as

dH(U, V ) = max{d(U, V ),d(V,U)}.

We pose some of the following basic assumptions on the right-hand side:
(H1) F satisfies a linear growth condition, i.e., there exists C ≥ 0 with

‖F (t, x)‖ := sup
y∈F (t,x)

‖y‖ ≤ C(‖x‖ + 1) (t ∈ I, x ∈ R
n).

(H2) F has nonempty, compact, convex images in R
n.

(H3) F is Lipschitz in (t, x) for all t ∈ I, x ∈ R
n with constant L ≥ 0, i.e.,

dH(F (s, x), F (t, y)) ≤ L · (|s− t| + ‖x− y‖) (s, t ∈ I, x, y ∈ R
n).

The linear growth condition (H1) gives locally a boundedness of the images F (t, x). A
sufficient condition for (H1) is (H3) together with one bounded set F (t̂, x̂) (or (H2)).
Condition (H2) is needed, since we want to apply the results from [11] for the uncon-
strained case. For practical applications, the Lipschitz condition could be restricted
onto a compact set in which all values of all trajectories remain.

The following assumptions are required for the state constraints:
(C1) Θ : I ⇒ R

n has nonempty images explicitly given as

Θ(t) := {x ∈ R
n : g(t, x) ≤ 0}

by a single scalar function g : I ×R
n → R which fulfills g(·, ·) ∈ C1,L(I ×R

n), i.e., the
derivative ∇g(·, ·) is Lipschitz on I × R

n.
Furthermore, points x ∈ ∂Θ(t) with t ∈ I are characterized by g(t, x) = 0.

(C2) The boundary of Θ(·) fulfills the “strict inwardness condition” (cf. [15, 17,
18, 7]), i.e., there exists α, μ > 0 such that for all (t, x) ∈ Bμ(graph ∂Θ(·)) ∩ (I × R

n)
it follows that

min
v∈F (t,x)

〈
∇g(t, x),

(
1
v

)〉
≤ −α,
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where

Bμ(graph ∂Θ(·)) =
{(

t
x

)
∈ R

1+n : dist
((

t
x

)
, graph ∂Θ(·)

)
≤ μ

}
.

From (C1) it follows that the images of Θ(·) are closed. Existence of viable
solutions could be proved under weaker assumptions; in this respect, cf. [16]. But
since we are interested mainly in stability results, which require stronger assumptions
anyway and imply existence as well, we will not discuss weaker existence results for
the continuous and discrete case in this paper.

For the discrete situation in section 2, it is sufficient to pose weaker assumptions
on F (·, ·) as follows:

(H1′) F satisfies a linear growth condition in integrable form, i.e., there exists a
nonnegative function C(·) ∈ L1(I,R) with

‖F (t, x)‖ := sup
y∈F (t,x)

‖y‖ ≤ C(t) · (‖x‖ + 1) (t ∈ I, x ∈ R
n).

(H2′) F has nonempty, closed images in R
n.

(H3′) F is L(t)-Lipschitz in x for all t ∈ I with L(·) ∈ L1(I,R), i.e.,

dH(F (t, x), F (t, y)) ≤ L(t) · ‖x− y‖ (x, y ∈ R
n).

Usually, uniform boundedness of C(·) is assumed in (H1′), i.e., (H1). The same remark
applies to L(·) in (H3′).

2. Stability for the unconstrained case. The essential stability result for
differential inclusions without state constraints is given by the following theorem (for
a complete proof, cf. [9, Lemma 8.3]).

Theorem 2.1 (Gronwall–Filippov–Wazewski theorem). Let F (·, ·) have closed
images in R

n, and let Y0 ⊂ R
n be nonempty and closed. For a given η(·) ∈ AC(I)

with

dist(η(t0), Y0) ≤ δ0,

dist(η′(t), F (t, η(t))) ≤ δ(t) (a.e. t ∈ I),

with δ0 ≥ 0 and nonnegative δ(·) ∈ L1(I,R), assume that

S := {(t, x) ∈ I × R
n : ‖x− η(t)‖ ≤ γ} ⊂ dom(F )

for some γ > δ0. Let F (·, x) be measurable in t for all x ∈ S and fulfill (H3′) on S.
Let z(·) be the solution of

z′(t) = L(t)z(t) + δ(t) (a.e. t ∈ I),

z(t0) = δ0.

Then for all T̃ ∈ I with z(T̃ ) ≤ γ there exists a solution y(·) on [t0, T̃ ] ⊂ I with

y′(t) ∈ F (t, y(t)) (a.e. t ∈ [t0, T̃ ]),

y(t0) = y0 ∈ Y0,

fulfilling the estimates

‖y(t) − η(t)‖ ≤ z(t) (t ∈ [t0, T̃ ]),

‖y′(t) − η′(t)‖ ≤ L(t)z(t) + δ(t) (a.e. t ∈ [t0, T̃ ]),
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where

z(t) = e
∫ t
t0

L(σ) dσ · δ0 +

∫ t

t0

e
∫ t
τ
L(σ) dσ · δ(τ) dτ.

It will turn out in section 3 that Theorem 2.1, together with the following dis-
crete analogue, is essential for the proof of stability for state-constrained differential
inclusions.

Theorem 2.2 (discrete Gronwall–Filippov–Wazewski theorem). Let F : [t0, T ]×
R

n ⇒ R
n fulfill (H2′) and (H3′).

Consider the discrete difference inclusion

yk+1 − yk
h

∈ F (tk, yk) (k = 0, . . . , N − 1),(2.1)

y0 ∈ Y0(2.2)

for a given N ∈ N, the step-size h = T−t0
N , and a closed, nonempty starting set

Y0 ⊂ R
n.

Let (ηk)k=0,...,N be a grid function with values in R
n and

dist(η0, Y0) ≤ δ0,

dist

(
ηk+1 − ηk

h
, F (tk, ηk)

)
≤ δk+1 (k = 0, . . . , N − 1).

Abbreviate Lk = L(tk), k = 0, . . . , N , and let (zk)k=0,...,N ⊂ R be the solution of

zk+1 − zk
h

= Lkzk + δk+1 (k = 0, . . . , N − 1),(2.3)

z0 = δ0.

Then there exists a solution (yk)k=0,...,N of the discrete problem (2.1)–(2.2) with

‖ηk − yk‖ ≤ zk (k = 0, . . . , N),∥∥∥∥ηk+1 − ηk
h

− yk+1 − yk
h

∥∥∥∥ ≤ Lkzk + δk+1 (k = 0, . . . , N − 1).

Proof. Since Y0 ⊂ R
n is nonempty, there exists y ∈ Y0 with dist(η0, Y0) ≤

‖η0 − y‖ =: r. Hence, the best approximation y0 of η0 in Y0 coincides with that in
the compact set Y0 ∩Br(η0), i.e.,

‖η0 − y0‖ = dist(η0, Y0) ≤ δ0 = z0.

Assume that the assertion is true for j = 0, . . . , k, k ∈ {0, . . . , N − 1}. Arguing
as in the case k = 0, there exists ξyk ∈ F (tk, yk) for ξηk = 1

h (ηk+1 − ηk) with

‖ξηk − ξyk‖ = dist(ξηk , F (tk, yk)),

‖ξηk − ξyk‖ ≤ dist(ξηk , F (tk, ηk)) + dH(F (tk, ηk), F (tk, yk)) ≤ Lk‖ηk − yk‖ + δk+1.

Setting yk+1 := yk + hξyk yields

‖ηk+1 − yk+1‖ = ‖(ηk + hξηk) − (yk + hξyk)‖ ≤ ‖ηk − yk‖ + h‖ξηk − ξyk‖
≤ (1 + hLk)‖ηk − yk‖ + hδk+1 ≤ (1 + hLk)zk + hδk+1 = zk+1.
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The explicit solution formula for the linear difference equation (2.3) yields im-
mediately the following more specific estimates of the growth of the error bounds zk
(k = 0, . . . , N).

Corollary 2.3. With the assumptions as in Theorem 2.2 and for a Riemann
integrable L(·) in (H3′), we can estimate the error bounds zk for k = 0, . . . , N as

zk = δ0 ·
k−1∏
μ=0

(1 + hLμ) + h

k∑
j=1

δj ·
k−1∏
μ=j

(1 + hLμ),

k−1∏
μ=j

(1 + hLμ) ≤
k−1∏
μ=j

ehLμ = e
h

k−1∑
μ=j

Lμ

≤ eCL (j = 0, . . . , k),(2.4)

where CL is an upper bound for the Riemann sums of the integral
∫ T

t0
L(t) dt.

If, furthermore, Lk = L for k = 0, . . . , N , then (1 + hL)k ≤ eLkh and for L > 0,

(2.5) zk ≤ eLkhδ0 +

⎧⎪⎪⎨
⎪⎪⎩

1
L (eLkh − 1) · max

j=1,...,k
δj ,

eL(k−1)h · h
k∑

j=1

δj .

The following lemmas are simple consequences of the growth condition and are
well known in the literature (cf., e.g., [11, 19, 6]). They exhibit interesting connections
between the continuous situation and the discrete situation in the case when N → ∞.

Lemma 2.4. Let F (·, ·) satisfy (H1′). Then all solutions y(·) of (DI) in Problem
1.1 with bounded starting set Y0 ⊂ R

n are uniformly bounded by M := (‖Y0‖ + CL) ·
(1 + CLe

CL) with CL := ‖C(·)‖L1(I) and stay in a compactum S ⊂ R
n.

Lemma 2.5. Let F (·, ·) satisfy (H1). Then all solutions y(·) of (DI) in Problem
1.1 with bounded starting set Y0 ⊂ R

n have a uniform Lipschitz constant.
Lemma 2.6. Let F (·, ·) satisfy (H1′) with Riemann integrable C(·), and let CR

denote an upper bound for the Riemann sums. Then all solutions (ηk)k=0,...,N of
(DDI) in Euler’s method, Algorithm 1.2, with bounded starting set Y0 ⊂ R

n are
bounded uniformly in N ∈ N by M := (‖Y0‖ + CR) · (1 + CRe

CR) and stay in a
compactum S ⊂ R

n.
Choosing CR = ‖C(·)‖L1(I) + ε for all N ≥ N0(ε) emphasizes the similarity of

Lemma 2.6 to Lemma 2.4.
Lemma 2.7. Let F (·, ·) satisfy (H1). Then all solutions (ηk)k=0,...,N of (DDI)

in Euler’s method, Algorithm 1.2, with bounded starting set Y0 ⊂ R
n have a Lipschitz

constant uniformly in N ∈ N.
Proof. Let M be the bound for all discrete solutions (ηk)k=0,...,N according to

Lemma 2.6. Then it follows for N ∈ N and j, k ∈ {0, 1, . . . , N} with j ≤ k that

‖ηk − ηj‖ =

∥∥∥∥∥
k−1∑
μ=j

(ημ+1 − ημ)

∥∥∥∥∥ ≤ h

k−1∑
μ=j

∥∥∥∥ 1

h
(ημ+1 − ημ)

∥∥∥∥ ≤ h

k−1∑
μ=j

‖F (tμ, ημ)‖

≤ h

k−1∑
μ=j

C(‖ημ‖ + 1) ≤ C(M + 1)(k − j)h = C(M + 1)(tk − tj).

3. Stability analysis for the state-constrained case. There are several vari-
ants in the literature of the Gronwall–Filippov–Wazewski theorem for the continuous
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state-constrained case (cf. [15, Theorems 4.1 and 4.2], [17, Lemmas 3.3 and 4.4], [18,
Theorem 3.1], as well as [7, Lemma 3.9], [8], and [23, Lemma 2.2(b)], which are all
based on Soner’s work in [22]). These variants were also denoted as theorems on the
“existence of feasible neighboring trajectories” or as “tracking lemmas.” Exemplarily,
we treat here the so-called “smooth” case, where the function g(t, x) determines the
state constraints Θ(t) and g(·, ·) ∈ C1,L(I × R

n).
A typical result for the continuous situation is given in the following.
Theorem 3.1. Consider Problem 1.1 with time-dependent state constraint Θ(·).

Assume conditions (H2)–(H3) on the right-hand side F (·, ·) and conditions (C1)–(C2)
on the state constraints.

Then for every y0 ∈ Θ(t0) there exists a positive constant C such that for every
η(·) ∈ Y[T, t0, y0] there exists y(·) ∈ YΘ[T, t0, y0] with

sup
t∈[t0,T ]

‖η(t) − y(t)‖ ≤ C sup
t∈[t0,T ]

dist(η(t),Θ(t)).

We will omit the proof of this theorem, since it exploits a similar strategy as in
[15, Theorem 4.1], using in addition a result from [6, Theorem 3.2.4].

The reader should be aware that under considerably weaker assumptions, e.g.,
when no convexity is needed, Lipschitz condition with respect to both variables can be
weakened, and analogous results for the continuous situation hold. However, the proof
of the discrete analogue presented here could be given only under stronger assumptions
until now. Contrary to the assumptions (HC1)–(HC4) in [6], we allow time-dependent
state constraints even in the discrete situation and simplify the conditions for the error
estimate.

In any case, we want to emphasize the fact that both stability results for the
continuous and discrete case are needed for convergence of discrete approximations of
state-constrained differential inclusions described in section 4.

We now present a rather detailed analysis of the discrete analogue of Theorem 3.1,
partly following [6], but admitting time-dependent state constraints. We want to stress
that this discrete analysis is in some respects rather technical but nevertheless essential
for the convergence analysis in section 4. It would be very desirable to have available
the discrete analogues of all those refined results of [15, Theorem 4.2], [17, Lemma 3.3],
[18, Theorem 3.1] (smooth case), resp., [15, Theorem 4.1], [17, Lemma 4.4] (nonsmooth
case), for the continuous situation. See also [17] for a detailed discussion of the smooth
and nonsmooth cases.

Theorem 3.2. Consider problem (DDIC) in (1.4)–(1.5) with time-dependent
state constraint Θ(·). Assume conditions (H2)–(H3) on the right-hand side F (·, ·)
and conditions (C1)–(C2) on the state constraints.

Then for every y0 ∈ Θ(t0) there exist N0 ∈ N and a positive constant C such that
for all N ≥ N0 and for all discrete solutions (ηk)k=0,...,N ∈ YN [T, t0, y0] there exists
a discrete solution (yk)k=0,...,N ∈ YΘ

N [T, t0, y0] with

max
k=0,...,N

‖ηk − yk‖ ≤ C

(
h + max

k=0,...,N
dist(ηk,Θ(tk))

)
.

Proof. Consider an arbitrary, in general nonfeasible, solution (ηk)k=0,...,N and set

δN := max
k=0,...,N

dist(ηk,Θ(tk)).

Case A. Solution ηk is feasible for k ∈ I = {0, . . . , N}.
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Clearly, δN = 0 and the assertion is valid for yk := ηk, k ∈ I.
Case B. Solution ηk is not feasible for some k ∈ I.
In this case, δN > 0. On a small index set I0 = {0, . . . , k1} with k1 independent

from (ηk)k∈I the result will be proved as a first step.
Denote by Lη the uniform Lipschitz constant for all discrete solutions according

to Lemma 2.7; by L, resp., L∇g, the Lipschitz constant of F (·, ·), resp., ∇g(·, ·); and
choose the constants μ and α as in (C2). Without loss of generality, L > 0. Let M2 be
the maximum of ‖∇g(t, x)‖ for (t, x) ∈ I×S, with S being the compactum according
to Lemma 2.6.

Define

τ1 := max

{
t ∈ [t0, T ] : t ≤ t0 +

μ

2(Lη + 1)
,(3.1)

L∇g(t− t0) ≤
M2

2(Lη + 1)
,(3.2)

max

{
M2(Lη + 1), (Lη + 1)2 · L∇g

L

}
· (eL(t−t0) − 1) ≤ α

12

}
,(3.3)

which is independent of all discrete solutions and all N ∈ N.1

For the discrete case, additional assumptions on the step-size are necessary to
construct a viable solution.

Choose N0 ∈ N with

hN0 =
T − t0
N0

≤ τ1 − t0,(3.4)

hN0
≤ μ

2(Lη + 1)
,(3.5)

hN0
L∇g ≤ α

2(Lη + 1)2
,(3.6)

hN0L∇g ≤ M2

Lη + 1
,(3.7)

determining the maximal allowed step-size hN0 .
2

Inequality (3.4) is needed to guarantee that at least one step of Euler’s method
can be performed to reach a time not exceeding τ1. Inequality (3.5) follows from (3.1)
and (3.4). It ensures that a discrete solution, before violating the state constraints at
the next index, will be sufficiently near the boundary such that there exists a direction
which steers the solution into the interior. Inequalities (3.6)–(3.7) are needed to show
the viability of the solution in this phase and control the error of Taylor expansions.

From now on, let N ≥ N0, h = T−t0
N , and define in view of (3.4),

k1 :=

⌊
τ1 − t0

h

⌋
≥ 1,(3.8)

k̂1 := min{k ∈ I : ηk+1 /∈ Θ(tk+1)} < N,

where k1 is the biggest natural number not exceeding τ1−t0
h .

It is clear that tk1 ≤ τ1 also satisfies the requirements in (3.1)–(3.3).

1Inequalities (3.1)–(3.3) are used in (3.14), (3.27), resp., in (3.25), (3.26).
2Inequalities (3.4)–(3.7) are used in (3.8), (3.10), (3.16), resp., (3.24).
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Case B(i). k1 ≤ k̂1, i.e., the solution ηk is feasible for k ∈ Ĩ0 := {0, . . . , k̂1} ⊃ I0.

Define

yk := ηk (k ∈ I0),

which fulfills the assertion on I0.

Case B(ii). k1 > k̂1, i.e., the solution ηk is feasible for k ∈ Ĩ0 � I0.

In the first phase, set

(3.9) yk := ηk (k ∈ Ĩ0).

Since ηk̂1
∈ ∂Θ(tk̂1

) cannot be guaranteed in the discrete case (only ηk̂1
∈ Θ(tk̂1

)),
the distance to the boundary must be estimated and should not exceed μ

2 to guarantee

an inward steering direction. The function ϕ(s) = g(tk̂1
+ s, ηk̂1

+ s
ηk̂1+1−ηk̂1

h ) is
continuous on [0, h] with

ϕ(0) = g(tk̂1
, ηk̂1

) ≤ 0, ϕ(h) = g(tk̂1+1, ηk̂1+1) > 0.

Therefore, there exists a zero s̄ ∈ [0, h] of the function ϕ(·). Now, use (3.5)
and (C1) to show

dist
((

tk̂1
ηk̂1

)
, graph ∂Θ(·)

)
≤
∥∥∥∥( tk̂1

ηk̂1

)
−
(

tk̂1
+s̄

ηk̂1
+s̄

η
k̂1+1

−η
k̂1

h

)∥∥∥∥
≤ s̄

(
1 +

1

h
· ‖ηk̂1+1 − ηk̂1

‖
)

≤ (1 + Lη)h ≤ μ

2
.(3.10)

Define (without loss of generality, the Lipschitz constant Lg of g(·) is greater
than 0)

κ1 := min

{
k1 − k̂1

1 + δN
h

,
3

α
(Lg + 3M2(Lη + 1))

}
,(3.11)

δ̄1 :=

⌊
κ1

(
1 +

δN
h

)
+ 1

⌋
≥ 1,(3.12)

k̄1 := k̂1 + δ̄1,

which determines the length of the inward steering phase Î0 := {k̂1, k̂1 + 1, . . . , k̄1} ⊂
I0.

3 The nonnegative number κ1 controls whether the corresponding time interval
reaches tk1

or guarantees the feasibility on the second time interval; δ̄1 is the number
of steps in the second phase in Case B(ii.1), resp., B(ii.2) following. Notice that κ1

and k̄1 depend on the individual solution.

Consider the solution (ŷk)k∈Î0
of the discrete inclusion

1

h
(xk+1 − xk) ∈ Y (tk, xk) (k ∈ Î0 \ {k̄1}),

xk̂1
= yk̂1

3The first term in (3.11) is used in (3.19), the second one in (3.29), while (3.12) is used in (3.28)
and (3.33).
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on the second index set Î0. Here, Y (t, x) is defined as follows:

ϕ(t, x) = min
v∈F (t,x)

〈
∇g(t, x),

(
1
v

)〉
,(3.13)

Y (t, x) =
{
v ∈ F (t, x) :

〈
∇g(x),

(
1
v

)〉
= ϕ(t, x)

}
,

where ϕ(·, ·) is continuous on graph Θ(·) by [3, Theorem 1.4.16] and Y (t, x) has com-
pact, nonempty images and is upper semicontinuous by [2, section 1.2, Theorem 6].

We choose k̂1 so that inward steering is possible and show that this is the case for
all k ∈ Î0 as well. From the Lipschitz continuity of all discrete solutions by Lemma 2.7
and (3.10), we get for k ∈ Î0 that

‖ŷk − ŷk̂1
‖ ≤ Lη(k − k̂1)h,

dist
((

tk
ŷk

)
, graph ∂Θ(·)

)
≤
∥∥∥( tk

ŷk

)
−
(

tk̂1

ŷk̂1

)∥∥∥+ dist
((

tk̂1

ŷk̂1

)
, graph ∂Θ(·)

)
≤ |tk − tk̂1

| + ‖ŷk − ŷk̂1
‖ +

μ

2
.

Estimate (k − k̂1)h by tk1 − t0 and use (3.1) to show

(3.14) dist
((

tk
ŷk

)
, graph ∂Θ(·)

)
≤ (Lη + 1)(k − k̂1)h +

μ

2
≤ μ.

The proof of the feasibility of (ŷk)k∈Î0
is not as simple as in the continuous case.

Since ŷk̂1
∈ Θ(tk̂1

) per definition, we have g(tk̂1
, ŷk̂1

) ≤ 0 and

g(tk, ŷk) ≤ g(tk, ŷk) − g(tk̂1
, ŷk̂1

) =

k−1∑
j=k̂1

(g(tj+1, ŷj+1) − g(tj , ŷj)).

Set ψ(s) = g(tj + sh, ŷj + s(ŷj+1 − ŷj)) for s ∈ [0, 1] and some j ∈ Î0; then a
Taylor expansion up to terms of order 1 yields, by the Lipschitz continuity of ∇g(·, ·),

(3.15) g(tj+1, ŷj+1) ≤ g(tj , ŷj) +
〈
∇g(tj , ŷj),

(
h

ŷj+1−ŷj

)〉
+ L∇g(Lη + 1)2h2.

Hence, due to (3.6) it follows that

g(tk, ŷk) ≤
k−1∑
j=k̂1

h
〈
∇g(tj , ŷj),

(
1

ŷj+1−ŷj
h

)〉
+ (L∇g(Lη + 1)2h) · (k − k̂1)h

≤
k−1∑
j=k̂1

h
〈
∇g(tj , ŷj),

(
1

ŷj+1−ŷj
h

)〉
+

α

2
· (k − k̂1)h.(3.16)

Using (C2) due to (3.14) and
ŷj+1−ŷj

h ∈ Y (tj , ŷj) together with (3.13), we progress
to the inequalities

g(tk, ŷk) ≤ h

k−1∑
j=k̂1

ϕ(tj , ŷj) +
α

2
· (k − k̂1)h ≤ −α

2
· (k − k̂1)h.(3.17)
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Therefore, we have finally proved that ŷk ∈ Θ(tk) and

(3.18) ‖ŷk − ηk‖ ≤ ‖ŷk − yk̂1
‖ + ‖ηk̂1

− ηk‖ ≤ 2Lη(k − k̂1)h ≤ 2Lη δ̄1h (k ∈ Î0).

Case B(ii.1). The inward steering phase reaches the end of index set I0.

If k̄1 = k̂1 + δ̄1 = k1, then the definition of the constructed solution is continued
to Î0 as

yk := ŷk (k ∈ Î0 \ {k̂1}),

so that the claim is verified on Î0 and therefore also on I0.
Case B(ii.2). The Filippov solution follows the time-delayed solution for the rest

of the indices in I0 \ Î0.

Now k̄1 = k̂1 + δ̄1 < k1; set Ī0 := {k̄1, k̄1 + 1, . . . , k1}. From κ1(1 + δN
h ) < δ̄1 it

follows that κ1 = 3
α (Lg + 3M2(Lη + 1)) since

(3.19) κ1 <
k1 − k̂1

1 + δN
h

.

Consider the Filippov solution (ȳk)k∈Ī0
of

1

h
(xk+1 − xk) ∈ F (tk, xk) (k ∈ Ī0 \ {k1}),

xk̄1
= yk̄1

following the solution (ηk−δ̄1)k∈Ī0
. Since the discrete version of Filippov’s theorem,

Theorem 2.2, will be applied, we study the following error terms:

‖ȳk̄1
− ηk̄1−δ̄1‖ = ‖yk̄1

− ηk̂1
‖ = ‖yk̄1

− yk̂1
‖ ≤ Lη δ̄1h,(3.20)

dist

(
1

h
(ηk+1−δ̄1 − ηk−δ̄1)︸ ︷︷ ︸
∈F (tk−δ̄1

,ηk−δ̄1
)

, F (tk, ηk−δ̄1)

)
≤ Lδ̄1h.

The time delay δ̄1 not only helps in (3.20), since ηk̄1−δ̄1 coincides with yk̂1
, but

also allows us to reuse the estimates on the second index set Î0 (namely (3.18))
for the starting values on the third index set. For the distance to the right-hand
side of the difference inclusion, the Lipschitz continuity of F (·, ·) with respect to t
was used. The discrete Filippov theorem, Theorem 2.2, together with Corollary 2.3,
finally establishes the estimates

‖ȳk − ηk−δ̄1‖ ≤ (1 + hL)k−k̄1Lη δ̄1h + ((1 + hL)k−k̄1 − 1)δ̄1h

= ((Lη + 1)(1 + hL)k−k̄1 − 1)δ̄1h,(3.21) ∥∥∥∥ 1

h
(ηk+1−δ̄1 − ηk−δ̄1) −

1

h
(ȳk+1 − ȳk)

∥∥∥∥
≤ L(Lη + 1)(1 + hL)k−k̄1 δ̄1h(3.22)

on Ī0. They are used twice: first to estimate the deviation of the feasible solution to
the given one in

‖ȳk − ηk‖ ≤ ‖ȳk − ηk−δ̄1‖ + ‖ηk−δ̄1 − ηk‖

≤
(

(Lη + 1)eL(k−k̄1)h + Lη − 1

)
δ̄1h(3.23)
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and second to show feasibility. To this purpose, the state constraint is split into four
terms for each k ∈ Ī0. Hereby, the Taylor expansion as in (3.15) will be used:

g(tk, ȳk) = g(tk̄1
, ȳk̄1

)︸ ︷︷ ︸
=TA

+ g(tk−δ̄1 , ηk−δ̄1) − g(tk̄1−δ̄1 , ηk̄1−δ̄1)︸ ︷︷ ︸
=TB

+

k−1∑
j=k̄1

(
g(tj+1, ȳj+1) − g(tj , ȳj)

)

−
k−1∑
j=k̄1

(
g(tj+1−δ̄1 , ηj+1−δ̄1) − g(tj−δ̄1 , ηj−δ̄1)

)

≤ TA + TB + h

k−1∑
j=k̄1

〈
∇g(tj , ȳj),

(
1

ȳj+1−ȳj
h

)〉
+ L∇g(Lη + 1)2(k − k̄1)h

2

− h

k−1∑
j=k̄1

〈
∇g(tj−δ̄1 , ηj−δ̄1),

(
1

ηj+1−δ̄1
−ηj−δ̄1

h

)〉
+ L∇g(Lη + 1)2(k − k̄1)h

2

= TA + TB + h

k−1∑
j=k̄1

〈
∇g(tj , ȳj),

(
1

ȳj+1−ȳj
h

)
−
(

1
ηj+1−δ̄1

−ηj−δ̄1
h

)〉
︸ ︷︷ ︸

=TC

+ h

k−1∑
j=k̄1

〈
∇g(tj , ȳj) −∇g(tj−δ̄1 , ηj−δ̄1),

(
1

ηj+1−δ̄1
−ηj−δ̄1

h

)〉
︸ ︷︷ ︸

=TD

+ 2L∇g(Lη + 1)2(k − k̄1)h
2︸ ︷︷ ︸

=TE

= TA + TB + TC + TD + TE .

The next task will be to estimate each term separately. We estimate

TA = g(tk̄1
, ŷk̄1

) ≤ −α

2
δ̄1h

by (3.17), the corresponding inequality on the second index set.
The treatment of the second term is slightly more complicated, as in the continu-

ous case, since we cannot assume that g(tk̂1
, ηk̂1

) = 0. Nevertheless, we know that at

index k̂1 we are close to the boundary and at the next index k̂1 +1 the iterate violates
the state constraints so that

TB = g(tk−δ̄1 , ηk−δ̄1) − g(tk̂1
, ηk̂1

) < g(tk−δ̄1 , ηk−δ̄1) + g(tk̂1+1, ηk̂1+1)︸ ︷︷ ︸
>0

− g(tk̂1
, ηk̂1

).

The difference of the last two terms could be estimated as in (3.15):

g(tk̂1+1, ηk̂1+1) − g(tk̂1
, ηk̂1

) ≤ h‖∇g(tk̂1
, ηk̂1

)‖ ·
(

1 +

∥∥∥∥ηk̂1+1 − ηk̂1

h

∥∥∥∥
)

+ L∇g(Lη + 1)2h2 ≤ max
(t,x)∈I×S

‖∇g(t, x)‖︸ ︷︷ ︸
=M2

· (1 + Lη)h + L∇g(Lη + 1)2h2,
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where we used again the fact that all discrete solutions are contained within a com-
pactum S by Lemma 2.6 and that all discrete solutions have a uniform Lipschitz
constant Lη by Lemma 2.7. Mimicking the proof in the continuous case, we distin-
guish two cases to treat the first term in TB .

If ηk−δ̄1 ∈ Θ(tk−δ̄1), then g(tk−δ̄1 , ηk−δ̄1) ≤ 0 so that this first term has an
advantageous sign. Otherwise, we introduce the projection ηπ

k−δ̄1
∈ ∂Θ(tk−δ̄1) and

estimate by using the definition of δN :

|g(tk−δ̄1 , ηk−δ̄1) − g(tk−δ̄1 , η
π
k−δ̄1

)| ≤ Lg‖ηk−δ̄1 − ηπk−δ̄1
‖

= Lg dist(ηk−δ̄1 ,Θ(tk−δ̄1)) ≤ LgδN .

In both cases, due to (3.7) we have

(3.24) TB ≤ LgδN + M2 · (1 + Lη)h + L∇g(Lη + 1)2h2 ≤ LgδN + 2M2 · (1 + Lη)h.

In term TC , the difference quotient of both solutions is compared, which was
estimated in (3.22) by the discrete Filippov theorem. Moreover, the boundedness of
the discrete solutions and the continuity of ∇g(·, ·) are used, yielding

TC ≤ h

k−1∑
j=k̄1

‖∇g(tj , ȳj)‖ ·
∥∥∥∥ ȳj+1 − ȳj

h
−

ηj+1−δ̄1 − ηj−δ̄1

h

∥∥∥∥
≤ M2h

k−1∑
j=k̄1

(
L(Lη + 1)(1 + hL)j−k̄1 δ̄1h

)
= M2(Lη + 1)((1 + hL)k−k̄1 − 1)δ̄1h.

Since (1 + hL)k−k̄1 can be estimated by Corollary 2.3 as eL(k−k̄1)h ≤ eLk1h ≤
eL(τ1−t0), we can exploit that τ1 was suitably chosen by (3.3), and we get

(3.25) TC ≤ α

12
δ̄1h.

The same estimate will be reached for the term TD. The main keys are the
Lipschitz continuity of ∇g(·, ·), the uniform Lipschitz constant for all discrete solu-
tions, and the estimates (3.21) from the discrete Filippov theorem, together with the
estimate in (2.5):

TD ≤ h

k−1∑
j=k̄1

‖∇g(tj , ȳj) −∇g(tj−δ̄1 , ηj−δ̄1)‖ ·
(

1 +

∥∥∥∥ηj+1−δ̄1 − ηj−δ̄1

h

∥∥∥∥
)

≤ h

k−1∑
j=k̄1

L∇g(|tj − tj−δ̄1 | + ‖ȳj − ηj−δ̄1‖) · (1 + Lη)

≤ (Lη + 1)L∇gh

k−1∑
j=k̄1

(1 + (Lη + 1)(1 + hL)j−k̄1 − 1) · δ̄1h

≤ (Lη + 1)L∇g
Lη + 1

L
hL

k−1∑
j=k̄1

(1 + hL)j−k̄1 · δ̄1h

≤ (Lη + 1)2
L∇g

L
((1 + hL)k−k̄1 − 1) · δ̄1h.
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Now, the reasoning is the same as for the term TC , and hence

(3.26) TD ≤ α

12
δ̄1h.

For the estimation of TE we need (3.2):

TE = 2L∇g(Lη + 1)2(k − k̂1)h
2 ≤ 2L∇g(Lη + 1)2(tk − tk̂1

)h

≤ 2L∇g(Lη + 1)2(τ1 − t0)h ≤ M2(Lη + 1)h.(3.27)

Now, we put all estimates together to show the feasibility. We have

g(tk, ȳk) ≤ TA + TC + TD + TB + TE ≤ −α

2
δ̄1h + 2 · α

12
δ̄1h + TB + TE

≤ −α

3
δ̄1h + TB + TE .

The definition (3.12) for δ̄1 and κ1 = 3
α (Lg + 3M2(Lη + 1)) yield

α

3
δ̄1h ≥ α

3
κ1

(
1 +

δN
h

)
h(3.28)

= (Lg + 3M2(Lη + 1))(h + δN ) ≥ LgδN + 3M2(Lη + 1)h,(3.29)

and hence the problematic term LgδN could be eliminated by

g(tk, ȳk) ≤ −LgδN − 3M2(Lη + 1)h + LgδN + 2M2(Lη + 1)h

+ M2(Lη + 1)h ≤ 0.(3.30)

Extend the feasible solution in the third phase to I0 by

(3.31) yk := ȳk (k ∈ Ī0 \ {k̄1}).

For all k ∈ I0, (3.9) and the estimates (3.18), (3.23) yield altogether

(3.32) ‖yk − ηk‖ ≤ max{2Lη, (Lη + 1)eL(τ1−t0) + Lη − 1︸ ︷︷ ︸
=:M3≥2Lη

} · δ̄1h.

In the last inequality, (k1 − k̄1)h was estimated by k1h ≤ τ1 − t0. Moreover,

δ̄1h =

⌊
κ1

(
1 +

δN
h

)
+ 1

⌋
· h ≤

(
κ1

(
1 +

δN
h

)
+ 1

)
h

≤
(

3

α
(Lg + 3M2(Lη + 1))

)
(h + δN ) + h = O(h + δN ),(3.33)

‖yk − ηk‖ ≤ M3δ̄1h ≤ M3

(
1 +

3

α
(Lg + 3M2(Lη + 1))

)
︸ ︷︷ ︸

=:M̃

(h + δN ) = O(h + δN ).

Extension to the whole index set I. This process is well explained in the proof
of [6, Theorem 3.2.6]: Divide the index set into J subsets with k1 elements and set
Ij := {kj , kj + 1, . . . , kj+1} ∩ {0, . . . , N} with kj = jk1, j = 0, . . . , J .

(i) First index set. For j = 0 the solution yk is already constructed for I0. Set

C̃0 := 1 + δN
h and Δ0 = κ1C̃0 + 1�.
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(ii) Recursive approach. For j > 0 start the process by taking the end value of
the feasible solution yj·k1 on Ij−1 as the starting value for the next iteration. Now,
apply again the discrete Filippov theorem to construct the (in general, nonfeasible)

solution (z
(j)
k )k∈Ij

of

1

h
(xk+1 − xk) ∈ F (tk, xk) (k ∈ Ij),

xkj
= ykj

that follows the nonfeasible solution (ηk)k∈Ij . The error term is governed by the
difference of the starting values. Now, construct a feasible solution (yk)k∈Ij from

(z
(j)
k )k∈Ij

. Then show that the deviation from (yk)k∈Ij
to (ηk)k∈Ij

could be estimated
by

‖yk − ηk‖ ≤ M̃

j∑
ν=0

e(j−ν)Lk1hΔνh (k ∈ Ij),

where for j = 1, . . . , J ,

C̃j = C̃0 + M̃

j−1∑
ν=0

e(j−ν)Lk1h, Δj = κ1C̃j + 1�.

Estimate J uniformly for all N ∈ N by  T−t0
τ1−hN0

+ 1� so that we finally prove the

overall order O(h + δN ).
Remark 3.3. Assume that Θ : I ⇒ R

n with images in C(Rn) has a C1,L-signed
distance function

d̃(t, x) :=

{
dist(x, ∂Θ(t)) if x ∈ Θ(t),

−dist(x, ∂Θ(t)) = −dist(x,Θ(t)) if x ∈ R
n \ Θ(t).

Then Θ(t) = {x ∈ R
n : −d̃(t, x) ≤ 0} fulfills the assumptions of Theorem 3.2.

4. Convergence analysis. Combining the stability results from section 3 for
the continuous and discrete case, we are now in a position to prove order of convergence
results for the discrete approximation of the set of all viable solutions of the differential
inclusion by all viable discrete solutions.

An essential tool is the following result for differential inclusions without state
constraints (cf. [11, section 1, Theorem]) which we formulate under stronger assump-
tions that will be needed later. The convexity is an important assumption for the
convergence of Euler’s method.

Proposition 4.1. Choose a compactum S ⊂ R
n containing all solutions of (1.1),

(1.3). Let F (·, ·) fulfill (H2)–(H3) on S and let Y0 = {y0}.
Then there exists a positive constant C such that for all N ∈ N,

dH,∞(Y[T, t0, y0],YN [T, t0, y0]) ≤ Ch.

The stability results from section 3 (Theorem 3.1 for the continuous case and
Theorem 3.2 for the discrete case) are essential for the convergence proof of Euler’s
discretization of differential inclusions with state constraints.
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Theorem 4.2. Assume hypotheses (H2)–(H3) together with (C1)–(C2) and let
Y0 = {y0} with y0 ∈ Θ(t0).

Then there exist a positive constant C and N0 ∈ N such that for all N ≥ N0,

dH,∞(YΘ[T, t0, y0],YΘ
N [T, t0, y0]) ≤ Ch.

Proof. This proof will use the notation of some constants from the proof of
Theorem 3.2. Choose N0 ∈ N from this theorem and N ≥ N0 so that additionally
hN0 ≤ μ and (C(M + 1) + 1)2L∇ghN0 ≤ α

2 , where M is the bound in Lemma 2.6 and
α, μ are as in (C2).

Let us first construct a close discrete solution to a given y(.) ∈ YΘ[T, t0, y0] to esti-
mate the one-sided distance. According to Proposition 4.1, there exists (η̃k)k=0,...,N ∈
YN [T, t0, y0] with

max
k=0,...,N

‖y(tk) − η̃k‖ ≤ C̃1h.

Since

dist(η̃k,Θ(tk)) ≤ ‖η̃k − y(tk)‖ + dist(y(tk),Θ(tk)) ≤ C̃1h,

a solution (ηk)k=0,...,N ∈ YΘ
N [T, t0, y0] can be constructed by Theorem 3.2 with

max
k=0,...,N

‖ηk − η̃k‖ ≤ C̃2h.

Hence, the grid function yN := (y(tk))k=0,...,N fulfills

‖ηk − y(tk)‖ ≤ ‖ηk − η̃k‖ + ‖η̃k − y(tk)‖ ≤ (C̃1 + C̃2)h,

dist∞(yN ,YΘ
N [T, t0, y0]) ≤ (C̃1 + C̃2)h.

On the other hand, for a given discrete solution η := (ηk)k=0,...,N ∈ YΘ
N [T, t0, y0]

one has to estimate the other one-sided distance. Proposition 4.1 shows the existence
of ỹ(·) ∈ Y[T, t0, y0] with

max
k=0,...,N

‖ηk − ỹ(tk)‖ ≤ C̃1h.

The reasoning is now more complicated since we need to estimate the following
distance for all t ∈ [tk, tk+1] and all k ∈ {0, . . . , N − 1}:

(4.1) dist(ỹ(t),Θ(t)) ≤ ‖ỹ(t) − ỹ(tk)‖ + ‖ỹ(tk) − ηk‖ + dist(ηk,Θ(t)).

Since ηk ∈ Θ(tk), the inequality g(tk, ηk) ≤ 0 holds.
(i) If

(
tk
ηk

)
∈ Bμ(graph ∂Θ(·)), then there exists vk ∈ F (tk, ηk) by (C2) with〈

∇g(tk, ηk),
(

1
vk

)〉
≤ −α.

For t ∈ [tk, tk+1], we set η(t) := ηk + (t− tk)vk and consider

g(t, η(t)) = g(tk, ηk) +

∫ t

tk

d

ds
g(s, η(s)) ds ≤

∫ t

tk

〈
∇g(s, η(s)),

(
1
vk

)〉
ds

=

∫ t

tk

〈
∇g(tk, ηk),

(
1
vk

)〉
ds +

∫ t

tk

〈
∇g(s, η(s)) −∇g(tk, ηk),

(
1
vk

)〉
ds

≤ −α(t− tk) +

∫ t

tk

‖∇g(s, η(s)) −∇g(tk, ηk)‖ · (1 + ‖vk‖) ds.
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Let us estimate both terms using (H1) and Lemma 2.6 by

1 + ‖vk‖ ≤ 1 + ‖F (tk, ηk)‖ ≤ 1 + C(‖ηk‖ + 1) ≤ C(M + 1) + 1,

‖∇g(s, η(s)) −∇g(tk, ηk)‖ ≤ L∇g(|s− tk| + ‖η(s) − ηk‖)
≤ L∇g(1 + ‖vk‖)(s− tk) ≤ (C(M + 1) + 1)L∇gh

and continue the inequality with

g(t, η(t)) ≤ −α(t− tk) + (C(M + 1) + 1)2L∇gh(t− tk) ≤ −α

2
(t− tk) ≤ 0.

Therefore, η(t) ∈ Θ(t) is close to ηk with

dist(ηk,Θ(t)) ≤ ‖ηk − η(t)‖ = (t− tk)‖vk‖ ≤ C(M + 1)(t− tk).

(ii) If
(
tk
ηk

)
/∈ Bμ(graph ∂Θ(·)), then

(
tk
ηk

)
/∈ graph ∂Bμ(Θ(·)) and dist(ηk, ∂Θ(tk)) is

greater than μ. Let us assume that g(t, ηk) > 0. With the continuous function ϕ(s) :=
g(s, ηk) on [tk, tk+1], we will soon arrive at a contradiction. Since the inequalities

ϕ(tk) = g(tk, ηk) < 0,

ϕ(t) = g(t, ηk) > 0

hold, there exists t̄ ∈ (tk, t) ⊂ (tk, tk+1] with ϕ(t̄) = 0. Then g(t̄, ηk) = 0 and ηk ∈
∂Θ(t̄) such that

(
t̄
ηk

)
∈ graph ∂Θ(·). The following inequality shows the contradiction:

dist
((

tk
ηk

)
, graph ∂Θ(·)

)
≤
∥∥(tk

ηk

)
−
(

t̄
ηk

)∥∥ = |t̄− tk| ≤ h ≤ μ.

Hence, the assumption was wrong; consequently, it holds g(t, ηk) ≤ 0 so that ηk ∈
Θ(t).

In both cases (i) and (ii), dist(ηk,Θ(t)) ≤ C(M + 1)(t− tk). Using (4.1), we get

dist(ỹ(t),Θ(t)) ≤ Ly|t− tk| + C̃1h + C(M + 1)(t− tk) ≤ (C(M + 1) + C̃1 + Ly)h,

where Ly is the uniform Lipschitz constant from Lemma 2.5. Therefore, a solution
y(·) ∈ YΘ[T, t0, y0] exists by Theorem 3.1 with

sup
t∈I

‖y(t) − ỹ(t)‖ ≤ C̃3h.

Hence,

‖ηk − y(tk)‖ ≤ ‖ηk − ỹ(tk)‖ + ‖ỹ(tk) − y(tk)‖ ≤ (C̃1 + C̃3)h,

dist∞(η,YΘ[T, t0, y0]) ≤ (C̃1 + C̃3)h.

5. Example. The dynamical system, underlying the following two test exam-
ples, is due to Petar Kenderov. It serves as a model problem for the illustration of
first order convergence. We restrict ourselves to the visualization of the convergence of
reachable sets. The visualization of the convergence of the whole discrete solution sets
would require much more space and the choice of more appropriate data structures.

Naturally, the realization of the set-valued Euler’s method (1.4)–(1.5) on a com-
puter amounts to an additional perturbation of the set-valued right-hand side of or-
der 1 and an evaluation of the set union with a local error of order 2 (with respect to
Hausdorff distance, uniformly in t ∈ I); for computational details, cf. [6].

Example 5.1. Consider the differential inclusion
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y′(t) ∈ F (t, y(t)) = {Ay(t) + uBy(t) ∈ R
2 : 0 ≤ u ≤ 1} (a.e. t ∈ [0, 8]),

y(t) ∈ Θ := {y ∈ R
2 : g(y) ≤ 0},

y(0) = y0 =
(
2
2

)
,

where

A =

(
σ2 − 1 σ

√
1 − σ2

−σ
√

1 − σ2 σ2 − 1

)
, B =

(
0 −2σ

√
1 − σ2

2σ
√

1 − σ2 0

)
,

g(y) := −1

2
(y1 − 2)2 + 2 − y2, y =

(
y1

y2

)
,

and σ ∈ (0, 1) is a fixed parameter.
The reachable set for the unconstrained case can be expressed by representing its

points with polar coordinates,

R
(
t, t0, r0

(
cos(φ0)
sin(φ0)

))
=
{
r(t)

(
cos(φ(t))
sin(φ(t))

)
: r(t) = r0e

(σ2−1)t,

φ(t) = φ0 + σ
√

1 − σ2(2u− 1)t, 0 ≤ u ≤ 1
}
,

where the initial point y0 has polar coordinates (r0, φ0) = (2
√

2, π
4 ). Further on, we

fix σ = 9
10 .

y2
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−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1.5
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−0.5

0

0.5

1

1.5

2

2.5

y1 y1

Fig. 5.1. Reachable sets for different end times t (without, resp., with state constraints).

In Figure 5.1 (left picture), the exact reachable sets for the unconstrained problem
with varying end time ti = i· 12 , i = 0, . . . , 16, and the boundary of the (quadratic) state
constraint (dotted line), are illustrated. For t = 0, the starting set is just the upper
right point in this figure (marked by the cross); for increasing time t the reachable
set moves to the lower left of the figure and the two ends of the arcs approach each
other. Approximately for t ≥ 8, the two end points of the arc will overlap and the
reachable sets form the boundary of a circle. In the right picture of Figure 5.1, the
reachable sets for the state-constrained problem are visualized for the same times. In
contrast to [6, Example 5.2.2] with a linear constraint, the reachable set cannot be
gained by the intersection R(t, t0, Y0) ∩Θ, as the comparison of both pictures shows.
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t

y1

−2
0

2
4

−0.5 0 0.5 1 1.5 2 2.5

0

1

2

3

4

5

6

7

8

y2

Fig. 5.2. Integral funnel of Euler’s method with N = 240 and state constraints.

For t ≥ 7.2, the small part of the circle that moves out of the interior of Θ (everything
below the quadratic function) originates from points that were already cut off by the
quadratic state constraint at an earlier time.

Figure 5.2 shows the integral funnel with state constraints. This figure was cal-
culated with set-valued Euler’s method for N = 240 on the interval [0, 8] (cf. [6,
Chapter 4] for details on the implementation of Euler’s method for the approximation
of nonlinear differential inclusions).

Let us check whether Theorem 4.2 for state-constrained Euler’s method can be
applied. Observe that F (t, y) = {f(t, y, u) : u ∈ [0, 1]} with f(t, y, u) = Ay + uBy is
Lipschitz with respect to (t, y) and has nonempty, compact, convex images. Clearly,
(H1) and (C1) are also fulfilled. Furthermore,

〈∇g(y)	, v〉 = −(σ2 − 1) · 1

2
y2
1 + σ

√
1 − σ2 · (1 − 2u) · 1

2
y1 · (y2

1 − 6y1 + 10)

for all y ∈ ∂Θ and v = f(t, y, u).
For y1 < 0, the choice of u = 0 yields

〈∇g(y)	, v〉 =
1

2
y1 · σ

√
1 − σ2 ·

(
y2
1 −

(
6 − 1

σ

√
1 − σ2

)
y1 + 10︸ ︷︷ ︸

=:h(y1)

)
.

A discussion of the function h shows h(y1) ≥ (y1 − 4)2 − 6 ≥ 10 so that the scalar
product is less than zero.

For y1 ∈ (0, 5
2 ], u = 1 is chosen such that

〈∇g(y)	, v〉 = −1

2
y1 · σ

√
1 − σ2 ·

(
y2
1 −

(
6 +

1

σ

√
1 − σ2

)
y1 + 10

)
.

The quadratic function in this term could be strictly estimated from below by the
function h̃(y1) = y2

1 − 13
2 y1 + 10 which is strictly decreasing and is not less than

h̃( 5
2 ) = 0. Hence, the scalar product is also negative.

Let us note that the final reachable set is a circle avoiding the origin; cf. Figure 5.1.
Therefore, all discrete reachable sets for small step-sizes have a positive distance to
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Table 5.1

Estimated order of convergence for T = 0.5 (state-constrained problem).

Estimated Hausdorff distance Difference
N from the reference set to Chp

16 0.0897488 -1.1E-02
32 0.0280925 9.2E-03
64 0.0182812 -6.6E-04

128 0.0104471 -2.1E-03
256 0.0036226 3.2E-04
512 0.0018178 4.8E-05

Table 5.2

Estimated order of convergence for T = 7.5 (state-constrained problem).

Estimated Hausdorff distance Difference
N from the reference set to Chp

16 0.3275207 1.1E-02
32 0.1842108 -7.3E-03
64 0.0923952 -1.2E-04

128 0.0483326 -2.0E-04
256 0.0250892 2.0E-05
512 0.0129622 1.4E-04

the origin so that on a compactum containing all Euler solutions and near to the
boundary of Θ we have a positive distance to the origin. A compactness argument
yields therefore the validity of (C2). Hence, order of convergence 1 with respect to
the step-size h holds by Theorem 4.2.

For the state-constrained case, Tables 5.1 and 5.2 visualize the order of conver-
gence for the approximation of the reachable set R(0.5, 0,

(
2
2

)
), resp., R(7.5, 0,

(
2
2

)
).

The tables are calculated by using the theoretical reachable set as reference set.
Based on these data, a least squares problem with the function log(Chp) with un-
knowns C, p ≥ 0 yields the values p = 1.0800 and C = 1.1812, resp., p = 0.9388 and
C = 1.9156. The estimated order of convergence for T = 7.5 is slightly worse than
for T = 0.5 due to possible increasing rounding errors.

In Figure 5.3 the difference between the discrete reachable sets generated by
Euler’s method (gray shaded sets) and the theoretical one (arc with black solid line,
almost included in the gray sets) is depicted. The pictures show the approximations
of the reachable set with state constraints at time t = 7.5 for several numbers N of
subintervals: N = 16 (upper left), 32 (upper right), 64 (lower left), and 128 (lower
right).

Example 5.2. Consider the modified Example 5.1 in which the state constraint
is now time-dependent, i.e.,

y(t) ∈ Θ(t) := {y ∈ R
2 : g(t, y) ≤ 0},

g(t, y) := −1

4
·
(

2 − t2

64

)
· (y1 − 2)2 +

(
2 − t2

64

)
− y2, y =

(
y1

y2

)
.

Observe that g(0, y) equals the time-independent state constraint in Example 5.1.
From Figure 5.4, it is clear that in the case of time-dependent constraints (right
picture), the reachable sets are bigger than in the time-independent case (left picture).
This figure shows the discrete reachable sets for the constrained problem at the times
t ∈ {0, 1

2 , 1,
3
2 , 2, 3, 4, 6, 8}. For these times, the boundaries of the state constraints

g(t, ·) = 0 are depicted in the right picture with dotted lines.
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Fig. 5.3. Discrete reachable sets for T = 7.5 and various step-sizes N = 16, 32, 64, 128.
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Fig. 5.4. Discrete reachable sets from Euler’s method with N = 128 for both examples.
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Table 5.3

Estimated order of convergence for T = 7.5 (time-dependent state-constrained problem).

Estimated Hausdorff distance Difference
N from the reference set to Chp

16 0.3371631 7.2E-03
32 0.1842111 -5.1E-03
64 0.0931844 -4.1E-05

128 0.0483323 1.1E-04
256 0.0250866 1.1E-04
512 0.0130925 1.2E-05
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Fig. 5.5. Discrete reachable sets for T = 7.5 and various step-sizes N = 16, 32, 64, 128.

With considerably more effort, it is even possible to show the validity of (C2) by
choosing the same values u depending on the sign of y1 as in Example 5.1.

Table 5.3 is created for the time T = 7.5 similarly to the tables for the previous
example, but includes the data for the time-dependent state constraint. A least
squares approximation with log(Chp) yields the values p = 0.9431 and C = 1.9387.

Figure 5.5 visualizes how the discrete reachable sets (gray shaded) generated by
Euler’s method approximate the theoretical reachable set.
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[16] H. Frankowska, S. Plaskacz, and T. Rzežuchowski, Measurable viability theorems and the
Hamilton-Jacobi-Bellman equation, J. Differential Equations, 116 (1995), pp. 265–305.

[17] H. Frankowska and F. Rampazzo, Filippov’s and Filippov-Wazewski’s theorems on closed
domains, J. Differential Equations, 161 (2000), pp. 449–478.

[18] H. Frankowska and R. B. Vinter, Existence of neighboring feasible trajectories: Applications
to dynamic programming for state-constrained optimal control problems, J. Optim. Theory
Appl., 104 (2000), pp. 21–40.

[19] F. Lempio, Difference methods for differential inclusions, in Modern Methods of Optimization.
Proceedings of a Summer School at the Schloß Thurnau of the University of Bayreuth
(Germany), FRG, 1990, Lecture Notes in Econom. and Math. Systems 378, Springer-
Verlag, Berlin, 1992, pp. 236–273.

[20] F. Lempio, Euler’s method revisited, Proc. Steklov Inst. Math., 211 (1995), pp. 429–449.
[21] F. Lempio and D. Silin, Generalized differential equations with strongly one-sided Lipschitzian

right-hand side, Differential Equations, 32 (1996), pp. 1485–1491.
[22] H. M. Soner, Optimal control with state-space constraint I, SIAM J. Control Optim., 24 (1986),

pp. 552–561.
[23] R. J. Stern, Characterization of the state constrained minimal time function, SIAM J. Control

Optim., 43 (2004), pp. 697–707.
[24] V. M. Veliov, Second order discrete approximations to strongly convex differential inclusions,

Systems Control Lett., 13 (1989), pp. 263–269.
[25] V. Veliov, Second-order discrete approximation to linear differential inclusions, SIAM J. Nu-

mer. Anal., 29 (1992), pp. 439–451.



SIAM J. OPTIM. c© 2007 Society for Industrial and Applied Mathematics
Vol. 18, No. 3, pp. 1027–1045

SOME NONLINEAR MAPS AND RENORMINGS OF BANACH
SPACES∗

S. LAJARA† , A. J. PALLARÉS‡ , AND S. TROYANSKI‡

Abstract. We consider two classes of nonlinear maps between normed spaces which are relevant
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1. Introduction. Renorming a Banach space X consists in finding equivalent
norms on X with good geometrical properties of convexity or differentiability, as close
as possible to those of the euclidean norms in finite dimensional Banach spaces.

Among the notions related to the convexity we have that of a locally uniformly
rotund norm, which plays an important role in the geometry of Banach spaces as well
as in optimization theory (see, e.g., [4, 5, 17, 18]). A normed space X (or a norm
‖ · ‖ on X) is said to be locally uniformly rotund (LUR) if, for every x ∈ X and every
sequence (xn)n ⊂ X such that limn ‖xn‖ = ‖x‖ and limn ‖xn + x‖ = 2‖x‖, we have
limn ‖xn − x‖ = 0.

The class of normed spaces that admit an equivalent LUR norm was characterized
in [12] (see also [16]), involving the notion of ε-denting point. Recall that an element
x of a set K in a normed space X is an ε-denting point of K if there exists an open
half space H ⊂ X (i.e., a set of the form f−1(a,∞) with f ∈ X∗ and a ∈ R) such
that x ∈ H and diam(H ∩K) < ε. The set H ∩K is called a slice of K.

Theorem 1 (see [12, Main Theorem]). A normed space X admits an equivalent
LUR norm if and only if for every ε > 0 we can write

X =
⋃
n∈N

Xn,ε

in such a way that every x ∈ Xn,ε is an ε-denting point of the set Xn,ε.
It is rather difficult to apply directly the above theorem to get LUR norms in

concrete normed spaces. In [14] a new class of maps was introduced and studied,
the σ-slicely continuous maps. Using this class of maps, a transfer technique for
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LUR renorming was established. It turns out that this class of maps admits charac-
terizations in terms of optimization (subdifferentials), probability (expectations and
distributions of random variables), and topology (σ-discrete families of sets).

As a variant of the LUR property we have the notion of MLUR norm. A normed
space X (or a norm ‖·‖ on X) is said to be midpoint locally uniformly rotund (MLUR)
if, for every x ∈ X and every sequence (xn)n ⊂ X such that ‖xn + x‖ → ‖x‖ and
‖xn − x‖ → ‖x‖, we have ‖xn‖ → 0.

It is well known that the MLUR property lies between local uniform rotundity
and strict convexity. In the paper [7], devoted to the renorming of spaces of con-
tinuous functions on trees, Haydon provided the first example of MLUR space with
no equivalent LUR renorming. On the other hand, the space �∞ (which admits an
equivalent dual strictly convex norm being the dual of a separable space) does not
have any equivalent MLUR renorming (see, e.g., [2] and [8], where it was shown that
there is not any equivalent MLUR renorming on �∞ using a variant of the argument
in [11] about the impossibility of LUR renormability of that space).

The class of MLUR renormable spaces was characterized in a linear topological
way in [13], using the concept of ε-strongly extreme point, introduced in [9]. The
following definition provides an equivalent formulation of this concept.

Definition 2. Let K be a subset of a normed space X, and let ε, δ > 0. An
element x ∈ K is said to be an (ε, δ)-strongly extreme point of K if

‖u− x‖ ≤ ε and ‖v − x‖ ≤ ε whenever u, v ∈ K and

∥∥∥∥x− u + v

2

∥∥∥∥ < δ.

The point x is called an ε-strongly extreme point of K if there exists δ > 0 such that
x is an (ε, δ)-strongly extreme point of K.

It is easy to see that every ε-denting point is a 2ε-strongly extreme point. It is also
well known that a normed space is MLUR if and only if every element of its unit sphere
is an ε-strongly extreme point of the unit ball for each ε > 0. The aforementioned
characterization of MLUR renormability is given by the following theorem.

Theorem 3 (see [13, Theorem 1]). A normed space X admits an equivalent
MLUR norm if and only if for every ε > 0 we can write

X =
∞⋃

n=1

Xn,ε

in such a way that each x ∈ Xn,ε is an ε-strongly extreme point of the set co(Xn,ε),
where co(A) denotes the convex hull of A.

In this paper we provide some more characterizations of the σ-slicely continuous
maps. Also, motivated by the notion of ε-strongly extreme point and the above char-
acterization of MLUR renormability, we introduce and study a new class of nonlinear
maps between normed spaces that we call σ-midpoint continuous maps. This class
includes that of the σ-slicely continuous maps and is relevant for the study of normed
spaces that admit equivalent MLUR norms. In terms of this new class we obtain some
results which cover all the known cases of MLUR renorming.

2. σ-slicely continuous and σ-midpoint continuous maps. As we men-
tioned in the introduction, in the recent memoir [14], a nonlinear transfer technique
for LUR renormability has been developed. The following notion, introduced there,
plays the main role in this technique.

Definition 4. Let X and Y be normed spaces, and let A be a subset of X. A
map Φ : A −→ Y is said to be σ-slicely continuous if, for every ε > 0, we may write
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A =
⋃
n∈N

An,ε

in such a way that for every x ∈ An,ε there exists an open half space Hx ⊂ X such
that x ∈ Hx and diam Φ(An,ε ∩Hx) < ε.

This concept can be regarded as the countable covering counterpart of the notion
of slice continuity. Recall that if A is a subset of X, then a map Φ : A −→ Y is said
to be slicely continuous at a point x ∈ A if there exists an open half space Hx ⊂ X
containing x such that diam Φ(A ∩Hx) < ε.

The characterization of LUR renormable spaces given in Theorem 1 shows that a
normed space X is LUR renormable if and only if the identity operator Id : X −→ X
is σ-slicely continuous.

Let us note that if Y is a separable normed space, then every map Φ : X −→ Y
is σ-slicely continuous. Indeed, for any ε > 0 we can write Y =

⋃
n∈N

Bn, where each
Bn is a ball of diameter less than ε. The sequence {Φ−1(Bn)}n is then a countable
covering of X that satisfies the required properties. Therefore, the natural framework
for the study of the class of σ-slicely continuous maps is that of nonseparable spaces.

In [14], many examples of maps in this class are given. Let us mention that it
includes, among others, bounded linear operators whose domain or range is an LUR
renormable space and positive convex maps with values in an LUR lattice. Recall
that a map Φ from a normed space X into a Banach lattice Y is said to be positive
and convex if for every x1, x2 ∈ X and λ, μ ≥ 0 such that λ + μ = 1 we have

0 ≤ Φ(λx1 + μx2) ≤ λΦx1 + μΦx2.

Also, in [14], the σ-slicely continuous maps are characterized using the notion of
ε-subdifferential, used by Asplund and Rockafellar [3] in nonlinear analysis. Recall
that if A is a subset of a linear topological space X and φ is a map from A into R,
the ε-subdifferential of φ at a point x ∈ C ⊆ A is the set

∂εφ(x|C) = {f ∈ X∗ : f(y) ≥ φ(x) + f(y − x) − ε ∀y ∈ C}

and the subdifferential of φ at x is ∂φ(x|C) =
⋂

ε>0 ∂εφ(x|C).
In the next theorem we complete the characterization of σ-slicely continuous maps

in a probabilistic way. Before establishing that theorem, we make some comments
about the notations and background from measure theory to be used in its statement
and proof (as well as in other definitions and results in this work).

We shall consider a probability space (Ω,Σ, P ), where Σ is a σ-algebra of subsets
of Ω. A function U : Ω −→ X is said to be simple if there exist x1, . . . , xm ∈ X and
E1, . . . , Em ∈ Σ such that U =

∑m
k=1 xk11Ek

, where 11Ek
denotes the characteristic

function of the set Ek. A function U : Ω −→ X is called strongly measurable if there
exists a sequence of simple functions Un : Ω −→ X such that limn ‖U − Un‖ = 0
almost everywhere. A strongly measurable function U : Ω −→ X is said to be
Bochner integrable whenever there is a sequence of simple functions Un such that
limn

∫
‖U − Un‖dP = 0. In this case, the integral with respect to a set E ∈ Σ is

limn

∫
E
UndP , where the integral for simple functions is defined in the usual way.

The symbol L1(P,X) stands for the Banach space of all Bochner integrable random
variables U : Ω −→ X endowed with the norm ‖·‖1. We refer the reader to the survey
[6] for a complete study of the Bochner integral.

We shall consider random variables U : Ω −→ X, which we always assume to
be Bochner integrable functions. We write E(U) =

∫
Ω
U dP for the expectation of U
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with respect to the probability P , and EB V = (
∫
B
V dP )/P (B) for its conditional

expectation with respect to a measurable set B ⊂ Ω such that P (B) > 0.
Since every Bochner integrable function U : Ω −→ X can be approximated in the

L1(P,X)-norm by a sequence of functions taking finitely many values in co(U(Ω))
(see, e.g., [6, Chapters II.2.8 and V.2.2]), for our purposes it is enough to consider
random variables U which take finitely many values {ui}i∈I with probabilities {pi}i∈I .
In this case, clearly E(U) =

∑
i∈I piui. However, in order to simplify our presentation

we shall consider general Bochner integrable random variables.
In the definition of σ-slicely continuous map, it is not considered any additional

property ensuring the strong measurability of the map Φ◦U whenever U is a strongly
measurable function. However, in most of the examples and applications, Φ is norm
continuous, and when we are able to ensure that Φ ◦U is bounded, we also have that
this function is Bochner integrable.

Theorem 5. Let X and Y be normed spaces, A be a subset of X, and Φ be a
map from A into Y . The following conditions are equivalent:

(a) Φ is σ-slicely continuous;
(b) for every ε > 0 we can write A =

⋃
n∈N

An,ε in such a way that for ev-
ery x ∈ An,ε and every 1-Lipschitzian function g : Φ(An,ε) −→ R we have
∂εg ◦ Φ(x|An,ε) = ∅;

(c) for every ε > 0 and every ξ > 0, we can write A =
⋃

n∈N
An,ε,ξ in such a way

that for every x ∈ An,ε,ξ there exists a number δ > 0 with the property that if
U : (Ω,Σ, P ) → An,ε,ξ is a random variable such that ΦU is also a random
variable and ‖x− E(U)‖ < δ, then P ({‖Φx− ΦU‖ > ε}) < ξ;

(d) for every ε > 0 we can write A =
⋃

n∈N
An,ε in such a way that for ev-

ery x ∈ An,ε there exists a number δ > 0 with the property that if U :
(Ω,Σ, P ) → An,ε is a random variable such that ΦU is also a random variable
and ‖x− E(U)‖ < δ, then E(‖Φx− ΦU‖) < ε.

In order to complete the proof of this theorem we need the following lemma, which
will be used in other results through this paper. In its proof, we take advantage of
some technical ideas from [13, Proposition 1] and [14, Lemma 4.21]. Let us observe
that if U is a random variable and f ∈ X∗, f ◦U is a measurable function, and that if
H = f−1(α,∞) is an open half space, then the set {U ∈ H} = {ω ∈ Ω : f(Uω) > α}
is measurable.

Lemma 6. Let A be a subset of a normed space X. Assume that for each x ∈ A
we have chosen an open half space Hx ⊂ X such that x ∈ Hx. Then for each fixed
ξ > 0 we can write A =

⋃
n∈N

An in such a way that for every n ∈ N and every
x ∈ An there exist an open half space H ′

x, a number ηx > 0, and an element wx ∈ A
with the following properties:

(a) x ∈ H ′
x ∩An ⊂ Hwx

∩A;
(b) if U is a random variable on a probability space (Ω,Σ, P ) with values in An

such that ‖x− E(U)‖ < ηx, then P ({U /∈ H ′
x}) < ξ.

Proof. We can assume without loss of generality that the set A is bounded. So,

(1) sup {f(x) : x ∈ A, f ∈ X∗, ‖f‖ = 1} < ∞.

Let us fix, for each x ∈ X, a norm-one functional fx ∈ X∗ and rational numbers qx
and rx (with rx > 0) such that {z ∈ X : fx(z) > qx} ⊆ Hx and

fx(x) > qx + rx.

We make an initial decomposition of the set A by defining, for each q ∈ Q,
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Aq = {x ∈ A : qx = q} .

Now for each pair r, s ∈ Q
+ we write

Aq,r,s =

{
x ∈ Aq : s < ξrx/2, q + r < sup

w∈Aq

fw(x) < q + r + s

}
.

Thanks to (1) we have

A =
⋃

q∈Q, r,s∈Q+

Aq,r,s.

Let us fix x ∈ Aq,r,s, let us take an element wx ∈ Aq such that

fwx(x) > q + r,

and let

H ′
x = {z ∈ X : fwx

(z) > fwx(x) − r} .

If z ∈ H ′
x ∩Aq,r,s, then fwx(z) > q = qwx = qx and

fwx(z) < q + r + s < fwx(x) + s.

The first inequality means that H ′
x ∩Aq,r,s ⊆ Hwx

. From the second we deduce that

(2) fwx(x− z) > −s.

On the other hand, for each z ∈ Aq,r,s \H ′
x we have

(3) fwx(x− z) ≥ r.

Note also that because of the definition of the set Aq,r,s we have

(4) r + s > fx(x) − q > rx.

Now choose a number 0 < ηx < min{s, 1}, and let U : (Ω,Σ, P ) → Aq,r,s be a random
variable such that ‖x − E(U)‖ < ηx. Then, using inequalities (2), (3), and (4) we
obtain

ηx > ‖E(x− U)‖ ≥ E(fwx
(x− U))

= P ({U /∈ H ′
x}) E{U /∈H′

x}(fwx
(x− U))

+ P ({U ∈ H ′
x}) E{U∈H′

x}(fwx(x− U))

≥ rP ({U /∈ H ′
x}) − sP ({U ∈ H ′

x})
= (r + s)P ({U /∈ H ′

x}) − s

> rxP ({U /∈ H ′
x}) − s

and, consequently,

P ({U /∈ H ′
x}) <

s + ηx
rx

<
2s

rx
< ξ.
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Proof of Theorem 5. We start by proving the implication (a) ⇒ (c). Let us fix
ε, ξ > 0. Since Φ is σ-slicely continuous we have a countable decomposition of A,

A =
⋃
n∈N

An,

in such a way that for every x ∈ An there is an open half space Hx ⊂ X such that
x ∈ Hx and

(5) diam Φ(An ∩Hx) <
ε

2
.

By Lemma 6, for each n ∈ N we can write

An =
⋃
m∈N

An,m

in such a way that for every x ∈ An,m there exist a number ηx > 0, an open half
space H ′

x ⊂ X, and an element wx ∈ An such that x ∈ H ′
x ∩ An,m ⊆ Hwx ∩ An

and if U : (Ω,Σ, P ) → An,m is a random variable such that ‖x − E(U)‖ < ηx, then
P ({U /∈ H ′

x}) < ξ. By (5) it follows that {‖Φx − ΦU‖ > ε} ⊂ {U /∈ H ′
x}. So

(assuming that ΦU is also a random variable) we get P (‖Φx − ΦU‖ > ε) < ξ, and
assertion (c) is proved.

To show that (c) ⇒ (d) we assume that there exists M > 0 such that ‖Φy‖ ≤ M
for all y ∈ A. Let us fix ε > 0. By hypothesis we can write

A =
⋃
n∈N

An

in such a way that for every x ∈ An there is a number δx > 0 with the property that
if U : (Ω,Σ, P ) → An is a random variable such that ΦU is also a random variable
and ‖x− E(U)‖ < δx, then P (C) < ε

4M , where C = {‖Φx− ΦU‖ > ε
2}. Thus,

E(‖Φx− ΦU‖) = P (C) EC(‖Φx− ΦU‖) + P (Ω \ C) EΩ\C(‖Φx− ΦU‖)

≤ 2MP (C) +
ε

2
P (Ω \ C) < ε,

as we wanted to show.
Now we prove that (d) ⇒ (a). As before we fix ε > 0. Let {An,ε}n be a covering

of A such that for every x ∈ An,ε there is a number δx > 0 with the property that
if U : (Ω,Σ, P ) → An,ε is a random variable such that ΦU is also a random variable
and ‖x − E(U)‖ < δx, then E(‖Φx − ΦU‖) < ε. We are going to prove that this
decomposition also satisfies condition (a).

Take n ∈ N and x ∈ An,ε. Let

C = co ({z ∈ An,ε : ‖Φz − Φx‖ ≥ ε})‖·‖.

We claim that dist(x,C) ≥ δx
2 . Indeed, assuming the contrary, we can find positive

numbers p1, . . . , pr and vectors u1, . . . , ur ∈ An,ε such that
∑r

i=1 pi = 1,

(6)

∥∥∥∥∥x−
r∑

i=1

piui

∥∥∥∥∥ < δx,
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and

(7) ‖Φx− Φui‖ > ε ∀i = 1, . . . , r.

Let U be a random variable which takes the values ui with probabilities pi. Using
(6) and the hypothesis we get E(‖Φx − ΦU‖) =

∑r
i=1 pi‖Φx − Φui‖ < ε, which is a

contradiction with (7).
So, dist(x,C) ≥ δx

2 . Since the set C is convex and closed, it follows by Hahn–
Banach separation theorem the existence of an open half space Hx ⊂ X such that
x ∈ Hx and C ⊂ X \ Hx. In particular, diam Φ(An,ε ∩ Hx) < 2ε and the map Φ is
σ-slicely continuous.

The equivalence between (a) and (b) is proved in [13].
Let us mention that in [13] are given more characterizations of σ-slicely continuous

maps in topological terms.
Now we consider a simple particular case of this class of maps that will be used

for establishing one of the main renorming results in the next section.
Definition 7. Let X be a normed space and Λ be a set. A map τ : X −→ Λ is

said to be σ-slicely constant if we can write

X =
⋃
n∈N

Xn

in such a way that for every x ∈ Xn there is an open half space Hx ⊂ X such that
x ∈ H and τ(z) = τ(x) for every z ∈ Xn ∩Hx.

The concept of a σ-slicely constant map has been introduced in [15]. There, it
is proved that every σ-slicely continuous map between two normed spaces can be
expressed as a norm pointwise limit of a sequence of σ-slicely constant maps.

The rigidity property of the space c0(Γ) provides examples of σ-slicely constant
maps in those normed spaces X that admit a σ-slicely continuous map Φ : X −→
c0(Γ).

Proposition 8. Let A be a subset of a normed space X, let Φ : A −→ c0(Γ) be
a σ-slicely continuous map, and let ε > 0. Then the set valued map MΦ,ε : A −→ 2Γ

defined by the formula

MΦ,ε(x) := {γ ∈ Γ : |Φx(γ)| ≥ ε}

is σ-slicely constant.
Proof. Set, for each k ∈ N,

Ak =

{
x ∈ A : sup{|Φx(γ)| : γ /∈ MΦ,ε(x)} < ε− 1

k

}
.

By the σ-slicely continuity of Φ we can write

Ak =
⋃
n∈N

An,k

in such a way that for every x ∈ An,k there is an open half space Hx ⊂ X such that
x ∈ Hx and

(8) diam Φ (Hx ∩An,k) <
1

k
.
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It is clear that

A =
⋃

k,n∈N

An,k.

Now fix k, n ∈ N, and let z ∈ Hx∩An,k. We claim that MΦ,ε(z) ⊆ MΦ,ε(x). Assuming
the contrary we can find an element β ∈ Γ such that |Φz(β)| ≥ ε and |Φx(β)| < ε− 1

k .
From these inequalities we get

|Φz(β) − Φx(β)| ≥ |Φz(β)| − |Φx(β)| > ε−
(
ε− 1

k

)
=

1

k
,

which is a contradiction with (8). In a similar way we can deduce that MΦ,ε(x) ⊆
MΦ,ε(z), and the proposition is proved.

Now our aim is to introduce new classes of maps between normed spaces to be
useful for the study of MLUR renormings. As may be expected, these classes will be
inspired by the notion of strongly extreme point and the covering type characterization
of MLUR renormability given by Theorem 3. Before formulating the corresponding
concepts it is convenient to prove the following simple fact concerning strongly extreme
points.

Lemma 9. Let K be a set of a normed space X, let ε, δ > 0, and let x ∈ K. Then
the following conditions are equivalent:

(a) x is an (ε, δ)-strongly extreme point of the set co(K);
(b) if U : (Ω,Σ, P ) → K is a random variable such that ‖x − E(U)‖ < δ, then

for any measurable subset C ⊂ Ω with P (C) ≥ 1
2 we have

‖x− EC(U)‖ ≤ ε.

Proof. Assume that x is an (ε, δ)-strongly extreme point of co(K). It is also an
(ε, δ)-strongly extreme point of co(K). Let U : (Ω,Σ, P ) → K be a random variable
such that ‖x−E(U)‖ < δ, and let C ∈ Σ with 1 > P (C) = λ ≥ 1

2 . Define w1 = EC(U)

and w2 = EΩ\C(U). It is clear that w1, w2 ∈ co(K) and that E(U) = λw1 +(1−λ)w2.
The vector w3 = (2λ− 1)w1 + (2− 2λ)w2 belongs to the line segment joining w1 and
w2, in particular w3 ∈ co(K). Moreover, w1+w3

2 = E(U), and then
∥∥x− w1+w3

2

∥∥ < δ.

Since x is an (ε, δ)-strongly extreme point of co(K) we deduce that ‖w1 −x‖ ≤ ε, and
assertion (b) is proved.

For the implication (b) ⇒ (a) just consider the midpoint of two vectors u, v in
co(K) as the expectation of a random variable U that takes values in K in such a
way that there is a set C with P (C) = 1

2 , u = EC(U), and v = EΩ\C(U).
Definition 10. Let X and Y be normed spaces, and let A be a subset of X. A

map Φ : A −→ Y is said to be midpoint continuous at a point x ∈ A if, for every
ε > 0, there is a number δ > 0 with the following property: if U is a simple random
variable on the probability space (Ω,Σ, P ) with values in A, and ‖x−E(U)‖ < δ, then
for every measurable set C ⊆ Ω such that P (C) ≥ 1

2 we have ‖Φx− EC(ΦU)‖ ≤ ε.
Let us mention that the number 1

2 in the above definition can be replaced with
any positive constant less than 1

2 .
According to Lemma 9 it follows that the space X is MLUR if and only if the

restriction of the identity operator on X to the unit ball is midpoint continuous on
the unit sphere of X. If Φ is bounded and A is convex, we can consider arbitrary
random variables in the above definition. This is due to the fact that if U is such a
random variable, then U can be approximated pointwise and in the L1(P,X)-norm by
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a sequence of simple functions Un with values in A, and ΦU by ΦUn simultaneously,
as a consequence of the dominated convergence theorem.

It is clear that every midpoint continuous map is continuous. The property of
being midpoint continuous is, indeed, much stronger than the simple continuity. In
fact, if I is an interval of R and Φ : I −→ R is a midpoint continuous map, then for
each a, b ∈ I we have Φ((a + b)/2) = Φ(a) = Φ(b), and Φ is constant.

It is not difficult to check directly the midpoint continuity of the identity operator
of some concrete spaces at some points. We will present a detailed discussion of this
fact in the cases of Hilbert and C(K) spaces, in order to make the reader familiar
with the probabilistic techniques that we shall use in other results of this paper.

Let H be a Hilbert space. Fix x ∈ H with ‖x‖ = 1 and ε > 0. Let U be
a random variable with values in the unit ball BH such that ‖x − y‖ < δ, where
0 < δ < min{1, ε2/32} and y = E(U). Bearing in mind that E(y − U) = 0 we get

E
(
‖x− y + U‖2

)
= E

(
‖x‖2 + ‖y − U‖2

)
.

Using this equality and the fact that P is a probability we have

(E(‖x− U‖))2 ≤ E
(
(‖x− y‖ + ‖y − U‖)2

)
≤ 2 E

(
‖x− y‖2 + ‖y − U‖2

)
≤ 2

(
δ2 + E(‖x− y + U‖2) − ‖x‖2

)
≤ 2

(
δ2 + E

(
(‖x− y‖ + ‖U‖)2

)
− 1

)
≤

(
δ2 + (δ + 1)2 − 1

)
< 8δ.(9)

So, if C is a measurable set with P (C) ≥ 1
2 , then

(10) ‖x− EC(U)‖ ≤ EC (‖x− U‖) ≤ 1

P (C)
E (‖x− U‖) < 2

√
8δ < ε.

Thus, the restriction of the identity operator to the unit ball of H is midpoint contin-
uous at every element of its unit sphere. Let us note that our argument shows that
the identity operator on BH is, actually, slicely continuous at each point of the unit
sphere (see (d) ⇒ (a) in Theorem 5).

Now let K be a compact set and x be an extreme point of the unit ball of the
space (C(K), ‖ · ‖∞). It is well known that |x(t)| = 1 for each t ∈ K. Fix ε > 0,
let U be a random variable with values in BC(K) such that ‖x− E(U)‖∞ < δ, where

0 < δ < min{1, ε2/32}, and let C be a measurable set such that P (C) ≥ 1
2 . For every

fixed t ∈ K we have |x − E(U(t))| < δ. So, applying (10) in the case where H = R

we get |x(t) − EC(U(t))| < ε, and taking the sumpremum over all t ∈ K we obtain
‖x − EC(U)‖∞ < ε. Therefore, the restriction of the identity operator on C(K) to
BC(K) is midpoint continuous at every extreme point of this set. Let us mention that
if K is an infinite compact, the restriction of the identity operator on C(K) to BC(K)

is not slicely continuous at any element of the unit sphere of C(K) (it is well known
that every slice of BC(K) has diameter 2).

At this point, we state the counterpart of the above concept in terms of countable
coverings. To avoid measurability problems, from now on we consider only simple
random variables. Let us observe that if Φ is a map between the normed spaces X
and Y and U : Ω −→ X is a simple random variable, then Φ ◦ U is a simple random
variable too.

Definition 11. Let X and Y be normed spaces, let A ⊆ X, and let ε > 0. A
map Φ : X −→ Y is said to be ε-σ-midpoint continuous on A if we can write

A =
⋃
n∈N

An
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in such a way that for every x ∈ An there is a number δ > 0 such that if U is a
simple random variable on the probability space (Ω,Σ, P ) with values in An satisfying
‖x − E(U)‖ < δ, then for every measurable set C ⊂ Ω such that P (C) ≥ 1

2 we have
‖Φx− EC(ΦU)‖ ≤ ε.

The map Φ is σ-midpoint continuous if it is ε-σ-midpoint continuous for each
ε > 0.

According to Theorem 3 and Lemma 9 it follows that if T is a bounded linear
operator between two normed spaces X and Y , one of them being MLUR renormable,
then T is σ-midpoint continuous on X. Also, from those results we have that the
space X admits an equivalent MLUR norm if and only if the identity operator on X
is σ-midpoint continuous.

As an example, we shall show the σ-midpoint continuity of the identity operator
when X is a Hilbert space using probabilistic tools. Let ε > 0, and define, for each
positive rational number r, the set

Xr =

(
r +

ε2

1 + r2

)
BX \ rBX .

The sequence {Xr}r∈Q+ is clearly a covering of X \ {0}. Let x ∈ X \ {0}, and
choose r ∈ Q

+ such that x ∈ Xr. Proceeding as in (9) we can deduce that if U is a
(simple) random variable with values in Xr such that ‖x− E(U)‖ < ε2 ‖x‖/(1 + r2),
then (E(‖x − U‖))2 < 8 ε2. It follows that the identity operator on X is σ-midpoint
continuous (the same argument shows that this operator is σ-slicely continuous). Let
us mention that the construction of the above countable covering is based on the
methods used in [12] and [13] to characterize the classes of normed spaces that admit
an equivalent LUR or MLUR renorming.

The next result provides an example of σ-midpoint continuous map in the par-
ticular setting of spaces of bounded functions.

Lemma 12. Let V be a set, let ε > 0, and let V1, . . . , Vm be subsets of V . Assume
that for each r ∈ {1, . . . ,m} the identity map on �∞(Vr) is ε-σ-midpoint continuous
on some set Ar ⊆ �∞(Vr). Then the map Φ : �∞(V ) → �∞(V ) defined by the formula

Φx = x · 11⋃m
r=1Vr

is ε-σ-midpoint continuous on the set {x ∈ �∞(V ) : x�Vr ∈ Ar for all r = 1, . . . ,m}.
(The symbol x�Vr denotes the restriction of the function x to the set Vr.)

Proof. By hypothesis, for each r = 1, . . . ,m we can write

Ar =
⋃
n∈N

Ar,n

in such a way that every z ∈ Ar,n is an (ε, δ)-strongly extreme point of co(Ar,n), for
some δ = δ(r, n, z) > 0.

For each s = (s1, . . . , sm) ∈ N
m we define the set

As = {x ∈ A : x�Vr ∈ Ar,sr ∀r = 1, . . . ,m} .

It is clear that A =
⋃

s∈Nm As. Let us fix s = (s1, . . . , sm) ∈ N and x ∈ As. Let
U : (Ω,Σ, P ) → As be a simple random variable such that ‖x − E(U)‖∞ < δ, where
δ = min{δ(r, sr, x) : r = 1, . . . ,m}. Let, for each r = 1, . . . ,m, Ur be the random
variable defined by the formula Ur(w) = U(w)�Vr , w ∈ Ω. Then Ur takes its values
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in Ar,sr and ‖x�Vr
− E(Ur)‖∞ < δ. Since x�Vr

is an (ε, δ)-strongly extreme point
of co(Ar,sr ), from Lemma 9 it follows that if C is a measurable subset of Ω with
P (C) ≥ 1

2 , then ‖x�Vr −EC(Ur)‖∞ ≤ ε. As this inequality holds for each r = 1, . . . ,m
we get

‖Φx− EC(ΦU)‖∞ = max
r=1,...,m

‖x�Vr − EC(Ur)‖∞ ≤ ε,

as we wanted to show.
Remark. In [7, Lemma 5.2] (see also [13, Lemma 3]) the author considered,

for any set V and any ε > 0, the set Eε(V ) made up of all the functions x ∈
�∞(V ) for which there exist a, b ∈ R and a binary partition {M,N} of V such that
‖x−(a11M +b11N )‖∞ < ε and showed that the identity map of �∞(V ) is 15 ε-midpoint
continuous on the set Eε(V ).

As may be conjectured, the class of σ-midpoint continuous maps includes that of
the σ-slicely continuous maps.

Proposition 13. Let X and Y be normed spaces, let A ⊆ X, and let Φ : A −→ Y
be a map. If Φ is σ-slicely continuous, then Φ is σ-midpoint continuous on A.

Proof. Let us fix ε > 0. According to Theorem 5 we can write

A =
⋃
n∈N

An

in such a way that for every x ∈ An there exists a number δ > 0 with the property
that E(‖Φx − ΦU‖) < ε whenever U : (Ω,Σ, P ) → An is a (simple) random variable
such that ‖x − E(U)‖ < δ. So, for such a vector x, such a random variable U , and
every measurable set C ⊂ Ω with P (C) ≥ 1

2 we have

‖Φx− EC(ΦU)‖ ≤ 1

P (C)
E(‖x− ΦU‖) ≤ 2 E(‖x− ΦU‖) < 2 ε.

Note that the converse of this result does not hold in general. If X is MLUR
renormable space with no equivalent LUR renorming, then the identity operator Id :
X → X is σ-midpoint continuous but not σ-slicely continuous.

In [14], some stability properties for the class of σ-slicely continuous maps are
established. There, it is shown that linear combinations, norm pointwise limits, and
composition of σ-slicely continuous maps (as well as the composition of a continuous
map B : Y −→ Z with a σ-slicely continuous map Ψ : X −→ Y ) are σ-slicely
continuous too. The following results show that some of these properties are also
shared by the class of σ-midpoint continuous maps.

Proposition 14. Let X and Y be normed spaces, let α, β ∈ R, and let Φ1 and
Φ2 be two maps from X into Y , which are ε-σ-midpoint continuous on a set A ⊆ X.
Then the map Φ = αΦ1 + βΦ2 is (|α| + |β|) ε-σ-midpoint continuous on A.

In particular, linear combinations of σ-midpoint continuous maps are σ-midpoint
continuous too.

Proof. It is straightforward to show that if {A1,n}n and {A2,n}n are coverings
of A satisfying the conditions of Definition 11 for the maps Φ1 and Φ2, respectively,
then the sequence of sets {A1,n ∩A2,m : n,m ∈ N} constitutes a covering of this type
for the map Φ.

Proposition 15. Let X and Y be normed spaces, let ε > 0, and let Φ be a map
from X into Y . Assume that there is a sequence {Φn}n of maps from X into Y such
that for all x ∈ X there exists m = m(x) ∈ N satisfying

‖Φx− Φmx‖ < ε.
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If for each n ∈ N the map Φn is ε-σ-midpoint continuous on X, then the map Φ is
3 ε-σ-midpoint continuous on X.

In particular, the norm pointwise limit of a sequence of σ-midpoint continuous
maps is also σ-midpoint continuous.

Proof. Let us define, for each m ∈ N, the set

Xm = {x ∈ X : ‖Φx− Φmx‖ < ε} .

By the hypothesis we have X =
⋃

m∈N
Xm.

Let m ∈ N. Since the map Φm is ε-σ-midpoint continuous on Xm, we can write
Xm =

⋃
n∈N

Xm,n in such a way that for every x ∈ Xm,n there is a number δ = δx > 0
with the property that if U : (Ω,Σ, P ) → Xm,n is a simple random variable, and
‖x− E(U)‖ < δx, then for every measurable set C ⊆ Ω such that P (C) ≥ 1

2 we have
‖Φmx− EC(ΦmU)‖ ≤ ε.

Hence, for such a point x, such a set C, and such a simple random variable U we
have

‖Φx− EC(ΦU)‖ ≤ ‖Φx− Φmx‖ + ‖Φmx− EC(ΦmU)‖
+ ‖EC(ΦmU − ΦU)‖

< ε + ‖Φx− Φmx‖ + ‖EC(ΦmU − ΦU)‖.(11)

On the other hand, by the definition of Xm we have ‖ΦmU(w) − ΦU(w)‖ < ε, for
each w ∈ Ω, and ‖Φx− Φmx‖ < ε. Combining these inequalities with (11) we obtain

‖Φx− EC(ΦU)‖ < 3ε,

and the proposition is proved.
Remark. A variant of the proof of Theorem 5 shows that if Φ : X −→ Y and

Ψ : Y −→ Z are, respectively, a σ-midpoint continuous map and a σ-slicely continuous
map, then the map Ξ = Ψ ◦ Φ is σ-midpoint continuous. It is also easy to show that
the map Ξ is σ-midpoint continuous whenever Ψ is a bounded linear operator and
Φ is σ-midpoint continuous, or whenever Φ and Ψ are bounded linear operators and
one of them is σ-midpoint continuous. We do not know whether the composition of
two σ-midpoint continuous maps is σ-midpoint continuous too. In the next section,
we will see that the composition of a continuous and a σ-midpoint continuous map is
not necessarily σ-midpoint continuous.

3. Renorming results. In this section we develop various techniques for con-
structing σ-midpoint continuous maps. As an application of these techniques, we
obtain some results about MLUR renormings of Banach spaces.

In [10] it is shown that a normed space X is MLUR renormable whenever there
exist a σ-slicely continuous map Ψ : X −→ X and an MLUR renormable subspace
Y ⊂ X such that x− Ψx ∈ Y for all x ∈ X. The use of σ-midpoint continuous maps
enables us to give the following improvement of that result.

Theorem 16. Let X and Y be normed spaces. Assume that there exist an MLUR
renormable subspace Y1 ⊂ Y , a bounded linear map T : X −→ Y , and a σ-midpoint
continuous map Ψ : X −→ Y such that the map Φ = T + Ψ takes its values in Y1.
Then the maps T and Φ are σ-midpoint continuous too.

Proof. By Proposition 14 it is enough to show that T is σ-midpoint continuous.
Let us fix ε > 0. Since the space Y1 is MLUR renormable we can write

Y1 =
⋃

n,k∈N

Yn,k
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in such a way that every y ∈ Yn,k is an
(
ε
2 ,

1
k

)
-strongly extreme point of co(Yn,k).

For each n, k ∈ N with k > 2
ε we set Xn,k = Φ−1(Yn,k).

As the map Ψ is σ-midpoint continuous on X there is a countable decomposition
of Xn,k,

Xn,k =
⋃
p∈N

Xn,k,p,

in such a way that for each x ∈ Xn,k,p there exists a number 0 < δx < 1
2‖T‖k

with the property that if U : (Ω,Σ, P ) → Xn,k,p is a simple random variable and
‖x− E(U)‖ < δx, then for every measurable set C ⊂ Ω such that P (C) ≥ 1

2 we have

(12) ‖Ψx− EC(ΨU)‖ ≤ 1

2k
.

It is clear that the family of sets
{
Xn,k,p : n, k, p ∈ N, k > 2

ε

}
is a countable covering

of X.
Fix n, k, p ∈ N and x ∈ Xn,k,p, and let U be a simple random variable on the

probability space (Ω,Σ, P ) with values in Xn,k,p such that ‖x− E(U)‖ < δx. Then

‖Φx− E(ΦU)‖ = ‖E(Tx− TU) + Ψx− E(ΨU)‖
≤ ‖T‖‖x− E(U)‖ + ‖Ψx− E(ΨU)‖

<
1

2k
+ ‖Ψx− E(ΨU)‖.

From this inequality and (12) (with C = Ω) we get ‖Φx − E(ΦU)‖ < 1
k . Since ΦU

is a simple random variable with values in Yn,k and Φx is an
(
ε
2 ,

1
k

)
-strongly extreme

point of co(Yn,k), from Lemma 9 it follows that if C is a measurable subset of Ω such
that P (C) ≥ 1

2 , then

‖Φx− EC(ΦU)‖ <
ε

2
.

This inequality together with (12) implies that

‖Tx− EC(TU)‖ ≤ ‖Φx− EC(ΦU)‖ + ‖Ψx− EC(ΨU)‖ <
ε

2
+

1

2k
< ε.

So, the map T is σ-midpoint continuous on X, as we wanted to show.
As a consequence of this theorem we obtain the following result of G. Alexandrov

concerning the three space problem for the MLUR property.
Corollary 17 (Alexandrov [1]). Let X be a Banach space. Suppose that there

is a closed MLUR renormable subspace Y ⊂ X such that the quotient X/Y has an
equivalent LUR norm. Then X admits an equivalent MLUR norm.

Proof. Let Q denote the quotient map from X onto X/Y . According to the
Bartle–Graves theorem (see, e.g., [5, Chapter VII.3]), there is a continuous map B :
X/Y −→ X such that BQx ∈ Qx for all x ∈ X. If we define Φ = BQ, then x−Φx ∈ Y
for every x ∈ X. Since the space X/Y is LUR renormable the maps Q and Φ are
σ-slicely continuous. Therefore, Φ is σ-midpoint continuous. Applying Theorem 16
we deduce that the identity operator on X is σ-midpoint continuous.

Let us mention that the property of having an equivalent MLUR norm is not a
three space property. In [7] the existence of a Banach space X and a closed subspace
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Y ⊂ X is shown such that Y and X/Y both have an equivalent MLUR norm while X
does not. This counterexample reveals that the composition of a continuous map and
a σ-midpoint continuous map is not necessarily σ-midpoint continuous. Indeed, let Q
be the quotient map from X onto X/Y and B be a Bartle–Graves continuous selector
of Q−1. Since Q is linear and bounded and the space X/Y is MLUR renormable it
follows that Q is σ-midpoint continuous on X. Nevertheless, the map Φ = B ◦Q does
not have this property (otherwise, the identity operator of X should be σ-midpoint
continuous by Theorem 16).

The following theorem provides another approach for constructing σ-midpoint
continuous maps.

Theorem 18. Let X and Y be normed spaces, let ε > 0, and let Λ be a set. Let
τ : X −→ Λ be a σ-slicely constant map, and let, for each α ∈ Λ, ψα : X −→ Y be a
map which is ε-σ-midpoint on some set Xα ⊆ X. Then the map Ψ : X −→ Y defined
by the formula

Ψx = ψτ(x)(x)

is 2 ε-σ-midpoint continuous on the set A = {x ∈ X : x ∈ Xτ(x)}.
Proof. For each α ∈ Λ we have a countable covering of Xα,

Xα =
⋃
n∈N

Xα,n,

in such a way that for every x ∈ Xα,n there is a number 0 < δα,n,x < ε with
the property that if U : (Ω,Σ, P ) → Xα,n is a simple random variable such that
‖x− E(U)‖ < δα,n,x, then for any measurable subset C ⊂ Ω with P (C) ≥ 1

2 we have

(13) ‖ψαx− EC(ψαU)‖ < ε.

Let n, k ∈ N, and let An,k denote the set made up of all the vectors x ∈ Xτ(x),n,k

such that ‖x‖ ≤ k, ‖Ψx‖ ≤ k, and δτ(x),n,x > 1
k . It is clear that

A =
⋃

n,k∈N

An,k.

Since the map τ is σ-slicely constant, for each n, k ∈ N we get another decomposition
of An,k,

An,k =
⋃
m∈N

An,k,m,

with the property that for every x ∈ An,k,m there is an open half space Hx ⊂ X such
that

(14) τ(u) = τ(x) whenever u ∈ Hx ∩An,k,m.

Applying Lemma 6 to the set An,k,m, with ξ = 1
4k2 , we can write

An,k,m =
⋃
p∈N

An,k,m,p

in such a way that for every x ∈ An,k,m,p there exist a number η = ηx > 0, an open
half space H ′

x ⊂ X, and an element wx ∈ An,k,m such that

(15) x ∈ H ′
x ∩An,k,m,p ⊆ Hwx

∩An,k,m
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and if U : (Ω,Σ, P ) → An,k,m,p is a random variable with ‖x − E(U)‖ < ηx, and
N = {w ∈ Ω : U(w) /∈ H ′

x}, then

(16) P (N) <
1

4k2
.

Now let us fix natural numbers n, k, m, and p such that An,k,m,p = ∅. Take x ∈
An,k,m,p, and let U : (Ω,Σ, P ) → An,k,m,p be a simple random variable satisfying
‖x − E(U)‖ < min

{
ηx,

1
2k

}
. Our goal is to show that if C is a measurable subset of

Ω such that P (C) ≥ 1
2 , then

(17) ‖Ψx− EC(ΨU)‖ < 2 ε.

We will prove first that

(18) ‖x− E(U)‖ <
1

k
and U(w) ∈ H ′

x ∀w ∈ Ω ⇒ ‖Ψx− EC(ΨU)‖ < ε.

Thanks to (15) it follows that U(w) ∈ An,k,m ∩ Hwx for all w ∈ Ω. Using (14) we
deduce that

(19) τ(U(w)) = τ(x).

Hence, U(w) ∈ Xτ(x),n,k. As δτ(x),n,x > 1
k , thanks to (13) it follows that∥∥ψτ(x)x− EC(ψτ(x)U)

∥∥ < ε.

From (19) we also have ψτ(x) = ψτ(U(w)). Therefore,∥∥ψτ(x)x− EC(ψτ(U(w))U(w))
∥∥ < ε

and assertion (18) is proved.
To finish, suppose that not all the vectors U(w) necessarily belong to the half

space H ′
x. Let N = {w ∈ Ω : U(w) /∈ H ′

x}, and let U ′ be the simple random variable
defined by the formula U ′ = x11N + U11Ω\N .

From inequality (16) and the fact An,k,m,p ⊆ kBX we get

‖x− E(U ′)‖ ≤ ‖E(x− U)‖ + P (N)‖EN (x− U)‖ <
1

2k
+ 2k

1

4k2
=

1

k
.

Taking into account that U ′ takes its values in An,k,m,p∩H ′
x, from (18) it follows that

‖Ψx − EC(ΨU ′)‖ < ε. Using again inequality (16) and the fact Ψ(An,k,m,p) ⊆ kBX

we obtain

‖Ψx− EC(ΨU)‖ ≤ ‖Ψx− EC(ΨU ′)‖ + ‖EC(ΨU − ΨU ′)‖
≤ ε + P (N)‖EC∩N (Ψx− ΨU)‖ < 2 ε,

as we wanted.
Now we apply Theorem 18 and Proposition 8 to get some results about MLUR

renormability in those Banach spaces X for which there exist a set Γ and a σ-slicely
continuous map Φ : X −→ c0(Γ).

Corollary 19. Let X be a normed space, and let Φ : X −→ c0(Γ) be a σ-
slicely continuous map. Suppose that there exists a family {Tγ}γ∈Γ of bounded linear
operators on X with the following properties:
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(1) for each γ ∈ Γ, TγX is an MLUR renormable subspace of X;
(2) for each x ∈ X,

x ∈ span {Tγx : γ ∈ supp Φx}‖·‖.

Then X admits an equivalent MLUR norm.
Proof. Let us fix ε > 0. We are going to demonstrate the existence of a sequence

{Ψn}n of ε-σ-midpoint continuous maps on X such that

lim
n

‖x− Ψnx‖ = 0

for all x ∈ X.
For technical reasons we introduce on Γ a well order ≺. Let Λ be the family of

all finite sets {(γ1, r1), . . . , (γm, rm)} ∈ 2Γ×Q such that γi = γj whenever i = j, and
let us define, for each α = {(γ1, r1), . . . , (γm, rm)} ∈ Λ, the map

ψα =

m∑
i=1

riTγi
.

Since for each i = 1, . . . ,m the range of Tγi is an MLUR renormable space, it follows
from Proposition 14 that the map ψα is ε-σ-midpoint continuous on X.

Let n ∈ N. For each x ∈ X we can choose a finite set

Δ(x, n) = {γ1(x, n) ≺ · · · ≺ γj(x, n)} ⊂ supp Φx

and a vector (r1(x, n), . . . , rj(x, n)) ∈ Q
j \ {0} such that

(20)

∥∥∥∥∥x−
j∑

i=1

ri(x, n)Tγi(x,n)x

∥∥∥∥∥ < 1/n.

Now we define a map τn : X −→ Λ by setting, for each x ∈ X,

τn(x) = {(γi(x, n), ri(x, n))}ji=1.

This map is σ-slicely constant. Indeed, let m ∈ N, q ∈ Q∩(0, 1), and r = (r1, . . . , rm) ∈
Q

m. Let Xm,q,r denote the set made up of the vectors x ∈ X such that Δ(x, n) ⊆
MΦ,q(x), #MΦ,q(x) = m, and if MΦ,q(x) = {γ1 ≺ · · · ≺ γm} and Δ(x, n) = {γt1 ≺
· · · ≺ γtj}, then

(21) ri = 0 if and only if γi /∈ Δ(x, n)

and

(22) ri(x, n) = rti for i = 1, . . . , j.

It is clear that

X =
⋃

m∈N, q∈Q∩(0,1), r∈Qm

Xm,p,r.

Fix m ∈ N, q ∈ Q ∩ (0, 1), and r ∈ Q
m. By Proposition 8 we can write

Xm,q,r =
⋃
p∈N

Xm,q,r,p
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in such a way that for every p ∈ N and every x ∈ Xm,q,r,p there exists an open half
space Hx ⊂ X such that x ∈ Hx and MΦ,q(u) = MΦ,q(x) whenever u ∈ Hx∩Xm,q,r,p.
Combining this equality with conditions (21) and (22) we deduce that Δ(u, n) =
Δ(x, n) and that ri(u, n) = ri(x, n) for each i = 1, . . . ,m. In particular τn(u) = τn(x),
and the map τn is σ-slicely constant.

Now for each x ∈ X we define

Ψnx = ψτn(x)x =

j∑
i=1

ri(x, n)Tγi(x,n)x.

According to Theorem 18 it follows that the map Ψn is ε-σ-midpoint continuous on X.
On the other hand, from (20) we get limn ‖x − limn Ψnx‖ = 0 for each x ∈ X.

Applying Proposition 15 we deduce that the identity operator on X is 3 ε-σ-midpoint
continuous. As this assertion is true for every ε > 0, the space X has an equivalent
MLUR norm.

As a consequence of this result, we obtain the following corollary, which is an
MLUR version of the classical Zizler criterion in [19] about LUR renormability in
Banach spaces with projectional resolutions of the identity.

Corollary 20. Let X be a normed space, and let {Tγ}γ∈Γ be a family of bounded
linear operators on X with the following properties:

(1) for every γ ∈ Γ, TγX is an MLUR renormable subspace of X;
(2) for every x ∈ X, {‖Tγx‖}γ∈Γ ∈ c0(Γ), and

x ∈ span {Tγx : γ ∈ Γ}‖·‖.

Then X admits an equivalent MLUR norm.
Proof. It is enough to show that the map Φ : X −→ c0(Γ) defined by the formula

Φx = {‖Tγx‖}γ∈Γ

is σ-slicely continuous. For all x, y ∈ X and λ, μ ≥ 0 such that λ + μ = 1 we have

0 ≤ Φ(λx + μy) ≤ λΦx + μΦy,

and the result follows from the fact that every positive convex map with values in an
LUR lattice is σ-slicely continuous.

Our last application of Theorem 18 is the following corollary, which is a general-
ization of the main tool used by Haydon in [7] for the construction of MLUR norms
in spaces of continuous functions on trees.

Corollary 21. Let K be a locally compact space. Assume that there exist a
σ-slicely continuous map Φ : C0(K) −→ c0(Γ) and a family {Kγ}γ∈Γ of closed and
open subsets of K with the following properties:

(1) for each γ ∈ Γ and each ε > 0 there is a set Yγ,ε ⊆ C(Kγ) such that the
identity operator of C0(Kγ) is ε-σ-midpoint continuous on Yγ,ε;

(2) for each ε > 0, each x ∈ C0(K), and t ∈ K with x(t) = 0, there exists an
element γ ∈ supp Φx such that t ∈ Kγ and x�Kγ ∈ Yγ,ε.

Then the space C0(K) is MLUR renormable.
Proof. Let X = C0(K). As in the proof of Corollary 19 we introduce a well order

≺ on the set Γ. Fix ε > 0, and let Λ denote the set of all α ∈ 2Γ such that #α < ∞.
Let n ∈ N such that ε > 1

n . Let us define, for each α ∈ Λ,

ψαx = x · 11⋃
γ∈αKγ

.
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It is clear that ψαx ∈ C0(K) for all x ∈ C0(K), and from Lemma 12 it follows that
the map ψα is ε-σ-midpoint continuous on the set

Aα,n =
{
x ∈ C0(K) : x�Kγ

∈ Yγ, 1
n

∀γ ∈ α
}
.

On the other hand, because of the hypothesis, for each x ∈ X we have

{t ∈ K : |x(t)| ≥ 1/n} ⊆
⋃{

Kγ : γ ∈ supp Φx and x�Kγ
∈ Yγ, 1

n

}
.

By compactness we deduce the existence of a finite set Δn(x) ⊆ supp Φx such that

(23) ‖x− x · 11⋃
γ∈Δn(x)Kγ

‖∞ < 1/n

and

(24) x�Kγ ∈ Yγ,1/n ∀γ ∈ Δn(x).

Using the same argument as in Corollary 20 we get that the map τn : X −→ Λ defined
by the formula

τn(x) = Δn(x), x ∈ C0(K),

is σ-slicely constant.
Now for each x ∈ X we set

Ψnx = ψτn(x)x = x · 11⋃
γ∈Δn(x)Kγ

.

According to Theorem 18 we deduce that Ψn is 2 ε-σ-midpoint continuous on the set

An =
{
x ∈ C0(K) : x ∈ Xτ(x)

}
=

{
x ∈ C0(K) : x ∈ x�Kγ

∈ Yγ, 1
n

}
.

By (24) we have An = X. Moreover, from (23) we get limn ‖x − Ψnx‖ = 0 for each
x ∈ X. Applying Proposition 15 we deduce that the identity operator on X is 6 ε-σ-
midpoint continuous. As this assertion holds for every ε > 0, it follows that the space
X is MLUR renormable.
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Abstract. In this paper we study the behavior of solutions of finite-dimensional monotone affine
variational inequalities posed over graph-convex polyhedral multifunctions. We identify precisely
the class of positive semidefinite linear transformations appearing in these variational inequalities
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1. Introduction. In this paper we study the behavior of solutions of monotone
affine variational inequalities in R

n posed over graph-convex polyhedral multifunc-
tions. The goal is to identify precisely the class of positive semidefinite linear trans-
formations appearing in these variational inequalities for which the solution sets will
be Lipschitzian in the argument of the underlying multifunction. For the simplest
type of constraining multifunction, this simply means that we are varying the right-
hand sides of the linear equations and inequalities defining the set, and we want to be
sure that the set of solutions of the variational inequality is a Lipschitzian multifunc-
tion of those right-hand sides. Our main results are that if no restrictions are placed
on the underlying set, then this Lipschitzian behavior occurs always when the linear
transformation has a property that has been called cocoercivity in the literature and
never otherwise. Thus, the cocoercive linear transformations are the largest class for
which this stability property holds. Such results were previously known for linear and
for convex quadratic programming problems, both of which belong to the cocoercive
class but do not exhaust it.

This paper has five sections, of which this is the first. In the remainder of this
section we fix notation and discuss some of the terminology used below. Section 2
develops various properties relating polyhedrality and the Lipschitz condition; these
are the underlying tools that we will use in the remainder of this paper. Section 3
studies monotone affine variational inequalities, developing properties of their solution
sets under assumptions starting with positive semidefiniteness and then defining and
characterizing the cocoercivity property. That section also briefly reviews existing
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literature on cocoercive linear transformations. Then, in section 4, we present the
main results by first showing that cocoercivity plus a solvability condition suffices
for Lipschitzian behavior, and then demonstrating that without cocoercivity one can
define the underlying set in such a way that solutions of the problem fail even to be
inner semicontinuous, much less Lipschitzian. Section 5 is an appendix containing the
proof of one of the subsidiary results.

1.1. Notation and preliminaries. We give here some definitions required in
the rest of the paper. These use extensively the relative topology induced on a subset
X of R

n by the standard topology of R
n. We will use the Euclidean norm throughout

the paper.
The first definition defines a property originally called upper Lipschitz continuity

[15, p. 208]. We have changed the term here to outer Lipschitz continuity, abbrevi-
ated OLC, in order to maintain some consistency with the terminology of [16]. The
property is called calmness in that work [16, p. 399].

Definition 1.1. Let X be a subset of R
n, x be a point of X, and S : R

n → R
m

be a multifunction having closed values. S is outer Lipschitz continuous at x relative
to X with modulus λ if there is some neighborhood V of x relative to X such that for
each x′ ∈ V one has S(x′) ⊂ S(x) + λ‖x′ − x‖B, where B is the unit ball in R

m.
If F is OLC relative to X at a point x ∈ X, then it is also OLC relative to any

subset of X that contains x. When X is not explicitly mentioned we take it to be the
underlying space, in this case R

n.
The second property of multifunctions that we require is inner semicontinuity.

We will use the following definition rather than [16, Definition 5.4], but [16, Exercise
5.6] shows that the two are equivalent.

Definition 1.2. Let S be a multifunction from R
n to R

m, X a subset of R
n,

and x a point of X. S is inner semicontinuous at x relative to X if for each open
set Q that meets S(x) there is a neighborhood V of x relative to X such that for each
x′ ∈ V , Q meets S(x′).

For our purposes the most convenient measure of distance between sets will be
the Pompeiu–Hausdorff distance. The following definition is compatible with [16,
Example 4.13] if one adds the restriction that the sets U and V be nonempty and
closed. We denote the closed ball of radius ρ about a point x of R

k by B(x, ρ), and
also use B to denote the unit ball B(0, 1), the space involved being clear from the
context.

Definition 1.3. The Pompeiu–Hausdorff distance between two subsets U and V
of R

m is

ρ[U, V ] = inf{η ≥ 0 | U ⊂ V + ηB, V ⊂ U + ηB}.

Note that this distance may take the value +∞.
The next definition applies the Pompeiu–Hausdorff distance to define Lipschitz

continuity for multifunctions.
Definition 1.4 (see [16, Def. 9.26]). Let S be a multifunction from R

n to R
m

having closed values on some subset X of R
n, and let λ ∈ R+. S is Lipschitz contin-

uous (equivalently, Lipschitzian) relative to X with modulus λ if for each x and x′ in
X, ρ[S(x′), S(x)] ≤ λ‖x′ − x‖.

Note that to say S is Lipschitzian relative to X (or, as we often say below, on
X) implies that a uniform modulus λ exists that works for each pair of points taken
from X, even if that modulus is not explicitly mentioned. It is also often convenient
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to speak of local Lipschitz continuity at a point x ∈ X, in which case the modulus
need only exist for points in some neighborhood of x.

The following theorem is a slight sharpening of a result of Li [9, Theorem 2.1]. The
sharpening consists of reducing the requirement of Hausdorff lower semicontinuity to
inner semicontinuity. The proof, whose structure is similar to that of Li, is in section
5 (the appendix).

Theorem 1.5. Let S be a multifunction from R
n to R

m having closed values, let
X be a convex subset of domS, and let λ be a nonnegative real number. The following
are then equivalent:

(a) At each point of X, S is outer Lipschitz continuous relative to X with modulus
λ and is inner semicontinuous relative to X.

(b) S is Lipschitz continuous relative to X with modulus λ.
In the following sections we specialize the discussion first to polyhedral multi-

functions and then to affine variational inequalities over polyhedral convex sets that
need not be fixed, but may vary in a restricted way; specifically, they are sections of
a graph-convex polyhedral multifunction.

2. Polyhedrality and the Lipschitz condition. In this section we demon-
strate some applications of Theorem 1.5 to polyhedral multifunctions, which occur
frequently in applications. A polyhedral multifunction is a multifunction whose graph
is the union of a finite collection of convex polyhedral sets. If that collection consists
of only a single set, then the multifunction is a graph-convex polyhedral multifunction.
By [15, Proposition 1], if P is a polyhedral multifunction from R

n to R
m, then there

is some nonnegative number λ such that P is OLC with modulus λ at every point of
R

n. See also the result in [16, Example 9.57], which establishes, but does not state
explicitly, the fact that a single modulus suffices, and which restricts the statement
to domP .

The following corollaries combine Theorem 1.5 with the known OLC result for
polyhedral multifunctions to derive results in forms convenient for application. We
write gphF for the graph of a multifunction F .

Corollary 2.1. Let F be a polyhedral multifunction from R
n to R

m, let λ be its
OLC modulus, and let C be a convex subset of domF . Then F is Lipschitzian with
modulus λ on C if and only if it is inner semicontinuous relative to C at each point
of C.

Proof. As F is polyhedral, gphF is closed so F certainly has closed values, and
we already know that F is everywhere OLC with modulus λ. Suppose first that F
is inner semicontinuous relative to C at each point of C. By setting X = C and
applying Theorem 1.5, we conclude that F is Lipschitzian on C with modulus λ. On
the other hand, if F is Lipschitzian on C with modulus λ, then Theorem 1.5 says that
it must be inner semicontinuous relative to C at each point of C.

The second corollary applies the first to a special case that is often easy to identify.
Corollary 2.2. Let F be a polyhedral multifunction from R

n to R
m, let λ be

its OLC modulus, and let C be a convex subset of domF on which F is single-valued.
Then F is Lipschitzian on C with modulus λ.

Proof. We need only show that F is inner semicontinuous relative to C at each
point of C. Let x0 be such a point, and let Q be any open set meeting F (x0). Because
F (x0) is a singleton, we actually have F (x0) ∈ Q, and because polyhedrality entails
OLC there is a neighborhood V of x0 such that if x ∈ C ∩V , then F (x) is a singleton
contained in Q. Therefore F is inner semicontinuous relative to C at x0, and the
claim then follows from Corollary 2.1.
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Our applications will involve variational inequalities posed over graph-convex
polyhedral multifunctions. For a convex subset S of R

n and a point x ∈ R
n, we

use the symbol NS(x) to denote the normal cone of S at x, defined by

NS(x) =

{
{x∗ ∈ R

n | for each x′ ∈ S, 〈x∗, x′ − x〉 ≤ 0} if x ∈ S,

∅ if x /∈ S.

The polyhedrality of the normal-cone operator NS is well known (see, e.g., [7, p.
108], and the argument can be adapted with little difficulty to the case in which for
a graph-convex polyhedral multifunction S(u) we consider the multifunction sending
(u, x) to NS(u)(x). This results in the following lemma.

Lemma 2.3. Let S be a graph-convex polyhedral multifunction from R
k to R

n.
Then the multifunction G : R

k × R
n → R

n defined by

(2.1) G(u, x) = NS(u)(x)

is polyhedral.
The next proposition combines Lemma 2.3 with Corollaries 2.1 and 2.2 to produce

a result about the Lipschitz continuity of solutions of an affine generalized equation
posed over a polyhedral convex set, as functions of both the constant term in the
generalized equation and the right-hand side of the constraints defining the polyhedral
convex set.

Proposition 2.4. Let A be an n×n matrix and let S be a graph-convex polyhedral
multifunction from R

k to R
n. Define a multifunction X : domS × R

n → R
n by

(2.2) X(u, v) = {x ∈ R
n | 0 ∈ Ax + v + NS(u)(x)}.

If C is a convex subset of domX, then X is Lipschitzian on C if and only if it is inner
semicontinuous relative to C at each point of C. In particular, if X is single-valued
on C, then it is necessarily Lipschitzian on C.

Proof. If we can establish that X is polyhedral, then the two claims will follow
from Corollaries 2.1 and 2.2, respectively. Lemma 2.3 shows that the multifunction
taking (u, x) to NS(u)(x) is polyhedral. As the sum of two polyhedral multifunctions is
also polyhedral, the multifunction H taking (u, x) to Ax+NS(u)(x) is also polyhedral.
However, a point (u, v, x) of (domS) × R

n × R
n belongs to gphX if and only if

(u, x,−v) ∈ gphH. Therefore X is polyhedral.
Special cases of Proposition 2.4 are well known, such as the Lipschitz continuity of

the solution of a positive definite quadratic programming problem as a function of the
vector in the quadratic objective function and the right-hand sides of the constraints
defining the feasible set [18, Theorem 2.1], [3, Exercise 7.6.10].

3. Solutions of monotone affine variational inequalities. In 1975, Adler
and Gale [1] gave an explicit representation of the set of solutions of a linear com-
plementarity problem in R

n having a positive semidefinite matrix. Specifically, they
exhibited a polyhedral convex set, depending only on the data of the complementarity
problem, one of whose faces was the set of solutions of that problem. Similar repre-
sentations appear in the work of Klatte and Thiere [8, p. 109] on convex quadratic
programming and in the work of Luo and Tseng [12, Lemma 2] on affine variational
inequalities with cocoercive operators. In section 3.1 we first extend the Adler–Gale
results to the case of a monotone affine variational inequality posed over a polyhedral
convex set. When that set is the nonnegative orthant, we recover the Adler–Gale
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results. We then use an example in R
2 to show that when we extend the situation

to the more general case in which the set is a graph-convex polyhedral multifunction
S(u) depending on a parameter u, without further assumptions the solution set may
behave very badly as u varies. If we want better behavior, we must impose stronger
assumptions.

In section 3.2 we describe the well-known cocoercivity property of a monotone
operator f ; that is, the strong monotonicity of f−1. As we are interested here in
cases for which the monotone operator is affine, we discuss properties characterizing
the class of matrices for which the cocoercivity property holds. These results come
from the work of several investigators, and we briefly review the literature in this
area. The class of cocoercive matrices includes, but is not limited to, all positive
semidefinite symmetric matrices (thus all matrices arising in problems of linear, or of
convex quadratic, programming).

We then point out that in the presence of the cocoercivity property two additional
features appear, each of which will be important for our purposes. First, even for a
nonlinear problem, the same normal vector appears in every solution of our problem.
In our particular (polyhedral) application, we can show that this normal vector is
Lipschitzian in the parameter u. Second, the solvability of the parametric variational
inequality with polyhedral set S(u) is independent of the value of u provided that
it remains in domS. That is, if we write X(u) for the multifunction expressing the
dependence of the solution set on u, then domX = domS.

3.1. Positive semidefinite matrices. We will first extend the results of Adler
and Gale [1] to the case of an affine variational inequality posed over a polyhedral
convex set. Later we will want to make the set depend on a parameter, but the
presence of the parameter is unnecessary here so we suppress it.

Let F and A be linear transformations from R
n to R

m and R
n, respectively, with

A positive semidefinite. Let f ∈ R
m and a ∈ R

n, and define S to be the polyhedral
convex subset of R

n defined by S = {x | Fx ≤ f}. Define X to be the (possibly
empty) subset of R

n consisting of all points x, called solutions, satisfying

(3.1) 0 ∈ Ax + a + NS(x).

For each solution x there is a unique point x∗ ∈ NS(x) with Ax+a+x∗ = 0. Because
of the structure of NS , we can represent x∗ (generally not uniquely) in the form
x∗ = F ∗y∗ with y∗ ∈ R

m
+ and 〈y∗, Fx− f〉 = 0. Such y∗ we call multipliers associated

with x. For a solution x we write the set of all such multipliers y∗ as Y ∗(x).
Now define a polyhedral convex subset Q of R

n+m by

(3.2) Q = {(x, y) | Fx ≤ f, y∗ ≥ 0, Ax + a + F ∗y∗ = 0};

thus the definition of Q includes all conditions imposed on solutions and multipliers
except the complementarity condition 〈y∗, Fx − f〉 = 0. Define two subsets I and J
of {1, . . . ,m} by

(3.3) I = {i ∈ {1, . . . ,m} | for each solution x, (f − Fx)i = 0}

and

(3.4) J = {j ∈ {1, . . . ,m} | for each multiplier y∗, (y∗)j = 0}.

Finally, define QIJ by

(3.5) QIJ = {(x, y∗) ∈ Q | (f − Fx)i = 0 (i ∈ I), (y∗)j = 0 (j ∈ J)}.
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This QIJ is evidently a face of Q. The next theorem says that it consists precisely
of solutions and their associated multipliers.

Theorem 3.1. One has

(3.6) QIJ = {(x, y∗) | x ∈ X, y∗ ∈ Y ∗(x)}.

Further, if x0 and x1 are elements of X with associated normal vectors x∗
i = −(Axi +

a) for i = 0, 1, then

(3.7) 〈x∗
0 − x∗

1, x0 − x1〉 = 0.

Proof. The proof has three main parts. We first show that the positive semidef-
initeness of A implies (3.7) as well as a certain exchangeability of solution-multiplier
pairs. Next, we use that information to show that each index in {1, . . . ,m} is in I or
in J (or possibly both), which we then use to prove (3.6).

Suppose that x0 and x1 are solutions, and let y∗i ∈ Y ∗(xi) for i = 0, 1. Then
x∗
i = F ∗y∗i , i = 0, 1. The monotonicity of NS and the positive semidefiniteness of A

imply

(3.8) 0 ≤ 〈x∗
0 − x∗

1, x0 − x1〉 = 〈−(Ax0 −Ax1), x0 − x1〉 ≤ 0,

which implies (3.7). Rewriting (3.7) as

0 = −〈x∗
0, x1 − x0〉 − 〈x∗

1, x0 − x1〉

and noting that each inner product is nonpositive because x∗
i ∈ NS(xi) for each i, we

see that each term is zero. Using x∗
i = F ∗y∗i for i = 0, 1, we conclude that

0 = 〈x∗
0, x1 − x0〉 = 〈F ∗y∗0 , x1 − x0〉 = 〈y∗0 , (Fx1 − f) − (Fx0 − f)〉 = 〈y∗0 , Fx1 − f〉,

as 〈y∗0 , Fx0 − f〉 is zero by choice of y∗0 . Exchanging the roles of x0 and x1 yields
〈y∗1 , Fx0 − f〉 = 0.

Now choose any index k ∈ {1, . . . ,m}. If k /∈ I, then there is some solution x
with (f − Fx)k > 0. If y∗ is any multiplier associated with some solution x′, then by
what we have just shown we have 〈y∗, Fx− f〉 = 0. As y∗ ≥ 0 and Fx− f ≤ 0, this
implies that (y∗)k = 0, so k ∈ J . Hence I ∪ J = {1, . . . ,m}.

To prove (3.6), first suppose that x ∈ X and y∗ ∈ Y ∗(x). The definitions of I
and J show that for each i ∈ I, (Fx − f)i = 0 and for each j ∈ J , (y∗)j = 0, so
(x, y) ∈ QIJ .

Now choose (x, y∗) ∈ QIJ . The definition of Q shows that Fx ≤ f , so x ∈ S;
also y∗ ≥ 0, and if we define x∗ = F ∗y∗, then Ax + a + x∗ = 0. For each i ∈ I we
have (Fx − f)i = 0 and for each j ∈ J we have (y∗)j = 0. As we have shown that
I ∪ J = {1, . . . ,m}, the inner product 〈y∗, Fx− f〉 must be zero, so that x∗ ∈ NS(x).
Therefore x ∈ X and y∗ ∈ Y ∗(x), which completes the proof of (3.6).

In the case of a linear complementarity problem we have F = −I and f = 0.
Then (3.2) shows that we always have y∗ = Ax + a, so that we can remove y∗ from
the problem and thus recover the Adler–Gale results.

Theorem 3.1 shows that the solution set of any monotone affine variational in-
equality over a polyhedral convex set is itself a polyhedral convex set, because it is the
projection of a face of Q. We might wonder whether the information in the theorem
could somehow be used to determine how this polyhedral convex solution set behaves
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when one makes small changes in certain data of (3.1). For that purpose we now
replace the set S by a graph-convex polyhedral multifunction defined for u ∈ R

k by

(3.9) S(u) = {x | Fx + Gu ≤ g},

where G is a fixed m× k matrix and g is a fixed element of R
m, and we consider the

problem of finding x such that

(3.10) 0 ∈ Ax + a + NS(u)(x).

For u ∈ R
k let X(a, u) be the set of solutions of (3.1). This defines a multifunction

X : R
n×R

k → R
n, whose values are solution sets of (3.10) for particular pairs (a, u).

From the form of (3.10) together with Lemma 2.3, we can see that X is a poly-
hedral multifunction, and hence by [15, Proposition 1] it is everywhere OLC with the
same modulus. This guarantees stability with respect to expansion, as the set cannot
expand at a rate faster than linear, but on the other hand there are no limits on its
ability to contract. Indeed, one has only to think of a linear programming problem
such as the trivial problem of maximizing ax for x ∈ [0, 1] ⊂ R with a = 0 initially,
to see that the optimal set may contract disastrously for even slight changes in a.
Luo and Tseng [10, Corollary 1] have shown how, by further restricting the class of
matrices A, one may establish Lipschitz continuity with respect to a. However, in the
rest of this paper we leave a fixed and write X(u) for X(a, u). This new X is then a
multifunction taking values of u into solutions of (3.10), and we will seek conditions
on the matrix A, beyond positive semidefiniteness, under which X(·) will actually be
Lipschitzian (in the Pompeiu–Hausdorff metric) as opposed to outer Lipschitzian.

Klatte and Thiere [8, Theorem 4.2] have shown that the solution set of any convex
quadratic programming problem is Lipschitzian as a function of the right-hand side
vector of the constraints. They also refer to an earlier proof of that fact in [6]. Thus,
the class of matrices A that we want to find must include those that are symmetric
and positive semidefinite. We might hope that the class could include all positive
semidefinite matrices, but to dismiss that possibility it is enough to consider the
linear complementarity problem in R

2 with constant vector zero and matrix

(3.11) A =

[
0 −1
1 0

]
;

that is,

0 ∈ Ax + NR2
+
(x),

where R
2
+ is the nonnegative orthant of R

2. We now parametrize this problem by
defining, for u ∈ R,

S(u) =

{
x ∈ R

2 | (−I)x +

[
0
1

]
u ≤

[
0
0

]}
,

and consider the problem of solving 0 ∈ Ax + NS(u)(x). If u > 0, then there is no
solution, so X(u) = ∅; if u = 0, then X(u) = R+ × {0}; if u < 0, then X(u) =
{0} × [u, 0]. Accordingly, for this problem X(u) is not Lipschitzian in the Pompeiu–
Hausdorff metric, nor even inner semicontinuous, although A is certainly positive
semidefinite. Therefore, the class of matrices we seek must lie between the symmetric
positive semidefinite matrices and the positive semidefinite matrices. We define this
class in the next section and then develop some of its properties.
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3.2. Cocoercivity. This section develops some properties of cocoercive opera-
tors that we need in the rest of this paper. We first define these operators, then give
a theorem that characterizes cocoercivity for the specific class of operators that we
use here.

Definition 3.2. Let T be a monotone operator from a Hilbert space H into H.
We say that T is cocoercive if for some μ > 0, T−1 is strongly monotone with modulus
μ; that is, if for each (h, t) and (h′, t′) in the graph of T one has 〈t′ − t, h′ − h〉 ≥
μ‖t′ − t‖2.

Operators with strongly monotone inverses have received attention in the litera-
ture. In particular, Brézis and Haraux present a strong result about such operators
that we use below [2, Observation (b), p. 175]. Also, it was observed in [14, Propo-
sition 1] that even just strict monotonicity of T−1 implies a simple but useful fact,
which we shall also use below. Suppose that M is another monotone operator from
H into H, and consider the problem of finding solutions x of

(3.12) 0 ∈ T (x) + M(x).

If x1 and x2 are two such solutions, then there exist t1 and t2 such that for i = 1, 2
the pairs (xi, ti) and (xi,−ti) belong to the graphs of T and M , respectively. Then

0 = 〈x2 − x1, t2 − t1〉 + 〈x2 − x1, (−t2) − (−t1)〉.

Each inner product is nonnegative because T and M are monotone, so it follows that
each is zero, and then the strict monotonicity of T−1 implies that t2 = t1. Accordingly,
in this situation, if there are any solutions of (3.12) at all, then there is a unique t
such that the solution set of (3.12) is T−1(t)∩M−1(−t). Luo and Tseng [12, Lemma
1] made a similar observation for affine functions on R

n.
More recently, several authors have studied different aspects of such operators.

Tseng [17] gave them the name cocoercive, which we use here. Other names include
“strongly f -monotone” [13], “positive semidefinite plus” (or “psd-plus”) for the case
in which T is affine, referring to the property that 〈x, Tx〉 ≥ 0 implies Tx = 0, and
the “Dunn property.” Luo and Tseng [11] showed that a psd-plus linear operator
A : R

n → R
n has a representation A = ETPE, where P is a positive definite matrix

of dimension r, where r is the rank of A. They also showed that for such an operator,
if A = C + K with C symmetric and K skew, then kerC ⊂ kerK. Interestingly,
Iusem [5, Corollary 2] made a very similar observation for the quite different case of
a symmetric copositive-plus matrix. Zhu and Marcotte [19, Proposition 2.5] showed
that a linear operator A is psd-plus if and only if it is cocoercive. The book of
Facchinei and Pang defines cocoercive operators [4, Volume 1, p. 79] and, in section
2.3 of Volume 1, discusses their properties including several mentioned above.

The following theorem records some useful facts about cocoercive linear operators
on R

n in the form in which we need them in this paper. In it, we write kerA and imA
for the kernel and image of a linear operator A, and we write A−1 for the inverse of
A in the sense of multifunctions, not of linear algebra.

Theorem 3.3. Let A be a positive semidefinite linear operator from R
n to R

n.
Write C = (A + A∗)/2 and K = (A−A∗)/2 for the symmetric and skew parts of A,
respectively. The following are equivalent:

(a) A is cocoercive with some positive modulus μ;
(b) A−1 is strictly monotone;
(c) kerC ⊂ kerK.
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If these equivalent properties hold, then one has kerA = kerC = kerA∗ and imA =
imC = imA∗. Finally, A is cocoercive if and only if A∗ is cocoercive.

Proof. (a) implies (b). This is obvious.
(b) implies (c). Suppose A−1 is strictly monotone. If Cx = 0, then as 〈x,Kx〉 = 0

we have 0 = 〈x − 0, Ax − 0〉. Strict monotonicity of A−1 applied to the pairs (0, 0)
and (Ax, x) yields 0 = Ax = Cx + Kx, but as Cx = 0 we have x ∈ kerK.

(c) implies (a). Suppose that kerC ⊂ kerK. We first observe that if x ∈ kerA,
then we have

0 = 〈x,Ax〉 = 〈x,Cx〉 + 〈x,Kx〉 = 〈x,Cx〉,

and as C is positive semidefinite this implies x ∈ kerC. Conversely, if x ∈ kerC, then
by hypothesis x ∈ kerK also, and then x ∈ kerA. Thus if kerC ⊂ kerK, then we
actually have kerA = kerC. But we can restate hypothesis (c) as kerC ⊂ ker(−K),
and then the argument that we just made shows that kerA∗ = kerC. Therefore
under this hypothesis we have kerA = kerC = kerA∗, and by taking orthogonal
complements we obtain also imA∗ = imC = imA.

If A is the zero operator, then it is cocoercive with any modulus, so assume
A �= 0; then the subspace imA∗ has dimension at least 1. Define a function α from
the nonempty compact set W = {x ∈ imA∗ | ‖x‖ = 1} to R by α(x) = 〈x,Ax〉/‖Ax‖2.
This α is well defined because imA∗ = (kerA)⊥, so that W contains no point with
Ax = 0, and it is continuous on W ; hence it takes a minimum there, say μ. If μ = 0,
then there is x ∈ W with

0 = 〈x,Ax〉 = 〈x,Cx〉 + 〈x,Kx〉 = 〈x,Cx〉,

so x ∈ kerC. We have shown that then x ∈ kerA also, which contradicts the fact
that x ∈ (imA∗)\{0}. Therefore μ > 0.

Now choose any x ∈ R
n. We can write x uniquely as x = c + d, with c ∈ kerA

and d ∈ imA∗. Then

〈x,Ax〉 = 〈c, Ac〉 + 〈c, Ad〉 + 〈d,Ac〉 + 〈d,Ad〉 = 〈d,Ad〉 ≥ μ‖Ad‖2 = μ‖Ax‖2,

where we used the fact that kerA = kerA∗. This proves the equivalence of (a),
(b), and (c). We have already shown that (c) implies kerA = kerC = kerA∗ and
imA = imC = imA∗. For the final assertion note that A is cocoercive if and only if
kerC ⊂ kerK, which is the same as saying kerC ⊂ ker(−K), which is equivalent to
the cocoercivity of A∗.

It follows from the last assertion of the theorem that when A is cocoercive one
also has kerA = (imA)⊥. Thus, the class of cocoercive linear operators shares some
of the properties of the subclass consisting of symmetric positive semidefinite linear
operators, though not all; the example

(3.13) A =

[
1 −1
1 2

]

shows that they need not be normal.
Such operators are also ubiquitous in applications, as they include, in particu-

lar, the linear transformations A appearing when (3.1) expresses a problem of linear
programming (in which A = 0) or of convex quadratic programming (in which A is
symmetric and positive semidefinite). However, (3.13) shows that these special cases
do not exhaust the class.
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Returning to the parametric problem (3.10), we assume that A is cocoercive with
some modulus μ > 0. Then the uniqueness result from [14, Proposition 1] mentioned
previously tells us that there is a function x∗ : domS → R

n such that for each
u ∈ domS,

(3.14) X(u) = N−1
S(u)[x

∗(u)] ∩ {x | Ax + a + x∗(u) = 0}.

The set N−1
S(u)[x

∗(u)] is the maximal face F of S(u) on which x∗(u) is everywhere a

normal vector. As {x | Ax + a + x∗(u) = 0} is a face of itself, and as the faces of an
intersection of two convex sets are the intersections of their faces, X(u) is a face of
the polyhedral convex set

(3.15) P (u) = S(u) ∩ {x | Ax + a + x∗(u) = 0}.

Luo and Tseng [12, Lemma 2] gave a similar facial characterization of the optimal set
of a cocoercive affine variational inequality, but for the case of a fixed underlying set
and with a different proof.

The sets X(u) and P (u) play roles similar to those of Q(u) and QIJ(u) defined
by (3.2) and (3.5), respectively, but with S replaced by the S(u) defined in (3.9).
However, they are simpler than Q(u) and QIJ(u), because the availability of x∗(u) has
enabled us to decouple the solutions x from the multipliers y∗; indeed, no multipliers
appear in (3.15). This is entirely due to the cocoercivity assumption, and it is the
crucial step in the analysis because without making very restrictive assumptions on
F (such as a linear independence condition), we cannot control the behavior of the
multipliers.

However, in order to make this new formulation tractable we have to establish
good behavior of x∗(u). We do this in two steps: First we show that under cocoer-
civity and a solvability condition domX = domS, and then we show that x∗(·) is
Lipschitzian on that set.

We first observe that for each u ∈ domS, imNS(u) = F ∗(Rm
+ ). Indeed, the form

of S(u) shows that imNS(u) ⊂ F ∗(Rm
+ ). On the other hand, for any y∗ ∈ R

m
+ the

objective value in the linear programming problem

sup{〈F ∗y∗, x〉 | x ∈ S(u)}

is bounded above by 〈y∗, g −Gu〉, and therefore the problem actually has a solution
x′. Then F ∗y∗ ∈ NS(u)(x

′), so F ∗(Rm
+ ) ⊂ imNS(u).

Proposition 3.4. Let T (u, x) = Ax + a + NS(u)(x). If A is cocoercive, then for
each u ∈ domS one has

(3.16) imT (u, ·) = imA + a + F ∗(Rm
+ ).

Proof. The operator T (u, ·) is the sum of the two maximal monotone operators
A(·)+a and NS(u). As the relative interiors of the domains of these two operators meet,
the sum is also maximal monotone. As shown in [2, Proposition 2], the first operator
satisfies the key condition (∗) of that work because it is cocoercive. Moreover, its
domain includes that of the second operator. By [2, Theorem 4], the image of T (u, ·)
is then “almost equal” to the sum of the images of the two constituent operators,
in the sense that the closures and the interiors of these two sets are equal. The
operators being polyhedral, their images are unions of finite collections of polyhedral
convex sets; hence each is closed and so is their sum. Therefore (3.16) holds.



1056 STEPHEN M. ROBINSON

The expression on the right in (3.16) is independent of u. Hence we have the
following corollary.

Corollary 3.5. If A is cocoercive and

(3.17) 0 ∈ imA + a + F ∗(Rm
+ ),

then domX = domS.
Proof. Evidently domX ⊂ domS. If u ∈ domS, then the hypotheses together

with (3.16) show that 0 ∈ imT (u, ·), so that u ∈ domX and so domS ⊂ domX.
If the condition in (3.17) does not hold, then (3.10) has no solution for any u,

whereas if it holds, then (3.10) is solvable for every u ∈ domS. In what follows we
refer to (3.17) as the solvability condition.

Finally, we show that the unique normal vector x∗(u) defined by (3.14) is Lips-
chitzian in u.

Proposition 3.6. If A is cocoercive and 0 ∈ imA + a + F ∗(Rm
+ ), then x∗(·) is

Lipschitzian on domS.
Proof. The graph of x∗(·) is

gphx∗(·) = {(u, x∗) ∈ R
k × R

n | for some x ∈ R
n,

Ax + a + x∗ = 0 and (x, x∗) ∈ NS(u)}.

This set is the projection into R
k × R

n of the set

{(u, x, x∗) ∈ R
k × R

n × R
n | Ax + a + x∗ = 0, (x, x∗) ∈ NS(u)},

which is a union of polyhedral convex sets; hence so is the graph of x∗(·), which is
therefore a polyhedral multifunction. The domain of x∗(·) is domX, which under
our hypotheses is domS. But we showed just after (3.12) that for each u there could
be no more than one x∗, and if u ∈ domX, then there must be at least one x∗.
Therefore x∗(·) is single-valued on the convex set domS. By Corollary 2.2, it is then
Lipschitzian on domS.

4. Lipschitz continuity of solution sets. In this section we apply the work of
the preceding sections to show that if the assumptions of cocoercivity and solvability
hold, then the solution multifunction X(·) of the problem (3.10) is Lipschitzian on
domS in the Pompeiu–Hausdorff metric. We then show that for any positive semidef-
inite A that is not cocoercive, there exists a graph-convex polyhedral multifunction
S such that the problem (3.10) with a = 0 is solvable, but has a solution set that
not only fails to be Lipschitzian, but fails even to be inner semicontinuous. Therefore
cocoercivity is the weakest assumption that we can impose on A to ensure Lipschitz
continuity of X(·).

Theorem 4.1. If A is cocoercive and 0 ∈ imA + a + F ∗(Rm
+ ), then X is Lips-

chitzian in the Pompeiu–Hausdorff metric on domS.
Proof. As we observed just after (3.10), X is a polyhedral multifunction, and

therefore there is some modulus λ such that X is everywhere OLC with modulus λ.
We will show that under our hypotheses, X is inner semicontinuous relative to domS
at each u0 ∈ domS, and Theorem 1.5 will then establish that it is Lipschitzian as
claimed.

Choose some u0 in domS, which by Corollary 3.5 is also domX. Let Q be an
open set meeting X(u0), and choose some x0 ∈ Q∩X(u0). The technique of the proof
is to construct a finite number of graph-convex polyhedral multifunctions such that
for each u near u0, one of these will yield a point in the set X(u) that is close to x0.
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Let L be the set of indices i in {1, . . . ,m} for which the inequality (Fx0+Gu0)i ≤
gi is satisfied as an equality. Write cL for the complement of L in {1, . . . ,m}. We can
find neighborhoods U0 of u0 and V0 of x0, with V0 ⊂ Q, so that whenever (u, x) ∈
U0 × V0 the inequality (Fx + Gu)i ≤ gi is strict for each i ∈ cL. Find a positive ε so
that the ball x0 + εB lies in V0.

Now for u ∈ domS denote by XL(u) the solution set of the reduced problem

(4.1) 0 ∈ Ax + a + NSL(x),

where SL(u) = {x ∈ R
n | FLx+GLu ≤ gL}, and where we write FL for the submatrix

of F whose rows belong to the index set L, and similarly for GL and gL. If L = ∅, then
we take SL(u) = R

n. We know the problem in (4.1) is solvable for u = u0, because
x0 solves it. Therefore this reduced problem satisfies the solvability condition, as
well as the cocoercivity condition. Accordingly, Corollary 3.5 shows that domXL =
domSL ⊃ domS, where the inclusion holds because the reduced problem has fewer
constraints than did the original one. Also, Proposition 3.6 shows that the function
x∗
L(·) appearing in the reduced problem is Lipschitzian with some modulus ξL.

Now for all possible partitions (I, J) of L, consider the graph-convex polyhedral
multifunction

(4.2) PI,J(b, c, d) = {x ∈ R
n | FIx = b, FJx ≤ c, Ax = d},

where (b, c, d) ∈ R
|I| × R

|J| × R
n. Each of these multifunctions is Lipschitzian on its

domain, and there are finitely many of them; let λ be the maximum of their Lipschitz
constants. Write sL(u) for gL −GLu, and find a neighborhood U1 of u0, contained in
U0, such that whenever u ∈ U1 ∩ domS we have

(4.3) λ

∥∥∥∥
[
sL(u)
−x∗

L(u)

]
−
[
sL(u0)
−x∗

L(u0)

]∥∥∥∥ < ε.

Now choose any u ∈ U1∩domS. Applying the discussion at (3.15) to the reduced
problem, we see that XL(u) is a face of PL(u). Accordingly, there will be some
partition I, J of L for which

(4.4) XL(u) = PI,J(sI(u), sJ(u),−[x∗
L(u) + a]).

We also have

(4.5) x0 ∈ PI,J(sI(u0), sJ(u0),−[x∗
L(u0) + a]).

If we write M(u) for PI,J(sI(u), sJ(u),−[x∗
L(u)+a]), then the Lipschitz continuity of

PI,J in the Pompeiu–Hausdorff metric yields

M(u0) ⊂ M(u) + λ

∥∥∥∥
[
sL(u)
−x∗

L(u)

]
−
[
sL(u0)
−x∗

L(u0)

]∥∥∥∥B ⊂ M(u) + εB.

As M(u) = XL(u) and M(u0) contains x0, this implies that there is a point x ∈ XL(u)
such that x ∈ x0 + εB. In particular, x ∈ Q. Also, the pair (u, x) belongs to U0 × V0,
so every constraint Fix + Giu ≤ gi with index i ∈ cL is slack there. That means
that not only is x∗

L(u) in NSL(u)(x), but it also belongs to NS(u)(x), and therefore
x ∈ X(u). Therefore X(u) is inner semicontinuous at u0 relative to domS, which
completes the proof.
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Theorem 4.1 shows that if cocoercivity and the solvability condition hold, then
the solution set of (3.10) is Lipschitzian on its domain. The last theorem will show
that if A is positive semidefinite but not cocoercive, then one can find a graph-convex
polyhedral multifunction S so that the problem (3.10) is solvable, but its solution
multifunction X is not inner semicontinuous, hence a fortiori not Lipschitzian. In
fact, S(u) can be taken to be a translated halfline.

Theorem 4.2. Let A be a positive semidefinite linear transformation from R
n to

R
n that is not cocoercive. Then there exists a graph-convex polyhedral multifunction

S : R → R
n such that the problem of finding x such that 0 ∈ Ax+NS(u)(x) is solvable

for u0 = 0, but there are points u arbitrarily close to u0 such that X(u) �= ∅ but the
inclusion X(u0) ⊂ X(u) + αB holds for no real number α.

Proof. As A is not cocoercive, by Theorem 3.3 its inverse is not strictly monotone.
Therefore there is some x ∈ R

n such that 〈x,Ax〉 = 0 but Ax �= 0. Write A = C +K
with C symmetric and K skew. As 〈x,Ax〉 = 0 we have 〈x,Cx〉 = 0 and therefore
Cx = 0, which with Ax �= 0 implies that Kx �= 0. As A∗ = C −K, it follows that the
point y = A∗x is not zero. For u ∈ R define

S(u) = uy + (R+)x.

The graph of S is

{(u, uy + ξx) | u ∈ R, ξ ≥ 0} = {u(1, y) + ξ(0, x) | u ∈ R, ξ ≥ 0},

which is a polyhedral convex set. Now fix u ∈ R and ξ ≥ 0, and let x(u, ξ) = uy+ ξx.
Then we have

〈x,−Ax(u, ξ)〉 = −u‖y‖2.

For u < 0 this quantity is positive, so −Ax(u, ξ) is not in NS(u)(x(u, ξ)) for any
ξ ≥ 0; thus X(u) = ∅. For u = 0, −u‖y‖2 = 0, so −Ax(u, ξ) ∈ NS(u)(x(u, ξ)) for
each ξ ≥ 0, and X(u) is the entire halfline S(u). For u > 0 we have −u‖y‖2 < 0, so
−Ax(u, ξ) ∈ NS(u)(x(u, ξ)) for ξ = 0 but for no ξ > 0, so X(u) = {uy}. Therefore,
for u > 0 the set X(u) is a singleton, and therefore the halfline X(0) contains points
arbitrarily far away from X(u).

5. Appendix: Proof of Theorem 1.5. If X is empty there is nothing to prove,
so we assume X to be nonempty.

(a) implies (b). Choose two points of X and call them x0 and x1. For each
t ∈ (0, 1) let xt = (1− t)x0 + tx1. The OLC hypothesis ensures that for each t ∈ [0, 1]
there is a ball B(xt, ρt) about xt with positive radius ρt such that for each x′ in
X ∩B(xt, ρt), S(x′) ⊂ S(xt) + λ‖x′ − xt‖B. Define

τ = sup{t ∈ [0, 1] | for each s ∈ [0, t], S(xs) ⊂ S(x0) + λ‖xs − x0‖B}.

We have τ > 0 because ρ0 is positive. We show first that

(5.1) S(xτ ) ⊂ S(x0) + λ‖xτ − x0‖B.

By assumption the set S(x0) is closed, and therefore so is S(x0)+λ‖xτ −x0‖B; let Q
be the complement of the latter set. If (5.1) were not true, then S(xτ ) would meet the
open set Q, and the inner semicontinuity hypothesis would then imply the existence
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of σ ∈ [0, τ) for which S(xσ) also met Q. This cannot be true, because all such σ
satisfy

S(xσ) ⊂ S(x0) + λ‖xσ − x0‖B ⊂ S(x0) + λ‖xτ − x0‖B.

This establishes (5.1).
If τ were less than 1 there would be κ ∈ (τ, 1) with ‖xκ − xτ‖ < ρτ , such that

(5.2) S(xκ) �⊂ S(x0) + λ‖xκ − x0‖B.

However, we would then have from (5.1) and the definition of ρτ

S(xκ) ⊂ S(xτ ) + λ‖xκ − xτ‖B
⊂ S(x0) + λ(‖xκ − xτ‖ + ‖xτ − x0‖)B
= S(x0) + λ‖xκ − x0‖)B,

where the equality in the last line holds because x0, xτ , and xκ are collinear. This
contradicts (5.2), so τ must be 1. Putting τ = 1 in (5.1) shows that S(x1) ⊂ S(x0) +
λ‖x1 − x0‖B, and reversing the roles of x0 and x1 completes the proof.

(b) implies (a). If (b) holds, then S is a fortiori OLC relative to X at each point
x ∈ X with modulus λ. For inner semicontinuity, let x ∈ X and let Q be an open set
meeting S(x). Then there exist a point y ∈ S(x) ∩ Q and a ball B(y, η) with η > 0
such that B(y, η) ⊂ Q. Let ν be a positive number with λν ≤ η, and take V to be
X ∩B(x, ν). If x′ ∈ V , then (b) yields

y ∈ S(x) ⊂ S(x′) + λ‖x′ − x‖B ⊂ S(x′) + ηB.

This means that there is some y′ ∈ S(x′) with ‖y′ − y‖ ≤ η, so that y′ ∈ B(y, η), and
hence y′ ∈ S(x′) ∩ Q. Therefore S(x′) meets Q, so S is inner semicontinuous at x
relative to X.

Acknowledgments. I wish to thank Shu Lu, Paul Tseng, and two anonymous
referees for comments and criticisms that have greatly improved this paper.
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ALGORITHMS WITH COSTS-TO-MOVE∗
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Abstract. Given two objective functions f : X �→ R∪{+∞} and g : Y �→ R∪{+∞} on abstract
spaces X and Y, and a coupling function c : X × Y �→ R

+, we introduce and study alternative
minimization algorithms of the following type: (x0, y0) ∈ X × Y given; (xn, yn) → (xn+1, yn) →
(xn+1, yn+1) as follows:{

xn+1 ∈ argmin{f(ξ) + βnc(ξ, yn) + αnh(xn, ξ) : ξ ∈ X},
yn+1 ∈ argmin{g(η) + μnc(xn+1, η) + νnk(yn, η) : η ∈ Y}.

Their most original feature is the introduction of the terms h : X × X �→ R
+ and k : Y × Y �→ R

+

which are costs to change or to move (distance-like functions, relative entropies) accounting for various
inertial, friction, or anchoring effects. These algorithms are studied in a general abstract framework.
The introduction of the costs to change h and k leads to proximal minimizations with corresponding
dissipative effects. As a result, the algorithms enjoy nice convergent properties. Coefficients αn, βn,
μn, νn are nonnegative parameters. When taking αn = νn = 0 and quadratic costs on a Hilbert
space, one recovers the classical alternating minimization algorithm, which itself is a natural extension
of the alternating projection algorithm of von Neumann. A number of new significant results hold in
general metric spaces. We pay particular attention to the following cases: (1.) (X , dX ) and (Y, dY )
are complete metric spaces and h ≥ dX , k ≥ dY (“high local costs to move”); the algorithms then
provide sequences that converge to Nash equilibria. (2.) X = Y = H is a Hilbert space, the costs to
change are quadratic (“low local costs to move”) and the functions f, g : H �→ R ∪ {+∞} are closed,
convex, proper; then some of the classical convergence theorems for alternating convex minimization
algorithms, including those of Acker and Prestel, are properly extended with original proofs.

Key words. alternating minimization, alternating projection, proximal algorithms, costs to
change, inertia, anchoring effect, dynamical game theory, Nash equilibria, steepest descent, dissipa-
tive dynamical systems
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1. Introduction and general presentation.

1.1. Some classical results about alternating minimization. Let us first
recall some basic facts about alternating minimization and proximal algorithms that
will be most useful to throw light on the original aspects of our approach.

(a) The starting fundamental result is due to von Neumann (1950) [33]. Let H be
a Hilbert space and let C1, C2 be two closed affine subspaces of H with C1 ∩C2 �= ∅.
Let PC1 and PC2 denote the orthogonal projections on C1 and C2. Then, for any x0

in H, the sequence (xn)n∈N obtained by alternatively projecting on C1 and on C2,
namely

xn = (PC1 ◦ PC2)
nx0,
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strongly converges to the projection of x0 onto C1∩C2. This result, and its extension
by Halperin [24] to the case of cyclic projections onto a finite number of closed affine
subspaces, provides a powerful tool for solving convex feasibility problems in Hilbert
spaces. A rich literature has been devoted to this subject; see, for example, the
extensive studies by Deutsch [23], Bauschke, Borwein, and Lewis [14], and Combettes
[22].

(b) A next decisive step in the understanding of the convergence analysis of these
algorithms in the general framework of convex optimization has been made by Acker
and Prestel [1]. Let f, g : H �→ R ∪ {+∞} be two closed convex proper functions on
the Hilbert space H. Fix (x0, y0) ∈ H ×H and consider the sequence generated by
the alternating minimization algorithm{

xn+1 = argmin{f(x) + 1
2 ‖ x− yn ‖2: x ∈ H},

yn+1 = argmin{g(y) + 1
2 ‖ xn+1 − y ‖2: y ∈ H}.

Then, the sequence (xn, yn)n∈N weakly converges to a solution of the joint minimiza-
tion problem on H ×H,

min

{
f(x) + g(y) +

1

2
‖ x− y ‖2: (x, y) ∈ H ×H

}
,

if we assume that the minimum point set is nonempty. This result can be formulated
in an equivalent form by using the proximal mappings introduced by Moreau [32] and
Rockafellar [36]: Recall that, for a closed convex proper function ϕ : H �→ R∪{+∞},
the proximal mapping proxϕ is defined by

∀z ∈ H, proxϕ(z) = argminξ

{
ϕ(ξ) +

1

2
‖ z − ξ ‖2

}
.

When ϕ = δC is the indicator function of a closed convex nonempty set C, one
has proxϕ = PC , the classical projection, whence the terminology. Like projections,
proximal mappings are nonexpansive (more precisely they are firmly nonexpansive).
Acker and Prestel’s algorithm may be reformulated as{

xn+1 = proxfyn,
yn+1 = proxgxn+1.

In particular, it provides a nice extension of von Neumann’s theorem to two closed
convex nonempty sets of the Hilbert space H (take f = δC1

, g = δC2
); namely the

following.
1. If C1 ∩C2 �= ∅, then the sequences xn, yn generated by the alternating projec-

tion algorithm weakly converge,

w − limxn = w − lim yn = z,

to a point z ∈ C1 ∩ C2.
2. If C1 ∩ C2 = ∅, then w − limxn = x and w − lim yn = y exist where x ∈ C1

and y ∈ C2 are such that ‖ x− y ‖ achieves the distance between sets C1 and C2,

‖ x− y ‖= inf{‖ x− y ‖: x ∈ C1, y ∈ C2}.

This last result has proved to be of fundamental importance for applications, especially
when solving inverse problems (possibly ill-posed) arising in various fields of engineer-
ing (mechanics, signal reconstruction, image processing, statistics, etc.). Indeed, in
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the case of inconsistent constraints (C1∩C2 = ∅) due to inaccurate measurements, for
example, the previous result guarantees the convergence of the algorithm to a relaxed
solution (x, y) taking the inconsistent constraints into account in the best possible
way; see [22, 14].

Note that, and this will be important for further developments, the preceding
algorithm can be viewed as the alternating minimization of the bivariate function

L : (x, y) ∈ H ×H �→ L(x, y) = f(x) + g(y) +
1

2
‖ x− y ‖2∈ R ∪ {+∞}

and provides a minimizing sequence for L. A related approach has recently been
developed by Bauschke, Combettes, and Noll [15] who consider the alternating mini-
mization procedure in the case of the Euclidean space for the bivariate function

L(x, y) = f(x) + g(y) + D(x, y),

where D(x, y) is a coupling function of Bregman type, namely

D(x, y) = θ(x) − θ(y) − 〈∇θ(y), x− y〉,

with θ a convex function designed for the developments of interior point methods in
convex programming (note that D(x, y) = 1/2 ‖ x− y ‖2 when θ(x) = 1/2 ‖ x ‖2).

(c) To complete this general portrait of alternating proximal methods, let us
mention the approach via the asymptotic analysis of the composition of resolvents of
maximal monotone operators. This allows us to treat in a unified way the case of
convex functions, min-max, and complementary problems. The corresponding gen-
erated semigroups of contractions and the Trotter–Kato–Lie formula make a natural
link with dynamical systems [16, 35, 19, 30].

1.2. Description of the alternating algorithms. Due to the wide potential
range of applications of these algorithms (from engineering to decision sciences) we
adopt a quite general terminology (the corresponding terminology in game theory is
described in section 1.4).
X and Y are abstract spaces.
f: X �→ R ∪ {+∞} is the “first” criterion or objective function.
g: Y �→ R ∪ {+∞} is the “second” criterion or objective function.

Nonnegative bivariate functions h, k, c account for the following effects:
h : (x, ξ) ∈ X × X �→ h(x, ξ) ∈ R

+ ∪ {+∞} is the cost to change from x ∈ X
to ξ ∈ X , which is involved in the minimization procedure of f on X . For
example, h(x, ξ) = dX (x, ξ) in the case of a metric space (X , dX ).

k : (y, η) ∈ Y × Y �→ k(y, η) ∈ R
+ ∪ {+∞} similarly is the cost to change from

y ∈ Y to η ∈ Y, which is involved in the minimization procedure of g on Y.
For example, functions h and k may account for physical costs in transportation

processes.
The function c : X×Y �→ R

+ couples the two problems. For example, in dynamical
games (see section 1.4) it may account for attracting or repulsive coupling
effects between two players.

We can now describe the algorithm:
• (x0, y0) ∈ X × Y given is the initial state;
• (xn, yn) �→ (xn+1, yn) �→ (xn+1, yn+1) as follows:

(CA
2
)

{
xn+1 ∈ argmin{f(ξ) + βnc(ξ, yn) + αnh(xn, ξ) : ξ ∈ X},
yn+1 ∈ argmin{g(η) + μnc(xn+1, η) + νnk(yn, η) : η ∈ Y},
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where αn, βn, μn, νn are nonnegative parameters. We call (CA2) the cognitive alter-
nating algorithm for two criteria or two agents.

Indeed, for numerical purposes as well as for the realism of our model, it is
convenient to introduce an approximate version of (CA2):

(ACA
2
)

{
xn+1 ∈ εn-argmin{f(ξ) + βnc(ξ, yn) + αnh(xn, ξ) : ξ ∈ X},
yn+1 ∈ εn-argmin{g(η) + μnc(xn+1, η) + νnk(yn, η) : η ∈ Y}.

In order to describe the asymptotic behavior of the sequences generated by this
algorithm, let us define the following notion of equilibrium.

Definition 1.1. Given nonnnegative constants α, β, μ, ν, an inertial Nash
equilibrium, in short INE(α,β,μ,ν), is defined as a couple (x, y) ∈ X × Y such that

• x ∈ arg min{f(ξ) + βc(ξ, y) + αh(x, ξ) : ξ ∈ X},
• y ∈ arg min{g(η) + μc(x, η) + νk(y, η) : η ∈ Y}.

Remark 1. When α = ν = 0, one recovers the usual notion of Nash equilibrium:
• x ∈ arg min{F (ξ, y) : ξ ∈ X},
• y ∈ arg min{G(x, η) : η ∈ Y},

where F (ξ, η) = f(ξ) + βc(ξ, η), G(ξ, η) = g(η) + μc(ξ, η).
Remark 2. Suppose the sequences αn, βn, μn, νn converge and set α = limαn,

β = limβn, μ = limμn, and ν = lim νn. We shall prove in Proposition 2.2 that
the limit (x, y) of any sequence (xn, yn) generated by algorithm (CA2) is an inertial
Nash equilibrium INE(α,β,μ,ν). The terminology Nash equilibrium will be justified
in section 1.4.

Algorithm (CA2) bears a straight relationship with two classical topics:
(i) proximal algorithms and dynamical systems in optimization,
(ii) best response dynamics in game theory.

Let us make some of these links precise; this will help us motivate and introduce some
important aspects of this paper (interpretation of the equilibria, and convergence
properties of the algorithm).

1.3. Links with proximal algorithms and dynamical optimization. Dy-
namical systems provide a rich and unifying approach to the analysis of a number of
iterative proximal algorithms in optimization (e.g., [4, 5, 11, 3, 6, 20, 25]).

Let ϕ : H �→ R ∪ {+∞} be a closed convex proper function on the Hilbert space
H. Classical proximal algorithms for convex optimization

xn+1 = proxϕxn = (I + ∂ϕ)−1xn

bear a close relationship with the steepest descent dynamical system

ẋ(t) + ∂ϕ(x(t)) � 0.

Indeed, they can be viewed as implicit discretizations of this differential inclusion.
In the same spirit, if we recall that alternating proximal minimization algorithms
minimize (in the convex setting) the bivariate function

L(x, y) = f(x) + g(y) +
1

2
‖ x− y ‖2,

then it is natural to associate the steepest descent continuous dynamical system to L
in H ×H. We obtain the system of coupled differential inclusions{

ẋ(t) + ∂f(x(t)) + (x(t) − y(t)) � 0,
ẏ(t) + ∂g(y(t)) + (y(t) − x(t)) � 0.
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Noticing that L is closed convex on H ×H we know, by Bruck’s theorem [19], that
(x(t), y(t)) weakly converges to a minimum point (x, y) of L. Thus, one can expect
similar results by discretizing this system in an alternating and implicit way. Following
the chain computation yn → xn+1 → yn+1 → xn+2, one obtains{

1
λn

(xn+1 − xn) + ∂f(xn+1) + (xn+1 − yn) � 0,

1
λn

(yn+1 − yn) + ∂g(yn+1) + (yn+1 − xn+1) � 0.

Equivalently, one gets the following (CA2) algorithm:{
xn+1 ∈ argmin{f(ξ) + 1

2λn
‖ ξ − xn ‖2 + 1

2 ‖ ξ − yn ‖2: ξ ∈ H},
yn+1 ∈ argmin{g(η) + 1

2λn
‖ η − yn ‖2 + 1

2 ‖ η − xn+1 ‖2: η ∈ H}.

Note the novelty consisting in introducing the additional terms 1
2λn

‖ ξ − xn ‖2 and
1

2λn
‖ η − yn ‖2 in these variational formulations. Their contributions ‖ xn+1 − xn ‖2

and ‖ yn+1 − yn ‖2 will vanish asymptotically. But they are important for the analy-
sis of these algorithms, because they make the tools of dissipative dynamical systems
available. Indeed, they make the bifunction L a strict Lyapunov function (without
these terms L(xn, yn) is only nonincreasing); see section 2 for precise statements.
Moreover, these dissipative properties allow us to introduce and study these algo-
rithms in a general setting.

1.4. Links with decision sciences and game theory: Inertial Nash equi-
libration processes. We do not aim at modeling; we just want to stress some rela-
tionships of the algorithm (CA2) with decision sciences and justify the introduction of
costs to move. Let us examplify it in the context of noncooperative dynamical game
theory with real world interacting players.

“Inertia free” alternating games. Consider two interrelated players 1 and 2 de-
parting from strict individualism to take each other’s decision into account via a
coupling function. Their static payoffs are made of two components: an individual
payoff coming from their own action (decision, strategy, performance, etc., can be
used as well) and a common payoff coming from their joint actions. Let X and Y be
the strategy sets of players 1 and 2, with ξ ∈ X and η ∈ Y their respective current
actions. Their static loss functions are

F : (ξ, η) ∈ X × Y �→ F (ξ, η) = f(ξ) + βc(ξ, η),
G : (ξ, η) ∈ X × Y �→ G(ξ, η) = g(η) + μc(ξ, η).

The coupling term defines the more or less conflictual characteristic of the game,
i.e., the nature of the interdependence between players. Coefficients β > 0 and μ > 0
represent how much each player benefits from the joint payoff.

Inertial nonautonomous Nash equilibration processes. (i) First consider inertia
aspects. We add to this classical static normal form game some costs to move for
each player. Player 1 must pay the cost h(x, ξ) to move from action x ∈ X to a new
action ξ ∈ X and player 2 must pay the cost k(y, η) to move from action y ∈ Y to a
new action η ∈ Y.

The general idea is that, in real life, changing, improving the gain, and the quality
of actions has a cost. “Costs to move” covers various physical, physiological, psycho-
logical, and cognitive aspects. They reflect the bounded rationality and behavioral
features of decision processes in real life (see Kahneman [27], Camerer and Loewen-
stein [21]; Simon [37] for the concept of deliberation costs; Attouch and Soubeyran
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[9, 10] for the precise concept of costs to change; and Attouch, Buttazzo, and Michaille
[7, section 3.4.2] for a dynamical cognitive approach of Ekeland’s variational principle
due to Attouch and Soubeyran). Here, these costs mainly describe an anchoring ef-
fect. Agents have a (local) vision of their environment which depends on their current
actions. Each action is anchored to the preceding one, which means that the percep-
tion the agents have of the quality of their subsequent actions depends on the current
ones. In economics and management, one may think of actions as routines, ways of
doing, while costs to change reflect the difficulty of quitting a routine or entering
another one or reacting quickly (reactivity costs). In our situation, suppose that the
current action of the two players is (x, y) ∈ X × Y. Suppose also that only player 1
can choose a new action (i.e., player 1 chooses a new action ξ while player 2 “stays”
at y); then the inertial payoff of player 1 is

F (ξ, y) + αh(x, ξ) = f(ξ) + βc(ξ, y) + αh(x, ξ).

The second member of this expression is the sum of three costs: a cost to be far from
the objective (frustration), a cost to be far from (or close to) the action of the other
agent (coupling), and a cost to be far from the preceding action (anchoring or inertial
effect). The coefficient α before the cost h(x, ξ) usually reflects some dynamical
cognitive features of player 1 (speed, reactivity, learning ability, etc.).

Symmetrically, suppose now that only player 2 can choose a new action (i.e.,
player 2 chooses a new action η while player 1 “stays” at x); then the inertial payoff
of player 2 is

G(x, η) + νk(y, η) = g(η) + μc(x, η) + νk(y, η)

with the ν coefficient reflecting some dynamical cognitive features of player 2. The
timing of the game follows an asynchronous dynamic where players move in alterna-
tion.

(ii) Then consider nonautonomous aspects. Suppose that both the weights βn > 0
and μn > 0 attached to the joint payoff and the “anchoring” (also called “inertial”)
coefficients αn > 0 and νn > 0 vary from period to period for each player. Suppose
that the current action of the two players is (xn, yn) ∈ X × Y. Suppose that only
player 1 can choose a new action ξ; then the inertial payoff of player 1 is

Fn(ξ, yn) + αnh(xn, ξ) = f(ξ) + βnc(ξ, yn) + αnh(xn, ξ).

Symmetrically, suppose now that only player 2 can choose a new action; then the
inertial payoff of player 2 is

Gn(xn, η) + νnk(yn, η) = g(η) + μnc(xn, η) + νnk(yn, η).

These expressions describe the nonautonomous inertial payoffs of the two agents.
Note that they depend both on the current period (time dependence) and the current
position of the agents. Taking account of the fact that agents optimize their payoffs,
we obtain the description of the alternating dynamic as (CA2).

1.5. Examples. Algorithm (CA2) covers, but is more general than, former al-
gorithms to be found in the literature.

Suppose that f and g are proper convex lower semicontinuous functions defined
on a Hilbert space, that the costs to move h and k vanish, and that the coupling c is
a quadratic dissimilarity cost, namely c(x, y) = 1

2 ‖ x− y ‖2.
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Then writing out the optimality conditions for algorithm (CA2) yields{
0 ∈ ∂f(xn+1) + βn(xn+1 − yn),
0 ∈ ∂g(yn+1) + μn(yn+1 − xn+1),

equivalently

{
xn+1 = (I + 1

βn
∂f)−1yn,

yn+1 = (I + 1
μn

∂g)−1xn+1,

where ∂f and ∂g are the subgradient operators of f and g in the sense of convex
analysis [32, 36, 12]. If βn and μn have a common constant value β, then this is
exactly Acker and Prestel’s alternating process, which is introduced in [1] to minimize
the function f(x) + g(y) + β

2 ‖ x − y ‖2 and which possesses interesting convergence
properties. If βn and μn coincide, and if the sequence (1/βn) belongs to l2(N) \ l1(N)
(which implies βn → +∞), then this is Passty’s scheme for minimizing f + g which
possesses interesting properties too; see [35].

It may be useful to illustrate the behavior of algorithm (CA2) with an example
providing a simple geometric interpretation.

Suppose X and Y coincide with the same Hilbert space H endowed with the
norm ‖ ‖, X = Y = H. Let F be a nonvoid closed convex set of H, and define
f(x) = 1

2d
2(x, F ), where d(x, F ) denotes the distance from x to F ; likewise define

g(y) = 1
2d

2(y,G), where G is another nonvoid closed convex set in H. Starting from
an initial state (x0, y0) in H × H, the agents seek to improve their decisions x and
y subject to quadratic costs (both coupling and inertial terms) and are supposed to
implement algorithm (CA2):{

xn+1 = argmin{ 1
2d

2(ξ, F ) + 1
2α ‖ ξ − xn ‖2 + 1

2β ‖ ξ − yn ‖2: ξ ∈ H },
yn+1 = argmin{ 1

2d
2(η,G) + 1

2μ ‖ η − xn+1 ‖2 + 1
2ν ‖ η − yn ‖2: η ∈ H },

where α, β, μ, ν are nonnegative constants (owing to the strict convexity and the co-
erciveness of the functions to be minimized the sequence (xn, yn) is uniquely defined).
Due to the simple form of the problem, xn+1 and yn+1 may be explicitly computed;
just write the optimality conditions for xn+1 and yn+1,{

xn+1 − PFxn+1 + α(xn+1 − xn) + β(xn+1 − yn) = 0,
yn+1 − PGyn+1 + μ(yn+1 − xn+1) + ν(yn+1 − yn) = 0.

Here, PF and PG are the projection operators onto the convex sets F and G; for
∂(1/2)d2(x, F ) = x − PF (x) in general Hilbert space, see [32, p. 286] or [18, p. 46,
example 2.8.2]. Set un+1 = 1

α+β (αxn + βyn) and vn+1 = 1
μ+ν (μxn+1 + νyn). The

system above reads{
xn+1 − PFxn+1 + (α + β)(xn+1 − un+1) = 0,
yn+1 − PGyn+1 + (μ + ν)(yn+1 − vn+1) = 0,

which shows that xn+1, PFxn+1, and un+1 are collinear. Hence PFxn+1 = PFun+1;
likewise PF yn+1 = PF vn+1. Finally, xn+1 and yn+1 are defined by{

xn+1 = 1
1+(α+β) (PFun+1 + (α + β)un+1),

yn+1 = 1
1+(μ+ν) (PGvn+1 + (μ + ν)vn+1).

Observe that xn+1, yn+1 and un+1, vn+1 may be defined in quite simple geometric
terms: un+1 is the weighted mean of xn and yn with weights α and β, and xn+1

itself is the weighted mean of PFun+1 and un+1 with weights 1 and α + β; likewise
vn+1 is the weighted mean of xn+1 and yn with weights μ and ν, and yn+1 itself is
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the weighted mean of PGvn+1 and vn+1 with weights 1 and μ + ν. Figure 1.1, left,
displays the first three steps of the algorithm applied to the example with H = R

2.
Figure 1.1, right, displays the particular case where α = ν = 0 and β = μ; this is
Acker and Prestel’s alternating minimization process, and the sequences xn and yn
are then known to converge to (x∞, y∞), a minimizer of f(x) + g(y) + β

2 ‖ x− y ‖2.
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Fig. 1.1. Illustration of algorithm (CA2) (left); Acker and Prestel’s process (right).

A limit case of the above example occurs when f and g are the respective indicator
functions of the sets F and G (that is, f(x) = 0 if x ∈ F and f(x) = +∞ if x /∈ F ,
and g is similarly defined). The algorithm (CA2) then takes the form{

xn+1 ∈ argmin{ 1
2α ‖ ξ − xn ‖2 + 1

2β ‖ ξ − yn ‖2: ξ ∈ F},
yn+1 ∈ argmin{ 1

2μ ‖ η − xn+1 ‖2 + 1
2ν ‖ η − yn ‖2: η ∈ G}.
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Fig. 1.2. Illustration of algorithm (CA2) (left); alternating projections (right).

Writing the optimality conditions for xn+1 and yn+1 yields{
0 ∈ NF (xn+1) + α(xn+1 − xn) + β(xn+1 − yn) = 0,
0 ∈ NG(yn+1) + μ(yn+1 − xn+1) + ν(yn+1 − yn) = 0,
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where NF (xn+1) is the outward normal cone to F at point xn+1 and NG(yn+1) is the
outward normal cone to G at point yn+1. Let us retain the same notation as before
for un+1 and vn+1; the above system reads{

0 ∈ NF (xn+1) + (xn+1 − un+1), equivalently xn+1 = PFun+1,
0 ∈ NG(yn+1) + (yn+1 − vn+1), equivalently yn+1 = PGvn+1.

If α = ν = 0, algorithm (CA2) reduces to xn+1 = PF yn, yn+1 = PGxn+1. This is the
celebrated alternating projection algorithm used to find a point in the intersection of
the sets, or if the latter is void, to find a couple of points realizing the distance between
the two sets; see von Neumann [33], Halperin [24], Bregman [17], and Bauschke,
Borwein, and Lewis [14] for further references. Figure 1.2 illustrates this example
with H = R

2.

2. General dissipative and convergence properties of the alternating
algorithm (CA2). Let us fix the general mathematical setting and properties of
algorithm (CA2). In the next two sections, we shall make these results more precise
by specifying the type of inertial costs to move which is considered: high local costs
to move (section 3) or low local costs to move (section 4). Let us recall that algorithm
(CA2), also called the inertial Nash equilibration process (see section 1.4), is defined
by (xn, yn) → (xn+1, yn) → (xn+1, yn+1) as follows:{

xn+1 = argmin{f(ξ) + βnc(ξ, yn) + αnh(xn, ξ) : ξ ∈ X},
yn+1 = argmin{g(η) + μnc(xn+1, η) + νnk(yn, η) : η ∈ Y}.

2.1. Convergence to an inertial Nash equilibrium. First let us specify the
general topological assumptions in this section.
H11. X and Y are topological spaces;
H12. f : X �→ R∪{+∞} and g : Y �→ R∪{+∞} are proper, bounded below, lower

semicontinuous functions;
H13. h : X × X �→ R

+, k : Y × Y �→ R
+, and c : X × Y �→ R

+ are lower
semicontinuous and separately continuous;

H14. αn, βn, μn, and νn are nonnegative sequences and βn → β∞, μn → μ∞.
If algorithm (CA2) generates a sequence (xn, yn) that furthermore converges,

then, under some extra assumptions, we are going to prove that the limit is an inertial
Nash equilibrium.

Proposition 2.1. In addition to H11–H14 suppose that αn → α∞ and νn → ν∞.
Then the limit (x, y) of any sequence (xn, yn) generated by algorithm (CA2) is an
inertial Nash equilibrium INE(α∞, β∞, μ∞, ν∞).

Proof. Algorithm (CA2) reads

f(xn+1) + αnh(xn, xn+1) + βnc(xn+1, yn)(2.1)

≤ f(ξ) + αnh(xn, ξ) + βnc(ξ, yn) ∀ξ ∈ X ,

g(yn+1) + μnc(xn+1, yn+1) + νnk(yn, yn+1)(2.2)

≤ g(η) + μnc(xn+1, η) + νnk(yn, η) ∀η ∈ Y.

The right-hand member of (2.1) converges to f(ξ) + α∞h(x, ξ) + β∞c(ξ, y). Taking
the lower limit of the left-hand member of (2.1) gives

lim{f(xn+1) + αnh(xn, xn+1) + βnc(xn+1, yn)}(2.3)

≥ limf(xn+1) + limαnh(xn, xn+1) + limβnc(xn+1, yn)

≥ f(x) + α∞h(x, x) + β∞c(x, y),
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which yields the first condition for (x, y) to be an inertial Nash equilibrium. The
second condition is proved likewise from (2.2).

The proof of the following proposition runs along the same lines.
Proposition 2.2. In addition to H11–H14, suppose
(i) h(ξ, ξ) = 0,∀ξ ∈ X , k(η, η) = 0,∀η ∈ Y;
(ii) α = limαn and ν = limνn are finite.

Then the limit (x, y) of any sequence (xn, yn) generated by algorithm (CA2) is an
inertial Nash equilibrium INE(α, β∞, μ∞, ν), where α is any number greater than or
equal to α, and ν is any number greater than or equal to ν.

2.2. General dissipative properties of the alternating algorithm (CA2).
The assumptions in this section are
H21. X and Y are abstract spaces;
H22. f : X �→ R ∪ {+∞} and g : Y �→ R ∪ {+∞} are proper, bounded below;
H23. h : X × X �→ R

+, k : Y × Y �→ R
+ and c : X × Y �→ R

+ are nonnegative
functions satisfying h(x, x) = k(y, y) = 0∀x ∈ X , y ∈ Y;

H24. βn > 0, μn > 0, αn ≥ 0, νn ≥ 0.
Lemma 2.3. Assume H21–H24. Then, for any sequence (xn, yn) generated by

(CA2), one has

[μnf(xn+1) + βng(yn+1) + βnμnc(xn+1, yn+1)](2.4)

+ [μnαnh(xn, xn+1) + βnνnk(yn, yn+1)]

≤ [μnf(xn) + βng(yn) + βnμnc(xn, yn)].

Proof. Set ξ = xn and η = yn in (2.1) and in (2.2); sequences xn and yn verify{
f(xn+1) + αnh(xn, xn+1) + βnc(xn+1, yn) ≤ f(xn) + βnc(xn, yn),
g(yn+1) + μnc(xn+1, yn+1) + νnk(yn, yn+1) ≤ g(yn) + μnc(xn+1, yn).

Multiplying the first inequality by μn and the second one by βn we obtain

[μnf(xn+1)] + [μnαnh(xn, xn+1)] + [μnβnc(xn+1, yn)]

≤ [μnf(xn) + μnβnc(xn, yn)]

and

[βng(yn+1) + βnμnc(xn+1, yn+1)] + [βnνnk(yn, yn+1)]

≤ [βng(yn)] + [βnμnc(xn+1, yn)].

Add the two inequalities to get (2.4).
Depending on various monotonicity assumptions on coefficients βn and μn, in-

equality (2.4) gives prominence to quantities decreasing along the trajectories, and
hence acting as Lyapunov functions. We first consider the particular case where
βn ≡ μn before the general case.

Theorem 2.4. In addition to assumption H21–H24 assume that βn and μn

coincide and that βn ≡ μn is a nonincreasing sequence. Then, the following marginal
analysis result holds: for any sequence (xn, yn) generated by (CA2), one has

(a) f(xn) + g(yn) + βnc(xn, yn) is nonincreasing and has a limit as n → ∞;
(b)

∑+∞
n=0[αnh(xn, xn+1) + νnk(yn, yn+1)] < +∞.

Proof. Dividing inequality (2.4) by βn ≡ μn, we obtain

[f(xn+1) + g(yn+1) + βnc(xn+1, yn+1)] + [αnh(xn, xn+1) + νnk(yn, yn+1)]

≤ [f(xn) + g(yn) + βnc(xn, yn)].



ALTERNATING ALGORITHMS WITH COSTS TO MOVE 1071

Since βn is nonincreasing, we may replace βn with βn+1 in the left-hand member,

[f(xn+1) + g(yn+1) + βn+1c(xn+1, yn+1)] + [αnh(xn, xn+1) + νnk(yn, yn+1)]

≤ [f(xn) + g(yn) + βnc(xn, yn)],

which shows that the quantity f(xn) + g(yn) + βnc(xn, yn) is nonincreasing; as it is
nonnegative it is convergent, which proves point (a).

Summing the inequality above from n = 0 to N , we obtain

N∑
n=0

[αnh(xn, xn+1) + νnk(yn, yn+1)]

≤ [f(x0) + g(y0) + β0c(x0, y0)] − [f(xN+1) + g(yN+1) + βN+1c(xN+1, yN+1)]

≤ [f(x0) + g(y0) + β0c(x0, y0)] − [inf
X

f + inf
Y

g],

which proves point (b).
The preceding theorem can be extended to monotone (i.e., nonincreasing or non-

decreasing) sequences βn and μn. Define δn according to the following cases:
• if βn and μn are nonincreasing sequences, then δn = 1;
• if βn and μn are nondecreasing sequences, then δn = βnμn;
• if βn is nonincreasing and μn is nondecreasing, then δn = μn;
• if βn is nondecreasing and μn is nonincreasing, then δn = βn.

Theorem 2.5. Assume H21–H24 and let (xn, yn) be any sequence generated by
(CA2). If βn and μn are monotone sequences, then

(a)
μn
δn

(f(xn) − infX f) +
βn
δn

(g(yn) − infY g) +
βnμn
δn

c(xn, yn) is nonincreasing

and has a limit as n → ∞;

(b)
∑∞

n=0

[
μnαn
δn

h(xn, xn+1) +
βnνn
δn

k(yn, yn+1)
]
< +∞.

Proof. Divide inequality (2.4) in Lemma 2.3 by δn, and display positive quantities
like f(xn) − infX f and g(yn) − infY g. Then[
μn

δn

(
f(xn+1) − inf

X
f

)
+

βn

δn

(
g(yn+1) − inf

Y
g

)
+

βnμn

δn
c(xn+1, yn+1)

]

+

[
μnαn

δn
h(xn, xn+1) +

βnνn
δn

k(yn, yn+1)

]

≤
[
μn

δn

(
f(xn) − inf

X
f

)
+

βn

δn

(
g(yn) − inf

Y
g

)
+

βnμn

δn
c(xn, yn)

]
.

Each sequence
μn
δn

,
βn
δn

, and
βnμn
δn

is nonincreasing; so we have

[
μn+1

δn+1

(
f(xn+1) − inf

X
f

)
+

βn+1

δn+1

(
g(yn+1) − inf

Y
g

)
+

βn+1μn+1

δn+1
c(xn+1, yn+1)

]

+

[
μnαn

δn
h(xn, xn+1) +

βnνn
δn

k(yn, yn+1)

]

≤
[
μn

δn

(
f(xn) − inf

X
f

)
+

βn

δn

(
g(yn) − inf

Y
g

)
+

βnμn

δn
c(xn, yn)

]
,

which completes the proof.
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3. High local costs to move. The following assumptions will be valid through-
out this section:
H31. X and Y are complete metric spaces endowed with distances dX and dY ;
H32. f : X �→ R∪{+∞} and g : Y �→ R∪{+∞} are proper, bounded below, lower

semicontinuous functions;
H33. c : X × Y �→ R

+ ∪ {+∞} is a proper, lower semicontinuous function;
H34. h : X × X �→ R

+ and k : Y × Y �→ R
+ are continuous functions satisfying

h(ξ, ξ) = k(η, η) = 0 and h(x, ξ) ≥ dX (x, ξ), k(y, η) ≥ dY(y, η)∀ (x, ξ, y, η) in
X 2 × Y2;

H35. βn and μn are monotone (i.e., nonincreasing or nondecreasing) converging
sequences: β∞ = limn βn, μ∞ = limn μn;

H36. αn and νn are nonnegative sequences, bounded and bounded away from 0:
0 < α = limαn ≤ α = limαn < +∞, 0 < ν = limνn ≤ ν = limνn < +∞;

H37. εn is a positive sequence such that
∑+∞

n=0 εn < ∞.
Of importance are the completeness of spaces X and Y, the inequalities h ≥ dX ,

and k ≥ dY in H34. We call this last condition high local costs to move, in contrast
with a condition like h = d2

X , k = d2
Y which expresses low local costs to move (see

section 4).

3.1. Convergence of algorithm (ACA2) to an inertial Nash equilibrium.
Theorem 2.5 can very simply be used to demonstrate the convergence of the sequence
(xn, yn) when the “local” costs to move are significant; in decision terms it means that
the agents are reluctant to switch from their current state to another state because
the cost to move is a deterrent even if the next state lies in a neighborhood of the
current one. It may be guessed that the agents, in this evolution process, will stop
somewhere in the end. The following theorem gives a precise mathematical meaning
to this remark.

Theorem 3.1. In addition to hypotheses H31–H37 assume that c is separately
continuous. Then any sequence generated by algorithm (ACA2) converges to an iner-
tial Nash equilibrium INE(α,β∞,μ∞,ν), i.e.,{

x ∈ argmin{f(ξ) + αh(x, ξ) + β∞c(ξ, y) : ξ ∈ X},
y ∈ argmin{g(η) + μ∞c(x, η) + νk(y, η) : η ∈ Y}.

In particular, INE(α,β∞,μ∞,ν) is nonempty.
Proof. Let (xn, yn) be a sequence generated by algorithm (ACA2). Using the

same reasoning as in Theorem 2.5, and with the same definition for δn, we obtain[
μn+1

δn+1

(
f(xn+1) − inf

X
f

)
+

βn+1

δn+1

(
g(yn+1) − inf

Y
g

)
+

βn+1μn+1

δn+1
c(xn+1, yn+1)

]
(3.1)

+

[
μnαn

δn
h(xn, xn+1) +

βnνn
δn

k(yn, yn+1)

]

≤
[
μn

δn

(
f(xn) − inf

X
f

)
+

βn

δn

(
g(yn) − inf

Y
g

)
+

βnμn

δn
c(xn, yn)

]
+

(
μn

δn
+

βn

δn

)
εn.

In view of the definition of δn, according to the behavior of βn and μn, the sequences
μn/δn and βn/δn are nonincreasing; hence we have

∞∑
n=0

(
μn

δn
+

βn

δn

)
εn ≤

(
μ0

δ0
+

β0

δ0

) ∞∑
n=0

εn. < +∞.
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Adding the inequalities (3.1), as in the proof of Theorem 2.5, yields the convergence
of the series

∞∑
n=0

μn

δn
αnh(xn, xn+1) +

βn

δn
νnk(yn, yn+1) < +∞.

Let δ∞ be the limit of sequence δn (it does converge). In view of H36 there exists
some N ∈ N such that

μn

δn
αn >

1

2

μ∞
δ∞

α > 0,
βn

δn
νn >

1

2

β∞
δ∞

ν > 0 ∀n ≥ N.

Hence
∞∑

n=0

h(xn, xn+1) + k(yn, yn+1) < +∞

and finally
∞∑

n=0

dX (xn, xn+1) + dY(yn, yn+1) < +∞.

The sequences (xn) and (yn) are thus Cauchy sequences in the complete metric spaces
X and Y. Let x and y be their limits.

Recall that, by the definition of xn+1, we have, for every ξ ∈ X ,

f(xn+1) + αnh(xn, xn+1) + βnc(xn+1, yn+1) ≤ f(ξ) + αnh(xn, ξ) + βnc(ξ, yn).

Taking the lower limit of the left-hand side yields

lim inf{f(xn+1) + αnh(xn, xn+1) + βnc(xn+1, yn)}
≥ lim inf f(xn+1) + lim inf αnh(xn, xn+1) + lim inf βnc(xn+1, yn)

≥ f(x) + β∞c(x, y).

And taking the upper limit of the right-hand side yields

lim sup{f(ξ) + αnh(xn, ξ) + βnc(ξ, yn)} ≤ f(ξ) + αh(x, ξ) + β∞c(ξ, y).

Hence

f(x) + β∞c(x, y) ≤ f(ξ) + αh(x, ξ) + β∞c(ξ, y).

Likewise we can prove

g(y) + μ∞c(x, y) ≤ g(η) + νk(y, η) + μ∞c(x, η) ∀η ∈ Y.

And that shows that (x, y) is an inertial Nash equilibrium INE(α, β∞, μ∞, ν).
Let us come back to the decision theory point of view. If the costs to move

h and k are locally low, then we can imagine that the agents are inclined to try-
ing to improve his lot. The inequalities h(x, ξ) ≥ d2

X (x, ξ) and k(y, η) ≥ d2
Y(y, η)

may account for low costs to move; they are locally (i.e., for small distances) less
stringent than h(x, ξ) ≥ dX (x, ξ) and k(y, η) ≥ dY(y, η). Then the convergence of
the series (h(xn, xn+1)) and (k(yn, yn+1)) only yields Σ+∞

n=0d
2
X (xn, xn+1) < +∞ and

Σ+∞
n=0d

2
Y(yn, yn+1) < +∞ which is not enough to guarantee the convergence of the

sequence (xn, yn). A parallel may be drawn with the friction phenomenon in me-
chanics: dry friction, with a potential proportional to the modulus of the velocity,
usually leads a system to rest within a finite time interval, while viscous friction, with
a potential proportional to the square of the velocity modulus, usually leads to rest
only asymptotically and may even fail to reach an equilibrium state (see [2, 8]).
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3.2. Links with proximal algorithms. For (x0, y0) given in X × Y, consider
the following algorithm:

(xn+1, yn+1) ∈ argmin { μnf(ξ) + βng(η) + μnβnc(ξ, η)(3.2)

+ μnαnh(xn, ξ) + βnνnk(yn, η), (ξ, η) ∈ X × Y}.

It is not difficult to realize that its alternating version is exactly algorithm (CA2):
• first fix η = yn and minimize with respect to ξ, which yields some xn+1

satisfying

xn+1 = argmin{f(ξ) + αnh(xn, ξ) + βnc(ξ, yn), ξ ∈ X},

• then fix ξ = xn+1 and minimize with respect to η, which yields some yn+1

satisfying

yn+1 = argmin{g(η) + μnc(xn+1, η) + νnk(yn, η), η ∈ Y}.

Now algorithm (3.2) may be termed a proximal algorithm. Indeed, at each step
the sum of the function (ξ, η) �→ μnf(ξ) + βng(η) + μnβnc(ξ, η) and of a pertur-
bation term around (xn, yn), namely μnαnh(xn, ξ) + βnνnk(yn, η), is to be mini-
mized. Besides, if βn ≡ μn ≡ β, and if h = dX (or d2

X ) and k = dY (or d2
Y), then

algorithm (3.2) is exactly the classical proximal algorithm applied to the function
(x, y) �→ f(x) + g(y) + βc(x, y).

Thus algorithm (CA2) appears as the alternating version of a proximal-like al-
gorithm applied to μnf + βng + βnμnc with h and k acting as distances on X and
Y.

4. Low local costs to move: The convex case with quadratic costs. In
this section we assume the following:
H41. X and Y coincide with the same Hilbert space H = X = Y, endowed with

the inner product 〈x, y〉 and the norm ‖ x ‖= 〈x, x〉 1
2 ;

H42. functions f, g : H �→ R∪{+∞} are convex, lower semicontinuous and proper,
with infH f > −∞, infH g > −∞;

H43. costs to change and dissimilarity costs are quadratic: h(ξ, η) = k(ξ, η) =
c(ξ, η) = c(ξ, η) = 1

2 ‖ ξ − η ‖2 ∀(ξ, η) ∈ H2;
H44. αn ≥ 0, νn ≥ 0;
H45. βn and μn are constant and positive: βn ≡ β > 0, μn ≡ μ > 0;
H46. the set of inertial Nash equilibria is nonvoid; namely there exists some (x, y) ∈

H2 that is an INE(0,β,μ,0), i.e.,

{
x ∈ argmin{f(ξ) +

β
2 ‖ ξ − y ‖2: ξ ∈ H},

y ∈ argmin{g(η) +
μ
2 ‖ η − x ‖2: η ∈ H};

H47.
∑+∞

n=0(αn+1 −αn)+ < +∞,
∑+∞

n=0(νn+1 − νn)+ < +∞, and consequently the
sequences αn, νn are convergent: αn → α, νn → ν.

The quadratic cost hypothesis H43 means that the sequence (xn, yn) is generated,
and uniquely defined indeed, by the following algorithm:

(CA
2
)

{
xn+1 = argmin{f(ξ) + αn

2 ‖ ξ − xn ‖2 +
β
2 ‖ ξ − yn ‖2: ξ ∈ H},

yn+1 = argmin{g(η) +
μ
2 ‖ η − xn+1 ‖2 +νn

2 ‖ η − yn ‖2: η ∈ H}.
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Let us define the function Lβ,μ : (ξ, η) ∈ H2 �→ Lβ,μ(ξ, η) = μf(ξ) + βg(η)
+ 1

2βμ ‖ ξ − η ‖2. The purpose of this section is to prove the following theorem.
Theorem 4.1. Assume H41–H47. Then
(a) the sequence (xn, yn) generated by (CA2) weakly converges to some (x, y),

which is an inertial Nash equilibrium INE(0,β,μ,0);
(b) (xn, yn) is a minimizing sequence for the function Lβ,μ and (x, y) is a mini-

mum point of Lβ,μ;
(c) xn − yn → x− y relative to the norm topology in H, f(xn) → f(x), g(yn) →

g(y).
Remark. The convergence asserted in point (a) may fail to be strong; see [26, 31].
The proof of the theorem requires some preparation.
In view of the convexity of f and g, the sequence (xn, yn) is characterized by{

0 ∈ ∂f(xn+1) + αn(xn+1 − xn) + β(xn+1 − yn),
0 ∈ ∂g(yn+1) + μ(yn+1 − xn+1) + νn(yn+1 − yn),

where ∂f and ∂g are the subdifferential operators of f and g in the sense of convex
analysis. If we introduce the resolvent operators Tn

f = (I + 1
αn+β∂f)−1 and Tn

g =

(I + 1
μ+νn

∂g)−1 we have equivalently

⎧⎪⎨
⎪⎩

xn+1 = Tn
f

(
αnxn + βyn

αn + β

)
,

yn+1 = Tn
g

(
μxn+1 + νnyn

μ + νn

)
.

(4.1)

Recall that resolvent operators are firmly nonexpansive, i.e.,

〈Tn
f x− Tn

f x
′, x− x′〉 ≥‖ Tn

f x− Tn
f x

′ ‖2 ∀x, x′ ∈ H(4.2)

and likewise for Tn
g ; see, e.g., [36, Proposition 1(b)].

The inertial Nash equilibrium (x, y), the existence of which is asserted by as-
sumption H46, is also an inertial Nash equilibrium INE(α,β,μ,ν), where α and ν are
arbitrary nonnegative numbers{

x ∈ argmin{f(ξ) + α
2 ‖ ξ − x ‖2 +

β
2 ‖ ξ − y ‖2: ξ ∈ H},

y ∈ argmin{g(η) +
μ
2 ‖ η − x ‖2 +ν

2 ‖ η − y ‖2: η ∈ H}.

Indeed, the functions ξ �→ f(ξ) +
β
2 ‖ ξ − y ‖2 and ξ �→ α

2 ‖ ξ − x ‖2 are minimum at

the same point x. Likewise the functions η �→ g(η)+
μ
2 ‖ η−x ‖2 and η �→ ν

2 ‖ η−y ‖2

are minimum at the same point y.
Conversely, if (x, y) is an inertial Nash equilibrium INE(α,β,μ,ν), then it verifies{

0 ∈ ∂f(x) + α(x− x) + β(x− y),
0 ∈ ∂g(y) + μ(y − x) + ν(y − y),

(4.3)

and these inclusions are also the optimality conditions for (x, y) to be an inertial Nash
equilibrium INE(0,β,μ,0). Now, with α = αn and ν = νn in (4.3), we see that (x, y)
verifies ⎧⎨

⎩
x = Tn

f

(
αnx + βy
αn + β

)
,

y = Tn
g

(
μx + νny
μ + νn

)
.

(4.4)
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Lemma 4.2. Assume H41–H45. The set of inertial Nash equilibria INE(0,β,μ,
0) is the set of minimizers of Lβ,μ.

Proof. The function Lβ,μ is proper, lower semicontinuous, and convex. Its sub-
gradient set is easily seen to verify

∂Lβ,μ(ξ, η) = {μ∂f(ξ) + βμ(ξ − η)} × {β∂g(η) + βμ(η − ξ)}.(4.5)

And notice that the conditions (4.3) for (x, y) to be an inertial Nash equilibrium are
equivalent to ∂Lβ,μ(x, y) � 0.

Lemma 4.3. Assume H41–H46. The sequence (xn, yn) generated by (CA2) veri-
fies the following inequalities:

(a) ‖ xn+1 − x ‖2 ≤ 1

αn + β
{ αn ‖ xn − x ‖2 +β ‖ yn − y ‖2

− αn ‖ xn+1 − xn ‖2 −β ‖ yn − xn+1 − y + x ‖2 } .

(b) ‖ yn+1 − y ‖2 ≤ 1

(μ + νn)(αn + β)
{ μαn ‖ xn − x ‖2

+ (μβ + νn(αn + β)) ‖ yn − y ‖2 −μαn ‖ xn+1 − xn ‖2

− νn(αn + β) ‖ yn+1 − yn ‖2 −μβ ‖ yn − xn+1 − y + x ‖2

− μ(αn + β) ‖ yn+1 − xn+1 − y + x ‖2 } .

(c) αnμ ‖ xn+1 − x ‖2 +β(μ + νn) ‖ yn+1 − y ‖2

≤ αnμ ‖ xn − x ‖2 +β(μ + νn) ‖ yn − y ‖2

− αnμ ‖ xn+1 − xn ‖2 −βνn ‖ yn+1 − yn ‖2

− βμ ‖ yn − xn+1 − y + x ‖2 −βμ ‖ yn+1 − xn+1 − y + x ‖2 .

Proof. The first two inequalities entail the third one; it suffices to multiply the
first by αnμ, the second by β(μ + νn), and to add.

The proof of the first two inequalities relies on the firm nonexpansiveness property
of the resolvent operators Tn

f and Tn
g (recall (4.2)). From (4.1) and (4.4) we deduce

that

‖ xn+1 − x ‖2 ≤ 1

αn + β
{αn〈xn+1 − x, xn − x〉 + β〈xn+1 − x, yn − y〉},

‖ yn+1 − y ‖2 ≤ 1

νn + μ
{μ〈yn+1 − y, xn+1 − x〉 + νn〈yn+1 − y, yn − y〉}.

Write each inner product as 〈u, v〉 = 1
2{‖ u ‖2 + ‖ v ‖2 − ‖ v−u ‖2} in the inequalities

above. We then obtain

‖ xn+1 − x ‖2 ≤ 1

αn + β

{
αn

2
‖ xn+1 − x ‖2 +

αn

2
‖ xn − x ‖2 −αn

2
‖ xn+1 − xn ‖2

+
β

2
‖ xn+1 − x ‖2 +

β

2
‖ yn − y ‖2 −β

2
‖ yn − xn+1 − y + x ‖2

}

and

‖ yn+1 − y ‖2 ≤ 1

νn + μ

{μ

2
‖ xn+1 − x ‖2 +

μ

2
‖ yn+1 − y ‖2

+
νn
2

‖ yn+1 − y ‖2 +
νn
2

‖ yn − y ‖2

− μ

2
‖ yn+1 − xn+1 − y + x ‖2 −νn

2
‖ yn+1 − yn ‖2

}
.
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Rearranging the terms we obtain

‖ xn+1 − x ‖2 ≤ 1

αn + β
{ αn ‖ xn − x ‖2 +β ‖ yn − y ‖2

− αn ‖ xn+1 − xn ‖2 −β ‖ yn − xn+1 − y + x ‖2 }

and

‖ yn+1 − y ‖2 ≤ 1

νn + μ
{ μ ‖ xn+1 − x ‖2 +νn ‖ yn − y ‖2

− μ ‖ yn+1 − xn+1 − y + x ‖2 −νn ‖ yn+1 − yn ‖2 }.

Now, in the last inequality, replace ‖ xn+1 − x ‖2 by its upper bound given by the
last one to achieve the first two inequalities asserted by the lemma.

Proposition 4.4. Assume H41–H46. The sequence (xn, yn) generated by (CA2)
is bounded.

Proof. As a straightforward consequence of Lemma 4.3 we have

‖ xn+1 − x ‖2 ≤ 1

αn + β

{
αn ‖ xn − x ‖2 +β ‖ yn − y ‖2

}
≤ max

(
‖ xn − x ‖2, ‖ yn − y ‖2

)
,

‖ yn+1 − y ‖2 ≤ 1

(μ + νn)(αn + β)

{
μαn ‖ xn − x ‖2 +(μβ + νn(αn + β)) ‖ yn − y ‖2

}
≤ max

(
‖ xn − x ‖2, ‖ yn − y ‖2

)
.

Hence max
(
‖ xn+1 − x ‖2, ‖ yn+1 − y ‖2

)
≤ max

(
‖ xn − x ‖2, ‖ yn − y ‖2

)
. This shows

that the sequence (xn, yn) is bounded.
We cannot dispense with assumption H47 now. Note that it is fulfilled if the

sequences αn and νn are nonnegative (i.e., H44) and monotonically convergent.
Proposition 4.5. Assume H41–H47. Then, for any (x, y) inertial Nash equi-

librium INE(0,β,μ,0), the sequence (xn, yn) generated by (CA2) satisfies
(i) yn − xn → y − x, xn+1 − xn → 0, yn+1 − yn → 0 relative to the norm

topology in H;
(ii) ‖ xn+1 − x ‖ and ‖ yn+1 − y ‖ have a limit as n → +∞.
Proof. Let us adopt some notations:

An = αnμ ‖ xn − x ‖2 +β(μ + νn) ‖ yn − y ‖2,

Bn = αnμ ‖ xn+1 − xn ‖2 +βνn ‖ yn+1 − yn ‖2

+ βμ ‖ yn − xn+1 − y + x ‖2 +βμ ‖ yn+1 − xn+1 − y + x ‖2 .

So, inequality (c) in Lemma 4.3 reads

Bn ≤ An − {αnμ ‖ xn+1 − x ‖2 +β(μ + νn) ‖ yn+1 − y ‖2}.

Whence we easily derive

Bn ≤ An −An+1 + μ(αn+1 − αn) ‖ xn+1 − x ‖2 +β(νn+1 − νn) ‖ yn+1 − y ‖2

≤ An −An+1 + [μ(αn+1 − αn)+ + β(νn+1 − νn)+]M,

where M denotes an upper bound for ‖ xn+1 − x ‖2 and ‖ yn+1 − y ‖2; M is finite in
view of proposition 4.4. Define Cn = [μ(αn−αn−1)

+ +β(νn−νn−1)
+]M , and observe
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that the series
∑+∞

n=1 Cn is convergent owing to assumption H47. The last inequality
may be written

0 ≤ Bn ≤
(
An −

n∑
k=1

Ck

)
−
(
An+1 −

n+1∑
k=1

Ck

)
.

Hence the sequence n �→ An −
∑n

k=1 Ck is decreasing; as it is bounded below by

−
∑+∞

n=0 Cn, it converges. As a consequence An converges, too.

Now the inequality above shows that the series
∑+∞

k=0 Bk converges, and hence
Bn tends to zero as n → +∞.

Since Bn vanishes as n → +∞, in particular, ‖ yn − xn+1 − y + x ‖ and
‖ yn+1 − xn+1 − y + x ‖ tend to zero. Hence yn − xn − y + x → 0, yn+1 − yn =
(yn+1 − xn+1)− (yn − xn+1) → 0, xn+1 − xn = (yn − xn)− (yn − xn+1) → 0, which
proves point (i).

Further, writing xn − x = (yn − y) − (yn − xn − y + x) in the expression of An

yields

An = (αnμ + β(μ + νn)) ‖ yn − y ‖2 −2αnμ〈yn − y, yn − xn − y + x〉
+ αnμ ‖ yn − xn − y + x ‖2 .

The last two terms vanish as n → +∞, while (αnμ + β(μ + νn)) tends to a positive
limit. Hence ‖ yn − y ‖ admits a limit as n → +∞. In view of xn − x = (yn − y) −
(yn − xn − y + x), ‖ xn − x ‖ admits a limit, too.

Before proceeding to the proof of Theorem 4.1, let us recall a classical argument
used to prove the weak convergence of a sequence in a Hilbert space.

Lemma 4.6 (see Opial [34]). Let zn be a sequence in a Hilbert space H such that
there exists a nonvoid set S ⊂ H which verifies the following:

(i) any weak limit point of zn belongs to S;
(ii) ∀ζ ∈ S, limn→+∞ ‖ zn − ζ ‖ exists.
Then, zn weakly converges as n → +∞ to some element of S.
Proof of Theorem 4.1. Recall that the sequences (xn) and (yn) are characterized

by {
0 ∈ ∂f(xn+1) + αn(xn+1 − xn) + β(xn+1 − yn),
0 ∈ ∂g(yn+1) + μ(yn+1 − xn+1) + νn(yn+1 − yn).

(a) Let (x̄, ȳ) be a weak limit point of the bounded sequence (xn, yn) (recall
Proposition 4.4).

To simplify the notation we suppose for a while that the whole sequence converges.
On the one hand yn−xn weakly converges to ȳ−x̄; on the other hand yn−xn strongly
converges to y − x for any (x, y) inertial Nash equilibrium (Proposition 4.5). Hence
yn − xn strongly converges to ȳ − x̄ indeed. Now xn+1 satisfies

0 ∈ ∂f(xn+1) + β(xn+1 − yn+1) + αn(xn+1 − xn) + β(yn+1 − yn).

From Proposition 4.5 we know that xn+1 − xn and yn+1 − yn strongly converge to 0;
hence β(xn+1 − yn+1) +αn(xn+1 − xn) + β(yn+1 − yn) strongly converges to β(x̄− ȳ)
(αn is bounded). Owing to the weak-strong closedness of the subgradient operator
(see [18]), we have

0 ∈ ∂f(x̄) + β(x̄− ȳ).
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Likewise we can prove

0 ∈ ∂g(ȳ) + μ(ȳ − x̄).

So far we have proved only that any weak limit point (x, y) of the sequence (xn, yn)
is an inertial Nash equilibrium. But from Proposition 4.5 we know that ‖ xn − x ‖
and ‖ yn − y ‖ have a limit for any (x, y) which is an inertial Nash equilibrium.
Opial’s lemma (with H = X × Y, zn = (xn, yn) and S denoting the set of inertial
Nash equilibrium INE(0,β,μ,0)) then shows that the whole sequence (xn, yn) weakly
converges to an inertial Nash equilibrium.

(b) The sequence (xn, yn) verifies{
0 ∈ ∂(μf)(xn+1 + μβ(xn+1 − yn+1) + un,
0 ∈ ∂(βg)(yn+1) + βμ(yn+1 − xn+1) + vn,

where we have put un = μαn(xn+1−xn)+μβ(yn+1−yn) and vn = βνn(yn+1−yn). In
view of (4.5) this means that (−un,−vn) is a subgradient of Lβ,μ at point (xn+1, yn+1).
Hence, for all (ξ, η) ∈ H ×H we have

Lβ,μ(ξ, η) ≥ Lβ,μ(xn+1, yn+1) − 〈un, ξ − xn+1〉 − 〈vn, η − yn+1〉,

but un and vn vanish relative to the norm topology of H as n → +∞. Let (x, y) be
the weak limit of (xn, yn); we then have

Lβ,μ(ξ, η) ≥ limLβ,μ(xn, yn) ≥ limLβ,μ(xn, yn) ≥ Lβ,μ(x, y).

(c) The strong convergence yn − xn → y − x has been proved in Proposition
4.5. From point (b) just above we know that Lβ,μ(xn, yn) = μf(xn) + βg(yn) + 1

2 ‖
xn − yn ‖2→ Lβ,μ(x, y). Hence we have

μf(xn) + βg(yn) → μf(x) + βg(y), n → +∞.(4.6)

Further,

lim supμf(xn) ≤ lim(μf(xn) + βg(yn)) + lim(−βg(yn))

≤ μf(x) + βg(y) − limβg(yn)

≤ μf(x),

where the last inequality results from the lower semicontinuity of g. Now the lower
semicontinuity of f gives limf(xn) ≤ f(x) ≤ limf(xn). Finally, with (4.6) we have
g(yn) → g(y).

Remark 1. Condition H47 is but one of various assumptions leading to Theorem
4.1. Indeed, the crux of the matter is inequality (c) of Lemma 4.3.

Let (ρn) be a given positive sequence bounded away from zero. Divide each mem-
ber of inequality (c) in Lemma 4.3 by ρn. Proceeding as in the proof of Proposition
4.5, and with the same notation, we can derive

An+1

ρn+1
≤ An

ρn
+

[
μ

(
αn+1

ρn+1
− αn

ρn

)+

+ β

(
μ + νn+1

ρn+1
− μ + νn

ρn

)+
]
M − Bn

ρn
.

Under the assumption that the series
∑+∞

n=0

(
αn+1

ρn+1
− αn

ρn

)+

and
∑+∞

n=0

(
μ+νn+1

ρn+1

−μ+νn

ρn

)+

converge (and also that (αn) and (νn) are bounded), Proposition 4.5 and
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Theorem 4.1 can be proved. Relevant choices for ρn may be ρn = αn, ρn = νn,
ρn = αnνn, or ρn = μαn + β(μ + νn).

Remark 2. Many interesting questions asking for further developments naturally
arise from Theorem 4.1.

Along the same line as in [16], one could try to obtain, by a duality argument,
a variational or geometrical characterization of the limits of the sequences generated
by our algorithm.

By specializing one of the two functions f or g to be the indicator function of a
convex set, one obtains alternating projection-proximal methods for convex program-
ming and variational inequalities (see [38]).

Perspectives. We expect to exploit the simplicity and robustness of such alter-
nating algorithms and apply them to various situations: decomposition and splitting
methods in partial differential equations [28, 29], image processing [13, 39], statistics,
on-line decision, and so on. Further extensions may concern partial coupling, more
than two players, and nonconvex setting (in the line of [5]).
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Abstract. We consider a tree-based discretization technique utilizing conditional transportation
distance, which is well suited for the approximation of multistage stochastic programming problems,
and investigate corresponding convergence properties. We explain the relation between the approxi-
mation quality of the probability model and the quality of the solution.
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1. Introduction. Dynamic stochastic optimization models are an up-to-date
tool of modern management sciences and can be applied to a wide range of problems,
such as financial portfolio optimization, energy contracts, insurance policies, supply
chains, etc. While one-period models look for optimal decision values (or decision vec-
tors) based on all available information now, the multiperiod models consider planned
future decisions as functions of the information that will be available later. Hence,
the natural decision spaces for multiperiod dynamic stochastic models, except for the
first stage decisions, are spaces of functions. Consequently, only in some exceptional
cases may solutions be found by analytical methods, which include investigating the
necessary optimality conditions and solving a variational problem; i.e., only some
functional equations have explicit solutions in observed spaces of functions. In the
vast majority of cases, it is impossible to find a solution in this way, and we reach
out for a numerical solution. However, numerical calculation on digital computers
may never represent the underlying infinite-dimensional function spaces. The way
out of this dilemma is to approximate the original problem by a simpler, surrogate
finite-dimensional problem, which enables the calculation of the numerical solution.

As the optimal decision at each stage is a function of the random components
observed so far, the only way to reduce complexity is to reduce the range of the
random components. If the random component of the decision model is discrete (i.e.,
takes a finite and in fact only a few number of values), the variational problem is
reduced to a vector optimization problem, which may be solved by well-known vector
optimization algorithms. The natural question that arises is how to reconstruct a
solution of the basic problem out of the solution of the finite surrogate problem.

Since every finite-valued stochastic process ξ̃1, . . . , ξ̃T is representable as a tree,
we deal with tree approximations of stochastic processes. There are two contradicting
goals to be considered. For the sake of the quality of approximation, the tree should
be large and bushy, while for the sake of computational solution effort, it should
be small. Thus the choice of the tree size is obtained through a compromise. The
basic question in reaching this compromise is the assessment of the quality of the
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approximation in terms of the tree size. It is the purpose of this paper to shed some
light on the relation between the approximation quality of the probability model for
the random components and the quality of the solution.

Well-known limiting results are available, which show that by increasing the size of
the approximating tree, one eventually gets convergence of the optimal values and the
optimizing functions. Results in this direction were proved in [13], [14], etc. Recently,
in [9] a stability result has been shown, and an estimate of the approximation error
in terms of some distance between the continuous and the discrete models has been
given.

Our approach is quite different. We start from the description of the decision
model in terms of the system’s dynamics functions, the constraint sets, and the ob-
jective function. We formulate the whole problem in terms of distributions, as the
results are independent from the choice of the probability space. Then we approxi-
mate these distributions in an appropriate setting by simpler, discrete distributions
and compare the decision functions and the optimal values in both cases.

In our distributional setup, there is no predefined probability space, and therefore
there is no room for introducing filtrations other than those which are generated by
the random process itself. Thus, we make the following assumption, which is common
in stochastic optimization.

Assumption 1. No information other than the values of the scenario process ξs,
s ≤ t, is available to the decision maker at time t for t = 1, . . . , T . To put it differently,
we assume that the decision xt is measurable w.r.t. σ-algebra Ft, which is the one
generated by (ξ1, . . . , ξt).

Adopting this approach, there is no need to consider a filtration distance as done
in [9].

A further consequence of the in-distribution setting is that we describe the deci-
sions as functions of the random observations and not as functions defined on some
probability space. To be more precise, let ξt = (ξ1, . . . , ξt), t = 1, . . . , T , denote the
history of the random observations available up to time t. Then the tth decision is
a function ξt �→ xt(ξ

t) lying in some function space. Noticing that we want to ap-
proximate a continuous probability distribution by a discrete one, we note that this
function space should respect weak convergence; i.e., if ξ(n) → ξ weakly, then also
x(ξ(n)) → x(ξ) weakly. Thus we must consider spaces of continuous functions or some
subspaces. In this paper, we work with the space of Lipschitz functions. The class
of all Lipschitz functions on R

n determines the weak topology on all probabilities,
which have the finite first moment. Moreover, the weakest topology making all inte-
grals of Lipschitz functions continuous is generated by the well-known transportation
distance, which is convenient since it can be calculated or at least bounded in many
examples.

A result of practical relevance to the decision maker will be shown under some
strong regularity assumptions: Suppose that the distance between the original prob-
ability model and the approximate one is smaller than ε and that a δ0-solution of
the approximate problem is found. Then one may construct out of it a δ-optimal
solution of the original problem. The relation between δ0, δ, and ε is explicit (see
Proposition 4.4). We measure the distance between the original probability model and
its discrete approximation by the conditional transportation distance, which is finer
than the usual unconditional transportation distance and accommodates the dynamic
character of the problem.

The paper is organized as follows. In section 2 we describe the distance concepts
for probability measures and for constraint sets. Section 3 contains the model, and in
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section 4 we state the approximation results. Two examples are treated in section 5.
In the appendix we have collected some auxiliary results.

2. Preliminaries.

2.1. The probability model. Let ξ = (ξ1, . . . , ξT ) be a stochastic process with
values in Ξ ⊂ R

nT , and u = (u1, . . . , uT ) its realization, with ut = (ut(1), . . . , ut(n)),
for each t. Ξ is endowed with the metric

d(ut, vt) =

n∑
i=1

|χ(ut(i)) − χ(vt(i))|,

where χ is a strictly monotonic mapping R into R. (Ξ, d) is a complete separable
metric space such that Ξ = Ξ1 × · · · × ΞT , and Ξt ⊂ R

n, for each t. All metrics
in all metric spaces appearing in this paper will be denoted by the same symbol d,
since there is no danger of confusion. ut, t = 1, . . . , T − 1, denotes the history up
to time t, i.e., ut = (u1, . . . , ut). Obviously, ut is an element of the metric space
Ξt = Ξ1 × · · · × Ξt ⊂ R

nt, which is endowed with the metric

d(ut, vt) =

t∑
s=1

d(us, vs).

For two Borel measures P , P̃ on a metric space Ξ, we recall that the transportation
(Wasserstein) distance dW between P and P̃ is given by

dW (P, P̃ ) = sup
f∈Lip1

(∫
f(u) dP (u) −

∫
f(u) dP̃ (u)

)
,

where u ∈ Ξ, and Lip1 is the set of all 1-Lipschitz functions f , i.e.,

|f(u) − f(v)| ≤ d(u, v) for all u, v ∈ Ξ.

The Wasserstein distance is related to the Monge mass transportation problem
(see [20, p. 89]) through the following facts.

• Theorem of Kantorovich and Rubinstein:

dW (P, P̃ ) = inf{E[|Y − Ỹ |], where the joint distribution (Y, Ỹ )
is arbitrary, but the marginal distributions are fixed

such that Y ∼ P ; Ỹ ∼ P̃}.

The infimum here is attained. The optimal joint distribution (Y, Ỹ ) describes
how the mass P should be transported with minimal effort to yield the new
mass P̃ (see [20, Theorems 5.3.2 and 6.1.1]).

• For one-dimensional distributions, i.e., distributions on the real line endowed
with the Euclidean metric d(u, v) = |u− v|, having distribution functions G,
resp., G̃, it holds that

dW (P, P̃ ) =

∫
Ω

|G(u) − G̃(u)| du =

∫ 1

0

|G−1(u) − G̃−1(u)| du,

where G−1(u) = sup{v : G(v) ≤ u} (see [25]).
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• If χ is a strictly monotonic function mapping R into R, defining the distance
d(u, v) = |χ(u) − χ(v)|, the pertaining transportation distance is

dW (P, P̃ ) = dW (G ◦ χ−1, G̃ ◦ χ−1) =

∫ 1

0

|χ(G−1(u)) − χ(G̃−1(u))| du.

By an appropriate choice of χ, the convergence of higher moments under
dW -convergence may be ensured (see [16]).

If random variables Y, Ỹ have fixed marginal distributions P, P̃ , it makes sense to
write

(2.1) dW (P, P̃ ) = dW (Y, Ỹ ) = dW (G, G̃),

as marginal distributions are on par with the specifying random variables, and their
distribution functions G, G̃, if they exist (see [27]).

The process ξ generates a Borel probability measure P on Ξ. This measure is
characterized by its chain of regular conditional distributions:

P (A1 × · · · ×AT )

=

∫
A1

· · ·
∫
AT

PT (duT |uT−1) · · ·P3(du3|u2)P2(du2|u1)P1(du1)

=

∫
A1

· · ·
∫
AT

PT (duT |(u1, . . . , uT−1)) · · ·P3(du3|(u1, u2))P2(du2|u1)P1(du1).

Here Pt(At|ut−1) is the conditional probability of ξt ∈ At given the past ξt−1 = ut−1,
t = 2, . . . , T , and P1 is the probability of ξ1 ∈ A1 (not conditional). Since we deal with
complete separable metric spaces, the existence of regular conditional probabilities is
ensured (see, e.g., [6, Chapter 4, Theorem 1.6]).

The following assumption is imposed on the measure P .

Assumption 2. The conditional probabilities satisfy the Lipschitz condition, i.e.,

dW (Pt(·|u), Pt(·|v)) ≤ Kt d(u, v)

for all u, v ∈ Ξt−1, and some constants Kt, for t = 2, . . . , T .

Remark. Assumption 2 is trivially satisfied if the process is independent. For
Markov processes, the condition in Assumption 2 reduces to

dW (Pt(·|ut−1), Pt(·|vt−1)) ≤ Kt d(ut−1, vt−1).

The ratio

sup
u,v

dW (P (·|u), P (·|v))
d(u, v)

is called the ergodic coefficient of the Markov transition P . If this coefficient is smaller
than one, geometric ergodicity holds. Ergodic coefficients were introduced in [4] and
extensively applied to stochastic programming problems (see [15]).

Example (Lipschitz condition for multivariate normal distribution). Assume that
the process ξ follows the multivariate normal distribution on R

T equipped with the
usual Euclidean metric with mean vector μ = μT and nonsingular covariance matrix
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Σ = ΣT , where μt = (μ1, . . . , μt)
�, and Σt = (σi,j), i = 1, . . . , t, j = 1, . . . , t, for

t = 1, . . . , T , are the main submatrices. It holds that

Σt =

[
Σt−1 σt

(σt)� σt,t

]
t×t

.

Here σt, resp., (σt)�, denote the tth column, resp., row vector, of the covariance ma-
trix Σt of the length t− 1. According to [11, Theorem 13.1], the conditional distribu-
tion of ξt given the past realization ut−1 is normal with mean μt+(σt)�(Σt)−1(ut−1−
μt−1) and covariance σt,t − (σt)�(Σt−1)−1σt. The transportation distance satisfies

dW (Pt(·|ut−1), Pt(·|vt−1)) ≤ ‖(σt)�(Σt)−1‖∞ d(ut−1, vt−1)

for t = 2, . . . , T , and the constants Kt in Assumption 2 amount to ‖(σt)�(Σt)−1‖∞.
Let P̃ be some other probability measure that can also be dissected into the chain

of conditional probabilities. We introduce the notation

d̄W (P, P̃ ) ≤ (ε1, . . . , εT )

if

dW (P1, P̃1) ≤ ε1,

sup
u1

dW (P2(·|u1), P̃2(·|u1)) ≤ ε2,

sup
u2

dW (P3(·|u2), P̃3(·|u2)) ≤ ε3,

...

sup
uT−1

dW (PT (·|uT−1), P̃T (·|uT−1)) ≤ εT .

If P̃ is the distribution of a stochastic process (ξ̃1, . . . , ξ̃T ) with finite support,
denote by Ξ̃t the support of (ξ̃1, . . . , ξ̃t). The conditional probabilities P̃t(·|ut−1) are
only well defined if ut−1 ∈ Ξ̃t−1. If ut−1 /∈ Ξ̃t−1, we set dW (Pt(·|ut−1), P̃t(·|ut−1)) = 0,
which is the same as saying that the conditional probabilities of P̃ are set equal to
those of P , for those values, which will not be taken by P̃ with positive probability.

Example (convergence of tree processes). We consider the tree process as in [9]
shown in Figure 2.1.

3

2

3

1

2+ε

1/2

1/2

1/2

1/2

2

1

3

3

Fig. 2.1. Tree processes and their conditional distributions.

The processes describe the development of prices at time t = 1, 2, 3 used to
determine an optimal purchase strategy over time under cost uncertainty by the means
of multistage stochastic programming methods. The stochastic price processes as in
Figure 2.1 (left) yield the probability distribution P = (P1, P2, P3) for ε ∈ [0, 1), and
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for ε = 0 we obtain the approximation P̃ of P (right). The filtrations of σ-fields
generated by ξ and ξ̃ do not coincide.

Although the processes on the left obviously converge in distribution to the pro-
cess on the right, as ε tends to zero, these processes are far apart in conditional
transportation distance. First, the processes on the left do not satisfy the condition
of Assumption 2 uniformly in ε, as

dW (P3(·|(3, 2)), P3(·|(3, 2 + ε))) = 2 =
2

ε
d(2, 2 + ε).

Moreover, no convergence in the conditional transportation distance to the process
on the right holds as ε tends to zero. A closer look at dW (Pt(·|ut−1), P̃t(·|ut−1)),
t = 1, 2, 3, shows that

dW (P1, P̃1) = 0,

dW (P2(·|3), P̃2(·|3)) =
ε

2
→ 0,

but

dW (P3(·|(3, 2)), P̃3(·|(3, 2))) =
1

2
d(3, 1) = 1,

dW (P3(·|(3, 2 + ε)), P̃3(·|(3, 2 + ε))) = 0,

and supu2 dW (P3(·|u2), P̃3(·|(u2) = 1; i.e., it does not tend to 0.
Associated with the process of observation ξt is the the process of decisions xt,

where xt are continuous mappings from Ξt into R
mt . On R

m, m =
∑T

t=1 mt, we
work with an appropriate distance d. We will assume that the optimal decisions
are Lipschitz continuous. The next example shows why it is hopeless to get rid of
assumptions on the smoothness of the solutions.

Example (mean absolute deviation regression). Let ξ1 be a uniform [0, 1] vari-
able and let ξ2, conditional on ξ1, have a normal distribution with mean ξ1/2 and
variance 1. Denote the distribution of (ξ1, ξ2) by P .

We want to solve

(2.2) min
x(ξ1)

EP (|x(ξ1) − ξ2|),

where x(ξ1) is a measurable function of ξ1. Obviously, the solution is

(2.3) x(u) = u/2

since the normal distribution is symmetric around zero. However, consider a sequence
of discrete measures P̃ (n), converging weakly to P , and assume that these measures

sit on (ξ
(n)
1,i , ξ

(n)
2,i ) with equal probability 1/n, such that all ξ

(n)
1,i are distinct. Then the

solutions of

(2.4) min
x(ξ1)

1

n

n∑
i=1

(|x(ξ
(n)
1,i ) − ξ

(n)
2,i |)

would not converge to (2.3) in any sense.
Smoothing techniques (sieve techniques) are used in nonparametric regression

for ensuring consistency. This technique would for fixed n search a solution x(·) in
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a smooth function space and gradually but slowly increase the function space as n
increases. The convergence rate depends on the degree of smoothness of the solution.
To put this in terms of optimization, the approximate problem (2.4) is solved in
nonparametric statistics under an additional constraint of smoothness, which is not
present in the original problem (2.2). Sieve techniques were introduced by [2] and are
standard in nonparametric curve estimation (see, for instance, [7]). Only in rare cases
is the additional smoothness condition superfluous because of strong shape conditions
[21], [3].

While in statistical applications one has to take the data as observed, one may
choose the approximating model in stochastic optimization. In other words, and
this is the approach we adopt here, one may choose the approximating model such
that also the conditional probabilities of the approximations are close to the original
ones. Let us see how this would solve the above nonparametric regression problem.
Suppose we choose the points i/(n + 1), i = 1, . . . , n, each with probability 1/n, as a
good approximation of the uniform distribution in the first component. Then choose
conditional on ξ1 = i/(n + 1) a discrete distribution which would come close to the
original normal distribution by a transportation distance not larger than ε. By doing
so, also the median would not differ more than ε, and by a simple linear interpolation
between the points sitting at i/(n + 1) and at (i + 1)/(n + 1) we would have found
the true regression line within a sup-norm distance of ε, too.

0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1
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−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 2.2. Discrete approximations of the distribution of (ξ1, ξ2). The distribution on the left is
close in transportation distance, while the distribution on the right is in addition close in conditional
transportation distance.

For an illustration, see Figure 2.2. The left-hand side shows a sample of the two-
dimensional distribution which approximates the uniform distribution on the square
based on the transportation distance. On the right-hand side, we have chosen the
x-coordinates as i/5, i = 1, . . . , 4, and sampled only the conditional distributions;
i.e., we have a tree-structured distribution, which approximates in addition some
conditional distributions. In both cases we have shown the (linearly interpolated)
solution of problem (2.2) as a dotted line.

2.2. The projection distance. Let B(r) = {x ∈ R
m : d(0, x) ≤ r} denote the

ball with diameter 2r in R
m. The projection distance dP,r between two closed, convex
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sets A,B ⊆ R
m is defined as

dP,r(A,B) = sup
x∈B(r)

d(projA(x), projB(x)),

where projA(x) denotes the convex projection of the point x onto A. We allow r to
take the value ∞ and set

dP (A,B) = dP,∞(A,B) = sup
x∈Rm

d(projA(x), projB(x)).

The projection distance is larger than the usual Hausdorff distance, which is

dH(A,B) = max(sup
x∈A

d(x,B), sup
x∈B

d(x,A)),

since

dH(A,B) = sup
x∈A∪B

d(projA(x), projB(x)) ≤ dP,∞(A,B).

Example (projection and Hausdorff distance). Let us show that there is no con-
verse Lipschitz relation between dH and dP,∞. Consider in R

2 as set A the line
segment connecting [−1, ε] and [1,−ε] and as B the line segment connecting [−1,−ε]
and [1, ε]. Here the Euclidean distance is used. A and B are closed convex sets with
Hausdorff distance dH(A,B). However, choosing the point x = (0, ε + 1/ε), one gets
that the Hausdorff distance is smaller by an order than the projection distance, since
dP (A,B) is the hypotenuse of a triangle whose one leg is dH(A,B). More precisely,
dP (A,B) = 2, and for ε ∈ (0, 1], dH(A,B) ≤ 2ε. In Figure 2.3 the corresponding
distances for ε = 1/2 are represented by dotted lines.

ε

B

A
proj   (x)A proj   (x)B

x

Fig. 2.3. The Hausdorff and the projection distance.

Example (Lipschitzian property of projection distance). Let A1 and A2 be the
hyperplanes

Ai = {x : s�i x = wi} ⊂ R
m, i = 1, 2.
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Then

projAi(x) = x +
(wi − s�i x)si

‖si‖2

and

‖projA1
(x) − projA2(x)‖

≤
(
|w1| + ‖s1‖‖x‖ +

|w2|
‖s2‖

(‖s1‖ + ‖s2‖)
)

‖s1 − s2‖
‖s1‖2

+ |w1 − w2|
‖s2‖
‖s1‖2

+ ‖x‖‖s1‖ + ‖s2‖
‖s1‖

.

Suppose that s as well as w depend in a Lipschitz way on a parameter u. Then
the set-valued mapping

u �→ {x ∈ B(r) : s(u)�x = w(u)}

for r < ∞ is Lipschitz w.r.t. the projection distance dP,r, if ‖s(u)‖ and |w(u)| are
bounded, and ‖s(u)‖ is bounded away from zero.

We utilize the projection distance in assumptions for the behavior of the constraint
set.

Remark. Note that one could still use the weaker concept of the Hausdorff distance
dH , which would put the results in a more classical setting, and allow the use of already
existing results (see, e.g., [23]). In that case there is no Lipschitz continuity, and at
most (sub-)Hölder continuity can be obtained. If X (z) denotes the constraint set (for
the definition of and assumptions about constraint sets see section 3), we say that dr
is sub-Hölder continuous with modulus α if, for each r, there exists a constant Mr

such that

dr(X (z),X (z̄)) ≤ Mr[d(z, z̄)]
α,

where dr denotes the r-distance between closed, convex sets A and B, i.e.,

dr(A,B) = sup
x∈B(r)

|d(x,A) − d(x,B)|.

In our case we obtain sub-Hölder behavior of constraint sets with α = 1/2 and Mr =
2
√
r (see Lemma A.1). Still, Hölder property is weaker than Lipschitz and does not

propagate well in multiperiod situations. For this reason we stick to the projection
distance.

3. Dynamic decision models. We represent the multistage dynamic decision
model as a state-space model. We assume that there is a state vector ζt, which
describes the situation of the decision maker at time t immediately before he must
make the decision xt, for each t = 1, . . . , T , and its realization is denoted by zt. The
initial state ζ0 = z0, which precedes the deterministic decision at time 0, is known
and is given by ξ0. To assume the existence of such a state vector is no restriction at
all, since we may always take the whole observed past and the decisions already made
as the state:

ζt = (xt−1, ξt), t = 1, . . . , T.

However, the vector of required necessary information for future decisions is often
much shorter.
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The state variable process ζ = (ζ1, . . . , ζT ), with realizations z = (z1, . . . , zT ),
is a controlled stochastic process, which takes values in a metric state space Z =
Z1×· · ·×ZT . The control variables are the decisions xt, t = 1, . . . , T . The state ζt at
time t depends on the previous state ζt−1, the decision xt−1 following it, and the last
observed scenario history ξt with realization ut. A transition function gt describes
the state dynamics:

(3.1) ζt = gt(ζt−1, xt−1, ξ
t), t = 1, . . . , T.

At the terminal stage T , no decisions are made; only the outcome ζT = zT is observed.
Note that ζt, as a function of the random variable ξt, is a random variable with

realization zt, which is a function of ut, the realization of ξt, for each t = 1, . . . , T .
The decision x of the multistage stochastic problem is a vector of continuous

functions x = (x0, . . . , xT−1), where xt, t = 1, . . . , T − 1, maps Ξt to R
mt . We require

that the feasible decision xt at time t satisfies a constraint of the form

xt ∈ Xt(ζt), t = 1, . . . , T,

where Xt are closed convex multifunctions with closed convex values. Let us now
define a Ξ-feasible decision.

Definition 3.1. We say that x is a Ξ-feasible decision if the following are
fulfilled:

1. x0 ∈ X0(z0);
2. u �→ xt(u) is a continuous function Ξt → R

mt , t = 1, . . . , T − 1;
3. if, for z0 given and (u1, . . . , uT ) ∈ Ξ, zt is recursively defined by

zt(u
t) = gt(zt−1(u

t−1), xt−1(u
t−1), ut), t = 1, . . . , T,

then

xt(u
t) ∈ Xt(zt(u

t)), t = 1, . . . , T − 1.

X denotes the set of all Ξ-feasible decisions x = (x0, x1(ξ
1), . . . , xT−1(ξ

T−1)).
The objective to be minimized is

(3.2) F (x, P ) :=

T∑
t=1

Ft[ζt],

where Ft are version-independent probability functionals, i.e., mappings from a space
of random variables on Zt to the real line, where the function values depend only on
the distribution and not on the concrete version of the random variable. Examples
for version-independent probability functionals are the expectation, the moments, the
mean absolute deviation, and all typical risk functionals used in finance.

Finally, we obtain the multistage problem in the state-dynamics representation:

(3.3)
minimize in x F (x, P )
subject to x ∈ X ,

i.e.,

minimize in x

T∑
t=1

F[ζt]

subject to x ∈ X ;
ζt is obtained through the recursion (3.1).
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Fig. 3.1. Multistage state-dynamics decision process.

Its graphical representation is given in Figure 3.1.
Since the decisions xt of the multistage problem are functions of the states ζt,

the optimal set of decisions is expressed as a set of functions xt = xt(ζt). The
problem (3.3) is a variational problem, and explicit solution methods for it exist only
in exceptional cases.

Remark. The existence of continuous solutions (or better continuous selections
from the arg min-sets) in our setting requires further consideration. We just mention
here that such a type of result is contained in [22], where it is shown that under
continuity and convexity assumptions, the existence of continuous measurable nonan-
ticipative solutions is guaranteed if the probability measure is laminary. The property
of laminarity is close to our Assumption 2 but is not implied by it. To be more pre-
cise, assume that St(u

t) is the support of the conditional distribution of (ξt+1, . . . , ξT )
given ξt = ut. It is not difficult to see that Assumption 2 implies that ut �→ St(u

t)
is a closed-valued, lower semicontinuous multifunction. If ut �→ St(u

t) is, in addition,
continuous (in the Painlevé–Kuratowski sense) for t = 1, . . . , T , then the distribution
of ξ is laminary.

We now state a set of smoothness and dependence assumptions for the model.
Assumption 3. Let for each t = 1, . . . , T , and some real constants Lt,Mt, Nt, the

following hold.
• The functions gt satisfy

d (gt(z, x, u), gt(z̄, x̄, ū)) ≤ Lt (d(z, z̄) + d(x, x̄) + d(u, ū))

for z, z̄ with values in Zt−1, x ∈ Xt−1(z), x̄ ∈ Xt−1(z̄), u, ū ∈ Ξt.
• The constraints are described by closed convex sets Xt(z), which depend in a

Lipschitz way on z, such that

dP,r(Xt(z),Xt(z̄)) ≤ Mtd(z, z̄),

for z, z̄ with values in Zt, where dP,r denotes the projection distance between
closed convex sets. Here r is finite if we know that the solutions lie in B(r);
otherwise we set r = ∞.

• The version-independent probability functionals Ft satisfy

|Ft(ζ) − Ft(ζ̄)| ≤ NtdW (ζ, ζ̄),

where dW is the Wasserstein distance, and ζ, ζ̄ with distributions on Zt.
In view of (2.1), we write dW (ζ, ζ̄) instead of dW (P, P̄ ) for some adequate prob-

ability measure P̄ .
Remark. The second Lipschitz condition of Assumption 3 assures that Xt(z) is a

nonempty set, for all z with values in Zt, for t = 1, . . . , T ; i.e., no induced constraints
are allowed.
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Assumption 4. The components ξt = (ξt(1), . . . , ξt(n)) of the random process ξ
are conditionally independent given the past ξt−1.

This assumption is not as strong as it sounds. In the dynamics

ζt = gt(ζt−1, xt−1, ξ
t−1, ξt(1), . . . , ξt(n)),

we may assume that the risk factors (ξt(1), . . . , ξt(n)) are conditionally independent
given the past ξt−1; otherwise we transform the originally dependent components into
conditionally independent ones and reformulate the transition function gt accordingly.

4. Approximations. Instead of the original problem (3.3) we consider a tree
process (ξ̃1, . . . , ξ̃T ) with distribution P̃ and support Ξ̃. The decision based on the

approximation is Ξ̃-feasible. We assume that Ξ̃ ⊂ Ξ.
Definition 4.1. We say that x is a Ξ̃-feasible decision if the following are

fulfilled:
1. x0 ∈ X̃0(z̃0);
2. ũ �→ xt(ũ) is a continuous function Ξ̃t → R

mt , t = 1, . . . , T − 1;
3. if, for z̃0 given and (ũ1, . . . , ũT ) ∈ Ξ̃, z̃t is recursively defined by

z̃t(ũ
t) = gt(z̃t−1(ũ

t−1), xt−1(ũ
t−1), ũt), t = 1, . . . , T,

then

xt(ũ
t) ∈ X̃t(z̃t(ũ

t)), t = 1, . . . , T − 1.

X̃ denotes the set of all Ξ̃-feasible decisions x = (x0, x1(ξ̃
1), . . . , xT−1(ξ̃

T−1)).
This yields the approximate problem

(4.1)
minimize in x F (x, P̃ )

subject to x ∈ X̃ ,

i.e.,

minimize in x

T∑
t=1

F[ζ̃t]

subject to x ∈ X̃ ;

ζ̃t is obtained through the recursion (3.1).

Remark. We do not propose the use of any random sampling technique to con-
struct the tree but rather to control the transportation distance between the condi-
tional distributions of the original problem and of the approximating tree. In partic-
ular, the first approximation is obtained by making dW (P1, P̃1) small. This amounts
to finding a good solution of a facility location problem (see [10]). Suppose that n1

points u1(1), . . . , u1(n1) on the first stage have been selected. Then we choose the con-

ditional probabilities P̃ (·|ui(j)) such that they are close to P (·|ui(j)), j = 1, . . . , n1,
again in transportation distance. This procedure is then repeated through all stages.

The next two propositions tell us how to arrive from a solution of the original
problem to a solution of the approximate problem, and vice versa. We assume that
both problems have Lipschitz solutions. In section 5, we give examples, which show
that the Lipschitz property of the solution is quite natural in problems from finance
and supply chain management. In the inventory control problem the solution is Lip-
schitz continuous if the dependence between the under-/overshooting quantity and
costs is linear, which is typically fulfilled.
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Proposition 4.2 (restriction). Suppose that Assumption 3 holds, and

d̄W (P, P̃ ) ≤ (ε1, . . . , εT ),

where P is supported by Ξ, and P̃ is supported by the finite set Ξ̃. Then every Ξ-
feasible decision x, which is Q-Lipschitz, is also Ξ̃-feasible, and we have that

(4.2) |F (x, P ) − F (x, P̃ )| ≤ δ1,

with

δ1 =

T∑
s=1

ε̄s

T∑
t=s

NtDt,s,

where

(4.3) ε̄s =

s∑
i=1

εi

s∏
j=i+1

Kj ,

and, for Q = (Q0, . . . , QT−1), the constants Ds,t fulfill the recursion

Dt,t = Lt,

Dt,s = LtDt−1,s + Qt−1, s = 1, . . . , t− 1.(4.4)

Proof. It is evident that every Ξ-feasible decision is automatically Ξ̃-feasible.
Under Assumption 2, one may construct for every t stochastic processes ξt(u),

u ∈ Ξt−1, and ξ̃t(u), u ∈ Ξ̃t−1, sitting for every t on independent (product) probability
spaces such that

(i) ξt(u) has distribution Pt(·|u);
(ii) for all u, v ∈ Ξt−1,

E[d(ξt(u), ξt(v))] = dW (Pt(·|u), Pt(·|v)) ≤ Kt d(u, v);

(iii) if u ∈ Ξ̃t−1, then

E[d(ξt(u), ξ̃t(u))] = dW (Pt(·|u), P̃t(·|u)) ≤ εt.

The construction of the processes is based on the following. Since the components
ξt = (ξt,1, . . . , ξt,n) of the process ξ are conditionally independent (Assumption 4),
their conditional distribution functions at (y1, . . . , yn) given ut−1 = u can be written
as Gt,u,1(y1), . . . , Gt,u,n(yn). Then ξt(u) is defined as

ξt(u) = (G−1
t,u,1(U1), . . . , G

−1
t,u,n(Un)),

where U1, . . . , Un are independent and identically distributed Uniform[0, 1]. By this
construction, (i) and (ii) are fulfilled. As to (iii), recall the theorem of Kantorovich and
Rubinstein, and notice that the infimum is attained. This joint “minimal” distribution
can be glued to the distribution Pt(·|u) to entail (iii) (see [26, Lemma 7.6]).

The processes ξt and ξ̃t then appear as compositions ξt(ξt−1(· · · (ξ1) · · · )), resp.,
ξ̃t(ξ̃t−1(· · · (ξ̃1) · · · )). We show that E[d(ξt, ξ̃t)] ≤ ε̄t. Obviously, E[d(ξ1, ξ̃1)] ≤ ε1.
Suppose that it is already shown that E[d(ξt−1, ξ̃t−1)] ≤ ε̄t−1. Then

ε̄t = E[d(ξt(ξt−1), ξ̃t(ξ̃t−1))]

≤ E[d(ξt(ξt−1), ξt(ξ̃t−1))] + E[d(ξt(ξ̃t−1), ξ̃t(ξ̃t−1))]

≤ Ktε̄t−1 + εt,
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leading to (4.3).
Now we argue pointwise for a specific ω in the standard probability space [0, 1]N

with Lebesgue measure, which we have constructed. All of the following calculations
are done for this specific ω. We use the fact that a pointwise argument implies a
distributional result.

Setting d(ξt, ξ̃t) = dt and d(ξt, ξ̃t) = dt =
∑t

s=1 ds,

d(ζ1, ζ̃1) = d(g1(z0, x0, ξ1), g1(z0, x0, ξ̃1)) ≤ L1d
1

implies D1,1 = L1. Suppose that

d(ζt−1, ζ̃t−1) ≤
t−1∑
s=1

Dt−1,sds.

Then

d(ζt, ζ̃t) = d(gt(ζt−1, xt−1(ξ
t−1), ξt), gt(ζ̃t−1, xt−1(ξ̃

t−1), ξ̃t))

≤ Lt

(
t−1∑
s=1

Dt−1,sds + Qt−1

t−1∑
s=1

ds +

t∑
s=1

ds

)

=

t∑
s=1

Dt,sds,

with

Dt,t = Lt,

Dt,s = LtDt−1,s + Qt−1, s = 1, . . . , t− 1.

Therefore, taking the expectations,∣∣∣∣∣
T∑

t=1

(Ft[ζt] − F[ζ̃t])

∣∣∣∣∣ ≤
T∑

t=1

NtdW (ζt, ζ̃t)

≤
T∑

t=1

NtE[d(ζt, ζ̃t)]

≤
T∑

t=1

Nt

t∑
s=1

ε̄sDt,s

=

T∑
s=1

ε̄s

T∑
t=1

NtDt,s,

which yields (4.2).
Proposition 4.3 (extension). Suppose that Assumption 3 holds, and

d̄W (P, P̃ ) ≤ (ε1, . . . , εT ),

where P is supported by Ξ, and P̃ is supported by the finite set Ξ̃. Then for every
Ξ̃-feasible decision x̃ of (3.3), which is Q-Lipschitz, there is a Ξ-feasible decision x,
which is Qe-Lipschitz, called the extension of x̃, such that

(4.5) |F (x, P ) − F (x̃, P̃ )| ≤ δ2,



1096 RADOSLAVA MIRKOV AND GEORG CH. PFLUG

where

δ2 =

T∑
s=1

ε̄s

T∑
t=s

NtD
e
t,s.

The ε̄’s are given by (4.3) and for Qe = (Qe
0, . . . , Q

e
T−1), the constants Qe

t , and De
s,t

fulfill the recursions

Qe
t = Qt + Mt

t−1∑
s=1

De
t−1,s,

De
t,t = Lt,

De
t,s = LtD

e
t−1,s + Qe

t−1, s = 1, . . . , t− 1.

Proof. Again, we construct the processes ξ and ξ̃ on the standard probability
space [0, 1]N. As in Proposition 4.2, the argumentation is pointwise for a specific ω in
this probability space.

Set d(ξt, ξ̃t) = dt, and d(ξt, ξ̃t) = dt =
∑t

s=1 ds.

Let x̃ be a Q-Lipschitz, Ξ̃-feasible family of decisions. By the extension theorem
(Theorem A.2), we may extend these functions to a family of functions xe defined on
the whole Ξ with the same Lipschitz constant.

It may happen that the xe functions are not feasible. We have to make them
feasible in a recursive way, starting with xe

1, then xe
2, and so on.

Let ζ1(ξ1) = g1(z̃0, x̃0, ξ1). Then

d(ζ1(ξ1), ζ̃1(ξ̃1)) ≤ L1d
1.

Now let

x1(ξ1) := projX (z1)(x
e
1(ξ1)).

Since X (z1(u)) is (M1L1)-Lipschitz and xe
1 is Q1-Lipschitz, we have by Lemma A.3

that x1 is (Q1 + M1L1)-Lipschitz and that

d(ζ2, ζ̃2) ≤ L2(L1d1 + (Q1 + M1L1)d1 + d2).

This argument gets recursively iterated as in the proof of Proposition 4.2, leading to
the indicated sequences of constants and finally to (4.5).

Remark. There are various variants of Proposition 4.3, for instance, if norms are
replaced by equivalent ones or if the process ξ is Markovian. For particular models,
much finer and better estimates may be found.

Recall the notion of δ-optimal solutions. In the given setting, they belong to

δ- arg min
x

F (x, P ) = {x̄ ∈ X | F (x̄, P ) ≤ inf
x

F (x, P ) + δ}, resp.,

δ̃- arg min
x

F (x, P̃ ) = {x̄ ∈ X | F (x̄, P̃ ) ≤ inf
x

F (x, P̃ ) + δ̃}.

The concept of approximately optimal solutions offers us more flexible framework, as
the δ- arg min-mappings satisfy the Lipschitz continuity under some additional condi-
tions; i.e., F has to be proper, lower semicontinuous, and convex (cf. [23, Chapter 7J]).

Based on the statements above, we have the following result.
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Proposition 4.4. Suppose that Assumption 3 holds, and

d̄W (P, P̃ ) ≤ (ε1, . . . , εT ),

where P is supported by Ξ, and P̃ is supported by the finite set Ξ̃, and the approxi-
mation has been chosen so that the values of δ1 = δ1(ε) and δ2 = δ2(ε) are given, for
ε = (ε1, . . . , εT ). If x̃∗ is a δ0-optimal solution of the approximate problem (4.1), then
its extension x∗ is a (δ0 + δ1 + δ2)-optimal solution of the basic problem (3.3).

Proof. Let y∗ be a solution of the basic problem (3.3). Since x̃∗ is a δ0-solution
of the approximate problem (4.1),

F (x̃∗, P̃ ) − δ0 ≤ inf
x

F (x, P̃ ) ≤ F (y∗, P̃ ),

and by virtue of (4.2) and (4.5), we have

|F (y∗, P ) − F (y∗, P̃ )| ≤ δ1,

|F (x∗, P ) − F (x̃∗, P̃ )| ≤ δ2.

This implies

F (y∗, P ) ≥ F (y∗, P̃ ) − δ1

≥ F (x̃∗, P̃ ) − δ0 − δ1

≥ F (x∗, P ) − δ0 − δ1 − δ2.

Corollary 4.5. Suppose that Assumption 3 holds, and

d̄W (P, P̃ ) ≤ (ε1, . . . , εT ),

where P is supported by Ξ, and P̃ is supported by the finite set Ξ̃, and the approx-
imation has been chosen so that the values of δ1 = δ1(ε) and δ2 = δ2(ε) are given.
If x̃∗ is the solution of the approximate problem (4.1), then its extension x∗ is a
(δ1 + δ2)-solution of the basic problem (3.3).

Proof. Choosing δ0 = 0 and applying Proposition 4.4 we get the statement
immediately.

5. Examples.

5.1. Multistage portfolio optimization. Consider an investor, who has initial
capital C and wants to invest in m different assets. The price of one unit of asset i
at time t, t = 1, . . . , T , is the random quantity ξt,i. At starting time 0, the prices ξ0,i
are deterministic.

Let ξt = (ξt,1, . . . , ξt,m)� be the vector price process. The optimization problem
is to maximize the acceptability of the final wealth under the self-financing constraint,
i.e.,

(5.1)

maximize in x A[x�
T−1ξT ]

subject to x�
0 ξ0 = C,

x�
t−1ξt = x�

t ξt, t = 1, . . . , T − 1,

where A denotes some acceptability functional (see [1], [18]). By introducing the
wealth wt at time t as

wt = x�
t−1ξt,
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and defining the state as

ζt =

(
wt

ξt

)
,

one gets the dynamics(
wt

ξt

)
=

(
x�
t−1ξt
ξt

)
, t = 1, . . . , T.

The constraint sets are

Xt(ζt) = {xt : x�
t ξt = wt}, t = 1, . . . , T.

Under the realistic assumption that the returns are bounded from above and from
below,

0 < a ≤ ξt,i ≤ b < ∞,

this dynamics is Lipschitz in the sense of Assumption 2, since x must be bounded due
to the initial budget constraint. In addition, the constraint sets are Lipschitz; see the
second example in section 2.2.

The tree approximation of (5.1) is given by

maximize in x A[x�
T−1ξ̃T ]

subject to x�
0 ξ̃0 = C,

x�
t−1ξ̃t = x�

t ξ̃t, t = 1, . . . , T − 1.

Probability functionals which are Lipschitz w.r.t. the transportation distance
in R include the expectation, the mean absolute deviation, distortion functionals
(and therefore the average value-at-risk as a special case), and linear combinations
thereof [17].

As illustration, let us consider the average value-at-risk corrected expectation [24]

A[z] := E[z] − βAV @Rα(z), 0 ≤ β ≤ 1,

where AV @Rα(z) is defined by (A.1).
By ∣∣∣∣a− 1

α
E([z − a]−) − a +

1

α
E[[z̃ − a]−]

∣∣∣∣ ≤ 1

α
E[|z − z̃|]

one sees that AV @Rα is Lipschitz w.r.t. the transportation metric. The Lipschitz
constant of E[z] − β AV @Rα(z) is 1 + β/α.

5.2. Multistage inventory control problem. We consider a generalization
of the well-known newsboy problem (see, e.g., [12]) to a multiperiod setting. The
multiperiod inventory model allows for storing the unsold merchandise, while the
newsboy keeps no unsold copies, as they are worthless the next day.

Suppose that the demand at times t = 1, . . . , T is given by a random process
ξ1, . . . , ξT . The regular orders are to be placed one period ahead. The order cost
per unit ordered is one. Let It be the inventory level right after all sales have been
effectuated at time t. If a stock-out Ot occurs, i.e., if the demand exceeds the inventory
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plus the arriving order, the demand is satisfied by a rapid order. The rapid order cost
per unit ordered is rt > 1. The unsold goods are stored, but a fraction (1 − qt) is a
storage loss of the period t; i.e., the inventory volume at the beginning of the period
(t+ 1) is qtIt. The selling price at time t is st > 1. Notice that all prices may change
from period to period. The decision xt is the order size at time t, t = 0, . . . , T − 1.

A closer look at the inventory volume and shortage shows that I0 = O0 = 0, and
for t = 1, . . . , T ,

It = max(qt−1It−1 + xt−1 − ξt, 0) = [qt−1It−1 + xt−1 − ξt]
+

and

Ot = max(−(qt−1It−1 + xt−1 − ξt), 0) = [qt−1It−1 + xt−1 − ξt]
−.

For t = 1, . . . , T , these two equations can be merged into one:

(5.2) qt−1It−1 + xt−1 − ξt = It −Ot, It ≥ 0, Ot ≥ 0.

The profit function is

F (x, P ) = qT IT +

T∑
t=1

(stξt − xt−1 − rtOt) ,

and the optimization problem is to maximize the expected profit, i.e.,

maximize in x qT IT +

T∑
t=1

E[stξt − xt−1 − rtOt]

subject to xt is Ft-measurable, and (5.2) holds for t = 1, . . . , T.

Notice that
∑T

t=1 stξt does not depend on the decision x and can be removed from
the optimization problem.

As usual, x∗ is the optimal solution, and denote by v(x∗) the optimal value of

(5.3)
maximize in x qT IT +

T∑
t=1

E[−xt−1 − rtOt]

subject to xt is Ft-measurable, and (5.2) holds for t = 1, . . . , T.

Since (5.3) is linear in the decision variables x0, x1, . . . , xT−1, it has a dual formu-
lation. In order to obtain it, let us form the Lagrangian L(x, I,O, λ), for some
λ = (λ1, . . . , λT ) ∈ L∞, and I = (I1, . . . , IT ), O = (O1, . . . , OT ):

L(x, I,O, λ)

= E

[
qtIT +

T∑
t=1

(−xt−1 − rtOt)

]
− E

[
T∑

t=1

λt(It −Ot − qt−1It−1 − xt−1 + ξt)

]

=

T∑
t=1

E[xt−1(λt − 1)] +

T∑
t=1

E[Ot(λt − rt)]

+ E[IT (qT − λT )] +

T−1∑
t=1

E[(It(qtλt+1 − λt)] −
T∑

t=1

E[ξtλt]
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=

T∑
t=1

E[xt−1(E[λt|Ft−1] − 1)] +

T∑
t=1

E[Ot(λt − rt)]

+ E[IT (qT − λT )] +

T−1∑
t=1

E[It(qtE[λt+1|Ft] − λt)] +

T∑
t=1

E[(−ξt)λt].

Only if E[λt|Ft−1] = 1, and qt ≤ λt ≤ rt, a.s. for each t = 1, . . . , T , is the dual problem
finite. Thus, the dual formulation of (5.3) reduces to the following:

(5.4)

minimize in λ

T∑
t=1

E[(−ξt)λt]

subject to λt, IT , Ot are Ft-measurable,

qt ≤ λt ≤ rt, It ≥ 0, Ot ≥ 0, and

E[λt|Ft] = 1, for t = 1, . . . , T, a.s.

Now recall the dual representation of AV @Rα(ξ) given by (A.2). Setting, for
t = 1, . . . , T ,

Yt =
λt − qt
1 − qt

yields

E[Yt|Ft] = 1 and 0 ≤ Yt ≤
rt − qt
1 − qt

.

So, for αt = 1−qt
rt−qt

, according to (A.5), the objective to be minimized in (5.4) becomes

T∑
i=1

E [AV @Rαt(ξt)] =

T∑
i=1

(
qtE[−ξt] + (1 − qt)E[AV @Rαt(−ξt|Ft−1)]

)
.

Using the identity (A.3) with βt = 1 − αt = rt−1
rt−qt

, we write the objective as

(5.5)

T∑
i=1

(
rtE[−ξt] + (rt − 1)E[AV @Rβt(ξt|Ft)]

)
.

The optimal solution of the given problem, for V@Rβt+1(ξt+1|Ft) = Vt, is

(5.6) x∗
t = V@Rβt+1(ξt+1|Ft) − qtIt = Vt − qtIt, t = 0, . . . , T − 1.

Indeed, if we insert (5.6) into (5.5), in view of (A.4) we get

v(x∗) =

T∑
i=1

(
rtE[−ξt] + (rt − 1)E[Vt−1] − (rt − qt)E[[Vt−1 − ξt]

+]
)
.

On the other hand, inserting the solutions (5.6) into the constraints of (5.3), we
have that, for t = 1, . . . , T ,

It = [Vt−1 − ξt]
+,

Ot = [Vt−1 − ξt]
−,
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and (5.2) is

Vt−1 − ξt = It −Ot, It ≥ 0, Ot ≥ 0.

The value of the objective in (5.3) for this choice of x becomes

qT IT +

T∑
t=1

E[−xt−1 − rtOt]

= E

[
qT It +

T∑
t=1

(−Vt−1 − qt−1It−1 − rtOt)

]

= E

[
T∑

t=1

(qtIt − Vt−1 − rt(It − Vt−1 + ξt))

]

=

T∑
i=1

(
rtE[−ξt] + (rt − 1)E[Vt−1] − (rt − qt)E[[Vt−1 − ξt]

+]
)

= v(x∗).

Thus, we have shown that (5.6) is really the solution of the given problem.
The state of the system at time t = 1, . . . , T is

ζt = (ξ1, . . . , ξt, It, Ot, xt).

The mapping

ζt �→ x∗
t , i.e.,

(ξ1, . . . , ξt, It) �→ V@Rβt
(ξt+1|Ft) − qtIt,

is Lipschitz if the mapping

(5.7) (ξ1, . . . , ξt) �→ V@Rβt(ξt+1|Ft)

is Lipschitz. This is true in many cases, e.g., for vector autoregressive processes.
Let G(v|u1, . . . , ut−1) be the conditional distribution function of ξt given the past

ξt−1 = ut−1. If

(u1, . . . , ut) �→ G−1(v|u1, . . . , ut)

is Lipschitz for all v, then (5.7) is also Lipschitz.
In order to show how the Lipschitz constants in the inventory model behave,

assume that the demand process ξ = (ξ1, . . . , ξT ) is normally distributed and follows
an additive recursion. To this end, let

ξ0 ∼ N (μ0, σ
2
0), ξt = bξt−1 + εt with εt ∼ N (μ, σ2), t = 1, . . . , T,

where μ = μ0(1 − b), σ = σ0(1 − b2), and ξt and εt are independent. Under these
assumptions, ξ is a stationary Gaussian Markov process.

The state of the system may be reduced to

(5.8) ζt = (ξt, It, Ot, xt), t = 1, . . . , T.
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The conditional average value-at-risk is

AV @Rβ(ξt|Ft−1) = bξt−1 + AV @Rβ(εt)

= bξt−1 + μ− 1

β
√

2π
exp

(
1

2

(
Φ−1(min(β, 1 − β))

)2
)
.

The solution of (5.6) becomes

x∗
t = bξt−1 + μ− 1

βt

√
2π

exp

(
1

2

(
Φ−1(min(βt, 1 − βt))

)2
)
− qt−1It−1.

To calculate the constants Kt from Assumption 2, we need the conditional distri-
bution of ξt given ξt−1 = ut−1. It holds that

(ξt|Ft−1) = (ξt|ξt−1 = u) ∼ N (μ + bu, σ2).

Thus,

dW (Pt(·|u), Pt(·|v)) ≤ bd(u, v),

and Kt = b, for each t = 1, . . . , T .
For constants Lt,Mt, Nt from Assumption 3, observe the state ζt given by (5.8),

and recall the transition function gt defined by (3.1). Then

ζt+1 = (ξt+1, It+1, Ot+1, xt+1) = gt+1((ζt, It, Ot, xt), xt, ξt+1)

= gt+1(gt((ζt−1, It−1, Ot−1, xt−1), xt−1, ξt), It, xt, ξt+1),

and so on. It follows that

d(gt(ζt−1, xt−1, ξt), gt(ζ̄t−1, x̄t−1, ξ̄t))

= d
(
[qt−1It−1 + xt−1 − ξt]

+ − [qt−1Īt−1 + x̄t−1 − ξ̄t]
+
)

≤ max(0, 1, 0, 0)
(
d(It−1, Īt−1) + d(xt−1, x̄t−1) + d(ξt, ξ̄t)

)
,

and Lt = 1. Since Xt(z) = R
+ for all z, we have that dP,r(Xt(z),Xt(z̄)) = 0, and

trivially Mt = 0. For Nt, we see that

|Ft(ζt) − Ft(ζ̄t)| ≤ max(1, 1, rt)dW (ζt, ζ̄t),

and so Nt = rt.
The Lipschitz constant of the solution, as well as of the extension, is Qt = Qe

t = 1
for t = 0, . . . , T − 1.

Eventually, we want to calculate constants δ1, resp., δ2, as obtained in Proposi-
tion 4.2, resp., Proposition 4.3. In this setting, we have that

ε̄s =

s∑
i=1

εib
s−i, s = 1, . . . , T,

Dt,s = De
t,s = t− s + 1, s = 1, . . . , t− 1,

and

δ1 = δ2 =

T∑
s=1

(
s∑

i=1

εib
s−i

T∑
t=s

(t− s + 1)rt

)
.
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Appendix. Auxiliary results. The following lemma is a generalization of [23,
Chapter 7J, Exercise 7.67].

Lemma A.1. Let B(r) be as in section 2.2 and let A,B ⊆ B(r) be closed, convex
sets for some r > 0. Let y be some point in B(r). Then

‖projA(y) − projB(y)‖ ≤ 2
√
r dr(A,B),

where

dr(A,B) = sup
x∈B(r)

|d(x,A) − d(x,B)|.

Proof. Define the half spaces

HA = {x : (x− projA(y))�(y − projA(y)) ≤ 0} and

HB = {x : (x− projB(y))�(y − projB(y)) ≤ 0}.

Then A ⊆ HA and B ⊆ HB . Assume without loss of generality that ‖y−projA(y)‖ ≤
‖y − projB(y)‖.

Let y′ = projHB
(projA(y)) and let y′′ be the projection of y on the line connecting

projA(y) and projB(y). Then, because ‖y−projA(y)‖ ≤ ‖y−projB(y)‖, one has that

‖y′′ − projB(y)‖ ≥ 1

2
‖projA(y) − projB(y)‖.

Notice that

dr(A,B) ≥ d(projA(y), HB) = ‖projA(y) − y′‖,

since projA(y) ∈ A, and B ⊆ HB . The five points (y, projA(y), projB(y), y′, y′′) lie in
one hyperplane. By geometrical consideration, using the similarity of triangles, one
has

‖projA(y) − y′‖
‖projA(y) − projB(y)‖ =

‖y′′ − projB(y)‖
‖y − projB(y)‖ ≥ ‖projA(y) − projB(y)‖

2 ‖y − projB(y)‖ .

Hence, using ‖y − projB(y)‖ ≤ 2r, one gets

‖projA(y) − projB(y)‖2 ≤ 2‖y − projB(y)‖ ‖projA(y) − y′‖ ≤ 4r dr(A,B).

For a real-valued Lipschitz function in finite-dimensional spaces, extension from
an arbitrary subset is possible.

Theorem A.2 (extension theorem). Let (Ξ̃, d) be any metric space, Ξ̃ any subset
of Ξ, and x any R

m-valued Lipschitz function on Ξ̃. Then x can be extended on Ξ
without increasing the Lipschitz modulus.

Proof. See [5, Theorem 6.1.1].
In [8] one can read more about the extension of Lipschitz functions in the infinite-

dimensional setting.
Lemma A.3. Let x′(u) be a Q-Lipschitz function with values in B(r) ⊆ R

m and
let X (u) be a convex-valued multifunction which is M -Lipschitz w.r.t. the projection
distance dP,r. (The case r = ∞ is not excluded.) Then the convex projection x(u) =
projX (u)x

′(u) is (Q + M)-Lipschitz.
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Proof.

d(x(u), x(v)) ≤ d(projX (u)x
′(u), projX (u)x

′(v)) + d(projX (u)x
′(v), projX (v)x

′(v))

≤ d(x′(u), x′(v)) + dP,r(X (u),X (v))

≤ Qd(u, v) + Md(u, v) = (Q + M)d(u, v).

Lemma A.4. The average value-at-risk is given by the following expressions:

AV @Rα(ξ) =
1

α

∫ α

0

G−1(u) du

= max
a∈R

(
a− 1

α
E[[ξ − a]−]

)
(A.1)

= min
Y

{
E[ξY ] : 0 ≤ Y ≤ 1

α
, E[Y ] = 1

}
,(A.2)

where G(u) = P(ξ ≤ u). If V@Rα(ξ) = G−1(α), the following identities hold:

(A.3) AV @Rα(−Y ) =
1 − α

α
AV @R1−α(Y ) − 1

α
E[Y ]

and

(A.4) AV @Rα(Y ) = V@Rα(Y ) − 1

α
E[[V@Rα(Y ) − Y ]+].

The expected conditional average value-at-risk given the filtration F is defined by

(A.5) E[AV @Rα(ξ|F)] = min
Y

{
E[ξY ] : 0 ≤ Y ≤ 1

α
, E[Y |F ] = 1

}
.

Proof. See [18] and [19].
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NONSMOOTH ANALYSIS OF LORENTZ INVARIANT FUNCTIONS∗

HRISTO S. SENDOV†

Abstract. A real valued function g(x, t) on R
n × R is called a Lorentz invariant if g(x, t) =

g(Ux, t) for all n × n orthogonal matrices U and all (x, t) in the domain of g. In other words,
g is invariant under the linear orthogonal transformations preserving the Lorentz cone: {(x, t) ∈
R
n × R | t ≥ ‖x‖}. It is easy to see that every Lorentz invariant function can be decomposed as

g = f ◦ β, where f : R
2 → R is a symmetric function and β is the root map of the hyperbolic

polynomial p(x, t) = t2 − x2
1 − · · · − x2

n. We investigate a variety of important variational and
nonsmooth properties of g and characterize them in terms of the symmetric function f .

Key words. nonsmooth analysis, convex analysis, hyperbolic polynomials, Lorentz cone,
second-order cone, Clarke subdifferential, regular subdifferential, limiting subdifferential, proximal
subdifferential, lower semicontinuous

AMS subject classifications. Primary, 49J52, 58C20; Secondary, 58C25, 58E30

DOI. 10.1137/060658370

1. Introduction and notation. Denote the set of all orthogonal n×n matrices
by O(n). Let the function g(x, t) be defined on an open subset of R

n×R, taking values
in R. The inner product of two vectors, (x, t) and (y, r), in R

n×R is 〈(x, t), (y, r), 〉 =
xT y + tr. Throughout the entire paper we assume that

(1.1) g(Ux, t) = g(x, t) for all U ∈ O(n),

and all (x, t) in the domain of g. We call a function g with property (1.1) Lorentz
invariant because it is invariant under the linear orthogonal transformations preserv-
ing the Lorentz cone {(x, t) ∈ R

n × R | t ≥ ‖x‖}. A set Ω ⊆ R
n × R is called Lorentz

invariant if (x, t) ∈ Ω implies that (Ux, t) ∈ Ω for every U ∈ O(n). Define the map

β(x, t) : R
n × R → R

2,

β(x, t) =
1√
2
(t + ‖x‖, t− ‖x‖).

The rationale behind the map β is the following. Consider the polynomial p(x, t) :
R

n×R → R defined by p(x, t) = t2−x2
1−· · ·−x2

n and let d := (0, . . . , 0,
√

2) ∈ R
n×R.

Then, the coordinates of β(x, t) are the roots of the polynomial λ 
→ P ((x, t)−λd). In
general, a homogeneous polynomial p(x) : R

n → R with degree of homogeneity m, for
which there is a direction d ∈ R

n, p(d) �= 0, such that λ 
→ p(x−λd) has m real roots
for every x ∈ R

n, is called hyperbolic. In 1997, Güler [6] pointed out the relevance
of these polynomials for optimization. Further information and developments can be
found in [2], [13], [12], [18].

Let the function f(a, b) be defined on an open subset of R
2 and assume that it

is symmetric, that is, f(a, b) = f(b, a) for all (a, b) in its domain. Necessarily, the
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†Department of Statistical and Actuarial Sciences, University of Western Ontario, 1151 Rich-
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domain of f is a symmetric subset of R
2, that is, (a, b) ∈ A ⇒ (b, a) ∈ A. The

following easy lemma establishes the connection between g, β, and f .
Lemma 1.1 (Lorentz invariant functions). The following two properties of a

function g : R
n × R → R are equivalent:

(i) g is Lorentz invariant;
(ii) g = f ◦ β for some symmetric function f : R

2 → R.
If g = f ◦ β, we say that f is the symmetric function corresponding to g. This

correspondence is one-to-one, and given g the corresponding symmetric function is

(1.2) f(a, b) = g

(
a− b√

2
, 0, . . . , 0,

a + b√
2

)
.

That (1.2) defines a symmetric function in (a, b) is guaranteed by (1.1).
The goal of this paper is to establish a variety of important variational and nons-

mooth optimization properties of the function g = f ◦ β and how they arise from the
corresponding properties of f . By deriving a wide range of nonsmooth formulae we
hope this work will be a useful reference source. This work completes the similar inves-
tigations of spectral functions [8], [9], [11], [7] and singular value functions [10], [14],
[15]. Optimization problems over the Lorentz cone, also known as the second-order
cone, have a wide range of applications; see, for example, [16]. With the development
of the nonsmooth Newton method and various smoothing techniques, the nonsmooth
properties of functions associated with the Lorentz cone have been of interest lately.
For example, the strong semismoothness of the projection onto the Lorentz cone was
established in [23, Proposition 4.3]. A formula for the Bouligand subdifferential of the
projection onto the Lorentz cone is derived in [24, Lemma 14]. Our paper is based on
results that first appeared in the author’s Ph.D. dissertation [21].

We conclude this section with an elementary fact.
Lemma 1.2. The composition f ◦ β is lower semicontinuous if and only if f is

lower semicontinuous.
Throughout the entire work, the functions g, β, and f will have the properties

described in this section.

2. Fenchel conjugation. For a function F : R
n → (−∞,+∞], the Fenchel

conjugate F ∗ : R
n → [−∞,+∞] is the function

F ∗(y) = sup
x∈Rn

{xT y − F (x)}.

It is well known that F ∗ is lower semicontinuous and convex [19]. In this section we
prove the following formula.

Proposition 2.1. We always have

(2.1) (f ◦ β)∗ = f∗ ◦ β.
Proof. Let y �= 0. In the third equality below, we use the fact that f is symmetric

to see that the given supremum is the same as the supremum over the set {(a, b) ∈
R

2 | a− b ≥ 0}. From the definition we have

(f ◦ β)∗(y, r) = sup
(x,t)∈Rn+1

{〈(y, r), (x, t)〉 − (f ◦ β)(x, t)}

= sup
(a,b)∈R2

sup
(x, t) s.t.

t + ‖x‖ = a
√

2

t − ‖x‖ = b
√

2

{〈(y, r), (x, t)〉 − f(a, b)}

= sup
(a,b)∈R2

{〈
(y, r),

(
y

‖y‖
a− b√

2
,
a + b√

2

)〉
− f(a, b)

}
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= sup
(a,b)∈R2

{
‖y‖a− b√

2
+ r

a + b√
2

− f(a, b)

}

= sup
(a,b)∈R2

{〈(
r + ‖y‖√

2
,
r − ‖y‖√

2

)
, (a, b)

〉
− f(a, b)

}
= (f∗ ◦ β)(y, r).

The case y = 0 is easy.
An alternative proof of this result uses Theorem 5.5 and the example in section 7.5

in [2], where the proposition has been generalized to the subclass of so-called isometric
hyperbolic polynomials. In [1, Theorem 6.1] the proposition has been shown to hold
for symmetric functions composed with the eigenvalues of the elements of formally
real Jordan algebras.

3. Convexity and convex subdifferentials.

3.1. Convexity.
Theorem 3.1. The composition f ◦β is convex and lower semicontinuous if and

only if f is convex and lower semicontinuous.
Proof. Suppose f is convex and lower semicontinuous. If f ≡ +∞, then f ◦ β ≡

+∞ and the theorem is clear. Suppose f assumes some finite values. Then using the
convexity, one can show that f > −∞, and by [19, Theorem 12.2] we have f∗∗ = f .
Since f∗ is symmetric, we use (2.1) in f ◦ β = f∗∗ ◦ β = (f∗ ◦ β)∗ to conclude that
f ◦ β is convex and lower semicontinuous. The opposite direction follows from (1.2)
and Lemma 1.2.

The proof of the above theorem can be also deduced from Theorem 3.9 and the
example in section 7.5 in [2]. Even though the proof of our Theorem 3.1 is quite
elegant, a direct approach removes the condition that f be lower semicontinuous.

Theorem 3.2. The composition f ◦ β is convex if and only if f is convex.
Proof. If f ◦ β is convex, then f is by (1.2). Suppose now that f is convex with

domain C. The domain of f ◦ β is β−1(C). Let (x, t), (y, r) ∈ β−1(C), and α ∈ [0, 1].
Since (t+ ‖x‖, t−‖x‖), (r+ ‖y‖, r−‖y‖) ∈

√
2C, and C is symmetric and convex, we

find that the points

(αt + (1 − α)r + α‖x‖ + (1 − α)‖y‖, αt + (1 − α)r − α‖x‖ − (1 − α)‖y‖),
(αt + (1 − α)r − α‖x‖ − (1 − α)‖y‖, αt + (1 − α)r + α‖x‖ + (1 − α)‖y‖)

are both in
√

2C. Denote the first displayed point by a
√

2 and the second by b
√

2.
Since

−α‖x‖ − (1 − α)‖y‖ ≤ ‖αx + (1 − α)y‖ ≤ α‖x‖ + (1 − α)‖y‖,

there is a β ∈ [0, 1] such that for the point

c
√

2 := (αt + (1 − α)r + ‖αx + (1 − α)y‖, αt + (1 − α)r − ‖αx + (1 − α)y‖)

we have c = βa + (1 − β)b ∈ C. Thus,

f(c) ≤ βf(a) + (1 − β)f(b) = f(a)

≤ αf((t + ‖x‖, t− ‖x‖)/
√

2) + (1 − α)f((r + ‖y‖, r − ‖y‖)/
√

2),

where we used the facts that f(a) = f(b) and that f is convex.
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The proof of Theorem 3.2 shows the following property.
Lemma 3.3. Let C ⊆ R

2 be a convex and symmetric set. Then

β−1(C) := {(x, t) ∈ R
n × R |β(x, t) ∈ C}

is convex and Lorentz invariant.

3.2. Convex subdifferentials. Let f : R
2 → (−∞,+∞] be convex. For every

point (a, b) such that f(a, b) < +∞, we define the subdifferential of f at (a, b) to be
the set

∂f(a, b) = {(a′, b′)|f(c, d) − f(a, b) ≥ 〈(a′, b′), (c, d) − (a, b)〉 for all (c, d)}.

It is easy to see that f(a, b)+f∗(a′, b′) = 〈(a, b), (a′, b′)〉 if and only if (a′, b′) ∈ ∂f(a, b).
The set ∂f(a, b) is a singleton {(a′, b′)} if and only if f is differentiable at the point
(a, b) with gradient ∇f(a, b) = (a′, b′); see [19, Theorem 25.1].

The following result gives a formula for the subgradient of the composition f ◦ β.
Theorem 3.4. Suppose f : R

2 → (−∞,+∞] is convex and lower semicontinuous.
Then (y, r) ∈ ∂(f ◦ β)(x, t) if and only if β(y, r) ∈ ∂f(β(x, t)) and xT y = ‖x‖‖y‖.

Proof. Suppose first that (y, r) ∈ ∂(f ◦ β)(x, t). Then using formula (2.1) we get

‖x‖‖y‖ + rt ≥ xT y + rt = 〈(y, r), (x, t)〉
= (f ◦ β)(x, t) + (f ◦ β)∗(y, r)

= (f ◦ β)(x, t) + (f∗ ◦ β)(y, r)

= f

(
t + ‖x‖√

2
,
t− ‖x‖√

2

)
+ f∗

(
r + ‖y‖√

2
,
r − ‖y‖√

2

)
≥

(
(t + ‖x‖)(r + ‖y‖) + (t− ‖x‖)(r − ‖y‖)

)
/2

= ‖x‖‖y‖ + rt.

Thus, we have equalities everywhere: β(y, r) ∈ ∂f(β(x, t)) and xT y = ‖x‖‖y‖. In the
other direction the proof is clear by reversing the steps above.

For a generalization of this proposition to formally real Jordan algebras see [1,
Corollary 6.2].

4. Differentiability. The partial derivatives of the function f with respect to
its first and second argument are denoted by f ′

1 and f ′
2, respectively.

Theorem 4.1. The composition f ◦ β is differentiable at the point (x, t) if and
only if f is differentiable at β(x, t). In that case we have the formulae

∇x(f ◦ β)(x, t) =

{
f ′
1(β(x,t))−f ′

2(β(x,t))√
2‖x‖ x if x �= 0

0 if x = 0

and

d

dt
(f ◦ β)(x, t) =

1√
2
(f ′

1(β(x, t)) + f ′
2(β(x, t))).

Proof. Suppose first that f is differentiable at the point β(x, t). If x �= 0, the
theorem and the formulae are trivial and follow from the chain rule. So let us assume
now that x = 0. Let h = (h̄, hn+1) ∈ R

n × R and

d :=
(
0, . . . , 0, (f ′

1(β(x, t)) + f ′
2(β(x, t)))/

√
2
)
∈ R

n × R.
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Then

lim
h→0

|(f ◦ β)((0, t) + (h̄, hn+1)) − (f ◦ β)((0, t)) − dTh|
‖h‖

= lim
h→0

|f(β(h̄, t + hn+1)) − f(β(0, t)) − hn+1(f
′
1(β(0, t)) + f ′

2(β(0, t)))/
√

2|
‖h‖ .

The fact that f is differentiable at β(0, t) = (t/
√

2, t/
√

2) gives

f(β(h̄,t + hn+1)) ∼ f(β(0, t)) + f ′
1(β(0, t))

hn+1 + ‖h̄‖√
2

+ f ′
2(β(0, t))

hn+1 − ‖h̄‖√
2

,

where ∼ indicates that the difference of both sides is of order o(‖h‖). Using the fact
that, for a symmetric function f , f ′

1(β(0, t)) = f ′
2(β(0, t)) and substituting above we

see that the limit is zero, that is, ∇(f ◦ β)(0, t) = d.
The proof in the other direction is easy using formula (1.2).
Theorem 4.2. Let f be symmetric and defined on an open symmetric subset of

R
2. Then f ◦ β is continuously differentiable at the point (x, t) if and only if f is

continuously differentiable at β(x, t).
Proof. Suppose that f is continuously differentiable at β(x, t). The theorem is

clear if x �= 0. So suppose x = 0. Let {(xk, tk)} be a sequence of points in R
n × R

approaching (0, t). We need only prove that ∇(f ◦β)(xk, tk) approaches ∇(f ◦β)(0, t).
We consider two cases. The general case easily follows by combining them.

Case 1. If xk = 0 for all k, then using the formula in Theorem 4.1 we obtain

lim
k→∞

∇(f ◦ β)(0, tk) = lim
k→∞

(
0, . . . , 0,

1√
2

(
f ′
1(β(0, tk)) + f ′

2(β(0, tk))
))

= ∇(f ◦ β)(0, t)

by the continuity of ∇f at β(0, t).
Case 2. If xk �= 0 for all k, then using again the formula in Theorem 4.1 for the

derivative with respect to t we obtain

lim
k→∞

(f ◦ β)′t(x
k, tk) = lim

k→∞

1√
2

(
f ′
1(β(xk, tk)) + f ′

2(β(xk, tk))
)

= (f ◦ β)′t(0, t).

For the derivative with respect to xi we get

lim
k→∞

(f ◦ β)′xi
(xk, tk) = lim

k→∞

xk
i√

2‖xk‖
(
f ′
1(β(xk, tk)) − f ′

2(β(xk, tk))
)

= 0

because xk
i /‖xk‖ is bounded and the continuity of ∇f at β(0, t) gives us

lim
k→∞

(f ′
1(β(xk, tk)) − f ′

2(β(xk, tk))) = f ′
1(β(0, t)) − f ′

2(β(0, t)) = 0.

The last equality follows from the fact that f is symmetric.
The opposite direction of the theorem is easy to prove by using (1.2).

5. The decomposition functions. In this section we define the functions dz
and d∗z and summarize some of their properties which will be used frequently. We
call them decomposition functions because they will be used to describe how the
subgradients of f ◦ β are decomposed into subgradients of f .
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Definition 5.1. For every nonzero vector z in R
n, we define the map

dz : R
n × R → R

2,

dz(y, t) =
1√
2

(
t +

zT y

‖z‖ , t−
zT y

‖z‖

)
.

In cases when the direction (y, t) is fixed and clear from the context we simply
write dz instead of dz(y, t).

Definition 5.2. For every nonzero vector z in R
n, we define the map

d∗z : R
2 → R

n × R,

d∗z(a, b) =

(
z

‖z‖
a− b√

2
,
a + b√

2

)
.

The following lemma collects a few elementary properties of the maps dz and d∗z.
The proof is omitted.

Lemma 5.3. Let z and w be nonzero vectors in R
n.

(i) The maps dz(·) and d∗z(·) are linear and adjoint to each other.
(ii) For every point (γ1, γ2) in R

2,

dwd
∗
z(γ1, γ2) =

1 + δ

2
(γ1, γ2) +

1 − δ

2
(γ2, γ1),

where δ = wT z
‖w‖‖z‖ ∈ [−1, 1]. In particular, when w = z we have

dzd
∗
z(γ1, γ2) = (γ1, γ2).

(iii) For every point (y, r) in R
n × R such that y = az for some a ∈ R,

d∗zdz(y, r) = (y, r).

Lemma 5.4. Let A and B be symmetric subsets of R
2. The sets

D(A) = {d∗z(γ1, γ2)|(γ1, γ2) ∈ A, z �= 0},
C(A) = {(y, r)|dz(y, r) ∈ A for all z �= 0}

satisfy the following properties.
(i) If A is convex, then

(a) if (x, t) is in D(A), then (δx, t) is in D(A) for every δ ∈ [−1, 1].
(b) D(A) is a convex set.
(c) D(A) = C(A).
(d) If B is also convex, then cl (D(A) + D(B)) = clD(A + B).

(ii) For any A we have
(a) convD(A) = D(convA).
(b) D(clA) = clD(A).

Proof. Part (i)(a). Let (x, t) = d∗z(γ1, γ2) for some (γ1, γ2) in A and z �= 0. Since
the set A is symmetric and convex, (γ2, γ1) is in A, and for every α ∈ [0, 1] the convex
combination (αγ1 + (1 − α)γ2, αγ2 + (1 − α)γ1) is in A. Thus,

d∗z
(
αγ1 + (1 − α)γ2, αγ2 + (1 − α)γ1

)
=

(
z

‖z‖
γ1 − γ2√

2
(2α− 1),

γ1 + γ2√
2

)
= (x(2α− 1), t) ∈ D
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for all α ∈ [0, 1]. Now set δ := 2α− 1.
Part (i)(b). Since A is convex, for any two points (γ1, γ2) and (δ1, δ2) in A and

μ ∈ [0, 1], we have that (μγ1 + (1 − μ)δ1, μγ2 + (1 − μ)δ2) is in A. Thus, for every
z �= 0,

(5.1)

(
z

‖z‖
μ(γ1 − γ2) + (1 − μ)(δ1 − δ2)√

2
,
μ(γ1 + γ2) + (1 − μ)(δ1 + δ2)√

2

)
∈ D.

Take two points (x1, t1) and (x2, t2) in D and a number μ ∈ (0, 1). We want to
show that (μx1 + (1 − μ)x2, μt1 + (1 − μ)t2) is also in D. Suppose

(x1, t1) = d∗z1(γ1, γ2), (x2, t2) = d∗z2(δ1, δ2)

for some (γ1, γ2) and (δ1, δ2) in A, z1 �= 0, and z2 �= 0. Set

zμ := μ
γ1 − γ2√

2

z1

‖z1‖ + (1 − μ)
δ1 − δ2√

2

z2

‖z2‖

and notice that

‖zμ‖ ≤ μ
|γ1 − γ2|√

2
+ (1 − μ)

|δ1 − δ2|√
2

.

Then

(5.2) μ(x1, t1) + (1 − μ)(x2, t2) =

(
zμ,

μ(γ1 + γ2) + (1 − μ)(δ1 + δ2)√
2

)
.

If zμ = 0, then from (5.1) and part (i)(a) with δ = 0 we see that

μ(x1, t1) + (1 − μ)(x2, t2) ∈ D.

Suppose now that zμ �= 0. Choose one of the points (γ1, γ2), (γ2, γ1) in A and one
of the points (δ1, δ2), (δ2, δ1) in A so that, using part (i)(a), inclusion (5.1) becomes(

z

‖z‖
μ|γ1 − γ2| + (1 − μ)|δ1 − δ2|√

2
δ,
μ(γ1 + γ2) + (1 − μ)(δ1 + δ2)√

2

)
∈ D

for all z �= 0 and δ ∈ (0, 1). Let δ be a number in (0, 1) such that

μ|γ1 − γ2| + (1 − μ)|δ1 − δ2|√
2

δ = ‖zμ‖.

Putting this all together we obtain that (5.2) is in D, showing that D is a convex set.
Part (i)(c). Suppose (y, r) ∈ C; then dz(y, r) ∈ A for all z �= 0. Apply

Lemma 5.3(iii) with a = 0 and any z if y = 0, or with a = 1 and z = y if y �= 0, to
obtain

(y, r) = d∗zdz(y, r) = d∗z(dz(y, r)) ∈ D.

This shows that C ⊆ D.
Suppose now that (y, r) ∈ D. That is, (y, r) = d∗z(γ1, γ2) for some (γ1, γ2) in A

and some z �= 0. Let ẑ be an arbitrary nonzero vector and set δ := zT ẑ
‖z‖‖ẑ‖ ∈ [−1, 1].

Then by Lemma 5.3(ii) we have

dẑ(y, r) = dẑd
∗
z(γ1, γ2) =

1 + δ

2
(γ1, γ2) +

1 − δ

2
(γ2, γ1) ∈ A
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because A is symmetric and convex. Thus, D ⊆ C.
Part (i)(d). By part (i)(b) we have that both D(A) + D(B) and D(A + B) are

convex sets. It is clear that the latter set is contained in the former:

cl (D(A) + D(B)) ⊇ clD(A + B).

In order to show that the sets are equal it suffices to show that their support functions
are equal. Fix any x ∈ R

n and suppose first that x �= 0. In the first and last equality
below, we use the fact that A and B are symmetric sets:

max{〈(x, t), (d∗z1(γ1, γ2) + d∗z2(δ1, δ2))〉|(γ1, γ2) ∈ A, (δ1, δ2) ∈ B, z1 �= 0, z2 �= 0}
= max{〈(x, t), (d∗x(γ1, γ2) + d∗x(δ1, δ2))〉|(γ1, γ2) ∈ A, (δ1, δ2) ∈ B}
= max{〈(x, t), d∗x(γ1 + δ1, γ2 + δ2)〉|(γ1, γ2) ∈ A, (δ1, δ2) ∈ B}
= max{〈(x, t), d∗x(α1, α2)〉|(α1, α2) ∈ A + B}
= max{〈(x, t), d∗z(γ1, γ2)〉|(γ1, γ2) ∈ A + B, z �= 0}.

The case x = 0 is easy.
Part (ii)(a). The inclusion A ⊆ convA implies D(A) ⊆ D(convA). Since the set

D(convA) is convex by part (i)(b), we obtain convD(A) ⊆ D(convA). The opposite
inclusion D(convA) ⊆ convD(A) is easy.

Part (ii)(b). Let {d∗xk(γk
1 , γ

k
2 )} be a sequence in D(A) approaching a vector (z, s).

Since the unit sphere in R
n is compact, we can find a subsequence, denoted again

by k, such that xk/‖xk‖ converges to a unit vector x. For this subsequence we have
|γk

1 −γk
2 | →

√
2‖z‖ and γk

1 +γk
2 →

√
2s. Consequently, {(γk

1 , γ
k
2 )} is bounded so there

is a subsequence, denoted again by k, for which (γk
1 , γ

k
2 ) → (γ1, γ2) ∈ clA. So, the

sequence {d∗xk(γk
1 , γ

k
2 )} approaches d∗x(γ1, γ2) which is in D(clA). This shows that for

an arbitrary set A we have the inclusion D(clA) ⊇ clD(A). The opposite inclusion is
easy.

6. Clarke subdifferential: The Lipschitz case. Suppose that h is a real
valued function defined on some subset of R

m. We say that h is locally Lipschitz at x
in R

m if there exists a scalar K such that

|h(x′′) − h(x′)| ≤ K‖x′′ − x′‖ for all x′′, x′ close to x.

For locally Lipschitz functions, the Clarke directional derivative [4] at the point x in
the direction v is defined as

h◦(x; v) = limsup
y→x;λ↓0

h(y + λv) − h(y)

λ
.

For y close to x and λ close to 0, the difference quotient in the definition of h◦(x; v)
is bounded above by K|v|. Thus, h◦(x; v) is well defined and finite. We need the
following formula for the Clarke directional derivative, which can be found in [4,
p. 64]:

(6.1) h◦(x; v) = limsup
y→x

{〈∇h(y), v〉 | y is such that ∇h(y) exists}1

for every pair (x; v). In other words, there exists a sequence {xk} in R
m approaching

x such that f is differentiable at each xn and

(6.2) 〈∇h(xk), v〉 → h◦(x; v).

1By Rademacher’s theorem, locally Lipschitz functions are differentiable almost everywhere.
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The Clarke subdifferential ∂ch(x) is defined as

∂ch(x) = {ξ | 〈v, ξ〉 ≤ h◦(x; v) for all v}.

In can be shown that the set ∂ch(x) is compact, nonempty, and convex. If h is convex
and finite on a neighborhood of x, then ∂ch(x) = ∂h(x), and if h is continuously
differentiable at x, then ∂ch(x) = {∇h(x)}. In this sense the Clarke subdifferential
generalizes both the convex subdifferential and the gradient of a C1 function. Finally,
Proposition 2.1.2 in [4] shows that the Clarke directional derivative is the support
function of the Clarke subdifferential:

(6.3) h◦(x; v) = max{〈v, ξ〉 | ξ ∈ ∂ch(x)}.

Now, we return to the symmetric, bivariate function f , which we now require
to be locally Lipschitz. It is not difficult to see that f is locally Lipschitz if and
only if f ◦ β is locally Lipschitz. We will present a formula expressing the Clarke
subdifferential of f ◦ β in terms of the Clarke subdifferential of f .

The following elementary lemma shows that the Clarke directional derivative of
h ◦ β is invariant under Lorentz orthogonal transformations of the argument and the
direction.

Lemma 6.1. Let (x, t) be a point in the domain of f ◦ β, let (y, r) be a direction,
and let U be an orthogonal matrix. Then

(f ◦ β)◦((x, t); (y, r)) = (f ◦ β)◦((Ux, t); (Uy, r)).

Theorem 6.2 (Clarke directional derivative). Let (0, t) be a point in the domain
of f ◦ β and let (y, r) be any direction. Then if x = 0,

(6.4) (f ◦ β)◦((0, t); (y, r)) = max{f◦(β(0, t); dz(y, r))|z ∈ R
n, z �= 0}.

Note 6.3. For the Clarke directional derivative at a point (x, t) with x �= 0, see
Corollary 6.6.

Proof. By (6.2), there is a sequence of points {(xk, tk)} approaching (0, t) such
that

(f ◦ β)◦((0, t); (y, r)) = lim
k→∞

〈∇(f ◦ β)(xk, tk), (y, r)〉.

In order to evaluate ∇(f ◦ β) using Theorem 4.1 we need to consider two cases,
depending on whether xk is zero or not. The general situation follows from these two
cases by considering subsequences.

Case 1.a. Suppose xk = 0 for all k. Let βk := β(0, tk) and note that f ′
1(β

k) =
f ′
2(β

k). Fix an arbitrary nonzero vector z ∈ R
n. Then

(f ◦ β)◦((0, t); (y, r)) = lim
k→∞

〈∇(f ◦ β)(0, tk), (y, r)〉

= lim
k→∞

〈(
0, . . . , 0,

f ′
1(β

k) + f ′
2(β

k)√
2

)
, (y, r)

〉
= lim

k→∞
〈∇f(βk), β(0, r)〉

= lim
k→∞

〈
∇f(βk), dz(y, r)

〉
≤ f◦(β(0, t); dz(y, r)).
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In the last inequality we used (6.1).

Case 1.b. Suppose xk �= 0 for all k, limk→∞
xk

‖xk‖ = z
‖z‖ , and let βk := β(xk, tk).

Then we have

(f ◦ β)◦((0, t);(y, r)) = lim
k→∞

〈∇(f ◦ β)(xk, tk), (y, r)〉

= lim
k→∞

〈(
f ′
1(β

k) − f ′
2(β

k)√
2‖xk‖

xk,
f ′
1(β

k) + f ′
2(β

k)√
2

)
, (y, r)

〉

= lim
k→∞

f ′
1(β

k) − f ′
2(β

k)√
2‖xk‖

(xk)T y +
f ′
1(β

k) + f ′
2(β

k)√
2

r

= lim
k→∞

f ′
1(β

k)

(
r√
2

+
(xk)T y√
2‖xk‖

)
+ f ′

2(β
k)

(
r√
2
− (xk)T y√

2‖xk‖

)
= lim

k→∞

〈
∇f ′(βk), dz(y, r)

〉
≤ f◦(β(0, t); dz(y, r)),

where, in substituting xk/‖xk‖ by z/‖z‖ in the last equality, we used the fact that
since f is locally Lipschitz the sequence {(f ′

1(β
k), f ′

2(β
k)} is bounded. All this shows

that if x = 0, then

(f ◦ β)◦((0, t); (y, r)) ≤ sup{f◦(β(0, t); dz(y, r))|z ∈ R
n, z �= 0}.

To show the opposite inequality, fix a nonzero vector z ∈ R
n. There is a sequence of

points {(ak, bk)} approaching β(0, t) such that

f◦(β(0, t); dz(y, r)) = lim
n→∞

〈∇f(ak, bk), dz(y, r)〉.

There is an infinite subsequence {(ak′ , bk′)} of {(ak, bk)} that satisfies one of the
following three possibilities:

(i) ak′ = bk′ for all k′.
(ii) ak′ > bk′ for all k′.
(iii) ak′ < bk′ for all k′.

For this subsequence we still have

f◦(β(0, t); dz(y, r)) = lim
k′→∞

〈∇f(ak′ , bk′), dz(y, r)〉.

Without loss of generality, we may assume that {(ak, bk)} satisfies one of the three
possibilities and we may consider them separately.

Case 2.a. Suppose ak = bk for all k. Note that in this case we have f ′
1(ak, ak) =

f ′
2(ak, ak). Thus,

f◦(β(0, t); dz(y, r)) = lim
k→∞

〈∇f(ak, ak), dz(y, r)〉

= lim
k→∞

f ′
1(ak, ak) + f ′

2(ak, ak)√
2

r

= lim
k→∞

〈∇(f ◦ β)(0, ak), (y, r)〉

≤ (f ◦ β)◦((0, t); (y, r)).

Case 2.b. Suppose ak > bk for all k. Define the sequence of vectors

zk :=

(
ak − bk

2
, 0, . . . , 0

)
∈ R

n
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(notice that ‖zk‖ = (ak − bk)/2) and let U be an orthogonal matrix such that

(6.5) lim
k→∞

Uzk

‖zk‖ =
z

‖z‖ .

In the third equality below, we use the fact that the Lipschitzness of f implies that
the sequence {f ′

1(ak, bk)−f ′
2(ak, bk)} is bounded, and thus in the limit we can replace

z/‖z‖ by Uzk/‖zk‖. We calculate

f◦(β(0,t); dz(y, r)) = lim
k→∞

〈∇f(ak, bk), dz(y, r)〉

= lim
k→∞

〈
f ′
1(ak, bk) − f ′

2(ak, bk)√
2‖z‖

z, y

〉
+

f ′
1(ak, bk) + f ′

2(ak, bk)√
2

r

= lim
k→∞

〈
f ′
1(ak, bk) − f ′

2(ak, bk)√
2‖zk‖

zk, UT y

〉
+

f ′
1(ak, bk) + f ′

2(ak, bk)√
2

r

= lim
k→∞

〈
∇(f ◦ β)

(
ak − bk√

2
, 0, . . . , 0,

ak + bk√
2

)
, (UT y, r)

〉
≤ (f ◦ β)◦((0, t); (UT y, r))

= (f ◦ β)◦((0, t); (y, r)).

In the last equality we used Lemma 6.1.
Case 2.c. Suppose ak < bk for all k. Define the sequence of vectors

zk :=

(
bk − ak

2
, 0, . . . , 0

)
∈ R

n

(notice that ‖zk‖ = (bk − ak)/2) and proceed analogously to the previous case.
It is straightforward to check that for every (y, r) ∈ R

n × R, and every nonzero
x ∈ R

n, we have

lim
(x′,t′)→(x,t), μ↓0

β((x′, t′) + μ(y, r)) − β(x′, t′)

μ
= dx(y, r).

Applying [3, Theorem 6.2.3] to the Lipschitz map β(x, t), we obtain the following
result.

Lemma 6.4. If x �= 0, then β(x, t) is strictly differentiable and its strict derivative
is the linear map dx. That is,

lim
(x′,t′), (x′′,t′′)→(x,t)

(x′,t′) �=(x′′,t′′)

β(x′, t′) − β(x′′, t′′) − dx(x′ − x′′, t′ − t′′)

‖(x′ − x′′, t′ − t′′)‖ = 0.

We now turn our attention to the problem of characterizing the Clarke subdiffer-
ential ∂c(f ◦ β)(x, t).

Theorem 6.5. The Clarke subgradient at (x, t) of a Lorentz invariant function
f ◦ β, locally Lipschitz at (x, t), is given by the following formulae:

(i) If x �= 0, then

∂c(f ◦ β)(x, t) = {d∗x(γ1, γ2) | (γ1, γ2) ∈ ∂cf(β(x, t))};

(ii) if x = 0, then

∂c(f ◦ β)(0, t) = {d∗z(γ1, γ2) | (γ1, γ2) ∈ ∂cf(β(0, t)), z �= 0}.
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Proof. Case (i). Suppose that x �= 0. Then, by Lemma 6.4, β is strictly differen-
tiable at (x, t) with strict derivative dx. Moreover, dx is a surjective linear map. So
we can apply the chain rule for the Clarke subdifferential [4, Theorem 2.3.10], which
in our situation holds with equality:

∂c(f ◦ β)(x, t) = ∂cf(β(x, t)) ◦ dx.

Now, if (v, p) ∈ ∂c(f ◦ β)(x, t) and (y, r) ∈ R
n × R, then there is a subgradient

(γ1, γ2) ∈ ∂cf(β(x, t)) such that

〈(v, p), (y, r)〉 = ((γ1, γ2) ◦ dx)(y, r) = 〈(γ1, γ2), dx(y, r)〉 = 〈d∗x(γ1, γ2), (y, r)〉,

where the last equality follows by Lemma 5.3. So

∂c(f ◦ β)(x, t) ⊆ {d∗x(γ1, γ2)|(γ1, γ2) ∈ ∂cf(β(x, t))};

the other inclusion is now clear.
Case (ii). Suppose that x = 0 and define

D := {d∗z(γ1, γ2)|(γ1, γ2) ∈ ∂cf(β(0, t)), z �= 0}.

Two closed, convex sets are equal whenever their support functions are the same. The
support function for the set convD, evaluated at (y, r), is

max{〈(y, r), (z, s)〉 | (z, s) ∈ convD}
= max{〈(y, r), (z, s)〉 | (z, s) ∈ D}
= max{〈(y, r), d∗z(γ1, γ2)〉 | (γ1, γ2) ∈ ∂cf(β(0, t)), z �= 0}
= max{〈dz(y, r), (γ1, γ2)〉 | (γ1, γ2) ∈ ∂cf(β(0, t)), z �= 0}
= max{max{〈dz(y, r), (γ1, γ2)〉 | (γ1, γ2) ∈ ∂cf(β(0, t))} | z �= 0}
= max{f◦(β(0, t); dz(y, r)) | z �= 0}
= (f ◦ β)◦((0, t); (y, r)),

where, in the last two equalities, we used (6.3) and Theorem 6.2. By (6.3), again
applied to the function f ◦ β, we obtain

cl convD = ∂c(f ◦ β)(0, t)

because ∂c(f ◦ β)(x, t) is a closed convex set [4, Proposition 2.1.2]. The fact that
convD = D follows from Lemma 5.4(i)(b) and the fact that D is closed follows by
Lemma 5.4(ii)(b).

Corollary 6.6 (Clarke directional derivative). Let (x, t) be a point in the do-
main of f ◦ β and let (y, r) be a direction in R

n × R. Then if x �= 0,

(f ◦ β)◦((x, t); (y, r)) = f◦(β(x, t); dx(y, r)).

Proof. Use again the fact that (f ◦ β)◦((x, t); (y, r)) is the support function of
∂c(f ◦ β)(x, t); see [4, Proposition 2.1.2].

7. Second-order properties. In this section, we let f be twice differentiable
at the point (a, b). This means that f is differentiable in a neighborhood of this point,
and the first derivative, ∇f , is differentiable again at (a, b). The question that we are
going to answer now is whether g := f ◦ β is twice differentiable at any point (x, t)
such that β(x, t) = (a, b). Elementary calculus shows that, if x �= 0, then g is twice
differentiable. It turns out that this is always the case, as we prove in Theorem 7.1. A
generalization of Theorems 7.1 and 7.2 to the setting of formally real Jordan algebras
can be found in [25]. Our approach is direct and first appeared in [21].
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7.1. Second-order differentiability.
Theorem 7.1. The function g := f ◦β is twice differentiable at (x, t) if and only

if f is twice differentiable at β(x, t). In that case, we have the following:
(i) If x �= 0, then

g′′xixj
(x, t) =

xixj

2‖x‖2
(f ′′

11 − f ′′
12 − f ′′

21 + f ′′
22) +

δij‖x‖2 − xixj√
2‖x‖3

(f ′
1 − f ′

2),

g′′txi
(x, t) =

xi

2‖x‖ (f ′′
11 − f ′′

12 + f ′′
21 − f ′′

22),

g′′xit(x, t) =
xi

2‖x‖ (f ′′
11 + f ′′

12 − f ′′
21 − f ′′

22),

g′′tt(x, t) =
1

2
(f ′′

11 + f ′′
12 + f ′′

21 + f ′′
22),

where δij is 1 if i = j and 0 otherwise;
(ii) if x = 0, then

g′′xixj
(0, t) =

{
1
2 (f ′′

11 − f ′′
12 − f ′′

21 + f ′′
22) if i = j,

0 otherwise,

g′′txi
(0, t) = 0,

g′′xit(0, t) = 0,

g′′tt(0, t) =
1

2
(f ′′

11 + f ′′
12 + f ′′

21 + f ′′
22).

All second-order derivatives of f , in both cases, are evaluated at β(x, t).
Proof. The “only if ” part follows easily from (1.2).
The verification of part (i) is straightforward. For part (ii) denote

Hii :=
1

2
(f ′′

11 − f ′′
12 − f ′′

21 + f ′′
22) for i = 1, . . . , n,

Htt :=
1

2
(f ′′

11 + f ′′
12 + f ′′

21 + f ′′
22),

H := Diag (H11, . . . , Hnn, Htt),

where the second-order derivatives of f are evaluated at β(0, t) and the operator Diag
forms a diagonal matrix from its vector argument. Fix an arbitrary sequence {hk} in
R

n ×R converging to 0 and denote h̄k := (hk
1 , . . . , h

k
n)T . Using Theorem 4.1 we show

that the limit of the difference quotient

lim
k→∞

‖∇g(h̄k, t + hk
n+1) −∇g(0, t) −Hhk‖

‖hk‖

is 0. We consider separately each coordinate in the difference quotient. Two cases are
necessary: one for the coordinates from 1 to n and one for the (n + 1)st coordinate.
The sequence {hk} can be partitioned into two subsequences—one in which h̄k = 0
for all k and one in which h̄k �= 0 for all k. We are done if we show that the limit
of the difference quotient for each of the two subsequences is zero. That leads us to
consider the following two subcases in each main case.

Subcase (a). Suppose i ∈ {1, . . . , n}. Then the difference quotient becomes

(7.1) lim
k→∞

|g′i(h̄k, t + hk
n+1) − g′i(0, t) −Hiih

k
i |

‖hk‖ .
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We use Theorem 4.1 to evaluate the derivatives g′i. Notice that if h̄k = 0 for all k,
then the limit is clearly 0. Thus, suppose h̄k �= 0 for all k. Then (7.1) becomes

lim
k→∞

| h̄k
√

2‖h̄k‖ (f ′
1(β(h̄k, t + hk

n+1)) − f ′
2(β(h̄k, t + hk

n+1))) − h̄k

2 (f ′′
11 − f ′′

12 − f ′′
21 + f ′′

22)|
‖hk‖ ,

where the second derivatives of f are evaluated at β(0, t). Because f ′
1 and f ′

2 exist in
a neighborhood of β(0, t) and are differentiable at β(0, t), we have

f ′
1(β(h̄k, t + hk

n+1))∼f ′
1(β(0, t)) + f ′′

11(β(0, t))
hk
n+1 + ‖h̄k‖√

2
+ f ′′

12(β(0, t))
hk
n+1 − ‖h̄k‖√

2
,

f ′
2(β(h̄k, t + hk

n+1))∼f ′
2(β(0, t)) + f ′′

21(β(0, t))
hk
n+1 + ‖h̄k‖√

2
+ f ′′

22(β(0, t))
hk
n+1 − ‖h̄k‖√

2
,

where ∼ indicates that the difference of both sides is of order o(‖hk‖). Because f is
symmetric, at the point β(0, t) we have f ′

1 = f ′
2, f

′′
12 = f ′′

21, and f ′′
11 = f ′′

22. Substituting
the two expansions into the limit shows that it is indeed 0.

Subcase (b). Suppose i = n + 1. The arguments are analogous to the previous
case. We use again Theorem 4.1 to evaluate the derivative g′t and then substitute f ′

1

and f ′
2 with their first-order expansions.

7.2. Continuity of the Hessian.

Theorem 7.2. The function g := f ◦ β is twice continuously differentiable at
(x, t) if and only if f is at β(x, t).

Proof. The “only if” direction is also easy to obtain from (1.2). The “if” direction
is clear in the case when x �= 0. Thus, we suppose that f is twice continuously
differentiable at β(0, t) and we show that for any sequence of vectors {(xk, tk)} in
R

n×R approaching (0, t), the Hessian ∇2g(xk, tk) is approaching ∇2g(0, t). Viewing,
for a fixed basis, ∇2g(0, t) as a matrix, we prove the convergence for each entry. We
again consider two cases, and the general situation follows easily from them. If xk = 0
for all k, then the result follows directly from the continuity of ∇2f at the point β(0, t);
see Theorem 7.1. If xk �= 0 for all n, then from the continuity of ∇2f at the point
β(0, t) and the formulae given in Theorem 7.1, we have

lim
k→∞

g′′xit(x
k, tk) = lim

k→∞
g′′txi

(xk, tk) = 0,

lim
k→∞

g′′tt(x
k, tk) = g′′tt(0, t),

where we also used the fact that since f is symmetric, f ′′
12 = f ′′

21 and f ′′
11 = f ′′

22 at
the point β(0, t). The interesting part is to show limk→∞ g′′xixj

(xk, tk) = g′′xixj
(0, t).

Denote

βk
+− :=

1√
2
(tk + ‖xk‖, tk − ‖xk‖),

βk
++ :=

1√
2
(tk + ‖xk‖, tk + ‖xk‖),

βk
−+ :=

1√
2
(tk − ‖xk‖, tk + ‖xk‖).
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Because f is symmetric, f ′
1(β

k
−+) = f ′

2(β
k
+−). This allows us to evaluate the following

limit using the mean value theorem:

lim
k→∞

1√
2‖xk‖

(
f ′
1(β(xk, tk)) − f ′

2(β(xk, tk))
)

= lim
k→∞

1√
2‖xk‖

(
f ′
1(β

k
+−) − f ′

1(β
k
++) + f ′

1(β
k
++) − f ′

1(β
k
−+)

)

= lim
k→∞

(
− f ′′

12

(
tk + ‖xk‖√

2
, νk

)
+ f ′′

11

(
μk,

tk + ‖xk‖√
2

))

=
1

2

(
f ′′
11(β(0, t)) − f ′′

12(β(0, t)) − f ′′
21(β(0, t)) + f ′′

22(β(0, t))
)
.

Above, the numbers νk and μk are between tk−‖xk‖√
2

and tk+‖xk‖√
2

, and the last equality

uses the continuity of ∇2f and the fact that f is symmetric. Using the formula for
g′′xixj

given in Theorem 7.1, we can see that

lim
k→∞

g′′xixj
(xk, tk) =

δij
2

(
f ′′
11(β(0, t)) − f ′′

12(β(0, t)) − f ′′
21(β(0, t)) + f ′′

22(β(0, t))
)

= g′′xixj
(0, t).

This concludes the proof.

7.3. Positive definite Hessian. We begin with a simple lemma, and the main
result of this subsection follows after it.

Lemma 7.3. Suppose that function f is continuously differentiable on an open
convex subset of R

2 and is strictly convex there. For any point (a, b) in its domain
with a > b we have f ′

1(a, b) > f ′
2(a, b).

Theorem 7.4. Suppose that f is twice continuously differentiable at β(x, t).
Then ∇2(f ◦ β) is positive definite at the point (x, t) if and only if ∇2f is positive
definite at β(x, t).

Proof. Suppose that ∇2f(β(x, t)) is positive definite. We use the formulae in
Theorem 7.1 to give a matrix representation of the Hessian of f ◦ β. Define the
(n + 1) × 2 matrix:

X :=
1√
2

( x
‖x‖ − x

‖x‖
1 1

)

and the (n + 1) × (n + 1) matrix:

M :=
1√

2‖x‖

(
In − xxT

‖x‖2 0

0 0

)
,

where In is the n× n identity matrix.
Case I. When x �= 0, the Hessian of f ◦ β can be written as

∇2(f ◦ β)(x, t) = X∇2f(β(x, t))XT + M∇f(β(x, t))

(
1
−1

)
.

For any nonzero vector (y, r), we have

(y, r)
(
∇2(f ◦ β)(x, t)

)
(y, r)T =

1

2
dx(y, r)∇2f(β(x, t))dx(y, r)T

+
1√

2‖x‖3

(
‖y‖2‖x‖2 − (xT y)2

)(
f ′
1(β(x, t)) − f ′

2(β(x, t))
)
.



NONSMOOTH ANALYSIS OF LORENTZ INVARIANT FUNCTIONS 1121

Using Lemma 7.3 we see that the above expression is strictly positive.
Case II. In the case when x = 0, the Hessian of f ◦ β is a diagonal matrix, and

the fact that it is positive definite can be easily seen.
In the other direction the result follows from (1.2).
The proof of the next corollary is virtually the same as [22, Theorem 7.2], so we

omit it.
Corollary 7.5. Let C be a symmetric and convex subset of R

2. Let f : R
2 → R

be a twice continuously differentiable function defined on C. Then

(7.2) min
(a,b)∈C

λmin(∇2f(a, b)) = min
(x,t)∈β−1(C)

λmin(∇2(f ◦ β)(x, t)).

Above, λmin denotes the smallest eigenvalue of the matrix in its argument.
Multiplying both sides of (7.2) by −1, we obtain

max
(a,b)∈C

λmax(∇2f(a, b)) = max
(x,t)∈β−1(C)

λmax(∇2(f ◦ β)(x, t)).

8. The regular and proximal subdifferentials. Given a function h : R
m →

[−∞,+∞] and a point x in R
m at which h is finite, we call a vector y of R

m a regular
subgradient of h at x if

h(x + z) ≥ h(x) + 〈y, z〉 + o(‖z‖) as z → 0.

The set of regular subgradients is denoted ∂̂h(x) and is called the regular subdifferential

of h at x. If h is infinite at x, then the set ∂̂h(x) is defined to be empty. It is not
difficult to show that it is always a closed and convex set; see [20].

A vector y is called a proximal subgradient of the function h at x, a point where
h(x) is finite, if there exist ρ > 0 and δ > 0 such that

h(x + z) ≥ h(x) + 〈y, z〉 − 1

2
ρ‖z‖2 when ‖z‖ ≤ δ.

The set of all proximal subgradients will be denoted ∂ph(x). If h is infinite at x, then
the set ∂ph(x) is defined to be empty. It is not difficult to show that it is always a
closed and convex set; see [5].

Now let f be the symmetric, bivariate function on R
2 and g := f ◦ β. We are

going to derive a formula for ∂̂g(x, t) in terms of ∂̂f(β(x, t)). The next lemma lists
several properties of the map β(x, t) that we need. By R

n
≥ we denote the cone of

vectors x in R
n satisfying x1 ≥ x2 ≥ · · · ≥ xn.

Lemma 8.1.

(i) For any vector w in R
2
≥, the function wTβ is convex and any point (x, t) in

R
n × R satisfies d∗x(w) ∈ ∂(wTβ)(x, t).

(ii) The directional derivative β′((x, t); (y, r)) is given by

β′((x, t); (y, r)) =

{
dx(y, r) if x �= 0,
β(y, r) if x = 0.

(iii) The map β is Lipschitz with global constant 1.
(iv) Given a point (x, t) in R

n × R, all vectors (z, s) close to zero satisfy

β((x, t) + (z, s)) = β(x, t) + β′((x, t); (z, s)) + O(‖(z, s)‖2).
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Proof. (i) The convexity is elementary. To check the second half we need to verify
that

wTβ(y, r) − wTβ(x, t) ≥ 〈d∗x(w1, w2), (y − x, r − t)〉,

which expanded and simplified is equivalent to

w1 − w2√
2

(‖y‖ − ‖x‖) ≥ xT (y − x)

‖x‖
w1 − w2√

2
.

After cancellation, the last inequality follows from the Cauchy–Schwarz
inequality.

(ii) This part is a straightforward verification.
(iii) For any points (x, t) and (z, s) we have

‖β((x, t) + (z, s)) − β(x, t)‖

=
1√
2
‖(t + s + ‖x + z‖, t + s− ‖x + z‖) − (t + ‖x‖, t− ‖x‖)‖

=
1√
2
‖(s + ‖x + z‖ − ‖x‖, s− (‖x + z‖ − ‖x‖))‖

=
√

s2 + (‖x + z‖ − ‖x‖)2

≤
√
s2 + ‖z‖2

= ‖(z, s)‖.

(iv) Suppose first that x �= 0. Then using part (ii) of this lemma and using the
Cauchy–Schwarz inequality several times we get

‖β((x, t) + (z, s)) − β(x, t) − β′((x, t); (z, s))‖2

=
1

2

∥∥∥∥
(
‖x + z‖ − ‖x‖ − xT z

‖x‖ ,−‖x + z‖ + ‖x‖ +
xT z

‖x‖

)∥∥∥∥
2

=

(
‖x + z‖ − ‖x‖ − xT z

‖x‖

)2

= O(‖z‖4) = O(‖(z, s)‖4),

where the penultimate equality holds since ∇‖ · ‖(x) = x
‖x‖ .

The case x = 0 is easy.
Let L be a subset of R

m and fix a point x in R
m. An element d belongs to the

contingent cone to L at x, denoted K(L|x), if either d = 0 or there is a sequence {xk}
in L approaching x with (xk − x)/‖xk − x‖ approaching d/‖d‖. The negative polar of
a subset H of R

m is the set

H− = {y ∈ R
m|〈x, y〉 ≤ 0 for all x ∈ H}.

We use the following lemmas from [11]; see Propositions 2.1 and 2.2 there.
Lemma 8.2. Given a function f : R

m → [−∞,+∞] and a point x0 in R
m,

any regular subgradient of f at x0 is polar to the contingent cone of the level set
L = {x ∈ E : f(x) ≤ f(x0)} at x0; that is,

∂̂f(x0) ⊂ (K(L|x0))−.
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Lemma 8.3. If the function f : R
m → [−∞,+∞] is invariant under a subgroup

G of O(m), then any point x in R
m and transformation g in G satisfy ∂̂f(gx) =

g∂̂f(x). Corresponding results hold for the proximal, approximate horizon and Clarke
subgradients (see the next sections).

We define the action of the orthogonal group O(n) on R
n × R by

U.(x, t) = (Ux, t) for every U ∈ O(n).

For a fixed point (x, t) in R
n × R we define the orbit

O(n).(x, t) = {(Ux, t)|U ∈ O(n)}.

If x �= 0, this orbit is just an n − 1 dimensional sphere with radius ‖x‖ at level t in
R

n × R. So it is an n− 1 dimensional manifold, and one can easily calculate that its
tangent and normal spaces at the point (x, t) are

T(x,t)(O(n).(x, t)) = {(y, 0)|yTx = 0},
N(x,t)(O(n).(x, t)) = {(ax, b)|(a, b) ∈ R

2}.

If x = 0, then

T(0,t)(O(n).(0, t)) = {0},
N(0,t)(O(n).(0, t)) = R

n+1.

Now, using these observations and Lemma 8.2 we can say more about ∂̂(f ◦β)(x, t)
in the case when x �= 0.

Lemma 8.4. If x �= 0 and (y, r) ∈ ∂̂(f ◦ β)(x, t), then (y, r) = (ax, r) for some
a ∈ R.

Proof. If (y, r) ∈ ∂̂(f ◦ β)(x, t), then by Lemma 8.2 we have

(y, r) ∈ (K({(z, s)|(f ◦ β)(z, s) ≤ (f ◦ β)(x, t)}|(x, t)))−

⊂ (K(O(n).(x, t)|(x, t)))−

= N(x,t)(O(n).(x, t)).

The claim follows from the expression for the normal space above.
The following is the main theorem of this section.
Theorem 8.5. The regular subdifferential of any Lorentz invariant function f ◦β

at the point (x, t) is given by the following formulae:
(i) If x �= 0, then

∂̂(f ◦ β)(x, t) = {d∗x(γ1, γ2)|(γ1, γ2) ∈ ∂̂f(β(x, t))};

(ii) if x = 0, then

∂̂(f ◦ β)(0, t) = {d∗z(γ1, γ2)|(γ1, γ2) ∈ ∂̂f(β(0, t)), z �= 0}.

Similar formulae hold for the proximal subdifferential.
Proof. Case (i). This case follows immediately from the chain rule [20, Exer-

cise 10.7].
Case (ii). Let x = 0. We show that

∂̂(f ◦ β)(0, t) = {(y, r)|dz(y, r) ∈ ∂̂f(β(0, t)) for all z �= 0}.
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The stated version follows from Lemma 5.4(i)(c).

Suppose (y, r) ∈ ∂̂(f ◦ β)(0, t), let z := (z1, z2) ∈ R
2 be small, and let w be an

arbitrary nonzero vector in R
n. Then

f(β(0, t) + (z1, z2)) = (f ◦ β)

(
(0, t) +

(
w

‖w‖
z1 − z2√

2
,
z1 + z2√

2

))

≥ (f ◦ β)(0, t) +
wT y

‖w‖
z1 − z2√

2
+ r

z1 + z2√
2

+ o(‖z‖)

= f(β(0, t)) + 〈dw(y, r), (z1, z2)〉 + o(‖z‖).

Consequently dw(y, r) ∈ ∂̂f(β(0, t)) for all w �= 0.

In the opposite direction suppose that dw(y, r) ∈ ∂̂f(β(0, t)) for all w �= 0. If
y = 0, then for any vector (z, s) ∈ R

n × R close to 0 we have

(f ◦ β)((0, t) + (z, s)) = f(β(0, t) + (β((0, t) + (z, s)) − β(0, t)))

≥ f(β(0, t)) + 〈dw(0, r), (β((0, t) + (z, s)) − β(0, t))〉 + o(‖(z, s)‖)
= f(β(0, t)) + rs + o(‖(z, s)‖)
= (f ◦ β)(0, t) + 〈(0, r), (z, s)〉 + o(‖(z, s)‖).

Thus, (0, r) ∈ ∂̂(f ◦ β)(0, t).

If y �= 0, then for w = y we have dy(y, r) ∈ ∂̂f(β(0, t)). Let (z, s) ∈ R
n × R be a

vector close to 0. Then

(f ◦ β)((0, t) + (z, s)) = f(β(0, t) + (β((0, t) + (z, s)) − β(0, t)))

≥ f(β(0, t)) + 〈dy(y, r), (β((0, t) + (z, s)) − β(0, t))〉 + o(‖(z, s)‖)
= f(β(0, t)) + ‖y‖‖z‖ + rs + o(‖(z, s)‖)
≥ (f ◦ β)(0, t) + 〈(y, r), (z, s)〉 + o(‖(z, s)‖).

Consequently (y, r) ∈ ∂̂(f ◦ β)(0, t).
The proof for the proximal subdifferential is essentially identical.

9. The approximate and horizon subdifferentials. Given a function h :
R

m → [−∞,+∞] and a point x in R
m at which h is finite, a vector y of R

m is
called an approximate subgradient of h at x if there is a sequence of points {xk} in
R

m approaching x with values h(xk) approaching h(x) and a sequence of regular

subgradients yk in ∂̂h(xk) approaching y. The set of all approximate subgradients is
called the approximate subdifferential ∂h(x). A vector y is called a horizon subgradient
if either y = 0 or there is a sequence of points {xv} in R

m approaching x with values
h(xk) approaching h(x), a sequence {tk} of reals decreasing to zero, and a sequence of

regular subgradients yk in ∂̂h(xk) for which tkyk approaches y. The set of all horizon
subgradients is denoted ∂∞h(x). If h is infinite at x, then the set ∂h(x) is defined to
be empty and ∂∞h(x) to be {0}.

Recall that we used the same notation, ∂h(x), for the convex subgradient when
h is a convex function. There is no danger of confusion because the subdifferentials
coincide when h is a proper, convex function; see [20, Proposition 8.12].

Theorem 9.1. The approximate subdifferential of any Lorentz invariant function
f ◦ β at the point (x, t) is given by the following formulae:

(i) If x �= 0, then

∂(f ◦ β)(x, t) = {d∗x(a, b) | (a, b) ∈ ∂f(β(x, t))};
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(ii) if x = 0, then

∂(f ◦ β)(0, t) = {d∗z(a, b) | (a, b) ∈ ∂f(β(0, t)), z �= 0}.

Similar formulae hold for the horizon subgradient.

Proof. Part (i) x �= 0. This case follows immediately from the chain rule [20,
Exercise 10.7].

Part (ii) x = 0. Suppose (y, r) ∈ ∂(f ◦ β)(0, t). By definition, there is a sequence
of points {(xk, tk)} approaching (0, t) with (f ◦β)(xk, tk) approaching (f ◦β)(0, t) and

a sequence of regular subgradients (yk, rk) ∈ ∂̂(f ◦ β)(xk, tk) approaching (y, r).

Case 1.a. Suppose xk = 0 for all k. Then Theorem 8.5 says that (yk, rk) =

d∗zk(ak, ak) such that (ak, ak) ∈ ∂̂f(β(0, tk)) for some zk �= 0. Since (yk, rk) ap-

proaches (y, r) we get that y = 0 and ak → a := r/
√

2. Thus, (0, r) = (0,
√

2a) =
d∗z(a, a) for any z �= 0 and (a, a) ∈ ∂f(β(0, t)).

Case 1.b. Suppose xk �= 0 for all k. Then Theorem 8.5 says that (yk, rk) =

d∗xq
(ak, bk) such that (ak, bk) ∈ ∂̂f(β(xk, tk)). Let us choose a subsequence k′ for which

xk′
/‖xk′‖ converges to a unit vector z. Then we have that |ak′−bk′ | approaches

√
2‖y‖

and ak′ + bk′ approaches
√

2r, that is, (ak′ , bk′) is a bounded sequence, so if necessary
we may choose a convergent subsequence k′′. Then (ak′′ , bk′′) → (a, b) ∈ ∂f(β(0, t))
and (y, r) = d∗z(a, b).

Case 1.c. Suppose the sequence xk has infinitely many elements that are equal
to 0 and infinitely many elements that are not equal to 0. Let {xk} = {xk′} ∪ {xk′′},
where xk′ �= 0 and xk′′

= 0. We now choose any of the subsequences k′ or k′′ and
apply the corresponding subcase above.

To show the opposite inclusion, suppose that (y, r) = d∗z(a, b) for some (a, b) ∈
∂f(β(0, t)) and some z �= 0. By the definition of approximate subgradients there
is a sequence (ck, dk) approaching β(0, t), with f(ck, dk) approaching f(β(0, t)), and
a sequence of regular subgradients (ak, bk) approaching (a, b) such that (ak, bk) ∈
∂̂f(ck, dk). We have three possible cases.

Case 2.a. Suppose first that there is an infinite subsequence k′ such that ck′ >
dk′ for all k′. Then d∗z(ck′ , dk′) approaches d∗z(β(0, t)) = (0, t) with f(ck′ , dk′) =
(f ◦ β)(d∗z(ck′ , dk′)) approaching f(β(0, t)) = (f ◦ β)(0, t) and regular subgradients

(ak′ , bk′) ∈ ∂̂f(β(d∗z(ck′ , dk′))). If we set zk
′

:= z
‖z‖

ck′−dk′√
2

, then Theorem 8.5 says

that d∗
zk′ (ak′ , bk′) ∈ ∂̂(f ◦ β)(d∗z(ck′ , dk′)). Notice that zk

′
/‖zk′‖ converges to z/‖z‖,

so d∗
zk′ (ak′ , bk′) approaches d∗z(a, b) = (y, r), and thus (y, r) is in ∂(f ◦ β)(0, t).

Case 2.b. There is an infinite subsequence k′ such that ck′ < dk′ for all k′. We are
going to revert to the previous case. We have that (y, r) = d∗−z(b, a), where (b, a) ∈
∂f(β(0, t)) (see Lemma 8.3) and z �= 0. We are given also that the sequence (dk′ , ck′)
approaches β(0, t), with f(dk′ , ck′) approaching f(β(0, t)), and the sequence of regular

subgradients (bk′ , ak′) approaches (b, a) and is such that (bk′ , ak′) ∈ ∂̂f(dk′ , ck′) (by
Lemma 8.3 again). The rest is analogous to the previous case.

Case 2.c. Suppose finally that there is an infinite subsequence k′ such that ck′ =
dk′ for all k′. Then d∗z(ck′ , dk′) approaches d∗z(β(0, t)) = (0, t), with f(ck′ , dk′) =
(f ◦ β)(d∗z(ck′ , dk′)) approaching f(β(0, t)) = (f ◦ β)(0, t) and regular subgradients

(ak′ , bk′) ∈ ∂̂f(β(d∗z(ck′ , dk′))). But then by Theorem 8.5 we have that d∗z(ak′ , bk′) ∈
∂̂(f ◦ β)(0,

√
2dq′). Since d∗z(ak′ , bk′) approaches d∗z(a, b), we are done.

The proof of the formulae for the horizon subgradient is analogous.
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10. Clarke subgradients: The lower semicontinuous case. A function h
is caller lower semicontinuous if its epigraph epih = {(x, α) ∈ R

n × R|h(x) ≤ α} is
a closed subset of R

n × R. Let C ⊂ R
n and x̄ ∈ C. A vector v ∈ R

n is a regular

normal to C at x̄, written v ∈ N̂C(x̄), if limsupx→x̄
〈v,x−x̄〉
|x−x̄| ≤ 0. It is a normal vector

to C at x̄, written v ∈ NC(x̄), if there is a sequence of points xk in C approaching
x̄ and a sequence of regular normals vk in N̂C(xk) approaching v. The set of Clarke
subgradients of a function h at x̄, ∂ch(x̄), is defined by

∂ch(x̄) = {v|(v,−1) ∈ cl convNepih(x̄, h(x̄))}.

It can be shown that if h is locally Lipschitz around x̄, then this definition coincides
with the definition given in section 6, so there is no danger of confusion; see [20,
Theorems 9.13(b) and 8.49].

By [20, Theorem 8.9], if h is lower semicontinuous around x̄, the following formula
holds:

Nepih(x̄, h(x̄)) = {λ(v,−1) | v ∈ ∂h(x̄), λ > 0} ∪ {(v, 0) | v ∈ ∂∞h(x̄)}.

The following lemma can be found in [17, Proposition 2.6]. For an independent
proof see [15, Lemma 4.1].

Lemma 10.1. If h is lower semicontinuous around x̄, we have the representation

∂ch(x̄) = cl (conv ∂h(x̄) + conv ∂∞h(x̄)).

In particular, when the cone ∂∞h(x̄) is pointed we have the simpler representation

∂ch(x̄) = conv ∂h(x̄) + conv ∂∞h(x̄).

It is easy to see that f is lower semicontinuous if and only if f ◦ β is lower
semicontinuous. Our final result is the following theorem.

Theorem 10.2. The Clarke subdifferential of any lower semicontinuous, Lorentz
invariant function f ◦ β at the point (x, t) is given by the following formulae:

(i) If x �= 0, then

∂c(f ◦ β)(x, t) = {d∗x(a, b) | (a, b) ∈ ∂cf(β(x, t))};

(ii) if x = 0, then

∂c(f ◦ β)(0, t) = {d∗z(a, b) | (a, b) ∈ ∂cf(β(0, t)), z �= 0}.

Proof. Suppose first that x = 0. Let A := ∂f(β(x, t)) and B := ∂∞f(β(x, t)).
Using Lemmas 5.4 and 10.1 we get

∂c(f ◦ β)(x, t) = cl (conv ∂(f ◦ β)(x, t) + conv ∂∞(f ◦ β)(x, t))

= cl (convD(A) + convD(B))

= cl (D(convA) + D(convB))

= clD(convA + convB)

= D(cl (convA + convB))

= D(∂cf(β(x, t))).

The case x �= 0 is analogous.
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STRUCTURAL TOPOLOGY OPTIMIZATION WITH EIGENVALUES∗

WOLFGANG ACHTZIGER† AND MICHAL KOČVARA‡

Abstract. The paper considers different problem formulations of topology optimization of dis-
crete or discretized structures with eigenvalues as constraints or as objective functions. We study
multiple-load case formulations of minimum volume or weight, minimum compliance problems, and
the problem of maximizing the minimal eigenvalue of the structure, including the effect of nonstruc-
tural mass. The paper discusses interrelations of the problems and, in particular, shows how solutions
of one problem can be derived from solutions of the others. Moreover, we present equivalent refor-
mulations as semidefinite programming problems with the property that, for the minimum volume
and minimum compliance problem, each local optimizer of these problems is also a global one. This
allows for the calculation of guaranteed global optimizers of the original problems through the use
of modern solution techniques of semidefinite programming. For the problem of maximization of
the minimum eigenvalue we show how to verify the global optimality and present an algorithm for
finding a tight approximation of a globally optimal solution. Numerical examples are provided for
truss structures. Both academic and larger-size examples illustrate the theoretical results achieved
and demonstrate the practical use of this approach. We conclude with an extension on multiple
nonstructural mass conditions.

Key words. eigenvalue optimization, structural optimization, nonlinear semidefinite program-
ming, vibration of structures
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1. Introduction. The subject of this paper is topology optimization of discrete
and discretized structures with consideration of free vibrations of the optimal struc-
ture. Maximization of the fundamental eigenvalue of a structure is a classic problem
in structural engineering. The (generalized) eigenvalue problem typically reads as

K(x)w = λ(M(x) + M0)w,

where K(x) and M(x) are symmetric and positive semidefinite matrices that contin-
uously (often linearly) depend on the parameter x. The problem has been extensively
treated in the engineering literature since the late 1960s; see the papers [24, 21] and
the overview [22] summarizing the early development. See also the recent book [26]
for an up-to-date bibliography on this subject.

The key difficulty in optimization of structural eigenvalues is the nondifferentia-
bility of the eigenvalues as functions of the design variable x. Many articles in the en-
gineering literature dealing with highly interesting applications use efficient heuristic
solution approaches (e.g., [23]). These heuristics are typically based on application-
dependent update schemes of the iterates taking some “sensitivity information” into
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account mimicking the first order derivative. There are a only few papers using non-
heuristic, advanced calculus [25] or the machinery of nondifferentiable optimization
[6, 19] to tackle the problems.

In topology optimization there is another serious difficulty coming into play: the
fact that components of x can become zero. Notice that in this point topology op-
timization is different from classic shape optimization. In shape optimization, the
design of a structure (a body) is typically described by a sort of parametrization of
its boundary, and for each feasible parameter value the corresponding structure can
be analyzed by the standard finite element discretization. In contrast to this, (dis-
crete) topology optimization works with a finite element discretization of the whole
design space, while the structure itself is given by a material distribution in this space.
This means the shape of the structure, the smoothness of its boundary, the number
of holes in the structure, the number of finite elements forming the structure, etc.,
are not predetermined by the user. This results in a set of feasible designs which is
enormously rich; it does not require nor does it impose any preliminary knowledge on
the resulting design and thus realizes a “free” optimal design process governed solely
by the naturally given constraints and physical laws.

The main mathematical difficulty of (discrete) topology optimization is the correct
treatment of finite elements which are “empty,” i.e., represent holes in the structure.
The corresponding matrices K(x) and M(x) then become singular. It seems that this
difficulty has not been studied in full mathematical detail so far. The usual way to
avoid this singularity is to add an additional constraint, x ≥ ε > 0, solve the problem,
and interpret the design variables on the lower bounds as zeros. We show in this
article that the smallest eigenvalue may be non-Lipschitz and even discontinuous; in
certain cases, this fact may cause serious troubles to the above technique.

The general problem of eigenvalue optimization belongs also to classic problems
of linear algebra. When the matrix M(x) +M0 is positive definite for all x, then one
can resort to the theory developed for the standard eigenvalue problem; see [15] for
an excellent overview. Not many papers studying the dependence of the eigenvalues
on a parameter are available for the general case when M(x) + M0 is only positive
semidefinite; see, e.g., [4, 27, 29].

We present three different formulations of the structural design problem. In the
first one we minimize the volume of the structure subject to equilibrium conditions
and compliance constraints. Additionally, we require that the fundamental natural
frequency of the optimal structure is bigger than or equal to a certain threshold value.
The second formulation is analogous; we just switch the volume and the compliance.
In the third formulation we maximize the fundamental frequency, i.e., the minimum
eigenvalue of certain generalized eigenvalue problem, subject to equilibrium conditions
and constraints on the volume and the compliance. Using the semidefinite program-
ming (SDP) framework, we formulate all three problems in a unified way; while the
first two problems lead to linear SDP formulations that were already studied earlier
[20, 14], the third problem leads to an SDP with a bilinear matrix inequality (BMI)
constraint. To our knowledge, the SDP formulation, however straightforward, has
never been used for the numerical solution of the third problem. The reason for this
was the lack of available SDP-BMI solvers. We solve the problem using the recently
developed code Penbmi [10].

We further analyze the mutual relation of our three problems. We show that the
problems are in a certain sense equivalent. More precisely, taking a certain specific
solution from the solution set of one problem, we get a solution of another problem
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with the same data. It is one of the goals of this paper to show that this equivalence
does not hold for an arbitrary solution of the problem; this is also illustrated by
several numerical examples. Note that there is a common belief that these problems
are equivalent. We show that this is not completely true. The equivalence holds
only for simplified problems, for instance, when neglecting one of the constraints and
assuming that the design variables are strictly positive; see, e.g., [18, p. 212].

An important property of the SDP reformulations of the minimum volume and
minimum compliance problem is that each local minimum of any of these problems is
also a global minimum. This is not readily seen from the original problem formulations
and brings important information to the designer. For the problem of maximization
of the minimum eigenvalue we show how to verify the global optimality and present
an algorithm for finding an ε-approximation of a globally optimal solution.

Numerical examples conclude the paper. They illustrate the various formulations
and theorems developed in the paper and also demonstrate the solvability of the SDP
formulations and thus their practical usefulness.

All formulations and theorems in the presentation are developed problems using
the discrete structural models, the trusses. This is to keep the notation fixed and
simple. The theory also applies to discretized structures, for instance, to the variable
thickness sheet or the free material optimization problems [3].

We use standard notation; in particular the notation “A � 0” means that the
symmetric matrix A is positive semidefinite, and “A � 0” means that it is positive
definite. For two symmetric matrices A,B the notation “A � B” (“A � B”) means
that A − B is positive semidefinite (positive definite). The k × k identity matrix is
denoted by Ik×k; ker(A) and range(A) denote the null space and the range space of
a matrix A, respectively.

2. Problem definitions, relations.

2.1. Basic notation, generalized eigenvalues. We consider a general me-
chanical structure, discrete or discretized by the finite element method. The number
of members or finite elements is denoted by m. The structure, yet to be optimized, is
represented by the vector x ∈ R

m, x ≥ 0, of so-called design variables. The meaning
of xi differs from application to application. In truss topology optimization, xi may
represent the volume of a (potential) bar member or its cross-sectional area. In this
situation, the m elements form a grid of so-called potential bars which in the classic
literature is called a “ground structure” [7, 9]. In discretized problems of continuum
topology optimization, xi may represent the thickness of a sheet. Here the elements
refer to a usual finite element discretization, and we must face the difficulty that some
of the elements may have zero thickness. In problems of material optimization, xi

may represent a material parameter. Then xi = 0 refers to an extreme material as,
e.g., void. Examples of various applications of this modeling can be found in [3].
The total number of “free” degrees of freedom (i.e., not fixed by Dirichlet boundary
conditions) is denoted by n. For a given set of n� (independent) load vectors

(1) f� ∈ R
n, f� �= 0, � = 1, . . . , n�,

the structure should satisfy linear equilibrium equations

(2) K(x)u� = f�, � = 1, . . . , n�.
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Here K(x) is the stiffness matrix of the structure, depending on the design variable
x. We will assume linear dependence of K on x,

(3) K(x) =

m∑
i=1

xiKi,

with xiKi being the element stiffness matrices. Note that the stiffness matrix of
element (member) ei is typically defined as

(4) xiKi = xiPiK̂iP
T
i ,

where PiP
T
i is a projection from R

n to the space of element (member) degrees of

freedom. In other words, K̂i is a matrix localized on the particular element, while Ki

lives in the full space R
n. Further,

xiK̂i =

∫
ei

xiB
T
i EiBi dV,

where the rectangular matrix Bi contains derivatives of shape functions of the respec-
tive degrees of freedom, and Ei is a symmetric matrix containing information about
material properties. To exclude pathological situations, we assume that

(5) f� ∈ range

(
m∑
i=1

Ki

)
∀� = 1, . . . , n�,

which means that there exists a material distribution x ≥ 0 that can carry all loads
f� (i.e., there exist corresponding u1, . . . , u� satisfying (2)).

Similarly to the definition of K(x), the mass matrix M(x) of the structure is
assumed to be given as

(6) M(x) =

m∑
i=1

xiMi, Mi = PiM̂iP
T
i ,

with element mass matrices

(7) xiM̂i = ρi

∫
ei

xiN
T
i Ni dV ;

here Ni contains the shape functions of the degrees of freedom associated with the
ith element and ρi is the material density.

As already mentioned above, the design variables x ∈ R
m represent, for instance,

the thickness, cross-sectional area, or material properties of the element. We will
assume that

xi ≥ 0, i = 1, . . . ,m .

Notice that the matrices K̂i, M̂i have the properties K̂i � 0, M̂i � 0, and thus
K(x) � 0, M(x) � 0 for all x ≥ 0. From a practical point of view, it is worth noticing
that the element matrices Ki and Mi are very sparse with only nonzero elements
corresponding to degrees of freedom of the ith element. That means, for each i, the
matrices Ki and Mi have the same nonzero structure. The matrices K(x), M(x),
however, may be dense, in general.
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We assume that the discretized structure is connected and the boundary condi-
tions are such that K(e) � 0 and M(e) � 0, where e is the vector of all ones. The
latter condition simply excludes rigid body movement for any x > 0.

In what follows, we will sometimes collect the displacement vectors u1, . . . , un�

for all the load cases in one vector,

u = (uT
1 , . . . , u

T
n�

)T ∈ R
n·n� ,

for simplification of the notation.
In this paper we do not rely on any other properties of stiffness and mass matrices

than those outlined above. Therefore, the problem formulations and the conclusions
apply to a broad class of problems, e.g., to the variable thickness sheet problem or
the free material optimization problem [3]. For the sake of transparency, however, we
concentrate on a particular class of discrete structures, namely, trusses. A truss is
an assemblage of pin-jointed uniform straight bars. The bars are subjected to only
axial tension and compression when the truss is loaded at the joints. With a given
load and a given set of joints at which the truss is fixed, the goal of the designer is
to find a truss that is as light as possible and satisfies the equilibrium conditions. In
the simplest, yet meaningful, approach, the number of the joints (nodes) and their
position are kept fixed. The design variables are the bar volumes, and the only
constraints are the equilibrium equation and an upper bound on the weighted sum
of the displacements of loaded nodes, so-called compliance. Recently, this model (or
its equivalent reformulations) has been extensively analyzed in the mathematical and
engineering literature (see, e.g., [1, 3] and the references therein).

In this article, we will additionally consider free vibrations of the optimal struc-
ture. The free vibrations are the eigenvalues of the generalized eigenvalue problem

(8) K(x)w = λ(M(x) + M0)w .

The matrix M0 ∈ R
n×n is assumed to be symmetric and positive semidefinite. It

denotes the mass matrix of a given nonstructural mass (“dead load”). For the sake of
completeness, the choice M0 = 0 is possible and will be treated in more detail below.

In what follows, we use the notation

X := {x ∈ R
m | x ≥ 0, x �= 0} .

As a consequence of the construction of K(x) and M(x) we obtain our first result.
Lemma 2.1. For each x ∈ X it holds that

ker(M(x) + M0) � ker(K(x)) .

Proof. Let u ∈ R
n be in ker(M(x) + M0). Then uT (M(x) + M0)u = 0, that is

(see (6)),

0 = uT

(
m∑
i=1

xiPiM̂iP
T
i + M0

)
u =

m∑
i=1

xi(P
T
i u)T M̂i(P

T
i u) + uTM0u .

Because M̂i � 0 for all i, and because M0 � 0, we conclude that

PT
i u = 0 ∀i such that xi > 0.
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Hence, by the definition of K(x) and by (4),

K(x)u =

m∑
i=1

xiKiu =

m∑
i=1

xiPiK̂iP
T
i u =

∑
i: xi �=0

xiPiK̂iP
T
i u = 0,

and the proof is complete.
We now want to define a function λmin as the smallest eigenvalue λ of problem

(8) for a given structure represented by x ∈ X. Before doing that, we mention the
following dilemma in the generalized eigenvalue problem (8). If x ∈ X is fixed and
(λ,w) ∈ R × R

n is a solution of (8) with w �= 0 but w ∈ ker(M(x) + M0), then
Lemma 2.1 shows that also K(x)w = 0. Hence (μ,w) is also a solution of (8) for
arbitrary μ ∈ R. In this situation we say that this eigenvalue is undefined ; otherwise
it is well defined. Because undefined eigenvalues are meaningless from the engineering
point of view, we want to exclude them from our considerations. This leads to the
following definition.

Definition 2.2. For any x ∈ X, let λmin(x) denote the smallest
ined eigenvalue of (8), i.e.,

λmin(x) = min{λ | ∃w ∈ R
n : (8) holds for (λ,w) and w /∈ ker(M(x) + M0)} .

This defines a function λmin : X −→ R ∪ {+∞}.
The next proposition collects basic properties of λmin(·).
Proposition 2.3.

(a) λmin(·) is finite and nonnegative on X .
(b) For all x ∈ X,

λmin(x) = inf
u: (M(x)+M0)u �=0

uTK(x)u

uT (M(x) + M0)u
.

(c) For all x ∈ X,

λmin(x) = sup{λ | K(x) − λ(M(x) + M0) � 0} .
(d) λmin(·) is upper semicontinuous on X.
(e) Let ε > 0 be fixed. Then λmin(·) is continuous on Xε := {x ∈ R

m | x ≥ ε >
0}.

(f) −λmin(·) is quasi-convex on X.
A shorthand version of a proof of this proposition says that in Definition 2.2

we consider a naturally reduced eigenvalue problem which is defined on the space
ker(A)⊥. One can then rely on classic theorems on generalized eigenvalue problems
with positive definite matrices. A detailed proof of Proposition 2.3 can be found in
Appendix A.1.

For a general x ∈ X we cannot obtain more than upper semicontinuity of λmin(·)
(see Proposition 2.3(d)). The following example shows that λmin(·) may be discon-
tinuous at the boundary of X, when certain components of x are equal to zero.

Example 2.4. Consider the truss depicted in Figure 1. Let the truss be symmetric
with respect to (w.r.t.) its horizontal axis, so consider only two design variables, x1

and x2. The corresponding stiffness and mass matrix have the following form (where
rounded values are displayed for better illustration):

K(x) =

⎛
⎜⎜⎝
x1 · 2 0 0 0

0 x1 · 2 0 0
0 0 x2 · 1.28 0
0 0 0 x2 · 0.32

⎞
⎟⎟⎠ ,
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x1

x1

x2

x2

Fig. 1. Example showing possible discontinuity of λmin.

M(x) =

⎛
⎜⎜⎝
x1 · 2.83 0 0 0

0 x1 · 2.83 0 0
0 0 x2 · 4.47 0
0 0 0 x2 · 4.47

⎞
⎟⎟⎠ .

The corresponding (unordered) eigenvalues are

(λ1, λ2, λ3, λ4) =
( 2

2.83

x1

x1
,

2

2.83

x1

x1
,

1.28

4.47

x2

x2
,

0.32

4.47

x2

x2

)
.

The function λmin then has the following values:

λmin(x) =
0.32

4.47
≈ 0.07 for x2 > 0,

λmin(x) =
2

2.83
≈ 0.71 for x2 = 0

and is thus discontinuous at x2 = 0. The reason for the discontinuity lies in the fact
that when x2 = 0 the eigenvalue 0.32

4.47
x2

x2
becomes undefined and λmin “jumps” to what

was before the second smallest eigenvalue.
Remark 2.5. Example 4.5 will indicate that λmin(·) may not even be Lipschitz

continuous near the boundary of X.

2.2. The original formulations. We first give three formulations of the truss
design problem that are well known in the engineering literature. These formulations
are obtained by just “writing down” the primal requirements and natural constraints.

The minimum volume problem. In the traditional formulation of the truss
topology problem, one minimizes the volume or weight of the truss subject to equilib-
rium conditions and constraints on the smallest eigenfrequency. As mentioned earlier,
the meaning of xi depends on the considered application. Throughout the paper the
term
∑

xi is referred to as the “volume” of the structure although its particular inter-
pretation may be different. The term “volume” refers to the truss topology problem
where xi denotes the bar volume of the ith (potential) bar. If ρi > 0 denotes the den-
sity of the material used in this bar, then the substitutions x′

i := ρixi, K
′
i := 1

ρi
Ki,

M ′
i := 1

ρi
Mi for all i transform volume into weight. Hence, the following minimum

volume problem (and, analogously, all other minimum volume problems in the paper)
may be equivalently interpreted as a minimum weight problem, which is of paramount
practical interest. In problems of material optimization, xi may represent a material
constant such as Young’s modulus of the material in the ith element. In this case

∑
xi
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represents a simple measure of the total stiffness of the structure. Depending on the
precise mechanical meaning of the variables xi, the matrices Ki and Mi eventually
must be scaled by positive constants. Since this does not affect the mathematical
properties of these matrices needed in this paper, these modifications are ignored in
the following:

min
x∈Rm, u∈R

n·n�

m∑
i=1

xi(Pvol)

subject to

(
m∑
i=1

xiKi

)
u� = f�, � = 1, . . . , n�,

fT
� u� ≤ γ, � = 1, . . . , n�,

xi ≥ 0, i = 1, . . . ,m,

λmin(x) ≥ λ .

Here γ is a given upper bound on the compliance of the optimal structure and λ > 0
is a given threshold eigenvalue. The simultaneous consideration of constraints on
compliance and minimum eigenvalue is useful from a practical point of view. Suitable
choices for γ and λ are often directly given by technical requirements on the consid-
ered application. If a compliance restriction shall not be considered, then γ formally
may be chosen as a very big value. The objective function of this problem is the
function (x, u) �→

∑
xi. Notice that the eigenvalue constraint is discontinuous (see

Example 2.4); this (and not only this) makes the problem rather difficult.

The minimum compliance problem. In this formulation one minimizes the
worst-case compliance (maximizes the stiffness) of the truss subject to equilibrium
conditions and constraints on the minimum eigenfrequency:

min
x∈Rm,u∈R

n·n�
max

1≤�≤n�

fT
� u�(Pcompl)

subject to

(
m∑
i=1

xiKi

)
u� = f�, � = 1, . . . , n�,

m∑
i=1

xi ≤ V ,

xi ≥ 0, i = 1, . . . ,m,

λmin(x) ≥ λ .

Here V > 0 is an upper bound on the volume of the optimal structure and, again,
λ > 0 is a given threshold eigenvalue. For this problem, the objective function is the
nonsmooth function (x, u) �→ max1≤�≤n�

fT
� u�. Again, notice that the eigenvalue con-

straint is not continuous. Moreover, the volume restriction may be formally skipped
by choosing V very large.

The problem of maximizing the minimal eigenvalue. Here we want to
maximize the smallest eigenvalue of (8) subject to equilibrium conditions and con-
straints on the compliance and volume. Maximization of the smallest eigenfrequency
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is of paramount importance in many industrial application, e.g., in civil engineering:

max
x∈Rm,u�∈Rn

λmin(x)(Peig)

subject to

(
m∑
i=1

xiKi

)
u� = f�, � = 1, . . . , n�,

fT
� u� ≤ γ, � = 1, . . . , n�,
m∑
i=1

xi ≤ V ,

xi ≥ 0, i = 1, . . . ,m .

Here the objective function is (x, u) �→ λmin(x), which is a possibly discontinuous
function. This discontinuity is the reason that a standard perturbation approach
widely used by practitioners for the solution of (Peig) may fail. If, with some small
ε > 0, the nonnegativity constraints are replaced by the constraints xi ≥ ε for all i,
and if x∗

ε denotes a solution of this perturbed problem (together with some u∗
ε), then

x∗
ε may not converge to some solution x∗ of the unperturbed problem (see Example 2.4

above).
We mention that each of the above three problems has already been considered in

the literature with more or less small modifications, and that all problems find valu-
able interest in practical applications (see [22, 26, 15]). To the best of our knowledge,
however, a rigorous treatment of these problems in the situation of positive semidef-
inite matrices K and M (i.e., permitting xi = 0 for some i, as needed in topology
optimization) has not been considered so far.

2.3. Interrelations of original formulations for M0 = 0. In this section
we study relations of the three problems (Pvol), (Pcompl), and (Peig) when M0 = 0.
These relations are directly given by rescaling arguments but will also appear as
special cases of problems with arbitrary M0 treated in the next section. Note that
in the following theorems we do not discuss the existence of solutions. Instead, we
discuss their interrelations when existence is guaranteed. We start with an auxiliary
result.

Lemma 2.6. Let (x, u) ∈ R
m × R

n·n� , x ≥ 0, satisfy the equilibrium condition

(9) K(x)u� = f�

for some load vector f�. Then fT
� u� > 0 and

∑m
i=1 xi > 0.

Proof. Because each of the matrices Ki is symmetric and positive semidefinite, it
is clear that fT

� u� = uT
� K(x)u� ≥ 0. Assume that fT

� u� = 0. Then uT
� K(x)u� = 0,

and simple linear algebra shows that

(10) K(x)u� = 0Rn .

Equation (10), however, is a contradiction of the assumptions (9) and (1). If
∑m

i=1 xi =
0, then x = 0, and the contradiction to (9) and (1) is obvious.

Next we observe that the function λmin( . ) is independent of scaling of the struc-
ture, provided M0 = 0. Recall that λmin(x) is a well-defined nonnegative number for
any x ∈ X (see Proposition 2.3(a)).

Lemma 2.7. Let M0 = 0 and x ≥ 0 be any vector. Then

λmin(μx) = λmin(x) ∀μ > 0.
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Proof. Because K( · ) and M( · ) are linear functions, the eigenvalue equation
K(μx)v = λM(μx)v is equivalent to K(x)v = λM(x)v for all μ > 0.

We first show that each solution of (Pvol) immediately leads to a solution of
(Pcompl).

Theorem 2.8. Let M0 = 0 and (x∗, u∗) be a solution of (Pvol).
(a) Then max1≤�≤n�

fT
� u∗

� = γ.
(b) Put V :=

∑m
i=1 x

∗
i in problem (Pcompl) and copy the value of λ from problem

(Pvol). Then (x∗, u∗) is optimal for (Pcompl) with optimal objective function
value γ.

Proof. For the proof of (a), denote

γ∗ := max
1≤�≤n�

fT
� u∗

� .

We must show that γ∗ = γ. Due to Lemma 2.6 we have

γ∗ > 0 and V ∗ :=
∑

x∗
i > 0.

Consider the couple

(x̃∗, ũ∗) :=
(γ∗

γ
x∗,

γ

γ∗ u∗
)

;

by the definition of γ∗ we obtain

(11) fT
� ũ∗

� =
γ

γ∗ f
T
� u∗

� ≤ γ

γ∗ γ∗ = γ ∀� = 1, . . . , n�,

and, obviously,(
m∑
i=1

x̃∗
iKi

)
ũ∗
� =

γ∗γ

γγ∗

(
m∑
i=1

x∗
iKi

)
u∗
� = f� ∀� = 1, . . . , n�.

This, together with Lemma 2.7, shows that (x̃∗, ũ∗) is feasible for (Pvol). Hence
optimality of (x∗, u∗) in (Pvol) yields

V ∗ ≤
m∑
i=1

x̃∗
i =

γ∗

γ

m∑
i=1

x∗
i =

γ∗

γ
V ∗.

Because V ∗ > 0, this means

γ ≤ γ∗.

Equation (11), however, shows that γ∗ ≤ γ. All in all, we arrive at γ∗ = γ, as stated
in (a).

Now we prove (b). Due to the choice of V it is clear that (x∗, u∗) is feasible
for problem (Pcompl). Moreover, (a) shows that the corresponding objective function
value is γ. Let (x, u) be an arbitrary feasible point of (Pcompl). Lemma 2.6 shows
that the value γ := max1≤�≤n�

fT
� u� is positive, and hence the couple

(x̃, ũ) :=
(γ
γ
x,

γ

γ
u
)
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is well defined. As in (a), we conclude that (x̃, ũ) is feasible for (Pvol). Optimality of
(x∗, u∗) in (Pvol) gives

(12)

m∑
i=1

x∗
i ≤

m∑
i=1

x̃i =
γ

γ

m∑
i=1

xi.

Now,
∑m

i=1 x
∗
i = V by the definition of V , and we have

∑m
i=1 xi ≤ V by the feasibility

of (x, u) for (Pcompl). Hence (12) becomes V ≤ γ
γV , which in turn means that γ ≤ γ.

Thus we have shown (use (a)) that

max
1≤�≤n�

fT
� u∗

� ≤ max
1≤�≤n�

fT
� u�,

i.e., optimality of (x∗, u∗) for problem (Pcompl).
The first assertion of the theorem shows that, when M0 = 0, the compliance con-

straint in (Pvol) is always active for at least one load case. Later we will demonstrate
this theorem by means of a numerical example (see Example 4.1).

A completely analogous theorem to Theorem 2.8 can be stated when problems
(Pvol) and (Pcompl) are interchanged. The proof uses the same arguments and is thus
omitted.

Theorem 2.9. Let M0 = 0 and let (x∗, u∗) be a solution of (Pcompl).
(a) Then

∑m
i=1 x

∗
i = V .

(b) Put γ := max1≤�≤n�
fT
� u∗

� in problem (Pvol) and copy λ from (Pcompl). Then
(x∗, u∗) is optimal for (Pvol) with optimal objective function value V .

The interrelations of (Pvol) (resp., of (Pcompl)) and (Peig) are a bit more cum-
bersome because the objective function (Peig) is invariant with respect to scaling, as
shown in Lemma 2.7. As a first and simple result, we obtain the following proposition
(where all sums run over i = 1, . . . ,m).

Proposition 2.10. Let M0 = 0, and let (x∗, u∗) be a solution of problem (Peig).
(a) Then for each

(13) μ ∈

⎡
⎣∑x∗

i

V
;

γ

max
1≤�≤n�

fT
� u∗

�

⎤
⎦

the couple ( 1
μx

∗, μu∗) is also a solution of (Peig).

(b) In particular, (
V∑
x∗
i

x∗,

∑
x∗
i

V
u∗
)

is also a solution of (Peig) where the volume constraint is attained as an
equality.

(c) Analogously to (b), ⎛
⎝ max

1≤�≤n�

fT
� u∗

�

γ
x∗,

γ

max
1≤�≤n�

fT
� u∗

�

u∗

⎞
⎠

is also a solution of (Peig) where the compliance constraint is attained as an
equality for at least one load case �.
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Proof. First, feasibility of (x∗, u∗) in (Peig) and Lemma 2.6 yield

0 <

∑
x∗
i

V
≤ 1 ≤ γ

max
1≤�≤n�

fT
� u∗

�

,

and hence the interval in (13) is well defined and nonempty. Moreover, it is straight-
forward to see that∑ 1

μ
x∗
i ≤ V and fT

� u∗
� ≤ γ ∀� = 1, . . . , n�

hold if and only if μ satisfies (13). Thus for each μ from (13), the point ( 1
μx

∗, μu∗) is

feasible in problem (Peig). Hence Lemma 2.7 shows that it is even an optimal solution.
Assertions (b) and (c) are straightforward consequences of (a).

This proposition relies on the fact that, for M0 = 0, λmin(·) is invariant with
respect to scaling of the structure. Hence, if either the volume constraint or the
compliance constraints are inactive at the optimum, the optimal structure can be
scaled without changing the value of the objective function λmin(·). This shows that
(for M0 = 0) problem (Peig) rather looks for an optimal “shape” of the structure
independently of the appropriate scaling. Later, in section 4, we will show a numerical
example illustrating Proposition 2.10 (see Example 4.3).

2.4. Interrelations of original formulations for arbitrary M0. In this sec-
tion, we do not make any restrictions on M0 apart from the general requirements
already mentioned, i.e., that M0 is symmetric and positive semidefinite. In the follow-
ing, when relating two different optimization problems, the matrix M0 is considered
to be the same in both problems.

We start with a general result on the relation of optimization problems where
the objective function of one problem acts as a constraint of the other one and vice
versa. Through this result we will then be able to state all interrelationships of the
formulations (Pvol), (Pcompl), and (Peig).

Theorem 2.11. Let Y � R
k be nonempty, and let the functions f1, f2 : Y −→ R

be given. For f1, f2 ∈ R define the two optimization problems

(P1[f2]) min
y∈Y

{ f1(y) | f2(y) ≤ f2 }

and

(P2[f1]) min
y∈Y

{ f2(y) | f1(y) ≤ f1 }.

Let f2 be fixed and the set Y ∗
1 of solutions to problem (P1[f2]) be nonempty. The

optimal function value is denoted by

f∗
1 := f1(y

∗) ∀y∗ ∈ Y ∗
1 .

Put

(14) f∗
2 := inf{ f2(y

∗) | y∗ ∈ Y ∗
1 },

and let the infimum be attained at some ŷ∗ ∈ Y ∗
1 . Consider problem (P2[f1]) with

f1 := f∗
1 .
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Then ŷ∗ is optimal for problem (P2[f1]) with optimal objective function value f∗
2 .

Proof. Optimality, and hence feasibility, of ŷ∗ for (P1[f2]) shows that this point
is also feasible for (P2[f1]) due to the definition of f1 := f∗

1 . By the choice of ŷ∗,
the value of the objective function of ŷ∗ in (P2[f1]) is f∗

2 . Now, let y be an arbitrary
feasible point of (P2[f1]) with

(15) f2(y) ≤ f∗
2 .

We must prove that f2(y) ≥ f∗
2 .

First, the choice of ŷ∗ shows that

f∗
2 = f2(ŷ

∗) ≤ f2.

Hence, using (15), we see that

f2(y) ≤ f2.

Thus, due to feasibility of y in (P2[f1]), it is clear that (x, u) is also feasible for
(P1[f2]). The definition of f1 and the optimality of ŷ∗ for (P1[f2]) show that

(16) f1 = f∗
1 = f1(ŷ

∗) ≤ f1(y).

The feasibility of (x, u) for (P2[f1]), however, shows that

f1(y) ≤ f1,

which together with (16) and with the definition f1 := f∗
1 proves

f1(y) = f∗
1 .

We conclude that y is optimal for (P1[f2]), i.e., y ∈ Y ∗
1 . Hence, by the definition of

f∗
2 ,

f2(y) ≥ f∗
2 ,

and the proof is complete.
Now we collect certain tools which are needed to show that the infimum in (14)

is attained in all situations. For this, we define the function

c : {x ∈ R
m | x ≥ 0 } −→ R ∪ {+∞},

x �→ sup
1≤�≤n�

sup
u�∈Rn

{
2fT

� u� − uT
�

(
m∑
i=1

xiKi

)
u�

}
.

Obviously, the function c denotes the maximum (over all load cases) of the negative
minimum potential energies of the structure x.

Proposition 2.12 (properties of the function c).
(a) Let x ≥ 0. Then c(x) < +∞ if and only if there exist “displacement vectors”

u1, . . . , un�
∈ R

n such that

(17) K(x)u� = f� ∀� = 1, . . . , n�.

(b) Let x ≥ 0. If c(x) < +∞, then

c(x) = max
1≤�≤n�

fT
� u�

for all u1, . . . , un�
which satisfy (17).
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(c) The function c(·) is finite and continuous on the set {x ∈ R
m | x > 0} and

lower semicontinuous (l.s.c.) on {x | x ≥ 0}, i.e.,

lim inf
x→x̄
x≥0

c(x) ≥ c(x̄), x̄ ≥ 0.

Proof. All assertions were proved in [2]. Assertions (a) and (b), however, are
easily deduced from the necessary and sufficient conditions of the inner sup-problems
over u� and from the fact that a convex quadratic function is unbounded if and only if
it does not possess a stationary point. Concerning (c), we mention that the finiteness
of c on {x | x > 0} is based on assumption (5), and that c possesses much stronger
continuity properties than just being l.s.c. on {x | x ≥ 0} (see [2]).

For simplification of notation, we define

vol(x) :=

m∑
i=1

xi

for x ∈ R
m, x ≥ 0. Moreover, we define

S∗
vol,S∗

compl,S∗
eig ⊂ {x ∈ R

m | x ≥ 0} × R
n·n�

as the solution sets of problems (Pvol), (Pcompl), and (Peig), respectively. Notice that
these sets may well be empty.

Our first result based on Theorem 2.11 relates problem (Pvol) with problems
(Pcompl) and (Peig), respectively.

Theorem 2.13. Let S∗
vol be nonempty. Denote the optimal function value of

problem (Pvol) by V ∗, i.e.,

V ∗ :=

m∑
i=1

x∗
i ∀(x∗, u∗) ∈ S∗

vol.

Put

(18) γ∗ := inf
{

max
1≤�≤n�

fT
� u∗

�

∣∣∣ (x∗, u∗) ∈ S∗
vol

}
and

(19) λ∗ := sup
{
λmin(x∗)

∣∣∣ (x∗, u∗) ∈ S∗
vol

}
.

Then the following assertions hold:
(a) The infimum in (18) is attained at some (x̂∗, û∗) ∈ S∗

vol. Moreover, with
V := V ∗, and with λ copied from problem (Pvol), the point (x̂∗, û∗) is optimal
for problem (Pcompl) with optimal objective function value γ∗.

(b) The supremum in (19) is attained at some (x̃∗, ũ∗) ∈ S∗
vol. Moreover, with

V := V ∗, and with γ copied from problem (Pvol), the point (x̃∗, ũ∗) is optimal
for problem (Peig) with optimal objective function value λ∗.

Proof. Consider the set

X ∗
vol := {x∗ | (x∗, u∗) ∈ S∗

vol}.

Using Proposition 2.12(a) and (b) it is easy to see that

(20) X ∗
vol =
{
x ≥ 0

∣∣∣ vol(x) = V ∗, c(x) ≤ γ, λmin(x) ≥ λ
}
.
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Because x ≥ 0 and vol(x) = V ∗ for all x ∈ X ∗
vol, the set X ∗

vol is bounded. Moreover,
because vol(·) is continuous, λmin(·) is upper semicontinuous (u.s.c.) (see Proposi-
tion 2.3(d)) and c(·) is l.s.c. (see Proposition 2.12(c)), the set X ∗

vol is closed. All in
all, X ∗

vol is a compact set.
We first prove (a). Proposition 2.12(a) and (b) show that

(21) γ∗ = inf{ c(x) | x ∈ X ∗
vol }

and that the infimum in (18) is attained if and only if the infimum in (21) is attained.
The latter, however, is straightforward because c(·) is an l.s.c. function, and X ∗

vol is a
compact set (each l.s.c. function attains its infimum on a compact set; see, e.g., [17,
Thm. 2.13.1]). The rest of the assertion follows directly from Theorem 2.11 with the
settings

Y := { (x, u) ∈ R
m × R

n·n� | K(x)u� = f�, � = 1, . . . , n�,
xi ≥ 0, i = 1, . . . ,m,

λmin(x) ≥ λ},

f1(x, u) := vol(x), f2(x, u) := c(x), f2 := γ, f1 := V ∗.

The proof of (b) is analogous. We have to show that the supremum

λ∗ = sup{λmin(x) | x ∈ X ∗
vol }

is attained at some x̃∗. This is the case because λmin(·) is u.s.c. (see Proposition 2.3(d))
and X ∗

vol is compact (see above). Notice that c(x̃∗) ≤ γ < +∞ (see (20)), and
hence corresponding vectors ũ∗

1, . . . , ũ
∗
e�

exist by Proposition 2.12(a) and (b) such
that (x̃∗, ũ∗) is feasible (and optimal) for (Pvol). The rest of assertion (b) follows
directly from Theorem 2.11 with the settings

Y := { (x, u) ∈ R
m × R

n·n� | K(x)u� = f�, � = 1, . . . , n�,
xi ≥ 0, i = 1, . . . ,m,
fT
� u� ≤ γ, � = 1, . . . , n�},

f1(x, u) := vol(x), f2(x, u) := −λmin(x), f2 := −λ, f1 := V ∗.

Theorem 2.13(a) reflects the fact that at some solution (x∗, u∗) of (Pvol) none
of the compliance constraints may be satisfied with equality, and hence “postopti-
mization” in (18) is needed to select a proper solution of (Pvol) to obtain a solution
of (Pcompl). Hence, in general, it is not true that every solution of (Pvol) is also a
solution of (Pcompl)! The problems are thus not equivalent, as is commonly believed.
Theorem 2.13(a) also shows that—with the appropriate settings of V and λ—there is
always a structure x∗ which is optimal for both problems at the same time (provided
there exists a solution at all).

Analogous comments, of course, can be made for Theorem 2.13(b) concerning
solutions of (Peig). A numerical example illustrating Theorem 2.13 is given in section 4
(Example 4.4).

Theorem 2.13 substantially simplifies in the following special situation.
Corollary 2.14. Let the set X ∗

vol = {x∗ | (x∗, u∗) ∈ S∗
vol} be a singleton. Then

the following assertions hold:
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(a) Put V := vol(x∗) in problem (Pcompl) and copy the value λ from problem
(Pvol). Then (x∗, u∗) is optimal for problem (Pcompl) with optimal objective
function value max1≤�≤n�

fT
� u∗

� .
(b) Put V := vol(x∗) in problem (Peig) and copy the value γ from problem (Pvol).

Then (x∗, u∗) is optimal for problem (Peig) with optimal objective function
value λmin(x∗).

Proof. If X ∗
vol = {x∗}, then the infimum in (18) is attained at any (x∗, u∗) ∈ S∗

vol

because for each u∗, ũ∗ with K(x∗)u∗
� = K(x∗)ũ∗

� = f� for all � the compliance values

fT
� u∗

� = ũ∗T
� K(x∗)u∗

� = ũ∗T
� f� = fT

� ũ∗
� , � = 1, . . . , n�,

are constant. Because X ∗
vol is the singleton x∗, and because λmin(·) does not depend

on u∗, it is trivial to see that the supremum in (19) is attained at each (x∗, u∗) ∈ S∗
vol.

Now apply Theorem 2.13.
Remark 2.15. Theorem 2.13(a) generalizes Theorem 2.8(b) of the previous chap-

ter. If M0 = 0 in Theorem 2.13(a), then Theorem 2.8(a) shows that

max
1≤�≤n�

fT
� u∗

� = γ ∀(x∗, u∗) ∈ S∗
vol.

Hence γ∗ = γ, and the infimum in (18) is attained at each solution (x∗, u∗) ∈ S∗
vol. A

similar comment cannot be made for Theorem 2.13(b). The setting M0 = 0 does not
guarantee that for each solution (x∗, u∗) of (Pvol) the eigenvalue constraint is attained
as an equality. This will also be demonstrated by Example 4.4 below. The background
lies in the invariance of λmin(·) w.r.t. scaling of the structure; see Lemma 2.7.

Analogously to Theorem 2.13, we may derive solutions of problems (Pvol) and
(Peig), respectively, from solutions of problem (Pcompl).

Theorem 2.16. Let S∗
compl be nonempty. Denote the optimal function value of

problem (Pcompl) by γ∗, i.e.,

γ∗ := max
1≤�≤n�

fT
� u∗

� ∀(x∗, u∗) ∈ S∗
compl.

Put

(22) V ∗ := inf

{
m∑
i=1

x∗
i

∣∣∣ (x∗, u∗) ∈ S∗
compl

}

and

(23) λ∗ := sup
{
λmin(x∗)

∣∣∣ (x∗, u∗) ∈ S∗
compl

}
.

Then the following assertions hold:
(a) The infimum in (22) is attained at some (x̂∗, û∗) ∈ S∗

compl. Moreover, with

γ := γ∗, and with λ copied from problem (Pcompl), the point (x̂∗, û∗) is optimal
for problem (Pvol) with optimal objective function value V ∗.

(b) The supremum in (23) is attained at some (x̃∗, ũ∗) ∈ S∗
compl. Moreover,

with γ := γ∗, and with V copied from problem (Pcompl), the point (x̃∗, ũ∗) is
optimal for problem (Peig) with optimal objective function value λ∗.

Proof. We modify the proof of Theorem 2.13. Consider the set

X ∗
compl := {x∗ | (x∗, u∗) ∈ S∗

compl}.
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In view of Proposition 2.12(a) and (b) it is easy to see that

(24) X ∗
compl =

{
x ≥ 0

∣∣∣ vol(x) ≤ V , c(x) = γ∗, λmin(x) ≥ λ
}
.

Because γ∗ is the optimal objective function value, there is no x ≥ 0 such that
vol(x) ≤ V , c(x) < γ∗, and λmin(x) ≥ λ. Hence the set X ∗

compl remains unchanged if
we change the equality sign in “c(x) = γ∗” to an inequality sign:

(25) X ∗
compl =

{
x ≥ 0

∣∣∣ vol(x) ≤ V , c(x) ≤ γ∗, λmin(x) ≥ λ
}
.

Because x ≥ 0 and vol(x) ≤ V for all x ∈ X ∗
compl, the set X ∗

compl is bounded. Moreover,
each of the functions vol(·), −λmin(·), and c(·) is l.s.c. (see Propositions 2.3(d) and
2.12(c)). Hence the description (25) shows that X ∗

compl is a closed set, and thus X ∗
compl

is compact (notice that the level line of an l.s.c. function f(·) for some value α, i.e.,
the set {y | f(y) = α}, need not be closed, but the level set {y | f(y) ≤ α} is always
closed).

First we prove (a). Obviously, the infimum in (22) is attained because X ∗
compl is

a compact set and vol(·) is continuous. Now apply Theorem 2.11 with the settings

Y := { (x, u) ∈ R
m × R

n·n� | K(x)u� = f�, � = 1, . . . , n�,
xi ≥ 0, i = 1, . . . ,m,

λmin(x) ≥ λ},

f1(x, u) := max
1≤�≤n�

fT
� u�, f2(x, u) := vol(x), f2 := V , f1 := γ∗.

The proof of (b) is analogous to that of Theorem 2.13(b).
The following corollary parallels Corollary 2.14. Its proof is even simpler because

neither vol(·) nor λmin(·) in (22) and (23), respectively, depends on u∗.
Corollary 2.17. Let the set X ∗

compl = {x∗ | (x∗, u∗) ∈ S∗
compl} be a singleton.

Then the following assertions hold:
(a) Put γ := max1≤�≤n�

fT
� u∗

� in problem (Pvol) and copy the value λ from prob-
lem (Pcompl). Then (x∗, u∗) is optimal for problem (Pvol) with optimal objec-
tive function value vol(x∗).

(b) Put γ := max1≤�≤n�
fT
� u∗

� in problem (Peig) and copy the value V from prob-
lem (Pcompl). Then (x∗, u∗) is optimal for problem (Peig) with optimal objec-
tive function value λmin(x∗).

Remark 2.18. Similarly as in Remark 2.15, Theorem 2.16(a) generalizes Theo-
rem 2.9(b). If M0 = 0 in Theorem 2.16(a), then Theorem 2.9(a) shows that

vol(x∗) = V ∀(x∗, u∗) ∈ S∗
compl.

Hence V ∗ = V , and the infimum in (22) is attained at each solution (x∗, u∗) ∈ S∗
compl.

Finally, we may derive solutions of problems (Pvol) and (Pcompl) from solutions
of (Peig).

Theorem 2.19. Let S∗
eig be nonempty. Denote the optimal function value of

problem (Peig) by λ∗, i.e.,

λ∗ := λmin(x∗) ∀(x∗, u∗) ∈ S∗
eig.
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Put

(26) V ∗ := inf

{
m∑
i=1

x∗
i

∣∣∣ (x∗, u∗) ∈ S∗
eig

}

and

(27) γ∗ := inf
{

max
1≤�≤n�

fT
� u∗

�

∣∣∣ (x∗, u∗) ∈ S∗
eig

}
.

Then the following assertions hold:
(a) The infimum in (26) is attained at some (x̂∗, û∗) ∈ S∗

eig. Moreover, with

λ := λ∗, and with γ copied from problem (Peig), the point (x̂∗, û∗) is optimal
for problem (Pvol) with optimal objective function value V ∗.

(b) The infimum in (27) is attained at some (x̃∗, ũ∗) ∈ S∗
eig. Moreover, with

λ := λ∗, and with V copied from problem (Peig), the point (x̃∗, ũ∗) is optimal
for problem (Pcompl) with optimal objective function value γ∗.

Proof. The proof of this theorem is analogous to that of Theorem 2.13 with the
role of the functions vol(·) and λmin(·) interchanged.

For an illustration of this theorem, we refer to Example 4.3. The proof of the
following corollary is analogous to that of Corollary 2.14.

Corollary 2.20. Let the set X ∗
eig = {x∗ | (x∗, u∗) ∈ S∗

eig} be a singleton. Then
the following assertions hold:

(a) Put λ := λmin(x∗) in problem (Pvol) and copy the value γ from problem
(Peig). Then (x∗, u∗) is optimal for problem (Pvol) with optimal objective
function value vol(x∗).

(b) Put λ := λmin(x∗) in problem (Pcompl) and copy the value V from problem
(Peig). Then (x∗, u∗) is optimal for problem (Pcompl) with optimal objective
function value max1≤�≤n�

fT
� u∗

� .
To conclude this theoretical study of relations of the three original problem for-

mulations, we would like to give a few comments on their practical use. Obviously,
a direct implementation of one of Theorems 2.13, 2.16, and 2.19 for numerical pur-
poses is difficult because one would need to know the set of all solutions to one of
the problems, or one should be able to solve the inf- or sup-problems on the optimal
set. There are ways to do this, as have been recently shown in [11]. However, as we
will see in section 3, there is no need to proceed from a solution of one (nonlinear!)
problem to the solution of some other problem, because global solutions of some of
the original problems can be calculated through equivalent (quasi-)convex problem
formulations.

2.5. Brief discussion on the variation of M0. In this section we want to
briefly prove what is widely known among practitioners: what happens when the
nonstructural mass is changed or even removed? For example, if volume minimiza-
tion is considered, then a bigger nonstructural mass will generally increase the optimal
volume. Similarly, if maximization of the minimal eigenvalue is considered, the re-
moval of the nonstructural mass will generally lead to a smaller minimal eigenvalue.
Hence, in this section, we briefly consider the variation of M0 and use the extended
notation (see Proposition 2.3(c))

(28) λmin(x,M0) := sup{λ | K(x) − λ(M(x) + M0) � 0}.

Lemma 2.21. Let x ≥ 0, and let M̃0,M0 ∈ R
n×n be symmetric with M̃0 � M0 �

0. Then λmin(x, M̃0) ≤ λmin(x,M0).
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Proof. Put λ̃ := λmin(x, M̃0). Then

0 � K(x) − λ̃(M(x) + M̃0) = K(x) − λ̃M(x) − λ̃M̃0

� K(x) − λ̃M(x) − λ̃M0 = K(x) − λ̃(M(x) + M0).

Hence,

λ̃ ≤ sup{λ | K(x) − λ(M(x) + M0) � 0} = λmin(x,M0).

As a simple conclusion concerning the optimal objective function values of our
three problems we obtain the following.

Proposition 2.22. Consider two problems of type (Pvol) (resp., (Pcompl) or
(Peig)), with the same constraint bounds γ and λ (resp., V and λ, or V and γ) but with

different nonstructural mass matrices M0, M̃0, where M̃0 � M0. Let both problems
possess a solution, and denote the optimal objective function values by V ∗, Ṽ ∗ (resp.,

γ∗, γ̃∗, or λ∗, λ̃∗). Then V ∗ ≥ Ṽ ∗ (resp., γ∗ ≥ γ̃∗, or λ∗ ≤ λ̃∗).
Proof. Consider the pair of minimum volume problems. Notice that each feasible

point (x, u) of problem (Pvol) with nonstructural mass M̃0 is also feasible for the
problem with nonstructural mass M0 due to Lemma 2.21(a). Hence, Ṽ ∗ ≤ V ∗.

The proof for the pair of min-max compliance problems is analogous. For the pair
of max-min eigenvalue problems it is even simpler, because the set of feasible points
is the same for both problems, and Lemma 2.21(a) applies directly on the objective
function values. (Notice that for this type of problem, we are max imizing, and thus
we have “≤” in the assertion.)

More detailed results than in the above proposition can hardly be obtained, apart
from the effect of simple joint scalings of the bounds V , γ, λ, and M0. Because the
total mass matrix in the problem is (M(x)+M0), a pure change of only M0 always has
nonlinear impact in the problem, and hence is difficult to describe. As a consequence,
the optimal topology changes as well with a change of M0. Such a numerical example
is presented section 4 (see Example 4.6).

3. SDP reformulations. All the original formulations are nonconvex, some
even discontinuous. Furthermore, all of them implicitly include the computation
of the smallest eigenvalue of (8). Below we give reformulations of problems (Pvol),
(Pcompl), (Peig) to problems that are much easier to analyze and solve numerically.
All these reformulations have been known. The third one, however, has never been
used for the numerical treatment, to our knowledge. We will further use a unified
approach to these reformulations that offers a clear look at their mutual relations.

We start with an auxiliary result.
Proposition 3.1. Let x ∈ R

m, x ≥ 0, and γ ∈ R be fixed, and fix an index
� ∈ {1, . . . , n�}. Then there exists u� ∈ R

n satisfying

K(x)u� = f� and fT
� u� ≤ γ

if and only if (
γ −fT

�

−f� K(x)

)
� 0 .

Proof. Note that K(x) may be singular in our case, so that we cannot directly
use the Schur complement theorem. We first write the matrix inequality equivalently
as

(29) α2γ − 2αfT
� v + vTK(x)v ≥ 0 ∀α ∈ R, ∀v ∈ R

n .
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“⇒” As K(x) � 0, we know that u� minimizes the quadratic functional v �→
vTK(x)v − 2fT

� v with the minimal value −fT
� u�. Thus

vTK(x)v − 2fT
� v ≥ −fT

� u� ≥ −γ ∀v ∈ R
n .

Using the substitution v = σw, σ ∈ R, we can write this as

(σw)TK(x)(σw) − 2fT
� (σw) ≥ −γ ∀σ ∈ R, ∀w ∈ R

n;

hence

wTK(x)w − 1

σ
2fT

� w ≥ − 1

σ2
γ ∀σ ∈ R \ {0}, ∀w ∈ R

n,

which is just (29) with α = 1
σ .

“⇐” Put α = 1; then we get from (29)

γ − 2fT
� v + vTK(x)v ≥ 0 ∀v ∈ R

n,

meaning that the corresponding convex quadratic function in v is bounded from below.
By this, standard linear algebra shows that this function possesses a global minimizer
u� ∈ R

n, and the necessary optimality condition yields

K(x)u� = f� .

Inserting this into (29) with α = 1, we have γ− 2fT
� u� + uT

� f� ≥ 0, that is, γ ≥ fT
� u�,

and we are done.
With this proposition, we immediately get the following reformulations of our

three original problems.

The minimum volume problem. In this problem, γ and λ are given, and we
minimize the upper bound V on the volume:

min
x∈Rm,V ∈R

V(PSDP
vol )

subject to

(
γ −fT

�

−f� K(x)

)
� 0, � = 1, . . . , n�,

m∑
i=1

xi ≤ V,

xi ≥ 0, i = 1, . . . ,m,

K(x) − λ(M(x) + M0) � 0 .

A closely related version of this problem was first formulated and studied by Ohsaki
et al. [20]. They considered the problem without the compliance constraint and with
positive lower bounds on the design variables xi. Using SDP duality, global optima
of this problem can be easily characterized by necessary and sufficient optimality
conditions [8]. Analogous statements can be made for problem (PSDP

vol ) as well.
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The minimum compliance problem. Here V and λ are given, and we mini-
mize the upper bound γ on the compliance:

min
x∈Rm,γ∈R

γ(PSDP
compl)

subject to

(
γ −fT

�

−f� K(x)

)
� 0, � = 1, . . . , n�,

m∑
i=1

xi ≤ V ,

xi ≥ 0, i = 1, . . . ,m,

K(x) − λ(M(x) + M0) � 0 .

The problem of maximizing the minimal eigenvalue. Now γ and V are
given, and λ is the variable. For the sake of a common problem structure in all three
formulations, we minimize and put a minus in front of the objective function:

min
x∈Rm,λ∈R

−λ(PSDP
eig )

subject to

(
γ −fT

�

−f� K(x)

)
� 0, � = 1, . . . , n�,

m∑
i=1

xi ≤ V ,

xi ≥ 0, i = 1, . . . ,m,

K(x) − λ(M(x) + M0) � 0 .

The proof of the following proposition is immediate, and thus is skipped.
Proposition 3.2.

(a) If (x∗, u∗) is a global minimizer of (Pvol), then (x∗, V ∗) is a global mini-
mizer of (PSDP

vol ), where V ∗ :=
∑

x∗
i , and the optimal values of both problems

coincide.
(b) If (x∗, V ∗) is a global minimizer of (PSDP

vol ), then there exists u∗ such that
(x∗, u∗) is a global minimizer of (Pvol), and the optimal values of both prob-
lems coincide.

Analogous statements hold for the pairs of problems (Pcompl), (PSDP
compl) and (Peig),

(PSDP
eig ), respectively, where in the latter case the optimal function values coincide up

to a sign.
Note that problems (PSDP

vol ) and (PSDP
compl) are linear SDPs, while (PSDP

eig ) is an SDP
problem with a BMI constraint, i.e., it is generally nonconvex. We should emphasize
that, due to the SDP reformulation, the originally discontinuous problems became
continuous, a fact of big practical value.

Theorem 3.3. Each local minimizer of problem (PSDP
vol ) is also a global mini-

mizer. An analogous statement holds for problem (PSDP
compl).

Proof. Problems (PSDP
vol ) and (PSDP

compl) are linear SDPs, i.e., convex problems, and
the assertions follow.

Needless to say that this theorem is of paramount interest from the practical point
of view.

Clearly, a statement similar to Theorem 3.3 does not hold for problem (PSDP
eig ); see

Example 2.4, where the function λmin(·) is constant for x2 > 0 and has thus infinitely
many local minima which are, however, greater than the global minimum attained at
x2 = 0.
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We remark, however, that problem (PSDP
eig ) hides a quasi -convex structure. To see

this, use Definition 2.2 to write problem (PSDP
eig ) in the form

(30) min{−λmin(x) | x ∈ F }

with the feasible set

F :=

{
x ∈ R

m
∣∣∣x ≥ 0;

(
γ −fT

�

−f� K(x)

)
� 0, � = 1, . . . , n�;

m∑
i=1

xi ≤ V

}
.

Then Proposition 2.3(f) and the fact that the cone of positive semidefinite matrices
is convex show that we minimize here a quasi-convex function over a convex feasible
set F . This fact might be useful, e.g., for the application of cutting plane algorithms
from global optimization. Unfortunately, the function −λmin(·) fails to be strictly
quasi-convex, as already explained in Example 2.4.

Formulation (30) of problem (PSDP
eig ) immediately clarifies the existence of solu-

tions.
Theorem 3.4. Problem (PSDP

eig ) (or, equivalently, problem (Peig)) possesses a
solution if and only if it possesses feasible points.

Proof. Consider problem (PSDP
eig ) in the form (30). Since the cone of positive

semidefinite matrices is closed, the set F is compact. Moreover, 0 /∈ F due to assump-
tion (1), and hence (−λmin) is l.s.c. on F by Proposition 2.3(d). Each l.s.c. function
attains its infimum on a nonempty compact set (see, e.g., [17, Thm. 2.13.1]).

Instead of using methods of global optimization for the calculation of a global
minimizer of problem (PSDP

eig ), we may use the quasi-convex formulation (30) and the

close relation to the convex problem (PSDP
vol ). In the following we define a bisection

technique that is based on a general algorithm for problems with quasi-convex ob-
jective function and convex constraints; see, e.g., [5, sect. 4.2.5]. This technique of
finding a global solution of (PSDP

eig ) is based on the solutions of a sequence of prob-

lems which are of the type (PSDP
vol ). Alternatively, a sequence of problems of the type

(PSDP
compl) can be used (not described here).

The methodology works as follows. We may consider problem (PSDP
vol ) as a kind

of feasibility problem for (PSDP
eig ) where λ := λ is fixed. More precisely, by solving the

convex problem (PSDP
vol ) we can see whether (PSDP

eig ) possesses feasible points with
objective function value λ ≥ λ or not. Hence, we may state a simple bisection
technique playing with the value of λ. Since the volume constraint of (PSDP

eig ) is
not a constraint of (PSDP

vol ), we slightly modify (PSDP
vol ). For fixed λ ≥ 0 and fixed

δ ≥ 0 consider the following linear SDP:

min
x∈Rm,V ∈R

V(PSDP
vol

(λ, δ))

subject to

(
γ −fT

�

−f� K(x)

)
� 0, � = 1, . . . , n�,

m∑
i=1

xi ≤ V,

V ≤ V ,

xi ≥ 0, i = 1, . . . ,m,

K(x) − (λ + δ)(M(x) + M0) � 0 .
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In the following, the feasible set of this problem is denoted by

F(λ, δ),

for simplicity. Since (PSDP
vol

(λ, δ)) is a convex SDP, modern solution procedures are

able to recognize whether F(λ, δ) = ∅, and we may calculate a feasible point or even
a global minimizer if F(λ, δ) �= ∅.

The following proposition gives a tool for the estimation of the (globally) optimal
objective function value of problem (PSDP

eig ). Its proof is a simple exercise.

Proposition 3.5. Let (x̃, λ) be feasible for (PSDP
eig ), and let (−λ∗∗) denote the

(globally) optimal function value of problem (PSDP
eig ). Moreover, let δ > 0 be arbitrary,

and consider problem (PSDP
vol

(λ, δ)) with the parameters γ and V copied from (PSDP
eig ).

Then the following assertions hold:
(a) If F(λ, δ) �= ∅, then for each (x, V ) ∈ F(λ, δ) the point (x, λ + δ) is feasible

for (PSDP
eig ), i.e., −λ∗∗ ≤ −(λ + δ) < −λ.

(b) If F(λ, δ) = ∅, then −(λ + δ) < −λ∗∗ ≤ −λ.
The practical value of this proposition lies in the possibility of improving upper

and lower bounds for λ∗∗ which can be numerically calculated through solutions (or
only feasible points) of convex linear SDPs.

As a preprocessing step, we first calculate initial lower and upper bounds λL
0 , λ

U
0

on λ∗∗. For this, first calculate a feasible point (x, λ) of (PSDP
eig ) and choose arbitrary

δ̄ > 0. Then find the smallest k ∈ N such that F(λ, 2k δ̄) = ∅ by solving (PSDP
vol

(λ, 2k δ̄))

repeatedly. Set λL
0 := λ+ 2k−1δ̄ and λU

0 := λ+ 2k δ̄. Then Proposition 3.5 shows that

0 ≤ λL
0 ≤ λ∗∗ < λU

0 .

With these bounds it is easy to construct a bisection-type algorithm which in each
step reduces the gap (λU

k − λL
k ) by a factor of (at least) 1

2 .

Algorithm 3.6. Choose an accuracy η > 0, a feasible point (x̂, λ̂) for (PSDP
eig ).

Put (x0, λ0) := (x̂, λ̂), δ0 := 1
2 (λU

0 − λL
0 ), and k := 0. Go to step 2.

1. Calculate a feasible point [or even a local minimizer] (xk, λk) of (PSDP
eig ) with

the additional constraint “λ ≥ λL
k ”.

2. If λk > λL
k , then update λL

k by λL
k := λk.

3. If λU
k − λL

k ≤ η, then EXIT with the result (x∗, λ∗) := (xk, λk).
4. Put δk := 1

2 (λU
k − λL

k ), and consider problem (PSDP
vol

(λk, δk)).

If F(λk, δk) �= ∅, then:
4A. Put λL

k+1 := λL
k + δk, k := k + 1, and go to step 1.

Otherwise, if F(λk, 2
k δ̄) = ∅, then:

4B. Put λU
k+1 := λU

k − δl, k := k + 1, and go to step 1.

Let (PSDP
eig ) possess a solution (x∗∗, λ∗∗) (see Theorem 3.4). Then it is straight-

forward to show that Algorithm 3.6 is well defined, and that after each iteration
the inequalities λL

k ≤ λ∗∗ < λU
k and λU

k − λL
k ≤ 2−k(λU

0 − λL
0 ) hold. Consequently,

Algorithm 3.6 terminates after at most
⌈
(ln(λU

0 − λL
0 ) − ln(η))/(ln(2))

⌉
iterations.

Moreover, at termination, the result (x∗, λ∗) is feasible for (PSDP
eig ) with λ∗∗ −λ∗ ≤ η.

Notice that the additional constraint “λ ≥ λL
k ” in step 1 does not cause any trou-

ble but guarantees that (λk)k is monotonically increasing. Moreover, the calculation
of global minimizers (in step 4A), respectively, local minimizers (in step 1), instead
of just feasible points should significantly speed up the algorithm. In this case the
update of λU

k in step 4B, respectively, of λL
k in step 2, may lead to a much bigger
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reduction of the gap λU
k −λU

k . Obviously, step 1 must be carried out in each iteration.
Notice also that λL

k is increased in step 4A, while it remains untouched in step 4B.
Denote by K the number of iterations in which step 4A has been performed. More-
over, if step 4A has been performed in iteration k− 1, let (xk, λk) in step 1 be a local
optimizer. Then, consequently,

K ≤
∣∣∣{λ | (x, λ) is a local optimizer of (PSDP

eig )
}∣∣∣,

i.e., K is limited by the number of levels of the objective function which are attained
at a local optimizer. We believe that this cardinality is very small in applications. As
an illustration consider Example 2.4 where K = 2.

For the numerical treatment of the SDP problems (PSDP
vol ), (PSDP

compl), (PSDP
eig ) one

must resort to methods of semidefinite programming. Such methods, and correspond-
ing codes, are nowadays available for linear SDPs. The limiting factor of these codes
is, however, the problem size which, compared to general nonlinear programs, is re-
stricted to problems of medium size. The problem (PSDP

eig ) even requires a method
which can deal with BMIs. We will use such a method to solve examples in the next
section. It should be noted, however, that algorithms and codes for SDPs with BMIs
are on the edge of current research and are not yet standard. Notice that the BMI
constraint in any generalized eigenvalue problem (GEVP) has a very simple structure.
As above, being quasi-convex, the problem can be solved by a bisection algorithm, i.e.,
by solving a sequence of linear SDP problems of the same size and structure (again,
see [5, sect. 4.2.5]). However, the crucial factor, in our opinion, is the size of the
problem. To solve one GEVP problem formulated as BMI (for instance, by the code
Penbmi), one needs about the same CPU time as to solve one linear SDP problem in
the bisection algorithm! Hence, when we want to apply the approach to large-scale
problems with thousands of variables (in particular, to problems discretized by the
finite element method), the BMI formulation will use only a fraction of CPU time
when compared to the bisection approach.

4. Numerical examples. In this chapter we present numerical examples which,
on the one hand, will illustrate some of the theoretical results above and, on the other
hand, demonstrate the practical use of the SDP problem formulations.

Intentionally, we do not specify realistic physical properties, like material elastic
modulus E or density ρ. In all examples, they are assumed to be equal to one.
This can be done without any loss of generality or applicability due to the linear
dependence of the volume, compliance, and stiffness and mass matrices on x, E, and
ρ. In this case, switching from our default values to realistic physical values (say,
E = 2.1 · 1011 Pa and ρ = 7.8 · 103 kg/m3) is a matter of a simple linear scaling of our
results. Further, when we speak of an i×j truss, we have in mind a regular equidistant
grid of i · j nodes, i in the horizontal direction and j in the vertical direction. Thus
the dimensions of the nodal grid are (i− 1) × (j − 1).

The code we have used for the treatment of the SDP formulations is Penbmi,
version 2.0 [13]. This code implements the generalized augmented Lagrangian method,
as described in [12, 28]. In particular, Penbmi can treat BMIs, as is necessary for
problem (PSDP

eig ) [10].
The examples were solved on a Pentium III-M 1GHz PC running Windows 2000.

All problems were formulated and solved in MATLAB using the Yalmip parser [16]
to Penbmi.

Example 4.1. This example illustrates Theorems 2.8, 2.9, and 2.19 with M0 = 0.
Consider a 3 × 3 truss with all nodes connected by potential bars. The nodes on the
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Fig. 2. A 3 × 3 truss (Example 4.1): initial layout and optimal topology.

left-hand side are fixed in both directions and a horizontal force (−1, 0) is applied
at the right-middle node; see Figure 2 (left). No nonstructural mass is considered,
i.e., M0 = 0. We consider the minimum volume problem (PSDP

vol ) with γ = 1 and
λ = 5.0·10−2. Penbmi calculated the (global) optimal solution (x∗, V ∗) of this convex
problem: the optimal design x∗ is shown in Figure 2 (right), while V ∗ = 1.20229.
Proposition 3.2(b) shows that there exists u∗ such that (x∗, u∗) is optimal for problem
(Pvol).

Now consider the minimum compliance problem (PSDP
compl) with V = 1.20229 and

λ = 5.0 · 10−2. As expected by Proposition 3.2(b) and Theorem 2.9, we obtain the
solution (x∗, γ∗) with the same structure x∗ as before (Figure 2 (right)), and with
γ∗ = 1.

Finally, when solving the problem of maximizing the minimum eigenvalue (PSDP
eig )

with V = 1.20229 and γ = 1, we again obtain x∗ from before, and λ∗ = 5.0 · 10−2.
This shows that the value V ∗ in (26) and the value γ∗ in (27) are attained for x∗,
because otherwise this would yield a contradiction to Theorem 2.19. The authors
believe that in this simple example the solution structure x∗ is the unique solution,
and thus Corollary 2.20 may be applied.

Example 4.2. In this example, as in Example 4.1 above, we again obtain the
same optimal structure for all three problem formulations. Here, however, M0 �= 0,
and thus these coincidences are somewhat unexpected.

We consider the same ground structure, boundary conditions, and external load
as in the previous example. In addition, we assign a nonstructural mass of size 10
at the loaded node, i.e., M0 �= 0; see Figure 3 (left). Consider the minimum volume
problem (PSDP

vol ) with γ = 1 and λ = 5.0 · 10−2. Figure 3 (right) shows the optimal
design x∗. The corresponding optimal volume is V ∗ = 7.10157.

Now consider the minimum compliance problem (PSDP
compl) with V = 7.1015 and

λ = 5.0 · 10−2. We obtain the solution (x∗, γ∗) with the same structure x∗ as before
(Figure 3 (right)), and with γ∗ = 1.

Finally, when solving the problem of maximizing the minimum eigenvalue (PSDP
eig )

with V = 7.1015 and γ = 1, we again obtain x∗ from above, and λ∗ = 5.0 · 10−2.
Again, we believe that the solution x∗ is unique in each of the three problems. If this
is the case, then the equivalence of the results holds by Corollaries 2.14, 2.17, and
2.20.

Example 4.3. This academic example illustrates the possible nonuniqueness of
solutions to the problem (PSDP

eig ). Consider a 2 × 3 ground structure with boundary

conditions and load as depicted in Figure 4 (left). Put M0 = 0, γ = 10, and V = 10.
The computed optimal structure x∗ is presented in Figure 4 (right); the optimal
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Fig. 3. A 3 × 3 truss with nonstructural mass (Example 4.2): initial layout and optimal topology.

Fig. 4. Example demonstrating possible nonuniqueness of solution of the (PSDP
eig ) problem.

objective function value of (PSDP
eig ) is −λ∗ = −0.70711, i.e., λmin(x∗) = 0.70711.

While the volume constraint is active at x∗, the compliance constraint is inactive
(more precisely, after calculating some u∗ corresponding to x∗, we have γ∗ := fTu∗ =
0.1 < γ = 10). Proposition 2.10 suggests that if we scale the solution x∗ by a certain
factor μ, we will still get a solution to our problem. For instance, if we solve the same
problem but with V = 1.0, then we will obtain a solution with the same λ∗ and with
γ∗ = 1.0, i.e., still within the γ limits. Table 1 summarizes these numbers. It also
presents the results for the case when M0 = 10 (and then Proposition 2.10 does not
apply). In this case, the optimal solution is no longer scalable.

Example 4.4. Here we demonstrate the possible nonuniqueness of solutions to
the minimum volume problem (Pvol) (or (PSDP

vol )), and illustrate Theorem 2.13(b) in
more detail. Consider the ground structure and boundary conditions as shown in
Figure 5 (right). The load vector consists of a single vertical force (0, 1) applied at
the bottom-right node. Further, let γ := 0.5, and consider the single-load min-volume
problem without vibration constraint:

min
x∈Rm, u∈Rn

m∑
i=1

xi(31)

subject to K(x)u = f,

fTu ≤ γ,

xi ≥ 0, i = 1, . . . ,m.

This problem can be formulated as a linear program [1], and thus the set X ∗
(31) of

solution structures of (31) is given by the set of all convex combinations of the leftmost
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Table 1

Results of Example 4.3 for different data.

M0 V γ∗ λ∗

0 1 1 −0.70711

0 10 0.1 −0.70711

10 1 1 −0.08761

10 10 0.1 −0.41421
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Fig. 5. Example 4.4—graph of λmin on interval between two structures of the same volume and
compliance and ground structure (potential nodes and bars)

and rightmost structures in Figure 6, i.e., by the set

X ∗
(31) = {(1 − μ)x1∗ + μx2∗ | μ ∈ [0, 1]},

where x1∗ denotes the leftmost and x2∗ the rightmost structures in Figure 6. We have
vol(x∗) = 18 and c(x∗) = 1 for all x∗ ∈ X ∗

(31). Figure 5 (left) shows the dependence
of the minimum vibration eigenvalue on the parameter μ of this convex combination,
i.e., a plot of the function

μ �→ λmin((1 − μ)x1∗ + μx2∗)

over the interval [0, 1]. The points 1–5 in the plot correspond to the structures in
Figure 6, left to right. We observe that λmin is maximized at μ ≈ 0.0536, i.e., at the
third structure. Let us now add the vibration constraint to problem (31); thus we
arrive at problem (Pvol). For example, put λ := 0.037, which is the value of λmin

for the second structure in Figure 6. Then it is clear that any structure between the
second and fifth trusses is a solution to problem (Pvol), and the vibration constraint
will be inactive for the structures strictly in between. Moreover, the third truss is the
structure x̂∗ where the supremum in (19) in Theorem 2.13 is attained, i.e., the third
truss is optimal for problem (Peig) with the settings V := 18 and γ := 1 (according
to Theorem 2.13(b)).

Example 4.5. This example shows that not only can the minimum eigenvalue
function be discontinuous (see Example 2.4), but it may also behave in a non-Lipschitz
way. This is slightly unexpected, given the well-known fact that the eigenvalues of
the standard symmetric eigenvalue problem are Lipschitz.
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Fig. 6. Example 4.4—structures corresponding to points 1–5 on the graph in Figure 5.
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Fig. 7. Example 4.5 demonstrating apparent non-Lipschitz behavior of the minimum eigen-
value function close to the boundary of the feasible region. The graph of the function (left) and its
derivative (right) are shown.

Consider again the 3 × 3 ground structure from Example 4.1 with all nodes con-
nected. A horizontal force is applied at the central node. Figure 7 shows the behavior
of the objective function λmin(·) of problem (PSDP

eig ) with x ≥ ε > 0; denote the
solution of this problem by xε. The left-hand figure shows the plot of the function
λmin(xε) for 1.5 · 10−7 ≤ ε ≤ 2 · 10−3; the function looks all but Lipschitz (for smaller
values of ε we were unable to compute the function value due to round-off errors).
To see its behavior more clearly, we plot in the right-hand figure the derivative (com-
puted by finite differences) in the interval [1.5 · 10−7, 1.6 · 10−5]; this figure confirms
the non-Lipschitz behavior. When we solve the minimum eigenvalue problem (PSDP

eig )
with x ≥ 0, we obtain the optimum value λ∗ = −0.7071068. Obviously, the picture is
not a proof of non-Lipschitz behavior, but it is very indicative of such. The optimal
trusses for ε = 2 · 10−3 and for the problem with x ≥ 0 are shown in Figure 8 (left
and right, respectively). In the first case, only bars that are not equal to the lower
bound are presented. In both cases, the compliance constraint was inactive.

Example 4.6. This example demonstrates that the change in M0 may lead to a
change in the topology of the optimal structure, as has been suggested in the discussion
after Proposition 2.22. We take the same ground structure, boundary conditions,
and loads as in Example 4.2. Consider the minimum volume problem (PSDP

vol ) with
three different values of M0, namely, 0, 10, and 100. The bounds on compliance
and minimum eigenvalue are γ = 20 and λ = 1.0 · 10−3. The optimal values of V ∗

are, respectively, 0.05012, 0.07284, and 0.63386. In the latter case (M0 = 100), the
compliance constraint was inactive. The respective optimal structures are presented
in Figure 9.

Example 4.7. With practical applications in mind, we also present an example
of larger ground structure with multiple loads. Consider a 7 × 3 nodal grid with the
ground structure, boundary conditions, and loads as depicted in Figure 10 (top left).
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Fig. 8. Example 4.5—optimal structures for xi ≥ 2 · 10−3 (left) and xi ≥ 0 (right).

Fig. 9. Example 4.6 demonstrating the dependence of the optimal structure on nonstructural
mass changes; optimal results for M0 = 0, 10, 100 are depicted left to right.

Fig. 10. A medium-size multiple-load example (Example 4.7): initial layout (top left); optimal
topology without (top right) and with (bottom left) vibration constraints; single-load optimal result
with vibration constraints (bottom right).

Each of the load arrows indicates an independent load case. The result of the standard
minimum volume multiple-load problem (with no vibration constraints) with γ = 10
is shown in Figure 10 (top right)—obviously resulting in two independent horizontal
bars, one for each load. The volume of this structure is V ∗ = 5.0. Figure 10 (bottom
left) shows the result for the multiple-load problem with a bound λ = 1.0 · 10−3 on
the minimum eigenvalue with the optimal volume V ∗ = 7.8309. For a comparison, we
also show a result of the single-load problem (both forces considered as a single load)
with γ = 20 and λ = 1.0 · 10−3; the optimal structure with V ∗ = 7.6166 is presented
in Figure 10 (bottom right). All solutions were obtained by Penbmi in less than 10
seconds.

Example 4.8. We consider the same problem scenario as in Example 4.2 but with
a 7 × 7 full ground structure with 1176 potential bars; see Figure 11 (left). Again
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Fig. 11. Example 4.8—a medium-size problem, initial layout and optimal topology.

Fig. 12. Example 4.9—a medium-size problem, initial layout and optimal topology.

we solve the minimum volume problem (PSDP
vol ) with γ = 1 and λ = 5.0 · 10−2 (and

a nonstructural mass of size 10 at the loaded node). Figure 11 (right) shows the
calculated optimal design x∗. The optimal volume is V ∗ = 3.59874, i.e., just one-half
of the optimal volume of the 3 × 3 ground structure from before in Example 4.2. To
solve the minimum volume problem by Penbmi, we needed 5 min. 16 sec. To solve
the other two formulations, (PSDP

compl) and (PSDP
eig ), the code needed 11 min. 41 sec. and

20 min. 15 sec., respectively. As expected, formulation (PSDP
eig ) is computationally the

most demanding one due to the presence of BMIs.
Example 4.9. Here we consider a medium-size example with an 11 × 5 ground

structure, having 100 degrees of freedom and 1485 potential bars. The bounds on
compliance and on the eigenvalue were γ = 20 and λ = 5.0 · 10−4. A horizontal force
(−10, 0) is applied at the right-middle node; see Figure 12 (left). No nonstructural
mass is considered. The minimum volume problem was solved by Penbni in 33 min.
37 sec. and resulted in the optimal structure shown in Figure 12 (right) with V ∗ =
1542.65. According to Theorem 2.8 this structure is also optimal for the minimum
compliance problem (Pcompl) with V := 1542.65 and λ as above.

5. An extension: The multiple-mass problem. Here we propose an ex-
tension to each of the three original problem formulations, which to the best of
our knowledge has not been considered before. Assume that we have nk matrices

M
(k)
0 , k = 1, . . . , nk, corresponding to nk different nonstructural masses that can be

applied independently. The corresponding eigenvalue constraint extending the con-
straint “λmin(x) ≥ λ” in problem (Pvol) or in problem (Pcompl) would then be stated
as

λmin(x,M
(k)
0 ) ≥ λ ∀k = 1, . . . , nk,

where we have used the notation (28) from section 2.5 for different nonstructural mass
matrices. Similarly, the objective function λmin(·) in problem (Peig) becomes

x �→ min
1≤k≤nk

λmin(x,M
(k)
0 )
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Fig. 13. A multiple-mass problem (Example 5.1: initial layout (left), a “single-mass” result
(middle), and a multiple-mass optimal structure (right).

(which is to be maximized). Generalizing the SDP problem (PSDP
eig ), we arrive at the

following formulation possessing the same problem structure:

min
x∈Rm,λ∈R

−λ(32)

subject to

(
γ fT

�

f� K(x)

)
� 0, � = 1, . . . , n�,

m∑
i=1

xi ≤ V,

xi ≥ 0, i = 1, . . . ,m,

K(x) − λ(M(x) + M
(k)
0 ) � 0, k = 1, . . . , nk .

In an analogous way we may extend the SDP problems (PSDP
vol ) and (PSDP

compl) from
section 3 to the case of multiple masses. Because the mathematical structure of these
formulations is the same as that of problems (PSDP

vol ), (PSDP
compl), and (PSDP

eig ), we may
use again the code Penbmi to numerically solve these problems. We finish with a
numerical example.

Example 5.1. Consider a 3 × 3 truss with all nodes connected by potential
bars. The nodes on the left-hand side are fixed in both directions, and two balls
(nonstructural masses) are placed in the corners on the right-hand side; see Figure 13
(left). Figure 13 (middle) shows the optimal design for formulation (PSDP

eig ) when both
masses are considered a “single” nonstructural mass. Figure 13 (right) presents the
result of the multiple-mass formulation (32), where the two nonstructural masses are
considered being independent from each other. The volume bound in both problems
was V := 1, and the resulting optimal eigenvalues were λ∗ = 4.758 · 10−3 in the
single-mass case and λ∗ = 7.365 · 10−3 in the multiple-mass case.

Appendix.

A.1. Proof of Proposition 2.3. For the proof of (a) and (b) let x ∈ X be fixed,
and let K := K(x) and M := M(x) + M0, for simplicity. Because M is symmetric,
there exists an orthonormal basis {v1, . . . , vr} ⊂ R

n of range(M) where r = rank(M).
Consider the matrix P := (v1 · · · vr) ∈ R

n×r consisting columnwise of the vectors vj .
We state the generalized eigenvalue problem

(33) PTKPz = λPTMPz,

with z ∈ R
r.
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First we show that PTMP is positive definite. To see this, let z �= 0 be arbitrary,
and assume that zTPTMPz = 0. Because M is positive semidefinite, this implies
Pz = 0. But the columns of P are linearly independent, and hence we arrive at z = 0,
a contradiction. This shows that all eigenvalues of (33) are well defined, and (as often
seen) problem (33) can be equivalently written as an ordinary eigenvalue problem

(34) K̃z = λz

with K̃ := (PTMP )−1/2PTKP (PTMP )−1/2.
Next we prove that λ is a well-defined eigenvalue of problem (8) if and only if it

is an eigenvalue of problem (33) (and thus also an eigenvalue of K̃ in (34)). First, let
(λ,w) be a solution of (8) with w /∈ ker(M). The latter property shows that there
exist w1 ∈ ker(M) and w2 ∈ range(M), w2 �= 0, such that w = w1 + w2. Inserting
w = w1 + w2 into (8) gives Kw1 + Kw2 = λ(Mw1 + Mw2), i.e.,

(35) Kw2 = λMw2

due to Lemma 2.1. Notice that w2 �= 0, and thus (λ,w2) is also a solution of (8).
Because w2 ∈ range(M), there exists z ∈ R

r such that w2 = Pz. Hence, (35) becomes

KPz = λMPz,

and multiplication by PT from the left shows that (λ, z) is a solution of (33).
Conversely, let (λ, z) be a solution of (33) with z �= 0. Consider w := Pz. Because

the columns of P form a basis of range(M), it is w �= 0 and w ∈ range(M). Through
the general identity range(M)⊥ = ker(MT ) = ker(M) we see that w /∈ ker(M).
Moreover, as z is a solution of (33), PTKw = λPTMw, which we may multiply by P
from the left to end up with

(36) PPTKw = λPPTMw.

Now, Lemma 2.1 shows that range(K) � range(M), i.e., Kw ∈ range(M). By con-
struction, PPT is a projection matrix onto range(M), and thus (36) becomes Kw =
λMw. (Alternatively, notice that PTP = Ir×r. Hence, for each w̃ = P z̃ ∈ range(M),
PPT w̃ = PPTP z̃ = P z̃ = w̃.) As w /∈ ker(M) this proves that λ is a well-defined

eigenvalue of problem (8). Because K̃ � 0, each eigenvalue λ in (34) is nonnegative,
and we are done with the proof of (a).

To finish the proof of (b), we use formulation (34) and the Rayleigh quotient to
see that

λmin(x) = inf
z �=0

zT K̃z

zT z
.

Inserting the definition of K̃, and using the substitutions z̃ := (PTMP )−1/2z and
w := P z̃, we conclude

λmin(x) = inf
z �=0

zT (PTMP )−1/2PTKP (PTMP )−1/2z

zT z
(37)

= inf
z̃ �=0

z̃TPTKPz̃

z̃TPTMPz̃

= inf
w∈range(M):w �=0

wTKw

wTMw
.(38)
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Now, for each ũ with Mũ �= 0 there exist ṽ ∈ ker(M) and w̃ ∈ ker(M)⊥ = range(M)
such that ũ = ṽ + w̃. Hence, by Lemma 2.1,

ũTKũ

ũTMũ
=

w̃TKw̃

w̃TMw̃
.

Thus we can continue (37) to (38) with

λmin(x) = inf
w∈range(M):w �=0

wTKw

wTMw
= inf

u:Mu �=0

uTKu

uTMu
,

which proves (b).
(c) Let us first show the “≥” part. For this, take arbitrary λ ∈ R satisfying

K(x) − λ(M(x) + M0) � 0, i.e.,

(39) vTK(x)v − λvT (M(x) + M0)v ≥ 0 ∀v �= 0,

and consider arbitrary u with (M(x) + M0)u �= 0. Then u �= 0, and (39) for v := u
shows that

uTK(x)u

uT (M(x) + M0)u
≥ λ .

Because λ and u were arbitrary, we can write “inf” in front of the fraction and “sup”
in front of λ, and the inequality remains valid, i.e.,

inf
u: (M(x)+M0)u �=0

uTK(x)u

uT (M(x) + M0)u
≥ sup{λ | K(x) − λ(M(x) + M0) � 0 } .

By (b) the value on the left-hand side coincides with λmin(x), and hence we have
proved “≥”.

The proof of the “≤” part is similar: Let

λ̃ := inf
u: (M(x)+M0)u �=0

uTK(x)u

uT (M(x) + M0)u
.

Then

λ̃ ≤ uTK(x)u

uT (M(x) + M0)u
∀u : (M(x) + M0)u �= 0

⇐⇒ uTKu− λ̃uT (M(x) + M0)u ≥ 0 ∀u : (M(x) + M0)u �= 0

⇐⇒ uTKu− λ̃uT (M(x) + M0)u ≥ 0 ∀u ∈ R
n (see Lemma 2.1)

⇐⇒ K(x) − λ̃(M(x) + M0) � 0

⇐⇒ λ̃ ≤ sup{λ | K(x) − λ(M(x) + M0) � 0} .

(d) Let x̄ ∈ R
m, x̄ ≥ 0, and let {xk}k be an arbitrary sequence such that xk → x̄.

We want to show that lim supx→x̄ λmin(x) ≤ λmin(x̄). Take a subsequence {xk
j }j of

{xk}k such that

lim
j→∞

λmin(xk
j ) = λ̄ := lim sup

x→x̄
λmin(x) .



1162 WOLFGANG ACHTZIGER AND MICHAL KOČVARA

By definition,

K(xk
j ) − λmin(xk

j )(M(xk
j ) + M0) � 0 ∀j

and, passing with j to the infinity, we get

K(x̄) − λ̄(M(x̄) + M0) � 0 ,

using the continuous dependence of K(x) and M(x) on x and closedness of the cone
of positive semidefinite matrices. Hence

λ̄ ≤ sup{λ | K(x̄− λ(M(x̄) + M0) � 0} = λmin(x̄)

and we are done.
(e) By construction, M(x) � 0 for x ∈ Xε. Then the pencil (K(x),M(x) + M0)

is definite and we can apply general theory, saying that the eigenvalues of (8) depend
continuously on parameter x [4, 29].

(f) For each u : (M(x) + M0)u �= 0, the function u �→ uTK(x)u
uT (M(x)+M0)u

is a linear-

fractional function in (K(x), (M(x) + M0), hence a quasi-linear function in variables
(K(x), (M(x) + M0)) (see [5]) and thus in x. Using point (b), we conclude that
−λmin(x) is quasi-convex in x, because it is the supremum of a family of quasi-
linear (and thus quasi-convex) functions (here we use the fact that − inf g(x) =
sup−g(x)).

Remark A.1. The projection PPT defined in the above proof takes, in fact, a
particularly simple structure. Assume that x ∈ X is given and that ker(M(x)) ⊂
ker(M0). Denote by B � {1, . . . , n} the degrees of freedom associated only with
elements j such that xj = 0 and by A its complement. With k := |A| we assume
without restriction that A = {1, . . . , k}, and B = {k + 1, . . . , n}. Then K(x) and
M(x) + M0 can be partitioned as follows:

K(x) =

(
KAA KAB
KBA KBB

)
, M(x) + M0 =

(
MAA MAB
MBA MBB

)
.

Clearly, KAA � 0; further (see Appendix A.2) MAA � 0, and, by Lemma 2.1, KAB =
KT

BA = MAB = MT
BA = 0 and KBB = MBB = 0 (as, e.g., KBB =

∑
i:xi=0 xiKi). By

this, each eigenvalue λA of the problem

KAAw = λAMAAw

is a well-defined eigenvalue of problem (8).

A.2. On the representation of the mass matrix. Let x ∈ X be given and,
for simplicity of notation, assume that M0 = 0 (in general, we would assume that
ker(M(x)) ⊂ ker(M0)). We want to show that M(x), after a suitable permutation,
can be partitioned into the form (

MAA 0
0 0

)
,

where MAA � 0.
Lemma A.2. Let Zi ∈ R

n×n, Zi � 0, and Pi ∈ R
k×n, k < n, for i = 1, . . . , μ.

Then, for any z �= 0,

μ∑
i=1

PiZiP
T
i z = 0 =⇒

μ∑
i=1

PiP
T
i z = 0 .
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Proof. From the assumption we know that
∑μ

i=1 z
TPiZiP

T
i z = 0 and zTPiZiP

T
i z

≥ 0 for each i (as PiZiP
T
i � 0). Thus zTPiZiP

T
i z = 0 for all i and therefore

‖Z1/2PT
i z‖2

2 = 0.

As Z1/2 � 0, this immediately gives PT
i z = 0 for all i, and the lemma follows.

Now let I include the indices of all nonzero components xi of x. Without loss of
generality, let us assume that the nonzero components of x are equal to one, i.e., xi = 1
for i ∈ I. Hence M =

∑m
i=1 xiPiM̂iP

T
i =
∑

i∈I PiM̂iP
T
i . Define the projection

S = In×n −
∏
i∈I

(In×n − PiP
T
i ) ;

clearly, S projects a vector z ∈ R
n to a subspace generated by Euclidean unit vectors

associated with all degrees of freedom belonging to elements i ∈ I, i.e., to the space
span {PiP

T
i e, i ∈ I}, where e ∈ R

n is the vector of all ones. From this definition, and
from the construction of M , we immediately have that M = SMS. Without loss of
generality, assume that S is of the form

S =

(
Ik×k 0

0 0

)
,

where k is the rank of S. Hence M also has the form

M =

(
M̃ 0
0 0

)
,

with M̃ ∈ R
k×k.

Lemma A.3. M̃ is positive definite.
Proof. Assume that Mz = 0 for some z �= 0. We need to show that M̃ z̃ = 0 only

for z̃ = 0, where z̃ includes the first k components of z. By definition,

Mz =
∑
i∈I

PiM̂iP
T
i z = 0 .

From the above lemma, we have that∑
i∈I

PiP
T
i z = 0 .

Now, the matrix
∑

i∈I PiP
T
i is of the same form as S and M, and its upper-left block

consists of a (full) positive diagonal. Hence z̃ = 0.
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[11] M. Kočvara and J. Outrata, Effective reformulations of the truss topology design problem,
Optim. Engrg., 7 (2006), pp. 201–219.
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SUCCESSIVE LINEAR APPROXIMATION SOLUTION OF
INFINITE-HORIZON DYNAMIC STOCHASTIC PROGRAMS∗
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Abstract. Models for long-term planning often lead to infinite-horizon stochastic programs that
offer significant challenges for computation. Finite-horizon approximations are often used in these
cases, but they may also become computationally difficult. In this paper, we directly solve for value
functions of infinite-horizon stochastic programs. We show that a successive linear approximation
method converges to an optimal value function for the case with convex objective, linear dynamics,
and feasible continuation.

Key words. stochastic programming, dynamic programming, infinite horizon, linear approxi-
mation, cutting planes
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1. Introduction. Many long-term planning problems can be expressed as
infinite-horizon stochastic programs. The infinite horizon often arises because of un-
certainty about any specific end point (e.g., the lifetime of an individual or organiza-
tion). Solving such problems with multiple decision variables and random parameters
presents obvious computational difficulties. A common technique is to use a finite-
horizon approximation, but even these problems become quite difficult for a practical
size.

The approach in this paper is to assume stationary data and to solve for the
infinite-horizon value function directly. A motivating example is an infinite-horizon
portfolio problem, which involves decisions on amounts to invest in different assets
and amounts to consume over time. For simple cases, such as those by Samuelson
[14] for discrete time and Merton [10] for continuous time, optimality conditions can
be solved directly; however, if general transaction costs and constraints on consump-
tion or investment are present, more complex versions of the infinite-horizon problem
considered here are required.

The problems in this paper also relate to the dynamic programming literature
(see, for example, Bertsekas [3]) and particularly to methods for solving partially
observed Markov decision processes (see the survey by Lovejoy [8]). Our method
is most similar to the piecewise linear construction by Smallwood and Sondik [15]
for finite horizons and the bounding approximations used by Lovejoy [9] for both
finite and infinite horizons. The main differences between our model and those in
[9, 15] are that we do not assume a finite action space and do not use finite-horizon
approximations. Our method also does not explicitly find a policy or approximate the
state space with a discrete grid; instead, we use the convexity of the value function
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and the contraction properties of the dynamic programming operator in the form of
an approximate value iteration.

Our approach also is similar to the linear programming approach to approximate
dynamic programming (LP-ADP; see, e.g., De Farias and Van Roy [4]), but that
approach again focuses on discrete state and action spaces and uses a preselected
set of linear basis functions to approximate the value function. Our method uses
linear support functions as an outer linearization in contrast to inner linearization in
the LP-ADP approach. Our support functions are also generated within the method
and achieve arbitrary accuracy. To obtain this result, our method takes advantage
of continuity and convexity properties and, on all iterations, maintains bounds not
available in the LP-ADP framework.

In the next section, we describe the general problem setting. Section 3 describes
the algorithm and its convergence properties. Section 4 discusses the construction
of the value function domain as required for algorithm convergence. Section 5 de-
scribes two examples and implementation of the algorithm. Section 6 concludes with
a discussion of further issues.

2. Problem setting. We seek to find the value function V ∗ of the infinite-
horizon problem

V ∗(x) = min
y1,y2,...

Eξ0,ξ1,...

∞∑
t=0

δtct(xt, yt)(2.1)

subject to (s.t.) xt+1 = Atxt + Btyt + bt for t = 0, 1, 2, . . . ,

x0 = x.

In this problem, ξt = (At, Bt, bt) is random data for stage t = 0, 1, 2, . . ., At, Bt are ma-
trices, and bt is a vector. At is a square matrix. The equation xt+1 = Atxt +Btyt + bt
characterizes the transition of state from stage t to t + 1, the dynamics of the prob-
lem. y1, y2, . . . are controls/decision variables. State xt and control yt are continuous
variables in certain finite-dimensional Euclidean spaces X and Y , respectively. The
cost function ct : X×Y → �∪{+∞} is a generalized function. The static constraints
in each stage, e.g., (xt, yt) ∈ Gt for some subset Gt of X×Y , are not explicitly formu-
lated. They are implicitly captured by the effective domain of ct, say, dom(ct) = Gt.
The number 0 < δ < 1 is a discount factor.

The above problem can be represented as

min
y0

{c0(x0, y0) + δEξ0 min
y1

{c1(x1, y1) + δEξ1 min
y2

{c2(x2, y2) + . . .}}}

s.t. xt+1 = Atxt + Btyt + bt for t = 0, 1, 2, . . . ,

x0 = x.

In this paper we consider a simple version of (2.1), namely, ct = c and (At, Bt, bt) =
(A,B, b), for all t = 0, 1, 2, . . ., are identically and independently distributed random
variables. For the presentation below, we assume that ξ = (A,B, b) is a discrete
random vector with pi = Prob(ξ = (Ai, Bi, bi)), i = 1, . . . , L. (The general algorithm
does not require finite realizations, but practical implementations make this assump-
tion necessary.) The equality constraints in (2.1) characterize the dynamics of the
problem. The static constraints (e.g., yt ≥ 0) in each stage are implicitly captured by
the effective domain of the generalized function c.
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The value function V ∗ defined by (2.1) is a solution of V = M(V ), where the
map M (often called the dynamic programming operator) is defined by

M(V )(x) = min
y

{c(x, y) + δEξV (Ax + By + b)}

= min
y

{
c(x, y) + δ

L∑
i=1

piV (Aix + Biy + bi)

}
.(2.2)

Note. The problem of finding a solution of V = M(V ) and the infinite-horizon
problem (2.1) are different. The value function V ∗ defined by the infinite-horizon
problem is a solution to V = M(V ); however, the equation V = M(V ) may have
many solutions. We will discuss this later. For the time being, we need to know only
that a solution of V = M(V ) is equal to V ∗ if the effective domain of the solution
coincides with dom(V ∗).

More precisely, let D∗ = dom(V ∗) be compact and convex. Let B(D∗) be the
Banach space of all functions finite on D∗ and equipped with the norm ‖f‖D∗ =
supx∈D∗{|f(x)|}.

Theorem 2.1. M is a contraction on B(D∗).
Proof. The proof can be found, e.g., in Theorem 3.8 of [7].
The above theorem ensures that the equation V = M(V ) has a unique solution

on B(D∗). Since V ∗ solves V = M(V ) and V ∗ ∈ B(D∗), V ∗ is the unique solution of
V = M(V ) on B(D∗).

An assumption throughout this paper is that the cost function c is convex. This
assumption ensures the convexity of the value function as shown below and enables
the use of a cutting plane method.

Lemma 2.2. M(V ) is convex if V is convex. Consequently, V ∗ is convex.
Proof. See Lemma 3.10 and Corollary 3.11 in [7].
In the next section, we will propose a cutting plane method to construct a piece-

wise linear value function V k which approximately solves the problem V = M(V ).
The cut generated at iteration k is a supporting plane of M(V k) at a selected point
xk. The convexity of M(V k) shown by Lemma 2.2 guarantees the existence of such
cuts.

For any functions f and g : �n → �∪ {+∞}, we say f ≥ g if f(z) ≥ g(z) for all
z ∈ �n.

3. A cutting plane method. In this section, we assume that the domain D∗ =
dom(V ∗) is known and is a compact polyhedral set. All functions are regarded as
elements in B(D∗); thus, we will define only values of functions on D∗.

3.1. An algorithm. Our cutting plane method is based on the following obser-
vations.

Lemma 3.1. For any Ṽ , V ∈ B(D∗), Ṽ ≤ V implies M(Ṽ ) ≤ M(V ).
Proof. For any x ∈ D∗,

M(Ṽ )(x) = min
y

{c(x, y) + δEṼ (Ax + By + b)}

≤ min
y

{c(x, y) + δEV (Ax + By + b)}

= M(V )(x).

Theorem 3.2. Let V ∈ B(D∗), with V ≤ V ∗. Then
(i) M(V ) ≤ V ∗;
(ii) V = V ∗ if M(V ) ≤ V .
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Proof. (i) By Lemma 3.1 and V ≤ V ∗, we have

M(V ) ≤ M(V ∗) = V ∗.

(ii) It follows from M(V ) ≤ V and Lemma 3.1 that

V ≥ M(V ) ≥ M2(V ) ≥ · · · ≥ Mk(V ) ≥ · · · .

Since M is a contraction on B(D∗) by Theorem 2.1, Mk(V ) → V ∗. This shows that
V ≥ V ∗. Now we have V ∗ ≥ V ≥ V ∗, which implies V = V ∗.

We will employ a cutting plane algorithm to construct piecewise linear functions
V k defined by a set of cuts {t ≥ Qix + qi : i = 1, . . . , uk} in the form

V k(x) = max{Qix + qi : i = 1, . . . , uk}

which approximate V ∗ from below. Theorem 3.2 suggests adding a cut to V k, cutting
off an area where M(V k)(x) > V k(x) so that V k+1 can move up towards V ∗. The
algorithm stops when there is no x ∈ D∗ such that M(V k)(x) > V k(x).

Algorithm 3.1.

1. Initialization: Find a piecewise linear convex function V 0 ∈ B(D∗) satisfying
V 0 ≤ V ∗. Set k ← 0.

2. If V k ≥ M(V k), stop; V k is the solution. Otherwise, find a point xk ∈ D∗

with V k(xk) < M(V k)(xk).
3. Find a supporting hyperplane of M(V k) at xk, say, t = Qk+1x+qk+1. Define

V k+1(x) = max{V k(x), Qk+1x + qk+1}.
k ← k + 1. Go to Step 2.

3.2. Details of the algorithm.
Step 1. Usually, we can find V 0 easily. For instance, if c(x, y) ≥ c0 for all (x, y)

in its domain, then we can choose V 0(x) = c0/(1 − δ), a constant function on D∗. It
is clear that

V ∗(x) ≥
∞∑
t=0

δtc0 = V 0(x) ∀x ∈ D∗.

Step 2 consists of two parts. Part 1 is the valuation of M(V k)(x), and Part 2
describes how to find a point xk ∈ D∗ with V k(xk) < M(V k)(xk).

Part 1. Assume that V k is defined by k linear cuts, i.e., for any x ∈ D∗,

V k(x) = max{Qix + qi : i = 1, . . . , k}
= min{θ | θ ≥ Qix + qi, i = 1, . . . , k}.

Then

M(V k)(x) = min
y

⎧⎨
⎩c(x, y) + δ

L∑
j=1

pjV
k(Ajx + Bjy + bj)

⎫⎬
⎭

= min
y,θ

⎧⎨
⎩c(x, y) + δ

L∑
j=1

pjθ
j | θj ≥ Qizj + qi ∀ i = 1, . . . , k;

zj = Ajx + Bjy + bj ∈ D∗, j = 1, . . . , L

⎫⎬
⎭ .(3.1)
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Part 2. We seek to find xk by approximately minimizing V k(x) −M(V k)(x) on
D∗. Notice that V k−M(V k) is a d.c. function (difference of two convex functions) on
D∗. There are rich results on solving d.c. programs, originated by Horst and Tuy [6].
In Appendix A, we describe a method based on [5]. This method can find an exact
global minimizer; however, finding an exact global minimizer of this d.c. function is
time-consuming and thus is not recommended in general. Fortunately, for Algorithm
3.1 to work, an approximate minimizer xk suffices (see Theorem 3.4). Selecting a
computationally low-cost method for finding a sufficiently good xk is important for
enhancing the efficiency of the algorithm. The method described in Appendix A
certainly is not the only choice for finding xk. In the second example of numerical
experiments, we take a small sample of 5 points and choose the best point as xk. This
simple strategy works well for the example.

Step 3. Suppose that the polytope D∗ is defined by a system of inequalities
Fx ≤ f for some matrix F and vector f , i.e., D∗ = {x | Fx ≤ f}. Let

V k(x) =

{
min{θ | Qkx + qk ≤ θe} if Fx ≤ f ,
+∞ otherwise,

where Qk is a matrix and qk and e = (1, . . . , 1)T are vectors. Qkx + qk represents
the set of cuts generated up to the kth iteration.

Let (yk, θk) and {(λk
j , μ

k
j ) : j = 1, . . . , L} be an optimal solution and optimal

multipliers, respectively, of the problem

min
y,θ

⎧⎨
⎩c(xk, y) + δ

L∑
j=1

pjθ
j | Qzj + q ≤ θje,

Fzj ≤ f , zj = Ajx
k + Bjy + bj , j = 1, . . . , L

⎫⎬
⎭ .

Let ζk = (ζkx ; ζky ) be a subgradient of c at (xk, yk). Then

ξk = ζkx +

L∑
j=1

((λk
j )

TQAj + (μk
j )

TFAj)

is a subgradient of M(V k) at xk. (See Appendix B for the proof.)
A supporting hyperplane of M(V k) at xk is

t = M(V k)(xk) + ξk(x− xk).

That is,

Qk+1 = ξk, qk+1 = M(V k)(xk) − ξkxk.

3.3. A modification of the algorithm. Since a global search takes consid-
erable computational effort, a more efficient algorithm should limit global searches.
We can perform a number of local search iterations between two global searches. A
simple modification of the algorithm follows.

Algorithm 3.2.

1. Initialization: Find a piecewise linear convex function V 0 ∈ B(D∗) satisfying
V 0 ≤ V ∗. Set k ← 0.
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2. If V k ≥ M(V k), stop; V k is the solution. Otherwise, find a point x̄ ∈ D∗

with V k(x̄) < M(V k)(x̄). Let V ← V k.
3. Find a supporting hyperplane of M(V ) at x̄, say, t = Qx+q. Define V +(x) =

max{V (x), Qx + q}.
4. If the improvement of V + over V is larger than a certain tolerance, then let

V ← V + and repeat Step 3. Otherwise, let V k+1 ← V +, k ← k + 1, and go
to Step 2.

The time required for Step 3 is negligible compared to Step 2. The implementation
on the first example in the paper shows a reduction by 3/4 of the number of iterations
(of Step 2); i.e., the modified algorithm requires only 1/4 of the original number of
iterations. Furthermore, it obtains better approximate solutions.

3.4. Comparison with other methods. We make comparisons in two per-
spectives: in improvement and in representation of an approximate value function
V k.

We refer to our method as the successive linear approximation method (SLAM).

Comparison between SLAM and PIM. The policy iteration method (PIM)
is widely used for solving Markovian decision problems; cf. [13]. Thus we shall make
a comparison between our method SLAM and PIM.

At the kth iteration, for a given V k, PIM finds yk : D∗ → Y (which is the policy
in the notation of our problem setting) by solving

yk(x) = argmin y{c(x, y) + δEV k(Ax + By + b)} ∀x ∈ D∗(3.2)

and then finds V k+1 by solving

V k+1(x) = c(x, yk(x)) + δEV k+1(Ax + Byk(x) + b) ∀x ∈ D∗.(3.3)

SLAM performs the kth iteration as follows: Given V k, find a point x̄k ∈ D∗ by
approximately solving

max
x

MV k(x) − V k(x)(3.4)

and then construct V k+1 by adding to V k a cutting plane at x̄k.
Since

MV k(x) = min
y

{c(x, y) + δEV k(Ax + By + b)},

finding the action yk(x) at a point x takes the same computational effort as the
valuation of MV k at x; thus, the determination of yk, i.e., the valuation of yk(x)
at all x ∈ D∗, is more expensive than the determination of x̄k. The construction of
V k+1 in PIM requires solving an infinite-dimensional equation, which is again more
difficult than determining a cutting plane in SLAM. In return, one can expect that
each iteration of PIM improves the value function V k more than SLAM does.

Comparison of approximation methods for the continuous-state DP. All
existing approximation methods for continuous-state DP can be roughly categorized
into discrete approximations (DAs) and parametric approximations (PAs); cf. [1].
The former approximate V on a grid of D∗, and the latter approximate V by a linear
combination of a set of basis functions. Our method, the cutting plane approximation
(CPA), approximates V by the maximum function of a set of cutting planes.
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The CPA method is similar to PA in the sense that both methods use a set of
continuous functions to approximate V . The superiority of PA over DA is that, in
many cases, one can obtain a good global approximation to V using a small number
of basis functions, whereas in high-dimensional problems the DA approach requires
a very large number of grid points to obtain a comparably accurate approximation;
see [1]. CPA has the same advantages as PA over DA and, moreover, is more flexible
than PA, because cuts are generated where they are most needed in CPA, whereas
basis functions are preselected in PA. A disadvantage of the CPA method is, however,
that cuts can be accumulated rapidly. A computational challenge is to find effective
ways to delete unnecessary cuts.

3.5. Convergence. If Algorithm 3.1 stops at an iteration with V K ≥ M(V K),
then we have V K = V ∗ by Theorem 3.2.

If the algorithm does not terminate in a finite number of iterations, then the
convergence of V k to V ∗ is not so obvious. We notice that each cut is related to a
testing point x̄. Such a process can lead to pointwise convergence but not necessarily
uniform convergence. A danger is that the limit of a pointwise convergent sequence
{V k} may not be V ∗, because V k may be updated only in some area of the domain
but not over the full domain. Our convergence analysis shall answer the following
two questions: Under what conditions can the sequence {V k} converge uniformly? If
{V k} converges uniformly, is the limit function equal to V ∗? Our main condition for
uniform convergence is that D∗ is a polytope. Indeed, if D∗ is an arbitrary convex
compact set, one can construct a monotone increasing sequence of convex functions
{V k} which converges pointwise but not uniformly. The assumption that D∗ is a
polytope ensures the continuity of the limit function of {V k}. Then, by Theorem
7.13 in [12], {V k} converges uniformly; see the details in the proof of Theorem 3.4.
For the second question, we will give a positive answer. The result is presented in
Theorem 3.4.

Lemma 3.3. V k ≤ V k+1 ≤ V ∗.
Proof. From Step 2 of Algorithm 3.1, it is obvious that V k ≤ V k+1.
The initial function V 0 ≤ V ∗. Suppose V k ≤ V ∗; then, by Theorem 3.2 (i),

M(V k) ≤ V ∗; thus, for any x ∈ D∗,

V k+1(x) ≤ max{V k(x), M(V k)(x)} ≤ V ∗(x).

Theorem 3.4. Suppose that D∗ is a polytope and suppose that, at the kth itera-
tion, a point xk ∈ D∗ is selected such that

M(V k)(xk) − V k(xk) ≥ αmax{M(V k)(x) − V k(x) | x ∈ D∗}

for some constant α > 0; then, V k → V ∗ uniformly.
Proof. First, suppose that Algorithm 3.1 stops at a finite iteration K with V K ≥

M(V K). By Lemma 3.3, V K ≤ V ∗. Thus, by Theorem 3.2, V K = V ∗.
Now suppose that Algorithm 3.1 generates a sequence {V k} which converges to

Ṽ pointwise.
Because V k ≤ V k+1 → Ṽ , epi(Ṽ ) = ∩kepi(V

k), which is a closed set since every
V k is closed. Thus, Ṽ is a closed convex function on D∗. By our assumption, D∗ is
a polytope; thus, by Theorem 10.2 in [11], Ṽ is continuous on D∗. By Theorem 7.13
in [12], V k → Ṽ uniformly on D∗.

Assume that there exists an x̂ ∈ D∗ such that

M(Ṽ )(x̂) − Ṽ (x̂) = 2σ > 0.
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By Theorem 2.1, M(V k) → M(Ṽ ) uniformly on D∗ since V k → Ṽ uniformly; thus,

there exists a k̂ such that M(V k)(x̂) ≥ M(Ṽ )(x̂) − σ for all k ≥ k̂. This yields

M(V k)(x̂) − V k(x̂) ≥ M(Ṽ )(x̂) − σ − Ṽ (x̂) = σ.

Since the supporting hyperplane at iteration k satisfies Qk+1xk + qk+1 = M(V k)(xk),
we have

V k+1(xk) − V k(xk) = M(V k)(xk) − V k(xk)

≥ α[M(V k)(x̂) − V k(x̂)]

≥ ασ.

Thus

Ṽ (xk) − V k(xk) ≥ ασ ∀ k ≥ k̂.

The above contradicts the uniform convergence of V k → Ṽ on D∗.
The contradiction implies that

M(Ṽ )(x) ≤ Ṽ (x) ∀x ∈ D∗.

Then, by Theorem 3.2, Ṽ = V ∗. This means that V k converges to V ∗ uniformly on
D∗.

4. Construction of the domain D∗. Recall that D∗ = dom(V ∗), where V ∗

is the value function defined by (2.1). This section discusses how to find D∗. We do
not have a complete answer for this problem; nevertheless, the method proposed can
find D∗ in a finite number of iterations for many cases.

4.1. An algorithm. Although the domain of a solution of V = M(V ) does not
necessarily coincide with D∗, it does provide useful information for finding D∗. We
first represent the domain of M(V ).

From (2.2) one can see that x ∈ dom(M(V )) if and only if there exists a y such
that c(x, y) < +∞ and Aix + Biy + bi ∈ dom(V ) for all i = 1, . . . , L. Denote

Dc(x) = {y | c(x, y) < +∞},
G(x,D) = {y | Aix + Biy + bi ∈ D ∀i = 1, . . . , L}.

Then x ∈ dom(M(V )) if and only if Dc(x) ∩G(x, dom(V )) = ∅.
Denote

Γ(D) = {x | Dc(x) ∩G(x,D) = ∅}.

Then

dom(M(V )) = Γ(dom(V )).

The following are some basic properties of the operator Γ.
Lemma 4.1.

(i) If D1 ⊆ D2 then Γ(D1) ⊆ Γ(D2).
(ii) Γ(D∗) = D∗.
(iii) If D∗ ⊆ D, then D∗ ⊆ Γ(D).
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Proof. (i) If D1 ⊆ D2, then, for any x, G(x,D1) ⊆ G(x,D2). Now, for any
x ∈ Γ(D1), Dc(x) ∩ G(x,D1) = ∅. This implies Dc(x) ∩ G(x,D2) = ∅. Therefore,
x ∈ Γ(D2).

(ii) It follows from M(V ∗) = V ∗ that dom(M(V ∗)) = dom(V ∗), which yields
Γ(D∗) = D∗ by the definition.

(iii) If D∗ ⊆ D, then, by (i), Γ(D∗) ⊆ Γ(D); hence, by (ii), we have D∗

⊆ Γ(D).
The following lemma shows that, if dom(V ) ⊆ dom(M(V )), then dom(V ) ⊆

dom(V ∗).
Lemma 4.2. Suppose c is bounded on its domain. If D ⊆ Γ(D), then D ⊆ D∗.
Proof. For any xt ∈ D, we have xt ∈ Γ(D); thus,

∃yt ∈ Dc(xt) : Aixt + Biyt + bi ∈ D ∀ i = 1, . . . , L.(4.1)

For any x̄ ∈ D, let x0 = x̄. There exists y0 satisfying (4.1). For each realization of ξ =
(A,B, b) (where the subscript is omitted for ease of exposition), let x1 = Ax0+By0+b.
By (4.1), x1 ∈ D. Since D ⊆ Γ(D), x1 ∈ Γ(D). Therefore, there exists y1 satisfying
(4.1), and so on; so, we obtain a sequence {(xt, yt) : t = 0, 1, . . .} (here (xt, yt) are
random vectors) satisfying (xt, yt) ∈ dom(c) because yt ∈ Dc(xt). Since c is bounded
on its domain, E

∑∞
t=0 δ

tc(xt, yt) < ∞; thus, V ∗(x̄), defined by (2.1), is finite, i.e.,
x̄ ∈ D∗. Therefore, D ⊆ D∗.

Suppose we use a cutting plane method to construct D∗ and start with a set
D ⊇ D∗. The above lemma suggests that one should cut off a portion of D \ Γ(D) if
D ⊆ Γ(D).

Because

D∗ ⊆ Dcx := {x | Dc(x) = ∅} = {x | ∃y such that c(x, y) < +∞},

we start with Dcx to find D∗. A generic cutting plane method which constructs D∗

with this idea is as follows.
Algorithm 4.1.

1. Let D0 = Dcx. k = 0.
2. If Dk ⊆ Γ(Dk), stop. Otherwise, find a cut F k+1x ≤ fk+1 which cuts off a

portion of Dk \ Γ(Dk).
3. Let Dk+1 = Dk ∩ {x | F k+1x ≤ fk+1}. k ← k + 1. Repeat.

The algorithm stops when Dk with Dk ⊆ Γ(Dk) is found. Question: Is Dk = D∗?
Theorem 4.3. If the algorithm terminates at a finite iteration K, then DK =

D∗.
Proof. The algorithm starts with Dcx, which contains D∗. By Lemma 4.1, D∗ ⊆

Γ(Dk) for k = 0, 1, . . . ,K; thus, no cut cuts off any point of D∗. This implies DK ⊇
D∗. When the algorithm stops with DK ⊆ Γ(DK), Lemma 4.2 yields DK ⊆ D∗;
thus, DK = D∗.

Unfortunately, if Algorithm 4.1 does not stop in a finite number of iterations, the
sequence {Dk} need not converge to D∗ (see Remark (iii) after Example 1 below).
How to modify the algorithm to guarantee convergence is still an open question.

4.2. Generating cuts. Now we discuss Step 2 of Algorithm 4.1 in detail. First,
we propose a method which finds a point x̄ ∈ Dk \ Γ(Dk) and generates a cut which
cuts off a portion of Dk \ Γ(Dk).

For simplicity we consider only the case that dom(c) is a polyhedral set. More
precisely, let dom(c) = {(x, y) : Tx + Wy ≤ r}. Let Dk = {x : F ix ≤ f i : i =
1, . . . , k}.
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x̄ ∈ Γ(Dk) if and only if

T x̄ + Wy ≤ r,

F i(Aj x̄ + Bjy + bj) ≤ f i, i = 1, . . . , k j = 1, . . . , L,

has no feasible solution; then, by Farkas’ theorem, if and only if

k∑
i=1

L∑
j=1

πijF
iBj + λTW = 0,

k∑
i=1

L∑
j=1

πij [F
i(Aj x̄ + bj) − f i] + λT (T x̄− r) > 0,(4.2)

π ≥ 0, λ ≥ 0,

it has a solution.
Thus, finding a point x̄ ∈ Dk such that x̄ ∈ Γ(Dk) is equivalent to finding a

triple (x̄, λ, π) satisfying x̄ ∈ Dk and (4.2). (Note that finding a solution to (4.2) is
equivalent to determining the sign of the supremum of an indefinite quadratic function
subject to linear constraints, which would also require global optimization methods
as in Horst, Pardalos, and Thoai [5].)

Once a solution (x̄, λ, π) is found, one can construct a feasibility cut:

k∑
i=1

L∑
j=1

πij [F
i(Ajx + bj) − f i] + λT (Tx− r) ≤ 0,(4.3)

i.e.,

F k+1 =

k∑
i=1

L∑
j=1

πijF
iAj + λTT, fk+1 =

k∑
i=1

L∑
j=1

πij [f
i − F ibj ] + λT r.

We can add an objective to find the “best” cut in the sense, e.g., that F k+1 is the
normal direction of a facet of D∗ or, perhaps more realistically, a facet of Γ(Dk).

Let us look at a simple example to see how Γk(Dcx) approximates D∗.
Example 1. Suppose

dom(c) = {(x, y) : x ∈ [−1, 1]2, y ∈ [−β, β]},
Ax + By + b = αx + e1y for x ∈ �2, y ∈ �1 (deterministic).

Here 0 < α ∈ �1 and e1 = (1, 0)T , meaning that A = αI ∈ �2×2, B = e1 ∈ �2×1, and
b = (0, 0)T . For this example, we have

Dc(x) = {y : (x, y) ∈ dom(c)} =

{
[−β, β] if x ∈ [−1, 1]2,
∅ otherwise.

Dcx = {x : Dc(x) = ∅} = [−1, 1]2,

G(x,D) = {y : αx + e1y ∈ D} for D ⊂ �2.

Thus,

Dc(x) ∩G(x,D) = ∅ ⇐⇒ x ∈ [−1, 1]2, [−β, β] ∩ {y : αx + e1y ∈ D} = ∅
⇐⇒ x ∈ [−1, 1]2, (αx + e1[−β, β]) ∩D = ∅,(4.4)
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where

αx + e1[−β, β] = {αx + ye1 : y ∈ [−β, β]}

=

{
α

(
x1

x2

)
+

(
y
0

)
: y ∈ [−β, β]

}
.

For any D = {|x1| ≤ p, |x2| ≤ q}, with p, q ≥ 0,

Γ(D) = {x ∈ [−1, 1]2 : (αx + e1[−β, β]) ∩D = ∅}
= {x ∈ [−1, 1]2 : [αx1 − β, αx1 + β] ∩ [−p, p] = ∅, |αx2| ≤ q}
= {x ∈ [−1, 1]2 : |x1| ≤ (p + β)/α, |x2| ≤ q/α}
= {|x1| ≤ min{1, (p + β)/α}, |x2| ≤ min{1, q/α}}.

For 0 < α ≤ 1,

Γ(Dcx) = [−1, 1]2 = Dcx.

Thus, by Lemma 4.2, Dcx ⊆ D∗, but D∗ ⊆ Dcx. Thus D∗ = Dcx = [−1, 1]2.
Note. For the case α = 1, any subset D of [−1, 1]2 of the form {|x1| ≤ 1, |x2| ≤ t}

for some 0 ≤ t ≤ 1 satisfies D = Γ(D). Thus, M is a contraction on the Banach space
B(D), and V = M(V ) has a solution (fixed point) VD in B(D). This shows that the
equation V = M(V ) may have many solutions.

For 1 < α ≤ 1 + β,

Γ(Dcx) = {|x1| ≤ 1, |x2| ≤ 1/α},
Γ2(Dcx) = Γ(Γ(Dcx)) = {|x1| ≤ 1, |x2| ≤ 1/α2},

...

Γk(Dcx) = {|x1| ≤ 1, |x2| ≤ 1/αk};

thus, D∗ = limk→∞ Γk(Dcx) = {|x1| ≤ 1, x2 = 0} = Dcx.
For α > 1 + β,

Γ(Dcx) =

{
|x1| ≤

1 + β

α
, |x2| ≤ 1/α

}
,

Γ2(Dcx) =

{
|x1| ≤

1 + β + αβ

α2
, |x2| ≤ 1/α2

}
,

...

Γk(Dcx) =

{
|x1| ≤

1 + β + αβ + . . . + αk−1β

αk
, |x2| ≤ 1/αk

}
;

thus, D∗ = limk→∞ Γk(Dcx) = {|x1| ≤ β
α−1 , x2 = 0} = Dcx.

Remarks.
(i) In some case (α ≤ 1), D∗ = Dcx, which can be obtained directly.
(ii) In some case (α > 1), infinitely many iterations are required to reach D∗.
(iii) Suppose the cutting plane algorithm generates only single-side cuts in the

case of α > 1, e.g., only the cuts x2 ≥ −1/αk; then Dk → {|x1| ≤ 1, 0 ≤ x2 ≤
1} = D∗.

(iv) If we can directly generate the cut x2 ≥ 0 instead of infinitely many cuts
{x2 ≥ −1/αk : k = 1, 2, . . .}, then we can construct D∗ in 2 iterations for the
problem with 1 < α ≤ 1 +β and 4 iterations for the problem with α > 1 +β.



1176 JOHN R. BIRGE AND GONGYUN ZHAO

4.3. Generating the deepest cut. A cut generated by (4.3) cuts off only points
in Dk \ Γ(Dk); i.e., it does not cut off any point in Γ(Dk). As shown in Example
1, the cutting plane method using such cuts may fail to approximate D∗ even with
infinitely many iterations. In order to fulfill the goal in Remark (iv), we must find a
deeper cut (a smaller fk+1), which cuts into Γ(Dk), hopefully reaching the boundary
of D∗.

Given a D, suppose that we have obtained a cut dTx ≤ t0 which cuts off a portion
of D \ Γ(D) (but does not cut into Γ(D)). Denote Dt := D ∩ {dTx ≤ t}. If the plane
dTx = t0 has touched the boundary of Γ(D), then no point of Dt0 \Γ(D) can be cut off
by any cut of the form dTx ≤ t for arbitrary t. However, since Γ(Dt0) is smaller than
Γ(D), a portion of Dt0 \Γ(Dt0) may be cut off by some cut dTx ≤ t. We wish to find
t̄ < t0 such that no point of Dt̄ \Γ(Dt̄) can be cut off by any cut of the form dTx ≤ t.
In other words, the plane dTx = t̄ touches the boundary of Γ(Dt̄) (a supporting plane
of Γ(Dt̄)). Thus, for any t > t̄, the plane dTx = t does not touch Γ(Dt), and, for
any t ≤ t̄, the half-space dTx ≤ t intersects with Γ(Dt). The latter means that there
exists x ∈ Γ(Dt) satisfying dTx ≥ t. The latter interpretation suggests determining t̄
by the following linear program:

t̄ = max {t | dTx ≥ t, x ∈ Γ(Dt)}.(4.5)

Because dTx ≤ t0 does not cut into Γ(D) (then does not cut into Γ(Dt)), there
exists no x satisfying dTx ≥ t and x ∈ Γ(Dt) if t > t0. This implies that t̄ ≤ t0.
Therefore, the cut dTx ≤ t̄ is deeper than the cut dTx ≤ t0.

On the other hand, the following lemma guarantees that the cut dTx ≤ t̄ will not
cut off any point in D∗.

Lemma 4.4. Suppose that D∗ ⊂ D. Let t̄ be the optimal objective value of problem
(4.5); then, dTx ≤ t̄ is satisfied by all x ∈ D∗.

Proof. Let

x∗ = argmax{dTx | x ∈ D∗}, t∗ = dTx∗.

Because x∗ ∈ D∗, there exist {(xt, yt) : t = 0, 1, 2, . . .} such that

V ∗(x∗) = E

[ ∞∑
t=0

δtc(xt, yt)

]
< ∞,

xt+1 = Axt + Byt + b, x0 = x∗.

For any integer K ≥ 0, let x̃l = xl+K and ỹl = yl+K . Because E[
∑∞

t=K δt−Kc(xt, yt)] <
∞, we have

V ∗(xK) ≤ E

[ ∞∑
l=0

δlc(x̃l, ỹl)

]
< ∞.

Therefore, xK ∈ D∗.
Now y0 ∈ Dc(x

∗) follows from c(x∗, y0) < ∞ and y0 ∈ G(x∗, D∗) follows from
x1 = Aix

∗ + Biy0 + bi ∈ D∗ for every i = 1, . . . , L. Thus x∗ ∈ Γ(D∗). Because
D∗ ⊆ D and D∗ ⊆ {x : dTx ≤ t∗}, we have D∗ ⊆ Dt∗ . Therefore, x∗ ∈ Γ(Dt∗). This,
together with dTx∗ = t∗, shows that (x∗, t∗) is a feasible point of (4.5); thus t∗ ≤ t̄,
from which the claim of the lemma follows.

The following example shows the effect of the deepest cut.
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Example 1 (continued). Consider α > 1. Consider the cut of the form −x2 ≤ t
for some t ∈ R to be determined. So, d = (0,−1)T in (4.5). Start with D = Dcx =
[−1, 1]2; then

Dt = {x ∈ [−1, 1]2 : −x2 ≤ t}.

Linear program (4.5) is

t̄ = max t

s.t. −x2 ≥ t,

−1 ≤ αx1 + y ≤ 1,

−t ≤ αx2 ≤ 1,

−β ≤ y ≤ β.

A feasible solution must satisfy

−t/α ≤ x2 ≤ −t.

This can be satisfied only when t ≤ 0 since α > 1. Thus, we have t̄ = 0. The cut
−x2 ≤ 0 reaches the bottom of D∗. With one more cut from above (d = (0, 1)T ), D∗

will be completely determined for the case of 1 < α ≤ 1 + β.

For the case of α > 1 + β, suppose we have d = (1, 0)T . Then

Dt = {x ∈ [−1, 1]2 : x1 ≤ t}.

Linear program (4.5) is

t̄ = max t,

s.t. x1 ≥ t,

−1 ≤ αx1 + y ≤ t,

−1 ≤ αx2 ≤ 1,

−β ≤ y ≤ β.

Feasible solutions must satisfy

t ≤ x1 ≤ t + β

α
.

This implies

t ≤ β

α− 1
.

Thus t̄ = β
α−1 ; so we obtain a cut x1 ≤ β

α−1 which cuts exactly to the boundary of

D∗ on the right. One more cut from the left (d = (−1, 0)T ) will completely determine
D∗; hence, in total, we need only 4 cuts.
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5. Examples.

5.1. Infinite-horizon portfolio. As noted in the introduction, this work was
motivated by solving infinite-horizon investment problems that face long-enduring
institutions. We will demonstrate how the algorithm performs on a small example
where an infinite-horizon optimum can be found analytically (as done, for example,
in [14, 10]). The goal is to maximize the discounted expected utility of consumption
over an infinite horizon. The decisions in each period are how much to consume and
how much to invest in a risky asset (or in a variety of assets).

The state variable x in this case corresponds to wealth or the current market
value of all assets. The control variable y has two components: y1, which corresponds
to consumption, and y2, which corresponds to the amount invested in a risky asset
with random return ξ. The assumption in this model is that any remaining funds,
after consuming y1 and investing y2 in the risky asset, are invested in a risk-free asset
(e.g., U.S. Treasury bills) with a known rate of return r. For this model, c(x, y) is
either ∞ if x < 0 or −yγ1 /γ for some nonzero parameter γ < 1, giving (the negative
of) the common utility function with constant relative risk aversion (i.e., such that
risk preferences do not depend on the level of wealth).

With these assumptions, M(V ) takes the following form (for x ≥ 0):

M(V )(x) = min
y

{
−yγ1 /γ + δ

L∑
i=1

piV ((1 + r)x− (1 + r)y1 + (ξi − r)y2)

}
,(5.1)

where ξi is the ith realization of the random return with probability pi. The solution
V ∗ of M(V ) = V can be found analytically by observing that the optimal value
function is proportional to xγ (by, for example, considering the limiting case of a
finite-horizon problem). We then have that

L∑
i=1

piV ((1 + r)x− (1 + r)y1 + (ξi − r)y2)

= −K

L∑
i=1

pi((1 + r)x− (1 + r)y1 + (ξi − r)y2)
γ

= −K(x− y1)
γ

L∑
i=1

pi((1 + r) + (ξi − r)[y2/(x− y1)])
γ

= −K(x− y1)
γ

L∑
i=1

pi((1 + r) + (ξi − r)z)γ ,

where z = y2

x−y1
is the fractional risky investment after consuming y1 and K is some

positive constant. The optimal z∗ then must solve

L∑
i=1

piγ(ξi − r)((1 + r) + (ξi − r)z)γ−1 = 0,(5.2)

which is independent of y1. With V̄ ∗ = −
∑L

i=1 pi((1 + r) + (ξi − r)z∗)γ , optimal y∗1
now must solve

−yγ−1
1 + δγKV̄ ∗(x− y1)

γ−1 = 0(5.3)
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Fig. 1. Value function approximations for portfolio example δ = 1/1.25. The horizontal axis
stands for the state variable x and the vertical axis for the value function V .

or

y∗1 = x
(δγKV̄ ∗)1/(γ−1)

1 + (δγKV̄ ∗)1/(γ−1)
= xw∗(5.4)

for an optimal consumption fraction w∗. The last step is to find K from M(V ) = V ,
using

−xγ((w∗)γ/γ + δKV̄ ∗(1 − w∗)γ) = M(V (x)) = V (x) = −Kxγ(5.5)

to obtain K = ((δV̄ ∗)1/(γ−1)−1)γ−1

δγV̄ ∗ .

While this function can be found explicitly (up to solving the nonlinear equa-
tion (5.2)), various other constraints on investment (such as transaction costs and
limits on consumption changes from period to period) make analytical solutions im-
possible. We use the analytical solution here to observe Algorithm 3.1’s performance
and convergence behavior. We also use the analytical solution to derive initial upper
bounding approximations. For our test, we use the linear supports of V ∗ at x = 0.1
and x = 10 as initial cuts and restrict our search in x to the interval [0.1, 10], although
the feasible region is unbounded.

For our test, we used γ = 0.03, r = 0.05, and ξi chosen as a discrete approxima-
tion of the lognormal return distribution with a mean return of 0.08 and a standard
deviation of 0.4. Algorithm 3.1 was implemented in MATLAB using fmincon to solve
the optimization subproblems and a linesearch to find xk in Step 2. We tried different
values for the discount factor δ. The results for δ = 1

1.25 appear in Figure 1, which
includes V 0, V 5, V 10, V 20, V 50, V 100, and V ∗. In this case, after 100 iterations, the
approximation almost perfectly matches the true infinite-horizon value function.
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Fig. 2. Value function approximations for portfolio example δ = 1/1.07. The horizontal axis
stands for the state variable x and the vertical axis for the value function V .

With a larger δ, the value of K increases rapidly as (δV̄ ∗)1/(γ−1) approaches
one. For δ = 1

1.25 , K is 155.6, while for δ = 1
1.07 , K is 466.3. The result is that

larger δ values (corresponding to lower discount rates) require additional iterations of
Algorithm 3.1 to approach V ∗. The results for the same data as in Figure 1 except
with δ = 1

1.07 appear in Figure 2. After 500 iterations, the approximating V 500 agrees
relatively well with V ∗ as shown in the figure but has not converged to nearly the
same accuracy as the approximations (with fewer iterations) in Figure 1.

For this example, Algorithm 3.2 gains a notable speedup. For the instance with
δ = 1

1.25 , it requires only 25 iterations to obtain the approximating V 25 which is
as good as V 100 obtained by Algorithm 3.1. For the case of δ = 1

1.07 , Algorithm
3.2 requires only about 1/4 of the iterations needed by Algorithm 3.1. Moreover,
Algorithm 3.2 can generate more accurate approximating value functions.

Understanding the numerical behavior of Algorithm 3.1 and finding mechanisms
to speed convergence should be topics for further investigation. Comparing V k to
V ∗ in the figures shows how the algorithm forces a closer approach in some areas of
the curve over others. The behavior of the algorithm is generally to move along the
curve V k to create tighter cuts and then to repeat that process with less improvement
on a new sequence of iterations. These observations suggest that procedures with
multiple cut generation and tightening tolerances should be considered for accelerating
convergence.

5.2. Quadratic-linear stochastic control problems. This example is in-
tended to test the algorithm for high-dimensional problems. The quadratic-linear
stochastic control problems are well known. We will use these examples following
section 6.5 of [2]. The value function in a quadratic-linear stochastic control problem
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is defined as follows:

V ∗(x) = min
y1,y2,...

Eξ0,ξ1,...

∞∑
t=0

δt[xT
t Qxt + yTt Ryt]

s.t. xt+1 = Axt + Byt + b for t = 0, 1, 2, . . . ,

x0 = x.

In the above expression, xt ∈ �n, yt ∈ �m, and the matrices A, B, Q, R are given
and have appropriate dimensions. We assume that Q is a symmetric positive semidef-
inite matrix and that R is also symmetric and positive definite. The disturbances
ξt = b form independent random vectors with given probability distributions that
do not depend on xt, yt. Furthermore, the vector b has zero mean and finite second
moment. The controls yt are unconstrained. The problem above represents a popular
formulation of a regulation problem whereby we desire to keep the state of the system
close to the origin. Such problems are common in the theory of automatic control of
a motion or a process. For computational purposes, we assume ξ = b is a discrete
random vector with pi = Prob(ξ = bi), i = 1, . . . , L.

The value function V ∗ is the solution of M(V ) = V , where the mapping M is
determined by

M(V )(x) = min
y

{
xTQx + yTRy + δ

L∑
i=1

piV (Ax + By + bi)

}
.

We choose the quadratic-linear stochastic control problem because its exact solu-
tion on �n can be computed. In the following, to be consistent with standard notation
for these problems, we reuse the notation K and c as a matrix and a constant, re-
spectively. To find the exact solution for V ∗, we first compute a symmetric positive
semidefinite matrix K by solving the algebraic matrix Riccati equation:

K = AT [δK − δ2KB(δBTKB + R)−1BTK]A + Q.

Then the exact value function V ∗ is given by

V ∗(x) = xTKx + c,

where

c =
δ

1 − δ

L∑
i=1

pib
T
i Kbi.

The above formula determines the exact value function on �n; however, a numer-
ical method can determine only a value function on a bounded set. In this example,
we will find the value function on the box D∗ = [−t, t]n. The solutions of M(V ) = V
on B(�n) and B([−t, t]n) need not be the same; however, for reasonably large t, the
two solutions should be close. Thus, we still use the exact value function on B(�n)
as the reference for numerically generated value functions.

Finding a point x̄ which maximizes M(V )(x) − V (x) is computationally very
expensive. The method for minimizing a d.c. function described in Appendix A
can be applied to finding x̄; however, this is difficult to program and expensive in
computation. Thus, we use the following approach. We randomly sample J points,
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xj , j = 1, . . . , J (e.g., J = 5). At each point xj , we evaluate M(V )(xj) and compute
the gradient of M(V ) (or a subgradient if M(V ) is not smooth) ξj , which generates
at the point a supporting plane Hj of M(V ). Then we find a point x̄j by maximizing
Hj(x) − V (x), which can be viewed as a local approximation of M(V )(x) − V (x).
Suppose that the current approximate value function

V (x) = max{Qix + qi : i = 1, . . . , p}, x ∈ [−t, t]n.

Using the supporting plane formula from section 3.2, we have

Hj(x) = M(V )(xj) + ξj(x− xj).

Thus, maximizing Hj(x) − V (x) can be formulated as a linear program

σj = max{M(V )(xj) + ξj(x− xj) − θ : x ∈ [−t, t]n, Qix + qi ≤ θ, i = 1, . . . , p };

then x̄ is chosen as the point among x̄j , j = 1, . . . , J , with the largest σj .
We implemented SLAM for the quadratic-linear stochastic control problem with

various dimensions and summarize the results in the tables below. The accuracy of
an approximate solution to the exact solution is measured by the relative error,

‖V ∗ − V ‖D∗/‖V ∗‖D∗ .

Although the exact value function V ∗(x) = xTKx + c is known, computing the ap-
proximation error is still difficult due to the high dimension of D∗ = [−t, t]n. To
estimate the error, we generate a sample of 5000 points plus points on the line of
the eigenvector corresponding to the maximum eigenvalue of K and estimate ‖f‖D∗

by max{|f(x)| : for all sample points x}. This sample size is generally small for
high-dimensional problems, causing potential inaccuracy in the errors shown in the
table. The result can, however, be understood as a tendency. For each dimension,
we computed 3 instances. The errors shown in the table are the average of the 3
instances.

Number of Iterations
10 25 50 100 200

(1, 1) 0.3540 0.1238 0.0473 0.0125 0.0037
(2, 2) 0.1680 0.0750 0.0466 0.0191 0.0105

(n,m) = (4, 2) 0.1444 0.0649 0.0541 0.0309 0.0196
(4, 4) 0.1140 0.0512 0.0380 0.0190 0.0153
(10, 5) 0.1311 0.1255 0.0785 0.0499 0.0455
(10, 10) 0.1429 0.1403 0.0868 0.0751 0.0670

Relative Errors

The experiments show that fairly good solutions can be obtained for low-dimen-
sional instances. For the high-dimensional cases, errors are rapidly reduced in the first
several iterations but are not clearly reduced after the initial iterations through the
200th iteration. We display only the first iterations for the examples of dimensions
(n,m) = (20, 20) and (50, 50).

# Iterations 1 2 3 4 6 8 200
(20,20) 1.0000 0.3935 0.3926 0.1383 0.1221 0.1159 0.1126
(50,50) 1.0000 0.7774 0.3442 0.1794 0.0939 0.0925 0.0925

Relative Errors
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A positive aspect of these tests is that the method appears to work well for high-
dimensional problems in the sense that it can find a relatively good solution in the
first few iterations, with relative errors reduced to around 0.1. Considering that it
is not possible for a direct state-discretization method to work for a 20-dimensional
problem (since that requires q20 points if each dimension is discretized into q points),
our method can be considered as a useful alternative for solving high-dimensional
stochastic dynamic programs for which the curse of dimensionality is a major concern.

The negative result from this example is that, after a few iterations, the method
converges very slowly, particularly for high-dimensional problems. This can be seen
from the examples of dimensions (n,m) = (20, 20) and (50, 50). Useful cuts continue
to be added in these examples, but, while reducing local errors about the iteration
points, errors still remain unaffected in other portions of the domain.

6. Observations and future issues. We have described an algorithm for solv-
ing a general class of discrete-time convex infinite-horizon optimization problems and
demonstrated the method on two simple examples. As the first example demon-
strates, many iterations may be required to achieve accuracy for highly nonlinear
value functions. The second example, however, demonstrates that approximate solu-
tions converge very quickly at the beginning and can produce approximate solutions
with a relative error of around 0.1, even for high-dimensional problems.

Since each iteration involves additional optimization steps, the selection of x̄ (or
potentially multiple points on each iteration) has a critical effect on performance.
We mentioned the d.c. methods as one possibility for finding good points, but other
methods that require fewer function evaluations may also be useful. In the second
example, we select x̄ from a small sample. The results from this example are encour-
aging. To see if this selection is effective in general, more numerical experiments are
needed. The effect of different options also requires further study.

Our method relies on identification of the feasible domain D∗. In that case, we
are left with the following questions:

(i) Under what condition is D∗ a polytope?
(ii) Can Algorithm 4.1 terminate in a finite number of iterations if D∗ is a poly-

tope?
(iii) How can one modify the algorithm if D∗ is not a polytope?

These questions and further implementation issues are additional subjects for future
research.

Appendix A. This appendix describes a method for finding a minimizer to the
problem

min
x∈D∗

V (x) −M(V )(x),

where both V and M(V ) are convex. This problem is equivalent to

minxn+1,

x, xn+1 : V (x) −M(V )(x) − xn+1 ≤ 0,

x ∈ D∗,

which is equivalent to

minxn+1,

x, xn+1, xn+2 : V (x) − xn+1 − xn+2 ≤ 0,

M(V )(x) − xn+2 ≥ 0,

x ∈ D∗.
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Suppose that

V (x) = max{Qix + qi : i = 1, . . . , k} ∀x ∈ D∗ ⊂ �n;

then the above problem is equivalent to

minxn+1,

x, xn+1, xn+2 : Qix + qi − xn+1 − xn+2 ≤ 0, i = 1, . . . , k,

x ∈ D∗,

M(V )(x) − xn+2 ≥ 0.

The first k + 1 constraints define a polyhedral set, denoted by D. (In order to use
the algorithm described in [5], D should be bounded. This can be done by adding
appropriate lower and upper bounds on xn+1 and xn+2, without changing the solution
of the minimization problem.) The function in the k + 2nd constraint is convex,
denoted by g. Such a program can be solved by Algorithm 4.1 in [5]. Here we
describe it briefly. The algorithm solves

min cTx(A.1)

s.t. x ∈ D, g(x) ≥ 0.

Initialization: Solve min{cTx : x ∈ D} to obtain x0 ∈ D. Assume g(x0) < 0
(otherwise, x0 is an optimal solution to (A.1)). Construct a simple polytope S0, e.g.,
a simplex, containing D, such that x0 is a vertex of S0; compute the vertex set V (S0)
of S0. j ← 0.

Iterations: Choose z ∈ V (Sj) satisfying g(z) = max{g(x) : x ∈ V (Sj)}.
If g(z) = 0 and z ∈ D, then stop; z is an optimal solution.
Otherwise, apply the simplex algorithm with starting vertex z to solve min{cTx :

x ∈ Sj} until an edge [u, v] of Sj is found such that g(u) ≥ 0 and g(v) < 0 and
cT v < cTu; compute the intersection point s of [u, v] with {x : g(x) = 0}.

If s ∈ D, then Sj+1 ← Sj ∩ {x : cTx ≤ cT s}.
If s ∈ D, then Sj+1 ← Sj ∩ {x : l(x) ≤ 0}, where l(x) ≤ 0 is one of the linear

constraints defining D satisfying l(s) > 0.
j ← j + 1; repeat.

Appendix B. Define the function ρ = M(V ) by

ρ(x) = min
y,θ

⎧⎨
⎩c(x, y) + δ

L∑
j=1

pjθ
j | Qzj + q ≤ θje, Fzj ≤ f ,

zj = Ajx + Bjy + bj , j = 1, . . . L

⎫⎬
⎭ ,

and let (ȳ, θ̄) and (λ̄, μ̄) be an optimal solution and multiplier, respectively, of the
above minimization problem. We will show that

ξ = ζx +

L∑
j=1

(λ̄T
j QAj + μ̄T

j FAj)

is a subgradient of ρ at x̄, where ζ = (ζx, ζy) is a subgradient of c at (x̄, ȳ).
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We can write

ρ(x) = min c(x, y) + δ

L∑
j=1

pjθ
j ,

y, θ : Q(Ajx + Bjy + bj) + q ≤ θje,

F(Ajx + Bjy + bj) ≤ f , j = 1, . . . , L,

= max h(λ, μ;x)

s.t. λT
j e = δpj , j = 1, . . . , L,(B.1)

λ ≥ 0, μ ≥ 0,

where λ = (λ1, . . . , λL), μ = (μ1, . . . , μL), and

h(λ, μ;x) = min
y

c(x, y) +

L∑
j=1

[λT
j (Q(Ajx + Bjy + bj) + q)

+μT
j (F(Ajx + Bjy + bj) − f)].(B.2)

Let (λ̄, μ̄) be the optimal solution of the problem (B.1) with x = x̄. Then ρ(x̄) =
h(λ̄, μ̄; x̄).

The necessary and sufficient condition for ȳ to be an optimal solution of the
problem (B.2) (given (λ̄, μ̄; x̄)) is that there exists a subgradient ζ = (ζx, ζy) of c at
(x̄, ȳ) such that

ζy +

L∑
j=1

[λ̄T
j QBj + μ̄T

j FBj ] = 0.(B.3)

For fixed (λ, μ) = (λ̄, μ̄) and for any x, denote by yx an optimal solution of (B.2).
Then

ρ(x) = max
λ,μ

{h(λ, μ;x) | λT
j e = δpj , j = 1, . . . , L; λ ≥ 0, μ ≥ 0}

≥ h(λ̄, μ̄;x)

= c(x, yx) +

L∑
j=1

[λ̄T
j (Q(Ajx + Bjyx + bj) + q) + μ̄T

j (F(Ajx + Bjyx + bj) − f)].

Because c is convex,

c(x, y) ≥ c(x̄, ȳ) + ζx(x− x̄) + ζy(y − ȳ).

Note that yx̄ = ȳ and

ρ(x̄) = h(λ̄, μ̄; x̄)

= c(x̄, ȳ) +
L∑

j=1

[λ̄T
j (Q(Aj x̄ + Bj ȳ + bj) + q) + μ̄T

j (F(Aj x̄ + Bj ȳ + bj) − f)].
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Thus,

ρ(x) ≥ ρ(x̄) + ζx(x− x̄) + ζy(yx − ȳ)

+

L∑
j=1

[λ̄T
j (QAj(x− x̄) + QBj(yx − ȳ)) + μ̄T

j (FAj(x− x̄) + FBj(yx − ȳ))]

= ρ(x̄) +

⎧⎨
⎩ζx +

L∑
j=1

(λ̄T
j QAj + μ̄T

j FAj)

⎫⎬
⎭ (x− x̄),

where the last equation uses (B.3). The above inequality shows that

ξ = ζx +

L∑
j=1

(λ̄T
j QAj + μ̄T

j FAj)

is a subgradient of ρ at x̄.
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Abstract. We present a new numerical solution method for semi-infinite optimization problems.
Its main idea is to adaptively construct convex relaxations of the lower level problem, replace the
relaxed lower level problems equivalently by their Karush–Kuhn–Tucker conditions, and solve the
resulting mathematical programs with complementarity constraints. This approximation produces
feasible iterates for the original problem. The convex relaxations are constructed with ideas from
the αBB method of global optimization. The necessary upper bounds for second derivatives of
functions on box domains can be determined using the techniques of interval arithmetic, where our
algorithm already works if only one such bound is available for the problem. We show convergence
of stationary points of the approximating problems to a stationary point of the original semi-infinite
problem within arbitrarily given tolerances. Numerical examples from Chebyshev approximation and
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1. Introduction. We consider the optimization problem

SIP : min
x∈X

f(x) subject to g(x, y) ≤ 0 for all y ∈ Y,

with objective function f ∈ C2(Rn,R), constraint functions g ∈ C2(Rn × R
m,Rp),

a box constraint set X = [x�, xu] ⊂ R
n, with x� < xu ∈ R

n, and a box index set
Y = [y�, yu] ⊂ R

m, with y� < yu ∈ R
m, where the vector inequalities are understood

componentwise. Problems of this type, in which a finite-dimensional decision variable
is subject to infinitely many inequality constraints, are called (standard) semi-infinite.
In this article we will focus our attention on the simplest case p = 1 (one semi-infinite
constraint) and m = 1; that is, without loss of generality we put Y = [0, 1]. More
general problem formulations allow Y to be a nonempty compact subset of R

m or even
to be nonfixed but x-dependent. In the latter case the problem is called generalized
semi-infinite. Moreover, in applications additional inequality and equality constraints
may be present. Whereas the techniques and results presented in this article may be
used to tackle these more general problems (with more or less additional effort), for
the sake of clarity we develop the main ideas only for SIP with p = 1 and Y = [0, 1].

Standard semi-infinite problems have been studied systematically since the 1960s.
Important early contributions regarding optimality conditions and duality theory for
standard semi-infinite problems are given in [6, 15] for linear semi-infinite problems
and in [20, 49] for nonlinear problems. For excellent reviews with hundreds of ref-
erences on semi-infinite programming, we refer to [21, 36]. A standard reference for
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linear semi-infinite problems is [16], and [23, 37, 38] overview the existing numerical
methods. Generalized semi-infinite optimization is treated in detail in [45].

Until recently the numerical methods for SIP suffered from the major drawback
that their approximations of the feasible set X ∩M , with

M = {x ∈ R
n| g(x, y) ≤ 0 for all y ∈ Y },

may contain infeasible points. In fact, discretization and exchange methods ap-
proximate M by finitely many inequalities corresponding to finitely many indices
in Y , yielding an outer approximation of M , and reduction-based methods solve the
Karush–Kuhn–Tucker system of SIP (cf. section 2.1) by a Newton-SQP approach. As
a consequence, the iterates of these methods are not necessarily feasible for SIP, but
only their limit might be. Even to ensure the latter, active index sets of the iterates
have to be determined. As we will explain, this amounts to the solution of certain
global optimization problems.

The recent articles [4, 5] present a branch-and-bound framework for the global
solution of SIP which generates convergent sequences of lower and upper bounds
for the globally optimal value. Whereas the lower bounds are obtained by usual
discretization, the upper bounds are computed using inclusion bounds and interval
arithmetic. Whereas [4, 5] focus on the global solution of SIP, they also present the
first algorithm with feasible iterates for SIP, to our knowledge.

In fact, checking feasibility of a given point x̄ ∈ R
n is the crucial problem in

semi-infinite optimization. Clearly we have x̄ ∈ M if and only if ϕ(x̄) ≤ 0 holds with
the function

ϕ : R
n → R, x �→ max

y∈Y
g(x, y) .

The latter function is the optimal value function of the so-called lower level problem
of SIP,

Q(x) : max
y∈R

g(x, y) subject to 0 ≤ y ≤ 1 .

The difficulty lies in the fact that ϕ(x̄) is the globally optimal value of Q(x̄) which
might be hard to determine numerically. In fact, standard NLP solvers can only
be expected to produce a local maximizer yloc of Q(x̄) which is not necessarily a
global maximizer yglob . Even if g(x̄, yloc) ≤ 0 is satisfied, x̄ might be infeasible since
g(x̄, yloc) ≤ 0 < ϕ(x̄) = g(x̄, yglob) may hold.

To avoid this effect one could simply assume that the lower level is a convex
optimization problem, since then its local and global maximizers coincide. As the
feasible set Y = [0, 1] of Q(x) is convex, only concavity of g with respect to y for each
x ∈ X is needed to ensure lower level convexity.

The known numerical methods for standard semi-infinite optimization have not
taken this approach since the concavity assumption on g fails in most applications. In
generalized semi-infinite optimization, however, a number of real-life applications with
convex lower level problems exist, so that this structure was exploited in [40, 45, 48].
We will recall the main ideas in section 2.2.

In this article we aim at constructing a sequence of convexifications of the lower
level problem and using the techniques from [45, 48] to solve the auxiliary problems
with convex lower levels. The convexifications will be produced using the ideas of the
αBB method [1, 2, 12] which is explained in section 2.3. As αBB allows one to con-
struct concave overestimators of g, all iterates of our method will be feasible for SIP.
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Note that in this article we are mainly interested in the feasibility of the iterates,
that is, in global solutions of the lower level problem, and not in a possibly global
solution of SIP (the upper level problem). For this reason we neither make any global
assumptions on the defining functions of the upper level such as linearity or convexity
with respect to x, nor do we convexify the problem or branch-and-bound with respect
to x. Consequently our solution concept will be that of local minimizers or stationary
points. This is a main difference to the branch-and-bound approach presented in
[4, 5]. While we cannot guarantee global solutions of SIP, our approach can easily
be combined with other methods, should a special structure of SIP with respect to x
be present. If no special structure is present, our method promises to compute local
minimizers with less numerical effort than a method aiming at global minimizers. We
point out that our procedure involves the solution of auxiliary optimization problems
involving equality constraints, whereas the approach from [4, 5] generally leads to
auxiliary problems with nonsmooth inequality constraints.

Section 3 develops our new solution method, Algorithm 3.4, and section 4 provides
corresponding convergence results. Numerical examples illustrate the performance of
the method in section 5. Finally, in section 6 we point out possible improvements and
generalizations of our method as well as some open questions.

2. Background.

2.1. Stationarity conditions. First order necessary optimality conditions for
SIP and a natural constraint qualification are well-known and briefly recalled in what
follows. To keep the exposition concise, throughout this paper we assume that the
box X is so large that the considered stationary points are contained in its interior.
Since ϕ is continuous [9], M is a closed set, and a feasible point x̄, with ϕ(x̄) < 0, lies
in the interior of M . A local minimizer x̄ of SIP, with ϕ(x̄) < 0, hence necessarily
satisfies ∇f(x̄) = 0. Here and in the following, the column vector ∇F denotes the
gradient of a C1 function F and ∇zF the gradient of F with respect to the vector z.

For x̄ ∈ ∂M , the topological boundary of M , we define the active index set

Y0(x̄) = {y ∈ Y |g(x̄, y) = 0}.

Note that Y0(x̄) is nonempty and compact and that it coincides with the set of global
maximizers of Q(x̄). The following theorem is due to John. For our formulation we
use the (n + 1)-dimensional standard simplex

Sn+1 =

{
s ∈ R

n+2

∣∣∣∣s ≥ 0,

n+2∑
i=1

si = 1

}
.

Theorem 2.1 (see [25]). Let x̄ ∈ ∂M be a local minimizer of SIP. Then there
exist yk ∈ Y0(x̄), 1 ≤ k ≤ n + 1, and (κ, λ) ∈ R × R

n+1, with (κ, λ) ∈ Sn+1, and

κ∇f(x̄) +

n+1∑
k=1

λk∇xg(x̄, y
k) = 0,(2.1)

λk · g(x̄, yk) = 0, 1 ≤ k ≤ n + 1.(2.2)

A point x̄ ∈ M is said to satisfy the extended Mangasarian–Fromovitz constraint
qualification (EMFCQ) if

∇�
x g(x̄, y)d < 0 for all y ∈ Y0(x̄)
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holds with some vector d ∈ R
n. Under EMFCQ at x̄, one can choose κ = 1 in (2.1)

and thus obtain a Karush–Kuhn–Tucker condition [23]. Note that, in the case when
strictly less than n+1 active indices are sufficient for stationarity, we can satisfy (2.1),
(2.2) by artificially listing the same active index an appropriate number of times and
setting the corresponding multipliers to zero.

2.2. Convex lower level problems. Assume for the moment that Q(x) is
actually a convex optimization problem for all x ∈ X; that is, g(x, ·) is concave on
Y = [0, 1] for these x. The approach from [45, 48] then takes advantage of the fact that
the solution set of a differentiable convex lower level problem satisfying a constraint
qualification is characterized by its first order optimality condition. As a first step for
this, observe that SIP and the Stackelberg game

SG : min
x,y

f(x) subject to g(x, y) ≤ 0, and y solves Q(x),

are equivalent problems (this can even be shown for generalized semi-infinite problems;
cf. [47]). Next, the restriction “y solves Q(x)” in SG can be equivalently replaced by
its Karush–Kuhn–Tucker condition. For this reformulation we use that the Lagrange
function of Q(x)

L(x, y, γ�, γu) = g(x, y) + γ�y + γu(1 − y)

satisfies

∇yL(x, y, γ�, γu) = ∇yg(x, y) + γ� − γu

and obtain that the Stackelberg game is equivalent to the following mathematical
program with complementarity constraints:

MPCC : min
x,y,γ�,γu

f(x) subject to g(x, y) ≤ 0

∇yg(x, y) + γ� − γu = 0
γ�y = 0

γu(1 − y) = 0
γ�, γu ≥ 0

y, 1 − y ≥ 0.

Unfortunately standard numerical software cannot be expected to solve this prob-
lem since due to the appearance of complementarity conditions the Mangasarian-
Fromovitz constraint qualification (MFCQ) is violated at all points of the feasible set
of MPCC [42]. In [27, 39] it is shown that MFCQ is a necessary condition for the
stability of smooth nonlinear programs under data perturbations and thus for the
stability of numerical methods in the presence of roundoff errors. Note that in [11] it
is shown, however, that at least certain SQP methods will converge locally for MPCC.
For overviews of MPCC solution methods we refer to [29, 30, 43].

One approach to solve MPCC is the reformulation of the complementarity con-
straints by a so-called NCP function, that is, a function φ : R

2 → R, with

φ(a, b) = 0 if and only if a ≥ 0, b ≥ 0, ab = 0.

Examples are the natural residual or min-function

φNR(a, b) =
1

2

(
a + b−

√
(a− b)2

)
,
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and the Fischer–Burmeister function [10]

φFB(a, b) = a + b−
√

a2 + b2.

For numerical purposes one can regularize these nondifferentiable NCP functions.
The so-called Chen–Harker–Kanzow–Smale function [7, 28, 44] is given by

φNR
τ (a, b) =

1

2

(
a + b−

√
(a− b)2 + 4τ2

)
,

whereas the so-called smoothed Fischer–Burmeister function is

φFB
τ (a, b) = a + b−

√
a2 + b2 + 2τ2.

Obviously φNR
τ and φFB

τ are continuously differentiable for all τ 
= 0, and for τ = 0
they coincide with φNR and φFB , respectively.

With φ denoting one of the NCP functions φNR and φFB , MPCC can now be
equivalently rewritten as the nonsmooth problem

P : min
x,y,γ�,γu

f(x) subject to g(x, y) ≤ 0

∇yg(x, y) + γ� − γu = 0
φ(γ�, y) = 0

φ(γu, 1 − y) = 0,

where, in particular, the inequality constraints on y, γ�, γu are now modeled by φ.
Problem P is embedded into the parameterized family of optimization problems

Pτ : min
x,y,γ�,γu

f(x) subject to g(x, y) ≤ 0

∇yg(x, y) + γ� − γu = 0
φτ (γ�, y) = 0

φτ (γu, 1 − y) = 0,

which are smooth for τ 
= 0 and satisfy P0 = P . Given a sequence of regularization
parameters τν ↘ 0, the problems Pτν can be solved by standard software, and in
[45, 48] it is shown that under weak assumptions each cluster point x� of the solution
components xν is a solution of SIP.

2.3. The αBB method. In αBB, a convex underestimator of a nonconvex
function is constructed by decomposing it into a sum of nonconvex terms of special
type (e.g., linear, bilinear, trilinear, fractional, fractional trilinear, convex, univariate
concave) and nonconvex terms of arbitrary type. The first type is then replaced by
its convex envelope or very tight convex underestimators which are already known. A
complete list of the tight convex underestimators of the above special-type nonconvex
terms is provided in [12]. Recent comprehensive reviews on the state of the art in
global optimization can be found [13, 14].

To keep the exposition concise, in this article we will treat all terms as arbitrarily
nonconvex. For these terms, αBB constructs convex underestimators by adding a
quadratic relaxation function ψ. With the obvious modification we use this approach
to construct a concave overestimator for a nonconcave function g : [y�, yu] → R being
C2 on an open neighborhood of [y�, yu]. With

ψ(y;α, y�, yu) = α
2 (y − y�)(yu − y),(2.3)
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we put

g̃(y;α, y�, yu) = g(y) + ψ(y;α, y�, yu).

In what follows we will suppress the dependence of g̃ on y�, yu. For α ≥ 0 the function
g̃ clearly is an overestimator of g on [y�, yu], and it coincides with g at the end points
y�, yu of the domain. Moreover, g̃ is twice continuously differentiable with the second
derivative

∇2
y g̃(y;α) = ∇2g(y) − α

on [y�, yu]. Consequently g̃ is concave on [y�, yu] for

α ≥ max
y∈[y�,yu]

∇2g(y)(2.4)

(cf. also [1, 2]). The computation of α thus involves a global optimization problem
itself. Note, however, that we may use any upper bound for the right-hand side in
(2.4). Such upper bounds can be provided by interval methods (see, e.g., [12, 19, 33]).
We will call α satisfying (2.4) a convexification parameter.

Combining these facts shows that for

α ≥ max

(
0, max

y∈[y�,yu]
∇2g(y)

)
(2.5)

the function g̃(y;α) is a concave overestimator of g on [y�, yu]. A representative
measure of the quality of an overestimator is the separation distance between itself
and the nonconcave function it overestimates. The smaller the separation distance,
the tighter the overestimator is. The separation distance between g(y) and g̃(y;α) is
defined by the difference of these functions; that is,

dαBB(y;α) = g̃(y;α) − g(y) = α
2 (y − y�)(yu − y).

The separation distance is hence maximal at the midpoint of the interval [y�, yu], and
its value is

max
y∈[y�,yu]

dαBB(y;α) = α
8 (yu − y�)2(2.6)

(see also [32]). On the one hand, (2.6) quantifies the improvement of the maximal
separation distance for better bounds α with (2.5) on a fixed set [y�, yu]; on the
other hand, it shows that the maximal separation distance decreases quadratically for
|yu − y�| → 0, even if α is bounded below by some positive number.

Whereas the presented ideas are used in the αBB approach to global optimization
in a branch-and-bound framework [12], here we will use them for adaptive convexifi-
cations of the lower level problem of SIP.

3. The numerical approach. For N ∈ N let 0 = η0 < η1 < · · · < ηN−1 <
ηN = 1 define a subdivision of Y = [0, 1]; that is, with K = {1, . . . , N} and

Y k = [ηk−1, ηk], k ∈ K,

we have

Y =
⋃
k∈K

Yk.(3.1)
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A trivial but very useful observation is that the single semi-infinite constraint

g(x, y) ≤ 0 for all y ∈ Y

is equivalent to the finitely many semi-infinite constraints

g(x, y) ≤ 0 for all y ∈ Y k, k ∈ K.

Given a subdivision, we will construct concave overestimators for each of these finitely
many semi-infinite constraints, solve the corresponding optimization problem, and
adaptively refine the subdivision.

The following lemma formulates the obvious fact that replacing g by overesti-
mators on each subdivision node Y k results in an approximation of M by feasible
points.

Lemma 3.1. For each k ∈ K let gk : X × Y k → R, and let x̄ ∈ X be given such
that for all k ∈ K and all y ∈ Y k we have g(x̄, y) ≤ gk(x̄, y). Then the constraints

gk(x̄, y) ≤ 0 for all y ∈ Y k, k ∈ K,

entail x̄ ∈ M .
Proof. The proof immediately follows from (3.1).

3.1. αBB for the lower level. For the construction of these overestimators we
use ideas of the αBB method. In fact, for each k ∈ K we put

gk : X × Y k → R, (x, y) �→ g(x, y) + ψ(y;αk, η
k−1, ηk)(3.2)

with the quadratic relaxation function ψ from (2.3) and

αk > max

(
0, max

(x,y)∈X×Y k
∇2

yg(x, y)

)
.(3.3)

Note that the latter condition on αk is uniform in x. We emphasize that with the
single bound

ᾱ > max

(
0, max

(x,y)∈X×Y
∇2

yg(x, y)

)
(3.4)

the choices αk := ᾱ satisfy (3.3) for all k ∈ K. Moreover, the αk can always be chosen
such that αk ≤ ᾱ, k ∈ K.

The following properties of gk are easily verified.
Lemma 3.2. For each k ∈ K let gk be given by (3.2). Then the following holds:
(i) For all (x, y) ∈ X × Y k we have g(x, y) ≤ gk(x, y).
(ii) For all x ∈ X, the function gk(x, ·) is concave on Y k.
(iii) The maximal separation distance (compare (2.6)) between gk and g on X×Y k

is αk

8 (ηk − ηk−1)2.
Now we consider the following approximation of the feasible set M , where E =

{ηk|k ∈ K} denotes the set of subdivision points and α the vector of convexification
parameters:

MαBB(E,α) = {x ∈ R
n|gk(x, y) ≤ 0 for all y ∈ Y k, k ∈ K}.

By Lemmas 3.1 and 3.2(i) we have MαBB(E,α) ⊂ M . This means that any solution
concept for

SIPαBB(E,α) : min
x∈X

f(x) subject to x ∈ MαBB(E,α),
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be it global solutions, local solutions or stationary points, will at least lead to fea-
sible points of SIP (provided that SIPαBB(E,α) is consistent, i.e., its feasible set is
nonvoid).

The problem SIPαBB(E,α) has finitely many lower level problems Qk(x), k ∈ K,
with

Qk(x) : max
y∈R

gk(x, y) subject to ηk−1 ≤ y ≤ ηk.

Since the inequality (3.3) is strict, the convex problem Qk(x) has a unique solution
yk(x) for each k ∈ K and x ∈ X. Note that the functions yk, k ∈ K, are even
Lipschitz continuous on X, since the strong second order sufficiency condition and
the linear independence constraint qualification hold at yk(x) [39].

Recall that y ∈ Y k is called active for the constraint maxy∈Y k gk(x, y) ≤ 0 at x̄
if gk(x̄, y) = 0 holds. By the uniqueness of the global solution of Qk(x̄) there exists
at most one active index for each k ∈ K, namely, yk(x̄). Thus, we can consider the
finite active index sets

K0(x̄) = {k ∈ K|gk(x̄, yk(x̄)) = 0},
Y αBB

0 (x̄) = {yk(x̄)|k ∈ K0(x̄)}.

3.2. The MPCC reformulation. Following the ideas of section 2.2 we find
that yk solves Qk(x) if and only if (x, yk, γk

� , γ
k
u) solves the system

∇yg
k(x, y) + γ� − γu = 0,
φ(γ�, y − ηk−1) = 0,
φ(γu, η

k − y) = 0,

with some γk
� , γk

u, and φ denoting one of the NCP functions φNR and φFB . With

w := (x, yk, γk
� , γ

k
u, k ∈ K),

F (w) := f(x),

Gk(w;E,α) := g(x, yk) + αk

2 (yk − ηk−1)(ηk − yk),

Hk(w;E,α) :=

⎛
⎜⎝ ∇yg(x, y

k) + αk

(
ηk−1+ηk

2 − yk
)

+ γk
� − γk

u

φ(γk
� , y

k − ηk−1)
φ(γk

u, η
k − yk)

⎞
⎟⎠ ,

we can thus replace SIPαBB(E,α) equivalently by the nonsmooth problem

P (E,α) : min
w

F (w) subject to Gk(w;E,α) ≤ 0,

Hk(w;E,α) = 0, k ∈ K.

The latter problem can be solved numerically by regularization of the NCP functions;
that is, Hk is replaced by

Hk(w;E,α, τ) =

⎛
⎜⎝ ∇yg(x, y

k) + αk

(
ηk−1+ηk

2 − yk
)

+ γk
� − γk

u

φτ (γ
k
� , y

k − ηk−1)
φτ (γ

k
u, η

k − yk)

⎞
⎟⎠ ,

and for τ 
= 0 we obtain the smooth problem

P (E,α, τ) : min
w

F (w) subject to Gk(w;E,α) ≤ 0,

Hk(w;E,α, τ) = 0, k ∈ K.
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It may be tackled by numerical standard software which we will consider to be a
“black box.” One possibility is to compute solutions of these problems for a user-
defined sequence τν ↘ 0, as suggested in [45, 48]. In view of the simple structure
of the complementarity constraints, in the present setting one can also try to let the
NLP solver itself drive τ from a positive initial value to zero while solving the problem

P̃ (E,α) : min
(w,τ)

F (w) subject to Gk(w;E,α) ≤ 0,

Hk(w;E,α, τ) = 0, k ∈ K,
τ = 0.

For our numerical examples in section 5 this alternative works well. In any case we
assume that the black box NLP solver generates a local minimizer w̄ of P (E,α).
The subvector x̄ of w̄ is then a local minimizer and, hence, a stationary point of
SIPαBB(E,α). Note that in the present article we do not discuss the effects of nu-
merical inaccuracies in the solution of P (E,α) on the feasibility of iterates for SIP.

3.3. The adaptive convexification algorithm. The main idea of our numer-
ical method is to compute a stationary point x̄ of SIPαBB(E,α) by the approach
from section 3.2 and terminate if x̄ is also stationary for SIP within given toler-
ances. If x̄ is not stationary we refine the subdivision E in the spirit of exchange
methods [21, 38] by adding the active indices Y αBB

0 (x̄) to E and construct a refined
problem SIPαBB(E ∪ Y αBB

0 (x̄), α̃) by the following procedure. Note that, in view
of Carathéodory’s theorem (compare also Theorem 2.1), the number of elements of
Y αBB

0 (x̄) may be bounded by n + 1.
Refinement step:

For any η̃ ∈ Y αBB
0 (x̄), let k ∈ K be the index with η̃ ∈ [ηk−1, ηk].

Put Y k,1 = [ηk−1, η̃], Y k,2 = [η̃, ηk], let αk,1 and αk,2 be the corre-
sponding convexification parameters, put

gk,1(x, y) = g(x, y) +
αk,1

2
(y − ηk−1)(η̃ − y),

gk,2(x, y) = g(x, y) +
αk,2

2
(y − η̃)(ηk − y),

and define MαBB(E ∪ {η̃}, α̃) by replacing the constraint

gk(x, y) ≤ 0 for all y ∈ Y k

in MαBB(E,α) by the two new constraints

gk,i(x, y) ≤ 0 for all y ∈ Y k,i, i = 1, 2,

and by replacing the entry αk of α by the two new entries αk,i,
i = 1, 2.

The point x̄ is stationary for SIPαBB(E,α) (in the sense of John; compare The-
orem 2.1) if x̄ ∈ MαBB(E,α) and if there exist yk ∈ Y αBB

0 (x̄), 1 ≤ k ≤ n + 1, and
(κ, λ) ∈ Sn+1 with

κ∇f(x̄) +

n+1∑
k=1

λk∇xg(x̄, y
k) = 0,(3.5)

λk · gk(x̄, yk) = 0, 1 ≤ k ≤ n + 1.(3.6)
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Note that in (3.5) we simplified

∇xg
k(x̄, yk) = ∇x

(
g(x, yk) + ψ(yk;αk, η

k−1, ηk)
)

= ∇xg(x, y
k).

For the numerical algorithm it is crucial to relax the notions of active index,
stationarity, and set unification by certain tolerances.

Definition 3.3. For εact, εstat, ε∪ > 0 we say that
(i) yk is εact-active for gk at x̄ if gk(x̄, yk) ∈ [−εact, 0],
(ii) x̄ is εstat-stationary for SIP with εact-active indices if x̄ ∈ M and if there

exist yk ∈ Y , 1 ≤ k ≤ n + 1, and (κ, λ) ∈ Sn+1 such that∣∣∣∣∣
∣∣∣∣∣κ∇f(x̄) +

n+1∑
k=1

λk∇xg(x̄, y
k)

∣∣∣∣∣
∣∣∣∣∣ ≤ εstat,(3.7)

λk · g(x̄, yk) ∈ [−λk · εact, 0], 1 ≤ k ≤ n + 1,(3.8)

hold, and
(iii) the ε∪-union of E and η̃ is E ∪ {η̃} if

min{η̃ − ηk−1, ηk − η̃} > ε∪ · (ηk − ηk−1)

holds for the k ∈ K with η̃ ∈ [ηk−1, ηk], and E otherwise (i.e., η̃ is not unified
with E if its distance from E is too small).

Algorithm 3.4 (adaptive convexification algorithm).

Step 1: Determine a uniform convexification parameter ᾱ with (3.4), choose N ∈ N,
ηk ∈ Y , and αk ≤ ᾱ, k ∈ K = {1, . . . , N}, such that SIPαBB(E,α) is
consistent, as well as tolerances εact, εstat, ε∪ > 0, with ε∪ ≤ 2εact/ᾱ.

Step 2: By solving P (E,α), compute a stationary point x of SIPαBB(E,α) with εact-
active indices yk, 1 ≤ k ≤ n + 1, and multipliers (κ, λ).

Step 3: Terminate if x is εstat-stationary for SIP with (2εact)-active indices yk, 1 ≤
k ≤ n + 1, from Step 2 and multipliers (κ, λ) from Step 2.
Otherwise construct a new set Ẽ of subdivision points as the ε∪-union of E
and {yk|1 ≤ k ≤ n + 1} and perform a refinement step for the elements in
Ẽ \ E to construct a new feasible set MαBB(Ẽ, α̃).

Step 4: Put E = Ẽ, α = α̃, and go to Step 2.
In section 4 we will show that Algorithm 3.4 is well-defined, convergent, and

finitely terminating. Note that after its termination we can exploit that the set
E ⊂ Y contains indices that should also yield a good outer approximation of M . The
optimal value of the problem

Pouter : min
x∈X

f(x) subject to g(x, η) ≤ 0, η ∈ E,

yields a rigorous lower bound for the optimal value of SIP. If Pouter can actually be
solved to global optimality (e.g., if a standard NLP solver is used, due to convexity
with respect to x), then a comparison of this lower bound for the optimal value of SIP
with the upper bound from Algorithm 3.4 can yield a certificate of global optimality
for SIP (see also section 5).

3.4. A consistent initial approximation. Even if the feasible set M of SIP
is consistent, there is of course no guarantee that its approximations MαBB(E,α) are
also consistent. For Step 1 of Algorithm 3.4 we thus suggest the following phase I
approach: Use Algorithm 3.4 to construct adaptive convexifications of

SIPph.I : min
(x,z)∈X×R

z subject to g(x, y) ≤ z for all y ∈ Y
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until a feasible point (x̄, z̄), with z̄ ≤ 0, of SIPph.I
αBB(E,α) is found with some subdivi-

sion E and convexification parameters α. The point x̄ is then obviously also feasible
for SIPαBB(E,α) and can be used as an initial point to solve the latter problem. Due
to the possible nonconvexity of the upper level problem of SIP, this phase I approach
is not necessarily successful, but in our numerical examples in section 5 it works well.
If it does not work although SIP is consistent, one can try to initialize phase I with
different starting values or use an exhaustive subdivision of the index set like in the
subsequent Proposition 4.1.

To initialize Algorithm 3.4 for phase I, select some point x̄ in the box X and put
E1 = {0, 1}, that is, Y 1 = Y = [0, 1]. Compute α1 according to (3.3), and solve the
convex optimization problem Q1(x̄) with standard software. With its optimal value

z̄, the point (x̄, z̄) is feasible for SIPph.I
αBB(E1, α1).

4. Convergence results. To obtain a first impression of the approximation
properties of our approach, for the following result we temporarily assume that the
subdivision of Y = [0, 1] is not adaptive in each step, but equidistant, that is, ηk =
k/N , k ∈ K = {0, . . . , N}, with some N ∈ N. Owing to this exhaustion property, each
interior point x̄ of M with ϕ(x̄) < 0 is feasible for SIPαBB(E,α) for sufficiently large
N (see also [5]). Moreover, boundary points of M are “approximated at a quadratic
rate.”

Proposition 4.1. Let ηk = k/N , and choose αk ≤ ᾱ according to (3.4), k ∈ K.
(i) For x̄ ∈ M , with ϕ(x̄) < 0, let

N ≥ 1

2

√
maxk∈K αk

|ϕ(x̄)| .(4.1)

Then x̄ is feasible for SIPαBB(E,α).
(ii) For x̄ ∈ M , with ϕ(x̄) = 0, the infeasibility measure

max(0,max
k∈K

max
y∈Y k

gk(x̄, y))

of x̄ with respect to MαBB(E,α) is of order O(1/N2).
Proof. For all k ∈ K and all y ∈ Y k = [k − 1, k]/N , Lemma 3.2(iii) yields

gk(x̄, y) = g(x̄, y) +
αk

2

(
y − k − 1

N

)(
k

N
− y

)

≤ ϕ(x̄) +
αk

8N2
≤ ϕ(x̄) +

maxk∈K αk

8N2
.(4.2)

In the case ϕ(x̄) < 0 the last term is nonpositive for N with (4.1), which shows the
assertion of part (i).

To see part (ii) note that, for ϕ(x̄) = 0, (4.2) implies

max
k∈K

max
y∈Y k

gk(x̄, y) ≤ ᾱ

8N2

and that of course we also have 0 ≤ ᾱ/(8N2).
However, in Algorithm 3.4 the subdivision of Y is not exhaustive, and we cannot

expect the method to approximate the whole interior of M . In particular, the method
might not find a global minimizer of SIP contained in a region of M which is not
approximated by the method. Recall, on the other hand, that our algorithm is not
designed to find global minimizers. Instead of exponential growth of the number of
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subdivision points in the exhaustive case, in view of Carathéodory’s theorem each
of our refinement steps adds at most n+1 new points to the subdivision. That is,
the growth in the number of new constraints and, thus, in the number of auxiliary
variables and auxiliary constraints (cf. section 3.2) is linear in n.

Note that Proposition 4.1 will not be used in what follows, where we will focus on
adaptive instead of exhaustive subdivisions for the index set. The next results show
that even adaptive subdivisions entail at least certain monotonicity properties for the
feasible sets and optimal values of the approximating problems.

Lemma 4.2. With given E and α, let x̄ ∈ MαBB(E,α). For any additional
subdivision point η̃ 
∈ E, let MαBB(E ∪ {η̃}, α̃) be constructed by the refinement step
from section 3.3. Then we also have x̄ ∈ MαBB(E ∪ {η̃}, α̃).

Proof. Let η̃ ∈ [ηk−1, ηk] for some k ∈ K. For i ∈ {1, 2} simple monotonicity
arguments show that all y ∈ Y k,i satisfy gk,i(x̄, y) ≤ gk(x̄, y) ≤ 0, where the second
inequality is due to Y k,i ⊂ Y k.

Proposition 4.3. Let (Eν)ν be a sequence of subdivisions of Y = [0, 1] such that
for all ν ∈ N we have Eν ⊂ Eν+1, let the sets Mν := MαBB(Eν , αν) be constructed
by the refinement steps from section 3.3, and let vν denote the optimal values of
SIPαBB(Eν , αν), ν ∈ N (with vν := +∞ for X ∩Mν = ∅). Then the following holds:

(i) The feasible sets Mν satisfy

M1 ⊂ M2 ⊂ · · · ⊂ Mν ⊂ Mν+1 ⊂ · · · ⊂ M.

(ii) If SIP is solvable, then the optimal values vν converge to an upper bound for
the optimal value of SIP.

(iii) Each sequence (xν)ν , with xν ∈ X ∩Mν , ν ∈ N, has an accumulation point
x�, and all such accumulation points are elements of X ∩M .

Proof. Assertion (i) follows immediately from Lemmas 3.1 and 4.2.
Assertion (ii) is trivial if all sets X ∩Mν , ν ∈ N, are empty. Otherwise, for X ∩

Mν0 
= ∅ the sequence (vν)ν≥ν0 is real-valued, monotonically decreasing by part (i),
and bounded below by the optimal value of SIP. This shows part (ii).

To see assertion (iii) recall that X ∩M is compact. This implies the existence of
an accumulation point x�. By part (i) we have xν ∈ X ∩M for all ν ∈ N, so that the
closedness of X ∩M yields the assertion.

The following corollary is immediate.
Corollary 4.4. Let (xν)ν be a sequence of points generated by Algorithm 3.4.

Then all xν , ν ∈ N, are feasible for SIP, the sequence (xν)ν has an accumulation
point, each such accumulation point x� is feasible for SIP, and f(x�) provides an
upper bound for the optimal value of SIP.

Next we make sure that Algorithm 3.4 is well defined. The following lemma shows
that in Step 3 at least one subdivision point is added to E if the termination criterion
is violated.

Lemma 4.5. Let Algorithm 3.4 be initialized by Step 1, and for given E and
α in Step 2 let x be a stationary point of SIPαBB(E,α) with εact-active indices yk,
1 ≤ k ≤ n + 1, and multipliers (κ, λ). Then, if the termination criterion in Step 3 is
violated, the set of new subdivision points Ẽ in Step 3 is strictly larger than E.

Proof. Assume Ẽ = E. By Proposition 4.3(i), x is feasible for SIP, and the
stationarity condition (3.5) with certain multipliers implies (3.7) with the same mul-
tipliers for arbitrary εstat > 0.

Since the yk ∈ Y are εact-active, we have

gk(x, yk) = g(x, yk) +
αk

2
(yk − ηk−1)(ηk − yk) ∈ [−εact, 0]
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and thus

0 ≥ −αk

2
(yk − ηk−1)(ηk − yk) ≥ g(x, yk) ≥ −εact −

αk

2
(yk − ηk−1)(ηk − yk).

Because of Ẽ = E, for each k at least one of the terms yk − ηk−1, ηk − yk is bounded
above by ε∪ , and the other one trivially by 1 (the length of Y ). According to Step 1
of the algorithm we also have αk ≤ ᾱ and ε∪ ≤ 2εact/ᾱ. Combining these estimates
yields g(x, yk) ∈ [−2εact, 0]; that is, each yk, 1 ≤ k ≤ n + 1, is a (2εact)-active index
for x in the original problem SIP.

We have thus shown that x is εstat-stationary for SIP with (2εact)-active indices
yk, 1 ≤ k ≤ n + 1, from Step 2 and multipliers (κ, λ) from Step 2. This contradicts
the assumption that the termination criterion in Step 3 is violated.

Theorem 4.6. Algorithm 3.4 terminates after finitely many iterations.
Proof. Assume that the algorithm does not terminate. Then there exist sequences

(Eν)ν , (αν)ν , (xν)ν , (yk,ν)ν , 1 ≤ k ≤ n+1, and (κν , λν)ν such that for each ν ∈ N the
point xν is stationary for SIPαBB(Eν , αν) with εact-active indices yk,ν , 1 ≤ k ≤ n+1,
and multipliers (κν , λν), but the termination criterion is not satisfied for any ν ∈ N.

As the sequence (xν , y1,ν , . . . , yn+1,ν , κν , λν)ν is contained in the compact set
X × Y n+1 × Sn+1, it possesses an accumulation point (x�, y1,�, . . . , yn+1,�, κ�, λ�) in
the same set. By continuity (3.5) yields

κ�∇f(x�) +

n+1∑
k=1

λ�
k∇xg(x

�, yk,�) = 0,

so that for some ν0 ∈ N and infinitely many ν ≥ ν0 we have∣∣∣∣∣
∣∣∣∣∣κν∇f(xν) +

n+1∑
k=1

λν
k∇xg(x

ν , yk,ν)

∣∣∣∣∣
∣∣∣∣∣ < εstat.

In view of Proposition 4.3 each such point xν lies in M , and by the construction in
Step 2 we have gk(xν , yk,ν) ∈ [−εact, 0], which implies

λν
k · gk(xν , yk,ν) ∈ [−λν

k · εact, 0], 1 ≤ k ≤ n + 1.(4.3)

It remains to be shown that for some ν ∈ N we can replace (4.3) by

λν
k · g(xν , yk,ν) ∈ [−2λν

k · εact, 0], 1 ≤ k ≤ n + 1.(4.4)

Then xν is εstat-stationary for SIP with (2εact)-active indices yk,ν and multipliers
(κν , λν), in contradiction to the assumption that the termination criterion is not
satisfied for any ν ∈ N.

By the definition and by the overestimation property of gk, (4.3) implies (4.4) if
for all k ∈ {1, . . . , n + 1} we can show

lim
ν→∞

αν
k

2
(yk,ν − ηk−1,ν)(ηk,ν − yk,ν) = 0.(4.5)

Because of

0 ≤ αν
k

2
(yk,ν − ηk−1,ν)(ηk,ν − yk,ν) ≤ ᾱ

8
(ηk,ν − ηk−1,ν)2
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(compare (2.6)) it is sufficient to show that the lengths (ηk,ν − ηk−1,ν) of Y k,ν tend
to zero for each k ∈ {1, . . . , n + 1}.

In fact, Lemma 4.5 guarantees that in each iteration of Algorithm 3.4 at least one
of the existing subdivision nodes Y ν,k is divided into two subintervals with lengths
bounded above by (1 − ε∪)(ηk,ν − ηk−1,ν). So for each p ∈ N at least one node with
length bounded by (1 − ε∪)p is generated. Moreover, no subdivision node can be
visited twice by the algorithm, so that for each k ∈ {1, . . . , n+ 1} all Y ν,k, ν ∈ N, are
pairwise different. As for each p ∈ N only finitely many nodes of length greater than
(1 − ε∪)p exist, the lengths of Y ν,k, ν ∈ N, must tend to zero.

5. Numerical examples. For the numerical illustrations in this section we im-
plemented Algorithm 3.4 in Matlab 6.5 and used the routine fmincon from its Opti-
mization Toolbox 2.2 with default tolerances as the black box NLP solver in Step 2
of the algorithm. In particular, the tolerance for constraint violations was 10−6. All
examples were run on a 1.2 GHz Pentium III processor.

For the examples in this article the convexification parameters can be determined
analytically. We emphasize that, for more general examples which go beyond the scope
of this article, we obtained good results using the Matlab toolbox Intlab 5.3 [41].

5.1. Chebyshev approximation. As a first test example we consider Cheby-
shev approximation of the function sin(πy) by a quadratic function on the interval
Y = [0, 1]; that is, we wish to solve

CA : min
x∈R3

‖ sin(πy) − (x3y
2 + x2y + x1)‖∞,[0,1],

with

‖ sin(πy) − (x3y
2 + x2y + x1)‖∞,[0,1] = max

y∈[0,1]
| sin(πy) − (x3y

2 + x2y + x1)|.

For a survey on semi-infinite treatment of Chebyshev approximation problems see
[23]. The epigraph reformulation of CA yields the equivalent problem

min
x∈R4

x4 subject to max
y∈[0,1]

| sin(πy) − (x3y
2 + x2y + x1)| ≤ x4

and thus the semi-infinite problem

SIPCA : min
x∈R4

x4 subject to ±
(
sin(πy) − x3y

2 − x2y − x1

)
≤ x4

for all y ∈ [0, 1].

We search for a solution in the box X = [x�, xu], with x� = (−1, 3,−5,−1)� and
xu = (1, 5,−3, 3)�.

Convexification parameters for the two semi-infinite constraints are readily avail-
able. In fact, for

g±(x, y) = ±
(
sin(πy) − x3y

2 − x2y − x1

)
− x4

we obtain ∇2
yg±(x, y) = ∓

(
π2 sin(πy) + 2x3

)
, so that an upper bound on X × Y is

α+ = 10 for ∇2
yg+ and α− = π2−6 for ∇2

yg−. Moreover, upper bounds on subdomains

[η�, ηu] ⊂ [0, 1] are given by

α+(η�, ηu) = max
(
0,−π2 min(sin(πη�), sin(πηu)) + 10

)
,(5.1)

α−(η�, ηu) = max
(
0, π2θ(η�, ηu) − 6

)
,(5.2)
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Fig. 1. The optimal error function for SIPCA with convex relaxations.

with

θ(η�, ηu) =

⎧⎨
⎩

sin(πηu), ηu ≤ 0.5,
1, η� < 0.5 < ηu,
sin(πη�), 0.5 ≤ η�.

We initialize phase I with the (even infeasible) point x0 = (1, 1, 1, 1)� and use the
tolerances εstat = εact = 10−3 as well as ε∪ = 2εact · min(1, 1/α+, 1/α−).

In the following we compare the performance of Algorithm 3.4 for the two cases
that either the uniform bounds α± are used on all computed subdomains of Y or that
α± is adaptively improved on the subdomains according to (5.1), (5.2).

Case 1 (uniform convexification parameters). After one iteration (0.371 CPU
seconds), phase I finds a feasible starting point x̄ for SIPCA with the objective value
x̄4 = 1.54. Note that, due to the feasibility of x̄, this value is already a valid upper
bound for the maximal error.

After nine more iterations (46.285 CPU seconds) the algorithm terminates with
the point x� = (−0.028, 4,−4, 0.028)� and objective value x�

4 = 0.028364. The norm
of the stationarity condition at x� is less than 10−14, and the solution of the prob-
lem Pouter with the obtained subdivision points E as discretization points yields the
optimal value 0.028003. Since Pouter is a linear problem, this value is actually the
global optimal value of Pouter and yields a valid lower bound for the optimal value
of SIPCA. As x�

4 = 0.028364 is a valid upper bound for the latter optimal value, we
have a certificate that we determined the globally optimal value of SIPCA within a
tolerance of 10−3.

Case 2 (adaptive convexification parameters). The performance of phase I is
identical to Case 1, and after six more iterations (6.26 CPU seconds) the algorithm
terminates with x� = (−0.028, 4,−4, 0.028)� and objective value x�

4 = 0.028011.
Figure 1 illustrates the error function e(x�, y) = sin(πy) − (x�

3y
2 + x�

2y + x�
1) in the

solution point, together with the convex relaxations upon termination. Note that the
approximations of e(x�, y) are depicted for both semi-infinite constraints, where in
the figure one approximation appears as piecewise concave and the other as piecewise
convex.
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The norm of the stationarity condition at x� is less than 10−9, and the solution
of the problem Pouter yields the optimal value 0.028004. We thus obtain a certificate
that we determined the global optimal value of SIPCA within a tolerance of 10−5.

Comparison of the two cases shows that the use of adaptive convexification pa-
rameters can speed up the algorithm significantly, here almost by the factor 10 in
CPU time. We emphasize, however, that in this example the formula for adaptive
convexification parameters is explicitly available and easy to evaluate, whereas in
other applications the additional computations by, for instance, interval methods can
lead to a significant increase of CPU time.

5.2. Design centering. A design-centering problem considers a container set
C ⊂ R

m and a parameterized body B(x) ⊂ R
m, with parameter vector x ∈ R

n. The
task is to inscribe B(x) into C such that some functional f (e.g., the volume of B(x))
is maximized:

DC : max
x∈Rn

f(x) subject to B(x) ⊂ C.

Design-centering problems with special sets B(x) and C have been studied extensively;
see, for instance, [18] for the complexity of inscribing a convex body into a convex
container, [24] for maximization of a production yield under uncertain quality param-
eters, and [34, 50] for the problem of cutting a diamond with prescribed shape features
and maximal volume from a raw diamond. Also cutting stock problems [8] and set
containment problems [31] are examples of design centering. An implementable solu-
tion method is given in [35], and the so-called maneuverability problem of a robot from
[17] is the first design-centering problem that was analyzed in its reformulation as a
semi-infinite problem [22]. A structural analysis of the special semi-infinite problems
arising as reformulated design-centering problems is given in [46].

Here we consider DC with a simply connected container set C ⊂ R
2 and the

parameterized body B(x) = {z ∈ R
2|‖z−(x1, x2)‖2 ≤ x3}, that is, a disk with variable

midpoint (x1, x2) and radius x3. We put f(x) = x3, corresponding to maximization of
the area of B(x). Since C is simply connected, the constraint B(x) ⊂ C is equivalent
to ∂B(x) ⊂ C, where ∂B(x) = {z ∈ R

2|‖z − (x1, x2)‖2 = x3} denotes the boundary
of the disk. We can parameterize this set by ∂B(x) = {z(x, y)|y ∈ [0, 2π]}, with

z(x, y) =

((
x1

x2

)
+ x3

(
cos(y)
sin(y)

))
.

For the semi-infinite reformulation of DC we assume that the container set is described
by finitely many smooth inequality constraints:

C = {z ∈ R
2|ci(z) ≤ 0, i ∈ I}.

The constraint B(x) ⊂ C is then equivalent to

ci(z) ≤ 0 for all z ∈ ∂B(x), i ∈ I,

and also to

gi(x, y) := ci(z(x, y)) ≤ 0 for all y ∈ Y := [0, 2π], i ∈ I,

so that we arrive at the semi-infinite problem

SIPDC : max
x∈R3

x3 subject to gi(x, y) ≤ 0 for all y ∈ Y, i ∈ I.
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If C is contained in the box XC with side lengths �1, �2, then each feasible point
x is necessarily contained in X = XC × [0,min(�1, �2)/2]. For the computation of
convexification parameters we calculate

∇2
ygi(x, y) = x2

3

(
− sin(y)
cos(y)

)�
∇2ci(z(x, y))

(
− sin(y)
cos(y)

)

−x3∇�ci(z(x, y))

(
cos(y)
sin(y)

)

for each i ∈ I. The vectors with trigonometric entries have length one, so that we
obtain coarse upper bounds for ∇2

ygi as follows:(
− sin(y)
cos(y)

)�
∇2ci(z(x, y))

(
− sin(y)
cos(y)

)
≤ λmax

(
∇2ci(z(x, y))

)
,

with λmax denoting the maximal eigenvalue of a symmetric matrix, and due to x3 ≥ 0

−x3∇�ci(z(x, y))

(
cos(y)
sin(y)

)
≤ x3‖∇ci(z(x, y))‖2.

A combination of these estimates yields for each i ∈ I

max
(x,y)∈X×Y

∇2gi(x, y)

≤ max
(x,y)∈X×Y

(
x2

3λmax

(
∇2ci(z(x, y))

)
+ x3‖∇ci(z(x, y))‖2

)
.(5.3)

For our computational experiment we consider the functions

c1(z) = 0.3 sin(πz1) − z2,

c2(z) = z2
1 + 0.3z2

2 − 1.

The set C is then contained in XC = [−1.5, 1.5] × [−1, 2], so that we can put X =
XC × [0, 1.5]. With the aid of (5.3) we obtain uniform convexification parameters
α1 = 8.723 and α2 = 17.485 for the constraints g1 and g2 , respectively. As the initial
point x0 we choose the midpoint of X, and we use the tolerances εstat = εact = 10−3

as well as ε∪ = 2εact · min(1, 1/α1, 1/α2).
After 15 iterations (22.793 CPU seconds) phase I finds a feasible starting point

for SIPDC , and the corresponding approximating problem has the solution x̄ =
(−0.116, 1.026, 0.397)� with the objective value x̄3 = 0.397. Due to the feasibility
of x̄, the corresponding disk B(x̄) is guaranteed to be contained in C. Figure 2
illustrates this fact.

After 57 more iterations (181.566 CPU seconds) the algorithm terminates with
the point x� = (0, 0.962, 0.776)� with objective value x�

3 = 0.77612, illustrated in
Figure 3.

The norm of the stationarity condition at x� is less than 10−8, and the solution
of the problem Pouter yields the optimal value 0.77697. However, since Pouter is a
nonconvex problem, this value is not necessarily an upper bound for the optimal
value of SIPDC . Thus, we do not obtain a certificate for global optimality in this
example.

While Algorithm 3.4 can certainly be accelerated by exploiting special features of
SIPDC (see also section 6), for certain applications a user might have to terminate it
prematurely due to time restrictions. It is worth pointing out that even then the last
iterate is feasible; that is, at least some disk B(x̄) ⊂ C is generated.
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Fig. 2. A container C with approximating sets and an inscribed disk.
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Fig. 3. Design-centering solution of Algorithm 3.4.

6. Future challenges.

6.1. Improvements. In this article we presented the adaptive convexification
algorithm in its simplest form. Although it can be improved in a number of ways,
our aim was to explain its basic ideas and to show that these already result in a well-
defined, convergent, and implementable method. Convergence proofs for the following
possible improvements are subject of future research.

A major potential for acceleration of the algorithm certainly lies in the magnitude
of the convexification parameters and in their adaptive refinement. Lemma 3.2(iii)
and Proposition 4.1 quantify the obvious fact that tighter convex relaxations, that
is, better bounds in (3.3), (3.4), can speed up the algorithm. Moreover, tighter
relaxations also lead to a less restrictive bound on the tolerance ε∪ in Step 1 of
Algorithm 3.4.

As mentioned in section 2.3, tighter relaxations are already available for a large
number of specially structured functions [12]. Improvements of the αBB method
itself like the generalized αBB method [3] also lead to significantly tighter convex
relaxations, however, at higher computational cost. In special examples also modeling
of the problem can influence the size of convexification parameters. In design centering
they depend, for instance, on the scaling of the functions ci, i ∈ I.
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We emphasize that in (3.3) we only consider adaptation of the convexification
parameters with respect to the index variable y while they are uniform in the decision
variable x ∈ X. Additional adaptation with respect to x is possible by restricting the
distance of a new iterate xν+1 generated by Step 2 of Algorithm 3.4 to a ball Bν ⊂ X
around the current iterate xν . Tighter relaxations can then be computed using (3.3)
with X replaced by Bν . A main problem with this approach is that convexification
parameters of previous steps may become invalid during the iteration, even if they
correspond to inactive constraints. Hence, the relaxations on all subdomains have to
be recomputed in each step, giving rise to a possibly high computational effort. To
alleviate this difficulty, ideas from trust region methods might help.

As we pointed out, the number of new constraints in each step of Algorithm 3.4
is linear in n, as opposed to exponential growth for the exhaustive subdivision from
Proposition 4.1. A possibility to further diminish the number of added constraints
in each step, in the spirit of exchange methods, is to add only those active approxi-
mating constraints with the largest benefit for the activity of the original constraint;
that is, y ∈ Y αBB

0 (x̄) only enters the ε∪-union with E if y minimizes g(x̄, y) over
Y αBB

0 (x̄).

6.2. Generalizations. Algorithm 3.4 can be generalized straightforwardly to
SIP with finitely many semi-infinite constraints (i.e., p ≥ 1) and finitely many addi-
tional smooth equality and inequality constraints. Our implementation for the solu-
tion of the problems in section 5 actually handles this situation.

The generalization to higher dimensional box index sets Y (i.e., m ≥ 1) is merely
of technical nature. The two main new tasks are to manage the bookkeeping for
the adaptive subdivisions of Y and to compute convexification parameters in higher
dimensions. The latter problem can be solved with the techniques of αBB in higher
dimensions [1, 2, 12]. There the main idea is to add a separable quadratic relax-
ation function to g in (3.2), with one parameter for each component of the vector
y. Sufficiently large parameters then again lead to concavity, where, for instance,
a Gerschgorin approach can guarantee the negative semi-definiteness of the interval
Hessian matrix on a subdomain [1, 2, 12].

If the index set Y is not given in box form and cannot be simply transformed into
a box, a possible approach is to approximate Y appropriately by boxes. Here again the
trivial observation comes into play that a semi-infinite constraint can be equivalently
replaced by finitely many semi-infinite constraints corresponding to a subdivision of
the index set. A more efficient possibility might be to construct triangulations of Y ,
but then the αBB ideas also have to be transferred to triangular domains.

6.3. Open questions. In addition to outstanding convergence proofs for the
above improvements and the implementation issues for higher dimensional index sets,
our approach leads to a number of further open questions.

Regarding the stationarity concept, if the natural assumption EMFCQ [26] is
satisfied everywhere in M , Algorithm 3.4 with the theoretical tolerances εstat = εact =
0 would of course generate a Karush–Kuhn–Tucker point of SIP. We conjecture that
under EMFCQ this is also the case for sufficiently small tolerances εstat, εact > 0.

We focused our attention on the convergence of stationary points of approximating
problems SIPαBB(E,α) to a stationary point of SIP. Since we can actually expect
the black box NLP solver to find local minimizers of SIPαBB(E,α), one can try to
prove convergence of such points to a local minimizer of SIP. At least in our numerical
experiments we observed this convergence throughout.
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The main purpose of Algorithm 3.4 is the generation of feasible iterates for SIP.
Under weak assumptions these iterates should actually be interior points of the orig-
inal feasible set M . We observed this in the numerical experiments, too.

Although our numerical results seem very promising, further work is needed on
error estimates on the numerical solution of the auxiliary problem P (E,α). In fact,
feasibility of the iterates may be jeopardized if feasibility and local optimality for
P (E,α) are guaranteed only up to some tolerances. Handling this issue is beyond
the scope of the present article, which is meant to give the basic ideas of adaptive
convexification.

Regarding the performance of the algorithm, in sections 5.1 and 6.1 we have
seen that adaptation of the convexification parameters as well as more sophisticated
techniques for their computation can result in a significant acceleration of computing
time. There is, however, an obvious tradeoff with the additional computational effort
of these modifications. General statements about this tradeoff would be helpful for
applications.
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Abstract. In this paper, we present new convergence properties of the primal-dual method based
on four types of augmented Lagrangian functions in the context of constrained global optimization.
Convergence to a global optimal solution is first established for a basic primal-dual scheme under
standard conditions. We then prove this convergence property for a modified augmented Lagrangian
method using a safeguarding strategy without appealing to the boundedness assumption of the
multiplier sequence. We further show that, under the same weaker conditions, the convergence to
a global optimal solution can still be achieved by either modifying the multiplier updating rule or
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1. Introduction. We consider in this paper the following inequality-constrained
nonlinear optimization problem:

(P ) min f(x)

subject to (s.t.) gi(x) ≤ 0, i = 1, . . . ,m,

x ∈ X,

where f and all gi, i = 1, . . ., m, are continuously differentiable functions and X is
a nonempty closed set in R

n. Note that f and gi, i = 1, . . ., m, are not necessarily
convex functions.

Lagrangian dual methods have been serving as a fundamental solution methodol-
ogy in convex programming. It is well known, however, that classical Lagrangian dual
methods may fail to identify the optimal solution of the nonconvex problem (P ) due
to the existence of a duality gap. Augmented Lagrangians have been proposed as a
remedy to alleviate this situation. The first augmented Lagrangian method was inde-
pendently proposed by Hestenes [13] and Powell [39] for equality-constrained problems
by introducing a quadratic penalty term in the Lagrangian function. This method was
extended by Rockafellar [40], [41] to deal with inequality constraints. Rockafellar’s
augmented Lagrangian function for (P ) is continuously differentiable with respect to
x but not twice differentiable even when f and all gi are twice differentiable functions,
thus preventing the use of Newton-type methods from solving the corresponding un-
constrained Lagrangian relaxation problems. Mangasarian’s augmented Lagrangian
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[28], the exponential-type penalty function [6], [20], and the modified barrier func-
tion [35] are three important classes of twice differentiable augmented Lagrangian
functions. Various augmented Lagrangians or nonlinear Lagrangians have also been
proposed, and their duality and exact penalization properties have been studied (see,
e.g., [16], [23], [24], [31], [32], [33], [44], [45], [52]).

Local convergence properties of augmented Lagrangian methods for nonconvex
optimization have been studied by many researchers. Mangasarian [28] analyzed the
local convergence of a class of augmented Lagrangians that include Rockafellar’s aug-
mented Lagrangian as a special case. Nguyen and Strodiot [30] proved the local
convergence of the modified exponential Lagrangian method. The local convergence
of the modified barrier Lagrangian method and log-sigmoid multiplier method for
nonconvex problems was analyzed in [35] and [36], respectively. Contesse-Becker [?]
proved the local convergence of Rockafellar’s augmented Lagrangian method with-
out the strict complementarity condition. Huang and Yang [17] showed that the
first-order and second-order necessary optimality conditions of Rockafellar’s aug-
mented Lagrangian problems converge to those of the original problem. Polak and
Tits [34], Hager [12], Bartholomew-Biggs [3], and Yamashita [53] investigated the
global convergence of Rockafellar’s augmented Lagrangian methods for nonconvex
inequality-constrained problems. The convexification effect of adopting pth-power
Lagrangian functions has been revealed for augmented Lagrangian functions in [25]
and for the perturbation function in [23], [24]. The existence of a global saddle
point of certain augmented or nonlinear Lagrangian functions has been investigated in
[26], [27], [47].

Global convergence of the augmented Lagrangian method for nonconvex equality-
constrained problems was analyzed in [6], [39]. An indispensable assumption in most
existing global convergence analyses for augmented Lagrangian methods is that the
multiplier sequence generated in the algorithms is bounded. This restrictive assump-
tion confines applications of augmented Lagrangian methods in many situations. Conn
et al. [8], Conn, Gould, and Toint [9], and Lewis and Torczon [22] presented modified
augmented Lagrangian methods for nonconvex optimization with equality constraints
and proved global convergence results without appealing to this assumption. Andreani
et al. [1], [2] and Birgin, Castillo, and Mart́ınez [7] investigated the augmented La-
grangian methods using safeguarding strategies for nonconvex constrained problems.
Global convergence was established in [1], [2], [7] without requiring the boundedness
condition of the multiplier sequence. Global convergence of augmented Lagrangian
methods for convex programming has also been studied in [4], [6], [19], [21], [40],
[42], [50]. To our knowledge, the convergence of augmented Lagrangian methods to
a global solution of a constrained nonconvex global optimization problem has been
investigated only in [41] for Rockafellar’s augmented Lagrangian method and in [6]
for the multiplier method of Hestenes and Powell for equality-constrained problems.

Constrained global optimization has been one of the challenging subjects in non-
linear optimization. On one hand, implementable methods for constrained global
optimization have been developed only for some special problems such as concave
minimization (see [5], [43]) and monotone optimization (see [48], [51]). On the other
hand, various deterministic and stochastic methods have been proposed for uncon-
strained global optimization (see, e.g., [14], [15]). It is therefore desirable to reduce
a constrained global optimization problem into a sequence of unconstrained global
optimization problems so that the methods developed for unconstrained global op-
timization can be used. This solution scheme was adopted in constructing auxiliary
functions for constrained global optimization (see [46], [49]).
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The focus of this paper is on the convergence properties of augmented Lagrangian
methods in the context of constrained global optimization. We will study four classes
of prominent augmented Lagrangians in the literature: (i) Kort and Bertsekas’s aug-
mented Lagrangian, (ii) Mangasarian’s augmented Lagrangian, (iii) the exponential-
type augmented Lagrangian, and (iv) the modified barrier function. As we will see
later in the paper, these four classes of augmented Lagrangians include many existing
important augmented Lagrangian functions as their special cases. We first show that,
under standard conditions, the basic primal-dual method employing these four classes
of augmented Lagrangian functions converges to a global solution of (P ) if the uncon-
strained relaxation problems is solved globally. Three modified augmented Lagrangian
methods are then proposed that adopt a safeguarding strategy, modify multiplier up-
dating criteria, and normalize the multiplier, respectively. Convergence results are
proved for these modified augmented Lagrangian methods without appealing to the
boundedness of the multiplier sequence. The convergence results obtained in this pa-
per provide theoretical foundations for applying augmented Lagrangian methods in
constrained global optimization.

The paper is organized as follows. In section 2, we describe four classes of aug-
mented Lagrangian functions. We present the convergence results for the basic primal-
dual method in section 3. The modified primal-dual scheme with safeguarding is
investigated in section 4. In section 5, we establish the convergence results for the
modified primal-dual scheme with conditional multiplier updating. The normalized
multiplier method is discussed in section 6. Finally, some concluding remarks are
given in section 7.

2. Four classes of augmented Lagrangian functions. In this section, we
describe four classes of augmented Lagrangian functions. The augmented Lagrangian
methods studied in this paper are based on these four classes of functions.

The following general class of augmented Lagrangians for (P ) was introduced by
Kort and Bertsekas [6], [21]:

L1(x, λ, p) = f(x) +
1

p

m∑
i=1

W (pgi(x), λi),(2.1)

where p > 0, x ∈ X, λ = (λ1, . . . , λm)T ≥ 0, and the function W : R
2 → R satisfies

the following conditions:
(A1) W is continuously differentiable on R × (0,∞) and possesses, for all s ∈ R,

the right derivative

lim
t→0+

W (s, t) −W (s, 0)

t
;

(A2) W (s, ·) is concave on R+ for each fixed s ∈ R, where R+ = [0,∞);
(A3) for each fixed t ∈ R+, W (·, t) is convex on R and satisfies the following

strict convexity condition: If s0 > 0 or W ′
s(s0, t) > 0, then W (s, t) − W (s0, t) >

(s − s0)W
′
s(s0, t) for s �= s0, where W ′

s(s, t) denotes the partial derivative of W (s, t)
with respect to s;

(A4) W (0, t) = 0, W ′
s(0, t) = t for all t ∈ R+;

(A5) lims→−∞ W ′
s(s, t) = 0 for all t ∈ R+;

(A6) infs∈R W (s, t) > −∞ for all t ∈ R+;

(A7) lims→∞
W (s,t)

s = ∞ for all t ∈ R+.
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By the convexity of W (·, t), condition (A7) is equivalent to lims→∞ W ′
s(s, t) = ∞

for all t ∈ R+. It then follows from (A3) and (A5) that

W ′
s(s, t) ≥ 0 ∀(s, t) ∈ R × R+.(2.2)

Special cases of L1 include the augmented function in [21], the modified Courant-
type augmented Lagrangian function [6], [39], the penalized exponential-type aug-
mented Lagrangian [6], and the augmented Lagrangian functions in [18], [29], [40],
[41]. For example, the augmented function introduced in [6], [21] is a special case of
L1(x, λ, p) with W (s, t) defined as

W (s, t) =

{
ts + φ(s) if t + φ′(s) ≥ 0,
minτ∈R[tτ + φ(τ)] otherwise,

(2.3)

where φ : R → R satisfies the following conditions:
(E1) φ(·) is a strictly convex function and continuous differentiable on R;
(E2) φ(0) = 0, φ′(0) = 0, lims→−∞ φ′(s) = −∞;

(E3) φ(s)
|s| → ∞, (|s| → ∞).

It can be verified that W (s, t) defined in (2.3) satisfies (A1)–(A7) and that Rock-
afellar’s augmented Lagrangian function is a special case of L1 with φ(s) = (1/2)s2

in W (s, t) defined in (2.3).
Mangasarian [28] proposed another general class of augmented Lagrangians for

(P ). Let

L2(x, λ, p) = f(x) +
1

p

m∑
i=1

[θ(pgi(x) + λi)+ − θ(λi)] , x ∈ X, λ ∈ R
m,(2.4)

where p > 0, θ(s)+ =
{θ(s), s ≥ 0
0, s < 0, and the function θ : R → R satisfies the

following conditions:
(B1) θ is continuously differentiable and strictly convex on R;
(B2) θ(0) = 0, θ′ maps R onto R and θ′(0) = 0;

(B3) θ(s)
|s| → ∞, (|s| → ∞).

Let W (s, t) = θ(s+ t)+ − θ(t). It can be verified that W (s, t) satisfies conditions
(A1)–(A7) except (A2) (see Remark 2.13 in [28]). Note that L2 also includes Rock-
afellar’s augmented Lagrangian as a special case by setting θ(s) = 1

2s
2 (see [40], [41]).

We also see that if θ is twice differentiable and θ′′(0) = 0, then L2(x, λ, p) is twice
differentiable with respect to x when f and all gi are twice differentiable. Examples of
θ that satisfy conditions (B1)–(B3) and θ′′(0) = 0 include θ(s) = 1

ρ |s|ρ, where ρ > 2,

θ(s) = 1
2 (es + e−s) − 1

2s
2 − 1, and θ(s) = 1

2 [(es + e−s)/2 − 1]
2
.

It is easy to see that conditions (B1)–(B2) imply that θ′ is a strictly increasing
function on R and θ(s) ≥ 0 for s ∈ R. Furthermore, θ is strictly decreasing on (−∞, 0]
and strictly increasing on [0,∞). By the convexity of θ, condition (B3) is equivalent
to θ′(s) → ∞ (s → ∞).

The exponential-type augmented Lagrangian functions can be derived by applying
classical Lagrangian formulation to a reformulation of (P ). Let ψ : R → R be a
function satisfying the following conditions:

(C1) ψ is a continuously differentiable and strictly convex function on R;
(C2) ψ(0) = 0, ψ′(0) = 1, limt→−∞ ψ′(t) = 0;

(C3) limt→−∞ ψ(t) > −∞, limt→∞
ψ(t)
t = ∞.
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From condition (C1), ψ′ is strictly increasing on R, which together with (C2)
implies that ψ′(t) > 0 for any t. Thus ψ is a strictly increasing function on R. An
obvious example of ψ that satisfies (C1)–(C3) is ψ(t) = et − 1. Other interesting
examples of ψ include the hyperbolic-exponential function, the hyperbolic-quadratic
function, the exponential-quadratic function (see [7], [11], [38]), and the modified
log-sigmoid function [37].

Now problem (P ) can be rewritten in an equivalent form:

min f(x)(2.5)

s.t. (1/p)ψ(pgi(x)) ≤ 0, i = 1, . . . ,m,

x ∈ X,

where p > 0 is a parameter. Applying the classical Lagrangian formulation to (2.5)
leads to the following exponential-type augmented Lagrangian:

L3(x, λ, p) = f(x) +
1

p

m∑
i=1

λiψ(pgi(x)), x ∈ X, λ ≥ 0.(2.6)

To avoid ill-conditional numerical behavior of the exponential-type augmented
Lagrangian function, a modified barrier function was proposed by Polyak [35]. Good
numerical behavior of the modified barrier functions was shown in several papers (see,
e.g., [4], [11]). We now consider a general class of modified barrier functions. Let ϕ:
(−∞, 1) → R satisfy the following conditions:

(D1) ϕ is a continuously differentiable and strictly convex function on (−∞, 1);
(D2) ϕ(0) = 0, ϕ′(0) = 1, lims→−∞ ϕ′(s) = 0;

(D3) lims→−∞
ϕ(s)
s = 0.

Note that conditions (D1) and (D2) imply that ϕ is a strictly increasing function
on (−∞, 1). Let Ωp = {x ∈ X | pgi(x) < 1, i = 1, . . . ,m}. Define the modified
barrier augmented Lagrangian as follows:

L4(x, λ, p) =

{
f(x) + 1

p

∑m
i=1 λiϕ(pgi(x)), x ∈ Ωp,

∞, x ∈ X \ Ωp,
(2.7)

where p > 0 and λ ≥ 0. Taking ϕ(s) = − ln(1 − s) or ϕ(s) = 1/(1 − s) − 1 in (2.7)
gives rise to the modified Frish function or the modified Carroll function introduced
in [35], respectively.

3. Basic augmented Lagrangian method. In this section, we discuss the
basic primal-dual method using the above four classes of augmented Lagrangians Lj

(j = 1, 2, 3, 4).
Define h(x, λ, p) = (h1(x, λ, p), . . . , hm(x, λ, p))T , with

hi(x, λ, p) =

⎧⎪⎪⎨
⎪⎪⎩

(1/p) [W ′
s (pgi(x), λi) − λi] for L1,

(1/p)
[
θ′ (pgi(x) + λi)+ − θ′(λi)

]
for L2,

(λi/p) [ψ′ (pgi(x)) − 1] for L3,
(λi/p) [ϕ′ (pgi(x)) − 1] for L4.

(3.1)

Algorithm 1 (basic primal-dual method).

Step 0 (initialization). Select two positive sequences {pk}∞k=0 and {εk}∞k=0, with εk →
0 as k → ∞. Choose λ0 > 0. Set k = 0.
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Step 1 (relaxation problem). Compute an xk ∈ X such that

Lj(x
k, λk, pk) ≤ min

x∈X
Lj(x, λ

k, pk) + εk (j = 1, 2, 3, 4).(3.2)

Step 2 (multiplier updating). The multiplier vector λk is updated by the following
formulas (i = 1, . . . ,m):

λk+1
i = λk

i + pkhi(x
k, λk, pk).(3.3)

Step 3. Set k = k + 1; go to Step 1.
Remark 1. For Lj (j = 1, 3, 4), the multiplier updating formulas (3.3) are derived

by noticing the following fact:

∇xLj(x
k, λk, pk) = 0 ⇒ ∇xL(xk, λk+1) = 0,

where L is the classical Lagrangian function given by L(x, λ) = f(x) +
∑m

i=1 λigi(x).

Note that ∂L2(x,λ,p)
∂λi

= 1
p [θ′(pgi(x) + λi)+ − θ′(λi)]. The multiplier updating formula

(3.3) for L2 can be viewed as executing a steepest ascent step for maximizing the
function L2(x

k, ·, pk) with step size pk.
To ensure Step 1 is well posed, we need the following assumptions.
Assumption 1. f = infx∈X f(x) > −∞.
Assumption 2. g = infx∈X min1≤i≤m gi(x) > −∞.
Obviously, a sufficient condition to ensure Assumptions 1 and 2 is that X is a

compact set. It can be verified that, under Assumption 1, Step 1 is well defined for
Lj (j = 1, 2, 3) and that Step 1 is well defined for L4 under Assumptions 1 and 2.

Throughout the paper, we assume that Assumption 1 is always satisfied for Lj

(j = 1, 2, 3) and Assumptions 1 and 2 are always satisfied for L4.
The following theorem can be viewed as a generalization of Proposition 2.1 in [6]

and can be proved by using arguments similar to [6].
Theorem 1. Assume that (A1)–(A7) for W , (B1)–(B3) for θ, (C1)–(C3) for

ψ, and (D1)–(D3) for ϕ are satisfied. Suppose that {λk} is bounded. If pk → ∞ as
k → ∞ then the following hold true.

(i) Each limit point of the sequence {xk} generated by Algorithm 1 associated with
Lj (j = 1, 2, 4) is a global optimal solution to (P ).

(ii) If the sequence {xk} generated by Algorithm 1 associated with L3 converges
to x̄, then x̄ is a global optimal solution to (P ).

We point out that the multiplier updates in Step 2 of Algorithm 1 are not essential
for the convergence analysis of Algorithm 1. In fact, no matter how λk is updated,
Theorem 1 holds true as long as {λk} is bounded. It turns out that this bound-
edness assumption for {λk} is indispensable for the convergence of Algorithm 1 as
shown by the counterexample in [41]. In the subsequent sections, we will discuss sev-
eral approaches to modify the basic primal-dual scheme by using different strategies.
The convergence results will be established for these modified augmented Lagrangian
methods without assuming the boundedness of {λk}.

4. Modified augmented Lagrangian method using safeguarding. A natu-
ral way to relax the boundedness assumption of the Lagrangian multiplier in the basic
augmented Lagrangian method is to adopt the safeguarding technique (see [1], [2], [7])
which projects the updated Lagrangian multipliers on suitable bounded intervals.
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Algorithm 2 (modified primal-dual method using safeguarding).
Step 0 (initialization). Choose a positive sequence {εk}∞k=1 satisfying εk → 0 as k →

∞. Choose γ > 1, τ ∈ (0, 1), p1 > 0, λmax, and λ̄1 ∈ R
m such that 0 < λ̄1

i ≤
λmax
i for i = 1, . . . ,m. Let σ0 = (σ0

1 , . . . , σ
0
m)T , with σ0

i = max{0, gi(x0)},
i = 1, . . . ,m. Set k = 1.

Step 1 (relaxation problem). Compute an xk ∈ X such that

Lj(x
k, λ̄k, pk) ≤ min

x∈X
Lj(x, λ̄

k, pk) + εk (j = 1, 2, 3, 4).(4.1)

Step 2 (multiplier updating). Compute

λk+1
i = λ̄k

i + pkhi(x
k, λ̄k, pk), i = 1, . . . ,m,(4.2)

where hi is defined in (3.1).
Step 3 (safeguarding projection). Compute

λ̄k+1 = ProjT (λk+1),(4.3)

where ProjT (λk+1) denotes the Euclidean projection of λk+1 on T = {λ ∈
R

m | 0 ≤ λi ≤ λmax
i , i = 1, . . . ,m}.

Step 4 (parameter updating). Let σk = h(xk, λ̄k, pk). If

‖σk‖ ≤ τ‖σk−1‖,(4.4)

set pk+1 = pk; otherwise, set pk+1 = γpk. Set k := k + 1, and go to Step 1.
Remark 2. The projection operation in (4.3) is a safeguarding strategy to ensure

the boundedness of the multipliers used in (4.1). As will be shown later in this sec-
tion, this safeguarding technique guarantees the convergence of the algorithm without
appealing to the restrictive assumption that the multiplier sequence generated by the
algorithm is bounded. In Step 4, the Euclidean norm of h(x, λ, p) is used to measure
the progress of feasibility/complementarity of the inequality constraints gi(x) ≤ 0,
i = 1, . . . ,m.

We first discuss the convergence of Algorithm 2 using Lj (j = 1, 2). We have the
following result.

Theorem 2. Assume that (A1)–(A7) for W in L1 and (B1)–(B3) for θ in L2 are
satisfied. Let {xk} be the sequence generated by Algorithm 2 when using Lj (j = 1, 2).
Then each limit point of {xk} is a global optimal solution to problem (P ).

In the following, we will prove only the theorem for the augmented Lagrangian L1.
The proof for L2 can be constructed by using similar arguments and the properties
(B1)–(B3).

We need the following proposition.
Proposition 1 (Proposition 5.1, [6]). Let s ∈ R and t ≥ 0. Then
(i) W ′

t (s, t) ≥ s;
(ii) sW ′

s(s, t) ≥ W (s, t) ≥ tW ′
t (s, t) ≥ st;

(iii) W ′
s(s, t) = t ⇒ s ≤ 0, st = 0.

Proof of Theorem 2. Let x̄ be a limit point of {xk}, and let K ⊂ {1, 2, . . .} be such
that {xk} → x̄, as k → ∞ and k ∈ K. By the closedness of X, x̄ ∈ X. We consider
the following two cases.

Case (i): pk → ∞ as k → ∞. By Step 3 of the algorithm, 0 ≤ λ̄k ≤ λmax for all
k. Using condition (A6) and the fact that infs∈R W (s, t) ≤ 0 for all t ≥ 0, we have

0 ≥ inf
s∈R

W (s, λ̄k
i ) > −∞ for all k and i,(4.5)
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which in turn implies

lim
k→∞

1

pk

m∑
i=1

inf
s∈R

W (s, λ̄k
i ) = 0.(4.6)

By (4.1), we have

L1(x
k, λ̄k, pk) ≤ L1(x, λ̄

k, pk) + εk ∀x ∈ X.

Let x∗ be a global solution to problem (P ). Then

L1(x
k, λ̄k, pk) ≤ L1(x

∗, λ̄k, pk) + εk

= f(x∗) +
1

pk

m∑
i=1

W (pkgi(x
∗), λ̄k

i ) + εk.(4.7)

Note from (2.2) that W (s, t) is an increasing function of s on R for any fixed t ≥ 0.
Since gi(x

∗) ≤ 0 and W (0, t) = 0 for t ≥ 0, we have

W (pkgi(x
∗), λk

i ) ≤ W (0, λ̄k
i ) = 0

for all i and k. Therefore, from (4.7) and the definition of L1, we have

f(xk) +
1

pk

m∑
i=1

W (pkgi(x
k), λ̄k

i ) ≤ f(x∗) + εk.(4.8)

Now we are going to show that x̄ is feasible to problem (P ), i.e., gi(x̄) ≤ 0,
i = 1, . . . ,m. Suppose on the contrary that there exists some i0 such that gi0(x̄) > 0.
Let ε = gi0(x̄)/2. By the continuity of gi0 , there exists k0 > 0 such that gi0(x

k) ≥ ε
for all k ≥ k0, k ∈ K. Since W (·, t) is increasing on R for any fixed t ≥ 0 and λ̄k ≥ 0
for all k, we get

W (pkgi0(x
k), λ̄k

i0) ≥ W (pkε, λ̄
k
i0) ≥ W (pkε, 0), k ≥ k0, k ∈ K,(4.9)

where the second inequality follows from the fact that W (s, ·) is an increasing function
of t ≥ 0 for any fixed s ≥ 0 (cf. Proposition 1(i)). Using (4.9), εk → 0, pk → ∞, and
Assumption 1, we deduce from (4.8) that

f(x∗) + εk ≥ f(xk) +
1

pk

m∑
i=1

W (pkgi(x
k), λ̄k

i )

= f(xk) +
1

pk
W (pkgi0(x

k), λ̄k
i0) +

1

pk

∑
i 	=i0

W (pkgi(x
k), λ̄k

i )

≥ f +
1

pk
W (pkε, 0) +

1

pk

∑
i 	=i0

inf
s∈R

W (s, λ̄k
i )

→ ∞ (k → ∞, k ∈ K),

where the second term in the last inequality tends to ∞ due to the condition (A7), and
by (4.6) the third term in the last inequality tends to 0. This contradiction implies
that gi(x̄) ≤ 0 for i = 1, . . . ,m.
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Next, we show that x̄ is a global optimal solution to problem (P ). Taking the
limit superior in (4.8) and using εk → 0 give

f(x̄) + lim sup
k→∞,k∈K

1

pk

m∑
i=1

W (pkgi(x
k), λ̄k

i ) ≤ f(x∗).(4.10)

Since x̄ is feasible, we have f(x∗) ≤ f(x̄). Thus, we obtain from (4.10) that

lim sup
k→∞,k∈K

1

pk

m∑
i=1

W (pkgi(x
k), λ̄k

i ) ≤ 0.(4.11)

On the other hand, we have

1

pk

m∑
i=1

W (pkgi(x
k), λ̄k

i ) ≥
1

pk

m∑
i=1

inf
s∈R

W (s, λ̄k
i ) ∀k.(4.12)

Taking the limit inferior in (4.12) and using (4.6) give rise to

lim inf
k→∞,k∈K

1

pk

m∑
i=1

W (pkgi(x
k), λ̄k

i ) ≥ 0.(4.13)

Combining (4.11) and (4.13) yields

lim
k→∞,k∈K

1

pk

m∑
i=1

W (pkgi(x
k), λ̄k

i ) = 0.

Thus, we obtain from (4.10) that

f(x̄) ≤ f(x∗).

Therefore, f(x̄) = f(x∗), and x̄ is a global minimum of problem (P ).
Case (ii): {pk} is bounded as k → ∞. In this case, (4.4) in Step 4 is satisfied

at each iteration for sufficiently large k. This, together with τ ∈ (0, 1), implies that
‖σk‖ → 0 (k → ∞) and that there exists k1 > 0 such that pk = pk1 for all k ≥ k1.
Since σk = h(xk, λ̄k, pk), it then follows from the definition of h (cf. (3.1)) that

lim
k→∞

1

pk

[
W ′

s

(
pkgi(x

k), λ̄k
i

)
− λ̄k

i

]
= 0, i = 1, . . . ,m.(4.14)

Since {λ̄k} ⊂ T is bounded, we can assume, without loss of generality, that λ̄k → λ̄ ≥ 0
(k → ∞, k ∈ K). From (4.14) and pk = pk1

for all k ≥ k1, we obtain

W ′
s

(
pk1gi(x̄), λ̄i

)
− λ̄i = 0, i = 1, . . . ,m,(4.15)

which in turn implies by Proposition 1(iii) that

gi(x̄) ≤ 0, λ̄igi(x̄) = 0, i = 1, . . . ,m.(4.16)

On the other hand, by Proposition 1(ii), we get

st ≤ W (s, t) ≤ sW ′
s(s, t) ∀s ∈ R, t ≥ 0.
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It then follows that, for k large enough,

λ̄k
i gi(x

k) ≤ 1

pk
W (pkgi(x

k), λ̄k
i ) ≤ gi(x

k)W ′
s(pkgi(x

k), λ̄k
i )

for all i. Taking the limit in the above inequality and using (4.15) and (4.16), we obtain

lim
k→∞,k∈K

1

pk
W (pkgi(x

k), λk
i ) = λ̄igi(x̄) = 0, i = 1, . . . ,m.(4.17)

Using (4.17) and the similar arguments as in Case (i), we can show that x̄ is a
global optimal solution to problem (P ).

Next, we give the convergence result for Algorithm 2 using augmented Lagrangians
Lj (j = 3, 4).

Theorem 3. Assume that (C1)–(C3) for ψ in L3 and (D1)–(D3) for ϕ in L4 are
satisfied. Let {xk} be the sequence generated by Algorithm 2 using Lj (j = 3, 4). If
xk → x̄ (k → ∞), then x̄ is a global optimal solution to (P ).

Proof. We prove only the theorem for the case of L3. The case of L4 can be proved
similarly. Since λ̄1 > 0 and ψ′(t) > 0 for any t, by (4.2) and (4.3) of Algorithm 2, it
holds that λk > 0 and λ̄k > 0 for all k. Let x∗ be a global optimal solution to (P ).
From (4.1), we have

f(xk) +
1

pk

m∑
i=1

λ̄k
i ψ

(
pkgi(x

k)
)
≤ f(x∗) + εk.(4.18)

Suppose that xk → x̄ (k → ∞). We consider two cases: (i) pk → ∞ as k → ∞,
and (ii) {pk} is bounded as k → ∞. The proof of the theorem in case (i) is similar
to that of Theorem 2. We now consider only case (ii). In this case, (4.4) in Step 4 is
always satisfied at each iteration for sufficiently large k. This, together with τ ∈ (0, 1),
implies that ‖σk‖ = ‖h(xk, λ̄k, pk)‖ → 0 (k → ∞) and pk = pk0 for all k ≥ k0 with
some sufficiently large k0. Hence, it follows from the definition of h (cf. (3.1)) that

lim
k→∞

λ̄k
i

[
ψ′(pk0gi(x

k)) − 1
]

= 0, i = 1, . . . ,m.(4.19)

We now show that gi(x̄) ≤ 0 for i = 1, . . . ,m. Suppose that there exists some
i0 such that gi0(x̄) > 0. Then there exists an integer k0 such that gi0(x

k) > 0
for all k ≥ k0. Since ψ′ is a strictly increasing function and ψ′(0) = 1, we have
ψ′(pkgi0(x

k)) > 1 for all k ≥ k0, and hence by (4.2), we have λk+1
i0

> λ̄k
i0

for all k ≥ k0.

Also, from (4.3), it holds that λ̄k
i0

≤ λ̄max
i0

for all k. Thus λmax
i0

≥ λ̄k+1
i0

> λ̄k
i0

> 0 for

all k ≥ k0. Therefore, there exists λ̄∗
i0

> 0 such that λ̄k
i0

→ λ̄∗
i0

as k → ∞. It then
follows from (4.19) that λ̄∗

i0
[ψ′(pk0gi0(x̄)) − 1] = 0. Note that λ̄∗

i0
> 0 and ψ′(0) = 1.

Thus, gi0(x̄) = 0. This gives a contradiction, and hence gi(x̄) ≤ 0 for i = 1, . . . ,m.
Since {λ̄k} is bounded, we can suppose that λ̄k → λ̄ ≥ 0 as k → ∞ and k ∈ K ⊆

{1, 2, . . .}. By (4.19), we have

λ̄iψ
′(pk0gi(x̄)) = λ̄i, i = 1, . . . ,m,(4.20)

which in turn implies

λ̄igi(x̄) = 0, i = 1, . . . ,m.(4.21)

Moreover, from the convexity of ψ and the condition ψ(0) = 0 and ψ′(0) = 1, we have

t ≤ ψ(t) ≤ ψ′(t)t ∀t ∈ R.(4.22)
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Therefore, we obtain

λ̄k
i gi(x

k) ≤ 1

pk
λ̄k
i ψ

(
pkgi(x

k)
)
≤ gi(x

k)λ̄k
i ψ

′ (pkgi(xk)
)

for all i and k. Taking the limit in the above inequality and using (4.20) and (4.21),
we obtain

lim
k→∞,k∈K

1

pk

m∑
i=1

λ̄k
i ψ

(
pkgi(x

k)
)

=

m∑
i=1

λ̄igi(x̄) = 0,(4.23)

which, together with (4.18), implies f(x̄) ≤ f(x∗). Thus, x̄ is a global optimal solution
of (P ).

From the proof of Theorem 2, we see that the multiplier updates in Step 2 of
Algorithm 2 are actually not essential for the convergence of Algorithm 2 when using
Lj (j = 1, 2). However, the proof of Theorem 3 does rely on the multiplier update in
Step 2 when using Lj (j = 3, 4).

5. Modified augmented Lagrangian method with conditional multiplier
updating. In this section, we investigate an alternative strategy to modify the basic
augmented Lagrangian algorithm for solving (P ). The underlying idea is to modify
Step 2 of Algorithm 1 for updating the multipliers: The Lagrangian multipliers are
updated only when certain progress for the feasibility/complementarity is achieved.

The following modified augmented Lagrangian method for (P ) using Lj (j =
1, 3, 4) is an extension of the algorithm in [9] where the equality-constrained problem
is considered.

Algorithm 3 (modified primal-dual method with conditional multiplier updat-
ing).
Step 0. Choose positive constants

μ0, ν0, βη, αε, βε, τ > 1, γ1 ∈ (0, 1), ω � 1, αη > 0.5.

Set the initial penalty parameter p0 > 1, and let

α0 = min

(
1

p0
, γ1

)
, ε0 = ν0 (α0)

αε , and η0 = μ0 (α0)
αη .

Select an initial multiplier vector λ0 > 0. Set k = 0.
Step 1. Find an xk satisfying

Lj(x
k, λk, pk) ≤ min

x∈X
Lj(x, λ

k, pk) + εk (j = 1, 3, 4).(5.1)

If

‖h(xk, λk, pk)‖ ≤ ηk,(5.2)

go to Step 2, where h is defined by (3.1). Otherwise, go to Step 3.
Step 2. If ‖h(xk, λk, pk)‖ ≤ ω, stop. Otherwise, set⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λk+1 = λk + pkh(xk, λk, pk),
pk+1 = pk,
αk+1 = min( 1

pk+1
, γ1),

εk+1 = εk(αk+1)
βε ,

ηk+1 = ηk (αk+1)
βη .

(5.3)

Set k := k + 1, and go to Step 1.
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Step 3. Set ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λk+1 = λk,
pk+1 = τpk,
αk+1 = min( 1

pk+1
, γ1),

εk+1 = ν0(αk+1)
αε ,

ηk+1 = μ0 (αk+1)
αη .

(5.4)

Set k := k + 1, and go to Step 1.
Remark 3. In Step 3 of Algorithm 3, the multipliers are not updated when the

progress of feasibility/complementarity of the inequality constraints is not satisfactory.
It turns out that this scheme maintains the essential boundedness of the multipliers
and thus guarantees the convergence of the algorithm when using Lj (j = 1, 3, 4). Nu-
merical comparison between the augmented Lagrangian methods using safeguarding
and the above “updating only necessary” strategy can be found in [1], [7].

In the following convergence analysis for Algorithm 3, we set ω = 0. We have
the following lemmas regarding the boundedness of {λk} generated by the above
algorithm.

Lemma 1. If pk → ∞ when Algorithm 3 is executed, then limk→∞
λk
√
pk

= 0.

Proof. The proof is similar to that of Lemma 4.1 in [9], where equality constraints
are considered.

Lemma 2. If {pk} is bounded when Algorithm 3 is executed, then {λk} is conver-
gent.

Proof. If {pk} is bounded, there exists k0 > 0 such that Step 2 is executed at
every iteration when k ≥ k0. Thus, (5.2) is satisfied when k ≥ k0. Moreover, from
(5.3), we deduce that pk = pk0

when k ≥ k0 and

λk
i = λk0

i + pk0

k−1∑
l=0

hi(x
k0+l, λk0+l, pk0+l), k ≥ k0, i = 1, . . . ,m.(5.5)

From (5.3), we see that
∑∞

k=1 ηk is convergent. Hence, by (5.2), for each i,∑∞
k=1 hi(x

k, λk, pk) is also convergent. It then follows from (5.5) that {λk} is conver-
gent.

Based on the above lemmas, we are able to establish the convergence results
of Algorithm 3 using Lj (j = 1, 3, 4). We first discuss the Algorithm 3 using L1.
In addition to (A1)–(A7), let W (s, t) in the definition of L1 satisfy the following
condition:

(A8) For any nonnegative sequences {tk} ⊆ R and positive sequence {pk} ⊆ R,
with pk → ∞ (k → ∞),

lim
k→∞

tk√
pk

= 0 ⇒ lim
k→∞

1

pk
inf
s∈R

W (s, tk) = 0.

It can be verified that W (s, t) in many augmented Lagrangian functions classified
in the general class L1 satisfies condition (A8). In particular, for W (s, t) defined in
(2.3), suppose that we replace condition (E3) by the following condition:

(E3′) There exists α > 0 such that φ(s) ≥ αs2/2 for all s ∈ R.
Then condition (A8) is satisfied. Clearly (E3′) holds if φ is strongly convex. We

also note that condition (E3′) implies (E3).
Theorem 4. Assume that conditions (A1)–(A8) for W (s, t) are satisfied. Let

{xk} be the sequence generated by Algorithm 3 associated with L1. Then each limit
point of the sequence {xk} is a global optimal solution to problem (P ).
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Proof. Let x∗ be a global solution to problem (P ). Similar to the proof of Theorem
2, we have

f(xk) +
1

pk

m∑
i=1

W (pkgi(x
k), λk

i ) ≤ f(x∗) + εk.(5.6)

Suppose that xk → x̄ ∈ X as k → ∞ and k ∈ K ⊆ {1, 2, . . .}. We consider the
following two cases.

Case (i): pk → ∞ when the algorithm is executed. By Lemma 1, it holds that

limk→∞
λk
√
pk

= 0, which, by condition (A8), implies

lim
k→∞

1

pk

m∑
i=1

inf
s∈R

W (s, λk
i ) = 0.(5.7)

Using similar arguments as in the proof of Theorem 2, we can infer from (5.6) and
(5.7) that x̄ is a global optimal solution to (P ).

Case (ii): {pk} is bounded when the algorithm is executed. In this case, there
exists k0 ≥ 0 such that Step 2 is executed at each iteration when k ≥ k0. By the
definition of h for L1 and (5.3), we have

λk+1
i = W ′

s(pkgi(x
k), λk

i ), k ≥ k0.(5.8)

Thus, by (2.2) and λ0
i > 0, we infer that λk ≥ 0 for all k, and hence by Lemma 2,

λk → λ̄ ≥ 0. Taking the limit in (5.8), we get

W ′
s

(
pk0gi(x̄), λ̄i

)
= λ̄i, i = 1, . . . ,m,

which, by Proposition 1(iii), implies

gi(x̄) ≤ 0, λ̄igi(x̄) = 0, i = 1, . . . ,m.(5.9)

Using (5.9), we can show, using a proof similar to that of Theorem 2, that

lim
k→∞,k∈K

1

pk
W (pkgi(x

k), λk
i ) = λ̄igi(x̄) = 0, i = 1, . . . ,m.(5.10)

Since εk → 0, we obtain from (5.6) and (5.10) that f(x̄) ≤ f(x∗). Thus, x̄ is a global
optimal solution to (P ).

Next, we discuss the convergence property of Algorithm 3 associated with L3.
Theorem 5. Assume that conditions (C1)–(C3) for ψ are satisfied. Let {xk} be

the sequence generated by Algorithm 3 associated with L3. If xk → x̄ (k → ∞), then
x̄ is a global optimal solution to problem (P ).

Proof. Let x∗ be a global solution to problem (P ). From (5.1) in Algorithm 3,
we have

f(xk) +
1

pk

m∑
i=1

λk
i ψ

(
pkgi(x

k)
)
≤ f(x∗) + εk.(5.11)

Suppose that xk → x̄ ∈ X (k → ∞). We consider the following two cases.
Case (i): pk → ∞ when the algorithm is executed. In this case, Step 3 of the

algorithm must be executed for infinite times. Let K = {k0, k1, k2, . . .} be the set of
the indices of the iterations in which Step 3 of the algorithm is executed. Then

λkj+1 = λkj for all j.(5.12)
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Let t be such that kj < kj + l < kj+1 for 1 ≤ l ≤ t. At iteration kj + l, 1 ≤ l ≤ t,
Step 2 is executed, and hence, for all j and i,{

λ
kj+1

i = λ
kj+t
i ψ′(pkj+tgi(x

kj+t)),

λ
kj+l+1
i = λ

kj+l
i ψ′(pkj+lgi(x

kj+l)), 1 ≤ l < t.
(5.13)

By Lemma 1, it holds that lim
k→∞

λk
√
pk

= 0, which in turn implies

lim
k→∞

λk

pk
= 0.(5.14)

We prove in the following that gi(x̄) ≤ 0 for i = 1, . . . ,m, which together with
x̄ ∈ X implies that x̄ is a feasible solution to (P ). Suppose, on the contrary, there
exists some i0 such that gi0(x̄) ≥ ε for some ε > 0. Then there exists an integer k̄
such that gi0(x

k) ≥ ε/2 for all k ≥ k̄. Since ψ is strictly increasing and ψ(0) = 0, we
have

ψ(pkgi0(x
k)) ≥ ψ(pkε/2) > 0, k ≥ k̄.(5.15)

Since ψ′ is a strictly increasing function and ψ′(0) = 1, we have

ψ′(pkgi0(x
k)) > 1 for all k ≥ k̄.(5.16)

Note that λk > 0 for all k. Let j0 be such that kj0 ≥ k̄. It then follows from

(5.12), (5.13), and (5.16) that λ
kj+1

i0
> λ

kj

i0
for all j ≥ j0. Therefore, for all j ≥ j0,

λ
kj

i0
> λ

kj0
i0

> 0. Also, condition (C3) implies that ψ = mint∈R ψ(t) > −∞. Moreover,
by Assumption 1, f = infx∈X f(x) > −∞. Therefore, for j ≥ j0, using (5.14) and
(5.15), we obtain from (5.11) that

f(x∗) + εkj
≥ f(xkj ) + (1/pkj )

m∑
i=1

λ
kj

i ψ(pkjgi(x
kj ))

≥ f + (1/pkj )λ
kj

i0
ψ(pkj ε/2) +

1

pkj

ψ
∑
i 	=i0

λ
kj

i

≥ f + (1/pkj )λ
kj0
i0

ψ(pkj ε/2) +
1

pkj

ψ
∑
i 	=i0

λ
kj

i

→ ∞ (j → ∞),

where the second term in the last inequality tends to ∞ since, by condition (C3) and

pkj
→ ∞, it holds that λ

kj0
i0

> 0 and (1/pkj
)ψ(pkj

ε/2) → ∞ (j → ∞), and the third
term in the last inequality tends to 0 due to (5.14). This contradiction indicates that
gi(x̄) ≤ 0 for i = 1, . . . ,m.

On the other hand, from (5.11), we have

f(xk) +
1

pk

m∑
i=1

ψλk
i ≤ f(x∗) + εk ∀k.

In view of (5.14) and εk → 0, taking a limit in the above inequality leads to f(x̄) ≤
f(x∗). Therefore, x̄ is a global optimal solution of problem (P ).
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Case (ii): {pk} is bounded when the algorithm is executed. In this case, there
exists k0 ≥ 0 such that Step 2 is executed at each iteration when k ≥ k0. This implies
that pk = pk0 and

λk+1
i = λk

i ψ
′ (pkgi(xk)

)
, i = 1, . . . ,m,(5.17)

when k ≥ k0. By Lemma 2, {λk} converges to λ̄ ≥ 0. Let M = {i | λ̄i = 0, i =
1, . . . ,m}. We claim that gi(x̄) ≤ 0 for any i ∈ M . Suppose that there exists i0 ∈ M
such that gi0(x̄) > 0. Then there exists an integer k̄ such that gi0(x

k) > 0 for all
k ≥ k̄. Since ψ′ is increasing and ψ′(0) = 1, we from (5.17) have that λk+1

i0
≥ λk

i0
> 0

for k ≥ k̄. Hence, λ̄i0 > 0, contradicting i0 ∈ M . If i �∈ M , i.e., λ̄i > 0, then we have
from (5.17) and ψ′(0) = 1 that gi(x̄) = 0. Therefore,

gi(x̄) ≤ 0, λ̄igi(x̄) = 0, i = 1, . . . ,m.(5.18)

By the convexity of ψ and condition ψ(0) = 0 and ψ′(0) = 1, it holds that

t ≤ ψ(t) ≤ ψ′(t)t ∀t ∈ R.(5.19)

Note also that λk > 0 and pk > 1 for all k. Applying (5.17) and (5.19), we obtain

λk
i gi(x

k) ≤ 1

pk
λk
i ψ

(
pkgi(x

k)
)
≤ λk

i ψ
′ (pkgi(xk)

)
gi(x

k) = λk+1
i gi(x

k)

for all i and k ≥ k0. Taking the limit in the above inequality and using (5.18), we
obtain

lim
k→∞

1

pk

m∑
i=1

λk
i ψ

(
pkgi(x

k)
)

=

m∑
i=1

λ̄igi(x̄) = 0.(5.20)

Since εk → 0, it follows from (5.11) and (5.20) that f(x̄) ≤ f(x∗). Thus, x̄ is a global
optimal solution to (P ).

Finally, we consider Algorithm 3 associated with L4. Let condition (D3) for the
function ϕ in (2.7) be replaced by the following condition:

(D3′) limt→∞ ϕ(−t)/
√
t = 0.

We observe that functions ϕ(t) = − ln(1 − t) and ϕ(t) = 1/(1 − t) − 1 satisfy
(D3′). It is clear that condition (D3′) implies (D3).

Theorem 6. Assume that conditions (D1)–(D2) and (D3′) for ϕ are satisfied. Let
{xk} be the sequence generated by Algorithm 3 associated with L4. If {xk} converges
to x̄, then x̄ is a global optimal solution to problem (P ).

Proof. Let x∗ be a global optimal solution to (P ). By (5.1), we have

f(xk) +
1

pk

m∑
i=1

λk
i ϕ(pkgi(x

k)) ≤ f(x∗) +
1

pk

m∑
i=1

λk
i ϕ(pkgi(x

∗)) + εk.(5.21)

From Step 2 of Algorithm 3 and (3.1), we have

λk+1
i = λk

i ϕ
′(pkgi(x

k)), i = 1, . . . ,m.(5.22)

It is clear that xk ∈ Ωpk
and hence pkgi(x

k) < 1. By (D1) and (D2), ϕ is a strictly
increasing function on (−∞, 1). Thus, ϕ′(pkgi(x

k)) > 0 for any i and k. From Step
0 of Algorithm 3, λ0 > 0. Hence, (5.22) implies λk

i > 0 for any i and k. Also, both
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ϕ(0) = 0 and gi(x
∗) ≤ 0 imply ϕ(pkgi(x

∗)) ≤ 0. Therefore, we obtain the following
from (5.21):

f(xk) +
1

pk

m∑
i=1

λk
i ϕ(pkgi(x

k)) ≤ f(x∗) + εk.(5.23)

Now suppose that xk → x̄ ∈ X (k → ∞). Consider the following two cases.
Case (i): pk → ∞ when the algorithm is executed. Since gi(x

k) < 1/pk, we
deduce that x̄ is a feasible solution of (P ). By Lemma 1, it holds that

lim
k→∞

λk

√
pk

= 0.(5.24)

Denote I1 = {i | gi(x̄) = 0} and I2 = {i | gi(x̄) < 0}. Let ε > 0 be a constant.
For i ∈ I1, there exists k1 such that gi(x

k) ≥ −ε for k ≥ k1. Since ϕ is a strictly
increasing function on (−∞, 1), we have

1
√
pk

ϕ(pkgi(x
k)) ≥ 1

√
pk

ϕ(−εpk).(5.25)

Taking the limit inferior in (5.25) and using condition (D3′) yield the following:

lim inf
k→∞

1
√
pk

ϕ(pkgi(x
k)) ≥ 0.(5.26)

For i ∈ I2, there exists k2 such that (3/2)g(x̄) ≤ gi(x
k) ≤ (1/2)g(x̄) < 0 for

k ≥ k2. Thus,

1
√
pk

ϕ((3/2)g(x̄)pk) ≤
1

√
pk

ϕ(pkgi(x
k)) ≤ 1

√
pk

ϕ((1/2)g(x̄)pk).(5.27)

Again, taking the limit in (5.27) and using condition (D3′) yield

lim
k→∞

1
√
pk

ϕ(pkgi(x
k)) = 0.(5.28)

Note that λk
i > 0 for all k. Combining (5.24), (5.26), and (5.28) gives rise to the

following:

lim inf
k→∞

1

pk

m∑
i=1

λk
i ϕ(pkgi(x

k) ≥ 0.

Since εk → 0, the above inequality and (5.23) imply that f(x̄) ≤ f(x∗), that is, x̄ is
a global solution to (P ).

Case (ii): {pk} is bounded when the algorithm is executed. The proof of the
theorem in this case is similar to that of Theorem 5.

6. Normalized multiplier method. In this section, we discuss another ap-
proach of achieving the convergence results of the augmented Lagrangian methods
without appealing to the boundedness of the multipliers. The idea behind this mod-
ification is to normalize the multipliers in the augmented Lagrangian functions L1,
L2, and L4 such that the convergence to a global solution can be guaranteed without
the boundedness assumption.
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The modified augmented Lagrangian functions L1, L2, and L4 are defined as
follows:

L̄1(x, λ, p) = f(x) +
1

p

m∑
i=1

W

(
pgi(x),

λi

1 + ‖λ‖

)
,(6.1)

L̄2(x, λ, p) = f(x) +
1

p

m∑
i=1

[
θ

(
pgi(x) +

λi

1 + ‖λ‖

)
+

− θ

(
λi

1 + ‖λ‖

)]
,(6.2)

L̄4(x, λ, p) =

{
f(x) + 1

p

∑m
i=1

λi

1+‖λ‖ϕ(pgi(x)), x ∈ Ωp,

∞, x ∈ X \ Ωp.
(6.3)

Note that the difference between the modified function L̄j (j = 1, 2, 4) and the original
augmented Lagrangian function Lj (j = 1, 2, 4) is the introduction of the factor 1

1+‖λ‖ ,

which can be viewed as a barrier factor to prevent λ from becoming too large. A
similar idea was used in [33] for another type of augmented Lagrangian functions.

We describe now the primal-dual scheme using the modified augmented La-
grangians L̄j (j = 1, 2, 4).

Algorithm 4 (normalized multiplier method). The algorithm is identical to
Algorithm 1 except that Lj (j = 1, 2, 4) in (3.2) of Step 1 are replaced by L̄j (j =
1, 2, 4) and Step 2 is replaced by the following step:

Step 2. The multiplier vector λk is updated by the following equations (i =
1, . . . ,m):

λk+1
i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

W ′
(
pkgi(x

k),
λk
i

1+‖λk‖

)
(for L̄1),

λk
i +

[
θ′
(
pkgi(x

k) +
λk
i

1+‖λk‖

)
+
− θ′

(
λk
i

1+‖λk‖

)]
(for L̄2),

λk
i

1+‖λk‖ϕ
′(pkgi(x

k)) (for L̄4).

(6.4)

The convergence of Algorithm 4 to a global solution of (P ) is established in the
following theorem.

Theorem 7. Assume that (A1)–(A7) for W , (B1)–(B3) for θ, and (D1)–(D3)
for ϕ are satisfied. Suppose in Algorithm 4 that pk → ∞ as k → ∞. Then each limit
point of the sequence {xk} generated by Algorithm 4 associated with L̄j (j = 1, 2, 4)
is a global optimal solution to (P ).

Proof. We prove only the theorem for L̄1. The cases for L̄2 and L̄4 can be proved
similarly. From Step 2, we see that λk ≥ 0 for all k. Let μk = (μk

1 , . . . , μ
k
m)T , with

μk
i =

λk
i

1 + ‖λk‖ , i = 1, . . . ,m.

Clearly, {μk} is bounded and μk ≥ 0 for all k. The function L̄1 defined in (6.1) can
be rewritten as

L̄1(x, μ, p) = f(x) +
1

p

m∑
i=1

W (pgi(x), μi) .

By Algorithm 4, we have

L̄1(x
k, μk, pk) ≤ min

x∈X
L̄1(x, μ

k, pk) + εk.(6.5)
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Also, since {μk} is bounded and pk → ∞, using property (A6), we have

lim
k→∞

1

pk

m∑
i=1

inf
s∈R

W (s, μk
i ) = 0.(6.6)

Applying (6.5)–(6.6) and similar arguments as in the proof of Theorem 2, we can show
that each limit point of the sequence {xk} is a global optimal solution
to (P ).

Next, we describe a “local” version of Algorithm 4 in which an approximate
stationary point of the augmented Lagrangian relaxation problem is computed at
each iteration.

Algorithm 5.

Step 0. Select two positive sequences {pk} and {εk} such that pk → ∞ and εk → 0 as
k → ∞. Select an initial λ0 = (λ0

1, . . . , λ
0
m)T ≥ 0. Set k = 0.

Step 1. Compute an xk ∈ X such that

‖P[xk −∇xL̄j(x
k, λk, pk)] − xk‖ ≤ εk, j = 1, 2, 4,(6.7)

where P is the Euclidean projection operator onto X.
Step 2. Update the multiplier vector λk

i (i = 1, . . . ,m) by the following formula:

λk+1
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

W ′
s

(
pkgi(x

k),
λk
i

1+‖λk‖

)
(for L̄1),

θ′
(
pkgi(x

k) +
λk
i

1+‖λk‖

)
+

(for L̄2),

λk
i

1+‖λk‖ϕ
′(pkgi(x

k)) (for L̄4).

(6.8)

Step 3. Set k := k + 1, and go to Step 1.
Remark 4. Note that the multiplier updating formula in (6.8) for L̄j (j = 1, 2, 4)

is motivated by recognizing the following fact:

∇xL̄j(x
k, λk, pk) = 0 ⇒ ∇xL(xk, λk+1) = 0, j = 1, 2, 4,

where L(x, λ) = f(x) +
∑m

i=1 λigi(x).
Definition 1 (see [7]). A point x∗ ∈ X is said to be degenerate if there exists

λ∗ ∈ R
m
+ such that

∑
i∈I(x∗)

λ∗
i > 0, P

⎡
⎣x∗ −

∑
i∈I(x∗)

λ∗
i∇gi(x

∗)

⎤
⎦− x∗ = 0,

where I(x∗) = {i : gi(x
∗) ≥ 0, i = 1, . . . ,m}.

Similar to Theorem 2 in [7], we have the following global convergence results for
Algorithm 5.

Theorem 8. Assume that condition (A1)–(A7) for W , conditions (B1)–(B3) for
θ, and conditions (D1)–(D3) for ϕ are satisfied. Let x∗ be a limit point of the sequence
{xk} generated by the Algorithm 5 associated with L̄j (j = 1, 2, 4). Then either x∗ is
degenerate or x∗ is a KKT point of (P ).

Proof. We prove only the theorem for the case of L̄1. The cases for L̄2 and L̄4

can proved using similar arguments. By (6.7) and (6.8), we have

lim
k→∞

∥∥∥∥∥P
[
xk −∇f(xk) −

m∑
i=1

λk+1
i ∇gi(x

k)

]
− xk

∥∥∥∥∥ = 0.(6.9)
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Let K ⊆ {1, 2, . . .} be such that {xk}K → x∗ ∈ X. We consider the following two
cases.

Case (i): {λk+1}K is unbounded. Then there exists an infinite subsequence K1 ⊆
K such that

Λk =

m∑
i=1

λk+1
i → ∞, k → ∞, k ∈ K1.

Since 0 ≤ λk+1
i

Λk ≤ 1, we may assume that

λk+1
i

Λk
→ λ∗

i , k → ∞, k ∈ K1,(6.10)

for i = 1, . . . ,m.
On the other hand, since Λk → ∞, we have 0 < 1

Λk < 1 for sufficiently large
k ∈ K1. By the property of Euclidean projection, we deduce from (6.9) that

lim
k→∞,k∈K1

∥∥∥∥∥P
[
xk − 1

Λk

(
∇f(xk) −

m∑
i=1

λk+1
i ∇gi(x

k)

)]
− xk

∥∥∥∥∥ = 0.(6.11)

Since xk → x∗ and Λk → ∞ as k → ∞, k ∈ K1, we obtain the following from (6.10)
and (6.11):

P
[
x∗ −

m∑
i=1

λ∗
i∇gi(x

∗)

]
− x∗ = 0.(6.12)

For i �∈ I(x∗), gi(x
∗) < 0. Since pk → ∞, we have pkgi(x

k) → −∞ as k → ∞,

k ∈ K. Note that { λk
i

1+‖λk‖} is bounded. Using condition (A5) and (6.8), we obtain

lim
k→∞,k∈K

λk+1
i = lim

k→∞,k∈K
W ′

(
pkgi(x

k),
λk
i

1 + ‖λk‖

)
= 0.

Thus, by (6.10), λ∗
i = 0 for i �∈ I(x∗). Therefore, we obtain from (6.12) that

P

⎡
⎣x∗ −

∑
i∈I(x∗)

λ∗
i∇gi(x

∗)

⎤
⎦− x∗ = 0.

So, x∗ is degenerate.
Case (ii): {λk+1}K is bounded. In this case, there exists an infinite subsequence

K2 ⊆ K such that limk→∞,k∈K2
λk+1 = λ∗ ≥ 0. So, taking the limit in (6.9) gives rise

to

P
[
x∗ −∇f(x∗) −

m∑
i=1

λ∗
i∇gi(x

∗)

]
− x∗ = 0.(6.13)

We claim that gi(x
∗) ≤ 0 for i = 1, . . . ,m. Otherwise, if gi(x

∗) > 0 for some i,
then pkgi(x

k) → ∞, k → ∞, k ∈ K. Since the convexity of W (·, t) and property (A7)
imply that lims→∞ W ′

s(s, t) = ∞ for any fixed t ∈ [0,∞), we have

λk+1
i = W ′

s

(
pkgi(x

k),
λk
i

1 + ‖λk‖

)
→ ∞, k → ∞, k ∈ K,
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contradicting the boundedness of {λk+1
i }. Thus, x∗ is a feasible solution to (P ). If

gi(x
∗) < 0 for some i, then, as in Case (i), we can show that λ∗

i = 0. Therefore, we
have

gi(x
∗) ≤ 0, λ∗

i gi(x
∗) = 0, i = 1, . . . ,m.

This together with (6.13) implies that x∗ is a KKT point of (P ) and λ∗ is the corre-
sponding optimal multiplier vector.

7. Concluding remarks. Convergence analysis of the augmented Lagrangian
methods has not been well established for constrained global optimization. We have
advanced the state of the art of this subject by presenting in this paper new con-
vergence results for the augmented Lagrangian methods in the context of constrained
global optimization. The convergence to a global optimal solution has been established
for the basic primal-dual scheme under standard conditions. One key assumption in
the traditional convergence analysis is that the multiplier sequence generated by the
algorithm is bounded. This assumption has been indispensable in the previous con-
vergence analysis for many augmented Lagrangian methods. We have showed that
this restrictive condition can be circumvented by using a safeguarding strategy. We
have further proposed the modified primal-dual scheme using a conditional multiplier
updating strategy and the normalized multiplier method which enable us to achieve
the convergence results without the boundedness assumption for the multiplier se-
quence. Finally, we have established the convergence of the normalized multiplier
method for a KKT point.

It turns out that there exist difficulties in the convergence analysis for Algorithm
3 under Mangasarian’s augmented Lagrangian L2 and for Algorithm 4 under the nor-
malized exponential-type augmented Lagrangian L3. It will be interesting to further
investigate these problems in our future research. Another interesting research topic
is to identify certain classes of nonconvex optimization problems whose augmented
Lagrangian relaxation problems can be globally solved efficiently.
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1. Introduction. Our main purpose in this paper is to find the optimality con-
ditions satisfied by local optimal pairs (x∗, u∗) of the problem

(P) Minimize g(x) + h(u), on all (x, u) ∈ H1
0 (Ω) × U, subject to

(NE) − div a(∇x) + β(x) = Bu + f in Ω,
x = 0 on ∂Ω.

Here Ω ⊂ R
N is a bounded C2-domain, U is a Hilbert space or a reflexive Banach

space with a separable dual, g : L2(Ω) → R is Lipschitz continuous near x∗, h :
U → R ∪ {∞} is proper convex lower semicontinuous, B ∈ L(U ;L2(Ω)), f ∈ L2(Ω),
a : R

N → R
N is strongly monotone and Lipschitz continuous, and β : R → R is

Lipschitz continuous with a small Lipschitz constant or monotone.
There exists an extensive literature on optimality conditions associated to optimal

pairs of optimization problems governed by elliptic PDEs. For state and boundary
controlled problems in the semilinear elliptic case we mention [2, 4, 5, 8, 15], while
the optimal control of differentiable quasi-linear elliptic PDEs has been studied in
[6, 7, 11].

Until now, for quasi-linear elliptic PDEs of the form (NE) with Lipschitz contin-
uous nonlinearities a and β, only selective cases of (P) have been studied; β = 0 or
a linear (see, e.g., [3, 17, 18, 19]). The optimality conditions found in these special
cases are not clearly expressed in terms of a and β. The nonlinear Lipschitzian a and
β case has not been studied in the literature, and this is the goal of the present note.
Moreover, the explicit form of our necessary optimality conditions broadens the area
of applications to optimal control problems governed by nonlinear divergence-type
elliptic PDEs (see section 3 below).

There is a significant difference between the linear and nonlinear “a” cases in
problem (P). Recall that by the Helmholtz decomposition a(∇x) = ∇p + f0, where
x ∈ H1

0 (Ω), p ∈ L2(Ω), div f0 = 0 (see, e.g., [16, Lemma 2.5.1, p. 81]). For “a” linear
we know that f0 = 0 for every x. For a nonlinear a, the state equation (NE) provides
information about p only indirectly.
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There are several advances of this paper over previous results. On one hand,
our necessary conditions are derived under less restricting hypotheses, they have an
explicit form in terms of the generalized Jacobian of a and generalized gradient of
β, and the controlling parameters have better regularity (see Theorem 2.1 below).
On the other hand, all necessary conditions previously derived in these settings are
particularizations of our conditions of optimality (see [3, 18, 19, 20]).

Our main approach to the maximum principle is based on a family of approxi-
mation problems governed by linear state equations. The approximative optimality
conditions are found via the closed range theorem. Three primary difficulties must be
overcome. First, the existence of approximative optimal solutions requires a special
penalization of the cost functional. Second, the process of passing to limit demands
a good regularity for a and the controlling parameters. Finally, generalized gradients
of integral-type functionals need to be expressed in a clear form. All of these can be
fulfilled under the present framework and set of assumptions.

For a general Banach space X we denote by ||·||X the norm in X, by 〈·, ·〉X×X∗ the
duality product between X and X∗, and by (·, ·)X the inner product of X whenever
X is a Hilbert space.

Recall that, for a linear operator A : X → Y , N(A) = {x ∈ X; Ax = 0} denotes
the kernel or null space of A, R(A) = {y = Ax; x ∈ D(A)} stands for the range
of A, and the adjoint of A is the operator A∗ : Y ∗ → X∗ defined by x∗ = A∗y∗ iff
〈x, x∗〉X×X∗ = 〈Ax, y∗〉Y×Y ∗ for every x ∈ X.

The indicator of a subset M ⊂ X is given by IM (x) = 0 for x ∈ M and IM (x) = ∞
otherwise.

The directional derivative of f : X → R at x ∈ X in the direction of v ∈ X is
given by

(1) f◦(x; v) = lim sup
x̄→x,t↓0

(1/t)(f(x̄ + tv) − f(x̄)).

Throughout this article “∂” will denote the Clarke generalized gradient or the
convex subdifferential. We refer to Clarke [9] for the results about generalized gra-
dients of locally Lipschitz functions and to Zălinescu [21] for the results of convex
analysis used in this paper.

The plan of the paper is as follows. Section 2 deals with the abstract optimality
conditions for optimal pairs of problem (P). In section 3 several examples of prob-
lems governed by ODEs and PDEs and diverse uses of the optimality conditions are
presented.

2. A problem governed by a divergence-type elliptic PDE. In what fol-
lows we study the optimality conditions for local optimal pairs (x∗, u∗) of problem
(P) under the assumptions that N ≥ 1, Ω is a bounded C2-domain in R

N , U is a
Hilbert space or a reflexive Banach space with a separable dual, g : L2(Ω) → R is
Lipschitz continuous near x∗, h : U → R∪{∞} is proper convex lower semicontinuous,
B : U → L2(Ω) is linear bounded, f ∈ L2(Ω), a : R

N → R
N is strongly monotone

and Lipschitz continuous; i.e., there exist L ≥ K > 0 such that for every r1, r2 ∈ R
N

(2) (a(r1) − a(r2), r1 − r2)RN ≥ K‖r1 − r2‖2
RN ,

(3) ‖a(r1) − a(r2)‖RN ≤ L‖r1 − r2‖RN ,

and β : R → R is Lipschitz continuous; that is, for some Cβ > 0,

(4) |β(v1) − β(v2)| ≤ Cβ |v1 − v2|, v1, v2 ∈ R.
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In addition, we assume that one of the following hypotheses holds:

(H1) Kλ1 > Cβ , where λ1 = inf{
∫
Ω
‖∇x‖2

RN dω∫
Ω
x2dω

; x ∈ H1
0 (Ω), x = 0} is the first

eigenvalue of −Δ in Ω, with zero Dirichlet boundary condition, or
(H2) β is monotone, i.e., (β(v1) − β(v2))(v1 − v2) ≥ 0, for every v1, v2 ∈ R.

We may assume, without loss of generality, that β(0) = 0 and a(0) = 0. Also, we
implicitly understand that the set of admissible pairs is nonempty; i.e., at least (x∗, u∗)
satisfies (NE) and u∗ ∈ dom (h) (the domain of h).

As we will see in the subsequent Proposition 2.2, conditions (H1) or (H2) ensure
the strong monotonicity of the operator −div a(∇·) + β. This allows us to consider
problem (P) as a particular case of the general strongly monotone case studied in [19].
The main improvement provided by the present approach is that, for this specific
problem, the optimality conditions can be precisely expressed in terms of the general
Jacobian of a and the generalized gradient of β. Some reasons why the condition
explicit form is important for applications are that numerical schemes can be built
upon the optimality conditions and that the study of qualitative behavior of solutions
for certain differential equations is enhanced (see section 3 below).

The analysis of the regularity for the solutions of (NE) as well as the structure of
(NE) is needed for future purposes. It is easily seen that the operator A = −div a(∇·) :
H1

0 (Ω) → H−1(Ω), given by

〈Ax,ϕ〉H1
0 (Ω)×H−1(Ω) =

∫
Ω

(a(∇x),∇ϕ)RNdω, ϕ ∈ H1
0 (Ω), x ∈ H1

0 (Ω),

is maximal strongly monotone, Lipschitz continuous, invertible, with Lipschitz con-
tinuous inverse A−1. The restriction of A to L2(Ω)

AL2 : D(AL2) = {x ∈ H1
0 (Ω);Ax ∈ L2(Ω)} ⊂ L2(Ω) → L2(Ω)

given by AL2x = Ax, x ∈ D(AL2), is maximal strongly monotone. The realization
β : L2(Ω) → L2(Ω) is Cβ-Lipschitz continuous and monotone whenever β is monotone.
Under these terms (NE) has the form

(5) AL2 x + β(x) = Bu + f in L2(Ω).

Lemma 2.1. If a : R
N → R

N is strongly monotone and Lipschitz continuous,
then

(a) D(AL2) = H1
0 (Ω) ∩H2(Ω).

If, in addition, ∇2a =

(
∂2a

∂ri∂rj

)N

i,j=1

∈ L∞(RN ; RN3

), then

(b) A : H1
0 (Ω) ∩H2(Ω) → L2(Ω) is locally Lipschitz continuous.

Proof. (a) Since a is Lipschitz continuous, the superposition

a : H
1(Ω) := (H1(Ω))N → H

1(Ω), a(w) = a ◦ w, w ∈ H
1(Ω),

is well-defined and continuous (see, e.g., [14, Theorem 1, p. 219]).
This makes −div a(∇·) : H1

0 (Ω) ∩H2(Ω) → L2(Ω) well-defined; that is, H1
0 (Ω) ∩

H2(Ω) ⊂ D(AL2). For the converse inclusion consider the approximations

(6) aε(r) =

∫
RN

a(r − εs)J(s)ds =

∫
RN

a(s)Jε(r − s)ds, r ∈ R
N ,
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where J ∈ C∞
0 (RN ),

∫
RN J(s)ds = 1, J ≥ 0, J(r) = 0 for ‖r‖RN ≥ 1, Jε(r) =

ε−NJ(r/ε), r ∈ R
N . Recall that aε is C1-smooth strongly monotone and Lipschitz

continuous with

(7) (aε(r1) − aε(r2), r1 − r2)RN ≥ K‖r1 − r2‖2
RN ,

(8) ‖aε(r1) − aε(r2)‖RN ≤ L‖r1 − r2‖RN ,

for every r1, r2 ∈ R
N , and ‖aε(r) − a(r)‖RN ≤ εL, for every r ∈ R

N , (see, e.g., [1,
Lemma 2.18, p. 29]).

Whenever b ∈ C1(RN ) the equation −div b(∇x) = f , with f ∈ L2(Ω), has a
unique solution x ∈ H1

0 (Ω) ∩H2(Ω) and

(9) ‖x‖H1
0 (Ω)∩H2(Ω) ≤ C(‖∇b‖L∞)(‖f‖L2(Ω) + 1),

where C = C(‖∇b‖L∞) > 0 depends proportionally on ‖∇b‖L∞ in the sense that the
operator ||∇a||L∞ → C is bounded (see, e.g., [12, Remark, p. 498]).

Consider x ∈ D(AL2). Let xε ∈ H1
0 (Ω) ∩ H2(Ω) be the unique solution of

−div aε(∇xε) = Ax. We get the following uniform “a priori” estimate:

‖xε‖H1
0 (Ω)∩H2(Ω) ≤ C(||Ax||L2(Ω) + 1),

with C < ∞, because ‖∇aε‖L∞ ≤ ‖∇a‖L∞ ≤ L for every ε > 0.
This shows that, eventually on a subnet, xε → x0, weakly in H1

0 (Ω) ∩ H2(Ω),
strongly in H1

0 (Ω), ∇xε → ∇x0, strongly in L2(Ω), and aε(∇xε) → a(∇x0), strongly
in L2(Ω), by the Lebesgue dominated convergence theorem.

We find that x0 satisfies −div a(∇x0) = Ax in H1
0 (Ω); hence, x = x0 ∈ H1

0 (Ω) ∩
H2(Ω) and ‖x‖H1

0 (Ω)∩H2(Ω) ≤ C(||Ax||L2(Ω)+1). Therefore D(AL2) ⊂ H1
0 (Ω)∩H2(Ω).

(b) Condition ∇2a ∈ L∞(RN ; RN3

) is equivalent to

(10) ‖∇a(r1) −∇a(r2)‖RN2 ≤ M‖r1 − r2‖RN

for every r1, r2 ∈ R
N , where M = ‖∇2a‖L∞ < ∞.

Since aε ∈ C1(RN ) for every w ∈ H
1(Ω), the following chain rule holds:

(11) ∇(aε(w)) = ∇aε(w) · ∇w, a.e. in Ω, ε > 0.

Using the identity

∇(aε(w1)) −∇(aε(w2)) = [∇aε(w1) −∇aε(w2)] · ∇w1 + ∇aε(w2) · [∇w1 −∇w2]

we find

‖∇(aε(w1)) −∇(aε(w2))‖L2 ≤ ‖∇2aε‖L∞‖w1 − w2‖L2‖w1‖H1 + L‖w1 − w2‖H1

for every w1, w2 ∈ R
N , where L

2(Ω) := (L2(Ω))N .

Notice that ∇2a ∈ L∞(RN ; RN3

) implies ∇2aε ∈ L∞(RN ; RN3

), with

‖∇2aε‖L∞ ≤ ‖∇2a‖L∞ for every ε > 0.

From ‖∇(a(w1)) −∇(a(w2))‖L2 = lim
ε→0

‖∇(aε(w1)) −∇(aε(w2))‖L2 we get

(12) ‖∇(a(w1)) −∇(a(w2))‖L2 ≤ ‖∇2a‖L∞‖w1 − w2‖L2‖w1‖H1 + L‖w1 − w2‖H1
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for every w1, w2 ∈ R
N ; i.e., a : H

1(Ω) → H
1(Ω) is locally Lipschitz continuous.

Taking into account that −div : H
1(Ω) → L2(Ω) is bounded this yields that A :

H1
0 (Ω) ∩H2(Ω) → L2(Ω) is locally Lipschitz continuous.

Proposition 2.1. Suppose that all of the above assumptions, including (H1) or
(H2), hold. Then, for every f ∈ L2(Ω), the problem

(13) −div a(∇x) + β(x) = f in Ω, x = 0 on ∂Ω,

has a unique solution x ∈ H1
0 (Ω) ∩H2(Ω).

Proof. From Lemma 2.1 we know that D(AL2) ⊂ H1
0 (Ω) ∩H2(Ω). To conclude

it is sufficient to prove that AL2 + β is surjective.
We claim that conditions (H1) or (H2) imply that AL2 + β is maximal strongly

monotone and thus surjective. Clearly, this holds if (H2) is fulfilled. The strong
monotonicity also assures the uniqueness of (NE) solutions.

Assume that (H1) holds. For every ϕ1, ϕ2 ∈ D(AL2), we have

((AL2 + β)ϕ1 − (AL2 + β)ϕ2, ϕ1 − ϕ2)L2 = 〈(A + β)ϕ1 − (A + β)ϕ2, ϕ1 − ϕ2〉

=

∫
Ω

(a(∇ϕ1) − a(∇ϕ2),∇(ϕ1 − ϕ2))RNdω +

∫
Ω

(β(ϕ1) − β(ϕ2))(ϕ1 − ϕ2)dω

≥ K‖∇(ϕ1 − ϕ2)‖2
L2 − Cβ‖ϕ1 − ϕ2‖2

L2 ≥ (Kλ1 − Cβ)‖ϕ1 − ϕ2‖2
L2 ,

where 〈·, ·〉 stands for the dual product in H1
0 (Ω)×H−1(Ω), and we used the Poincaré

inequality ‖ϕ||H1
0

= ‖∇ϕ‖L2 ≥ λ
1/2
1 ‖ϕ‖L2 , ϕ ∈ H1

0 (Ω).
Therefore AL2 + β is strongly monotone. It remains to show that AL2 + β is

maximal monotone provided that Kλ1 > Cβ .
Fix ν such that Cβ/λ1 < ν < K. We write

(AL2 + β)x = −div(a− ν)(∇x) + ν(−Δx− (Cβ/ν)x) + (Cβx + β(x)),

x ∈ D(AL2). The operator R
N � y �−→ a(y) − νy is maximal strongly monotone,

since it is continuous defined everywhere and ν < K. This yields that H1
0 (Ω) � x �−→

−div(a− ν)(∇x) ∈ H−1(Ω) is maximal strongly monotone. Similarly H1
0 (Ω) � x �−→

−Δx − (Cβ/ν)x ∈ H−1(Ω) is maximal strongly monotone and defined everywhere
because Cβ/ν < λ1. Hence, the sum

H1
0 (Ω) � x �−→ −div(a− ν)(∇x) + ν(−Δx− (Cβ/ν)x) ∈ H−1(Ω)

is maximal strongly monotone, making its restriction to L2(Ω) maximal monotone.
Clearly, L2(Ω) � x �−→ Cβx + β(x) ∈ L2(Ω) is maximal monotone continuous and
defined everywhere. Using a perturbation theorem, we get that AL2 + β is maximal
monotone in L2(Ω).

Remark 2.1. Without (H1), (H2) the state equation (NE) may not have solutions.
Take n = 1, a(r) = r, β(v) = −v, r, v ∈ R, Ω = (0, π), B ≡ 0, f ∈ L2(0, π). Then
(NE) becomes

(14) −x′′ − x = f in (0, π), x(0) = x(π) = 0.

For this choice of a, β, and Ω we have K = Cβ = λ1 = 1, and (H1), (H2) fail.
The general solution of the differential equation in (14) is

(15) x(t) = C1 cos t + C2 sin t +

∫ t

0

sin(t− s)f(s)ds, t ∈ (0, π),
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with C1,2 constants. The boundary condition reduces to

C1 = 0,

∫ π

0

sin(t)f(t)dt = 0.

Hence (14) has the solution x(t) = C2 sin t+
∫ t

0
sin(t−s)f(s)ds iff

∫ π

0
sin(t)f(t)dt = 0.

The next proposition describes the generalized gradient of some special Lipschitz-
type functionals together with some of its robustness properties and “a priori” esti-
mates. The conclusions of this result form the main tool used in the derivation of
optimality conditions via an approximation procedure.

Proposition 2.2. Let X be a Banach spaces, Y be a Hilbert space, and f : X →
Y be a locally Lipschitz continuous function.

Define S : X × Y → R by

(16) S(x, y) = (1/2)||y − f(x)||2Y , x ∈ X, y ∈ Y.

For δ ∈ Y, define fδ : X → R by fδ(x) = −(δ, f(x))Y , x ∈ X, where (·, ·)Y stands for
the inner product of Y . Then

(a) S is locally Lipschitz continuous in X ×Y , and fδ is locally Lipschitz contin-
uous in X for every δ ∈ Y ;

(b) (α, δ) ∈ ∂S(x, y) iff δ = y − f(x) and α ∈ ∂fδ(x);
(c) ||α||X∗ ≤ C||δ||Y for every (α, δ) ∈ ∂S(x, y), where C is a Lipschitz constant

of f near x;
(d) if αε ∈ ∂fδε(xε) for every ε > 0, and for ε ↓ 0

(1/ε)αε → α, weakly in X∗,
(1/ε)δε → δ, strongly in Y,
xε → x, strongly in X,

then α ∈ ∂fδ(x);
(e) if in addition X = Y and f is strongly monotone, i.e., for some K ≥ 0,

(17) (x1 − x2, f(x1) − f(x2))Y ≥ K||x1 − x2||2Y for every x1, x2 ∈ Y,

then every α ∈ ∂fδ(x) satisfies

(18) (α,−δ)Y ≥ K||δ||2Y and ||α||Y ≥ K||δ||Y .

Remark 2.2. Note that if the Hilbert space Y is not identified with its dual Y ∗,
then we can restate (b) as

(19) X∗ × Y ∗ � (α, δ) ∈ ∂S(x, y) iff δ = JY (y − f(x)), α ∈ ∂fδ(x),

where JY : Y → Y ∗ is the dual mapping of Y and fδ(x) = −〈δ, f(x)〉Y×Y ∗ , x ∈ X.
Proof. The proof of (a) is plain. For every x, v ∈ X, y,w ∈ Y we have

S0(x, y; v, w) = lim sup
(x,y)→(x,y),t↓0

(1/2t)(||y + tw − f(x + tv)||2Y − ||y − f(x)||2Y )

= lim sup
x→x,t↓0

(y − f(x), w − (1/t)[f(x + tv) − f(x)])Y

= (y − f(x), w)Y + f 0
(y−f(x))(x; v).

Therefore S0(x, y; v, w) = (y − f(x), w)Y + f0
(y−f(x))(x; v) for every x, v ∈ X,

y,w ∈ Y , and (b) follows.
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(c) If X∗ × Y � (α, δ) ∈ ∂S(x, y), then, according to (b), δ = y − f(x) and
α ∈ ∂fδ(x). From α ∈ ∂fδ(x) we find

〈α, v〉X×X∗ ≤ lim sup
x→x,t↓0

−(1/t)(δ, f(x + tv) − f(x))Y ≤ C||δ||Y ||v||X ∀v ∈ X,

where C is a Lipschitz constant of f near x.
This final inequality provides us with ||α||X∗ ≤ C||δ||Y .
(d) Clearly αε ∈ ∂fδε(xε) means

〈αε, v〉X×X∗ ≤ lim sup
x̃→xε,t↓0

−(1/t)(δε, f(x̃ + tv) − f(x̃))Y

for every fixed v ∈ X. Thus, there exist tε ∈ (0, ε), x̃ε ∈ X such that ‖x̃ε − xε‖X < ε
and 〈αε, v〉X×X∗ ≤ −(1/tε)(δε, f(x̃ε + tεv) − f(x̃ε))Y + ε for every ε > 0.

Hence

(20)

〈(1/ε)αε, v〉X×X∗ ≤ −(1/tε)(δ, f(x̃ε + tεv) − f(x̃ε))Y

− (1/tε)((1/ε)δε − δ, f(x̃ε + tεv) − f(x̃ε))Y + ε.

Because (1/ε)δε → δ strongly in Y and ((1/tε)(f(x̃ε + tεv) − f(x̃ε))ε is bounded
in Y, we have limε↓0(1/tε)((1/ε)δε − δ, f(x̃ε + tεv) − f(x̃ε))Y = 0.

Let ε ↓ 0 in (20). We get

〈α, v〉X×X∗ = lim
ε↓0

〈(1/ε)αε, v〉X×X∗ ≤ lim sup
ε↓0

−(1/tε)(δ, f(x̃ε + tεv) − f(x̃ε))Y

≤ lim sup
x̃→x,t↓0

−(1/t)(δ, f(x̃ + tv) − f(x̃))Y = f0
δ (x; v)

for every v ∈ X, since x̃ε → x strongly in X and tε ↓ 0 for ε ↓ 0. This shows that
α ∈ ∂fδ(x).

(e) Notice that, by (17), for every x̄ ∈ X we have

(1/t){fδ(x̄ + tδ) − fδ(x̄)} = −(1/t2)(tδ, f(x̄ + tδ) − f(x̄))Y ≤ −K ||δ||2Y .

Hence f0
δ (x; δ) ≤ −K ||δ||2Y . This is sufficient in order to conclude.

It is known that −div : (L2(Ω))N → H−1(Ω) is linear bounded and (−div)∗p =
∇p = ( ∂p

∂ωi
)Ni=1, p ∈ H1

0 (Ω) (see, e.g., [16, p. 80]).
Theorem 2.1. Suppose that all the above assumptions, including (H1) or (H2),

hold and ∇2a ∈ L∞(RN ; RN3

). If (x∗, u∗) ∈ H1
0 (Ω) × U is a local solution of (P),

then there exist p ∈ H1
0 (Ω) ∩H2(Ω), γ, l ∈ L2(Ω), η ∈ L

2(Ω) such that

(i) ∂g(x∗) + l + γ � 0,
(ii) B∗p ∈ ∂h(u∗),
(iii) l = −div η, η(ω) ∈ ∂a(∇x∗(ω))(∇p(ω)), a.e. ω in Ω,
(iv) γ(ω) ∈ p(ω)∂β(x∗(ω)), a.e. ω in Ω.

Here ∂a stands for the generalized Jacobian of a, and ∂β denotes the generalized
gradient of β.

Proof. Let d = a− νi, where i(x) = x, x ∈ R
N , and 0 < ν < K. Notice that d is

invertible, Lipschitz continuous with Lipschitz constant L+ ν, and maximal strongly
monotone with constant K − ν > 0. We denote by D = −div d(∇·).
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Consider the following approximations of (P):

(Pε) (locally) minimize G(x, y, z) + H(u, v),
on all (x, y, z, u, v) ∈ H1

0 (Ω) × L
2(Ω) × L2(Ω) × U × L2(Ω) =: X ,

subject to (f, 0) = A(x, y, z, u, v),

where ε > 0, G : H1
0 (Ω) × L

2(Ω) × L2(Ω) → R is defined by

(21) G(x, y, z)=g(x) + (1/2ε)‖y − d(∇x)‖2
L2 + (1/2ε) ‖z − β(x)‖2

L2 ,

x ∈ H1
0 (Ω), y ∈ L

2(Ω), z ∈ L2(Ω), H : U × L2(Ω) → R ∪ {∞} is given by

(22) H(u, v) = h(u) + (1/2) ‖u− u∗‖2
U + (1/2)‖v −D(x∗)‖2

L2 ,

u ∈ U, v ∈ L2(Ω), A : H1
0 (Ω) × L

2(Ω) × L2(Ω) × U × L2(Ω) → H−1(Ω) ×H−1(Ω),

A(x, y, z, u, v) = (−νΔx + z + v −Bu, div y + v), (x, y, z, u, v) ∈ X .

Here −Δ : H1
0 (Ω) → H−1(Ω) is the Laplace operator with a zero Dirichlet bound-

ary condition. Notice that the state equation of (Pε) is exactly

(23) −νΔx + z + v = Bu + f, v = −div y.

In the statement of (Pε), by local minimization we understand that (x, u) ∈ N ,
where N is a convex closed and bounded neighborhood of (x∗, u∗) in L2(Ω) × U in
which (x∗, u∗) is a solution of (P).

Let (xn, yn, zn, un, vn)n be a minimizing sequence of (Pε); that is,

(24) inf(Pε) ≤ G(xn, yn, zn) + H(un, vn) ≤ inf(Pε) + 1/n,

and (f, 0) = A(xn, yn, zn, un, vn) for every n ≥ 1.
From the local minimization sense in which our problem is understood, we know

that (un)n is bounded in U and (xn)n, (β(xn))n are bounded in L2(Ω). Subsequently
from (24) we find that (zn)n, (vn)n are bounded in L2(Ω). Using the state equation
(23), we see that (Δxn)n is bounded in L2(Ω); that is, (xn)n is bounded in H1

0 (Ω) ∩
H2(Ω). Again from (24) we get the boundedness of (yn)n in L

2(Ω). Eventually, on a
subnet, denoted for simplicity by the same index, we have

(xn, yn, zn, un, vn)n → (x, y, z, u, y) weakly in H,

where H = H1
0 (Ω) ∩H2(Ω) × L

2(Ω) × L2(Ω) × U × L2(Ω),

xn → x strongly in H1
0 (Ω); that is, ∇xn → ∇x strongly in L

2(Ω).

If we let n → ∞ in (24) then we get that (x, y, z, u, v) =: (xε, yε, zε, uε, vε) is
a solution of (Pε), because G is strongly×weakly×weakly lower semicontinuous in
H1

0 (Ω) × L
2(Ω) × L2(Ω) and H is lower semicontinuous in U × L2(Ω).

Since (xε, yε, zε, uε, vε) is optimal for (Pε) and (x∗, d(∇x∗), β(x∗), u∗, D(x∗)) sat-
isfies its state equation, we have

(25)
G(xε, yε, zε) + H(uε, vε) ≤ G(x∗, d(∇x∗), β(x∗)) + H(u∗, D(x∗))

= g(x∗) + h(u∗) = inf (P) < ∞ for every ε > 0.
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Similarly, inequality (25) and the state equation −νΔxε +zε +vε = Buε +f show
that (xε, yε, zε, uε, vε)ε is bounded in H and for ε ↓ 0

yε − d(∇xε) → 0 strongly in L
2(Ω),

zε − β(xε) → 0 strongly in L2(Ω).

Eventually on a subnet, we have

(xε, yε, zε, uε, vε) → (x0, y0, z0, u0, v0) weakly in H,
xε → x0 strongly in H1

0 (Ω),
yε → d(∇x0) = y0 strongly in L

2(Ω),
zε → β(x0) = z0 strongly in L2(Ω),
v0 = −div y0 = D(x0),

and −div a(∇x0)+β(x0) = Bu0+f. Since (x∗, u∗) is optimal for (P), the last equality
allows us to continue (25) by

(26) G(xε, yε, zε) + H(uε, vε) ≤ g(x∗) + h(u∗) ≤ g(x0) + h(u0) ∀ε > 0.

By passing to lim sup in (26), we find

lim sup
ε↓0

(1/2){‖vε −D(x∗)‖2
L2 + ‖uε − u∗‖2

U} = 0;

that is, vε → D(x∗) strongly in L2(Ω) and uε → u∗ = u0 strongly in U . But
vε → D(x0) weakly in L2(Ω), so Dx0 = Dx∗ and x0 = x∗ since D is invertible. From
the state equation −νΔxε + zε + vε = Buε + f , we actually get that xε → x∗ strongly
in H1

0 (Ω) ∩H2(Ω).
We proved that, eventually on a subnet of ε ↓ 0,

(xε, yε, zε, uε, vε) → (x∗, d(∇x∗), β(x∗), u∗, D(x∗)) strongly in H.

Problem (Pε) has the form

(locally) minimize G̃(x, y, z, u, v) + H̃(x, y, z, u, v) + IM (x, y, z, u, v),

where

G̃(x, y, z, u, v) = G(x, y, z), H̃(x, y, z, u, v) = H(u, v), (x, y, z, u, v) ∈ X ,

and

M = {(x, y, z, u, v) ∈ X ; (f, 0) = A(x, y, z, u, v)}

is a closed affine subset of X , since A : X → H−1(Ω) ×H−1(Ω) is linear continuous.
Because local minimum points are critical, (xε, yε, zε, uε, vε) is optimal for (Pε),

and G̃ is locally Lipschitz continuous, we find that

(27) 0 ∈ ∂G̃(xε, yε, zεuε, vε) + ∂(H̃ + IM )(xε, yε, zε, uε, vε)

The state equation is solvable for every u ∈ U ; i.e., the domain of H̃ dom (H̃) =
H1

0 (Ω) × L
2(Ω) × L2(Ω) × dom (h) × L2(Ω) satisfies

(28) dom (H̃) −M = X .
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More precisely, for every (x, y, z, u, v) ∈ X we can write

(x, y, z, u, v) = (x, y, z + B(u∗ − u) + f, u∗, v) − (0, 0, B(u∗ − u) + f, u∗ − u, 0),

with (x, y, z + B(u∗ − u) + f, u∗, v) ∈ dom H̃, (0, 0, B(u∗ − u) + f, u∗ − u, 0) ∈ M.
Condition (28) guarantees that ∂(H̃ +IM ) = ∂H̃ +∂IM , taking into account that

H̃, IM are convex proper lower semicontinuous (see, e.g., [21, Theorem 2.8.7 (vii), p.
126]).

Also, it is easily checked that ∂IM (x, y, z, u, v) = N(A)⊥, (x, y, z, u, v) ∈ X .
Since R(A) = H−1(Ω) ×H−1(Ω), the closed range theorem provides

N(A)⊥ = R(A∗),

and the optimality condition (27) reduces to

(29) 0 ∈ ∂G̃(xε, yε, zεuε, vε) + ∂H̃(xε, yε, zε, uε, vε) + A∗(pε, qε)

for some pε, qε ∈ H1
0 (Ω).

We have

∂G̃(xε, yε, zε, uε, vε) = ∂G(xε, yε, zε) × {0} × {0},
∂H̃(xε, yε, zε, uε, vε) = {0} × {0} × {0} × ∂H(uε, vε),

A∗(pε, qε) = (−νΔpε,−∇qε, pε,−B∗pε, pε + qε).

Therefore (29) becomes

(30) ∂G(xε, yε, zε) + (−νΔpε,−∇qε, pε) � 0,

(31) ∂H(uε, vε) + (−B∗pε, pε + qε) � 0.

Let F (x, y) = (1/2) ‖y − d(∇x)‖2
L2 , x ∈ H1

0 (Ω), y ∈ L
2(Ω).

According to Proposition 2.2(b) we have

(32) H−1(Ω) × L
2(Ω) � (α, δ) ∈ ∂F (x, y) iff δ = y − d(∇x), α ∈ ∂dδ(x),

where dδ(x) = −(δ, d(∇x))L2 , x ∈ H1
0 (Ω).

We have dδ = fδ ◦ ∇, where fδ(v) = −(δ, d(v))L2 , v ∈ L
2(Ω).

Since −div : L
2(Ω) → H−1(Ω) is the adjoint of ∇ : H1

0 (Ω) → L
2(Ω), by a

well-known chain rule (see, e.g., [9, Theorem 2.3.10, p. 45]), we get

∂dδ(x) = {α = −div ζ, ζ ∈ ∂fδ(∇x)}, x ∈ H1
0 (Ω).

Hence

(33) (α, δ) ∈ ∂F (x, y) iff α = −div ζ, δ = y − d(∇x), ζ ∈ ∂fδ(∇x).

Similarly, for K(x, z) = (1/2) ‖z − β(x)‖2
L2(Ω) , x, z ∈ L2(Ω), we find

∂K(x, z) = {(γ, μ) ∈ L2(Ω) × L2(Ω);μ = z − β(x)), γ ∈ ∂kμ(x)},

with kμ(x) = −(μ, β(x))L2 , x, z ∈ L2(Ω).
Since H1

0 (Ω) is dense in L2(Ω) we know that

∂H1
0
K(x, z) = ∂K(x, z), x ∈ H1

0 (Ω), z ∈ L2(Ω)
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where ∂H1
0
K is the generalized gradient of K seen as a locally Lipschitz function in

H1
0 (Ω) × L2(Ω) (see [9, Corollary, p. 47]).

From its definition we have

∂G(xε, yε, zε) = ∂H1
0
g(xε) × {0} × {0} + (1/ε)∂F (xε, yε) × {0}

+ (1/ε)∂H1
0
K(xε, zε) × {0},(34)

where ∂H1
0
g is the generalized gradient of g in H1

0 (Ω).

Again, ∂H1
0
g(xε) = ∂g(xε) since xε ∈ H1

0 (Ω), H1
0 (Ω) is dense in L2(Ω), and g is

Lipschitz near x∗ in L2(Ω).
Relation (30) becomes

(35) ∂g(xε) + (1/ε)αε + (1/ε)γε − νΔpε � 0,

(36) (1/ε)δε −∇qε = 0,

(37) (1/ε)με + pε = 0,

where (αε, δε) ∈ ∂F (xε, yε); that is, δε = yε − d(∇xε), αε ∈ ∂dδε(xε), or

(38) αε = −div ζε, ζε ∈ ∂fδε(∇xε), δε = yε − d(∇xε),

and (γε, με) ∈ ∂K(xε, zε); that is,

(39) γε ∈ ∂kμε(xε), με = zε − β(xε).

Relation (31) reduces to

(40) B∗pε ∈ ∂h(uε) + uε − u∗,

(41) vε −D(x∗) + pε + qε = 0,

where, for simplicity, U is considered to be a Hilbert space. If U is a Banach space with
a separable dual, then it can be renormed such that its duality mapping is continuous
(see, e.g., [10, p. 50]), and the argument below follows similarly.

Since g is Lipschitz near x∗ in L2(Ω) and xε → x∗ strongly in L2(Ω) we know that
∪ε>0∂g(xε) is bounded in L2(Ω). Relation (35) yields that ((1/ε)αε+(1/ε)γε−νΔpε)ε
is bounded in L2(Ω); i.e., for every ε > 0

(42) ‖(1/ε)αε + (1/ε)γε − νΔpε‖L2 ≤ C0 := sup

{
‖w‖L2 ; w ∈

⋃
ε>0

∂g(xε)

}
< ∞.

Inequality (42) together with (36) and (41) imply

(43)
〈(1/ε)αε + (1/ε)γε − νΔpε, pε〉H1

0×H−1 = ((1/ε)αε + (1/ε)γε − νΔpε, pε)L2

≤ C0‖pε‖L2 ≤ C0‖qε‖L2 + C0C1 ≤ C0λ
−1/2
1 ‖qε‖H1

0
+ C0C1

= C0λ
−1/2
1 ‖∇qε‖L2 + C0C1 = C0λ

−1/2
1 ‖(1/ε)δε‖L2 + C0C1 for every ε > 0,

where ‖vε −D(x∗)‖L2 ≤ C1 < ∞ for every ε > 0.
From ζε ∈ ∂fδε(∇xε), we get according to Proposition 2.2(c) and (e) that

(44) ‖ζε‖L2 ≤ (L + ν)‖δε‖L2 ,

(45) (ζε,−δε)L2 ≥ (K − ν)‖δε‖2
L2 .
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Moreover, if we identify H−1(Ω) with H1
0 (Ω), then we have

(−Δ−1αε, δε) ∈ ∂F (xε, yε).

Since xε ∈ H1
0 (Ω)∩H2(Ω), F is Lipschitz continuous in H1

0 (Ω)∩H2(Ω)×L
2(Ω),

and H1
0 (Ω) ∩H2(Ω) is dense in H1

0 (Ω), we know that

(46) (−Δ−1αε, δε) ∈ ∂F (xε, yε) in H1
0 (Ω) ∩H2(Ω) × L

2(Ω).

Therefore, (αε)ε ⊂ L2(Ω), and due to (35) (pε)ε ⊂ H1
0 (Ω) ∩H2(Ω). Again, from

Proposition 2.2(c) and the fact that d ◦ ∇ : H1
0 (Ω) ∩ H2(Ω) → L

2(Ω) is Lipschitz

continuous with Lipschitz constant (L + ν)λ
−1/2
1 , we obtain

(47) ‖ − Δ−1αε‖H1
0∩H2 = ‖αε‖L2 ≤ (L + ν)λ

−1/2
1 ‖δε‖L2 .

We get from (41), (38), (36), (45), and (47) that for every ε > 0

〈(1/ε)αε, pε〉H1
0×H−1 = 〈(1/ε)αε,−qε〉H1

0×H−1 + ((1/ε)αε, D(x∗) − vε)L2

≥ ((1/ε)ζε,−∇qε)L2 − C1‖(1/ε)αε‖L2 = (1/ε)2(ζε,−δε)L2 − C1‖(1/ε)αε‖L2

(48) ≥ (K − ν)‖(1/ε)δε‖2
L2 − C1(L + ν)λ

−1/2
1 ‖(1/ε)δε‖L2 .

Relation γε ∈ ∂kμε(xε) provides us with the estimate

(49) ‖γε‖L2 ≤ Cβ‖με‖L2 .

We obtain from (37), (49), (41), and (36) that

〈(1/ε)γε, pε〉H1
0×H−1 = ((1/ε)γε, pε)L2 ≥ −Cβ‖pε‖2

L2

= −Cβ{‖qε‖2
L2 + 2(qε, vε −D(x∗))L2 + ‖vε −D(x∗)‖2

L2}

≥ −Cβ‖qε‖2
L2 − 2CβC1‖qε‖L2 − CβC

2
1

≥ −Cβλ
−1
1 ‖qε‖2

H1
0
− 2CβC1λ

−1/2
1 ‖qε‖H1

0
− CβC

2
1

(50) = −Cβλ
−1
1 ‖(1/ε)δε‖2

L2 − 2CβC1λ
−1/2
1 ‖(1/ε)δε‖L2 − CβC

2
1 .

Multiply (1/ε)αε + (1/ε)γε − νΔpε by pε in L2(Ω) and take (43), (48), and (50)
into account to find

(51) (K − Cβ/λ1 − ν)‖(1/ε)δε‖2
L2 − C2λ

−1/2
1 ‖(1/ε)δε‖L2 − C3 ≤ 0,

where C2 = C1(L + ν + 2Cβ) + C0, C3 = CβC
2
1 + C0C1.

Assume that (H1) is true. We can pick ν > 0 sufficiently small such that K −
Cβ/λ1 − ν > 0. We infer, from (51), that ((1/ε)δε)ε is bounded in L

2(Ω).
Assume that (H2) holds. According to Proposition 2.2(e), from γε ∈ ∂kμε(xε) we

find (γε, με)L2 ≤ 0. From (37) we get (γε, pε)L2 ≥ 0. Again, we multiply (1/ε)αε +
(1/ε)γε − νΔpε by pε in L2(Ω) and take (43) and (48) into account to obtain the
boundedness of ((1/ε)δε)ε in L

2(Ω).



NONLINEAR PROGRAMMING 1243

Subsequently, we get that ((1/ε)αε)ε is bounded in L2(Ω) due to (47), ((1/ε)ζε)ε
is bounded in L

2(Ω) due to (44), (qε)ε is bounded in H1
0 (Ω) due to (36), (pε)ε is

bounded in L2(Ω) due to (41), ((1/ε)με)ε, ((1/ε)γε)ε are bounded in L2(Ω) (see (37)
and (49)), and from (42) (pε)ε is bounded in H1

0 (Ω) ∩H2(Ω).
Eventually on a subnet, we may assume that

pε → p, strongly in H1
0 (Ω), weakly in H1

0 (Ω) ∩H2(Ω),
qε → −p, strongly in L2(Ω), weakly in H1

0 (Ω),
(1/ε)δε → −∇p, weakly in L

2(Ω) (see (36)).

Clearly

(1/ε)με → −p strongly in L2(Ω) (see (37)),
(1/ε)γε → γ weakly in L2(Ω),
(1/ε)ζε → ζ weakly in L

2(Ω),
(1/ε)αε → α = −div ζ weakly in L2(Ω).

Let ε ↓ 0 in (35) and (40). We find, according to Proposition 2.2(d), that

(52) ∂g(x∗) + α + γ − νΔp � 0, B∗p ∈ ∂h(u∗)

where

(53) γ ∈ ∂k(−p)(x
∗),

and

(54) ζ ∈ ∂f(−∇p)(∇x∗), α = −div ζ ∈ ∂d(−∇p)(x
∗).

More precisely, we observe that we cannot apply Proposition 2.2(d) for ζε ∈
∂fδε(∇xε) to get (54) since ((1/ε)δε)ε is only weakly convergent in L

2(Ω).
Instead, we use αε ∈ ∂dδε(xε) or −Δ−1αε ∈ ∂dδε(xε) in H1

0 (Ω). Again, −Δ−1αε ∈
∂dδε(xε) in H1

0 (Ω) ∩H2(Ω) by density.
By Lemma 2.1 D : H1

0 (Ω) ∩H2(Ω) → L2(Ω) is well-defined and locally Lipschitz
continuous. This allows us to write, according to (36), that

dδε(x) = −(δε, d(∇x))L2 = −〈εqε, D(x)〉H1
0×H−1

= −(εqε, D(x))L2 = g(εqε)(x), x ∈ H1
0 (Ω) ∩H2(Ω),

where for q ∈ L2(Ω), gq(x) = −(q,D(x))L2 , x ∈ H1
0 (Ω) ∩H2(Ω).

Now we can use Proposition 2.2(d) because qε → −p strongly in L2(Ω).
From

−Δ−1αε ∈ ∂dδε(xε) = ∂g(εqε)(xε) in H1
0 (Ω),

we find

−Δ−1α ∈ ∂g(−p)(x
∗) = ∂d(−∇p)(x

∗) in H1
0 (Ω) ∩H2(Ω).

Equivalently, −Δ−1α ∈ ∂d(−∇p)(x
∗) in H1

0 (Ω), or

α ∈ ∂d(−∇p)(x
∗) in H1

0 (Ω) ×H−1(Ω).
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This final relation can be restated as α = −div ζ, with ζ ∈ ∂f(−∇p)(∇x∗), and
(54) is proved.

Clearly, γ ∈ ∂k(−p)(x
∗) means γ ∈ ∂Γ(x∗), where

Γ(x) =

∫
Ω

p(ω)β(x(ω))dω, x ∈ L2(Ω),

and it can be described as γ(ω) ∈ p(ω)∂β(x∗(ω)), a.e. ω in Ω (see [9, Theorem 2.7.2,
p. 76]).

The first part in (54) is equivalent to η := ζ + ν∇p ∈ ∂Ψ(−∇p)(∇x∗), where

Ψ(−∇p)(v) = (∇p, a(v))L2 =

∫
Ω

(a(v(ω)),∇p(ω))RNdω, v ∈ L
2(Ω),

and it can be described as η(ω) ∈ ∂a(∇x∗(ω))(∇p(ω)), a.e. ω in Ω (see [9, Theorem
2.6.6, p. 72, and Theorem 2.7.2, p. 76]). Take l := α − νΔp = −div η. The proof is
complete.

Remark 2.3. Using a similar argument and slightly different computations one
can show that Theorem 2.1 holds if instead of (H1) or (H2) we consider assumptions
which ensure that −div a(∇·) + β : H1

0 (Ω) → H−1(Ω) is strongly monotone.
Corollary 2.1. Assume that all of the assumptions of Theorem 2.1 hold, with

the relaxed conditions: a is locally Lipschitz and ∇2a ∈ L∞
loc(R

N ; RN3

). In addi-
tion, suppose that every solution x ∈ H1

0 (Ω) ∩H2(Ω) of (NE) satisfies the “a priori”
estimate

(55) ‖∇x‖L∞ ≤ γ = γ(‖u‖U ),

where γ = γ(‖u‖U ) is a bounded function of ‖u‖U .
Then all of the conclusions of Theorem 2.1 hold.
Proof. Since a is locally Lipschitz and ∇2a ∈ L∞

loc(R
N ; RN3

) we can modify a
outside a bounded subset of R

N without locally changing the set of solutions of (NE)

such that the new a is Lipschitz continuous with ∇2a ∈ L∞(RN ; RN3

), and we can
apply Theorem 2.1 to get the conclusions.

Remark 2.4. For N = 1 we have ∇x ∈ H1(Ω) ⊂ L∞(Ω), and from the “a
priori” estimate contained in the proof of Lemma 2.1(a) we know that ‖∇x‖H1 ≤
C(‖Bu + f‖L2 + 1), from which we find (55). More precisely,

‖∇x‖L∞ ≤ 1

(Kλ1 − Cβ)
√

6
‖Bu + f‖L2 .

Therefore, in the 1-dimensional case, the conclusions of Theorem 2.1 remain true with
the relaxed conditions a locally Lipschitz continuous and ∇2a ∈ L∞

loc(R
N ; RN3

).

3. Examples.
Example 3.1. Consider the optimization problem

(56) minimize
1

2

∫ π

0

|x(t)|2dt +
1

2

∫ π

0

|u(t)|2dt

subject to

(57) −xtt(1 + e−xt) = u + f, a.e. in (0, π), x(0) = x(π) = 0,

where u ∈ L2(0, π).
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This problem is of the form (P) with g(x) = 1
2‖x‖2

L2 , h(u) = 1
2‖u‖2

L2 , x, u ∈
L2(0, π), a(r) = r − e−r, r ∈ R, β = 0, Bu = u, u ∈ L2(0, π), f ∈ L2(0, π).

Notice that g, h, a, β,B, f satisfy the assumptions of Theorem 2.1 since a is locally
Lipschitz continuous with K = 1, a′′ is locally bounded (see Remark 2.4), and Cβ = 0,
λ1 = 1.

Therefore, for every solution (x∗, u∗) there is a p ∈ H1
0 (0, π) ∩H2(0, π), γ, l, η ∈

L2(0, π) such that

(58) x∗ + l + γ = 0, p = u∗, l = −ηt, η = (1 + e−x∗
t )pt, γ = 0;

that is,

(59) x∗ − ((1 + e−x∗
t )u∗

t )t = 0 a.e. in (0, π).

Combined with (57), relation (59) can answer several questions such as: Is it possible
to bring the solutions x of (57) into the origin with minimal L2-effort in u, or, in
other words, is there an optimal pair of our problem of the form (0, u∗)? The answer
is positive iff f = 0 since for x∗ = 0 we get u∗

tt = 0 in H1
0 (0, π)∩H2(0, π), i.e., u∗ = 0,

which contradicts (57) if f = 0.
Moreover, (57) and (59) together with the boundary conditions x∗(0) = x∗(π) =

u∗(0) = u∗(π) = 0 can be used to determine (x∗, u∗) numerically.
Example 3.2. Consider the problem

minimize �2
∫ T

0

cos2 θ(t)dt +
1

2

∫ T

0

|u(t)|2dt

subject to the pendulum problem

(60) θtt +
g

�
sin θ = u + f, a.e. in (0, T ), θ(0) = θ(T ) = 0.

Here g is the gravitational acceleration, � is the length of the pendulum, T > 0 is
fixed, and f ∈ L2(0, T ).

The objective functional in this problem expresses the goal of maximizing the
height of the pendulum H = � − � cos θ with minimum L2-effort in u, under the
condition θ(0) = θ(T ) = 0.

This problem is of type (P) with g(θ) = �2
∫ T

0
cos2 θ(t)dt, h(u) = 1

2‖u‖2
L2 , θ, u ∈

L2(0, T ), a(r) = r, β(r) = − g
� sin r, r ∈ R, Bu = −u, u ∈ L2(0, T ). We have

K = L = 1, Cβ = g
� , λ1 = π2

T 2 . Therefore, for � > gT 2

π2 , we may apply Theorem
2.1 to get that for every optimal pair (θ∗, u∗) there exist p ∈ H1

0 (0, T ) ∩ H2(0, T ),
γ, l, η ∈ L2(0, T ) such that

(61) ∂g(θ∗) + l + γ � 0, −p = u∗, l = −ηt, η = pt, γ = −p
g

�
cos θ∗;

that is,

(62) −�2 sin(2θ∗) + u∗
tt +

g

�
u∗ cos θ∗ = 0.

Various conclusions can be drawn from (60) and (62) including the possibility for
numerical determination of optimal pairs. For example, if (θ∗(t) = θ∗, u∗(t) = u(t))
is a stationary optimal pair, then θ∗ = ±π/2, f(t) = −u∗ ± g

� or sin θ∗ = g
2�3u

∗,

f(t) = ( g2

2�4 − 1)u∗.
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Example 3.3. Let N ≥ 1, C = (cij)1≤i,j≤N ∈ MN (R) be a square positive definite
matrix, i.e., (Cr, r)RN ≥ c‖r‖2

RN , for every r ∈ R
N , c > k > 0, and

(63) a(r) = Cr + k(|r1|, |r2|, . . . , |rN |)T , r = (r1, r2, . . . , rN )T ∈ R
N .

Here “ T ” stands for the transpose of a matrix. Notice that a is Lipschitz con-
tinuous, strongly monotone with constant c − k > 0, nondifferentiable at 0, and
∇2a ∈ L∞(RN ; RN3

).
Problem (P) becomes in these settings

(P) minimize g(x) + h(u) on all (x, u) ∈ H1
0 (Ω) × U, subject to

(NE) −
N∑

i,j=1

cij
∂2x

∂ωi∂ωj
− k

N∑
i=1

sign

(
∂x

∂ωi

)
∂2x

∂ω2
i

+ β(x) = f in Ω,

x = 0 on ∂Ω.

Whenever β satisfies (H1) or (H2), for every optimal pair (x∗, u∗) of (P) we have

(64) ∂g(x∗) + l + γ � 0, B∗p ∈ ∂h(u∗), l = −div η,

(65) η ∈

⎛
⎝ N∑

j=1

cij
∂p

∂ωj
+ ksign

(
∂x∗

∂ωi

)
∂p

∂ωi

⎞
⎠

T

1≤i≤N

, γ ∈ p∂β(x∗) a.e. in Ω,

for some p ∈ H1
0 (Ω) ∩ H2(Ω), γ, l, η ∈ L

2(Ω). Here signω = ω/|ω|, ω = 0, sign 0 =
[−1, 1].

Example 3.4. Let N ≥ 2, p ≥ 3, and a(r) = r‖r‖p−2, r ∈ R
N . In this case (P)

has the form

(P) minimize g(x) + h(u) on all (x, u) ∈ H1
0 (Ω) × U, subject to

(NE) − Δpx + β(x) = Bu + f in H1
0 (Ω),

where “Δp” denotes the p-Laplacian.

More precisely, Δp : W 1,p
0 (Ω) → W−1,q(Ω), −Δpx = −div (∇x‖∇x‖p−2

RN ) = g ∈
W−1,q(Ω) iff x ∈ W 1,p

0 (Ω), and∫
Ω

(‖∇x‖p−2
RN ∇x · ∇ϕ− gϕ)dω = 0 for every ϕ ∈ C∞

0 (Ω),

or, equivalently, x is a minimizer of the functional

E : W 1,p
0 (Ω) → R, E(v) =

1

p

∫
Ω

‖∇v‖p
RNdω −

∫
Ω

gv dω, v ∈ W 1,p
0 (Ω).

The p-Laplacian operator arises in various physical contexts: nonlinear elasticity,
reaction-diffusion problems, non-Newtonian fluid flow models, diffusive logistic equa-
tion, nonlinear elastic membranes, electrochemical machining, elastic-plastic torsional
creep, the Monge mass transfer problem, etc.

We take f ∈ L∞(Ω) and B ∈ L(U ;L∞(Ω)).

A direct computation shows that, for p ≥ 3, ∇2a ∈ L∞
loc(R

N ; RN3

), and since a is
locally Lipschitz continuous it is sufficient to show (55) in order to apply Corollary 2.1.
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We take β with a sufficiently small Lipschitz constant or monotone, and after we
multiply (NE) by x we find

−Δpx(ω)x(ω) ≤ −β(x(ω))x(ω) + |(Bu + f)(ω)||x(ω)|
≤ C∗

β |x(ω)|2 + ||Bu + f ||L∞ |x(ω)| a.e. ω ∈ Ω,(66)

where C∗
β = 0 if β is monotone and C∗

β = Cβ if β is Lipschitz.
After integration over Ω we get

(67) ‖x‖p−1
W 1,p ≤ const‖Bu + f‖L2 .

According to [13, Theorem 1.5.5, p. 115] together with the Sobolev embedding
W 1,p

0 (Ω) ⊂ Lp0(Ω), where p0 = Np/(N − p) if p < N , p0 = 2p if p ≥ N , rela-
tions (66), (67) imply ‖x‖L∞ ≤ γ(‖u‖U ), which, according to [13, Theorem 1.5.6, p.
116], provides us with ‖∇x‖L∞ ≤ γ(‖u‖U ); that is, (55) holds.

It must be noted that, in the case of the p-Laplacian, the strong ellipticity of a
holds for p ≥ 2 and has the form

(a(r1) − a(r2))(r1 − r2) ≥ K||r1 − r2‖pRN , r1, r2 ∈ R
N , K > 0.

This does not affect the computations in all of our previous results, since our state
equation takes place in L∞(Ω); the only difference is that sometimes we replace the
power 2 by p.

Therefore if (x∗u∗) is an optimal pair for our problem, then there exist π ∈
H1

0 (Ω) ∩H2(Ω), γ, l, η ∈ L
2(Ω) such that

(68) ∂g(x∗) + l + γ � 0, B∗π ∈ ∂h(u∗), l = −div η,

and a.e. ω in Ω

(69) γ(ω) ∈ π(ω)∂β(x∗(ω)) ,

(70) η ∈

⎛
⎝(p− 2)‖∇x∗‖p−4

N∑
j=1

∂x∗

∂ωi

∂x∗

∂ωj

∂π

∂ωj
+ ‖∇x∗‖p−2 ∂π

∂ωi

⎞
⎠

T

1≤i≤N

.

Example 3.5. Consider the following version of (P) where the state equation is a
modified form of the minimal surface equation:

(P) minimize g(x) + h(u) on all (x, u) ∈ H1
0 (Ω) × U, subject to

(NE) − div

⎛
⎝ ∇x√

1 + ‖∇x‖2
RN

+ k∇x

⎞
⎠ + β(x) = Bu + f in H1

0 (Ω),

where N ≥ 1, k > 1, and g, h, β, B satisfy the assumptions in Theorem 2.1.
The minimal surface equation div ( ∇x√

1+‖∇x‖2
) = 0 appears in the non-parametric

plateau problem of finding a surface with a given boundary and least possible area.
The variational interpretation of the modified minimal surface equation describes the
solutions of (NE) as minimizers of the energy E : H1

0 (Ω) → R given by

E(x) =

∫
Ω

√
1 + ‖∇x‖2

RNdω +
k

2

∫
Ω

(1 + ‖∇x‖2
RN )dω

+
∫
Ω
j(x)dω −

∫
Ω
(Bu + f)x dω,
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x ∈ H1
0 (Ω). Here A(x) =

∫
Ω

√
1 + ‖∇x‖2

RNdω represents the area of the surface S:

xN+1 = x(ω), ω ∈ Ω,
∫
Ω

1 + ‖∇x‖2
RNdω =

∫
S
‖−→n ‖RN+1dS, where −→n = (∇x,−1) is

the gradient vector field on S, and β = ∂j.
In this case a(r) = r√

1+‖r‖2
RN

+kr, r ∈ R
N , and by a simple verification involving

the inequality (r1, r2)RN ≤ 1
2 (‖r1‖2

RN + ‖r2‖2
RN ) one gets that a is strongly monotone

with constant K = k − 1 > 0 and Lipschitz continuous with Lipschitz constant
L = k+1. The last assumption ∇2a ∈ L∞(RN ; RN3

) is checked by direct computation.
Hence, by Theorem 2.1, for (x∗u∗) an optimal pair (P) there exist p ∈ H1

0 (Ω)∩H2(Ω),
γ, l, η ∈ L

2(Ω) such that

(71) ∂g(x∗) + l + γ � 0, B∗p ∈ ∂h(u∗), l = −div η,

and a.e. ω in Ω

(72) γ(ω) ∈ p(ω)∂β(x∗(ω)),
(73)

η ∈

⎛
⎝
⎛
⎝k +

1√
1 + ‖∇x∗‖2

RN

⎞
⎠ ∂p

∂ωi
−

N∑
j=1

∂x∗

∂ωi

∂x∗

∂ωj

∂p

∂ωj

1

(1 + ‖∇x∗‖2
RN )3/2

⎞
⎠

T

1≤i≤N

.
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Abstract. We define a new fundamental constant associated with a P-matrix and show that this
constant has various useful properties for the P-matrix linear complementarity problems (LCP). In
particular, this constant is sharper than the Mathias–Pang constant in deriving perturbation bounds
for the P-matrix LCP. Moreover, this new constant defines a measure of sensitivity of the solution
of the P-matrix LCP. We examine how perturbations in the data affect the solution of the LCP and
efficiency of Newton-type methods for solving the LCP.
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1. Introduction. The linear complementarity problem (LCP) is to find a vector
x ∈ Rn such that

Mx + q ≥ 0, x ≥ 0, xT (Mx + q) = 0,

or to show that no such vector exists, where M ∈ Rn×n and q ∈ Rn. We denote this
problem by LCP(M, q). A matrix M is called a P-matrix if all of its principal minors
are positive, which is equivalent to

max
1≤i≤n

xi(Mx)i > 0 for all x �= 0.

It is well known that M is a P-matrix if and only if the LCP(M, q) has a unique
solution for any q ∈ Rn [3]. Moreover, if M is a P-matrix, then there is a neighborhood
M of M , such that all matrices in M are P-matrices. Hence, we can define a solution
function x(A, b) : M × Rn → Rn

+, where x(A, b) is the solution of LCP(A, b) and
Rn

+ = {x ∈ Rn | x ≥ 0}.
In [12], Mathias and Pang introduced the following fundamental quantity associ-

ated with a P-matrix:

c(M) = min
‖x‖∞=1

max
1≤i≤n

{xi(Mx)i}.

This constant has often been used in error analysis of the LCP [2, 3]. In particular,
the following lemma has been widely applied in perturbation bounds.

Lemma 1.1 (see [3]). Let M ∈ Rn×n be a P-matrix. The following statements
hold:
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(i) For any two vectors q and p in Rn,

‖x(M, q) − x(M,p)‖∞ ≤ 1

c(M)
‖q − p‖∞.

(ii) For each vector q ∈ Rn, there exist a neighborhood U of the pair (M, q) and a
constant c0 > 0 such that for any (A, b), (B, p) ∈ U , A,B are P-matrices and

‖x(A, b) − x(B, p)‖∞ ≤ c0(‖A−B‖∞ + ‖b− p‖∞).

Lemma 1.1 shows that when M is a P-matrix, for each q, x(A, b) is a locally
Lipschitzian function of (A, b) in a neighborhood of (M, q), and x(M, b) is a globally
Lipschitzian function of b. This property plays a very important role in the study
of the LCP and mathematical programs with LCP constraints [11]. However, the
constant c(M) is difficult to compute, and c0 is not specified. It is hard to use this
lemma for verifying the accuracy of a computed solution of the LCP when the data
(M, q) contain errors.

In this paper, we introduce a new constant for a P-matrix,

βp(M) = max
d∈[0,1]n

‖(I −D + DM)−1D‖p,

where D = diag(d) with 0 ≤ di ≤ 1, i = 1, 2, . . . , n, and ‖ · ‖p is the matrix norm
induced by the vector norm for p ≥ 1.

Using the constant βp(M), we give perturbation bounds for M being a P-matrix
as follows:

‖x(M, q) − x(M,p)‖p ≤ βp(M)‖q − p‖p,(1.1)

‖x(A, b) − x(B, p)‖p ≤ βp(M)2

(1 − η)2
‖(−p)+‖p‖A−B‖p +

βp(M)

1 − η
‖b− p‖p,(1.2)

and

‖x(M, q) − x(A, b)‖p
‖x(M, q)‖p

≤ 2ε

1 − η
βp(M)‖M‖p,(1.3)

where η ∈ [0, 1) and ε > 0 can be chosen, A,B ∈ M := {A |βp(M)‖M − A‖p ≤ η},
and ‖q − b‖p ≤ ε‖(−q)+‖p.

The constant βp(M) has the following interesting properties.
• If M is a P-matrix, then for ‖ · ‖∞,

β∞(M) ≤ 1

c(M)
.(1.4)

• If M is an H-matrix with positive diagonals, then for ‖ · ‖p with any p ≥ 1,

βp(M) ≤ ‖M̃−1‖p,(1.5)

where M̃ is the comparison matrix of M , that is,

M̃ii = Mii, M̃ij = −|Mij | for i �= j.
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• If M is an M-matrix, then for ‖ · ‖p with any p ≥ 1,

βp(M) = ‖M−1‖p.(1.6)

• If M is a symmetric positive definite matrix, then for ‖ · ‖2,

β2(M) = ‖M−1‖2.(1.7)

Inequalities (1.1) and (1.4) show that the constant β(M) derives a new perturba-
tion bound which is sharper than the bound in (i) of Lemma 1.1 in ‖·‖∞. Furthermore,
Example 2.1 shows that β(M) can be much smaller than c(M)−1 in some cases. In-
equality (1.3) indicates that the constant β(M)‖M‖ is a measure of sensitivity of
the solution x(M, q) of the LCP(M, q). Moreover, from (1.3), (1.6), and (1.7), it is
interesting to see that the measure is expressed in the terms of the condition number
of M , that is,

κp(M) := ‖M−1‖p‖M‖p = βp(M)‖M‖p

for M being an M-matrix with p ≥ 1 and a symmetric positive definite matrix with
p = 2. Hence, it makes a connection between perturbation bounds of the LCP and
perturbation bounds of the systems of linear equations in the Newton-type methods
for solving the LCP. Using this connection, we investigate the efficiency of Newton-
type methods for solving the following two systems:

r(x) := min(x,Mx + q) = 0(1.8)

and

F (x, y) :=

(
Mx + q − y
min(x, y)

)
= 0.(1.9)

It is known that for the P-matrix LCP, the system of linear equations in Newton-
type methods for solving (1.8) or (1.9) is mathematically well defined; that is, the
generalized Jacobian matrices are nonsingular [5]. However, the matrices can be
computationally ill-conditioned. A matrix A is said to be an ill-conditioned (well-
conditioned) matrix if κp(A) is large (small) [8]. The condition number κp(A) is a
measure of sensitivity of the system of linear equations Ax = b when A is nonsingular.
Hence, a linear system is called ill-conditioned (well-conditioned) if κp(A) is large
(small) [4]. From (1.3), (1.6), and (1.7), we find that βp(M)‖M‖p is a measure of
sensitivity of the LCP(M, q) when M is a P-matrix, and βp(M)‖M‖p = κp(M) when
M is an M-matrix or a symmetric positive definite matrix. Moreover, we show that
for the M-matrix LCP, the systems of linear equations in the Newton-type methods
for solving (1.8) are well-conditioned if and only if the condition number κp(M) is
small. However, the system of linear equations in Newton-type methods for solving
(1.9) can be ill-conditioned even when κp(M) is small.

A word about our notation: For a vector q ∈ Rn, q+ = max(0, q). Let N =
{1, 2, . . . , n}. Let e be the vector whose elements are all 1. A matrix A ∈ Rn×n is
called an M-matrix if A−1 ≥ 0 and Aij ≤ 0 (i �= j) for i, j ∈ N ; A is called an
H-matrix if its comparison matrix is an M-matrix.

In the rest of this paper, we use β(·), ‖ · ‖, and κ(·) to represent βp(·), ‖ · ‖p, and
κp(·) with any p ≥ 1, respectively.



PERTURBATION BOUNDS FOR THE LCP 1253

2. A new constant for the P-matrix LCP. In this section we introduce a
new Lipschitz constant for the P-matrix LCP based on the observation that for any
x, x∗, y, y∗ ∈ Rn,

min(xi, yi) − min(x∗
i , y

∗
i ) = (1 − di)(xi − x∗

i ) + di(yi − y∗i ), i ∈ N,(2.1)

where

di =

⎧⎪⎪⎨
⎪⎪⎩

0 if yi ≥ xi, y∗i ≥ x∗
i ,

1 if yi ≤ xi, y∗i ≤ x∗
i ,

min(xi, yi) − min(x∗
i , y

∗
i ) + x∗

i − xi

yi − y∗i + x∗
i − xi

otherwise.

It is easy to see that di ∈ [0, 1]. Set x = x(A, q), x∗ = x(B, p), y = Ax(A, q) + q, and
y∗ = Bx(B, p) + p in (2.1). We obtain

0 = (I −D)(x(A, q) − x(B, p)) + D(Ax(A, q) + q −Bx(B, p) − p),

which implies

(I −D + DA)(x(B, p) − x(A, q)) = D(A−B)x(B, p) + D(q − p).(2.2)

Here D is a diagonal matrix whose diagonal elements are d = (d1, d2, . . . , dn) ∈ [0, 1]n.
Lemma 2.1 (Gabriel and Moré [7]). A is a P-matrix if and only if I −D + DA

is nonsingular for any diagonal matrix D = diag(d) with 0 ≤ di ≤ 1.
For M being a P-matrix, we introduce the following constant:

β(M) = max
d∈[0,1]n

‖(I −D + DM)−1D‖.

From Lemma 2.1 and (2.2), we have

‖x(B, p) − x(A, q)‖ ≤ β(A)‖(A−B)x(B, p) + q − p‖(2.3)

provided A is a P-matrix. In the following, we compare β(M) with c(M)−1 in ‖ · ‖∞
and give a simple version of β(M) for M being an M-matrix, a symmetric positive
definite matrix, and a positive definite matrix.

Theorem 2.2. Let M be a P-matrix. Then

β∞(M) := max
d∈[0,1]n

‖(I −D + DM)−1D‖∞ ≤ 1

c(M)
.

Proof. We first prove that for any nonsingular diagonal matrix D = diag(d) with
d ∈ (0, 1]n,

‖(I −D + DM)−1D‖∞ ≤ 1

c(M)
.

Let x ∈ Rn with ‖x‖∞ = 1 such that ‖(I−D+DM)−1D‖∞ = ‖(I−D+DM)−1Dx‖∞
and define y = (I−D+DM)−1Dx. Then Dx = (I−D+DM)y, My = x+y−D−1y.
By the definition of c(M), we have

0 < c(M)‖y‖2
∞ ≤ max

i
yi(My)i = max

i
yi

(
xi + yi −

yi
di

)
.
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Note that f(t) = a(b + a − a
t ) is monotonically increasing for t > 0, where a, b are

constants. Therefore, we deduce

yi

(
xi + yi −

yi
di

)
≤ yixi ≤ ‖y‖∞‖x‖∞ = ‖y‖∞,

which implies

0 < c(M)‖y‖2
∞ ≤ ‖y‖∞ and ‖(I −D + DM)−1D‖∞ = ‖y‖∞ ≤ 1

c(M)
.

Now we consider d ∈ [0, 1]n. Let dε = min(d + εe, e), where ε ∈ (0, 1]. Then, we have

‖(I −D + DM)−1D‖∞ = lim
ε↓0

‖(I −Dε + DεM)−1Dε‖∞ ≤ 1

c(M)
.

It is known that an H-matrix with positive diagonals is a P-matrix, and a positive
definite matrix is a P-matrix [3]. Now, we consider the two subclasses of P-matrix.

Lemma 2.3 (see [3]). If M is an M-matrix, then I −D + DM is an M-matrix
for d ∈ [0, 1]n.

Lemma 2.4. Let A be an H-matrix with positive diagonals, and let Ã be the
comparison matrix of A. Then the following statements hold:
(i) |A−1| ≤ Ã−1.
(ii) For B ∈ Rn×n with ‖B‖∞‖Ã−1‖∞ < 1, A + B is an H-matrix with positive

diagonals.
Proof. (i) See problem 31 in [10, page 131].
(ii) Let x = Ã−1e. Since Ã−1 ≥ 0, x > 0 and ‖x‖∞ = ‖Ã−1‖∞. Moreover, from

Ãx = e, we have

aiixi = 1 +
∑
j 	=i

|aij |xj for i ∈ N.

By ‖x‖∞‖B‖∞ < 1 and ‖B‖∞ = ‖|B|e‖∞, we get ‖x‖∞|B|e < e. Hence for all i ∈ N ,

aiixi >

n∑
j=1

|bij |‖x‖∞ +
∑
j 	=i

|aij |xj ≥
∑
j 	=i

(|aij | + |bij |)xj + |bii|xi,

and

(aii + bii)xi ≥ (aii − |bii|)xi >
∑
j 	=i

(|aij | + |bij |)xj .

By I27 of Theorem 2.3 in [1, Chap. 6], this implies that the comparison matrix of
A + B is an M-matrix. Hence A + B is an H-matrix with positive diagonals.

Theorem 2.5. Let M be an H-matrix with positive diagonals. Then

β(M) ≤ ‖M̃−1‖,

where M̃ is the comparison matrix of M . In particular, if M is an M-matrix, then
the equality holds with M = M̃ .

Proof. First we will show that if M is an M-matrix, then

β(M) = ‖M−1‖.
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Since for any d ∈ (0, 1]n, by Lemma 2.3,

(DM)−1 − (I −D + DM)−1 = (DM)−1(I −D)(I −D + DM)−1 ≥ 0,

we have

(DM)−1D − (I −D + DM)−1D = M−1 − (I −D + DM)−1D ≥ 0.

Note that for any matrices A and B, |A| ≤ B implies ‖A‖ ≤ ‖B‖. Hence the following
inequalities hold:

M−1 ≥ (I −D + DM)−1D ≥ 0, ‖M−1‖ ≥ ‖(I −D + DM)−1D‖.

Let dε = min(d + εe, e), where ε ∈ (0, 1]. Then, we have

β(M) = max
d∈[0,1]n

lim
ε↓0

‖(I −Dε + DεM)−1Dε‖ ≤ ‖M−1‖.

It is obvious that β(M) ≥ ‖M−1‖ as e ∈ [0, 1]n. Therefore, we obtain β(M) = ‖M−1‖.
For M being an H-matrix, M̃ is an M-matrix. From (i) of Lemma 2.4, we have

|(I −D + DM)−1| ≤ (I −D + DM̃)−1.

Hence, we obtain

β(M) = max
d∈[0,1]n

‖(I −D+DM)−1D‖ ≤ max
d∈[0,1]n

‖(I −D+DM̃)−1D‖ ≤ ‖M̃−1‖.

Lemma 2.6 (see [9]). Let A and B be symmetric positive definite matrices.
(i) B −A is positive semidefinite if and only if A−1 −B−1 is positive semidefinite.
(ii) If B − A is positive semidefinite, then λi(B) ≥ λi(A), where λ1(A) ≥ λ2(A) ≥

· · · ≥ λn(A) and λ1(B) ≥ λ2(B) ≥ · · · ≥ λn(B) are eigenvalues of A and B,
respectively.

Theorem 2.7. Let M be a symmetric positive definite matrix. Then

β2(M) := max
d∈[0,1]n

‖(I −D + DM)−1D‖2 = ‖M−1‖2.

Proof. It is obvious that β2(M) ≥ ‖M−1‖2. Now we show β2(M) ≤ ‖M−1‖2.
For any nonsingular diagonal matrix D = diag(d) with d ∈ (0, 1]n, M + D−1(I −D)
is positive definite. By (i) of Lemma 2.6, M−1 − (M + D−1(I − D))−1 is positive
semidefinite. By (ii) of Lemma 2.6, we have

‖(M + D−1(I −D))−1‖2 = ‖(I −D + DM)−1D‖2 ≤ ‖M−1‖2.

Since the largest eigenvalue is a continuous function of elements of the matrix, we
have

β2(M) = max
d∈[0,1]n

lim
ε↓0

‖(I −Dε + DεM)−1Dε‖2 ≤ ‖M−1‖2,

where Dε = diag(min(d + εe, e)).
In comparison to Lemma 1.1, the following theorem gives sharp perturbation error

estimates for the P-matrix LCP.
Theorem 2.8. Let M ∈ Rn×n be a P-matrix. Then the following statements

hold:
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(i) For any two vectors q and p in Rn,

‖x(M, q) − x(M,p)‖ ≤ β(M)‖q − p‖.

(ii) Every matrix A ∈ M := {A | β(M)‖M −A‖ ≤ η < 1} is a P-matrix. Let

α(M) =
1

1 − η
β(M).

Then for any A,B ∈ M and q, p ∈ Rn

‖x(A, q) − x(B, p)‖ ≤ α(M)2‖(−p)+‖‖A−B‖ + α(M)‖q − p‖.
Proof. (i) This part of the proof follows directly from (2.3) by setting M = A = B.
(ii) For every A ∈ M, since ‖(I−D+DM)−1D(A−M)‖ ≤ β(M)‖M−A‖ ≤ η < 1,

(I −D + DA) = (I −D + DM)(I + (I −D + DM)−1D(A−M))

is nonsingular for any diagonal matrix D = diag(d) with 0 ≤ di ≤ 1. By Lemma 2.1,
A is a P-matrix. Moreover, from

(I −D + DA)−1D = (I + (I −D + DM)−1D(A−M))−1(I −D + DM)−1D

and

‖(I + (I −D + DM)−1D(A−M))−1‖ ≤ 1

1 − β(M)‖A−M‖ ≤ 1

1 − η
,

we find β(A) ≤ α(M).
Since matrices A,B ∈ M are P-matrices, using (2.3) yields

‖x(A, q) − x(B, p)‖ ≤ β(A) (‖A−B‖‖x(B, p)‖ + ‖q − p‖) .(2.4)

Notice that 0 is the solution of LCP(B, p+). Using (2.3) again, we get

‖x(B, p)‖ ≤ β(B)‖(−p)+‖.(2.5)

Applying β(A) ≤ α(M) and β(B) ≤ α(M) to (2.4) and (2.5), respectively, we obtain
the desired bounds in (ii).

From Theorems 2.5 and 2.7, the Lipschitz constants β(M) and α(M) can be
estimated by matrix norms if M is an H-matrix with positive diagonals or a sym-
metric positive definite matrix. In particular, from Lemma 2.4, Theorem 2.5, and
Theorem 2.7, we have the following two corollaries.

Corollary 2.9. Let M ∈ Rn×n be an H-matrix with positive diagonals. Then
the following statements hold:
(i) For any two vectors q and p in Rn,

‖x(M, q) − x(M,p)‖∞ ≤ ‖M̃−1‖∞‖q − p‖∞.

(ii) Every matrix A ∈ M∞ := {A | ‖M̃−1‖∞‖M − A‖∞ ≤ η < 1} is an H-matrix
with positive diagonals. Let

α∞(M) =
1

1 − η
‖M̃−1‖∞.

Then for any A,B ∈ M∞ and q, p ∈ Rn

‖x(A, q) − x(B, p)‖∞ ≤ α∞(M)2‖(−p)+‖∞‖A−B‖∞ + α∞(M)‖q − p‖∞.
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Corollary 2.10. Let M ∈ Rn×n be a symmetric positive definite matrix. Then
the following statements hold:
(i) For any two vectors q and p in Rn,

‖x(M, q) − x(M,p)‖2 ≤ ‖M−1‖2‖q − p‖2.

(ii) Every matrix A ∈ M2 := {A | ‖M−1‖2‖M −A‖2 ≤ η < 1} is a P-matrix. Let

α2(M) =
1

1 − η
‖M−1‖2.

Then for any A,B ∈ M2 and q, p ∈ Rn

‖x(A, q) − x(B, p)‖2 ≤ α2(M)2‖(−p)+‖2‖A−B‖2 + α2(M)‖q − p‖2.

A matrix A is called positive definite if

xTAx > 0, 0 �= x ∈ Rn.

Since xTAx = xT A+AT

2 x, A is positive definite if and only if A+AT

2 is symmetric
positive definite. Note that a positive definite matrix is not necessarily symmetric.
Such asymmetric matrices frequently appear in the context of the LCP.

Combining the ideas of Mathias and Pang [12] and Corollary 2.10, we present
perturbation bounds for the positive definite matrix LCP.

Theorem 2.11. Let M ∈ Rn×n be a positive definite matrix. Then the following
statements hold:
(i) For any two vectors q and p in Rn,

‖x(M, q) − x(M,p)‖2 ≤
∥∥∥∥∥
(
M + MT

2

)−1
∥∥∥∥∥

2

‖q − p‖2.

(ii) Every matrix A ∈ M2 := {A | ‖(M+MT

2 )−1‖2‖M − A‖2 ≤ η < 1} is positive
definite. Let

α2(M) =
1

1 − η

∥∥∥∥∥
(
M + MT

2

)−1
∥∥∥∥∥

2

.

Then for any A,B ∈ M2 and q, p ∈ Rn

‖x(A, q) − x(B, p)‖2 ≤ α2(M)2‖(−p)+‖2‖A−B‖2 + α2(M)‖q − p‖2.

Proof. We first show that

‖x(A, q) − x(B, p)‖2 ≤
∥∥∥∥∥
(
A + AT

2

)−1
∥∥∥∥∥

2

(‖A−B‖2‖x(B, p)‖2 + ‖p− q‖2)(2.6)

holds if A is a positive definite matrix and the LCP(B, p) has a solution x(B, p).
Since x(A, q) and x(B, p) are solutions of LCP(A, q) and LCP(B, p), respectively,

we have

0 ≥ (x(A, q) − x(B, p))T (Ax(A, q) + q −Bx(B, p) − p)

= (x(A, q) − x(B, p))T (A(x(A, q) − x(B, p)) + (A−B)x(B, p) + q − p),
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which implies

(x(A, q) − x(B, p))T ((B −A)x(B, p) + p− q)

≥ (x(A, q) − x(B, p))TA(x(A, q) − x(B, p))

= (x(A, q) − x(B, p))T
A + AT

2
(x(A, q) − x(B, p))

≥ 1

‖(A+AT

2 )−1‖2

‖x(A, q) − x(B, p)‖2
2.

Using the Cauchy–Schwarz inequality, we get (2.6).
(i) Set A = B = M in (2.6); we get the desired bound.
(ii) Note that for any matrix C, ‖C‖2 = ‖CT ‖2. For any x ∈ Rn with x �= 0, we

have

xTAx = xT M + MT

2
x + xT

(
A + AT

2
− M + MT

2

)
x

≥ xT M + MT

2
x−

(∥∥∥∥A−M

2

∥∥∥∥
2

+

∥∥∥∥AT −MT

2

∥∥∥∥
2

)
‖x‖2

2

≥
(∥∥∥∥∥

(
M + MT

2

)−1
∥∥∥∥∥

2

)−1

‖x‖2
2 − ‖A−M‖2‖x‖2

2

≥
(∥∥∥∥∥

(
M + MT

2

)−1
∥∥∥∥∥

2

)−1 (
1 −

∥∥∥∥∥
(
M + MT

2

)−1
∥∥∥∥∥

2

‖M −A‖2

)
‖x‖2

2.

Hence for any A ∈ M2, x
TAx > 0, and thus A is positive definite. Moreover, from

(
A + AT

2

)−1

=

(
I +

(
M + MT

2

)−1 (
A + AT

2
− M + MT

2

))−1 (
M + MT

2

)−1

and ∥∥∥∥A + AT

2
− M + MT

2

∥∥∥∥
2

≤ 1

2
(‖A−M‖2 + ‖AT −MT ‖2) = ‖M −A‖2

we have∥∥∥∥∥
(
A + AT

2

)−1
∥∥∥∥∥

2

≤ 1

1 − ‖(M+MT

2 )−1‖2‖A+AT

2 − M+MT

2 ‖2

∥∥∥∥∥
(
M + MT

2

)−1
∥∥∥∥∥

2

≤ α2(M).

Similarly, for B ∈ M2, ‖(B+BT

2 )−1‖2 ≤ α2(M). Notice that 0 is the solution of
LCP(B, p+). Setting A = B and q = p+ in (2.6), we get

‖x(B, p)‖2 ≤
∥∥∥∥∥
(
B + BT

2

)−1
∥∥∥∥∥

2

‖(−p)+‖2.
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Using these inequalities with (2.6), we obtain the perturbation bound in (ii).
Example 2.1. Theorem 2.2 shows that for every P-matrix, β∞(M) ≤ c(M)−1.

Now we show that β∞(M) can be much smaller than c(M)−1 in some cases. Consider

M =

(
1 −t
0 t

)
.

For t ≥ 1, M is an M-matrix. By Theorem 2.5, β∞(M) = ‖M−1‖∞ = 2. For
x̄ = (1, t−1), we have

c(M) ≤ max
i∈N

x̄i(Mx̄)i =
1

t
.

Hence, c(M)−1 ≥ t → ∞ as t → ∞.

3. Relative perturbation bounds for the LCP. Using the results in the last
section, we derive relative perturbation bounds expressed in the term of β(M)‖M‖.

Theorem 3.1. Suppose

min(x,Mx + q) = 0, M ∈ Rn×n, 0 �= (−q)+ ∈ Rn,

min(y, (M + 	M)y + q + 	q) = 0, 	M ∈ Rn×n, 	q ∈ Rn,

with

‖	M‖ ≤ ε‖M‖, ‖	q‖ ≤ ε‖(−q)+‖.

If M is a P-matrix and εβ(M)‖M‖ = η < 1, then M + 	M is a P-matrix and

‖y − x‖
‖x‖ ≤ 2ε

1 − η
β(M)‖M‖.

Proof. First we observe that x is a solution of LCP(M, q) and y is a solution of
LCP(M + 	M, q + 	q). Then following the proof of (ii) of Theorem 2.8, we obtain
that M + 	M is a P-matrix and

β(M + 	M) ≤ 1

1 − η
β(M),

which, together with (2.3), gives

‖x− y‖ ≤ 1

1 − η
β(M)(‖	M‖‖x‖ + ‖	q‖).(3.1)

From Mx + q ≥ 0, we deduce (−q)+ ≤ (Mx)+ ≤ |Mx|. This implies ‖(−q)+‖ ≤
‖Mx‖ ≤ ‖M‖‖x‖. Hence, we have

‖x‖ ≥ 1

‖M‖‖(−q)+‖ > 0.(3.2)

Combining (3.1) and (3.2), we obtain the desired bounds

‖y − x‖
‖x‖ ≤ 1

1 − η
β(M)

(
‖	M‖ +

‖	q‖
‖x‖

)
≤ 2ε

1 − η
β(M)‖M‖.
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Theorem 3.1 indicates that β(M)‖M‖ is a measure of sensitivity of the solution
of the LCP(M, q) for M being a P-matrix. Moreover, Theorem 3.1 with Corollary 2.9,
Corollary 2.10, and Theorem 2.11 gives β(M)‖M‖ in the term of condition number
for the H-matrix LCP, symmetric positive definite LCP, and positive definite LCP.

Corollary 3.2. Suppose

min(x,Mx + q) = 0, M ∈ Rn×n, 0 �= (−q)+ ∈ Rn,

min(y, (M + 	M)y + q + 	q) = 0, 	M ∈ Rn×n, 	q ∈ Rn.

(i) If M is an H-matrix with positive diagonals, εκ∞(M̃) = η < 1, and

‖	M‖∞ ≤ ε‖M̃‖∞, ‖	q‖∞ ≤ ε‖(−q)+‖∞,

then M + 	M is an H-matrix with positive diagonals, and

‖y − x‖∞
‖x‖∞

≤ 2ε

1 − η
κ∞(M̃).

(ii) If M is a symmetric positive definite matrix, εκ2(M) = η < 1, and

‖	M‖2 ≤ ε‖M‖2, ‖	q‖2 ≤ ε‖(−q)+‖2,

then M + 	M is a P-matrix, and

‖y − x‖2

‖x‖2
≤ 2ε

1 − η
κ2(M).

(iii) If M is a positive definite matrix, εκ2(
M+MT

2 ) = η < 1, and

‖	M‖2 ≤ ε

∥∥∥∥M + MT

2

∥∥∥∥
2

, ‖	q‖2 ≤ ε‖(−q)+‖2
‖M + MT ‖2

2‖M‖2
,

then M + 	M is a positive definite matrix, and

‖x− y‖2

‖x‖2
≤ 2ε

1 − η
κ2

(
M + MT

2

)
.

Remark. Note that ‖(−q)+‖ ≤ ‖q‖. If Mx + q = 0, then (i) of Corollary 3.2 for
M being an M-matrix and (ii) of Corollary 3.2 reduce to the perturbation bounds for
the system of linear equations [8].

For the H-matrix LCP, componentwise perturbation bounds based on the Skeel
condition number ‖|M̃−1||M̃ |‖∞ can be represented as follows.

Theorem 3.3. Suppose

min(x,Mx + q) = 0, M ∈ Rn×n, 0 �= (−q)+ ∈ Rn,

min(y, (M + 	M)y + q + 	q) = 0, 	M ∈ Rn×n, 	q ∈ Rn,

with

|	M | ≤ ε|M |, |	q| ≤ ε(−q)+.(3.3)
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If M is an H-matrix with positive diagonals and εκ∞(M̃) = η < 1, then M + 	M is
an H-matrix with positive diagonals, and

‖y − x‖∞
‖x‖∞

≤ 2ε

1 − η
‖M̃−1|M̃ |‖∞.(3.4)

Proof. From (3.3), we have

‖	M‖∞ ≤ ε‖M̃‖∞, and ‖	q‖∞ ≤ ε‖(−q)+‖∞ ≤ ε‖M‖∞‖x‖∞,

where the last inequality uses (−q)+ ≤ (Mx)+ ≤ |M |x.

According to Corollary 3.2, M + 	M is an H-matrix with positive diagonals.
Moreover, the equality (2.2) gives

(I −D + DM)(y − x) = D	My + D	q(3.5)

for some diagonal matrix D = diag(d) with d ∈ [0, 1]n.

Following the proof of Theorem 2.5, by Lemma 2.4, we get

|y − x| ≤ |(I −D + DM)−1D|(|	M |y + |	q|)

≤ |(I −D + DM̃)−1D|(|	M |y + |	q|)

≤ M̃−1(|	M |y + |	q|)

≤ εM̃−1(|M |y + |M |x).

Therefore, we find

‖y − x‖∞ ≤ ε‖M̃−1|M |‖∞(‖y‖∞ + ‖x‖∞).(3.6)

Furthermore, from (3.5), we obtain

y − ((I −D + DM)−1D	M)y = x + (I −D + DM)−1D	q.

Hence, it holds that

(1 − ε‖M̃−1‖∞‖M‖∞)‖y‖∞ ≤ (1 − ‖(I −D + DM)−1D‖∞‖	M‖∞)‖y‖∞

≤ ‖y − (I −D + DM)−1D	My‖∞
≤ ‖x‖∞ + ‖(I −D + DM)−1D‖∞‖	q‖∞

≤ (1 + ε‖M̃−1‖∞‖M‖∞)‖x‖∞.

This implies

‖y‖∞ ≤ 1 + η

1 − η
‖x‖∞.(3.7)

Combining (3.6) and (3.7), we obtain the desired bounds (3.4).
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4. Newton-type methods. In the last two sections, we have given perturbation
bounds for the LCP in the term of β(M). In this section, we use the perturbation
bounds to analyze the efficiency of Newton-type methods for solving the LCP based
on the systems (1.8) and (1.9).

Many semismooth Newton methods, smoothing Newton methods, and path-
following interior point methods [5] solve a system of linear equations in each iteration,

(I −Dk + DkM)(x− xk) = −r(xk),(4.1)

or (
M −I

I −Dk Dk

)(
x− xk

y − yk

)
= −F (xk, yk),(4.2)

where Dk is a diagonal matrix whose diagonal elements are in [0, 1].
Sensitivity of (4.1) and (4.2) will affect implementation of the methods and re-

liability of the computed solution. From the analysis of Dennis and Schnabel [4], if
the condition number of the coefficient matrix of the linear equations is larger than
(macheps)−1/2, the numerical solution may not be trustworthy. Here macheps is
computer precision. The linear systems (4.1) and (4.2) have the following relation
regarding to the condition numbers.

Proposition 4.1. For any diagonal matrix D = diag(d) with 0 ≤ di ≤ 1,
i = 1, 2, . . . , n, the following inequalities hold:

κ∞

(
M −I

I −D D

)
≥ κ∞(I −D + DM)(4.3)

and

κ

(
M −I

I −D D

)
≥ 1

2
κ(I −D + DM).(4.4)

Proof. First, we observe∥∥∥∥
(

M −I
I −D D

)∥∥∥∥
∞

≥ 1 + ‖M‖∞ ≥ max(1, ‖M‖∞) ≥ ‖I −D + DM‖∞

and∥∥∥∥
(

M −I
I −D D

)∥∥∥∥ ≥ max(1, ‖M‖) ≥ max(1, ‖M‖)
1 + ‖M‖ ‖I−D+DM‖ ≥ 1

2
‖I−D+DM‖.

Next, we consider the inverses. From(
I 0
D I

)(
M −I

I −D D

)
=

(
M −I

I −D + DM 0

)

and (
M −I

I −D + DM 0

)−1

=

(
0 (I −D + DM)−1

−I M(I −D + DM)−1

)
,

we find the inverse(
M −I

I −D D

)−1

=

(
0 (I −D + DM)−1

−I M(I −D + DM)−1

)(
I 0
D I

)

=

(
(I −D + DM)−1D (I −D + DM)−1

M(I −D + DM)−1D − I M(I −D + DM)−1

)
.
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Therefore, we have ∥∥∥∥∥
(

M −I
I −D D

)−1
∥∥∥∥∥ ≥ ‖(I −D + DM)−1‖.

By the definition of the condition number, (4.3) and (4.4) hold.
Since Dk in the coefficient matrices of (4.1) and (4.2) changes at each step, we

consider the worst case

K(M) := max
d∈[0,1]n

‖(I −D + DM)−1‖‖I −D + DM‖

and

K̂(M) := max
d∈[0,1]n

∥∥∥∥∥
(

M −I
D I −D

)−1
∥∥∥∥∥
∥∥∥∥
(

M −I
D I −D

)∥∥∥∥ .
From Proposition 4.1, we have

K̂∞(M) ≥ K∞(M),

which implies that if (4.2) is well-conditioned, then (4.1) is well-conditioned, and if
(4.1) is ill-conditioned, then (4.2) is ill-conditioned. The following example shows that
K̂∞(M) can be much larger than K∞(M).

Example 4.1. Let M = aI(a ≥ 1). Straightforward calculation gives

K̂∞(M) ≥
∥∥∥∥
(

aI −I
I 0

)∥∥∥∥
∞

∥∥∥∥∥
(

aI −I
I 0

)−1
∥∥∥∥∥
∞

= (1 + a)

∥∥∥∥
(

0 I
−I aI

)∥∥∥∥
∞

= (1 + a)2

and

K∞(M) = max
d∈[0,1]n

‖(I −D + aD)−1‖∞‖I −D + aD‖∞

≤ max0≤ξ≤1 |(1 + aξ − ξ)|
min0≤ξ≤1 |(1 + aξ − ξ)| = a.

For large a, K̂∞(M) −K∞(M) (≥ a2 + a + 1) is very large.
From Proposition 4.1 and Example 4.1, we may suggest that Newton-type meth-

ods for solving the nonlinear equations (1.8) have less perturbation error than Newton-
type methods for (1.9). Now, we focus on Newton-type methods for (1.8). Obviously,
it holds that

K(M) ≥ κ(M)

as e ∈ [0, 1]n. For M being an H-matrix with positive diagonals, by Theorems 2.1
and 2.3 in [2], we have

K∞(M) ≤ max(1, ‖M‖∞)‖M̃−1 max(Λ, I)‖∞,(4.5)
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where Λ is the diagonal parts of M .
For M being an M-matrix with ‖M‖∞ ≥ 1, we have

κ∞(M) ≤ K∞(M) ≤ κ∞(M)‖max(Λ, I)‖∞.(4.6)

Hence, the condition number κ∞(M) is a measure of sensitivity of the solution of the
system of linear equations for the worst case. Note that we have shown that κ∞(M) is
a measure of sensitivity of the solution of the LCP. Hence we may suggest that if Λ is
not large, then the LCP is well-conditioned if and only if the system of linear equations
(4.1) at each step of the Newton method is well-conditioned. Furthermore, for an M
matrix, its diagonal elements are positive, and LCP(Λ−1M,Λ−1q) and LCP(M, q) are
equivalent. The inequalities in (4.6) yield K∞(Λ−1M) = κ∞(Λ−1M).

5. Final remark. In [2], we provided the following error bound for the P-matrix
LCP:

‖x− x(M, q)‖ ≤ max
d∈[0,1]n

‖(I −D + DM)−1‖‖r(x)‖ for any x ∈ Rn,(5.1)

and we proved that (5.1) is sharper than the Mathias–Pang error bound [12]

‖x− x(M, q)‖∞ ≤ 1 + ‖M‖∞
c(M)

‖r(x)‖∞ for any x ∈ Rn

in ‖ · ‖∞. Moreover, we showed that the error bound (5.1) can be computed easily for
some special matrix LCP. For instance, if M is an H-matrix with positive diagonals,
we have

μ(M) := max
d∈[0,1]n

‖(I −D + DM)−1‖ ≤ ‖M̃−1 max(Λ, I)‖,

where Λ is the diagonal parts of M .
In this paper, we study the behavior of the solution x(M, q) when there are some

perturbations 	M and 	q in M and q. In particular, we show

‖x(M + 	M, q + 	q) − x(M, q)‖ ≤ β(M)‖	Mx(M + 	M, q + 	q) + 	q‖.

The constants μ(M) and β(M) play different roles, where the former is for computa-
tion of error bounds and the latter is for sensitivity analysis.

Theorem 2.2 proves that β(M) is smaller than the Mathias–Pang constant 1/c(M)
for sensitivity and stability analysis [3]. Theorems 2.5 and 2.7 provide various inter-
esting properties (1.5)–(1.7) of β(M) when M is an H-matrix with positive diagonals,
M-matrix, or symmetric positive definite matrix. These results show that the condi-
tion number κ(M) is a measure of the sensitivity of the LCP(M, q). This means that
if κ(M) is small (large), then small changes in M or q result in small (large) changes
in the solution x(M, q) of the LCP(M, q).

When LCP(M, q) is used in the modeling of a practical application, the matrix
M and vector q often contain errors due to inaccurate data, uncertain factors, etc.
Hence, to make x(M, q) useful and practical, it is very important to obtain some
sensitivity information of the solution. This is one reason why sensitivity analysis of
the LCP(M, q) has been studied so extensively [3]. On the web site http://www.st.
hirosaki-u.ac.jp/∼chen/ExamplesLCP.pdf, we provide numerical examples including
free boundary problems [14] and traffic equilibrium problems [3, 6] to illustrate the
practical value of the new perturbation bounds (1.1)–(1.7).
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STATISTICAL QUASI-NEWTON: A NEW LOOK AT LEAST
CHANGE∗

CHUANHAI LIU† AND SCOTT A. VANDER WIEL‡

Abstract. A new method for quasi-Newton minimization outperforms BFGS by combining
least-change updates of the Hessian with step sizes estimated from a Wishart model of uncertainty.
The Hessian update is in the Broyden family but uses a negative parameter, outside the convex range,
that is usually regarded as the safe zone for Broyden updates. Although full Newton steps based on
this update tend to be too long, excellent performance is obtained with shorter steps estimated from
the Wishart model. In numerical comparisons to BFGS the new statistical quasi-Newton (SQN)
algorithm typically converges with about 25% fewer iterations, functions, and gradient evaluations
on the top 1/3 hardest unconstrained problems in the CUTE library. Typical improvement on the
1/3 easiest problems is about 5%. The framework used to derive SQN provides a simple way to
understand differences among various Broyden updates such as BFGS and DFP and shows that
these methods do not preserve accuracy of the Hessian, in a certain sense, while the new method
does. In fact, BFGS, DFP, and all other updates with nonnegative Broyden parameters tend to
inflate Hessian estimates, and this accounts for their observed propensity to correct eigenvalues that
are too small more readily than eigenvalues that are too large. Numerical results on three new test
functions validate these conclusions.

Key words. BFGS, DFP, negative Broyden family, Wishart model

AMS subject classifications. 65K10, 90C53

DOI. 10.1137/040614700

1. Introduction. Quasi-Newton methods for unconstrained optimization are
important computational tools in many scientific fields and are a standard subject
in textbooks on computation. The BFGS method, proposed individually in [6], [14],
[20], and [30], is implemented in most optimization software and is widely recognized
as efficient. Generalizations of BFGS are available for large problems with memory
limitations, for problems with bound constraints, and for a parallel computing envi-
ronment. In theoretical investigations BFGS is known as a special case of the Broyden
class [5]. Some Broyden updates with negative Broyden parameters have been found
to produce faster convergence than BFGS updates [31], [8] but, for various reasons,
have not been widely adopted. Indeed, Byrd et. al. conclude that “practical al-
gorithms that preserve the excellent properties of the BFGS method are difficult to
design.” Nocedal and Wright [29] state that “the BFGS formula. . . is presently consid-
ered to be the most effective of all quasi-Newton updating formulae.” In our opinion,
BFGS remains the most popular front-runner because of two important unanswered
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questions: What is the “best” negative Broyden parameter? and What initial step
sizes should be used with negative Broyden parameters? This paper answers these
questions by solving a least-change problem to approximate Newton directions and
by estimating step sizes through a statistical model of Hessian uncertainty. We call
the new algorithm statistical quasi-Newton (SQN).

1.1. Quasi-Newton methods. Quasi-Newton methods solve the unconstrained
optimization problem

min
x

f(x), x ∈ Rn,

in which both the objective function f(x) and its gradient g(x) ≡ ∇f(x) are easy
to compute but Newton’s method is not applicable because direct evaluation of the
Hessian matrix G(x) ≡ ∇2f(x) is practically infeasible. Quasi-Newton methods build
up an approximate Hessian matrix using successive gradient evaluations. The general
method iterates between a minimization (M-) step consisting of a one-dimensional
search for a good point along an approximate Newton direction and an estimation
(E-) step consisting of an update to the Hessian estimate. A more specific definition
follows.

Generic quasi-Newton algorithm. Select a starting point x0 ∈ Rn and a symmet-
ric positive definite estimate, B0, of the Hessian matrix G(x0). Evaluate g0 = g(x0)
and iterate over k = 0, 1, 2, . . . the following two steps.
M-Step. Search in the direction −B−1

k gk for a step size sk > 0 to obtain a new
evaluation point and gradient,

xk+1 = xk − skB
−1
k gk, gk+1 = g(xk+1),

that satisfy the Wolfe conditions for sufficient decrease of the function and
for curvature (see (2) and (3) below).

E-Step. Estimate the Hessian matrix at xk+1 using the quantities Bk, xk, xk+1, gk,
and gk+1. The estimate, Bk+1, must be symmetric and positive definite and
must satisfy the quasi-Newton condition

(1) Bk+1δk = γk,

where

δk ≡ xk+1 − xk and γk ≡ gk+1 − gk.

Condition (1) requires the vector of estimated second derivatives in the current step
direction, Bk+1δk/sk, to agree with the corresponding numerical second derivatives
γk/sk. Various principles have been used to derive Hessian update formulae, but the
general goal has been to minimize the change from Bk to Bk+1 in some sense. This
paper derives an update that minimizes change in a canonical sense and provides a
model-based estimate for the step size sk.

The Wolfe conditions referenced in the M-step are two standard requirements to
ensure that sufficient progress is made toward the optimum even when the line search
is not required to find the exact minimum in the given search direction. The Wolfe
sufficient decrease condition,

(2) f(xk+1) ≤ f(xk) − ρ1skg
′
kB

−1
k gk (ρ1 ∈ (0, 1), say ρ1 = 10−4),
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requires a reduction in f(x) that is at least a fraction ρ1 of that predicted by the
directional derivative −gkB

−1
k gk. The Wolfe strong curvature condition,

(3) |g′k+1(B
−1
k gk)| ≤ ρ2g

′
k(B

−1
k gk) (ρ2 ∈ (ρ1, 1), say ρ2 = 0.9),

requires at least a proportional decrease in the magnitude of the derivative in the
search direction. Some algorithms impose a weaker curvature condition in which the
absolute value is removed from the left-hand side of (3). Nocedal and Wright [29]
discuss the importance of the Wolfe conditions in ensuring that sufficient progress is
made on each iteration.

The best-known class of Hessian estimates used in the E-step are the rank-two
Broyden updates [5]:

(4) Bk+1 = Bk − Bkδkδ
′
kBk

δ′kBkδk
+

γkγ
′
k

δ′kγk
+ ckωkω

′
k,

where

(5) ωk ≡ γk
δ′kγk

− Bkδk
δ′kBkδk

and ck is a scalar parameter to be specified. The usual parameterization takes ck =
φk (δ′kBkδk), where φk is known as the Broyden parameter. However, our exposition
is more natural with the parameterization

(6) ck = (λk − 1) (δ′kγk) ,

where the parameter λk is shown in section 3 to regulate the inflation of Bk+1 relative
to Bk. BFGS is the Broyden update with λk = 1 (i.e., φk = ck = 0).

There is a critical value λc
k such that Bk+1 is positive definite for any λk > λc

k ≡
1 − r−1

k , where

(7) rk ≡ γ′
kB

−1
k γk

γ′
kδk

− δ′kγk
δ′kBkδk

.

It can be shown that rk ≥ 0 by making use of the curvature condition (3) and the
Cauchy–Schwarz inequality. If rk = 0, then λc

k is taken to be −∞.

1.2. Preview of SQN. The SQN method is remarkably simple and effective.
This section briefly defines SQN and demonstrates its superiority to BFGS. Deriva-
tions and additional experimental results are provided in the following sections.

SQN algorithm. Follow the generic quasi-Newton algorithm with the following
additional specifications. Initialize ŝ0 = 1.
M-Step. Begin the line search from an initial evaluation point xk − ŝkB

−1
k gk.

E-Step. Estimate the Hessian using a Broyden update (4)–(6) with parameter

(8) λk = max{0, 1 − (1 − ε)r−1
k },

where ε is a small positive constant (e.g., ε = 10−6) and if rk = 0, the max is
taken to be 0. Estimate the next step size as

(9) ŝk+1 =
g′k+1B

−1
k+1gk+1

g′k+1B
−1
k+1gk+1 + (1 − λk)(δ′kγk)(g

′
k+1B

−1
k+1ωk)2

< 1.
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Fig. 1. Improvement in SQN efficiency with problem difficulty for iterations, function evalua-
tions, and gradient evaluations. Each point represents performance of SQN and BFGS on a given
problem from the standard starting point.

All the quantities needed to calculate ŝk+1 are readily available from the preceding
M-step with no extra function or gradient evaluations required. Using ε > 0 guaran-
tees that Bk+1 remains positive definite. The Broyden parameter corresponding to λk

is φk = (λk − 1) (δ′kγk) / (δ′kBkδk), and this is negative because (3) implies δ′kγk > 0.
Equation (9) is written in terms of the inverse Hessian estimate because Broyden
updates are typically implemented on the inverse scale using the well-known dual
form of (4). Similarly, Bkδk = −skgk can be substituted into (7) for computational
efficiency. See, for example, [29].

The shortened initial step size, ŝk, is crucial to improving the performance of
Broyden updates with negative Broyden parameters. Zhang and Tewarson [31] use
ŝ = 1 and comment that their negative Broyden algorithm improves iteration counts
but that “less or no savings are achieved on the number of function evaluations”
because initial steps are often too long to provide a sufficient decrease in the function
value. SQN corrects this problem by effectively estimating the optimal step size for
the given search direction.

Figure 1 shows that SQN typically converges with substantially fewer iterations
and function evaluations than BFGS on 248 unconstrained optimization problems in
the CUTE [3] suite. The left panel plots SQN iterations as a percent of BFGS it-
erations against BFGS iterations. The right panel shows the same information for
function evaluations. SQN becomes more efficient relative to BFGS on the more diffi-
cult problems, as additional iterations offer additional opportunities for improvement.
Performance on easy problems with few iterations is often dominated by the first iter-
ation in which a poor choice of B0 produces a poor search vector for any quasi-Newton
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Table 1

Median percent improvement of SQN relative to BFGS by difficulty of problem.

Easy Medium Hard
Iterations 8 14 26

Function evaluations 4 9 23

algorithm. In harder problems these start-up effects wash out so that the advantage
of SQN over BFGS becomes more apparent. The trend curves in Figure 1 highlight
this tendency. The smooth curves are robust local regressions [11] that follow the
data without being unduly influenced by the low outlying points that would tend to
make the trends even stronger.

Table 1 summarizes the improvement by splitting the test problems into three
equal groups, easy, medium, and hard, according to the number of iterations for
BFGS to converge. SQN’s median improvement over BFGS is largest for the hardest
1/3 of the test problems, 25% in round numbers.

Our setup uses the line search [28] available from Argonne National Lab at
ftp://info.mcs.anl.gov/pub/MINPACK-2/csrch in MINPACK-2. This line search eval-
uates the function value and gradient an equal number of times. The starting point
x0 is as given in the CUTE collection, and the initial Hessian estimate is B0 = c · In,
where c is the geometric mean of the positive diagonal elements of the true Hessian
at x0. This is similar to the usual choice of B0 = In, but scaling by c provides a more
fair comparison because the true Hessian at x0 tends to be much larger than In on
the CUTE problems, and this gives an unfair advantage to BFGS, which has a bias
toward inflating the Hessian estimate, as explained in section 3 below. For each test
problem and starting point both SQN and BFGS are run until no valid step is found
due to finite numerical precision. Then the best point x∗ achieved by either algorithm
is identified, and convergence is retrospectively declared at the first k for which
(10)
[f(xk) − f(x∗)] + |(xk − x∗)

′g(x∗)|+ |(xk − x∗)
′G(x∗)(xk − x∗)| < 10−9 [1 + |f(x∗)|] .

This generalization of the assessment criterion [19] ensures that both the optima and
the optimizers match.

The comparisons reported in Figure 1 and Table 1 are based on 248 problems in
the CUTE collection. The test set consists of all unconstrained problems with maxi-
mum dimension of 500 that have continuous analytic second derivatives and compile
with the default “large” version of the CUTE software. Of the 306 that fit these cri-
teria, 15 appear to start at the optimum, 23 converge to a better local minimum with
SQN than with BFGS, and 20 converge to a better minimum with BFGS. Removing
these 58 cases leaves 248 test problems that support clean comparisons between SQN
and BFGS.

We also conducted an initial study of the SQN algorithm, patterned after [31]
using 20 of the test problems [27], each with 10 starting points. The results were
similar: about 20% fewer iterations and gradient evaluations and about 10% fewer
function evaluations compared to BFGS. This initial study used Fletcher’s line search
algorithm [15] with the tunable parameters set as suggested and utilizing his “sensible”
choices for trial step lengths based on minimizing interpolating polynomials.

SQN compares favorably to other studies that have used negative Broyden pa-
rameters. Zhang and Tewarson [31] report 21% and 13% fewer iterations for their
SDQN method relative to BFGS on problems of small and “increasing” dimension,
respectively. However, their improvements were smaller using the EFE metric that
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incorporates the number of function evaluations. Byrd, Liu, and Nocedal [8] report
improvements of 18% on iterations and 12% on function evaluations for a smaller set
of tests using their Method I, which is not practical as a quasi-Newton update because
it requires evaluation of G(x).

The remainder of the article is arranged as follows. Section 2 gives a select history
of ideas in quasi-Newton development with emphasis on the least-change principle
and argues for a particular scale-free matrix as the most appropriate measure of the
change between consecutive Hessian estimates. Section 3 introduces a transformation
into canonical coordinates, derives (4)–(8) as the new least-change update, and shows
that it preserves Hessian accuracy from one iteration to the next in a certain sense.
Section 4 introduces a Wishart model to describe Hessian uncertainty and derives (9)
as an estimate of the optimal step size. Section 5 compares performance on three new
test functions designed to verify our understanding of why SQN is better than other
Broyden methods. Section 6 explores connections to other least-change derivations
and mentions ideas for future research.

2. Least-change updates. Fletcher’s overview [17] of methods for unconstrained
optimization is an excellent introduction to the huge literature on quasi-Newton meth-
ods. This section briefly reviews the historical ideas that led to the least-change
principle on which the most influential quasi-Newton methods are based. A line of
reasoning is then given to suggest a certain relative-change matrix as being the most
appropriate measure of change for the goal of approximating Newton search direc-
tions. This leads to the SQN update that was introduced in section 1.2. Although
the SQN update happens to be in the Broyden class, it is derived in section 3 by
minimizing change over all possible quasi-Newton updates.

2.1. Historical developments. Crockett and Chernoff [12] stated the idea of
building up a Hessian estimate iteratively so as to approximate the Newton method:

. . ., it is possible to obtain, from the successive approximations, cer-
tain relevant information about terms of order higher than those ac-
tually computed, and to conveniently use this information to improve
the rate of convergence.

The basic idea of Broyden [4] as articulated in [7] was that the Hessian update “should
therefore require, if possible,. . ., no change to Bk in any direction orthogonal to δk.”
Broyden was solving a system of differential equations, and his mathematical formu-
lation [Bk+1δk = γk and (Bk+1 − Bk)q = 0 ∀q : q′δk = 0] produces an asymmetric
update that is not appropriate for the problem min f(x).

Taking a more mathematical approach, Broyden [5] dropped the “orthogonality”
part of his original intuition and sought instead a low-rank Hessian update. This led
to the Broyden class (4) of symmetric rank-two updates. Subsequent researchers also
focused on making small modifications to the Hessian without explicit concern for the
space orthogonal to the search direction. Greenstadt [21], for example, wrote,

Let us ask for the “best” correction in some sense. There are many
possible choices to make, but a good one is to ask for the smallest
correction, in the sense of some norm. To a certain extent, this
would tend to keep the elements of [B−1

k ] from growing too large,
which might cause an undesirable instability.

The extensive review [25] emphasizes the importance of the least-change principle in
deriving many of the most effective quasi-Newton methods.

The important special case of a Broyden update with λk = 1 is called BFGS after
the four authors who individually published the update formula in 1970. Goldfarb [20]
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worked with the scaled difference of inverse Hessian estimates

(11) E∗
W ≡ W 1/2

(
B−1

k+1 −B−1
k

)
W 1/2,

where the symmetric matrix W satisfies Wδk = γk. He derived the BFGS update by

using the results in [21] to minimize the Frobenius norm ‖E∗
W ‖F ≡ [tr (E∗

WE∗
W )]

1/2

over the class of symmetric matrices Bk+1 that satisfy the Newton condition (1).
Thus, BFGS is a least-change update. But the metric of change is important. For
example, using the same W but minimizing the Frobenius norm of

(12) EW ≡ W−1/2 (Bk+1 −Bk)W
−1/2

produces the Broyden update with λk = 1+δ′kBkδk/(δ
′
kγk). This is known as DFP [13],

[18] and is generally regarded as inferior to BFGS.
Fletcher [14] advocated restricting attention to Broyden updates that are convex

combinations of the BFGS and DFP updates because such updates satisfy a monotone
eigenvalue property when used to minimize quadratic functions. Recently, however,
various choices of negative Broyden parameters (φk < 0 corresponding to λk < 1) have
been studied. See, for example, [31], [8], [23], [17], and [26]. These authors report
that negative Broyden parameters can reduce iteration counts, although in some cases
this comes at the cost of increased numbers of function evaluations. The potential
for improvement relative to BFGS seems to be best if the initial Hessian estimate is
much too large. Robust improvement over BFGS has been elusive. Indeed, Zhang
and Tewarson [31] concluded that such investigations have not shaken the position of
BFGS as the most popular front-runner.

2.2. A new measure for least change. Minimizing the change from Bk to
Bk+1 is a generally accepted principle. There is no agreement, however, on how to
measure that change. Zhao [32] derives 10 different optimal updates by considering
five possible matrix norms applied to two different matrices that measure change. The
function for measuring change is empirically important: BFGS outperforms DFP even
though the two are least-change duals derived from E∗

W and EW , respectively.
A sensible matrix measure of change that has received little attention in the

literature is the difference Bk+1 −Bk scaled by the current estimate Bk, namely

(13) EB ≡ B
−1/2
k (Bk+1 −Bk)B

−1/2
k .

Normalizing a difference is appropriate because, in every direction, EB measures
change of the Hessian estimate relative to current nominal value, and this produces a
scale-free method. Greenstadt [22] states that such normalization “renders harmless
the accidents of coordinate selection in a given problem.” One possible danger in mak-
ing EB small is that Bk+1 could become singular (or even indefinite if allowed), and
this could produce unstable quasi-Newton search vectors, based on B−1

k+1. However,
applying no direct penalty to large differences on the inverse scale is more aggressive
than BFGS, in the same spirit as employing negative values of the Broyden parameter.
In fact, the next section will demonstrate that minimizing ‖EB‖F produces exactly a
negative Broyden update.

Interestingly, minimizing EB (with respect to commonly used scalar measures of
matrices) is equivalent to minimizing

(14) E∗
B ≡ B

1/2
k+1(B

−1
k −B−1

k+1)B
1/2
k+1
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because E∗
B and EB have the same eigenvalues, as shown in Appendix C. The matrix

E∗
B scales the difference in inverse estimates by the still-to-be-determined update.

Greenstadt [21] minimized a weighted change of the inverse estimates. In deriving
BFGS, Goldfarb [20] writes, “If, instead, [Bk+1] is substituted for [the weight matrix]
in [Greenstadt’s result], then [BFGS] is obtained.” Although this sounds like mini-
mizing E∗

B , Goldfarb in fact minimized E∗
W with a fixed weight matrix that satisfied

the quasi-Newton condition required of Bk+1, namely Wδk = γk. SQN, on the other
hand, can be viewed as directly using the unknown Bk+1 as the weight matrix in
Greenstadt’s objective function.

3. SQN: Least relative change. The form of EB in (13) as a measure of change

motivates transforming the coordinates of x by B
1/2
k so that the problem of updating

the Hessian estimate takes a simple form. This section uses Broyden’s original idea of
making no change to the portion of Bk that is orthogonal to δk but applies the idea
in a transformed coordinate system.

As the focus is on the kth step of the quasi-Newton algorithm, the notation is
streamlined from this point forward by dropping subscripts k and replacing subscripts
k + 1 by “+.”

3.1. Canonical coordinates. For conceptual convenience, at the kth iteration
transform x in such a way that the line search is along the first component direc-
tion and the current Hessian estimate B transforms to the identity matrix. This is
accomplished by the linear transformation

(15) x̃ = U ′B1/2x,

where U is an orthonormal rotation matrix with the first column equal to B1/2δ
(δ′Bδ)−1/2. In the transformed space the current step is strictly along the first com-
ponent direction:

x̃+ − x̃ = (δ′Bδ)1/2(1, 0, . . . , 0)′.

The objective function and gradient become

f̃(x̃) ≡ f(x) and g̃(x̃) ≡ ∇f̃(x̃) = U ′B−1/2g(x),

and the transformed Hessian is

(16) G̃(x̃) ≡ ∇2f̃(x̃) = U ′B−1/2G(x)B−1/2U.

Substituting the estimated Hessian B for G(x) in (16) produces the transformed
estimate B̃ = In, the n-dimensional identity matrix.

3.2. Observed and missing information. Define second-order numerical deri-
vatives of f̃(x̃) along the search direction as

(17)

[
a
b

]
≡ g̃(x̃+) − g̃(x̃)

(1, 0, . . . , 0)(x̃+ − x̃)
=

U ′B−1/2γ

(δ′Bδ)1/2
,

where the first element a is a scalar and b is an (n− 1)-dimensional vector. The cur-
vature condition (3) implies that a ≥ (1−ρ2)/s > 0. The quasi-Newton condition (1)
is equivalent to the intuitive idea that the numerical derivatives (17) form the first
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column of the updated Hessian matrix. Since the Hessian is symmetric, the general
form of update in transformed coordinates becomes

(18) B̃+ =

[
a b′

b C

]
,

where symmetric C is to be determined subject only to the constraint B̃+ > 0, which
is equivalent to C − a−1bb′ > 0. (The notation M > 0 indicates that the matrix M
is positive definite.) C represents curvature in the complimentary space, that is, the
space canonically orthogonal to the current search direction.

Following Broyden’s idea that no information is gained in directions orthogonal
to δ suggests the updating scheme obtained by taking C = In−1 if doing so produces
B̃+ > 0, i.e., if a > b′b. But, what does one do if a ≤ b′b? The question itself implies
that certain information on C is provided by the observed data (a, b) along with the
assumption that the Hessian matrix is positive definite. In general, C should be a
function of a and b.

The following theorem provides the least-change update based on the Frobenius
norm of EB .

Theorem 1 (SQN update). The quasi-Newton update that minimizes ‖EB‖F
(and hence also ‖E∗

B‖F ) subject to (1) and B+ ≥ 0 has canonical form

(19) B̃+ =

[
a b′

b In−1 + λSQN bb′/a

]
,

where, for r̃ ≡ b′b/a,

(20) λSQN =

{
0 if r̃ ≤ 1,
1 − r̃−1 otherwise.

B̃+ is singular for r̃ ≥ 1.
Proof. Appendix C implies that ‖EB‖F = ‖E∗

B‖F :

‖EB‖2
F =

∥∥∥B−1/2 (B+ −B)B−1/2
∥∥∥2

F
=

∥∥∥U ′B−1/2B+B
−1/2U − In

∥∥∥2

F
=

∥∥∥B̃+ − In

∥∥∥2

F

= tr

([(
a b′

b C

)
− I

] [(
a b′

b C

)
− I

])
= tr

(
Φ2

)
− 2tr (Φ) + 2b′Φb/a + (a + r̃)(a + r̃ − 2) + n,

where Φ ≡ C − bb′/a and we have used B̃+ = U ′B−1/2B+B
−1/2U from (16). B+ ≥ 0

is equivalent to Φ ≥ 0 so that minimizing ‖EB‖F over B+ ≥ 0 is equivalent to
minimizing the first three terms of the final expression over Φ ≥ 0.

Denote the eigenvalues of Φ by 0 ≤ η1 ≤ · · · ≤ ηn. Then

(21) tr
(
Φ2

)
− 2tr (Φ) + 2b′Φb/a ≥

∑
i

η2
i − 2

∑
i

ηi + 2η1b
′b/a

with equality if and only if the first eigenvector of Φ is proportional to b. The right-
hand side of (21) is minimized by η2 = · · · = ηn = 1 and

η1 = max {0, 1 − r̃} .



STATISTICAL QUASI-NEWTON 1275

Thus, the left-hand side of (21) is minimized by a matrix with the specified eigenvalues
and first eigenvector equal to b/

√
b′b. The required matrix is

Φ = I +

[
max {0, 1 − r̃} − 1

r̃

]
bb′

a
,

and this corresponds to the optimal C given in the theorem.

Theorem 1 demonstrates that making no change in the complementary space
(i.e., C = In−1) does, in fact, produce a least-change update. The theorem also
provides a larger estimate for C when needed to preserve nonnegative definiteness.
Our implementation of SQN uses a safeguarded choice of λSQN to prevent the Hessian
estimate from becoming singular. See (8).

Behind the intuition that one should make small alterations to the Hessian esti-
mate in the complementary space lies a principle that accuracy obtained on previous
iterations should be preserved as much as possible. The following proposition demon-
strates that the SQN update achieves the goal of preserving Hessian accuracy in a
certain sense.

Proposition 1 (SQN accuracy preservation). If the true Hessian in canonical
coordinates is positive definite and given by

(22) B̃+ =

[
a b′

b Ctrue

]
,

then CSQN ≡ In−1 + λSQNbb
′/a is at least as accurate as In−1 for estimating Ctrue

in any direction either parallel to b or orthogonal to b. That is,

(23)
∣∣∣u′

(
CSQN − Ctrue

)
u
∣∣∣ ≤

∣∣∣u′
(
In−1 − Ctrue

)
u
∣∣∣

for any u such that either u′b = 0 or u ∝ b. Furthermore, this is not necessarily true
for any larger estimate Ĉ = CSQN + V V ′, where V is any nonzero matrix with n− 1
rows.

See Appendix A for a proof.

The following proposition provides the canonical form for the well-known Broyden
family and shows that SQN updates are particular members.

Proposition 2 (canonical Broyden updates). Under the canonical transform (15)
the Broyden update (4) transforms to

(24) B̃+ =

[
a b′

b In−1 + λbb′/a

]
,

where λ = 1 + c/(δ′γ). In particular, the usual Broyden parameter is φ = (λ − 1)a,
and important special cases are given as follows:

Method λ φ
SQN max{0, 1 − r̃−1} max{−a,−ar̃−1}
BFGS 1 0
DFP 1 + a−1 1

,

where if r̃ = 0, the max is taken to be the first argument.
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See Appendix B for a proof. The proof also provides formulae for a and b in terms
of the usual quantities δ, γ, and B and shows that r̃ = r, where r̃ = b′b/a is defined
in Theorem 1 and r is given in (7).

Although BFGS minimizes several different measures of change [16], Proposition 2
indicates that BFGS increases the lower right block (λ > 0) over its previous value of
In−1, whereas SQN leaves it unchanged if possible, or adds a fraction of the BFGS cor-
rection in order to preserve positive semidefiniteness. The conclusion of Proposition 1
is that neither BFGS nor DFP preserves accuracy of the previous Hessian estimate
(in the canonical sense of (23)) over a large class of directions. It is interesting that
DFP explodes as a becomes small.

4. Step size estimation. In trial experiments with the SQN update, we carried
out the quasi-Newton M-step using a line search in which the initial step size was
unity; that is, the line search used an initial evaluation point of x − ŝB−1g with
ŝ = 1, which is the Newton step under the assumption that B is the actual Hessian.
The experiments demonstrated that the SQN update tended to reduce the number
of iterations to convergence compared to BFGS but did not consistently reduce the
number of function evaluations required. Further investigation showed the reason:
unit steps are often too long when the SQN update is used. The steepest descent
method (SDQN) [31] also uses negative Broyden parameters, and they state, “SDQN
tends to give steps longer than BFGS steps, and therefore is more likely to violate the
[sufficient decrease] condition.” When unit steps are used, fewer iterations seem to
come with the price of more function evaluations per iteration. Some numerical results
with unit step sizes on SQN and other Broyden updates are reported in section 5.

Why do negative Broyden parameters produce steps that are too long? A rough
explanation is that a negative Broyden parameter produces a smaller Hessian estimate
than BFGS. Compare λ < 1 in Proposition 2 with λ = 1. A smaller B implies a
longer unit step −B−1g. Therefore, if unit steps are suitable for BFGS, then unit
steps may well be too long for use with negative Broyden parameters. This reasoning
is admittedly rough; it does not account for differences in the step direction and does
not provide guidance for selecting more appropriate step sizes. This section proposes
a Wishart model to describe uncertainty of the unknown Hessian and then derives
an estimate of the optimal step size as a function of the Broyden parameter used in
updating the Hessian. The SQN initial step size (9) is a special case.

4.1. A Wishart model for the Hessian matrix. The unknown Hessian G̃+ =
G̃(x̃+) can be modeled as a random matrix whose probability distribution quantifies
the plausibility of all possible canonical Hessians. It is reasonable to use a probability
model for this purpose because the true Hessian varies unpredictably from one quasi-
Newton iteration to the next and from one objective function to another. Therefore
G̃+ is never completely known. Furthermore, modeling G̃+ as a random matrix
provides a means of incorporating new curvature information obtained in a line search
and appropriately updating the distribution of the unknown Hessian. The updated
distribution is the key to determining what length of step should be taken in any
given direction.

Several properties are desirable for the distribution of G̃+. It should
(i) be centered at the previous estimate B̃ = In,
(ii) have probabilities that taper off toward zero for matrices far from In, and
(iii) describe equal uncertainty in every direction because, although G̃+ is likely

less uncertain in the directions of recent steps, these directions are not available for
use within the quasi-Newton framework.
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The simplest statistical model for symmetric positive definite matrices that has
the above properties is the Wishart distribution with expectation In:

(25) νG̃+ ∼ Wishartn (In, ν) ,

where ν ≥ n+1 is the degrees of freedom parameter. The distribution of G̃+ becomes
more concentrated around In as ν increases. See, e.g., [2] for the definition and prop-
erties of the Wishart family. The probability density function of G̃+ is proportional
to

(26)
∣∣∣G̃+

∣∣∣(ν−n−1)/2

exp
{
−ν

2
tr
(
G̃+

)}
.

Because (26) involves only G̃+ through its determinant and trace, any orthogonal
rotation, R′G̃+R where R′R = In, is distributed identically to G̃+. This directional
symmetry seems an appropriate requirement for modeling the Hessian in canonical
coordinates.

In the quasi-Newton framework, the first row and column of G̃+ are considered
to be known from the numerical second derivatives (17). Therefore

(27) G̃+ =

[
a b′

b C

]
,

where a and b are observed and C is not. Standard Wishart theory (see, e.g., [2])
provides the conditional distribution [C|a, b] through

ν

[
C − bb′

a

∣∣∣∣ a, b
]
∼ Wishartn−1 (In−1, ν − 1) .

The conditional expectation and mode are

E(C|a, b) =
ν − 1

ν
In−1 +

bb′

a
,(28)

Mode(C|a, b) =
ν

ν − n− 1
In−1 +

bb′

a
.(29)

The two multipliers on In−1 depend on the degrees of freedom, ν, and they differ
because the Wishart model is skewed toward large positive definite matrices. But
both coefficients approach unity as ν → ∞, the large-sample limit. Although ν could
be estimated from a and b, using the large-sample limit is an attractive simplification
that corresponds to modeling the current Hessian estimate as arbitrarily accurate
before observing a and b.

Comparing (28) and (29) to (24) in Proposition 2 shows that the large-sample con-
ditional expectation and mode under a Wishart model are exactly equal to the BFGS
update. Specifically, let B+(λ) denote the Broyden update (4)–(6) with parameter λ
and let B̃+(λ) denote the corresponding canonical form given by (24). Then

lim
ν→∞

E (G+|a, b) = B1/2U
[

lim
ν→∞

E
(
G̃+

∣∣∣ a, b)]U ′B1/2

= B1/2UB̃+(1)U ′B1/2

= B+(1),(30)

which is the BFGS update.
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Although (30) is the simplest statistical estimate of the Hessian, the SQN update
is a better choice for sequential Hessian estimation because it preserves accuracy
obtained in previous iterations (section 2.2 and Proposition 1). When estimating the
optimal step size, however, accuracy preservation is not a concern—an appropriate
step size in one iteration may or may not be appropriate in the next. Thus, while the
SQN Hessian update is derived to preserve accuracy, the SQN step size, derived in
the next section, uses conditional expectation to estimate the optimal step, given the
most recent curvature information.

4.2. Optimal step size. An estimate of the optimal step size for any given
Broyden update can be derived from the Wishart model. Let d+ represent an arbitrary
search direction to be taken in the M-step on iteration k + 1. A second-order Taylor
expansion of f(·) about the point x+ gives the quadratic approximation

(31) f(x+ + sd+) ≈ f(x+) + sd′+g+ +
s2

2
d′+G+d+

with optimum step size

(32) s∗ =
−d′+g+

d′+G+d+

obtained by differentiating (31) with respect to s and setting the result to zero. The
denominator of (32) involves the unknown Hessian, but an estimate of s∗ can be
obtained by replacing G+ with its large-sample conditional expectation from (30):

(33) lim
ν→∞

E (G+|a, b) = B+(1) = B+(λ) + (1 − λ)(δ′γ)ωω′,

where (4) has been used to express B+(1) in terms of a general Broyden update.
The resulting optimum step size is obtained by plugging (33) into (32) and taking
d+ = −B−1

+ (λ)g+, the next quasi-Newton step direction:

(34) ŝ(λ) =
g′+B

−1
+ (λ)g+

g′+B
−1
+ (λ)g+ + (1 − λ)(δ′γ)(g′+B

−1
+ (λ)ω)2

.

This is the step size formula (9) of the SQN algorithm. For BFGS (λ = 1), the
estimated optimum is ŝ(1) = 1, which suggests that unit steps may work better for
BFGS than for any other Broyden update.

Results comparing BFGS to the SQN algorithm using (34) are shown in Figure 1
and demonstrate that SQN achieves consistent reduction in function evaluations, as
well as iteration counts, compared to BFGS. Additional comparisons to SQN with
unit initial steps for three new test functions are reported next.

5. Results on three new test functions. The CUTE test problems have be-
come standard for comparing quasi-Newton algorithms, but they are not particularly
useful for empirically validating our claim that BFGS tends to inflate Bk and that
SQN is more neutral. This section uses three new test functions for that purpose.

It was found that BFGS is lopsided [8]: it can more readily increase Hessian es-
timates that are too small than shrink ones that are too large. This was surprising
in light of the strong “self-correcting” property of the BFGS update that was estab-
lished [10]: the relative error between the curvature predicted by Bk and the curvature
observed in the current line search is transmitted exactly to the relative change of the



STATISTICAL QUASI-NEWTON 1279

Table 2

Three test functions f(x) =
∑4

1 fi(xi) with simple Hessians.

fi(xi) Gii(x)

Anticipated

best λ
NOM

fdec : 1
2
x2
i + 1

12
η2
i x

4
i 1 + (ηixi)

2 negative

f inc : η−2
i

[
ηixi arctan(ηixi) − 1

2
ln(1 + η2

i x
2
i )
]

[1 + (ηixi)
2]−1 positive

f sin : 1
2
x2
i + η−2

i [ηixi − sin(ηixi)] 1 + sin(ηixi) near zero

determinant from |Bk| to |Bk+1|. Proposition 2, on the other hand, shows that BFGS
corrections actually inflate Bk in the space canonically orthogonal to the search di-
rection, whereas SQN corrections leave that part of the Hessian unchanged (subject
to positive definiteness) and therefore should cope equally well with estimates that
need to shrink as with ones that need to grow. Furthermore, choosing λk to be less
than 0 or greater than 1 should make these effects more pronounced.

To check this understanding, we employ three new test functions fdec, f inc, and
f sin with simple Hessians that respectively decrease, increase, and change sinusoidally
as xk moves in the direction of the optimum value. Each function has n = 4 dimensions
and has the form f(x) =

∑4
1 fi(xi). The functions are defined in Table 2, where

the values (η1, η2, η3, η4) ≡ (1, 2, 4, 8) scale how quickly curvature changes in each
coordinate direction. Each function is convex and has a diagonal Hessian with an ith
diagonal element as listed in the table. In each case the minimizer is x∗ = (0, 0, 0, 0),
f(x∗) = 0, and G(x∗) = I4.

For these functions we implement a range of Broyden updates with

λ = max
{
λNOM, 1 − (1 − ε)r−1

}
,

where λNOM is set between −2 and 3, ε = 10−6, and initial step sizes are given by (34).
Special cases are λNOM = 0 and 1, which correspond to SQN and BFGS, respectively.

The rationale for testing with functions whose Hessians change monotonically
(fdec, f inc) or unpredictably (f sin) is to verify our claim that BFGS needlessly inflates
the previous Hessian estimate whereas SQN treats it neutrally. With f inc, for example,
the most appropriate Hessian estimate in iteration k+1 will tend to be larger than in
iteration k. BFGS could have an advantage over SQN because it tends to inflate the
Hessian beyond its previous value in the complementary space. In this case, the best
choice of λNOM should be larger than 0 and possibly even larger than 1, the BFGS
value. For fdec, on the other hand, SQN should have the advantage over BFGS and
the optimal λNOM should be negative. For f sin, there is no consistent pattern for the
Hessian on one step compared to the previous step so that λNOM = 0 (i.e., SQN)
should be nearly optimal. In each case, more extreme values of λNOM should produce
more extreme effects.

5.1. Results for different λNOM. Figure 2 plots average counts to convergence
as a function of λNOM with each panel representing one of the new test functions. Each
plotted symbol represents an average count over 1000 random starting points. The
vertical scales are set to support relative comparisons, the most obvious of which is
that λNOM has the greatest effect for fdec and the least for f sin. Iterations, func-
tion evaluations, and gradient evaluations are shown using different plotting symbols.
Fletcher’s line search [15], as discussed in section 1.2, was used in this study. The
true value is used for the starting Hessian estimate, B0 = G(x0).
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Fig. 2. Performance counts versus λ
NOM

on test functions with Hessians that are decreasing,
increasing, and sinusoidal as xk moves toward the minimum. Different symbols are used for itera-
tions (× iter), function evaluations (• feval), and gradient evaluations ( ◦ geval). Initial steps are
estimated using (9). The special value λ

NOM
= 0 is SQN, and λ

NOM
= 1 is BFGS.

The starting points x0 were chosen at random in such a way that they tend to be
oriented in the direction of (η1, η2, η3, η4). Specifically, the ith component of x0 was
drawn randomly as

x0,i = Kηi(1 + zi/3),

where the zi are independent N(0, 1) random variables and the scale was set as K =
200 for fdec, K = 50 for f inc, and K = 1000‖η‖ for f sin. These choices reflect a
little experimentation aimed at producing differences between BFGS and SQN that
are large enough to be interesting without requiring unwieldy numbers of iterations.
As far as we know, other choices produce similar results, though we have not studied
this extensively. Convergence was declared when f(xk) < 10−10.

For fdec, Figure 2 demonstrates that SQN is indeed better able to cope with a
decreasing Hessian than BFGS, and further improvement is obtained by using slightly
negative values of λNOM. The situation is reversed for f inc. BFGS handles the in-
creasing Hessian better than SQN, and further improvement is obtained by taking
λNOM as large as 2. Finally, for f sin the Hessian changes arbitrarily, and the SQN
update (λNOM = 0) is nearly optimal.

Several additional comments on these results are worth noting. First, within each
panel all three curves have nearly the same shape. But on fdec function evaluations are
always equal to gradient evaluations, whereas function evaluations are substantially
higher on f inc and f sin. This indicates that the initial step size estimate is better
for fdec than for the other two functions because, with the Fletcher line search, if
initial step sizes are too large to produce a sufficient decrease in the function value,
then the function is reevaluated at additional trial steps with no gradient evaluations.
Second, for any λNOM < 1 some values of λk will likely exceed λNOM because of the
requirement that Bk+1 remain positive definite. This produces an asymmetry in the
results so that the performance differences between λNOM = −1 and 0 are not as
great as the differences between 0 and 1. In fact, our selection of starting points that
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Fig. 3. Function evaluation counts versus λ
NOM

for three test functions. The plots compare
performance with unit initial steps (u) against estimated initial steps (•) using (9). The dots in this
figure are the same as in Figure 2.

are biased in the direction of η was made to enhance the effect of λNOM below 1 on
f incand f sin. The patterns in Figure 2 are smooth because they average across 1000
starting points. If counts from a single starting point were plotted, the patterns for
f inc and f sin would be virtually impossible to discern because of noise in the data.
Thus, it would be meaningless to compare different choices of λNOM based on only a
few test cases.

5.2. Results for different step sizes. Figure 3 demonstrates the importance
of using estimated step sizes, especially with λNOM < 1. The experiment is the same
as in Figure 2, except that the algorithm was also run with unit initial step sizes. The
plots compare average function evaluation counts for unit initial steps against those
for estimated steps. In each panel, as λNOM decreases from 1 (BFGS), the unit initial
step results eventually become much worse than the results with estimated steps. The
same appears to be true as λNOM becomes positive and large. The curves intersect at
λNOM = 1 because the estimated step size is 1.

At λNOM = 0 (SQN) the results of Figure 3 are most revealing on f inc. In this case
the SQN Hessian estimate tends to be too small so that unit step sizes are too large.
Estimated step sizes are smaller and perform much better, although they may still be
too large, as indicated in Figure 2, by the gap between the number of function and
gradient evaluations. The only case where unit steps perform substantially better than
estimated ones is on f inc with 1 < λNOM < 3. These values of λNOM inflate the Hessian
estimates more than BFGS. We suspect that the inflated Hessians are producing
estimated steps that are too short. Significantly, estimated steps are uniformly better
than unit steps on f sin, for which Hessian changes are fairly unpredictable.

6. Discussion. This paper has investigated two estimation problems that arise
in the design of quasi-Newton algorithms: (1) estimation of Newton directions by
way of sequential updates to a Hessian estimate; and (2) estimation of the optimum
along a given search direction. SQN solves the two problems rather differently, using
a least-change principle for the Hessian update and a statistical model for the step
size. This raises the question of why the statistical model is not also used for the
Hessian update.
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Straightforward application of the Wishart model leads, in fact, to the BFGS
update as is seen in (30). Another derivation of BFGS is obtained by taking the
negative logarithm of the Wishart density (26), dividing by ν/2, and taking ν → ∞.
The result is the following function:

ψ(B̃+) ≡ tr
(
B̃+

)
− ln |B̃+|.

Fletcher [16] demonstrated that BFGS minimizes ψ(B̃+) = ψ(EB + I) = ψ(E∗
B + I),

where EB and E∗
B are defined in (13) and (14), respectively. Similarly DFP minimizes

ψ(B̃−1
+ ) = ψ((EB + I)−1) = ψ((E∗

B + I)−1). Once again, the measure of change is
influential.

We argue, however, that accuracy preservation (as measured by E∗
B and EB) is

more important than achieving the best one-step statistical estimate for the problem of
sequentially estimating the Hessian matrix; this leads to the least-change formulation
of Theorem 1. But the SQN update can also be derived from a statistical approach.
We first obtained it by combining the Wishart model (25) with a prior distribution
that strongly forced C toward the identity matrix. The prior was the statistical
embodiment of the least-change principle. Details of this derivation are omitted to
save space.

There is a fascinating historical connection that ties the relative change matrices
EB in (13) and E∗

B in (14) to BFGS, DFP, and the EI method [21] from which
Goldfarb [20] derived BFGS. E∗

W and EW in (11) and (12) are well-known duals that
measure change on the inverse and nominal scales and lead to the BFGS and DFP
updates, respectively. In the same sense, the dual of EB is

EI ≡ B
1/2
k

(
B−1

k+1 −B−1
k

)
B

1/2
k ,

which is the matrix that Greenstadt minimized. Therefore the SQN update derived
from EB and E∗

B is the dual of the EI update in the same sense that BFGS is the
dual of the older DFP method. Although Greenstadt did not constrain Bk+1 to
be positive definite, minimizing ‖EI‖F over positive semidefinite updates results in
truncating Greenstadt’s solution at the critical value of the Broyden parameter. E∗

B

was used in [1] to derive an optimally scaled BFGS update. Lukšan [24] generalized
the technique to the Broyden family. Specializing Lukšan’s result to the case of no
scaling produces λ = 0 for r < 1.

Use of a statistical framework to design a quasi-Newton method motivates several
interesting topics. The numerical results on three new test functions suggest that
information on the bias of previous Hessian estimates could be captured and used to
obtain a better update that uses either varying values of λNOM within the Broyden
family or a self-scaling update outside of the Broyden family. Use of the Wishart
model to estimate the optimal step size also suggests a more general class of quasi-
Newton methods obtained by searching not in the estimated Newton direction −B−1g
but rather in an alternate direction determined from the conditional distribution
[−G(x)−1g|a, b]. We have obtained promising results in some limited tests of these
ideas.

Appendix A. Proof of Proposition 1.
Proof. If r ≤ 1, then CSQN = In−1 and (23) holds as an equality for all u. Suppose

r > 1 so that CSQN = In−1 + (1 − r−1)a−1bb′. Then for any u : u′b = 0,

u′CSQNu = u′In−1u,
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and thus (23) holds as an equality. Suppose u = ρb for some ρ �= 0. Positive
definiteness of the true Hessian implies (Ctrue − a−1bb′) > 0, and thus

u′Ctrueu > a−1u′bb′u = ρ2(b′b)r

= u′CSQNu > ρ2(b′b) = u′In−1u > 0.

That is, in the direction of u, CSQN is closer to Ctrue than In−1 is, and this implies
that (23) holds as a strict inequality.

To prove the final statement, suppose that Ctrue = In−1 so that the right-
hand side of (23) equals zero and consider two cases as follows. First, suppose that
‖V ′b‖ > 0 and take u = ρb with ρ �= 0. Then

u′(Ĉ − Ctrue)u = ρ2b′
(
λa−1bb′ + V V ′) b > 0,

and (23) is violated. On the other hand, if ‖V ′b‖ = 0, then assume, without loss of
generality, that V has full column rank and take u = V (V ′V )−1y for some vector
y �= 0. Then u′b = y′(V ′V )−1V ′b = 0 but

u′(Ĉ − Ctrue)u = y′(V ′V )−1V ′(V V ′)V (V ′V )−1y = y′y > 0,

which violates (23).

Appendix B. Proof of Proposition 2.
Proof. Using (16), the relation between B+ and B̃+ is given by B+ = B1/2U

B̃+U
′B1/2. This can be expressed as follows:

B+ = B1/2U

[
a b′

b In−1 + λbb′/a

]
U ′B1/2

= B + B1/2U

[
a− 1 b′

b λbb′/a

]
U ′B1/2

= B + B1/2U(D1 + D2 + D3)U
′B1/2,(35)

where

D1 =

[
−1 0
0 0

]
, D2 =

[
a2/a b′

b bb′/a

]
, and D3 =

[
0 0
0 a(λ− 1)bb′/a2

]
.

Denote by U [, 1] the first column of U . Then

U [, 1] =
B1/2δ

(δ′Bδ)1/2
,

[
a
b

]
=

U ′B−1/2γ

(δ′Bδ)1/2
,

a =
δ′γ

δ′Bδ
, and r ≡ b′b

a
=

γ′B−1γ

δ′γ
− δ′γ

δ′Bδ
.

Simple algebraic operations lead to the following equalities:

B1/2UD1U
′B1/2 = −B1/2U [, 1](U [, 1])′B1/2 = −Bδδ′B

δ′Bδ
,

B1/2UD2U
′B1/2 =

1

a
B1/2U

[
a
b

]
[a, b′]U ′B1/2 =

γγ′

δ′γ
,
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and

B1/2UD3U
′B1/2 =

a(λ− 1)

a2
B1/2U

([
a
b

]
−
[
a
0

])([
a
b

]
−
[
a
0

])′
U ′B1/2

= (λ− 1)(δ′γ)

(
γ

δ′γ
− Bδ

δ′Bδ

)(
γ

δ′γ
− Bδ

δ′Bδ

)′
.

From these equalities and (35), we see that the expression for B+ is identical to (4)
with c = (λ− 1)(δ′γ).

Appendix C. Equivalence of change matrices EB and E∗
B. A scalar mea-

sure is required to define the “size” of the matrix EB defined in (13). Many of
the most common scalar measures depend only on eigenvalues—for example, trace,
determinant, spectral norm, Frobenius norm, and the ψ-function [9], ψ(EB + I) =
tr (EB + I) − ln |EB + I|.

Lemma 1. The eigenvalues of EB in (13) are identical to those of E∗
B in (14).

Also, the eigenvalues of EB + I are identical to those of E∗
B + I.

Proof. Let � denote equality of eigenvalues and note that PQ � QP for square
P and Q. Thus,

E∗
B � Bk+1

(
B−1

k −B−1
k+1

)
= (Bk+1 −Bk)B

−1
k � EB

and

E∗
B + I = B

1/2
k+1B

−1
k B

1/2
k+1 � B

−1/2
k Bk+1B

−1/2
k = EB + I.
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Abstract. Augmented Lagrangian methods with general lower-level constraints are consid-
ered in the present research. These methods are useful when efficient algorithms exist for solving
subproblems in which the constraints are only of the lower-level type. Inexact resolution of the
lower-level constrained subproblems is considered. Global convergence is proved using the con-
stant positive linear dependence constraint qualification. Conditions for boundedness of the penalty
parameters are discussed. The resolution of location problems in which many constraints of the
lower-level set are nonlinear is addressed, employing the spectral projected gradient method for
solving the subproblems. Problems of this type with more than 3 × 106 variables and 14 × 106

constraints are solved in this way, using moderate computer time. All the codes are available at
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1. Introduction. Many practical optimization problems have the form

Minimize f(x) subject to x ∈ Ω1 ∩ Ω2,(1.1)

where the constraint set Ω2 is such that subproblems of type

Minimize F (x) subject to x ∈ Ω2(1.2)

are much easier than problems of type (1.1). By this we mean that there exist efficient
algorithms for solving (1.2) that cannot be applied to (1.1). In these cases it is
natural to address the resolution of (1.1) by means of procedures that allow one to
take advantage of methods that solve (1.2). Several examples of this situation may
be found in the expanded report [3].

These problems motivated us to revisit augmented Lagrangian methods with arbi-
trary lower-level constraints. Penalty and augmented Lagrangian algorithms can take
advantage of the existence of efficient procedures for solving partially constrained sub-
problems in a natural way. For this reason, many practitioners in Chemistry, Physics,
Economics, and Engineering rely on empirical penalty approaches when they incor-
porate additional constraints to models that were satisfactorily solved by pre-existing
algorithms.

The general structure of augmented Lagrangian methods is well known [7, 22,
39]. An outer iteration consists of two main steps: (a) Minimize the augmented

∗Received by the editors March 22, 2006; accepted for publication (in revised form) April 3, 2007;
published electronically November 7, 2007. This work was supported by PRONEX-Optimization
(PRONEX - CNPq / FAPERJ E-26 / 171.164/2003 - APQ1), FAPESP (grants 2001/04597-4,
2002/00832-1, and 2003/09169-6), and CNPq.

http://www.siam.org/journals/siopt/18-4/65479.html
†Department of Applied Mathematics, IMECC, University of Campinas, CP 6065, 13081-

970 Campinas SP, Brazil (andreani@ime.unicamp.br, martinez@ime.unicamp.br, schuverd@
ime.unicamp.br).

‡Department of Computer Science IME, University of São Paulo, Rua do Matão 1010, Cidade
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Lagrangian on the appropriate “simple” set (Ω2 in our case); (b) update multipliers
and penalty parameters. However, several decisions need to be made in order to
define a practical algorithm. In this paper we use the Powell–Hestenes–Rockafellar
(PHR) augmented Lagrangian function [33, 40, 42] (see [8] for a comparison with other
augmented Lagrangian functions), and we keep inequality constraints as they are,
instead of replacing them by equality constraints plus bounds. So, we pay the price of
having discontinuous second derivatives in the objective function of the subproblems
when Ω1 involves inequalities.

A good criterion is needed for deciding that a suitable approximate subproblem
minimizer has been found at step (a). In particular, one must decide whether sub-
problem minimizers must be feasible with respect to Ω2 and which is the admissible
level of infeasibility and lack of complementarity at these solutions. (Bertsekas [6]
analyzed an augmented Lagrangian method for solving (1.1) in the case in which the
subproblems are solved exactly.) Moreover, simple and efficient rules for updating
multipliers and penalty parameters must be given.

Algorithmic decisions are taken looking at theoretical convergence properties and
practical performance. Only experience tells one which theoretical results have prac-
tical importance and which do not. Although we recognize that this point is contro-
versial, we would like to make explicit here our own criteria:

1. External penalty methods have the property that, when one finds the global
minimizers of the subproblems, every limit point is a global minimizer of the
original problem [24]. We think that this property must be preserved by the
augmented Lagrangian counterparts. This is the main reason why, in our
algorithm, we will force boundedness of the Lagrange multipliers estimates.

2. We aim for feasibility of the limit points, but, since this may be impossible
(even an empty feasible region is not excluded), a “feasibility result” must say
that limit points are stationary points for some infeasibility measure. Some
methods require that a constraint qualification hold at all the (feasible or
infeasible) iterates. In [15, 47] it was shown that, in such cases, convergence
to infeasible points that are not stationary for infeasibility may occur.

3. Feasible limit points that satisfy a constraint qualification must be KKT.
The constraint qualification must be as weak as possible. Therefore, under
the assumption that all the feasible points satisfy the constraint qualification,
all the feasible limit points should be KKT.

4. Theoretically, it is impossible to prove that the whole sequence generated by a
general augmented Lagrangian method converges, because multiple solutions
of the subproblems may exist and solutions of the subproblems may oscillate.
However, since one uses the solution of one subproblem as the initial point
for solving the following one, the convergence of the whole sequence generally
occurs. In this case, under suitable local conditions, we must be able to prove
that the penalty parameters remain bounded.

In other words, the method must have all the good global convergence properties
of an external penalty method. In addition, when everything “goes well,” it must
be free of the asymptotic instability caused by large penalty parameters. Since we
deal with nonconvex problems, the possibility of obtaining full global convergence
properties based on proximal-point arguments is out of the question.

The algorithm presented in this paper satisfies those theoretical requirements. In
particular, we will show that, if a feasible limit point satisfies the constant positive
linear dependence (CPLD) condition, then it is a KKT point. A feasible point x
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of a nonlinear programming problem is said to satisfy CPLD if the existence of a
nontrivial null linear combination of gradients of active constraints with nonnegative
coefficients corresponding to the inequalities implies that the gradients involved in
that combination are linearly dependent for all z in a neighborhood of x. The CPLD
condition was introduced by Qi and Wei [41]. In [4] it was proved that CPLD is a
constraint qualification, being strictly weaker than the linear independence constraint
qualification (LICQ) and than the Mangasarian–Fromovitz constraint qualification
(MFCQ) [36, 43]. Since CPLD is weaker than (say) LICQ, theoretical results saying
that if a limit point satisfies CPLD then it satisfies KKT are stronger than theoretical
results saying that if a limit point satisfies LICQ then it satisfies KKT.

Most practical nonlinear programming methods published after 2001 rely on (a
combination of) sequential quadratic programming (SQP), Newton-like, or barrier
approaches [1, 5, 14, 16, 18, 19, 26, 27, 28, 29, 35, 38, 44, 45, 46, 48, 49, 50]. None of
these methods can be easily adapted to the situation described by (1.1)–(1.2).

In the numerical experiments we will show that, in some very large scale location
problems, using a specific algorithm for convex-constrained programming [11, 12, 13,
23] for solving the subproblems in the augmented Lagrangian context is much more
efficient than using a general purpose method. We will also show that Algencan

(the particular implementation of the algorithm introduced in this paper for the case
in which the lower-level set is a box [9]) seems to converge to global minimizers more
often than Ipopt [47, 48].

This paper is organized as follows. A high-level description of the main algorithm
is given in section 2. The rigorous definition of the method is in section 3. Section 4
is devoted to global convergence results. In section 5 we prove boundedness of the
penalty parameters. In section 6 we show the numerical experiments. Conclusions
are given in section 7.

Notation. We denote R+ = {t ∈ R | t ≥ 0}, N = {0, 1, 2, . . .}, ‖ · ‖ as an
arbitrary vector norm, and [v]i as the ith component of the vector v. If there is
no possibility of confusion we may also use the notation vi. For all y ∈ R

n, y+ =
(max{0, y1}, . . . ,max{0, yn})T . If F : R

n → R
m, F = (f1, . . . , fm)T , we denote

∇F (x) = (∇f1(x), . . . ,∇fm(x)) ∈ R
n×m. If K = {k0, k1, k2, . . .} ⊂ N (kj+1 >

kj for all j), we denote limk∈K xk = limj→∞ xkj .

2. Overview of the method. We will consider the following nonlinear pro-
gramming problem:

Minimize f(x) subject to h1(x) = 0, g1(x) ≤ 0, h2(x) = 0, g2(x) ≤ 0,(2.1)

where f : R
n → R, h1 : R

n → R
m1 , h2 : R

n → R
m2 , g1 : R

n → R
p1 , g2 : R

n → R
p2 .

We assume that all these functions admit continuous first derivatives on a sufficiently
large and open domain. We define Ω1 = {x ∈ R

n | h1(x) = 0, g1(x) ≤ 0} and
Ω2 = {x ∈ R

n | h2(x) = 0, g2(x) ≤ 0}.
For all x ∈ R

n, ρ > 0, λ ∈ R
m1 , μ ∈ R

p1

+ , we define the augmented Lagrangian
with respect to Ω1 [33, 40, 42] as

L(x, λ, μ, ρ) = f(x) +
ρ

2

m1∑
i=1

(
[h1(x)]i +

λi

ρ

)2

+
ρ

2

p1∑
i=1

(
[g1(x)]i +

μi

ρ

)2

+

.(2.2)

The main algorithm defined in this paper will consist of a sequence of (approx-
imate) minimizations of L(x, λ, μ, ρ) subject to x ∈ Ω2, followed by the updating of
λ, μ, and ρ. A version of the algorithm with several penalty parameters may be found
in [3]. Each approximate minimization of L will be called an outer iteration.
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After each outer iteration one wishes for some progress in terms of feasibility
and complementarity. The infeasibility of x with respect to the equality constraint
[h1(x)]i = 0 is naturally represented by |[h1(x)]i|. The case of inequality constraints
is more complicated because, besides feasibility, one expects to have a null multi-
plier estimate if gi(x) < 0. A suitable combined measure of infeasibility and non-
complementarity with respect to the constraint [g1(x)]i ≤ 0 comes from defining
[σ(x, μ, ρ)]i = max{[g1(x)]i,−μi/ρ}. Since μi/ρ is always nonnegative, it turns out
that [σ(x, μ, ρ)]i vanishes in two situations: (a) when [g1(x)]i = 0; and (b) when
[g1(x)]i < 0 and μi = 0. So, roughly speaking, |[σ(x, μ, ρ)]i| measures infeasibility and
complementarity with respect to the inequality constraint [g1(x)]i ≤ 0. If, between
two consecutive outer iterations, enough progress is observed in terms of (at least
one of) feasibility and complementarity, the penalty parameter will not be updated.
Otherwise, the penalty parameter is increased by a fixed factor.

The rules for updating the multipliers need some discussion. In principle, we adopt
the classical first-order correction rule [33, 40, 43], but, in addition, we impose that
the multiplier estimates must be bounded. So, we will explicitly project the estimates
on a compact box after each update. The reason for this decision was already given
in the introduction: we want to preserve the property of external penalty methods
that global minimizers of the original problem are obtained if each outer iteration
computes a global minimizer of the subproblem. This property is maintained if the
quotient of the square of each multiplier estimate over the penalty parameter tends
to zero when the penalty parameter tends to infinity. We were not able to prove that
this condition holds automatically for usual estimates and, in fact, we conjecture that
it does not. Therefore, we decided to force the boundedness condition. The price paid
for this decision seems to be moderate: in the proof of the boundedness of penalty
parameters we will need to assume that the true Lagrange multipliers are within the
bounds imposed by the algorithm. Since “large Lagrange multipliers” are a symptom
of “near-nonfulfillment” of the MFCQ, this assumption seems to be compatible with
the remaining ones that are necessary to prove penalty boundedness.

3. Description of the augmented Lagrangian algorithm. In this section
we provide a detailed description of the main algorithm. Approximate solutions of
the subproblems are defined as points that satisfy the conditions (3.1)–(3.4) below.
These formulae are relaxed KKT conditions of the problem of minimizing L subject
to x ∈ Ω2. The first-order approximations of the multipliers are computed at Step 3.
Lagrange multipliers estimates are denoted λk and μk, whereas their safeguarded
counterparts are λ̄k and μ̄k. At Step 4 we update the penalty parameters according
to the progress in terms of feasibility and complementarity.

Algorithm 3.1. Let x0 ∈ R
n be an arbitrary initial point. The given parameters

for the execution of the algorithm are τ ∈ [0, 1), γ > 1, ρ1 > 0, −∞ < [λ̄min]i ≤
[λ̄max]i < ∞ for all i = 1, . . . ,m1, 0 ≤ [μ̄max]i < ∞ for all i = 1, . . . , p1, [λ̄1]i ∈
[[λ̄min]i, [λ̄max]i] for all i = 1, . . . ,m1, [μ̄1]i ∈ [0, [μ̄max]i] for all i = 1, . . . , p1. Finally,
{εk} ⊂ R+ is a sequence of tolerance parameters such that limk→∞ εk = 0.

Step 1. Initialization. Set k ← 1. For i = 1, . . . , p1, compute [σ0]i = max{0, [g1(x0)]i}.
Step 2. Solving the subproblem. Compute (if possible) xk ∈ R

n such that there
exist vk ∈ R

m2 , uk ∈ R
p2 satisfying

∥∥∥∥∥∇L(xk, λ̄k, μ̄k, ρk) +

m2∑
i=1

[vk]i∇[h2(xk)]i +

p2∑
i=1

[uk]i∇[g2(xk)]i

∥∥∥∥∥ ≤ εk,1,(3.1)
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[uk]i ≥ 0 and [g2(xk)]i ≤ εk,2 ∀ i = 1, . . . , p2,(3.2)

[g2(xk)]i < −εk,2 ⇒ [uk]i = 0 ∀ i = 1, . . . , p2,(3.3)

‖h2(xk)‖ ≤ εk,3,(3.4)

where εk,1, εk,2, εk,3 ≥ 0 are such that max{εk,1, εk,2, εk,3} ≤ εk. If it is not possible
to find xk satisfying (3.1)–(3.4), stop the execution of the algorithm.

Step 3. Estimate multipliers. For all i = 1, . . . ,m1, compute

[λk+1]i = [λ̄k]i + ρk[h1(xk)]i,(3.5)

[λ̄k+1]i ∈ [[λ̄min]i, [λ̄max]i].(3.6)

(Usually, [λ̄k+1]i will be the projection of [λk+1]i on the interval [[λ̄min]i, [λ̄max]i].)
For all i = 1, . . . , p1, compute

[μk+1]i = max{0, [μ̄k]i + ρk[g1(xk)]i}, [σk]i = max

{
[g1(xk)]i,−

[μ̄k]i
ρk

}
,(3.7)

[μ̄k+1]i ∈ [0, [μ̄max]i].

(Usually, [μ̄k+1]i = min{[μk+1]i, [μ̄max]i}.)
Step 4. Update the penalty parameter. If

max{‖h1(xk)‖∞, ‖σk‖∞} ≤ τ max{‖h1(xk−1)‖∞, ‖σk−1‖∞},

then define ρk+1 = ρk. Else, define ρk+1 = γρk.
Step 5. Begin a new outer iteration. Set k ← k + 1. Go to Step 2.

4. Global convergence. In this section we assume that the algorithm does not
stop at Step 2. In other words, it is always possible to find xk satisfying (3.1)–(3.4).
Problem-dependent sufficient conditions for this assumption can be given in many
cases.

We will also assume that at least a limit point of the sequence generated by
Algorithm 3.1 exists. A sufficient condition for this is the existence of ε > 0 such
that the set {x ∈ R

n | g2(x) ≤ ε, ‖h2(x)‖ ≤ ε} is bounded. This condition may be
enforced, adding artificial simple constraints to the set Ω2.

Global convergence results that use the CPLD constraint qualification are stronger
than previous results for more specific problems: In particular, Conn, Gould, and
Toint [21] and Conn et al. [20] proved global convergence of augmented Lagrangian
methods for equality constraints and linear constraints, assuming linear independence
of all the gradients of active constraints at the limit points. Their assumption is much
stronger than our CPLD assumptions. On one hand, the CPLD assumption is weaker
than LICQ (for example, CPLD always holds when the constraints are linear). On the
other hand, our CPLD assumption involves only feasible points instead of all possible
limit points of the algorithm.

Convergence proofs for augmented Lagrangian methods with equalities and box
constraints using CPLD were given in [2].

We are going to investigate the status of the limit points of sequences generated
by Algorithm 3.1. First, we will prove a result on the feasibility properties of a
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limit point. Theorem 4.1 shows that either a limit point is feasible or, if the CPLD
constraint qualification with respect to Ω2 holds, it is a KKT point of the sum of
squares of upper-level infeasibilities.

Theorem 4.1. Let {xk} be a sequence generated by Algorithm 3.1. Let x∗ be a
limit point of {xk}. Then, if the sequence of penalty parameters {ρk} is bounded, the
limit point x∗ is feasible. Otherwise, at least one of the following possibilities holds:

(i) x∗ is a KKT point of the problem

Minimize
1

2

[ m1∑
i=1

[h1(x)]2i +

p1∑
i=1

max{0, [g1(x)]i}2

]
subject to x ∈ Ω2.(4.1)

(ii) x∗ does not satisfy the CPLD constraint qualification associated with Ω2.

Proof. Let K be an infinite subsequence in N such that limk∈K xk = x∗. Since
εk → 0, by (3.2) and (3.4), we have that g2(x∗) ≤ 0 and h2(x∗) = 0. So, x∗ ∈ Ω2.

Now, we consider two possibilities: (a) the sequence {ρk} is bounded; and (b) the
sequence {ρk} is unbounded. Let us analyze first case (a). In this case, from some
iteration on, the penalty parameters are not updated. Therefore, limk→∞ ‖h1(xk)‖ =
limk→∞ ‖σk‖ = 0. Thus, h1(x∗) = 0. Now, if [g1(x∗)]j > 0 then [g1(xk)]j > c > 0
for k ∈ K large enough. This would contradict the fact that [σk]j → 0. Therefore,
[g1(x∗)]i ≤ 0 for all i = 1, . . . , p1.

Since x∗ ∈ Ω2, h1(x∗) = 0, and g1(x∗) ≤ 0, x∗ is feasible. Therefore, we proved
the desired result in the case that {ρk} is bounded.

Consider now case (b). So, {ρk}k∈K is not bounded. By (2.2) and (3.1), we have

∇f(xk) +

m1∑
i=1

([λ̄k]i + ρk[h1(xk)]i)∇[h1(xk)]i +

p1∑
i=1

max{0, [μ̄k]i

+ρk[g1(xk)]i}∇[g1(xk)]i +

m2∑
i=1

[vk]i∇[h2(xk)]i +

p2∑
j=1

[uk]j∇[g2(xk)]j = δk,

(4.2)

where, since εk → 0, limk∈K ‖δk‖ = 0.

If [g2(x∗)]i < 0, there exists k1 ∈ N such that [g2(xk)]i < −εk for all k ≥ k1, k ∈ K.
Therefore, by (3.3), [uk]i = 0 for all k ∈ K, k ≥ k1. Thus, by x∗ ∈ Ω2 and (4.2), for
all k ∈ K, k ≥ k1 we have that

∇f(xk) +

m1∑
i=1

([λ̄k]i + ρk[h1(xk)]i)∇[h1(xk)]i +

p1∑
i=1

max{0, [μ̄k]i

+ρk[g1(xk)]i}∇[g1(xk)]i +

m2∑
i=1

[vk]i∇[h2(xk)]i +
∑

[g2(x∗)]j=0

[uk]j∇[g2(xk)]j = δk.
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Dividing by ρk we get

∇f(xk)

ρk
+

m1∑
i=1

(
[λ̄k]i
ρk

+ [h1(xk)]i

)
∇[h1(xk)]i

+

p1∑
i=1

max

{
0,

[μ̄k]i
ρk

+ [g1(xk)]i

}
∇[g1(xk)]i

+

m2∑
i=1

[vk]i
ρk

∇[h2(xk)]i

+
∑

[g2(x∗)]j=0

[uk]j
ρk

∇[g2(xk)]j =
δk
ρk

.

By Caratheodory’s theorem of cones (see [7, page 689]) there exist Îk ⊂ {1, . . . ,m2},
Ĵk ⊂ {j | [g2(x∗)]j = 0}, [v̂k]i, i ∈ Îk, and [ûk]j ≥ 0, j ∈ Ĵk, such that the vectors
{∇[h2(xk)]i}i∈Îk

∪ {∇[g2(xk)]j}j∈Ĵk
are linearly independent and

∇f(xk)

ρk
+

m1∑
i=1

(
[λ̄k]i
ρk

+ [h1(xk)]i

)
∇[h1(xk)]i

+

p1∑
i=1

max

{
0,

[μ̄k]i
ρk

+ [g1(xk)]i

}
∇[g1(xk)]i

+
∑
i∈Îk

[v̂k]i∇[h2(xk)]i

+
∑
j∈Ĵk

[ûk]j∇[g2(xk)]j =
δk
ρk

.

(4.3)

Since there exists a finite number of possible sets Îk, Ĵk, there exists an infinite
set of indices K1 such that K1 ⊂ {k ∈ K | k ≥ k1}, Îk = Î , and

Ĵ = Ĵk ⊂ {j | [g2(x∗)]j = 0}(4.4)

for all k ∈ K1. Then, by (4.3), for all k ∈ K1 we have

∇f(xk)

ρk
+

m1∑
i=1

(
[λ̄k]i
ρk

+ [h1(xk)]i

)
∇[h1(xk)]i

+

p1∑
i=1

max

{
0,

[μ̄k]i
ρk

+ [g1(xk)]i

}
∇[g1(xk)]i

+
∑
i∈Î

[v̂k]i∇[h2(xk)]i

+
∑
j∈Ĵ

[ûk]j∇[g2(xk)]j =
δk
ρk

,

(4.5)

and the gradients

{∇[h2(xk)]i}i∈Î ∪ {∇[g2(xk)]j}j∈Ĵ(4.6)



AUGMENTED LAGRANGIANS WITH LOWER-LEVEL CONSTRAINTS 1293

are linearly independent.
We consider again two cases: (1) the sequence {‖(v̂k, ûk)‖, k ∈ K1} is bounded;

and (2) the sequence {‖(v̂k, ûk)‖, k ∈ K1} is unbounded. If the sequence {‖(v̂k,
ûk)‖}k∈K1 is bounded, and Î ∪ Ĵ �= ∅, there exist (v̂, û), û ≥ 0, and an infinite set of
indices K2 ⊂ K1 such that limk∈K2

(v̂k, ûk) = (v̂, û). Since {ρk} is unbounded, by the
boundedness of λ̄k and μ̄k, lim[λ̄k]i/ρk = 0 = lim[μ̄k]j/ρk for all i, j. Therefore, by
δk → 0, taking limits for k ∈ K2 in (4.5), we obtain

m1∑
i=1

[h1(x∗)]i∇[h1(x∗)]i +

p1∑
i=1

max{0, [g1(x∗)]i}∇[g1(x∗)]i

+
∑
i∈Î

v̂i∇[h2(x∗)]i +
∑
j∈Ĵ

ûj∇[g2(x∗)]j = 0.
(4.7)

If Î ∪ Ĵ = ∅ we obtain
∑m1

i=1[h1(x∗)]i∇[h1(x∗)]i +
∑p1

i=1 max{0, [g1(x∗)]i}∇[g1(x∗)]i =
0.

Therefore, by x∗ ∈ Ω2 and (4.4), x∗ is a KKT point of (4.1).
Finally, assume that {‖(v̂k, ûk)‖}k∈K1

is unbounded. Let K3 ⊂ K1 be such that

limk∈K3
‖(v̂k, ûk)‖ = ∞ and (v̂, û) �= 0, û ≥ 0, such that limk∈K3

(v̂k,ûk)
‖(v̂k,ûk)‖ = (v̂, û).

Dividing both sides of (4.5) by ‖(v̂k, ûk)‖ and taking limits for k ∈ K3, we deduce

that
∑

i∈Î v̂i∇[h2(x∗)]i +
∑

j∈Ĵ ûj∇[g2(x∗)]j = 0. But [g2(x∗)]j = 0 for all j ∈ Ĵ .

Then, by (4.6), x∗ does not satisfy the CPLD constraint qualification associated with
the set Ω2. This completes the proof.

Roughly speaking, Theorem 4.1 says that, if x∗ is not feasible, then (very likely)
it is a local minimizer of the upper-level infeasibility, subject to lower-level feasibility.
From the point of view of optimality, we are interested in the status of feasible limit
points. In Theorem 4.2 we will prove that, under the CPLD constraint qualifica-
tion, feasible limit points are stationary (KKT) points of the original problem. Since
CPLD is strictly weaker than the MFCQ, it turns out that the following theorem is
stronger than results where KKT conditions are proved under MFCQ or regularity
assumptions.

Theorem 4.2. Let {xk}k∈N be a sequence generated by Algorithm 3.1. Assume
that x∗ ∈ Ω1 ∩ Ω2 is a limit point that satisfies the CPLD constraint qualification
related to Ω1 ∩Ω2. Then, x∗ is a KKT point of the original problem (2.1). Moreover,
if x∗ satisfies the MFCQ and {xk}k∈K is a subsequence that converges to x∗, the set

{‖λk+1‖, ‖μk+1‖, ‖vk‖, ‖uk‖}k∈K is bounded.(4.8)

Proof. For all k ∈ N, by (3.1), (3.3), (3.5), and (3.7), there exist uk ∈ R
p2

+ , δk ∈ R
n

such that ‖δk‖ ≤ εk and

∇f(xk) +

m1∑
i=1

[λk+1]i∇[h1(xk)]i +

p1∑
i=1

[μk+1]i∇[g1(xk)]i

+

m2∑
i=1

[vk]i∇[h2(xk)]i +

p2∑
j=1

[uk]j∇[g2(xk)]j = δk.

(4.9)

By (3.7), μk+1 ∈ R
p1

+ for all k ∈ N. Let K ⊂ N be such that limk∈K xk = x∗.
Suppose that [g2(x∗)]i < 0. Then, there exists k1 ∈ N such that for all k ∈ K, k ≥
k1, [g2(xk)]i < −εk. Then, by (3.3), [uk]i = 0 for all k ∈ K, k ≥ k1.
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Let us prove now that a similar property takes place when [g1(x∗)]i < 0. In this
case, there exists k2 ≥ k1 such that [g1(xk)]i < c < 0 for all k ∈ K, k ≥ k2.

We consider two cases: (1) {ρk} is unbounded; and (2) {ρk} is bounded. In the
first case we have that limk∈K ρk = ∞. Since {[μ̄k]i} is bounded, there exists k3 ≥ k2

such that, for all k ∈ K, k ≥ k3, [μ̄k]i + ρk[g1(xk)]i < 0. By the definition of μk+1 this
implies that [μk+1]i = 0 for all k ∈ K, k ≥ k3.

Consider now the case in which {ρk} is bounded. In this case, limk→∞[σk]i = 0.
Therefore, since [g1(xk)]i < c < 0 for k ∈ K large enough, limk∈K [μ̄k]i = 0. So, for
k ∈ K large enough, [μ̄k]i + ρk[g1(xk)]i < 0. By the definition of μk+1, there exists
k4 ≥ k2 such that [μk+1]i = 0 for k ∈ K, k ≥ k4.

Therefore, there exists k5 ≥ max{k1, k3, k4} such that for all k ∈ K, k ≥ k5,

[[g1(x∗)]i < 0 ⇒ [μk+1]i = 0] and [[g2(x∗)]i < 0 ⇒ [uk]i = 0].(4.10)

(Observe that, up to now, we did not use the CPLD condition.) By (4.9) and
(4.10), for all k ∈ K, k ≥ k5, we have

∇f(xk) +

m1∑
i=1

[λk+1]i∇[h1(xk)]i +
∑

[g1(x∗)]i=0

[μk+1]i∇[g1(xk)]i

+

m2∑
i=1

[vk]i∇[h2(xk)]i +
∑

[g2(x∗)]j=0

[uk]j∇[g2(xk)]j = δk,

(4.11)

with μk+1 ∈ R
p1

+ , uk ∈ R
p2

+ .
By Caratheodory’s theorem of cones, for all k ∈ K, k ≥ k5, there exist

Îk ⊂ {1, . . . ,m1}, Ĵk ⊂ {j | [g1(x∗)]j = 0}, Îk ⊂ {1, . . . ,m2}, Ĵk ⊂ {j | [g2(x∗)]j = 0},

[λ̂k]i ∈ R ∀i ∈ Îk, [μ̂k]j ≥ 0 ∀j ∈ Ĵk, [v̂k]i ∈ R ∀i ∈ Îk, [ûk]j ≥ 0 ∀j ∈ Ĵk

such that the vectors

{∇[h1(xk)]i}i∈Îk
∪ {∇[g1(xk)]i}i∈Ĵk

∪ {∇[h2(xk)]i}i∈Îk
∪ {∇[g2(xk)]i}i∈Ĵk

are linearly independent and

∇f(xk) +
∑
i∈Îk

[λ̂k]i∇[h1(xk)]i +
∑
i∈Ĵk

[μ̂k]i∇[g1(xk)]i

+
∑
i∈Îk

[v̂k]i∇[h2(xk)]i +
∑
j∈Ĵk

[ûk]j∇[g2(xk)]j = δk.
(4.12)

Since the number of possible sets of indices Îk, Ĵk, Îk, Ĵk is finite, there exists an
infinite set K1 ⊂ {k ∈ K | k ≥ k5} such that Îk = Î , Ĵk = Ĵ , Îk = Î , Ĵk = Ĵ for all
k ∈ K1.

Then, by (4.12),

∇f(xk) +
∑
i∈Î

[λ̂k]i∇[h1(xk)]i +
∑
i∈Ĵ

[μ̂k]i∇[g1(xk)]i

+
∑
i∈Î

[v̂k]i∇[h2(xk)]i +
∑
j∈Ĵ

[ûk]j∇[g2(xk)]j = δk

(4.13)
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and the vectors

{∇[h1(xk)]i}i∈Î ∪ {∇[g1(xk)]i}i∈Ĵ ∪ {∇[h2(xk)]i}i∈Î ∪ {∇[g2(xk)]i}i∈Ĵ(4.14)

are linearly independent for all k ∈ K1.
If Î ∪ Ĵ ∪ Î ∪ Ĵ = ∅, by (4.13) and δk → 0 we obtain ∇f(x∗) = 0. Otherwise, let

us define

Sk = max{max{|[λ̂k]i|, i ∈ Î},max{[μ̂k]i, i ∈ Ĵ},max{|[v̂k]i|, i ∈ Î},max{[ûk]i, i ∈ Ĵ}}.

We consider two possibilities: (a) {Sk}k∈K1 has a bounded subsequence; and (b)
limk∈K1

Sk = ∞. If {Sk}k∈K1
has a bounded subsequence, there exists K2 ⊂ K1 such

that limk∈K2
[λ̂k]i = λ̂i, limk∈K2

[μ̂k]i = μ̂i ≥ 0, limk∈K2
[v̂k]i = v̂i, and limk∈K2

[ûk]i =
ûi ≥ 0. By εk → 0 and ‖δk‖ ≤ εk, taking limits in (4.13) for k ∈ K2, we obtain

∇f(x∗)+
∑
i∈Î

λ̂i∇[h1(x∗)]i+
∑
i∈Ĵ

μ̂i∇[g1(x∗)]i+
∑
i∈Î

v̂i∇[h2(x∗)]i+
∑
j∈Ĵ

ûj∇[g2(x∗)]j = 0,

with μ̂i ≥ 0, ûi ≥ 0. Since x∗ ∈ Ω1 ∩ Ω2, we have that x∗ is a KKT point of (2.1).
Suppose now that limk∈K2

Sk = ∞. Dividing both sides of (4.13) by Sk we obtain

∇f(xk)

Sk
+
∑
i∈Î

[λ̂k]i
Sk

∇[h1(xk)]i +
∑
i∈Ĵ

[μ̂k]i
Sk

∇[g1(xk)]i

+
∑
i∈Î

[v̂k]i
Sk

∇[h2(xk)]i +
∑
j∈Ĵ

[ûk]j
Sk

∇[g2(xk)]j =
δk
Sk

,

(4.15)

where | [λ̂k]i
Sk

| ≤ 1, | [μ̂k]i
Sk

| ≤ 1, | [v̂k]i
Sk

| ≤ 1, | [ûk]j
Sk

| ≤ 1. Therefore, there exists K3 ⊂ K1

such that limk∈K3

[λ̂k]i
Sk

= λ̂i, limk∈K3

[μ̂k]i
Sk

= μ̂i ≥ 0, limk∈K3

[v̂k]i
Sk

= v̂i, limk∈K3

[ûk]j
Sk

=

ûj ≥ 0. Taking limits on both sides of (4.15) for k ∈ K3, we obtain

∑
i∈Î

λ̂i∇[h1(x∗)]i +
∑
i∈Ĵ

μ̂i∇[g1(x∗)]i +
∑
i∈Î

v̂i∇[h2(x∗)]i +
∑
j∈Ĵ

ûj∇[g2(x∗)]j = 0.

But the modulus of at least one of the coefficients λ̂i, μ̂i, v̂i, ûi is equal to 1. Then, by
the CPLD condition, the gradients

{∇[h1(x)]i}i∈Î ∪ {∇[g1(x)]i}i∈Ĵ ∪ {∇[h2(x)]i}i∈Î ∪ {∇[g2(x)]i}i∈Ĵ

must be linearly dependent in a neighborhood of x∗. This contradicts (4.14). There-
fore, the main part of the theorem is proved.

Finally, let us prove that the property (4.8) holds if x∗ satisfies the MFCQ. Let
us define

Bk = max{‖λk+1‖∞, ‖μk+1‖∞, ‖vk‖∞, ‖uk‖∞}k∈K .

If (4.8) is not true, we have that limk∈K Bk = ∞. In this case, dividing both sides
of (4.11) by Bk and taking limits for an appropriate subsequence, we obtain that x∗
does not satisfy the MFCQ.
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5. Boundedness of the penalty parameters. When the penalty parameters
associated with penalty or augmented Lagrangian methods are too large, the subprob-
lems tend to be ill-conditioned and their resolution becomes harder. One of the main
motivations for the development of the basic augmented Lagrangian algorithm is the
necessity of overcoming this difficulty. Therefore, the study of conditions under which
penalty parameters are bounded plays an important role in augmented Lagrangian
approaches.

5.1. Equality constraints. We will consider first the case p1 = p2 = 0.
Let f : R

n → R, h1 : R
n → R

m1 , h2 : R
n → R

m2 . We address the problem

Minimize f(x) subject to h1(x) = 0, h2(x) = 0.(5.1)

The Lagrangian function associated with problem (5.1) is given by L0(x, λ, v) = f(x)+
〈h1(x), λ〉 + 〈h2(x), v〉 for all x ∈ R

n, λ ∈ R
m1 , v ∈ R

m2 .
Algorithm 3.1 will be considered with the following standard definition for the

safeguarded Lagrange multipliers.
Definition. For all k ∈ N, i = 1, . . . ,m1, [λ̄k+1]i will be the projection of [λk+1]i

on the interval [[λ̄min]i, [λ̄max]i].
We will use the following assumptions.
Assumption 1. The sequence {xk} is generated by the application of Algo-

rithm 3.1 to problem (5.1) and limk→∞ xk = x∗.
Assumption 2. The point x∗ is feasible (h1(x∗) = 0 and h2(x∗) = 0).
Assumption 3. The gradients ∇[h1(x∗)]1, . . . ,∇[h1(x∗)]m1 ,∇[h2(x∗)]1, . . . , and

∇[h2(x∗)]m2 are linearly independent.
Assumption 4. The functions f, h1, and h2 admit continuous second derivatives

in a neighborhood of x∗.
Assumption 5. The second-order sufficient condition for local minimizers [25,

page 211], holds with Lagrange multipliers λ∗ ∈ R
m1 and v∗ ∈ R

m2 .
Assumption 6. For all i = 1, . . . ,m1, [λ∗]i ∈ ([λ̄min]i, [λ̄max]i).
Proposition 5.1. Suppose that Assumptions 1, 2, 3, and 6 hold. Then, limk→∞

λk = λ∗, limk→∞ vk = v∗, and λ̄k = λk for k large enough.
Proof. The proof of the first part follows from the definition of λk+1, the stopping

criterion of the subproblems, and the linear independence of the gradients of the
constraints at x∗. The second part of the thesis is a consequence of λk → λ∗, using
Assumption 6 and the definition of λ̄k+1.

Lemma 5.2. Suppose that Assumptions 3 and 5 hold. Then, there exists ρ̄ > 0
such that, for all π ∈ [0, 1/ρ̄], the matrix⎛

⎜⎝
∇2

xxL0(x∗, λ∗, v∗) ∇h1(x∗) ∇h2(x∗)

∇h1(x∗)
T −πI 0

∇h2(x∗)
T 0 0

⎞
⎟⎠

is nonsingular.
Proof. The matrix is trivially nonsingular for π = 0. So, the thesis follows by the

continuity of the matricial inverse.
Lemma 5.3. Suppose that Assumptions 1–5 hold. Let ρ̄ be as in Lemma 5.2.

Suppose that there exists k0 ∈ N such that ρk ≥ ρ̄ for all k ≥ k0. Define

αk = ∇L(xk, λ̄k, ρk) + ∇h2(xk)vk,(5.2)

βk = h2(xk).(5.3)
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Then, there exists M > 0 such that, for all k ∈ N,

‖xk − x∗‖ ≤ M max

{
‖λ̄k − λ∗‖∞

ρk
, ‖αk‖, ‖βk‖

}
,(5.4)

‖λk+1 − λ∗‖ ≤ M max

{
‖λ̄k − λ∗‖∞

ρk
, ‖αk‖, ‖βk‖

}
.(5.5)

Proof. Define, for all k ∈ N,

tk = (λ̄k − λ∗)/ρk,(5.6)

πk = 1/ρk.(5.7)

By (3.5), (5.2), and (5.3), ∇L(xk, λ̄k, ρk)+∇h2(xk)vk−αk = 0, λk+1 = λ̄k+ρkh1(xk),
and h2(xk) − βk = 0 for all k ∈ N.

Therefore, by (5.6) and (5.7), we have that ∇f(xk)+∇h1(xk)λk+1+∇h2(xk)vk−
αk = 0, h1(xk) − πkλk+1 + tk + πkλ∗ = 0, and h2(xk) − βk = 0 for all k ∈ N. Define,
for all π ∈ [0, 1/ρ̄], Fπ : R

n × R
m1 × R

m2 × R
m1 × R

n × R
m2 → R

n × R
m1 × R

m2 by

Fπ(x, λ, v, t, α, β) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∇f(x) + ∇h1(x)λ + ∇h2(x)v − α

[h1(x)]1 − π[λ]1 + [t]1 + π[λ∗]1

·
·
·

[h1(x)]m1
− π[λ]m1 + [t]m1 + π[λ∗]m1

h2(x) − β

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Clearly,

Fπk
(xk, λk+1, vk, tk, αk, βk) = 0(5.8)

and, by Assumptions 1 and 2,

Fπ(x∗, λ∗, v∗, 0, 0, 0) = 0 ∀π ∈ [0, 1/ρ̄].(5.9)

Moreover, the Jacobian matrix of Fπ with respect to (x, λ, v) computed at (x∗, λ∗,
v∗, 0, 0, 0) is ⎛

⎜⎝
∇2

xxL0(x∗, λ∗, v∗) ∇h1(x∗) ∇h2(x∗)

∇h1(x∗)
T −πI 0

∇h2(x∗)
T 0 0

⎞
⎟⎠ .

By Lemma 5.2, this matrix is nonsingular for all π ∈ [0, 1/ρ̄]. By continuity, the norm
of its inverse is bounded in a neighborhood of (x∗, λ∗, v∗, 0, 0, 0) uniformly with respect
to π ∈ [0, 1/ρ̄]. Moreover, the first and second derivatives of Fπ are also bounded in a
neighborhood of (x∗, λ∗, v∗, 0, 0, 0) uniformly with respect to π ∈ [0, 1/ρ̄]. Therefore,
the bounds (5.4) and (5.5) follow from (5.8) and (5.9) by the implicit function theorem
and the mean value theorem of integral calculus.

Theorem 5.4. Suppose that Assumptions 1–6 are satisfied by the sequence gen-
erated by Algorithm 3.1 applied to the problem (5.1). In addition, assume that there
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exists a sequence ηk → 0 such that εk ≤ ηk‖h1(xk)‖∞ for all k ∈ N. Then, the
sequence of penalty parameters {ρk} is bounded.

Proof. Assume, by contradiction, that limk→∞ ρk = ∞. Since h1(x∗) = 0, by the
continuity of the first derivatives of h1 there exists L > 0 such that, for all k ∈ N,
‖h1(xk)‖∞ ≤ L‖xk−x∗‖. Therefore, by the hypothesis, (5.4), and Proposition 5.1, we

have that ‖h1(xk)‖∞ ≤ LM max{‖λk−λ∗‖∞
ρk

, ηk‖h1(xk)‖∞} for k large enough. Since
ηk tends to zero, this implies that

‖h1(xk)‖∞ ≤ LM
‖λk − λ∗‖∞

ρk
(5.10)

for k large enough.

By (3.6) and Proposition 5.1, we have that λk = λk−1 + ρk−1h1(xk−1) for k large
enough. Therefore,

‖h1(xk−1)‖∞ =
‖λk − λk−1‖∞

ρk−1
≥ ‖λk−1 − λ∗‖∞

ρk−1
− ‖λk − λ∗‖∞

ρk−1
.(5.11)

Now, by (5.5), the hypothesis of this theorem, and Proposition 5.1, for k large

enough we have ‖λk − λ∗‖∞ ≤ M(‖λk−1−λ∗‖∞
ρk−1

+ ηk−1‖h1(xk−1)‖∞). This implies

that ‖λk−1−λ∗‖∞
ρk−1

≥ ‖λk−λ∗‖∞
M − ηk−1‖h1(xk−1)‖∞. Therefore, by (5.11), (1 + ηk−1)

‖h1(xk−1)‖∞ ≥ ‖λk − λ∗‖∞( 1
M − 1

ρk−1
) ≥ 1

2M ‖λk − λ∗‖∞. Thus, ‖λk − λ∗‖∞ ≤
3M‖h1(xk−1)‖∞ for k large enough. By (5.10), we have that ‖h1(xk)‖∞ ≤
3LM2

ρk
‖h1(xk−1)‖∞. Therefore, since ρk → ∞, there exists k1 ∈ N such that

‖h1(xk)‖∞ ≤ τ‖h1(xk−1)‖∞ for all k ≥ k1. So, ρk+1 = ρk for all k ≥ k1. Thus,
{ρk} is bounded.

5.2. General constraints. In this subsection we address the general problem
(2.1). As in the case of equality constraints, we adopt the following definition for the
safeguarded Lagrange multipliers in Algorithm 3.1.

Definition. For all k ∈ N, i = 1, . . . ,m1, j = 1, . . . , p1, [λ̄k+1]i will be the
projection of [λk+1]i on the interval [[λ̄min]i, [λ̄max]i], and [μ̄k+1]j will be the projection
of [μk+1]j on [0, [μ̄max]j ].

The technique for proving boundedness of the penalty parameter consists of re-
ducing (2.1) to a problem with (only) equality constraints. The equality constraints of
the new problem will be the active constraints at the limit point x∗. After this reduc-
tion, the boundedness result is deduced from Theorem 5.4. The sufficient conditions
are listed below.

Assumption 7. The sequence {xk} is generated by the application of Algo-
rithm 3.1 to problem (2.1) and limk→∞ xk = x∗.

Assumption 8. The point x∗ is feasible (h1(x∗) = 0, h2(x∗) = 0, g1(x∗) ≤ 0, and
g2(x∗) ≤ 0.)

Assumption 9. The gradients {∇[h1(x∗)]i}m1
i=1, {∇[g1(x∗)]i}[g1(x∗)]i=0,

{∇[h2(x∗)]i}m2
i=1, {∇[g2(x∗)]i}[g2(x∗)]i=0 are linearly independent. (LICQ holds at

x∗.)

Assumption 10. The functions f, h1, g1, h2, and g2 admit continuous second
derivatives in a neighborhood of x∗.

Assumption 11. Define the tangent subspace T as the set of all z ∈ R
n such that

∇h1(x∗)
T z = ∇h2(x∗)

T z = 0, 〈∇[g1(x∗)]i, z〉 = 0 for all i such that [g1(x∗)]i = 0 and
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〈∇[g2(x∗)]i, z〉 = 0 for all i such that [g2(x∗)]i = 0. Then, for all z ∈ T, z �= 0,〈
z,

[
∇2f(x∗) +

m1∑
i=1

[λ∗]i∇2[h1(x∗)]i +

p1∑
i=1

[μ∗]i∇2[g1(x∗)]i

+

m2∑
i=1

[v∗]i∇2[h2(x∗)]i +

p2∑
i=1

[u∗]i∇2[g2(x∗)]i

]
z

〉
> 0.

Assumption 12. For all i = 1, . . . ,m1, j = 1, . . . , p1, [λ∗]i ∈ ([λ̄min]i, [λ̄max]i),
[μ∗]j ∈ [0, [μ̄max]j).

Assumption 13. For all i such that [g1(x∗)]i = 0, we have [μ∗]i > 0.
Observe that Assumption 13 imposes strict complementarity related only to the

constraints in the upper-level set. In the lower-level set it is admissible that [g2(x∗)]i =
[u∗]i = 0. Observe, too, that Assumption 11 is weaker than the usual second-order
sufficiency assumption, since the subspace T is orthogonal to the gradients of all active
constraints, and no exception is made with respect to active constraints with null
multiplier [u∗]i. In fact, Assumption 11 is not a second-order sufficiency assumption
for local minimizers. It holds for the problem of minimizing x1x2 subject to x2−x1 ≤ 0
at (0, 0), although (0, 0) is not a local minimizer of this problem.

Theorem 5.5. Suppose that Assumptions 7–13 are satisfied. In addition, assume
that there exists a sequence ηk → 0 such that εk ≤ ηk max{‖h1(xk)‖∞, ‖σk‖∞} for all
k ∈ N. Then, the sequence of penalty parameters {ρk} is bounded.

Proof. Without loss of generality, assume that [g1(x∗)]i = 0 if i ≤ q1, [g1(x∗)]i < 0
if i > q1, [g2(x∗)]i = 0 if i ≤ q2, and [g2(x∗)]i < 0 if i > q2. Consider the auxiliary
problem:

Minimize f(x) subject to H1(x) = 0, H2(x) = 0,(5.12)

where

H1(x) =

⎛
⎜⎜⎝

h1(x)
[g1(x)]1

...
[g1(x)]q1

⎞
⎟⎟⎠ , H2(x) =

⎛
⎜⎜⎝

h2(x)
[g2(x)]1

...
[g2(x)]q2

⎞
⎟⎟⎠ .

By Assumptions 7–11, x∗ satisfies the Assumptions 2–5 (with H1, H2 replacing
h1, h2). Moreover, by Assumption 8, the multipliers associated to (2.1) are the La-
grange multipliers associated to (5.12).

As in the proof of (4.10) (the first part of the proof of Theorem 4.2), we have
that, for k large enough, [[g1(x∗)]i < 0 ⇒ [μk+1]i = 0] and [[g2(x∗)]i < 0 ⇒ [uk]i = 0].

Then, by (3.1), (3.5), and (3.7),∥∥∥∥∥∇f(xk) +

m1∑
i=1

[λk+1]i∇[h1(xk)]i +

q1∑
i=1

[μk+1]i∇[g1(xk)]i

+

m2∑
i=1

[vk]i∇[h2(xk)]i +

q2∑
i=1

[uk]i∇[g2(xk)]i

∥∥∥∥∥ ≤ εk

for k large enough.
By Assumption 9, taking appropriate limits in the inequality above, we obtain

that limk→∞ λk = λ∗ and limk→∞ μk = μ∗.
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In particular, since [μ∗]i > 0 for all i ≤ q1,

[μk]i > 0(5.13)

for k large enough.
Since λ∗ ∈ (λ̄min, λ̄max)

m1 and [μ∗]i < [μ̄max]i, we have that [μ̄k]i = [μk]i, i =
1, . . . , q1, and [λ̄k]i = [λk]i, i = 1, . . . ,m1, for k large enough.

Let us show now that the updating formula (3.7) for [μk+1]i, provided by Algo-
rithm 3.1, coincides with the updating formula (3.5) for the corresponding multiplier
in the application of the algorithm to the auxiliary problem (5.12).

In fact, by (3.7) and [μ̄k]i = [μk]i, we have that, for k large enough, [μk+1]i =
max{0, [μk]i +ρk[g1(xk)]i}. But, by (5.13), [μk+1]i = [μk]i +ρk[g1(xk)]i, i = 1, . . . , q1,
for k large enough.

In terms of the auxiliary problem (5.12) this means that [μk+1]i = [μk]i +
ρk[H1(xk)]i, i = 1, . . . , q1, as we wanted to prove.

Now, let us analyze the meaning of [σk]i. By (3.7), we have [σk]i = max{[g1(xk)]i,
−[μ̄k]i/ρk} for all i = 1, . . . , p1. If i > q1, since [g1(x∗)]i < 0, [g1]i is continuous, and
[μ̄k]i = 0, we have that [σk]i = 0 for k large enough. Now, suppose that i ≤ q1. If

[g1(xk)]i < − [μ̄k]i
ρk

, then, by (3.7), we would have [μk+1]i = 0. This would contradict

(5.13). Therefore, [g1(xk)]i ≥ − [μ̄k]i
ρk

for k large enough, and we have that [σk]i =

[g1(xk)]i. Thus, for k large enough,

H1(xk) =

(
h1(xk)
σk

)
.(5.14)

Therefore, the test for updating the penalty parameter in the application of Al-
gorithm 3.1 to (5.12) coincides with the updating test in the application of the al-
gorithm to (2.1). Moreover, formula (5.14) also implies that the condition εk ≤
ηk max{‖σk‖∞, ‖h1(xk)‖∞} is equivalent to the hypothesis εk ≤ ηk‖H1(xk)‖∞ as-
sumed in Theorem 5.4.

This completes the proof that the sequence {xk} may be thought of as being
generated by the application of Algorithm 3.1 to (5.12). We proved that the associ-
ated approximate multipliers and the penalty parameters updating rule also coincide.
Therefore, by Theorem 5.4, the sequence of penalty parameters is bounded, as we
wanted to prove.

Remark. The results of this section provide a theoretical answer to the following
practical question: What happens if the box chosen for the safeguarded multiplier
estimates is too small? The answer is that the box should be large enough to contain
the “true” Lagrange multipliers. If it is not, the global convergence properties remain,
but, very likely, the sequence of penalty parameters will be unbounded, leading to
hard subproblems and possible numerical instability. In other words, if the box is
excessively small, the algorithm tends to behave as an external penalty method. This
is exactly what is observed in practice.

6. Numerical experiments. For solving unconstrained and bound-constrained
subproblems we use Gencan [9] with second derivatives and a CG-preconditioner
[10]. Algorithm 3.1 with Gencan will be called Algencan. For solving the convex-
constrained subproblems that appear in the large location problems, we use the spec-
tral projected gradient method (SPG) [11, 12, 13]. The resulting augmented La-
grangian algorithm is called Alspg. In general, it would be interesting to apply
Alspg to any problem such that the selected lower-level constraints define a convex
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set for which it is easy (cheap) to compute the projection of an arbitrary point. The
codes are free for download at http://www.ime.usp.br/∼egbirgin/tango/. They are
written in Fortran 77 (double precision). Interfaces of Algencan with AMPL,
Cuter, C/C++, MATLAB, Octave, Python, and R (language and environment for
statistical computing) are available.

For the practical implementation of Algorithm 3.1, we set τ = 0.5, γ = 10, λ̄min =
−1020, μ̄max = λ̄max = 1020, εk = 10−4 for all k, λ̄1 = 0, μ̄1 = 0, and ρ1 = max{10−6,

min{10, 2|f(x0)|
‖h1(x0)‖2+‖g1(x0)+‖2 }}. As stopping criterion we used max(‖h1(xk)‖∞, ‖σk‖∞)

≤ 10−4. The condition ‖σk‖∞ ≤ 10−4 guarantees that, for all i = 1, . . . , p1, gi(xk) ≤
10−4 and that [μk+1]i = 0 whenever gi(xk) < −10−4. This means that, approximately,
feasibility and complementarity hold at the final point. Dual feasibility with tolerance
10−4 is guaranteed by (3.1) and the choice of εk. All the experiments were run on a 3.2
GHz Intel(R) Pentium(R) with four processors, 1Gb of RAM, and Linux Operating
System. Compiler option “-O” was adopted.

6.1. Testing the theory. In Discrete Mathematics, experiments should repro-
duce exactly what theory predicts. In the continuous world, however, the situation
changes because the mathematical model that we use for proving theorems is not
exactly isomorphic to the one where computations take place. Therefore, it is always
interesting to interpret, in finite precision calculations, the continuous theoretical re-
sults and to verify to what extent they are fulfilled.

Some practical results presented below may be explained in terms of a simple
theoretical result that was tangentially mentioned in the introduction: If, at Step 2 of
Algorithm 3.1, one computes a global minimizer of the subproblem and the problem
(2.1) is feasible, then every limit point is a global minimizer of (2.1). This property
may be easily proved using boundedness of the safeguarded Lagrange multipliers by
means of external penalty arguments. Now, algorithms designed to solve reasonably
simple subproblems usually include practical procedures that actively seek function
decrease, beyond the necessity of finding stationary points. For example, efficient
line-search procedures in unconstrained minimization and box-constrained minimiza-
tion usually employ aggressive extrapolation steps [9], although simple backtracking is
enough to prove convergence to stationary points. In other words, from good subprob-
lem solvers one expects much more than convergence to stationary points. For this
reason, we conjecture that augmented Lagrangian algorithms like Algencan tend to
converge to global minimizers more often than SQP-like methods. In any case, these
arguments support the necessity of developing global-oriented subproblem solvers.

Experiments in this subsection were made using the AMPL interfaces of Algen-

can (considering all the constraints as upper-level constraints) and Ipopt. Presolve
AMPL option was disabled to solve the problems exactly as they are. The Algen-

can parameters and stopping criteria were the ones stated at the beginning of this
section. For Ipopt we used all its default parameters (including the ones related
to stopping criteria). The random generation of initial points was made using the
function Uniform01() provided by AMPL. When generating several random initial
points, the seed used to generate the ith random initial point was set to i.

Example 1. Convergence to KKT points that do not satisfy MFCQ.

Minimize x1

subject to x2
1 + x2

2 ≤ 1,

x2
1 + x2

2 ≥ 1.
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The global solution is (−1, 0) and no feasible point satisfies the MFCQ, although all
feasible points satisfy CPLD. Starting with 100 random points in [−10, 10]2, Algen-

can converged to the global solution in all the cases. Starting from (5, 5) convergence
occurred using 14 outer iterations. The final penalty parameter was 4.1649E-01 (the
initial one was 4.1649E-03), and the final multipliers were 4.9998E-01 and 0.0000E+00.
Ipopt also found the global solution in all the cases and used 25 iterations when start-
ing from (5, 5).

Example 2. Convergence to a non-KKT point.

Minimize x

subject to x2 = 0,

x3 = 0,

x4 = 0.

Here the gradients of the constraints are linearly dependent for all x ∈ R. In spite
of this, the only point that satisfies Theorem 4.1 is x = 0. Starting with 100 ran-
dom points in [−10, 10], Algencan converged to the global solution in all the cases.
Starting with x = 5 convergence occurred using 20 outer iterations. The final penalty
parameter was 2.4578E+05 (the initial one was 2.4578E-05), and the final multipliers
were 5.2855E+01, -2.0317E+00, and 4.6041E-01. Ipopt was not able to solve the
problem in its original formulation because the “Number of degrees of freedom is
NIND = −2.” We modified the problem in the following way:

Minimize x1 + x2 + x3

subject to x2
1 = 0,

x3
1 = 0,

x4
1 = 0,

xi ≥ 0, i = 1, 2, 3,

and, after 16 iterations, Ipopt stopped near x = (0,+∞,+∞) saying the “Iterates
become very large (diverging?).”

Example 3. Infeasible stationary points [18, 34].

Minimize 100(x2 − x2
1)

2 + (x1 − 1)2

subject to x1 − x2
2 ≤ 0,

x2 − x2
1 ≤ 0,

−0.5 ≤ x1 ≤ 0.5,

x2 ≤ 1.

This problem has a global KKT solution at x = (0, 0) and a stationary infeasible
point at x = (0.5,

√
0.5). Starting with 100 random points in [−10, 10]2, Algencan

converged to the global solution in all the cases. Starting with x = (5, 5) convergence
occurred using 6 outer iterations. The final penalty parameter was 1.0000E+01 (the
initial one was 1.0000E+00), and the final multipliers were 1.9998E+00 and 3.3390E-
03. Ipopt found the global solution starting from 84 out of the 100 random initial
points. In the other 16 cases Ipopt stopped at x = (0.5,

√
0.5) saying “Convergence
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to stationary point for infeasibility” (this was also the case when starting from x =
(5, 5)).

Example 4. Difficult-for-barrier [15, 18, 47].

Minimize x1

subject to x2
1 − x2 + a = 0,

x1 − x3 − b = 0,

x2 ≥ 0, x3 ≥ 0.

In [18] we read “This test example is from [47] and [15]. Although it is well-posed,
many barrier-SQP methods (‘Type-I Algorithms’ in [47]) fail to obtain feasibility for
a range of infeasible starting points.”

We ran two instances of this problem, varying the values of parameters a and b
and the initial point x0 as suggested in [18]. When (a, b) = (1, 1) and x0 = (−3, 1, 1)
Algencan converged to the solution x̄ = (1, 2, 0) using 2 outer iterations. The final
penalty parameter was 5.6604E-01 (the initial one also was 5.6604E-01), and the final
multipliers were 6.6523E-10 and -1.0000E+00. Ipopt also found the same solution
using 20 iterations. When (a, b) = (−1, 0.5) and x0 = (−2, 1, 1) Algencan converged
to the solution x̃ = (1, 0, 0.5) using 5 outer iterations. The final penalty parameter
was 2.4615E+00 (the initial one also was 2.4615E+00), and the final multipliers were
-5.0001E-01 and -1.3664E-16. On the other hand, Ipopt stopped declaring conver-
gence to a stationary point for the infeasibility.

Example 5. Preference for global minimizers.

Minimize
n∑

i=1

xi

subject to x2
i = 1, i = 1, . . . , n.

Solution: x∗ = (−1, . . . ,−1), f(x∗) = −n. We set n = 100 and ran Algencan and
Ipopt starting from 100 random initial points in [−100, 100]n. Algencan converged
to the global solution in all the cases while Ipopt never found the global solution.
When starting from the first random point, Algencan converged using 4 outer itera-
tions. The final penalty parameter was 5.0882E+00 (the initial one was 5.0882E-01),
and the final multipliers were all equal to 4.9999E-01.

6.2. Location problems. Here we will consider a variant of the family of loca-
tion problems introduced in [12]. In the original problem, given a set of np disjoint
polygons P1, P2, . . . , Pnp in R

2 one wishes to find the point z1 ∈ P1 that minimizes
the sum of the distances to the other polygons. Therefore, the original problem for-
mulation is

min
zi, i=1,...,np

1

np − 1

np∑
i=2

‖zi − z1‖2 subject to zi ∈ Pi, i = 1, . . . , np.

In the variant considered in the present work, we have, in addition to the np polygons,
nc circles. Moreover, there is an ellipse which has a nonempty intersection with P1

and such that z1 must be inside the ellipse and zi, i = 2, . . . , np +nc, must be outside.
Therefore, the problem considered in this work is

min
zi, i=1,...,np+nc

1

nc + np − 1

[
np∑
i=2

‖zi − z1‖2 +

nc∑
i=1

‖znp+i − z1‖2

]
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Table 1

Location problems and their main features. The problem generation is based on a grid. The
number of city-circles (nc) and city-polygons (np) depend on the number of points in the grid, the
probability of having a city in a grid point (procit), and the probability of a city to be a polygon
(propol) or a circle (1 − propol). The number of vertices of a city-polygon is a random number
and the total number of vertices of all the city-polygons together is totnvs. Finally, the number
of variables of the problem is n = 2(nc + np), the number of upper-level inequality constraints is
p1 = nc + np, and the number of lower-level inequality constraints is p2 = nc + totnvs. The total
number of constraints is p1 + p2. The central rectangle is considered here a “special” city-polygon.
The lower-level constraints correspond to the fact that each point must be inside a city and the
upper-level constraints come from the fact that the central point must be inside the ellipse and all
the others must be outside.

Problem nc np totnvs n p1 p2

1 28 98 295 252 126 323
2 33 108 432 282 141 465
3 33 108 539 282 141 572
4 33 109 652 284 142 685
5 35 118 823 306 153 858
6 35 118 940 306 153 975
7 35 118 1,057 306 153 1,092
8 35 118 1,174 306 153 1,209
9 35 118 1,291 306 153 1,326
10 35 118 1,408 306 153 1,443
11 35 118 1,525 306 153 1,560
12 35 118 1,642 306 153 1,677
13 35 118 1,759 306 153 1,794
14 35 118 1,876 306 153 1,911
15 35 118 1,993 306 153 2,028
16 35 118 2,110 306 153 2,145
17 35 118 2,227 306 153 2,262
18 35 118 2,344 306 153 2,379
19 3,029 4,995 62,301 16,048 8,024 65,330
20 4,342 7,271 91,041 23,226 11,613 95,383
21 6,346 10,715 133,986 34,122 17,061 140,332
22 13,327 22,230 278,195 71,114 35,557 291,522
23 19,808 33,433 417,846 106,482 53,241 437,654
24 29,812 50,236 627,548 160,096 80,048 657,360
25 26,318 43,970 549,900 140,576 70,288 576,218
26 39,296 66,054 825,907 210,700 105,350 865,203
27 58,738 99,383 1,241,823 316,242 158,121 1,300,561
28 65,659 109,099 1,363,857 349,516 174,758 1,429,516
29 98,004 164,209 2,052,283 524,426 262,213 2,150,287
30 147,492 245,948 3,072,630 786,880 393,440 3,220,122
31 131,067 218,459 2,730,798 699,052 349,526 2,861,865
32 195,801 327,499 4,094,827 1,046,600 523,300 4,290,628
33 294,327 490,515 6,129,119 1,569,684 784,842 6,423,446
34 261,319 435,414 5,442,424 1,393,466 696,733 5,703,743
35 390,670 654,163 8,177,200 2,089,666 1,044,833 8,567,870
36 588,251 979,553 12,244,855 3,135,608 1,567,804 12,833,106

subject to g(z1) ≤ 0,

g(zi) ≥ 0, i = 2, . . . , np + nc,

zi ∈ Pi, i = 1, . . . , np,

znp+i ∈ Ci, i = 1, . . . , nc,

where g(x) = (x1/a)
2+(x2/b)

2−c, and a, b, c ∈ R are positive constants. Observe that
the objective function is differentiable in a large open neighborhood of the feasible
region. To solve this family of problems, we will consider g(z1) ≤ 0 and g(zi) ≥
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Fig. 1. Twelve-sets very small location problem.

0, i = 2, . . . , np + nc, as upper-level constraints, and zi ∈ Pi, i = 1, . . . , np, and
znp+i ∈ Ci, i = 1, . . . , nc, as lower-level constraints. In this way the subproblems can
be efficiently solved by the SPG [11, 12] as suggested by the experiments in [12].

We generated 36 problems of this class, varying nc and np and choosing ran-
domly the location of the circles and polygons and the number of vertices of each
polygon. Details of the generation, including the way in which we guarantee empty
intersections (in order to have differentiability everywhere), may be found in [12] and
its related code (also available at http://www.ime.usp.br/∼egbirgin/tango/), where
the original problem was introduced. Moreover, details of the present variant of the
problem can be found within its fully commented Fortran 77 code (also available at
http://www.ime.usp.br/∼egbirgin/tango/). In Table 1 we display the main character-
istics of each problem (number of circles, number of polygons, total number of vertices
of the polygons, dimension of the problem, and number of lower-level and upper-level
constraints). Figure 1 shows the solution of a very small twelve-sets problem that has
24 variables, 81 lower-level constraints, and 12 upper-level constraints.

The 36 problems are divided into two sets of 18 problems: small and large prob-
lems. We first solved the small problems with Algencan (considering all the con-
straints as upper-level constraints) and Alspg. Both methods use the Fortran 77
formulation of the problem (Alspg needs an additional subroutine to compute the
projection of an arbitrary point onto the convex set given by the lower-level con-
straints). In Table 2 we compare the performance of both methods for solving this
problem. Both methods obtain feasible points and arrive at the same solutions. Due
to the performance of Alspg, we also used it to solve the set of large problems.
Table 3 shows its performance. A comparison against Ipopt was made, and, while
Ipopt was able to find equivalent solutions for the smaller problems, it was unable
to handle the larger problems due to memory requirements.

7. Final remarks. In the last few years many sophisticated algorithms for
nonlinear programming have been published. They usually involve combinations of
interior-point techniques, SQP, trust regions, restoration, nonmonotone strategies,
and advanced sparse linear algebra procedures. See, for example, [17, 28, 30, 31, 32, 37]
and the extensive reference lists of these papers. Moreover, methods for solving effi-
ciently specific problems or for dealing with special constraints are often introduced.
Many times, a particular algorithm is extremely efficient for dealing with problems of
a given type but fails (or cannot be applied) when constraints of a different class are
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Table 2

Performance of Algencan and Alspg in the set of small location problems.

Algencan Alspg

Problem OuIt InIt Fcnt Gcnt Time OuIt InIt Fcnt Gcnt Time f
1 7 127 1309 142 1.21 3 394 633 397 0.10 1.7564E+01
2 6 168 1921 181 1.15 3 614 913 617 0.16 1.7488E+01
3 6 150 1818 163 1.02 3 736 1127 739 0.21 1.7466E+01
4 9 135 972 154 0.63 3 610 943 613 0.18 1.7451E+01
5 5 213 2594 224 1.16 3 489 743 492 0.15 1.7984E+01
6 5 198 2410 209 1.21 3 376 547 379 0.12 1.7979E+01
7 5 167 1840 178 1.71 3 332 510 335 0.11 1.7975E+01
8 3 212 2548 219 1.34 3 310 444 313 0.11 1.7971E+01
9 3 237 3116 244 1.49 3 676 1064 679 0.25 1.7972E+01
10 3 212 2774 219 1.27 3 522 794 525 0.20 1.7969E+01
11 3 217 2932 224 1.46 3 471 720 474 0.19 1.7969E+01
12 3 208 2765 215 1.40 3 569 872 572 0.23 1.7968E+01
13 3 223 2942 230 1.44 3 597 926 600 0.25 1.7968E+01
14 3 272 3981 279 2.12 3 660 1082 663 0.29 1.7965E+01
15 3 278 3928 285 2.20 3 549 834 552 0.24 1.7965E+01
16 3 274 3731 281 2.52 3 565 880 568 0.26 1.7965E+01
17 3 257 3186 264 2.31 3 525 806 528 0.24 1.7963E+01
18 3 280 3866 287 2.39 3 678 1045 681 0.32 1.7963E+01

Table 3

Performance of Alspg on set of large location problems. The memory limitation (to gener-
ate and save the problems’ statement) is the only inconvenience for Alspg solving problems with
higher dimension than problem 36 (approximately 3× 106 variables, 1.5× 106 upper-level inequality
constraints, and 1.2×107 lower-level inequality constraints), since computer time is quite reasonable.

Problem Alspg f
OuIt InIt Fcnt Gcnt Time

19 8 212 308 220 3.46 4.5752E+02
20 8 107 186 115 2.75 5.6012E+02
21 9 75 149 84 3.05 6.8724E+02
22 7 80 132 87 5.17 4.6160E+02
23 7 71 125 78 7.16 5.6340E+02
24 8 53 106 61 8.72 6.9250E+02
25 8 55 124 63 8.00 4.6211E+02
26 7 63 127 70 12.56 5.6438E+02
27 9 80 155 89 19.84 6.9347E+02
28 8 67 138 75 22.24 4.6261E+02
29 7 54 107 61 27.36 5.6455E+02
30 9 95 179 104 51.31 6.9382E+02
31 7 59 111 66 39.12 4.6280E+02
32 7 66 120 73 63.35 5.6449E+02
33 9 51 113 60 85.65 6.9413E+02
34 7 58 110 65 79.38 4.6270E+02
35 7 50 104 57 107.27 5.6432E+02
36 10 56 133 66 190.59 6.9404E+02
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incorporated. This situation is quite common in engineering applications. In the aug-
mented Lagrangian framework additional constraints are naturally incorporated into
the objective function of the subproblems, which therefore preserve their constraint
structure. For this reason, we conjecture that the augmented Lagrangian approach
(with general lower-level constraints) will continue to be used for many years.

This fact motivated us to improve and analyze augmented Lagrangian methods
with arbitrary lower-level constraints. From the theoretical point of view our goal
was to eliminate, as much as possible, restrictive constraint qualifications. With this
in mind, we used, both in the feasibility proof and in the optimality proof, the CPLD
condition. This condition [41] has been proved to be a constraint qualification in [4],
where its relations with other constraint qualifications have been given.

We provided a family of examples (location problems) where the potential of the
arbitrary lower-level approach is clearly evidenced. This example represents a typical
situation in applications. A specific algorithm (SPG) is known to be very efficient for a
class of problems but turns out to be impossible to apply when additional constraints
are incorporated. However, the augmented Lagrangian approach is able to deal with
the additional constraints, taking advantage of the efficiency of SPG for solving the
subproblems. In this way, we were able to solve nonlinear programming problems with
more than 3,000,000 variables and 14,000,000 constraints in less than five minutes of
CPU time.

Open problems related to theory and implementation of practical augmented
Lagrangian methods may be found in the expanded report [3].

Acknowledgments. We are indebted to Prof. A. R. Conn, whose comments on
a first version of this paper guided a deep revision, and to an anonymous referee for
many constructive remarks.
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gence of a trust-region SQP-filter algorithm for general nonlinear programming, SIAM J.
Optim., 13 (2002), pp. 635–659.

[27] A. Forsgren, P. E. Gill, and M. H. Wright, Interior methods for nonlinear optimization,
SIAM Rev., 44 (2002), pp. 525–597.

[28] E. M. Gertz and P. E. Gill, A primal-dual trust region algorithm for nonlinear optimization,
Math. Program., 100 (2004), pp. 49–94.

[29] P. E. Gill, W. Murray, and M. A. Saunders, SNOPT: An SQP algorithm for large-scale
constrained optimization, SIAM Rev., 47 (2005), pp. 99–131.

[30] C. C. Gonzaga, E. Karas, and M. Vanti, A globally convergent filter method for nonlinear
programming, SIAM J. Optim., 14 (2003), pp. 646–669.

[31] N. I. M. Gould, D. Orban, A. Sartenaer, and Ph. L. Toint, Superlinear convergence of
primal-dual interior point algorithms for nonlinear programming, SIAM J. Optim., 11
(2001), pp. 974–1002.

[32] N. I. M. Gould, D. Orban, and Ph. L. Toint, GALAHAD: A library of thread-safe Fortran
90 packages for large-scale nonlinear optimization, ACM Trans. Math. Software, 29 (2003),
pp. 353–372.

[33] M. R. Hestenes, Multiplier and gradient methods, J. Optim. Theory Appl., 4 (1969), pp. 303–
320.

[34] W. Hock and K. Schittkowski, Test Examples for Nonlinear Programming Codes, Lecture
Notes in Econom. and Math. Systems 187, Springer-Verlag, New York, 1981.

[35] X. Liu and J. Sun, A robust primal-dual interior point algorithm for nonlinear programs,
SIAM J. Optim., 14 (2004), pp. 1163–1186.

[36] O. L. Mangasarian and S. Fromovitz, The Fritz-John necessary optimality conditions in the
presence of equality and inequality constraints, J. Math. Anal. Appl., 17 (1967), pp. 37–47.

[37] J. M. Mart́ınez, Inexact restoration method with Lagrangian tangent decrease and new merit
function for nonlinear programming, J. Optim. Theory Appl., 111 (2001), pp. 39–58.

[38] J. M. Moguerza and F. J. Prieto, An augmented Lagrangian interior-point method using
directions of negative curvature, Math. Program., 95 (2003), pp. 573–616.

[39] J. Nocedal and S. J. Wright, Numerical Optimization, Springer, New York, 1999.



AUGMENTED LAGRANGIANS WITH LOWER-LEVEL CONSTRAINTS 1309

[40] M. J. D. Powell, A method for nonlinear constraints in minimization problems, in Optimiza-
tion, R. Fletcher, ed., Academic Press, New York, 1969, pp. 283–298.

[41] L. Qi and Z. Wei, On the constant positive linear dependence condition and its application to
SQP methods, SIAM J. Optim., 10 (2000), pp. 963–981.

[42] R. T. Rockafellar, Augmented Lagrange multiplier functions and duality in nonconvex pro-
gramming, SIAM J. Control, 12 (1974), pp. 268–285.

[43] R. T. Rockafellar, Lagrange multipliers and optimality, SIAM Rev., 35 (1993), pp. 183–238.
[44] D. F. Shanno and R. J. Vanderbei, Interior-point methods for nonconvex nonlinear program-

ming: Orderings and high-order methods, Math. Program., 87 (2000), pp. 303–316.
[45] P. Tseng, Convergent infeasible interior-point trust-region methods for constrained minimiza-

tion, SIAM J. Optim., 13 (2002), pp. 432–469.
[46] M. Ulbrich, S. Ulbrich, and L. N. Vicente, A globally convergent primal-dual interior-point

filter method for nonlinear programming, Math. Program., 100 (2004), pp. 379–410.
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over standard options of splitting variables, using a quadratic cone, and solving indefinite systems.

Key words. infeasible primal-dual path-following algorithm, semidefinite programming, equal-
ity constraints, free variables, regularization

AMS subject classifications. 90C51, 90C22, 90C05, 65K05

DOI. 10.1137/06066847X

1. Introduction. Conic linear optimization, and in particular semidefinite op-
timization, has arisen since the early 1990s as an increasingly powerful and useful
technique for tackling a variety of problems arising from both applications and the-
ory. We refer the reader to the SDP webpage of Helmberg [8] as well as the books of
de Klerk [5] and Wolkowicz, Saigal, and Vandenberghe [30] for thorough coverage of
the theory and algorithms in this area, as well as of several application areas where
researchers in conic linear optimization have made significant contributions.

Conic linear optimization refers to the class of optimization problems where a lin-
ear function of a variable x is optimized subject to linear constraints on the elements of
x and the additional constraint that x lie in a symmetric self-dual cone. This includes
linear programming (LP) problems as a special case, namely, when the cone is the non-
negative orthant. Since all of these cones can be described as a conic section of the cone
of positive semidefinite matrices (in a polynomially bounded dimension, see [6]), at-
tention has focused particularly on the development of algorithms for solving semidef-
inite linear optimization, commonly referred to as semidefinite programming (SDP).
Beyond LP and SDP, a third specific cone that is useful in applications is the second-
order (or Lorentz) cone, which gives rise to second-order cone programming (SOCP).

As a result, a variety of algorithms for solving LP, SOCP, and SDP problems,
including polynomial-time infeasible path-following interior-point methods (IPMs),
have been implemented and benchmarked (see, e.g., [18]), and several excellent solvers
are available. Two of these solvers handle LP, SOCP, and SDP in a unified way,
namely, SeDuMi [25] and SDPT3 [26].

Notwithstanding the substantial progress made in recent years, work continues
on methods and software for conic linear optimization. One outstanding issue is that
of handling free variables.
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Handling free variables in conic linear optimization is an important modeling and
algorithmic issue for IPMs. The issue arises from the fact that nearly all theories
and algorithms for IPMs are based on the following standard-form primal and dual
problems:

min
{
cTx : Ax = b, x ∈ K

}
and max

{
bT y : AT y + s = c, s ∈ K

}
,

where K is the symmetric self-dual cone (specifically, a direct product of linear,
semidefinite, and second-order cones). However, in many applications, free variables
naturally appear in the primal. Examples of such applications occur in quantum chem-
istry [36], polynomial optimization problems [21, 12], and combinatorial optimization
problems [13, 2], among others.

Allowing free variables, the (nonstandard) primal problem is

(1) min
{
cTx + gT z : Ax + Ez = b, x ∈ K

}
with the corresponding dual problem

(2) max
{
bT y : AT y + s = c, ET y = g, s ∈ K

}
.

We denote by (n, p,m, n) the dimensions of the vectors (x, z, y, s), respectively, which
determines the sizes of the data (A, b, c, E, g).

Theoretically, it is not so difficult to extend standard-form IPMs to handle (1)–(2).
However, computation is not so easy. Each iteration of IPMs for the standard-form
problem is based on solving a positive definite linear system, and accordingly most
codes use high-quality, fast, sparsity-preserving implementations of the Cholesky fac-
torization. When free variables are present, the corresponding system is still invertible
but becomes indefinite, which makes it more difficult to solve in a quick, stable fash-
ion. We emphasize that free variables are a computational issue and not a theoretical
one.

Researchers have attempted various alternative ways to handle free variables com-
putationally. Each method can be viewed as an attempt to enable the use of the
Cholesky factorization.

Probably the simplest and most often suggested method is to split the variable z
into a difference z+ − z− of nonnegative vectors z+ ≥ 0 and z− ≥ 0 which transforms
(1)–(2) into standard form. The effect in the dual is that the equality ET y = g is split
into ET y ≥ g and ET y ≤ g. In part because of its simplicity, this approach is often
implemented as the default behavior for interior-point methods (e.g., in the LP code
LIPSOL [34] that is the basis of Matlab’s large-scale LP solver). For interior-point
methods, this splitting of variables can be problematic because the primal optimal
solution set becomes unbounded and the dual feasible set has no interior. Empirically,
a typical behavior is that z+ and z− individually become unbounded, while their
difference z stays bounded. For LP, Wright [31] asserts that, for methods which
achieve superlinear convergence, the tendency of z+ and z− to grow large is mitigated
in a satisfactory manner. Also, an alternative way to handle the splitting of variables
in LP that leads to the solution of a symmetric quasi-definite system [27] is outlined
in [28]. However, the recent results in [29, 9] suggest that the degeneracy caused by
splitting free variables in SDP problems makes it difficult to solve the resulting SDPs
stably and/or highly accurately.

A quick overview of other alternative methods for handling free variables is as
follows:
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• One can convert to standard form by eliminating z in the equations Ax+Ez =
b. However, structural properties of (A,E) such as sparsity tend to be de-
stroyed by such an approach. In the context of SDP, Kobayashi, Nakata, and
Kojima [9] consider this approach and in particular make efforts to manage
the loss of sparsity by eliminating z via different bases.

• One can convert to standard form by adding an auxiliary scalar variable z0

and requiring that (z0, z) be in a second-order cone. To the best of our
knowledge, this was first suggested by Andersen [1], who reports good results
and improved accuracy when solving SOCPs. This approach is also available
as an option in the most recent release of SeDuMi, version 1.1 (see [23]).

• One can handle the free variables directly and regularize the indefinite sys-
tem faced at each iteration, i.e., make the system symmetric quasi-definite by
perturbing it in a controlled way. This approach was suggested by Mészáros
[17] in the context of LP. Beyond permitting the use of the Cholesky factor-
ization, another advantage of regularization is that the structure of (A,E) is
not destroyed. On the other hand, the downside of this approach is that the
solution of the system is also perturbed, and care must be taken to ensure
that the global convergence of the method is not negatively affected.

Finally, we reiterate that one certainly still has the option to handle the free variables
directly and solve the indefinite systems ((7) below). In fact, this is the default
option of SDPT3 version 3.02, ostensibly because the authors of the software found
this approach better than, say, splitting variables.

It seems safe to say that no consensus has been reached on how to handle free
variables in all cases. Indeed, it is our opinion (and that of Kobayashi, Nakata, and
Kojima [9]) that solving general conic linear optimization problems with free variables
in a reliably stable and accurate manner remains a relevant research topic.

In this paper, we revisit the regularization method of Mészáros [17] and formalize
a strategy for handling and updating the regularization so that global convergence is
not affected. In contrast to the strategy suggested by Mészáros, which is based on
iterative refinement and is somewhat ad hoc, our strategy is supported by a global
convergence result. Using the code SDPT3, we illustrate the effectiveness of our
regularization strategy on a diverse collection of problems. Our approach achieves
the same or significantly better accuracy over the approaches of splitting variables,
using a quadratic cone, and solving indefinite systems.

1.1. Some remarks. A few remarks are in order. First, our intention in this
paper is not to claim that regularization is the best in all situations. Indeed, this is
most likely not the case. Instead, we simply hope to establish that regularization,
properly handled, is a viable alternative to other methods for handling free variables.
(One consequence is that we have chosen not to compare with the method of elimi-
nating z as in [9] in part because careful comparisons are given in [9] and because we
prefer to maintain the structure of (A,E).)

Second, there are several different publicly available codes for LP, SOCP, and/or
SDP on which we could test the regularization. Ultimately, we have chosen to test
SDPT3 for several reasons: We wished to test both SOCP and SDP, which SDPT3
can handle; SDPT3’s algorithm matches the algorithmic framework of our analysis
very closely; and SDPT3’s code is easily accessible, customizable, and verifiable in
Matlab.

Finally, significant variation between different codes makes it unclear whether
regularization would have the same effect within all codes as it does with SDPT3.
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For example, tests that we have performed indicate that split variables perform quite
well within SeDuMi. This is to be expected because, by design, the homogeneous
self-dual embedding model used by SeDuMi has a bounded optimal solution set, and
thus the iterates cannot diverge to infinity. Hence, SeDuMi will not suffer additional
numerical instabilities from the splitting; in fact, split variables perform so well in
SeDuMi that there does not appear to be much room for improvement in SeDuMi using
regularization. In our opinion, these code-by-code differences make the discussion of
free variables richer.

1.2. Structure of this paper. This paper is structured as follows. In section 2,
we recall the basic framework of infeasible primal-dual path-following algorithms. In
section 3, we summarize the key ideas behind a global convergence result of Kojima,
Megiddo, and Mizuno [10], and in section 4, we recall the regularization approach
originally proposed by Mészáros [17]. In section 5, we propose a specific methodology
to update the regularization at each iteration and extend the analysis of Kojima,
Megiddo, and Mizuno [10] to show that the resulting infeasible primal-dual path-
following method is globally convergent. In section 6, we report computational results
which show that the proposed regularization leads to an overall improvement in the
performance of SDPT3 for instances with free variables. Finally, section 7 summarizes
our findings and mentions some possible directions for future research.

2. The basic infeasible primal-dual path-following framework. In this
section, we recall the basic framework of infeasible primal-dual path-following algo-
rithms, which is implemented in nearly all interior-point codes for conic linear op-
timization. Even though standard texts treat the standard-form problem, we state
the framework with respect to the problems (1)–(2). To recover the standard-form
framework, one can simply take p = 0.

For simplicity, the framework (and indeed all of the results in the paper) are stated
with K expressed as a linear cone; i.e., the SOCP and SDP cases are not explicitly
handled. By now, it is well known that all standard convergence results for LP can
be extended to SOCP and SDP. With this in mind and in hopes of keeping this paper
as clean and accessible as possible, we choose to state everything in terms of LP.

Without loss of generality, we make the standard assumptions that A has full-
row rank and E has full-column rank. We also assume that both (1)–(2) are interior
feasible so that strong duality holds. Strong duality occurs when both primal and
dual attain their optimal values with no gap; i.e., there exists a primal-dual feasible
point (x, z, y, s) such that μ(x, s) = 0, where μ(x, s) := xT s/n is the (scaled) duality
gap.

A consequence of these assumptions is that, for all ν > 0, the system

Ax + Ez = b,(3a)

AT y + s = c,(3b)

ET y = g,(3c)

XS e = ν e,(3d)

(X,S) ∈ K0 ×K0(3e)

has a unique solution, which we write as (xν , zν , yν , sν). (We adopt common notation
in the field of IPMs, so that X := Diag(x), S := Diag(s), K0 := int(K), and e denotes
the vector of all ones.) The set C := {(xν , zν , yν , sν) : ν > 0} is called the central path
and is a smooth trajectory that converges to the primal-dual optimal solution set as
ν → 0 (note, for example, that μ(xν , sν) = ν).
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Given an initial point (x1, z1, y1, s1)—which is not necessarily primal-dual feasible
but does satisfy (x1, s1) ∈ K0×K0—the kth iteration of the path-following framework
attempts to solve (3) for some νk ∈ (0, μ(xk, sk)) by taking a step via Newton’s
method. More specifically, the system

AΔxk + EΔzk = rkp ,(4a)

ATΔyk + Δsk = rkd1
,(4b)

ETΔyk = rkd2
,(4c)

SkΔxk + XkΔsk = rkc ,(4d)

where

rkp := b−Axk − Ezk,(5a)

rkd1
:= c−AT yk − sk,(5b)

rkd2
:= g − ET yk,(5c)

rkc := νk e−XkSke,(5d)

is solved for (Δxk,Δzk,Δyk,Δsk), and a step size αk ∈ (0, 1] is selected such that

(xk+1, zk+1, yk+1, sk+1) := (xk, zk, yk, sk) + αk(Δxk,Δzk,Δyk,Δsk)

satisfies μ(xk+1, sk+1) < μ(xk, sk) and (xk+1, sk+1) ∈ K0 ×K0. By construction,

(6) (rk+1
p , rk+1

d1
, rk+1

d2
) = (1 − αk)(r

k
p , r

k
d1
, rkd2

).

In other words, one can interpret a single iteration as decreasing the duality gap and
decreasing infeasibility, while staying inside the cone. (An important technical issue
is whether (4) is uniquely solvable. This is guaranteed by (xk, sk) ∈ K0 × K0; see
also below.)

Various implementations of the above basic framework are possible. For example,
many implementations do not monitor the decrease of μ since, in practice, a decrease
is typically observed all the way to the boundary of K0 ×K0. Most implementations
also take different step sizes in the primal and dual spaces. Another popular variant
is the predictor-corrector strategy of Mehrotra [16], which provides a highly effective
scheme for choosing νk and for altering (Δxk,Δzk,Δyk,Δsk) so that the central path
is followed more closely.

The Newton system can be reduced to the following smaller system (where the
superscript k is understood):

(7)

(
AXS−1AT E

ET 0

)(
Δy
Δz

)
=

(
AXS−1rd1 −AS−1rc + rp

rd2

)
.

If p > 0 (i.e., if there are free variables), then this system is indefinite. On the other
hand, if p = 0, then the system is positive definite and can be solved with the Cholesky
factorization.

3. A basic global convergence analysis. As discussed in section 2, the infea-
sible primal-dual path-following framework reduces both the gap and the infeasibility
in each iteration. Global convergence is achieved if the gap and infeasibility converge
to zero. In this section, we recapitulate the first global convergence result, which
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was given by Kojima, Megiddo, and Mizuno [10] (for the case of LP with no free
variables). This will serve as the basis of the results in section 5. (Some comments
on why we have chosen to present the approach of Kojima, Megiddo, and Mizuno are
given below in section 3.2.)

We caution the reader that we do not present Kojima, Megiddo, and Mizuno’s
method verbatim, but instead we make some simplifying assumptions. The simpli-
fications are for the sake of brevity; all of the fundamental content is retained. For
example, Kojima, Megiddo, and Mizuno analyze the use of different primal and dual
step sizes, whereas we analyze a common step size. Another simplification is the
following assumption: The initial point (x1, z1, y1, s1) satisfies (r1

p, r
1
d1

) = (0, 0) so

that (rkp , r
k
d1

) = (0, 0) for all k. Our reasons for this assumption are as follows: The
essentials of the global convergence result are clear with only one infeasible equation,
and the assumption rkd2

�= 0 is sufficient to develop the techniques of section 5. In

accordance with this assumption, we will write rk := rkd2
to streamline notation. Also

to make notation easier, we let μk := μ(xk, sk).
Within the framework of section 2, convergence results typically require some

restrictions on the iterates. Kojima, Megiddo, and Mizuno require that the iterates
remain in a neighborhood of the central path having the following form, which is
dependent on constants γ ∈ (0, 1) and β > 0:

(8)
N (γ, β) := {(x, z, y, s) ∈ K0×�p×�m×K0 : XS e ≥ γ μ(x, s) e, ‖r(y)‖ ≤ β μ(x, s)},

where r(y) := g−ET y. In particular, γ and β should be chosen so that (x1, z1, y1, s1) ∈
N (γ, β). At times we will write N := N (γ, β) for convenience. The neighborhood
aids the convergence analysis by guaranteeing that the iterates do not get too close
to the cone boundary and that infeasibility decreases at the same rate as the duality
gap.

The precise algorithm is stated as Algorithm 1. Note that the algorithm depends
on user-defined tolerances ε > 0 and ω > 0 as well as a duality gap “dampening”
factor σ ∈ (0, 0.99). In addition, the algorithm also utilizes the following definitions
for α ∈ [0, 1]:

(xα, zα, yα, sα) := (xk, zk, yk, sk) + α(Δxk,Δzk,Δyk,Δsk),

μα := μ(xα, sα).

The convergence result is stated next.

Algorithm 1. Infeasible Path-Following Algorithm.

Let ε > 0, ω > 0, σ ∈ (0, 0.99), and (x1, z1, y1, s1) ∈ N be given.

for k = 1, 2, 3, . . . do
If μk ≤ ε or ‖(xk, sk)‖1 ≥ ω, then stop.
Set νk := σμk and solve (4) for (Δxk,Δzk,Δyk,Δsk).
Set (xk+1, zk+1, yk+1, sk+1) = (xαk

, zαk
, yαk

, sαk
), where αk ∈ (0, 1] is the largest

step size such that the relations

(xα, zα, yα, sα) ∈ N ,(9)

μα ≤ (1 − 0.01α)μk(10)

hold for every α ∈ [0, αk].
end for
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Theorem 3.1 (see [10]). Let γ ∈ (0, 1), β > 0, and an initial point (x1, z1, y1, s1) ∈
N (γ, β) be given. Suppose, moreover, that positive tolerances ε and ω and a damp-
ening factor σ ∈ (0, 0.99) are specified. Then Algorithm 1 eventually generates an
iterate (xk, zk, yk, sk) ∈ N (γ, β) such that μk ≤ ε or ‖(xk, sk)‖1 ≥ ω. If the first case
occurs, then ‖rk‖ ≤ β ε as well.

If the second case occurs, then Kojima, Megiddo, and Mizuno show that the
infeasibility of (1)–(2) is implied over a wide region of the primal-dual ground space
K×�p×�m×K. Although this information is not a full infeasibility certificate, the
intuition is that this is a strong indication of infeasibility, especially when ω is large.

The key to establishing Theorem 3.1 is to prove the existence of a positive constant
α∗ such that αk ≥ α∗ for all k generated by the algorithm. We state this lemma and
prove the theorem; portions of the proof of the lemma, which are relevant to section
5, are given below in section 3.1.

Lemma 3.2 (see [10]). Suppose that there exists some constant η > 0 such that,
for all k generated by the algorithm,

|Δxk
i Δski − γ (Δxk)TΔsk/n | ≤ η ∀ i = 1, . . . , n,(11a)

| (Δxk)TΔsk/n | ≤ η.(11b)

Then αk ≥ α∗ > 0, where

(12) α∗ := min

{
1,

(1 − γ)σε

η
,
σε

η
,
(0.99 − σ)ε

η

}
.

Proof of Theorem 3.1. The proof is by contradiction. Assume that Algorithm
1 does not terminate. Then the entire infinite sequence {(xk, zk, yk, sk)} lies in the
compact set

N ∗ := { (x, z, y, s) ∈ N : μ(x, s) ≥ ε, ‖(x, s)‖1 ≤ ω } .

Combining this with the fact that the Newton direction is a continuous function of the
iterates (since (4) is nonsingular for each k), any continuous function of the direction
is uniformly bounded over all k. So the hypothesis of Lemma 3.2 holds, implying that
αk ≥ α∗ for all k. Thus, by Algorithm 1, the duality gap is decreased by at least
a multiplicative factor of 1 − 0.01α∗ < 1 in each iteration, and so μk → 0, which
contradicts the assumption that Algorithm 1 does not terminate.

3.1. Proof of Lemma 3.2. Assume that (11) holds for all k generated by the
algorithm, and note also that

(13) μk ≥ ε

for the same k. We define rα := g − ET yα and recall that rα = (1 − α) r by (6).
Using the definitions of N and Algorithm 1 together with the following three

propositions, the proof of Lemma 3.2 is straightforward. We give only the proof of
Proposition 3.4 because of its relevance for the results in section 5. The super- and
subscripts k are dropped since the arguments below are irrespective of k.

Proposition 3.3 (see [10]). XαSα e ≥ γ μα e for all α ≤ (1 − γ)σ ε/η.
Proposition 3.4 (see [10]). ‖rα‖ ≤ βμα for all α ≤ σε/η.
Proof. Recall the standard relation

(14) μα = (1 − (1 − σ)α)μ + α2ΔxTΔs/n.
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Thus, we have

βμα − ‖rα‖ = β
[
(1 − (1 − σ)α)μ + α2ΔxTΔs/n

]
− (1 − α)‖r‖

= (1 − α)(βμ− ‖r‖) + βασμ + βα2ΔxTΔs/n

≥ βασμ− βα2η ≥ αβ [σε− αη] ,

where the first equality follows from (14), the first inequality follows from (x, z, y, s) ∈
N and (11b), and the second inequality follows from (13). This proves the result.

Proposition 3.5 (see [10]). μα ≤ (1 − 0.01α)μ for all α ≤ (0.99 − σ)ε/η.

3.2. Other convergence results. Before proceeding, we discuss other known
convergence results for the infeasible framework of section 2 and explain why we have
chosen to analyze the result of Kojima, Megiddo, and Mizuno [10].

Following the above global convergence result of Kojima, Megiddo, and Mizuno
and Zhang [32] strengthened the result by proving that an ε-approximate optimal
solution is delivered within O(n2) iterations (if an optimal solution exists). In par-
ticular, Zhang resolved the ambiguity surrounding Kojima, Megiddo, and Mizuno’s
infeasibility “certificate” ‖(x, s)‖1 > ω. For example, under the assumption of primal-
dual interior feasibility, all iterates stay bounded. Later, Zhang [33] extended these
ideas to the case of SDP.

Other implementations of the framework have also been analyzed. In particular,
a few authors have studied variations of the original predictor-corrector strategy of
Mehrotra [16]. First, Mehrotra himself suggests a proof of global convergence for his
method by appealing to certain “fall back” search directions, which are different from
his own predictor-corrector direction. Then Zhang and Zhang [35] prove polynomial
convergence of a variation of Mehrotra’s original method, which they suggest, but
to our knowledge the Zhang–Zhang variant has not actually been implemented in
practice. Finally, a third variant, which is used in most modern interior-point codes,
is analyzed by Salahi, Peng, and Terlaky [24]. They make the simplifying assumption
that all iterates are feasible and show by example that this variant can converge
quite slowly on certain problems. By studying a suitable modification, they prove
polynomial convergence. To our knowledge, no one has proved global or polynomial
convergence of the infeasible version of this third variant (i.e., the one implemented
in most codes).

A different line of research has analyzed the convergence of the framework when
using inexact Newton directions, which are directions that satisfy (4) only approx-
imately. Inexact directions arise, for example, when iterative methods are used to
solve the system (7) to moderate accuracy. Depending on their precise form, inex-
act directions can lead to infeasible iterates, even if the algorithm is supplied with
an initial feasible iterate. This is because the key relation (6) does not hold from
iteration to iteration. Nevertheless, global and polynomial convergence results can be
proved under suitable conditions on the degree of the inexactness of the direction (see
[19, 11, 7] for LP and, more recently, [37] for SDP).

In section 5, we propose Algorithm 2, a variant of Algorithm 1 that is based on
an inexact Newton direction arising from regularization. We also extend the analysis
in this section to prove a global convergence result for Algorithm 2. Although we
were unable to prove a polynomial convergence result for Algorithm 2, and although
the aforementioned work on inexact Newton directions can be applied to obtain a
provably polynomially convergent method with regularization, we deliberately choose
to advocate Algorithm 2 for the following reasons:
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• Our extension of the original result of Kojima, Megiddo, and Mizuno has
the advantages that: (i) it allows for infeasible iterates and a straightforward
analysis of our particular inexact direction; and (ii) the resulting regulariza-
tion strategy is quite simple to implement and has an intuitive appeal.

• Our experiments in the direction of following the insights provided by the
above research on inexact methods led us to the following conclusions: (i)
the resulting regularization strategies are significantly more difficult to im-
plement; and (ii) we implemented the approach of [7] and found by experi-
mentation that it did not work as well as our proposed approach.

It should also be noted that we chose not to analyze a predictor-corrector variant
because the theoretical basis for implemented predictor-corrector strategies is less well
understood, especially with regards to infeasible and inexact aspects. Nonetheless,
we did test our method successfully within such a strategy (more details are given in
section 6).

Ultimately, we believe that our analysis allows us to identify the essence of a good
regularization strategy. It should (i) be convergent, (ii) be easy to implement, and
(iii) work well in practice.

4. The regularization approach of Mészáros. Mészáros [17] proposes to
replace (4c) of the Newton system (4) with the following equation for a specified
δk > 0:

(15) ETΔyk − δk Δzk = rkd2
.

Just as (4) can be reduced to (7), the regularized system of Mészáros can be reduced
to

(16)

(
AXS−1AT E

ET −δ I

)(
Δy
Δz

)
=

(
AXS−1rd1

−AS−1rc + rp
rd2

)
,

where the k subscript is understood. In contrast to (7), however, (16) can further be
reduced to the positive definite system

(17)
(
AXS−1AT + δ−1EET

)
Δy = AXS−1rd1 −AS−1rc + rp + δ−1Erd2 .

Hence, the Cholesky factorization can be employed to calculate the direction. The
obvious downside is that the resulting direction is not the true Newton direction. It
is shown in [17] that the difference between these two directions is O(δ).

Yet, a more important question in practice is the choice of δk throughout the
course of the algorithm, since poor choices can certainly have a negative impact on
convergence. Under restrictive assumptions, an adaptive heuristic for updating δk is
proposed in [17], and iterative refinement is also suggested for improving the quality
of the search direction at each iteration. Furthermore, Maros and Mészáros [15] in-
vestigate the choice of a constant δk throughout the algorithm. From our perspective,
these suggestions are somewhat ad hoc and do not consider the effect of the regular-
ization on the global convergence of the algorithm. We feel that the question of how
to select a global strategy for updating δk was left open by Mészáros.

5. Global convergence with regularization. In contrast to Mészáros, we
take the perspective that the regularization of the Newton system leads to an inexact
interior-point method. In this section, we propose a specific methodology to update
δk at each iteration and show that the resulting interior-point method is globally
convergent.
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Recall that the direction determined by the regularization differs from the true
Newton direction in that (15) replaces (4c). Expressed differently, we allow the New-
ton direction to satisfy

ETΔyk = rkd2
+ δkΔzk,

even though we hope that ETΔyk could equal rkd2
. So the direction given by the

regularization is an inexact direction. But what effect does the inexact direction have
on convergence? If one tries to extend the convergence proof of Kojima, Megiddo,
and Mizuno, all concepts and proofs extend easily except that we no longer have rα
equal to (1 − α)r, which in turn causes a direct extension of Proposition 3.4 to fail
(see section 3.1).

However, it is not so difficult to repair the proof of Proposition 3.4. The key
insight is that the degree of inexactness of the direction needs to be controlled in a
certain manner. Specifically, if we have

(18) δk‖Δzk‖ ≤ βσμk/2

for all k, then global convergence is established by Theorem 5.1 below.
Our method for enforcing (18) is essentially to decrease δk if (18) does not hold.

The resulting algorithm is stated as Algorithm 2. Algorithm 2 incorporates all of the
features of Algorithm 1, while adding steps to handle δk that are fairly straightforward.
It is worth mentioning three items:

• In the while loop, each time δk is updated, it is decreased by a factor of at
least 2. As a result, the while loop will terminate after a finite (usually quite
small) number of loops.

Algorithm 2. Infeasible Path-Following Algorithm (with Regularization).

Let ε > 0, ω > 0, σ ∈ (0, 0.99), δ1 > 0, and (x1, z1, y1, s1) ∈ N be given.

for k = 1, 2, 3, . . . do
If μk ≤ ε or ‖(xk, sk)‖1 ≥ ω, then stop.
Set accept = 0.
while accept = 0 do

Set νk = σμk and solve (4) with (4c) replaced by (15) for (Δxk,Δzk,Δyk,Δsk).
if δk‖Δzk‖ ≤ βσμk/2 then

accept = 1
else
δk ← 1

2 · βσμk/(2‖Δzk‖)
end if

end while
Set (xk+1, zk+1, yk+1, sk+1) = (xαk

, zαk
, yαk

, sαk
), where αk ∈ (0, 1] is the largest

step size such that the relations

(xα, zα, yα, sα) ∈ N ,(19)

μα ≤ (1 − 0.01α)μk(20)

hold for every α ∈ [0, αk].
Set δk+1 ← βσμk+1/(2‖Δzk‖).

end for
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• In each loop of the while loop, the direction must be recalculated. This ne-
cessitates reforming and refactoring the matrix AXS−1AT + δ−1

k EET of (17)
because of the dependence on δk. This is a potential downside of Algorithm 2.
However, the computational results of section 6 (particularly Table 5) show
that, overall, this extra work does not constitute a disadvantage, most likely
because the while loop is repeated only a small number of times.

• The purpose of the while loop is to drive δk lower and lower until (18) holds.
Based on the (ultimately flawed) idea that δk should never increase during the
course of the algorithm, our initial implementation of Algorithm 2 maintained
a nonincreasing sequence {δk}. We found by experimentation, however, that
sometimes δk would go to 0 too quickly, causing numerical difficulties. By
this we mean, for example, that one iteration would require δk ≤ 10−4 to
enforce (18), while a later iteration would require only δk ≤ 10−2. For nu-
merical stability, it makes sense to take δk as large as possible, which was not
allowed by our initial implementation. Hence, our final implementation (i.e.,
Algorithm 2) allows δk to increase via the last line of the for loop, which sets
δk+1 to our best guess given current information.

Regarding convergence, the following result holds for this algorithm.
Theorem 5.1. Let γ ∈ (0, 1), β > 0, and an initial point (x1, z1, y1, s1) ∈

N (γ, β) be given. Suppose, moreover, that positive tolerances ε and ω, a dampening
factor σ ∈ (0, 0.99), and an initial regularization parameter δ1 > 0 are specified. Then
Algorithm 2 eventually generates an iterate (xk, zk, yk, sk) ∈ N (γ, β) such that μk ≤ ε
or ‖(xk, sk)‖1 ≥ ω. If the first case occurs, then ‖rk‖ ≤ β ε as well.

The proof of Theorem 5.1 follows the same steps as that of Theorem 3.1 with two
changes: rα and α∗ are now given by

(21) rα = (1 − α)r − αδΔz

and

α∗ := min

{
1,

(1 − γ)σε

η
,
σε

2η
,
(0.99 − σ)ε

η

}
,

respectively, and Proposition 3.4 is replaced by the following proposition.
Proposition 5.2. If δk‖Δzk‖ ≤ βσμk/2, then ‖rα‖ ≤ βμα for all α ≤ σε/2η.
Proof. We have

βμα − ‖rα‖
= β

[
(1 − (1 − σ)α)μ + α2ΔxTΔs/n

]
− ‖(1 − α)r − αδΔz‖

≥ β
[
(1 − (1 − σ)α)μ + α2ΔxTΔs/n

]
− (1 − α)‖r‖ − αδ‖Δz‖

≥ β
[
(1 − (1 − σ)α)μ + α2ΔxTΔs/n

]
− (1 − α)‖r‖ − βασμ/2

= (1 − α)(βμ− ‖r‖) + βασμ/2 + βα2ΔxTΔs/n

≥ βασμ/2 − βα2η ≥ αβ [σε/2 − αη] ,

where the first equality follows from (14) and (21), the first inequality follows from
(x, z, y, s) ∈ N and (11b), and the second inequality follows from the assumption
(x, z, y, s) ∈ N ∗. This proves the result.
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6. Implementation and computational results. We compare our proposed
regularization (hereafter denoted Regularize) with

• explicitly solving the indefinite system (7) (Explicit),
• splitting the free variables into the difference of two nonnegative variables

(Split), and
• putting the free variables into a second-order cone (qCone).

The comparisons are carried out using SDPT3 (version 3.02), which supports Ex-

plicit by default and supports Split and qCone via modified data input. More-
over, SDPT3 requires only simple code modifications to implement Regularize. All
tests are run on a dual Opteron 2.8 GHz, using the HKM direction and the predictor-
corrector option.

We point out that, since our implementation is based on SDPT3, Regularize

differs from Algorithm 2 in the same ways that typical implementations of interior-
point methods differ from theory. For example, the iterates are not explicitly forced to
stay in a neighborhood, and Mehrotra’s predictor-corrector method is used. The lack
of explicit neighborhood does have an impact on how we enforce condition (18). In
each iteration, (18) is enforced with the definition β := μ/‖r‖. This can be interpreted
as assigning to β the smallest value such that the current iterate is actually a member
of N (if membership in N were maintained). In this sense, the choice of β is also
conservative in that it results in the strictest realization of (18). One additional
implementation detail: The parameter δk is initialized to δ0 = μ0.

As mentioned previously, SDPT3 has been chosen for several reasons, including
the fact that its fundamental algorithm closely matches the algorithmic framework
of our analysis. As a consequence, we caution that the conclusions supported by our
computational results do not necessarily say anything about the effect of regulariza-
tion within other codes (although we are optimistic that the regularization can have
benefits elsewhere; see section 7).

We also note that SDPT3 offers the option of handling dense columns of (A,E) in
such a way that computational effort is minimized. We have tested our regularization
with this option enabled (which is the default) or disabled, and the method works
just as well in both cases.

There do not appear to be many existing test instances of linear conic optimiza-
tion problems with free variables. For example, the commonly used DIMACS set
of benchmark problems [22] contains only 9 instances with free variables, while SD-
PLIB [3] contains none. We include the 9 DIMACS test problems in our experiments.
Kobayashi, Nakata, and Kojima [9] generated modified problems having free variables
from SDPLIB to test their approach; starting with the same SDPLIB problems, we
generated our own sparse versions of these problems having free variables via a ran-
dom matrix E ∈ �m×p, where p := m/2. In fact, we generated two sets of modified
SDPLIB problems: one set with rank(E) = p and a second set with rank(E) = p/2.
In contrast to the theoretical assumption in section 2 that E has full-column rank,
we test instances with E having small-column rank because in practice E may have
(nearly) dependent columns.

On the other hand, problems with free variables have become very relevant due
to recent applications of SDP to certain classes of problems. In particular, we report
test results on two additional sets of problems: one from quantum chemistry and
another obtained by generating moment relaxations of combinatorial optimization
problems [13] using YALMIP [14]. The set of moment relaxations consists of (small)
randomly generated maximum-cut, quadratic-knapsack, and stable-set instances. Half
of the underlying instances have 15 variables; the other half have 17. The moment
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Table 1

Overview of the test problem sets.

Class # of instances K
DIMACS challenge 9 LP+SOCP
Modified SDPLIB (rank(E) = p) 27 SDP
Modified SDPLIB (rank(E) = p/2) 27 SDP
Quantum chemistry 12 SDP
Moment relaxations 60 SDP

Table 2

Characteristics of the test problem sets.

p n m
Class min med max min med max min med max

DIMACS challenge 1 2 7201 2379 4191 261364 123 3680 130141
Modified SDPLIB 52 125 1514 351 7750 31375 104 250 3028

(rank(E) = p)
Modified SDPLIB 52 125 1514 351 7750 31375 104 250 3028

(rank(E) = p/2)
Quantum chemistry 35 69 95 38865 480459 1356933 465 2354 4743
Moment relaxations 136 2040 2907 9316 13031 17613 3875 4930 5984

Table 3

Accuracy of each method, averaged over instances in each set.

Class Reg Exp Split qCone
DIMACS challenge -10.3 -10.4 -5.6 -7.6
Modified SDPLIB (rank(E) = p) -7.8 -7.9 -4.2 -4.5
Modified SDPLIB (rank(E) = p/2) -7.9 1.3 -4.4 -4.7
Quantum chemistry -5.1 -2.1 -1.8 -2.0
Moment relaxations -6.0 -2.0 -2.5 -3.4

relaxations are of order 2. For the maximum-cut and stable-set instances, we wrote our
own simple random generation procedure, whereas the quadratic-knapsack problems
were generated as in the study by Caprara, Pisinger, and Toth [4]. The stable-set
formulation is due to Motzkin and Straus [20]. The large number of free variables in
these instances arises from the number of equality constraints in the original problems.
Characteristics of the test problems that we use are summarized in Tables 1 and 2.

The main criterion for comparing the various methods is the resulting accuracy;
i.e., we wish to determine which approach yields the most accurate solutions. Specifi-
cally, we report accuracies as log10 of the maximum of the standard DIMACS accuracy
errors [18]. Roughly speaking, an accuracy of −k in our results corresponds to k digits
of accuracy in the reported optimal value.

It is important to point out that SDPT3 tries to the improve the accuracy of the
solution from iteration to iteration, until the accuracy deteriorates for a few iterations,
at which point SDPT3 stops. For all of the approaches, we let SDPT3 run until this
happens and report the best accuracy obtained overall.

The results of our computational experiments are summarized in Tables 3, 4, and
5. Table 3 shows that, for the test sets DIMACS challenge and modified SDPLIB ,
the proposed regularization approach basically matches the best accuracy among the
other three approaches. More interestingly, the accuracy obtained for the three other
test sets is significantly higher. The results for the moment relaxations are particularly
interesting because these instances contain the largest proportions of free variables.
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Table 4

Number of iterations of each method, averaged over instances in each set.

Class Reg Exp Split qCone
DIMACS challenge 29.7 31.3 17.1 32.0
Modified SDPLIB (rank(E) = p) 15.6 15.4 13.0 13.3
Modified SDPLIB (rank(E) = p/2) 14.5 11.1 12.1 12.4
Quantum chemistry 22.7 10.0 11.8 14.0
Moment relaxations 21.9 10.8 13.2 16.0

Table 5

Average CPU time per iteration (as a percentage of Regularize time).

Class Reg Exp Split qCone
(all) 100% 138% 107% 114%

Looking at the results for the set of problems with E having linearly dependent
columns, we note that Explicit achieves very poor accuracy for these problems due
to numerical difficulties. The other three approaches, including Regularize, seem
unaffected by the dependencies in E.

Table 4 shows that the higher accuracy obtained by Regularize typically re-
quires a higher number of iterations (the other methods stop when accuracy deterio-
rates). Nonetheless, with respect to CPU time, Table 5 shows that Regularize re-
quires, on average, the same or less computational effort per iteration as that required
by the other approaches. In summary, the proposed regularization seems to lead to an
overall improvement in the performance of SDPT3 for instances with free variables.

7. Conclusion and future research. We have considered the regularization
approach for handling free variables within interior-point methods for conic linear
optimization. Using a global convergence analysis, we derive a simple computational
strategy for handling and updating the regularization. Straightforward modifications
to the modern code SDPT3 allow the regularization to be incorporated within an in-
exact infeasible primal-dual path-following interior-point framework. Computational
results with SDPT3 on a variety of test problems suggest that the regularization is able
to achieve the same or significantly better numerical accuracy than other strategies
for handling free variables, while requiring less CPU time per iteration on average.

It remains to be studied what impact regularization can have within other SDP
codes, including the well-known homogeneous self-dual embedding algorithm imple-
mented in SeDuMi, a package known to yield excellent accuracy in its computations.
As indicated in the introduction, our experience with SeDuMi confirms SeDuMi’s
reputation; SeDuMi achieves 10 to 11 digits of accuracy on the test problems of this
paper. It would be interesting to investigate how regularization can be applied to
SeDuMi and if it can improve SeDuMi further. Another intriguing possibility is the
study of an easily implementable update strategy for the regularization that would
permit a proof of polynomial-time convergence.

Finally, we hope that this paper will stimulate further research on techniques
to handle conic linear optimization problems with a significant proportion of free
variables, as such problems have become relevant in the context of recent applications
of SDP to several challenging problems.

Acknowledgment. The authors are in debt to two anonymous referees for nu-
merous insightful comments and suggestions, which have greatly improved the paper.
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Abstract. The regularization of a convex program is exact if all solutions of the regularized
problem are also solutions of the original problem for all values of the regularization parameter below
some positive threshold. For a general convex program, we show that the regularization is exact if
and only if a certain selection problem has a Lagrange multiplier. Moreover, the regularization pa-
rameter threshold is inversely related to the Lagrange multiplier. We use this result to generalize an
exact regularization result of Ferris and Mangasarian [Appl. Math. Optim., 23 (1991), pp. 266–273]
involving a linearized selection problem. We also use it to derive necessary and sufficient condi-
tions for exact penalization, similar to those obtained by Bertsekas [Math. Programming, 9 (1975),
pp. 87–99] and by Bertsekas, Nedić, and Ozdaglar [Convex Analysis and Optimization, Athena Sci-
entific, Belmont, MA, 2003]. When the regularization is not exact, we derive error bounds on the
distance from the regularized solution to the original solution set. We also show that existence of
a “weak sharp minimum” is in some sense close to being necessary for exact regularization. We
illustrate the main result with numerical experiments on the �1 regularization of benchmark (degen-
erate) linear programs and semidefinite/second-order cone programs. The experiments demonstrate
the usefulness of �1 regularization in finding sparse solutions.
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1. Introduction. A common approach to solving an ill-posed problem—one
whose solution is not unique or is acutely sensitive to data perturbations—is to con-
struct a related problem whose solution is well behaved and deviates only slightly
from a solution of the original problem. This is known as regularization, and devia-
tions from solutions of the original problem are generally accepted as a trade-off for
obtaining solutions with other desirable properties. However, it would be more desir-
able if solutions of the regularized problem were also solutions of the original problem.
Here we present necessary and sufficient conditions for this to hold and study their
implications for general convex programs.

Consider the general convex program

(P) minimize
x

f(x)

subject to x ∈ C,

where f : R
n → R is a convex function, and C ⊆ R

n is a nonempty closed convex
set. In cases where (P) is ill-posed or lacks a smooth dual, a popular technique is to
regularize the problem by adding a convex function to the objective. This yields the
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regularized problem

(Pδ) minimize
x

f(x) + δφ(x)

subject to x ∈ C,

where φ : R
n → R is a convex function, and δ is a nonnegative regularization param-

eter. The regularization function φ may be nonlinear and/or nondifferentiable.
In general, solutions of the regularized problem (Pδ) need not be solutions of

(P). (Here and throughout, “solution” is used in lieu of “optimal solution.”) We say
that the regularization is exact if the solutions of (Pδ) are also solutions of (P) for
all values of δ below some positive threshold value δ̄. We choose the term exact to
draw an analogy with exact penalization that is commonly used for solving constrained
nonlinear programs. An exact penalty formulation of a problem can recover a solution
of the original problem for all values of the penalty parameter beyond a threshold
value. See, for example, [4, 5, 9, 21, 24, 31] and, for more recent discussions, [7, 15].

Exact regularization can be useful for various reasons. If a convex program does
not have a unique solution, exact regularization may be used to select solutions with
desirable properties. In particular, Tikhonov regularization [45], which corresponds to
φ(x) = ‖x‖2

2, can be used to select a least two-norm solution. Specialized algorithms
for computing least two-norm solutions of linear programs (LPs) have been proposed
by [25, 26, 27, 30, 33, 48], among others. Saunders [42] and Altman and Gondzio
[1] use Tikhonov regularization as a tool for influencing the conditioning of the un-
derlying linear systems that arise in the implementation of large-scale interior-point
algorithms for LPs. Bertsekas [4, Proposition 4] and Mangasarian [30] use Tikhonov
regularization to form a smooth convex approximation of the dual LP.

More recently, there has been much interest in �1 regularization, which corre-
sponds to φ(x) = ‖x|1. Recent work related to signal processing has focused on
using LPs to obtain sparse solutions (i.e., solutions with few nonzero components)
of underdetermined systems of linear equations Ax = b (with the possible additional
condition x ≥ 0); for examples, see [13, 12, 14, 18]. In machine learning and statistics,
�1 regularization of linear least-squares problems (sometimes called lasso regression)
plays a prominent role as an alternative to Tikhonov regularization; for examples,
see [19, 44]. Further extensions to regression and maximum likelihood estimation are
studied in [2, 41], among others.

There have been some studies of exact regularization for the case of differentiable
φ, mainly for LP [4, 30, 34], but to our knowledge there has been only one study,
by Ferris and Mangasarian [20], for the case of nondifferentiable φ. However, their
analysis is mainly for the case of strongly convex φ, and thus is not applicable to regu-
larization functions such as the one-norm. In this paper, we study exact regularization
of the convex program (P) by (Pδ) for a general convex φ.

Central to our analysis is a related convex program that selects solutions of (P)
of least φ-value:

(Pφ) minimize
x

φ(x)

subject to x ∈ C, f(x) ≤ p∗,

where p∗ denotes the optimal value of (P). We assume a nonempty solution set of (P),
which we denote by S, so that p∗ is finite and (Pφ) is feasible. Clearly, any solution
of (Pφ) is also a solution of (P). The converse, however, does not generally hold.
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In section 2 we prove our main result: the regularization (Pδ) is exact if and only if
the selection problem (Pφ) has a Lagrange multiplier μ∗. Moreover, the solution set
of (Pδ) coincides with the solution set of (Pφ) for all δ < 1/μ∗; see Theorem 2.1 and
Corollary 2.2.

A particular case of special interest is conic programs, which correspond to

(1.1) f(x) = cTx and C = {x ∈ K | Ax = b},

where A ∈ R
m×n, b ∈ R

m, c ∈ R
n, and K ⊆ R

n is a nonempty closed convex cone. In
the further case where K is polyhedral, (Pφ) always has a Lagrange multiplier. Thus
we extend a result obtained by Mangasarian and Meyer for LPs [34, Theorem 1];
their (weaker) result additionally assumes differentiability (but not convexity) of φ
on S, and proves that existence of a Lagrange multiplier for (Pφ) implies existence
of a common solution x∗ of (P) and (Pδ) for all positive δ below some threshold. In
general, however, (Pφ) need not have a Lagrange multiplier even if C has a nonempty
interior. This is because the additional constraint f(x) = cTx ≤ p∗ may exclude
points in the interior of C. We discuss this further in section 2.

1.1. Applications. We present four applications of our main result. The first
three show how to extend existing results in convex optimization. The fourth shows
how exact regularization can be used in practice.

Linearized selection (section 3). In the case where f is differentiable, C is poly-
hedral, and φ is strongly convex, Ferris and Mangasarian [20, Theorem 9] show that
the regularization (Pδ) is exact if and only if the solution of (Pφ) is unchanged when
f is replaced by its linearization at any x̄ ∈ S. We generalize this result by relaxing
the strong convexity assumption on φ; see Theorem 3.2.

Exact penalization (section 4). We show a close connection between exact reg-
ularization and exact penalization by applying our main results to obtain necessary
and sufficient conditions for exact penalization of convex programs. The resulting
conditions are similar to those obtained by Bertsekas [4, Proposition 1], Mangasarian
[31, Theorem 2.1], and Bertsekas, Nedić, and Ozdaglar [7, section 7.3]; see Theorem
4.2.

Error bounds (section 5). We show that in the case where f is continuously dif-
ferentiable, C is polyhedral, and S is bounded, a necessary condition for exact regu-
larization with any φ is that f has a “weak sharp minimum” [10, 11] over C. In the
case where the regularization is not exact, we derive error bounds on the distance
from each solution of the regularized problem (Pδ) to S in terms of δ and the growth
rate of f on C away from S.

Sparse solutions (section 6). As an illustration of our main result, we apply exact
�1 regularization to select sparse solutions of conic programs. In section 6.1 we report
numerical results on a set of benchmark LPs from the NETLIB [36] test set and on a
set of randomly generated LPs with prescribed dual degeneracy (i.e., nonunique pri-
mal solutions). Analogous results are reported in section 6.2 for a set of benchmark
semidefinite programs (SDPs) and second-order cone programs (SOCPs) from the DI-
MACS test set [37]. The numerical results highlight the effectiveness of this approach
for inducing sparsity in the solutions obtained via an interior-point algorithm.

1.2. Assumptions. The following assumptions hold implicitly throughout.
Assumption 1.1 (feasibility and finiteness). The feasible set C is nonempty and

the solution set S of (P) is nonempty.
Assumption 1.2 (bounded level sets). The level set {x ∈ S | φ(x) ≤ β} is bounded

for each β ∈ R, and infx∈C φ(x) > −∞. (For example, this assumption holds when
φ is coercive.)
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Assumption 1.1 implies that the optimal value p∗ of (P) is finite. Assumptions 1.1
and 1.2 together ensure that the solution set of (Pφ), denoted by Sφ, is nonempty and
compact, and that the solution set of (Pδ), denoted by Sδ, is nonempty and compact
for all δ > 0. The latter is true because, for any δ > 0 and β ∈ R, any point x in the
level set {x ∈ C | f(x) + δφ(x) ≤ β} satisfies f(x) ≥ p∗ and φ(x) ≥ infx′∈C φ(x′), so
that φ(x) ≤ (β − p∗)/δ and f(x) ≤ β − δ infx′∈C φ(x′). Assumptions 1.1 and 1.2 then
imply that φ, f , and C have no nonzero recession direction in common, so the above
level set must be bounded [40, Theorem 8.7].

Our results can be extended accordingly if the above assumptions are relaxed to
the assumption that Sφ 	= ∅ and Sδ 	= ∅ for all δ > 0 below some positive threshold.

2. Main results. Ferris and Mangasarian [20, Theorem 7] prove that if the
objective function f is linear, then

(2.1)
⋂

0<δ<δ̄

Sδ ⊆ Sφ

for any δ̄ > 0. However, an additional constraint qualification on C is needed to ensure
that the set on the left-hand side of (2.1) is nonempty (see [20, Theorem 8]). The
following example shows that the set can be empty:

(2.2) minimize
x

x3 subject to x ∈ K,

where K = {(x1, x2, x3) | x2
1 ≤ x2x3, x2 ≥ 0, x3 ≥ 0}, i.e., K defines the cone of 2× 2

symmetric positive semidefinite matrices. Clearly K has a nonempty interior, and the
solutions have the form x∗

1 = x∗
3 = 0, x∗

2 ≥ 0, with p∗ = 0. Suppose that the convex
regularization function φ is

(2.3) φ(x) = |x1 − 1| + |x2 − 1| + |x3|.

(Note that φ is coercive, but not strictly convex.) Then (Pφ) has the singleton solution
set Sφ = {(0, 1, 0)}. However, for any δ > 0, (Pδ) has the unique solution

x1 =
1

2(1 + δ−1)
, x2 = 1, x3 =

1

4(1 + δ−1)2
,

which converges to the solution of (Pφ) as δ → 0, but is never equal to it. Therefore
Sδ differs from Sφ for all δ > 0 sufficiently small.

Note that the left-hand side of (2.1) can be empty even when φ is strongly convex
and infinitely differentiable. As an example, consider the strongly convex quadratic
regularization function

φ(x) = |x1 − 1|2 + |x2 − 1|2 + |x3|2.

As with (2.3), it can be shown in this case that Sδ differs from Sφ = {(0, 1, 0)} for
all δ > 0 sufficiently small. In particular, (δ/2, 1, δ2/4) is feasible for (Pδ), and its
objective function value is strictly less than that of (0, 1, 0). Thus the latter cannot
be a solution of (Pδ) for any δ > 0.

In general, one can show that as δ → 0, each cluster point of solutions of (Pδ)
belongs to Sφ. Moreover, there is no duality gap between (Pφ) and its dual because Sφ

is compact (see [40, Theorem 30.4(i)]). However, the supremum in the dual problem
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might not be attained, in which case there would be no Lagrange multiplier for (Pφ)—
and hence no exact regularization property. Thus, additional constraint qualifications
are needed when f is not affine or C is not polyhedral.

The following theorem and corollary are our main results. They show that the
regularization (Pδ) is exact if and only if the selection problem (Pφ) has a Lagrange
multiplier μ∗. Moreover, Sδ = Sφ for all δ < 1/μ∗. Parts of our proof bear similarity
to the arguments used by Mangasarian and Meyer [34, Theorem 1], who consider
the two cases μ∗ = 0 and μ∗ > 0 separately in proving the “if” direction. However,
instead of working with the KKT conditions for (P) and (Pδ), we work with saddle-
point conditions.

Theorem 2.1.

(a) For any δ > 0, S ∩ Sδ ⊆ Sφ.
(b) If there exists a Lagrange multiplier μ∗ for (Pφ), then S ∩ Sδ = Sφ for all

δ ∈ (0, 1/μ∗].
(c) If there exists δ̄ > 0 such that S ∩ Sδ̄ 	= ∅, then 1/δ̄ is a Lagrange multiplier

for (Pφ), and S ∩ Sδ = Sφ for all δ ∈ (0, δ̄].
(d) If there exists δ̄ > 0 such that S ∩ Sδ̄ 	= ∅, then Sδ ⊆ S for all δ ∈ (0, δ̄).

Proof. Part (a). Consider any x∗ ∈ S ∩ Sδ. Then, because x∗ ∈ Sδ,

f(x∗) + δφ(x∗) ≤ f(x) + δφ(x) for all x ∈ C.

Also, x∗ ∈ S, so f(x) = f(x∗) = p∗ for all x ∈ S. This implies that

φ(x∗) ≤ φ(x) for all x ∈ S.

Thus x∗ ∈ Sφ, and it follows that S ∩ Sδ ⊆ Sφ.
Part (b). Assume that there exists a Lagrange multiplier μ∗ for (Pφ). We consider

the two cases μ∗ = 0 and μ∗ > 0 in turn.
First, suppose that μ∗ = 0. Then, for any solution x∗ of (Pφ),

x∗ ∈ arg min
x∈C

φ(x),

or, equivalently,

(2.4) φ(x∗) ≤ φ(x) for all x ∈ C.

Also, x∗ is feasible for (Pφ), so x∗ ∈ S. Thus

f(x∗) ≤ f(x) for all x ∈ C.

Multiplying the inequality in (2.4) by δ ≥ 0 and adding it to the above inequality
yields

f(x∗) + δφ(x∗) ≤ f(x) + δφ(x) for all x ∈ C.

Thus x∗ ∈ Sδ for all δ ∈ [0,∞).
Second, suppose that μ∗ > 0. Then, for any solution x∗ of (Pφ),

x∗ ∈ arg min
x∈C

φ(x) + μ∗(f(x) − p∗),
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or, equivalently,

x∗ ∈ arg min
x∈C

f(x) +
1

μ∗φ(x).

Thus

f(x∗) +
1

μ∗φ(x∗) ≤ f(x) +
1

μ∗φ(x) for all x ∈ C.

Also, x∗ is feasible for (Pφ), so that x∗ ∈ S. Therefore

f(x∗) ≤ f(x) for all x ∈ C.

Then, for any λ ∈ [0, 1], multiplying the above two inequalities by λ and 1 − λ,
respectively, and summing them yields

f(x∗) +
λ

μ∗φ(x∗) ≤ f(x) +
λ

μ∗φ(x) for all x ∈ C.

Thus x∗ ∈ Sδ for all δ ∈ [0, 1/μ∗].
The above arguments show that Sφ ⊆ Sδ for all δ ∈ [0, 1/μ∗], and therefore

Sφ ⊆ S∩Sδ for all δ ∈ (0, 1/μ∗]. By Part (a) of the theorem, we must have Sφ = S∩Sδ

as desired.
Part (c). Assume that there exists δ̄ > 0 such that S ∩ Sδ̄ 	= ∅. Then, for any

x∗ ∈ S ∩ Sδ̄, we have x∗ ∈ Sδ̄, and thus

x∗ ∈ arg min
x∈C

f(x) + δ̄φ(x),

or, equivalently,

x∗ ∈ arg min
x∈C

φ(x) +
1

δ̄
(f(x) − p∗).

By Part (a), x∗ ∈ Sφ. This implies that any x ∈ Sφ attains the minimum because
φ(x) = φ(x∗) and f(x) = p∗. Therefore 1/δ̄ is a Lagrange multiplier for (Pφ). By
Part (b), S ∩ Sδ = Sφ for all δ ∈ (0, δ̄].

Part (d). To simplify notation, define fδ(x) = f(x) + δφ(x). Assume that there
exists a δ̄ > 0 such that S ∩ Sδ̄ 	= ∅. Fix any x∗ ∈ S ∩ Sδ̄. For any δ ∈ (0, δ̄) and any
x ∈ C \ S, we have

fδ̄(x
∗) ≤ fδ̄(x) and f(x∗) < f(x).

Because 0 < δ/δ̄ < 1, this implies that

fδ(x
∗) =

δ

δ̄
fδ̄(x

∗) +

(
1 − δ

δ̄

)
f(x∗) <

δ

δ̄
fδ̄(x) +

(
1 − δ

δ̄

)
f(x) = fδ(x).

Because x∗ ∈ C, this shows that x ∈ C\S cannot be a solution of (Pδ), and so Sδ ⊆ S,
as desired.

Theorem 2.1 shows that existence of a Lagrange multiplier μ∗ for (Pφ) is necessary
and sufficient for exact regularization of (P) by (Pδ) for all 0 < δ < 1/μ∗. Coerciveness
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of φ on S is needed only to ensure that Sφ is nonempty. If δ = 1/μ∗, then Sδ need
not be a subset of S. For example, suppose that

n = 1, C = [0,∞), f(x) = x, and φ(x) = |x− 1|.

Then μ∗ = 1 is the only Lagrange multiplier for (Pφ), but S1 = [0, 1] 	⊆ S = {0}. If
Sδ is a singleton for δ ∈ (0, 1/μ∗], such as when φ is strictly convex, then Theorem
2.1(b) and Sφ 	= ∅ imply that Sδ ⊆ S.

The following corollary readily follows from Theorem 2.1(b)–(d) and Sφ 	= ∅.

Corollary 2.2.

(a) If there exists a Lagrange multiplier μ∗ for (Pφ), then Sδ = Sφ for all δ ∈
(0, 1/μ∗).

(b) If there exists δ̄ > 0 such that Sδ̄ = Sφ, then 1/δ̄ is a Lagrange multiplier for
(Pφ), and Sδ = Sφ for all δ ∈ (0, δ̄].

2.1. Conic programs. Conic programs (CPs) correspond to (P) with f and C
given by (1.1). They include several important problem classes. LPs correspond to
K = R

n
+ (the nonnegative orthant); SOCPs correspond to

K = Ksoc

n1
× · · · × Ksoc

nK
with Ksoc

n :=

{
x ∈ R

n

∣∣∣∣∣
n−1∑
i=1

x2
i ≤ x2

n, xn ≥ 0

}

(a product of second-order cones); SDPs correspond to K = S
n
+ (the cone of symmetric

positive semidefinite n×n real matrices). CPs are discussed in detail in [3, 8, 35, 38],
among others.

It is well known that when K is polyhedral, the selection problem (Pφ), with f
and C given by (1.1), must have a Lagrange multiplier [40, Theorem 28.2]. In this
important case, Corollary 2.2 immediately yields the following exact-regularization
result for polyhedral CPs.

Corollary 2.3. Suppose that f and C have the form given by (1.1) and that K
is polyhedral. Then there exists a positive δ̄ such that Sδ = Sφ for all δ ∈ (0, δ̄).

Corollary 2.3 extends [34, Theorem 1], which additionally assumes differentiability
(though not convexity) of φ on S and proves a weaker result that there exists a common
solution x∗ ∈ S ∩ Sδ for all positive δ below some threshold. If S is furthermore
bounded, then an “excision lemma” of Robinson [39, Lemma 3.5] can be applied to
show that Sδ ⊆ S for all positive δ below some threshold. This result is still weaker
than Corollary 2.3, however.

2.2. Relaxing the assumptions on the regularization function. The as-
sumption that φ is coercive on S and is bounded from below on C (Assumption 1.2)
ensures that the selection problem (Pφ) and the regularized problem (Pδ) have so-
lutions. This assumption is preserved under the introduction of slack variables for
linear inequality constraints. For example, if C = {x ∈ K | Ax ≤ b} for some closed
convex set K, A ∈ R

m×n, and b ∈ R
m, then

φ̃(x, s) = φ(x) with C̃ = {(x, s) ∈ K × [0,∞)m | Ax + s = b}
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also satisfies Assumption 1.2. Here φ̃(x, s) depends only on x. Can Assumption 1.2
be relaxed?

Suppose that φ(x) depends only on a subset of coordinates xJ and is coercive
with respect to xJ , where xJ = (xj)j∈J and J ⊆ {1, . . . , n}. Using the assumption
that (P) has a feasible point x∗, it is readily seen that (Pδ) has a solution with respect
to xJ for each δ > 0, i.e., the minimization in (Pδ) is attained at some xJ . For an LP
(f linear and C polyhedral) it can be shown that (Pδ) has a solution with respect to
all coordinates of x. However, in general this need not be true, even for an SOCP.
An example is

n = 3, f(x) = −x2 + x3, C =

{
x |

√
x2

1 + x2
2 ≤ x3

}
, and φ(x) = |x1 − 1|.

Here, p∗ = 0 (since
√
x2

1 + x2
2 − x2 ≥ 0 always) and solutions are of the form (0, ξ, ξ)

for all ξ ≥ 0. For any δ > 0, (Pδ) has optimal value of zero (achieved by setting
x1 = 1, x3 =

√
1 + x2

2, and taking x2 → ∞) but has no solution. In general, if we
define

f̂(xJ) := min
(xj)j �∈J |x∈C

f(x),

then it can be shown, using convex analysis results [40], that f̂ is convex and lower

semicontinuous—i.e., the epigraph of f̂ is convex and closed. Then (Pδ) is equivalent
to

minimize
xJ

f̂(xJ) + δφ(xJ),

with φ viewed as a function of xJ . Thus, we can in some sense reduce this case to
the one we currently consider. Note that f̂ may not be real-valued, but this does not
pose a problem with the proof of Theorem 2.1.

3. Linearized selection. Ferris and Mangasarian [20] develop a related exact-
regularization result for the special case where f is differentiable, C is polyhedral, and
φ is strongly convex. They show that (Pδ) is an exact regularization if the solution
set of the selection problem (Pφ) is unchanged when f is replaced by its linearization
at any x̄ ∈ S. In this section we show how Theorem 2.1 and Corollary 2.2 can be
applied to generalize this result. We begin with a technical lemma, closely related to
some results given by Mangasarian [32].

Lemma 3.1. Suppose that f is differentiable on R
n and constant on the line

segment joining two points x∗ and x̄ in R
n. Then

(3.1) ∇f(x∗)T (x− x∗) = ∇f(x̄)T (x− x̄) for all x ∈ R
n.

Moreover, ∇f is constant on the line segment.
Proof. Because f is convex differentiable and is constant on the line segment

joining x∗ and x̄, ∇f(x∗)T (x̄− x∗) = 0. Because f is convex,

f(y) − f(x̄) = f(y) − f(x∗) ≥ ∇f(x∗)T (y − x∗) for all y ∈ R
n.

Fix any x ∈ R
n. Taking y = x̄ + α(x− x̄) with α > 0 yields

f(x̄ + α(x− x̄)) − f(x̄) ≥ ∇f(x∗)T (x̄ + α(x− x̄) − x∗) = α∇f(x∗)T (x− x̄).
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Dividing both sides by α and then taking α → 0 yields in the limit

(3.2) ∇f(x̄)T (x− x̄) ≥ ∇f(x∗)T (x− x̄) = ∇f(x∗)T (x− x∗).

Switching x̄ and x∗ in the above argument yields an inequality in the opposite direc-
tion. Thus (3.1) holds, as desired.

By taking x = α(∇f(x∗) − ∇f(x̄)) in (3.1) and letting α → ∞, we obtain that
‖∇f(x∗)−∇f(x̄)‖2

2 = 0 and hence ∇f(x∗) = ∇f(x̄). This shows that ∇f is constant
on the line segment.

Suppose that f is differentiable at every x̄ ∈ S, and consider a variant of the
selection problem (Pφ) in which the constraint is linearized about x̄:

(Pφ,x̄) minimize
x

φ(x)

subject to x ∈ C, ∇f(x̄)T (x− x̄) ≤ 0.

Lemma 3.1 shows that the feasible set of (Pφ,x̄) is the same for all x̄ ∈ S. Since f
is convex, the feasible set of (Pφ,x̄) contains S, which is the feasible set of (Pφ). Let
Sφ,x̄ denote the solution set of (Pφ,x̄). In general Sφ 	= Sφ,x̄. In the case where φ is
strongly convex and C is polyhedral, Ferris and Mangasarian [20, Theorem 9] show
that exact regularization (i.e., Sφ = Sδ for all δ > 0 sufficiently small) holds if and
only if Sφ = Sφ,x̄. By using Theorem 2.1, Corollary 2.2, and Lemma 3.1, we can
generalize this result by relaxing the assumption that φ is strongly convex.

Theorem 3.2. Suppose that f is differentiable on C.
(a) If there exists a δ̄ > 0 such that Sδ̄ = Sφ, then

(3.3) Sφ ⊆ Sφ,x̄ for all x̄ ∈ S.

(b) If C is polyhedral and (3.3) holds, then there exists a δ̄ > 0 such that Sδ = Sφ

for all δ ∈ (0, δ̄).

Proof. Part (a). Suppose that there exists a δ̄ > 0 such that Sδ̄ = Sφ. Then by
Corollary 2.2, μ∗ := 1/δ̄ is a Lagrange multiplier for (Pφ), and for any x∗ ∈ Sφ,

(3.4) x∗ ∈ arg min
x∈C

φ(x) + μ∗f(x).

Because φ and f are real-valued and convex, x∗ and μ∗ satisfy the optimality condition

0 ∈ ∂φ(x∗) + μ∗∇f(x∗) + NC(x∗).

Then x∗ satisfies the KKT condition for the linearized selection problem

(3.5) minimize
x∈C

φ(x) subject to ∇f(x∗)T (x− x∗) ≤ 0,

and is therefore a solution of this problem. By Lemma 3.1, the feasible set of this
problem remains unchanged if we replace ∇f(x∗)T (x−x∗) ≤ 0 with ∇f(x̄)T (x−x̄) ≤ 0
for any x̄ ∈ S. Thus x∗ ∈ Sφ,x̄. The choice of x∗ was arbitrary, and so Sφ ⊆ Sφ,x̄.

Part (b). Suppose that C is polyhedral and (3.3) holds. By Lemma 3.1, the
solution set of (Pφ,x̄) remains unchanged if we replace ∇f(x̄)T (x− x̄) ≤ 0 by ∇f(x∗)T

(x − x∗) ≤ 0 for any x∗ ∈ Sφ. The resulting problem (3.5) is linearly constrained
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and therefore has a Lagrange multiplier μ̄ ∈ R. Moreover, μ̄ is independent of x∗. By
Corollary 2.2(a), the problem

minimize
x∈C

φ(x) + μ∗∇f(x∗)Tx

has the same solution set as (3.5) for all μ∗ > μ̄. The necessary and sufficient opti-
mality condition for this convex program is

0 ∈ ∂φ(x) + μ∗∇f(x∗) + NC(x).

Because (3.3) holds, x∗ satisfies this optimality condition. Thus (3.4) holds for all
μ∗ > μ̄ or, equivalently, x∗ ∈ Sδ for all δ ∈ (0, 1/μ̄). Because μ̄ is independent of x∗,
this shows that Sφ ⊆ Sδ for all δ ∈ (0, 1/μ̄). And because ∅ 	= Sφ ⊆ S, it follows
that S ∩ Sδ 	= ∅ for all δ ∈ (0, 1/μ̄). By Theorem 2.1(a) and (d), Sδ ⊆ Sφ for all
δ ∈ (0, 1/μ̄). Therefore Sδ = Sφ for all δ ∈ (0, 1/μ̄).

In the case where φ is strongly convex, Sφ and Sφ,x̄ are both singletons, so (3.3)
is equivalent to Sφ = Sφ,x̄ for all x̄ ∈ S. Thus, when C is also polyhedral, Theorem
3.2 reduces to [20, Theorem 9]. Note that in Theorem 3.2(b) the polyhedrality of
C is needed only to ensure the existence of a Lagrange multiplier for (3.5) and can
be relaxed by assuming an appropriate constraint qualification. In particular, if C is
given by inequality constraints, then it suffices that (Pφ,x̄) has a feasible point that
strictly satisfies all nonlinear constraints [40, Theorem 28.2].

Naturally, (3.3) holds if f is linear. Thus Theorem 3.2(b) is false if we drop the
polyhedrality assumption on C, as we can find examples of convex coercive φ, linear
f , and closed convex (but not polyhedral) C for which exact regularization fails; see
example (2.2).

4. Exact penalization. In this section we show a close connection between
exact regularization and exact penalization by applying Corollary 2.2 to obtain nec-
essary and sufficient conditions for exact penalization of convex programs. Consider
the convex program

(4.1) minimize
x

φ(x) subject to x ∈ C, g(x) :=
(
gi(x)

)m
i=1

≤ 0,

where φ, g1, . . . , gm are real-valued convex functions defined on R
n, and C ⊆ R

n is a
nonempty closed convex set. The penalized form of (4.1) is

(4.2) minimize
x

φ(x) + σP (g(x)) subject to x ∈ C,

where σ is a positive penalty parameter and P : R
m → [0,∞) is a convex function

having the property that P (u) = 0 if and only if u ≤ 0; see [7, section 7.3]. A
well-known example of such a penalty function is

(4.3) P (u) = ‖max{0, u}‖p,

where ‖ · ‖p is the p-norm (1 ≤ p ≤ ∞) [22, section 14.3].
The conjugate and polar functions of P [40, subsections 12, 15] are defined, re-

spectively, by

P ∗(w) := sup
u

wTu− P (u) and P ◦(w) := sup
u �≤0

wTu

P (u)
.
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Note that P ◦(αw) = αP ◦(w) for all α ≥ 0. For P given by (4.3), P ◦(w) equals the
q-norm of w whenever w ≥ 0, where 1/p + 1/q = 1. The following lemma gives key
properties of these functions that are implicit in the analysis of [7, section 7.3].

Lemma 4.1. Suppose that P : R
m → [0,∞) is a convex function and P (u) = 0 if

and only if u ≤ 0. Then
(a) P (u) ≤ P (v) whenever u ≤ v; and

(b) P ∗(w)

⎧⎪⎨
⎪⎩

= ∞ if w 	≥ 0;

> 0 if w ≥ 0 and P ◦(w) > 1;

= 0 if w ≥ 0 and P ◦(w) ≤ 1.

Proof. Part (a). Fix any u, v ∈ R
m with u < v, and define

π(α) := P (u + α(v − u)) for all α ∈ R.

We have u + α(v − u) < 0 for all α < 0 sufficiently negative, in which case π(α) = 0.
Because π is convex, this implies that π is nondecreasing and hence π(0) ≤ π(1)—i.e.,
P (u) ≤ P (v). Thus P (u) ≤ P (v) whenever u < v. Because P is continuous on R

m

[40, Theorem 10.1], this yields P (u) ≤ P (v) whenever u ≤ v.
Part (b). Fix any w ∈ R

m. If wi < 0 for some i ∈ {1, . . . ,m}, then by letting
ui → −∞ and setting all other components of u to zero, we obtain wTu − P (u) =
wiui → ∞ and thus P ∗(w) = ∞. If w ≥ 0 and P ◦(w) > 1, then wTu > P (u) for
some u 	≤ 0 and thus P ∗(w) ≥ wTu − P (u) > 0. If w ≥ 0 and P ◦(w) ≤ 1, then
wTu ≤ 0 = P (u) for all u ≤ 0, and wTu ≤ P (u) for all u 	≤ 0, so that wTu ≤ P (u) for
all u ∈ R

m (with equality holding when u = 0). Therefore P ∗(w) = 0.

Theorem 4.2. Suppose that (4.1) has a nonempty compact solution set. If there
exist Lagrange multipliers y∗ for (4.1), then the penalized problem (4.2) has the
same solution set as (4.1) for all σ > P ◦(y∗). Conversely, if (4.1) and (4.2) have
the same solution set for some σ = μ∗ > 0, then (4.1) and (4.2) have the same
solution set for all σ ≥ μ∗, and there exists a Lagrange multiplier vector y∗ for
(4.1) with μ∗ ≥ P ◦(y∗).

Proof. Set f(x) = P
(
g(x)

)
for all x ∈ R

n. By the convexity of g1, . . . , gm,
P , and Lemma 4.1(a), f is a convex function and thus (4.2) is a convex program.
Moreover, any feasible point x∗ of (4.1) is a solution of (P) with optimal value p∗ = 0.
Accordingly, we identify (4.2) with (Pδ) (where φ is the regularization function and
δ = 1/σ is the regularization parameter), and we identify the problem

(4.4) minimize
x

φ(x) subject to x ∈ C, P
(
g(x)

)
≤ 0

with (Pφ). Assumptions 1.1 and 1.2 are satisfied because (4.1) has a nonempty com-
pact solution set.

A primal-dual solution pair (x∗, y∗) of (4.1) satisfies the KKT conditions

(4.5) 0 ∈ ∂φ(x) +

m∑
i=1

yi∂gi(x) + NC(x), y ≥ 0, g(x) ≤ 0, yTg(x) = 0.

By [40, Theorem 23.5], the subdifferential of P at u has the expression ∂P (u) = {w |
wTu = P (u) +P ∗(w)}. If u ≤ 0, then P (u) = 0 and, by Lemma 4.1(b), wTu = P ∗(w)
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only if w ≥ 0 and P ◦(w) ≤ 1. This implies that

∂P (u) = {w | w ≥ 0, P ◦(w) ≤ 1, wTu = 0} for all u ≤ 0.

We can then express the KKT conditions for (4.4) as
(4.6)

0 ∈ ∂φ(x) + μ
m∑
i=1

wi∂gi(x) + NC(x),

⎧⎪⎨
⎪⎩

w ≥ 0

P ◦(w) ≤ 1

μ ≥ 0

⎫⎪⎬
⎪⎭ , g(x) ≤ 0, wTg(x) = 0.

By scaling μ and w by P ◦(w) and 1/P ◦(w), respectively, and using the positive
homogeneous property of P ◦, we can without loss of generality assume that P ◦(w) = 1
in (4.6). Then, upon comparing (4.5) and (4.6), we see that they are equivalent in
the sense that (x∗, y∗) satisfies (4.5) if and only if (x∗, μ∗) satisfies (4.6), where

μ∗w∗ = y∗ and μ∗ = P ◦(y∗),

for some w∗ ≥ 0 with P ◦(w∗) = 1. Note that μ∗ is a Lagrange multiplier for (4.4).
Therefore, by Corollary 2.2(a), (4.2) and (4.4) have the same solution set for all
σ > μ∗ = P ◦(y∗).

Conversely, suppose that (4.2) and (4.4) have the same solution set for σ = μ∗ > 0.
Then (Pδ) and (Pφ) have the same solution set for δ = 1/μ∗. By Corollary 2.2(b),
μ∗ is a Lagrange multiplier for (Pφ), and (Pδ) and (Pφ) have the same solution set
for all δ ∈ (0, 1/μ∗]. Therefore, (4.1) and (4.2) have the same solution set for all
σ ≥ μ∗. Moreover, for any x∗ ∈ Sφ there exists a vector w∗ such that (x∗, μ∗, w∗)
satisfies (4.6), and so y∗ := μ∗w∗ is a Lagrange multiplier vector for (4.1) that satisfies
P ◦(y∗) = μ∗P ◦(w∗) ≤ μ∗.

We can consider a minimum P ◦-value Lagrange multiplier vector y∗ and, similarly,
a minimum exact penalty parameter σ. Theorem 4.2 asserts that these two quantities
are equal—that is,{

inf P ◦(y∗)
such that y∗ ∈ R

m is a Lagrange
multiplier for (4.1)

}
=

{
inf σ
such that (4.2) has the same

solution set as (4.1)

}
.

Theorem 4.2 shows that the existence of Lagrange multipliers y∗ with P ◦(y∗) < ∞
is necessary and sufficient for exact penalization. There has been much study of
sufficient conditions for exact penalization; see, e.g., [4], [5, Proposition 4.1], and [9].
The results in [4, Propositions 1 and 2] assume the existence of Lagrange multipliers
y∗ and, for the case of separable P (i.e., P (u) =

∑
i Pi(ui)), prove necessary and

sufficient conditions on P and y∗ for exact penalization. For separable P , the condition
P ◦(y∗) ≤ σ reduces to

(4.7) y∗i ≤ σ lim
ui↓0

Pi(ui)

ui
, i = 1, . . . ,m,

as derived in [4, Proposition 1]. A similar result was obtained in [31, Theorem 2.1]
for the further special case of Pi(ui) = max{0, ui}. Thus Theorem 4.2 may be viewed
as a generalization of these results. (For the standard quadratic penalty Pi(ui) =
max{0, ui}2, the right-hand side of (4.7) is zero, so (4.7) holds only if y∗i = 0, i.e., the
constraint gi(x) ≤ 0 is redundant.)
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The results in [9, Corollary 2.5.1 and Theorem 5.3] assume either the linear-
independence or Slater constraint qualifications in order to ensure existence of La-
grange multipliers. Theorem 4.2 is partly motivated by and very similar to the
necessary and sufficient conditions obtained in [7, Proposition 7.3.1]. The connec-
tion with exact regularization, however, appears to be new.

Although our results for exact regularization can be used to deduce results for
exact penalization, the reverse direction does not appear possible. In particular,
applying exact penalization to the selection problem (Pφ) yields a penalized problem
very different from (Pδ).

5. Error bounds and weak sharp minimum. Even when exact regularization
cannot be achieved, we can still estimate the distance from Sδ to S in terms of δ and
the growth rate of f away from S. We study this type of error bound in this section.

Theorem 5.1.

(a) For any δ̄ > 0, ∪0<δ≤δ̄Sδ is bounded.
(b) Suppose that there exist τ > 0, γ ≥ 1 such that

(5.1) f(x) − p∗ ≥ τ dist(x,S)γ for all x ∈ C,

where dist(x,S) = minx∗∈S ‖x−x∗‖2. Then, for any δ̄ > 0 there exists τ ′ > 0
such that

dist(xδ,S)γ−1 ≤ τ ′δ for all xδ ∈ Sδ, δ ∈ (0, δ̄].

Proof. Part (a). Fix any x∗ ∈ S and any δ̄ > 0. For any δ ∈ (0, δ̄] and xδ ∈ Sδ,

f(x∗) + δφ(x∗) ≥ f(xδ) + δφ(xδ) ≥ f(x∗) + δφ(xδ),

and thus φ(x∗) ≥ φ(xδ). Using φ(xδ) ≥ infx∈C φ(x), we have, similarly, that

f(xδ) ≤ f(x∗) + δ
(
φ(x∗) − inf

x∈C
φ(x)

)
≤ f(x∗) + δ̄

(
φ(x∗) − inf

x∈C
φ(x)

)
.

This shows that ∪0<δ≤δ̄Sδ ⊆ {x ∈ C | φ(x) ≤ β, f(x) ≤ β} for some β ∈ R. Since
φ, f , and C have no nonzero recession direction in common (see Assumptions 1.1 and
1.2), the second set is bounded and therefore so is the first set.

Part (b). For any δ > 0 and xδ ∈ Sδ, let x∗
δ ∈ S satisfy ‖xδ − x∗

δ‖2 = dist(xδ,S).
Then

f(x∗
δ) + δφ(x∗

δ) ≥ f(xδ) + δφ(xδ)

≥ f(x∗
δ) + τ‖xδ − x∗

δ‖
γ
2 + δφ(xδ),

which implies that

τ‖xδ − x∗
δ‖

γ
2 ≤ δ

(
φ(x∗

δ) − φ(xδ)
)
.

Because φ is convex and real-valued,

φ(xδ) ≥ φ(x∗
δ) + ηTδ (xδ − x∗

δ) ≥ φ(x∗
δ) − ‖ηδ‖2‖xδ − x∗

δ‖2,

for some ηδ ∈ ∂φ(x∗
δ). Combining the above two inequalities yields

τ‖xδ − x∗
δ‖

γ−1
2 ≤ δ‖ηδ‖2.
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By Part (a), xδ lies in a bounded set for all δ > 0, so x∗
δ lies in a bounded subset of

S for all δ > 0. Then ηδ lies in a bounded set [40, Theorem 24.7], so that ‖ηδ‖2 is
uniformly bounded. This proves the desired bound.

Error bounds of the form (5.1) have been much studied, especially in the cases of
linear growth (γ = 1) and quadratic growth (γ = 2); see [6, 10, 11, 28, 29, 46] and
references therein. In general, it is known that (5.1) holds for some τ > 0 and γ ≥ 1
whenever f is analytic and C is bounded [28, Theorem 2.1].

Theorem 5.1 does not make much use of the convexity of f and φ, and it readily
extends to nonconvex f and φ. In the case of γ = 1 in (5.1) (i.e., f has a “weak sharp
minimum” over C), Theorem 5.1(b) implies that dist(xδ,S) = 0 for all xδ ∈ Sδ—i.e.,
Sδ ⊆ S, whenever δ < 1/τ ′. In this case, then, Sδ = Sφ whenever δ < 1/τ ′ and
Sδ 	= ∅. This gives another exact-regularization result.

The following result shows that it is nearly necessary for f to have a weak sharp
minimum over C in order for there to be exact regularization by any strongly convex
quadratic regularization function.

Theorem 5.2. Suppose that f is continuously differentiable on R
n and S is

bounded. If there does not exist τ > 0 such that (5.1) holds with γ = 1, then
either

(i) there exists a strongly convex quadratic function of the form φ(x) = ‖x− x̂‖2
2

(x̂ ∈ R
n) and a scalar δ̄ > 0 for which Sδ 	= Sφ for all δ ∈ (0, δ̄];

or
(ii) for every sequence xk ∈ C \ S, k = 1, 2, . . . , satisfying

(5.2)
f(xk) − p∗

dist(xk,S)
→ 0,

and every cluster point (x∗, v∗) of {(sk, xk−sk

‖xk−sk‖2
)}, we have x∗ + αv∗ 	∈ C

for all α > 0, where sk ∈ S satisfies ‖xk − sk‖2 = dist(xk,S).

If case (ii) occurs, then C is not polyhedral, and for any x̄ ∈ S,

(5.3) S = arg min
x∈C

∇f(x̄)Tx.

Proof. Suppose that there does not exist τ > 0 such that (5.1) holds with γ = 1.
Then there exists a sequence xk ∈ C \ S, k = 1, 2, . . . , that satisfies (5.2). Let sk ∈ S
satisfy ‖xk − sk‖2 = dist(xk,S). Let vk = (xk − sk)/‖xk − sk‖2, so that ‖vk‖2 = 1.
Because S is bounded, {sk} is bounded. By passing to a subsequence if necessary, we
can assume that (sk, vk) converges to some (x∗, v∗). Because sk is the nearest point
projection of xk onto S, we have vk ∈ NS(sk), i.e., (x − sk)T vk ≤ 0 for all x ∈ S.
Taking the limit yields v∗ ∈ NS(x∗), i.e., (x− x∗)T v∗ ≤ 0 for all x ∈ S.

Note that {xk} need not converge to x∗ or even be bounded. Now, consider the
auxiliary sequence

yk = sk + εk(xk − sk) with εk =
1

max{k, ‖xk − sk‖2}
,

k = 1, 2, . . . . Then εk ∈ (0, 1], yk ∈ C \ S, (yk − sk)/‖yk − sk‖2 = vk for all k, and
yk − sk → 0 (so yk → x∗). Also, the convexity of f implies f(yk) ≤ (1 − εk)f(sk) +
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εkf(xk) which, together with ‖yk − sk‖2 = εk‖xk − sk‖2 and f(sk) = p∗, implies

(5.4) 0 ≤ f(yk) − f(sk)

‖yk − sk‖2
≤ εkf(xk) − εkf(sk)

‖yk − sk‖2
=

f(xk) − p∗

dist(xk,S)
→ 0.

Because f(yk) − f(sk) = ∇f(sk)T (yk − sk) + o(‖yk − sk‖2) and f is continuously
differentiable, (5.4) and yk − xk → 0 yield, in the limit,

(5.5) ∇f(x∗)T v∗ = 0.

Let fδ(x) = f(x) + δφ(x), with

φ(x) = ‖x− (x∗ + v∗)‖2
2.

Because v∗ ∈ NS(x∗), we have Sφ = {x∗}.
Suppose that there exists α > 0 such that x∗ +αv∗ ∈ C. Then, for any β ∈ (0, α],

fδ(x
∗ + βv∗) = f(x∗ + βv∗) + δ‖βv∗ − v∗‖2

2

= f(x∗) + β∇f(x∗)T v∗ + o(β) + δ(β − 1)2‖v∗‖2
2

= f(x∗) + o(β) + δ(1 − 2β + β2)

= fδ(x
∗) + o(β) − δβ(2 − β),

where the third equality uses (5.5) and ‖v∗‖2 = 1. Thus x∗ + βv∗ ∈ C and fδ(x
∗ +

βv∗) < fδ(x
∗) for all β > 0 sufficiently small, implying Sδ 	= Sφ. Therefore, if case (ii)

does not occur, then case (i) must occur.
Suppose that case (ii) occurs. First, we claim that, for any x̄ ∈ S,

∇f(x̄)T (x− x̄) > 0 for all x ∈ C \ S.1

Fix any x̄ ∈ S. Because ∇f(x̄)T (x− x̄) = 0 for all x ∈ S, this yields (5.3). Next, we
claim that C cannot be polyhedral. If C were polyhedral, then the minimization in
(5.3) would be an LP, for which weak sharp minimum holds. Then there would exist
τ > 0 such that

∇f(x̄)T (x− x̄) ≥ τ dist(x,S) for all x ∈ C.

Because f is convex and thus f(x)− p∗ = f(x)− f(x̄) ≥ ∇f(x̄)T (x− x̄) for all x ∈ C,
this would imply that (5.1) holds with γ = 1, contradicting our assumption.

An example of case (ii) occurring in Theorem 5.2 is

n = 2, f(x) = x2, and C = {x ∈ R
2 | x2

1 ≤ x2}.

Here S = {(0, 0)}, p∗ = 0, and

f(x) − p∗

dist(x,S)
=

x2

‖x‖2
=

1√
(x1/x2)2 + 1

for all x ∈ C \ S.

1If this were false, then there would exist x̄ ∈ S and x ∈ C \ S such that ∇f(x̄)T (x − x̄) = 0.
(Note that ∇f(x̄)T (x− x̄) < 0 cannot occur because x̄ ∈ S.) Let s ∈ S satisfy ‖x− s‖2 = dist(x,S).
By Lemma 3.1, ∇f(s)T (x − s) = 0. Then for xk = s + (x − s)/k, we would have xk ∈ C \ S,
f(xk)−f(s) = o(1/k), and dist(xk,S) = ‖x− s‖2/k, so xk satisfies (5.2) and sk = s for k = 1, 2, . . . .

Because (sk, xk−sk

‖xk−sk‖2
) → (s, x−s

‖x−s‖2
) and s + α x−s

‖x−s‖2
∈ C for all α ∈ (0, ‖x − s‖2], this would

contradict case (ii) occurring.
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The right-hand side goes to 0 if and only if x1/x2 → ∞, in which case x/‖x‖2 →
(±1, 0), and α(±1, 0) 	∈ C for all α > 0. Interestingly, we can still find φ(x) =
‖x − x̂‖2

2 for which Sδ 	= Sφ for all δ > 0 sufficiently small. For example, take
φ(x) = (x1 − 1)2 + (x2 − 1)2. Then (Pδ) becomes

minimize
x

x2 + δ(x1 − 1)2 + δ(x2 − 1)2 subject to x2
1 ≤ x2.

It is straightforward to check that (0, 0) does not satisfy the necessary optimality
conditions for (Pδ) for all δ > 0. This raises the question of whether case (ii) is
subsumed by case (i) when C is not polyhedral. In section 8, we give an example
showing that the answer is “no.”

6. Sparse solutions. In this section we illustrate a practical application of
Corollary 2.2. Our aim is to find sparse solutions of LPs and CPs that may not
have unique solutions. To this end, we let φ(x) = ‖x‖1, which clearly satisfies the
required Assumption 1.2. (In general, however, some components of x may be more
significant or be at different scales, in which case we may not wish to regularize all
components or regularize them equally.)

Regularization based on the one-norm has been used in many applications, with
the goal of obtaining sparse or even sparsest solutions of underdetermined systems of
linear equations and least-squares problems. Some recent examples include [14, 16,
17, 18].

The AMPL model and data files and the MATLAB scripts used to generate all
of the numerical results presented in the following subsections can be obtained at
http://www.cs.ubc.ca/∼mpf/exactreg/.

6.1. Sparse solutions of linear programs. For underdetermined systems of
linear equations Ax = b that arise in fields such as signal processing, the studies in
[13, 14, 18] advocate solving

(6.1) minimize
x

‖x‖1 subject to Ax = b (and possibly x ≥ 0),

in order to obtain a sparse solution. This problem can be recast as an LP and be
solved efficiently. The sparsest solution is given by minimizing the so-called zero-
norm, ‖x‖0, which counts the number of nonzero components in x. However, the
combinatorial nature of this minimization makes it computationally intractable for
all but the simplest instances. Interestingly, there exist reasonable conditions under
which a solution of (6.1) is a sparsest solution; see [13, 18].

Following this approach, we use Corollary 2.2 as a guide for obtaining least one-
norm solutions of a generic LP,

(6.2) minimize
x

cTx subject to Ax = b, l ≤ x ≤ u,

by solving its regularized version,

(6.3) minimize
x

cTx + δ‖x‖1 subject to Ax = b, l ≤ x ≤ u.

The vectors l and u are lower and upper bounds on x. In many of the numerical
tests given below, the exact �1 regularized solution of (6.2) (given by (6.3) for small-
enough values of δ) is considerably sparser than the solution obtained by solving (6.2)
directly. In each instance, we solve the regularized and unregularized problems with
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the same interior-point solver. We emphasize that, with an appropriate choice of the
regularization parameter δ, the solution of the regularized LP is also a solution of the
original LP.

We use two sets of test instances in our numerical experiments. The instances
of the first set are randomly generated using a degenerate LP generator described
in [23]. Those of the second set are derived from the infeasible LPs in the NETLIB
collection (http://www.netlib.org/lp/infeas/). Both sets of test instances are further
described in subsections 6.1.1–6.1.2.

We follow the same procedure for each test instance. First, we solve the LP
(6.2) to obtain an unregularized solution x∗ and the optimal value p∗ := cTx∗. Next,
we solve (Pφ), reformulated as an LP, to obtain a Lagrange multiplier μ∗ and the
threshold value δ̄ = 1/μ∗. Finally, we solve (6.3) with δ := δ̄/2, reformulated as an
LP, to obtain a regularized solution x∗

δ .
We use the log-barrier interior-point algorithm implemented in CPLEX 9.1 to

solve each LP. The default CPLEX options are used, except for crossover = 0 and
comptol = 1e-10. Setting crossover = 0 forces CPLEX to use the interior-point
algorithm only and to not “cross over” to find a vertex solution. In general, we
expect the interior-point algorithm to find the analytic center of the solution set (see
[47, Theorems 2.16 and 2.17]), which tends to be less sparse than vertex solutions.
The comptol option tightens CPLEX’s convergence tolerance from its default of 1e-8
to its smallest allowable setting. We do not advocate such a tight tolerance in practice,
but the higher accuracy aids in computing the sparsity of a computed solution, which
we determine as

(6.4) ‖x‖0 = card{xi | |xi| > ε },

where ε = 10−8 is larger than the specified convergence tolerance.

6.1.1. Randomly generated LPs. Six dual-degenerate LPs were constructed
using Gonzaga’s MATLAB generator [23]. This MATLAB program accepts as inputs
the problem size and the dimensions of the optimal primal and dual faces, Dp and
Dd, respectively. Gonzaga shows that these quantities must satisfy

(6.5) 0 ≤ Dp ≤ n−m− 1 and 0 ≤ Dd ≤ m− 1.

The six LPs are constructed with parameters n = 1000, m = 100, Dd = 0, and various
levels of Dp set as 0%, 20%, 40%, 60%, 80%, and 100% of the maximum of 899 (given
by (6.5)). The instances are, respectively, labeled random-0, random-20, random-40, and
so on.

Table 6.1 summarizes the results. We confirm that in each instance the optimal
values of the unregularized and regularized problems are nearly identical (at least to
within the specified tolerance), so each regularized solution is exact. Except for the
“control” instance random-0, the regularized solution x∗

δ has a strictly lower one-norm
and is considerably sparser than the unregularized solution x∗.

6.1.2. Infeasible LPs. The second set of test instances is derived from a subset
of the infeasible NETLIB LPs. For each infeasible LP, we discard the original objective
and instead form the problem

(P
inf

) minimize
x

‖Ax− b‖1 subject to l ≤ x ≤ u,

and its regularized counterpart

(P
inf

δ ) minimize
x

‖Ax− b‖1 + δ‖x‖1 subject to l ≤ x ≤ u.
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Table 6.1

Randomly generated LPs with increasing dimension of the optimal primal face. The arrows
indicate differences between values in neighboring columns: → indicates that the value to the right
is the same; ↘ indicates that the value to the right is lower; ↗ indicates that the value to the right
is larger.

LP cTx∗ cTx∗
δ ‖x∗‖1 ‖x∗

δ‖1 ‖x∗‖0 ‖x∗
δ‖0 δ̄

random-0 2.5e−13 1.0e−13 9.1e+01 → 9.1e+01 100 → 100 1.5e−04
random-20 5.6e−13 6.6e−13 2.9e+02 ↘ 2.0e+02 278 ↘ 100 2.2e−02
random-40 3.8e−12 3.7e−12 4.9e+02 ↘ 2.9e+02 459 ↘ 100 2.9e−02
random-60 3.9e−14 9.2e−11 6.7e+02 ↘ 3.6e+02 637 ↘ 101 3.3e−02
random-80 9.1e−12 8.4e−13 8.9e+02 ↘ 4.6e+02 816 ↘ 100 2.1e−01
random-100 1.8e−16 3.2e−12 1.0e+03 ↘ 5.4e+02 997 ↘ 102 1.1e−01

The unregularized problem (P
inf

) models the plausible situation where we wish to fit
a set of infeasible equations in the least one-norm sense. But because the one-norm

is not strictly convex or the equations are underdetermined, a solution of (P
inf

) may

not be unique, and the regularized problem (P
inf

δ ) is used to further select a sparse
solution.

The following infeasible NETLIB LPs were omitted because CPLEX returned an

error message during the solution of (P
inf

) or (P
inf

δ ): lpi-bgindy, lpi-cplex2, lpi-gran,
lpi-klein1, lpi-klein2, lpi-klein3, lpi-qual, lpi-refinery, and lpi-vol1.

Table 6.2 summarizes the results. We can see that the regularized solution x∗
δ

is exact (i.e., cTx∗
δ = cTx∗) and has a one-norm lower than or equal to that of the

unregularized solution x∗ in all instances. In twelve of the twenty instances, x∗
δ is

sparser than x∗. In five of the instances, they have the same sparsity. In three of
the instances (lpi-galenet, lpi-itest6, and lpi-woodinfe), x∗

δ is actually less sparse,
even though its one-norm is lower.

6.2. Sparse solutions of semidefinite/second-order cone programs. In
section 6.1 we used Corollary 2.2 to find sparse solutions of LPs. In this section, we
report our numerical experience in finding sparse solutions of SDPs and SOCPs that
may not have unique solutions. These are conic programs (P) with f and C given by
(1.1), and K being the Cartesian product of real space, orthant, second-order cones,
and semidefinite cones.

The regularized problem (Pδ) can be put in the conic form

(6.6)

minimize
x,u,v

cTx + δeT(u + v)

subject to Ax = b, x− u + v = 0,

(x,u, v) ∈ K × [0,∞)2n,

where e is the vector of ones. The selection problem (Pφ) can also be put in conic
form:

(6.7)

minimize
x,u,v,s

eT(u + v)

subject to Ax = b, x− u + v = 0, cTx + s = p∗,

(x,u, v, s) ∈ K × [0,∞)2n+1.

As in section 6.1, we first solve (P) to obtain x∗ and the optimal value p∗ := cTx∗.
Then (6.7) is solved to obtain Lagrange multiplier μ∗ and the corresponding thresh-
old value δ̄ := 1/μ∗. Finally, we solve (6.6) with δ = δ̄/2 to obtain x∗

δ . All three
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Table 6.2

Least one-norm residual solutions of the infeasible NETLIB LPs.

LP cTx∗ cTx∗
δ ‖x∗‖1 ‖x∗

δ‖1 ‖x∗‖0 ‖x∗
δ‖0 δ̄

lpi-bgdbg1 3.6e+02 3.6e+02 1.6e+04 ↘ 1.3e+04 518 ↘ 437 3.3e−03
lpi-bgetam 5.4e+01 5.4e+01 6.0e+03 ↘ 5.3e+03 633 ↘ 441 3.4e−04
lpi-bgprtr 1.9e+01 1.9e+01 4.7e+03 ↘ 3.0e+03 25 ↘ 20 3.7e−01
lpi-box1 1.0e+00 1.0e+00 5.2e+02 ↘ 2.6e+02 261 → 261 9.9e−01
lpi-ceria3d 2.5e−01 2.5e−01 8.8e+02 → 8.8e+02 1780 ↘ 1767 6.7e−04
lpi-chemcom 9.8e+03 9.8e+03 1.5e+05 ↘ 3.8e+04 711 ↘ 591 3.1e−01
lpi-cplex1 3.2e+06 3.2e+06 2.4e+09 ↘ 1.5e+09 3811 ↘ 3489 1.0e−02
lpi-ex72a 1.0e+00 1.0e+00 4.8e+02 ↘ 3.0e+02 215 → 215 1.6e−01
lpi-ex73a 1.0e+00 1.0e+00 4.6e+02 ↘ 3.0e+02 211 → 211 1.6e−01
lpi-forest6 8.0e+02 8.0e+02 4.0e+05 → 4.0e+05 54 → 54 1.2e−03
lpi-galenet 2.8e+01 2.8e+01 1.0e+02 ↘ 9.2e+01 10 ↗ 11 6.3e−01
lpi-gosh 4.0e−02 4.0e−02 1.5e+04 ↘ 7.1e+03 9580 ↘ 1075 3.9e−05
lpi-greenbea 5.2e+02 5.2e+02 1.4e+06 ↘ 5.6e+05 3658 ↘ 1609 1.1e−04
lpi-itest2 4.5e+00 4.5e+00 2.3e+01 → 2.3e+01 7 → 7 6.5e−01
lpi-itest6 2.0e+05 2.0e+05 4.8e+05 ↘ 4.6e+05 12 ↗ 14 4.8e−01
lpi-mondou2 1.7e+04 1.7e+04 3.2e+06 ↘ 2.7e+06 297 ↘ 244 9.5e−02
lpi-pang 2.4e−01 2.4e−01 1.4e+06 ↘ 8.2e+04 536 ↘ 336 1.4e−06
lpi-pilot4i 3.3e+01 3.3e+01 6.9e+05 ↘ 5.1e+04 773 ↘ 627 3.6e−06
lpi-reactor 2.0e+00 2.0e+00 1.5e+06 ↘ 1.1e+06 569 ↘ 357 4.1e−05
lpi-woodinfe 1.5e+01 1.5e+01 3.6e+03 ↘ 2.0e+03 60 ↗ 87 5.0e−01

problems—(P), (6.6), and (6.7)—are solved using the MATLAB toolbox SeDuMi
(version 1.05) [43], which is a C implementation of a log-barrier primal-dual interior-
point algorithm for solving SDP/SOCP. The test instances are drawn from the DI-
MACS Implementation Challenge library [37], a collection of nontrivial medium-to-
large SDP/SOCP arising from applications. We omit those instances for which either
(P) is infeasible (e.g., filtinf1) or if one of (P), (6.6), or (6.7) cannot be solved because
of insufficient memory (e.g., torusg3-8). All runs were performed on a PowerPC G5
with 2GB of memory running MATLAB 7.3b.

Table 6.3 summarizes the results. For most of the instances, SeDuMi finds only an
inaccurate solution (info.numerr=1) for at least one of (P), (6.6), or (6.7). For most
instances, however, SeDuMi also finds a value of μ∗ that seems reasonable. In some
instances (nb_L2_bessel, nql30, nql80, qssp30, qssp60, qssp180, sch_100_100_scal,
sch_200_100_scal, truss8), the computed multiplier μ∗ is quite large relative to the
solution accuracy, and yet cTx∗

δ matches cTx∗ in the first three significant digits; this
suggests that the regularization is effectively exact. For nb_L2, sch_100_50_scal, and
sch_100_100_orig, the discrepancies between cTx∗

δ and cTx∗ may be attributed to a
SeDuMi numerical failure or primal infeasibility in solving either (P) or (6.7) (thus
yielding inaccurate μ∗) or (6.6). For hinf12, SeDuMi solved all three problems accu-
rately, and μ∗ looks reasonable, whereas for hinf13, SeDuMi solved all three problems
inaccurately, but μ∗ still looks reasonable. Yet cTx∗

δ is lower than cTx∗ in both in-
stances. We do not yet have an explanation for this.

The regularized solution x∗
δ has a one-norm lower than or equal to that of the

unregularized solution x∗ in all instances except hinf12, where ‖x∗
δ‖1 is 1% higher

(this small difference does not appear in Table 6.3). Solution sparsity is measured by
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Table 6.3

Least one-norm solutions of the feasible DIMACS SDP/SOCPs. Three different types
of SeDuMi failures are reported: anumerical error; bprimal infeasibility detected in solving
(6.7); cnumerical error in solving (6.7). The “schedule” instances have been abbreviated from
sched 100 50 orig to sch 100 50 o, etc.

SDP/SOCP cTx∗ cTx∗
δ ‖x∗‖1 ‖x∗

δ‖1 ‖x∗‖0 ‖x∗
δ‖0 δ̄

nb -5.07e−02 -5.07e−02 2.2e+0 ↘ 2.1e+0 142 ↘ 139 7.6e−3
nb L1 -1.30e+01 -1.30e+01 3.1e+3 → 3.1e+3 2407 ↘ 1613 1.2e−5
nb L2 -1.63e+00 -1.63e+00 3.1e+1 → 3.1e+1 847 → 847 2.1e−5
nb L2 bessel -1.03e−01 -1.03e−01 1.0e+1 ↘ 9.7e+0 131 ↗ 133 2.7e−6
copo14 -3.11e−12 -2.13e−10 4.6e+0 ↘ 2.0e+0 2128 ↘ 224 4.7e−1
copo23 -8.38e−12 -3.73e−09 6.6e+0 ↘ 2.0e+0 9430 ↘ 575 4.7e−1
filter48 socp 1.42e+00 1.42e+00 7.6e+2 → 7.6e+2 3284 ↘ 3282 1.1e−6
minphase 5.98e+00 5.98e+00 1.6e+1 → 1.6e+1 2304 → 2304 5.8e−2
hinf12 -3.68e−02 -7.11e−02 1.0e+0 → 1.0e+0 138 ↗ 194 5.1e+0
hinf13 -4.53e+01 -4.51e+01 2.8e+4 ↘ 2.1e+4 322 ↘ 318 2.8e−4
nql30 -9.46e−01 -9.46e−01 5.8e+3 ↘ 2.8e+3 6301 → 6301 1.0e−7
nql60 -9.35e−01 -9.35e−01 2.3e+4 ↘ 1.1e+4 25201 → 25201 1.4e−6
nql180 -9.28e−01 -9.28e−01 2.1e+5 ↘ 1.0e+5 226776 ↘ 226767 6.3e−8
nql30old -9.46e−01 -9.46e−01 5.5e+3 ↘ 1.0e+3 7502 ↘ 6244 3.2e−5
nql60old -9.35e−01 -9.35e−01 2.2e+4 ↘ 4.0e+3 29515 ↘ 23854 2.0e−5
nql180old a-9.31e−01 a-9.29e−01 1.9e+5 ↘ 6.8e+4 227097 ↘ 211744 1.4e−8
qssp30 -6.50e+00 -6.50e+00 4.5e+3 → 4.5e+3 7383 → 7383 4.1e−7
qssp60 -6.56e+00 -6.56e+00 1.8e+4 → 1.8e+4 29163 → 29163 1.2e−6
qssp180 -6.64e+00 -6.64e+00 1.6e+5 → 1.6e+5 260283 → 260283 c3.8e−7
sch 50 50 o 2.67e+04 2.67e+04 5.6e+4 → 5.6e+4 1990 ↗ 2697 8.7e−3
sch 50 50 s 7.85e+00 7.85e+00 1.1e+2 → 1.1e+2 497 ↗ 600 1.1e−5
sch 100 50 o 1.82e+05 1.82e+05 4.9e+5 → 4.9e+5 3131 ↘ 3040 2.4e−4
sch 100 50 s 6.72e+01 b8.69e+01 6.0e+4 ↘ 1.3e+4 5827 ↗ 7338 6.1e−3
sch 100 100 o 7.17e+05 a3.95e+02 1.8e+6 ↘ 8.4e+2 12726 ↗ 18240 1.3e−0
sch 100 100 s 2.73e+01 2.73e+01 1.6e+5 → 1.6e+5 17574 ↘ 16488 1.8e−8
sch 200 100 o 1.41e+05 1.41e+05 4.4e+5 → 4.4e+5 24895 ↘ 16561 4.3e−4
sch 200 100 s 5.18e+01 5.18e+01 7.8e+4 → 7.8e+4 37271 ↘ 37186 4.0e−8
truss5 1.33e+02 1.33e+02 2.1e+3 ↘ 1.5e+3 3301 → 3301 1.6e−5
truss8 1.33e+02 1.33e+02 7.9e+3 ↘ 5.2e+3 11914 ↘ 11911 1.7e−7

the zero-norm defined in (6.4), where ε is based on the relative optimality gap

ε =
cTx∗

δ − bTy∗δ
1 + ‖b‖‖y∗δ‖ + ‖c‖‖x∗

δ‖

of the computed solution of (6.6). For 52% of the instances, the regularized solution
is sparser than the unregularized solution. For 28% of the instances, the solutions
have the same sparsity. For the remaining six instances, the regularized solution is
actually less sparse, even though its one-norm is lower (nb_L2_bessel, sch_100_50_s,
sch_100_100_o) or the same (hinf12, sch_50_50_o, sch_50_50_s). SeDuMi implements
an interior-point algorithm, so it is likely to find the analytic center of the solution
set of (P).

The selection problem (6.7) is generally much harder to solve than (P) or (6.6).
For example, on nb_L2_bessel, SeDuMi took 18, 99, and 16 iterations to solve (P),
(6.7), and (6.6), respectively, and on truss8 SeDuMi took, respectively, 24, 117, and
35 iterations. This seems to indicate that regularization is more efficient than solving
the selection problem as a method for finding sparse solutions.

7. Discussion. We see from the numerical results in section 6 that regularization
can provide an effective way of selecting a solution with desirable properties, such as
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sparsity. However, finding the threshold value δ̄ for exact regularization entails first
solving (P) to obtain p∗, and then solving (Pφ) to obtain μ∗ and setting δ̄ = 1/μ∗;
see Corollary 2.2. Can we find a δ < δ̄ from (P) without also solving (Pφ)?

Consider the case of a CP, in which f and C have the form (1.1). Suppose that a
value of δ < δ̄ has been guessed (with δ̄ unknown), and a solution x∗ of the regularized
problem (Pδ) is obtained. By Corollary 2.2, x∗ is also a solution of (Pφ). Suppose
also that there exist Lagrange multipliers y∗ ∈ R

m and z∗ ∈ K∗ for (P), where K∗ is
the dual cone of K given by

K∗ := {y ∈ R
n | yTx ≥ 0 for all x ∈ K}.

Then (y∗, z∗) satisfy, among other conditions,

ATy∗ + z∗ = c and bTy∗ = p∗.

Suppose, furthermore, that there exist Lagrange multipliers y∗φ ∈ R
m, z∗φ ∈ K∗, and

μ∗ ≥ 0 for (Pφ) that satisfy, among other conditions,

0 ∈ ∂φ(x∗) − (ATy∗φ + z∗φ − μ∗c).

Then, analogous to the proof of Theorem 2.1, we can construct Lagrange multipliers
for (Pδ) as follows:

Case 1. μ∗
φ = 0. The Lagrange multipliers for (Pδ) are given by

y∗δ := y∗ + δy∗φ and z∗δ := z∗ + δz∗φ.

Case 2. μ∗
φ > 0. The Lagrange multipliers for (Pδ) are given by

y∗δ := (1 − λ)y∗ +
λ

μ∗
φ

y∗φ and z∗δ := (1 − λ)z∗ +
λ

μ∗
φ

z∗φ,

for any λ ∈ [0, 1]. The Lagrange multipliers (y∗δ , z
∗
δ ) obtained for the regularized

problem are therefore necessarily perturbed. Therefore, it is not possible to test the
computed triple (x∗, y∗δ , z

∗
δ ) against the optimality conditions for the original CP in

order to verify that x∗ is indeed an exact solution.
In practice, if it were prohibitively expensive to solve (P) and (Pφ), we might

adopt an approach suggested by Lucidi [27] and Mangasarian [33] for Tikhonov regu-
larization. They suggest solving the regularized problem successively with decreasing
values δ1 > δ2 > · · · . If successive regularized solutions do not change for δ rang-
ing over different orders of magnitude, then it is likely that a correct regularization
parameter has been obtained. We note that in many instances, the threshold values
δ̄ shown in Tables 6.1 and 6.2 are comfortably large, and a value such as δ = 10−4

would cover 85% of the these cases.

8. Appendix. In this appendix, we give an example of f and C that satisfy the
assumptions of Theorem 5.2 and for which weak sharp minimum fails to hold and yet
exact regularization holds for φ(x) = ‖x− x̂‖2

2 and any x̂ ∈ �n.
Consider the example

n = 3, f(x) = x3, and C = [0, 1]3 ∩
(
∩∞
k=2Ck

)
,

where Ck = {x ∈ R
3 | x1 − (k − 1)x2 − k2x3 ≤ 1/k}. Each Ck is a half-space in R

3,
so C is a closed convex set. Moreover, C is bounded and nonempty (since 0 ∈ C); see
Figure 8.1(a). Clearly

(8.1) p∗ = 0 and S = {x ∈ C | x3 = 0}.
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x3

x1x1

SC

(1/k, 0, 0)

Sk

(a) (b)

(1, 1/k, 0)

x2

x2

Fig. 8.1. (a) The feasible set C. (b) The solution set S and Sk.

First, we show that weak sharp minimum fails to hold, i.e., there does not exist
τ > 0 such that (5.1) holds with γ = 1. Let Hk be the hyperplane forming the
boundary set of Ck, i.e., Hk = {x ∈ R

3 | x1 − (k− 1)x2 − k2x3 = 1/k}. Let xk be the
intersection point of Hk, Hk+1 and the x1x3-plane. Direct calculation yields

(8.2) xk
1 =

1 − (1 + 1/k)−3

k(1 − (1 + 1/k)−2)
, xk

2 = 0, xk
3 =

xk
1 − 1/k

k2
,

for k = 2, 3, . . . . Since C ⊂ Ck, we have from (8.1) that S ⊂ Sk, where we let
Sk = {x ∈ Ck | x3 = 0}; see Figure 8.1(b). Thus

(8.3) dist(xk,S) ≥ dist(xk,Sk) ≥ dist((xk
1 , 0, 0),Sk).

Since limα→1
1−α3

1−α2 = 3
2 , (8.2) implies that kxk

1 → 3/2, i.e., xk
1 = 1.5/k + o(1/k). The

point in Sk nearest to (xk
1 , 0, 0) lies on the line through (1/k, 0, 0) and (1, 1/k, 0) (with

slope 1/(k − 1) in the x1x2-plane), from which it follows that dist((xk
1 , 0, 0),Sk) =

0.5/k2+o(1/k2). Since xk
3 = 1.5/k3+o(1/k3) by (8.2), this together with (8.3) implies

xk
3

dist(xk,S)
≤ xk

3

dist((xk
1 , 0, 0),Sk)

= O(1/k) → 0.

Moreover, for any � ∈ {2, 3, . . . }, we have from (8.2) and letting α = �/k that

xk
1 − (�− 1)xk

2 − �2xk
3 − 1

�
=

(
1 − α2

)
xk

1 − 1

�

(
1 − α3

)
= (1 − α)

(
(1 + α)xk

1 − 1

�

(
1 + α + α2

))

=
(1 − α)

k

(
(1 + α)

1 − (1 + 1/k)−3

1 − (1 + 1/k)−2
− 1

α

(
1 + α + α2

))

=
(1 − α)

k
(1 + α)

(
(1 + 1/k)−2

1 + (1 + 1/k)−1
− 1

α(1 + α)

)

=
(1 − α2)

k

(
k2

(2k + 1)(k + 1)
− k2

�(k + �)

)

=
(1 − α2)

k

(2k + � + 1)(�− k − 1)

(2k + 1)(k + 1)�(k + �)
,

where the second equality uses 1−α2 = (1−α)(1 +α), 1−α3 = (1−α)(1 +α+α2);
the fourth equality uses the same identities but with (1 + 1/k)−1 in place of α. By
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considering the two cases � ≤ k and � ≥ k + 1, it is readily seen that the right-hand
side of the previous equation is nonpositive. This in turn shows that xk ∈ C� for
� = 2, 3, . . . , and hence xk ∈ C.

Second, fix any x̂ ∈ R
3 and let φ(x) = ‖x − x̂‖2

2. Let x∗ = arg minx∈S φ(x) and
fδ(x) = f(x) + δφ(x). Suppose x∗ 	= 0. Then C is polyhedral in a neighborhood N of
x∗. Since xδ = arg minx∈C fδ(x) converges to x∗ as δ → 0, we have that xδ ∈ C ∩ N
for all δ > 0 below some positive threshold, in which case exact regularization holds
(see Corollary 2.3). Suppose x∗ = 0. Then

x̂ = −∇φ(x∗) ∈ NS(x∗) = (−∞, 0]2 × R,

where the second equality follows from [0,∞)2 × {0} being the tangent cone of S at
0. Thus x̂2 ≤ 0, x̂3 ≤ 0 and we see from

∇fδ(x
∗) = (0, 0, 1)T − δx̂

that ∇fδ(x
∗) ≥ 0 for all δ ∈ [0, δ̄], where δ̄ = ∞ if x̂3 ≤ 0 and δ̄ = 1/x̂3 if x̂3 > 0.

Because C ⊂ [0,∞)3, it is implied that, for δ ∈ [0, δ̄],

∇fδ(x
∗)T(x− x∗) = ∇fδ(x

∗)Tx ≥ 0 for all x ∈ C.

Because x∗ ∈ C and fδ is strictly convex for δ ∈ (0, δ̄], it is implied that x∗ =
arg minx∈C fδ(x) for all δ ∈ (0, δ̄]. Hence exact regularization holds.
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Abstract. The notion of soft thresholding plays a central role in problems from various ar-
eas of applied mathematics, in which the ideal solution is known to possess a sparse decomposition
in some orthonormal basis. Using convex-analytical tools, we extend this notion to that of prox-
imal thresholding and investigate its properties, providing, in particular, several characterizations
of such thresholders. We then propose a versatile convex variational formulation for optimization
over orthonormal bases that covers a wide range of problems, and we establish the strong conver-
gence of a proximal thresholding algorithm to solve it. Numerical applications to signal recovery are
demonstrated.
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1. Problem formulation. Throughout this paper, H is a separable infinite-
dimensional real Hilbert space with scalar product 〈· | ·〉, norm ‖ · ‖, and distance d.
Moreover, Γ0(H) denotes the class of proper lower semicontinuous convex functions
from H to ]−∞,+∞], and (ek)k∈N is an orthonormal basis of H.

The standard denoising problem in signal theory consists of recovering the original
form of a signal x ∈ H from an observation z = x + v, where v ∈ H is the realization
of a noise process. In many instances, x is known to admit a sparse representation
with respect to (ek)k∈N, and an estimate x of x can be constructed by removing the
coefficients of small magnitude in the representation (〈z | ek〉)k∈N of z with respect
to (ek)k∈N. A popular method consists of performing a so-called soft thresholding of
each coefficient 〈z | ek〉 at some predetermined level ωk ∈ ]0,+∞[, namely

(1.1) x =
∑
k∈N

soft[−ωk,ωk] (〈z | ek〉)ek,

where (see Figure 2.1)

(1.2) soft[−ωk,ωk] : ξ �→ sign(ξ) max{|ξ| − ωk, 0}.

This approach has received considerable attention in various areas of applied mathe-
matics ranging from nonlinear approximation theory to statistics, and from harmonic
analysis to image processing; see, for instance, [2, 7, 9, 21, 23, 29, 33] and the ref-
erences therein. From an optimization point of view (see Remark 2.8), the vector x
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exhibited in (1.1) is the solution to the variational problem

(1.3) minimize
x∈H

1

2
‖x− z‖2 +

∑
k∈N

ωk |〈x | ek〉| .

Attempts have been made to extend this formulation to the more general inverse
problems in which the observation assumes the form z = Tx+v, where T is a nonzero
bounded linear operator from H to some real Hilbert space G, and where v ∈ G is the
realization of a noise process. Thus, the variational problem

(1.4) minimize
x∈H

1

2
‖Tx− z‖2 +

∑
k∈N

ωk |〈x | ek〉|

has been considered and, since it admits no closed-form solution, the soft thresholding
algorithm

(1.5) x0 ∈ H and (∀n ∈ N) xn+1 =
∑
k∈N

soft[−ωk,ωk]

(
〈xn + T ∗(z − Txn) | ek〉

)
ek

has been proposed to solve it [5, 19, 20, 24] (see also [36] and the references therein
for related work). The strong convergence of this algorithm was formally established
in [18].

Proposition 1.1 (see [18, Theorem 3.1]). Suppose that infk∈N ωk > 0 and
‖T‖ < 1. Then the sequence (xn)n∈N generated by (1.5) converges strongly to a
solution to (1.4).

In [16], (1.4) was analyzed in a broader framework, and the following extension
of Proposition 1.1 was obtained by bringing into play tools from convex analysis
and recent results from constructive fixed point theory (Proposition 1.2 reduces to
Proposition 1.1 when ‖T‖ < 1, γn ≡ 1, and λn ≡ 1).

Proposition 1.2 (see [16, Corollary 5.19]). Let (γn)n∈N be a sequence in ]0,+∞[,
and let (λn)n∈N be a sequence in ]0, 1]. Suppose that the following hold: infk∈N ωk > 0,
infn∈N γn > 0, supn∈N γn < 2/‖T‖2, and infn∈N λn > 0. Then the sequence (xn)n∈N

generated by the algorithm

(1.6) x0 ∈ H and (∀n ∈ N) xn+1 = xn

+ λn

(∑
k∈N

soft[−γnωk,γnωk]

(
〈xn + γnT

∗(z − Txn) | ek〉
)
ek − xn

)

converges strongly to a solution to (1.4).
In denoising and approximation problems, various theoretical, physical, and heuris-

tic considerations have led researchers to consider alternative thresholding strategies
in (1.1); see, e.g., [1, 33, 34, 35, 39]. However, the questions of whether alternative
thresholding rules can be used in algorithms akin to (1.6) and of identifying the un-
derlying variational problems remain open. These questions are significant because
the current theory of iterative thresholding, as described by Proposition 1.2, can
tackle only variational problems of the form (1.4), which offers limited flexibility in
the penalization of the coefficients (〈x | ek〉)k∈N and which is furthermore restricted
to standard linear inverse problems. The aim of the present paper is to bring out
general answers to these questions. Our analysis will revolve around the following
variational formulation, where σΩ denotes the support function of a set Ω (see (2.2)).
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Problem 1.3. Let Φ ∈ Γ0(H), let K ⊂ N, let L = N � K, let (Ωk)k∈K be
a sequence of closed intervals in R, and let (ψk)k∈N be a sequence in Γ0(R). The
objective is to

(1.7) minimize
x∈H

Φ(x) +
∑
k∈N

ψk(〈x | ek〉) +
∑
k∈K

σΩk
(〈x | ek〉),

under the following standing assumptions:
(i) the function Φ is differentiable on H, inf Φ(H) > −∞, and ∇Φ is 1/β-

Lipschitz continuous for some β ∈ ]0,+∞[ ;
(ii) for every k ∈ N, ψk ≥ ψk(0) = 0;
(iii) the functions (ψk)k∈N are differentiable at 0;
(iv) if L �= ∅, then the functions (ψk)k∈L are finite and twice differentiable on

R � {0}, and

(1.8) (∀ρ ∈ ]0,+∞[)(∃ θ ∈ ]0,+∞[) inf
k∈L

inf
0<|ξ|≤ρ

ψ′′
k (ξ) ≥ θ;

(v) if L �= ∅, then the function ΥL : �2(L) → ]−∞,+∞] : (ξk)k∈L �→
∑

k∈L
ψk(ξk)

is coercive;
(vi) (∃ω ∈ ]0,+∞[) [−ω, ω] ⊂

⋂
k∈K

Ωk.
Let us note that Problem 1.3 reduces to (1.4) when Φ: x �→ ‖Tx− z‖2/2, K = N,

and, for every k ∈ N, Ωk = [−ωk, ωk], and ψk = 0. It will be shown (Proposition 4.1)
that Problem 1.3 admits at least one solution. While assumption (i) on Φ may seem
offhand to be rather restrictive, it will be seen in section 5.1 to cover important
scenarios. In addition, it makes it possible to employ a forward-backward splitting
strategy to solve (1.7), which consists essentially of alternating a forward (explicit)
gradient step on Φ with a backward (implicit) proximal step on

(1.9) Ψ: H → ]−∞,+∞] : x �→
∑
k∈N

ψk(〈x | ek〉) +
∑
k∈K

σΩk
(〈x | ek〉).

Our main convergence result (Theorem 4.5) will establish the strong convergence of an
inexact forward-backward splitting algorithm (Algorithm 4.3) for solving Problem 1.3.
Another contribution of this paper will be to show (Remark 3.4) that, under our
standing assumptions, the function displayed in (1.9) is quite general in the sense
that the operators on H that perform nonexpansive (as required by our convergence
analysis) and increasing (as imposed by practical considerations) thresholdings on the
closed intervals (Ωk)k∈K of the coefficients (〈x | ek〉)k∈K of a point x ∈ H are precisely
those of the form proxΨ, i.e., the proximity operator of Ψ. Furthermore, we show
(Proposition 3.6 and Lemma 2.3) that such an operator, which provides the proximal
step of our algorithm, can be conveniently decomposed as

(1.10) proxΨ : H → H : x �→
∑
k∈K

proxψk

(
softΩk

〈x | ek〉
)
ek +

∑
k∈L

proxψk
〈x | ek〉 ek,

where we define the soft thresholder relative to a nonempty closed interval Ω ⊂ R as

(1.11) softΩ : R → R : ξ �→

⎧⎪⎪⎨
⎪⎪⎩
ξ − ω if ξ < ω,

0 if ξ ∈ Ω,

ξ − ω if ξ > ω,

with

{
ω = inf Ω,

ω = sup Ω.
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The remainder of the paper is organized as follows. In section 2, we provide a
brief account of the theory of proximity operators, which play a central role in our
analysis. In section 3, we introduce and study the notion of a proximal thresholder.
Our algorithm is presented in section 4 and its strong convergence to a solution to
Problem 1.3 is demonstrated. Signal recovery applications are discussed in section 5,
where numerical results are presented.

2. Proximity operators. Let us first introduce some basic notation (for a de-
tailed account of convex analysis, see [41]). Let C be a subset of H. The indicator
function of C is

(2.1) ιC : H → {0,+∞} : x �→
{

0 if x ∈ C,

+∞ if x /∈ C,

its support function is

(2.2) σC : H → [−∞,+∞] : u �→ sup
x∈C

〈x | u〉,

and its distance function is dC : H → [0,+∞] : x �→ inf ‖C − x‖. If C is nonempty,
closed, and convex, then, for every x ∈ H, there exists a unique point PCx ∈ C,
called the projection of x onto C, such that ‖x− PCx‖ = dC(x). A function f : H →
[−∞,+∞] is proper if −∞ /∈ f(H) �= {+∞}, and coercive if lim‖x‖→+∞ f(x) =

+∞. The domain of f : H → [−∞,+∞] is dom f =
{
x ∈ H

∣∣ f(x) < +∞
}
, its

set of global minimizers is denoted by Argmin f , and its conjugate is the function
f∗ : H → [−∞,+∞] : u �→ supx∈H 〈x | u〉 − f(x); if f is proper, its subdifferential is
the set-valued operator

(2.3) ∂f : H → 2H : x �→
{
u ∈ H

∣∣ (∀y ∈ dom f) 〈y − x | u〉 + f(x) ≤ f(y)
}
.

If f : H → ]−∞,+∞] is convex and Gâteaux differentiable at x ∈ dom f with gradient
∇f(x), then ∂f(x) = {∇f(x)}.

Example 2.1. Let Ω ⊂ R be a nonempty closed interval, let ω = inf Ω, let
ω = sup Ω, and let ξ ∈ R. Then the following hold:

(i) σΩ(ξ) =

⎧⎪⎪⎨
⎪⎪⎩
ωξ if ξ < 0,

0 if ξ = 0,

ωξ if ξ > 0.

(ii) ∂σΩ(ξ) =

⎧⎪⎪⎨
⎪⎪⎩
{ω} ∩ R if ξ < 0,

Ω if ξ = 0,

{ω} ∩ R if ξ > 0.

The infimal convolution of two functions f, g : H → ]−∞,+∞] is denoted by f � g.
Finally, an operator R : H → H is nonexpansive if (∀(x, y) ∈ H2) ‖Rx−Ry‖ ≤ ‖x−y‖
and firmly nonexpansive if (∀(x, y) ∈ H2) ‖Rx−Ry‖2 ≤ 〈x− y | Rx−Ry〉.

Proximity operators (sometimes called “proximal mappings”) were introduced by
Moreau [30] and their use in signal theory goes back to [11] (see also [8, 16] for recent
developments). We briefly recall some essential facts below and refer the reader to
[16] and [31] for more details. Let f ∈ Γ0(H). The proximity operator of f is the
operator proxf : H → H which maps every x ∈ H to the unique minimizer of the
function y �→ f(y) + ‖x− y‖2/2. It is characterized by

(2.4) (∀x ∈ H)(∀p ∈ H) p = proxf x ⇔ x− p ∈ ∂f(p).
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Lemma 2.2. Let f ∈ Γ0(H). Then the following hold:
(i) (∀x ∈ H)

[
x ∈ Argmin f ⇔ 0 ∈ ∂f(x) ⇔ proxf x = x

]
.

(ii) proxf∗ = Id −proxf .
(iii) proxf is firmly nonexpansive.
(iv) If f is even, then proxf is odd.
The next result provides a key decomposition property with respect to the or-

thonormal basis (ek)k∈N.
Lemma 2.3 (see [16, Example 2.19]). Set

(2.5) f : H → ]−∞,+∞] : x �→
∑
k∈N

φk(〈x | ek〉),

where (φk)k∈N are functions in Γ0(R) that satisfy (∀k ∈ N) φk ≥ φk(0) = 0. Then
f ∈ Γ0(H) and (∀x ∈ H) proxf x =

∑
k∈N

proxφk
〈x | ek〉 ek.

The remainder of this section is dedicated to proximity operators on the real line,
the importance of which is underscored by Lemma 2.3.

Proposition 2.4. Let � be a function defined from R to R. Then � is the prox-
imity operator of a function in Γ0(R) if and only if it is nonexpansive and increasing.

Proof. Let ξ and η be real numbers. First, suppose that � = proxφ, where
φ ∈ Γ0(R). Then it follows from Lemma 2.2(iii) that � is nonexpansive and that
0 ≤ |�(ξ)− �(η)|2 ≤ (ξ − η)(�(ξ)− �(η)), which shows that � is increasing since ξ − η
and �(ξ) − �(η) have the same sign. Conversely, suppose that � is nonexpansive and
increasing and, without loss of generality, that ξ ≤ η. Then, 0 ≤ �(ξ)−�(η) ≤ ξ−η and
therefore |�(ξ)−�(η)|2 ≤ (ξ−η)(�(ξ)−�(η)). Thus, � is firmly nonexpansive. However,
every firmly nonexpansive operator R : H → H is of the form R = (Id +A)−1, where
A : H → 2H is a maximal monotone operator [6]. Since the only maximal monotone
operators in R are subdifferentials of functions in Γ0(R) [32, section 24], we must have
� = (Id +∂φ)−1 = proxφ for some φ ∈ Γ0(R).

Corollary 2.5. Suppose that 0 is a minimizer of φ ∈ Γ0(R). Then

(2.6) (∀ξ ∈ R)

⎧⎪⎪⎨
⎪⎪⎩

0 ≤ proxφ ξ ≤ ξ if ξ > 0,

proxφ ξ = 0 if ξ = 0,

ξ ≤ proxφ ξ ≤ 0 if ξ < 0.

This is true, in particular, when φ is even, in which case proxφ is an odd operator.
Proof. Since 0 ∈ Argminφ, Lemma 2.2(i) yields proxφ 0 = 0. In turn, since

proxφ is nonexpansive by Lemma 2.2(iii), we have (∀ξ ∈ R) |proxφ ξ| = |proxφ ξ −
proxφ 0| ≤ |ξ − 0| = |ξ|. Altogether, since Proposition 2.4 asserts that proxφ is
increasing, we obtain (2.6). Finally, if φ is even, its convexity yields (∀ξ ∈ domφ)
φ(0) = φ

(
(ξ − ξ)/2

)
≤

(
φ(ξ) + φ(−ξ)

)
/2 = φ(ξ). Therefore 0 ∈ Argminφ, while the

oddness of proxφ follows from Lemma 2.2(iv).
Let us now provide some elementary examples (Example 2.6 is illustrated in

Figure 2.1 in the case when Ω = [−1, 1]).
Example 2.6. Let Ω ⊂ R be a nonempty closed interval, let ω = inf Ω, let

ω = sup Ω, and let ξ ∈ R. Then the following hold:

(i) proxιΩ ξ = PΩ ξ =

⎧⎪⎪⎨
⎪⎪⎩
ω if ξ < ω,

ξ if ξ ∈ Ω,

ω if ξ > ω.
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Fig. 2.1. Graphs of proxφ = soft[−1,1] (solid line) and proxφ∗ = P[−1,1] (dashed line), where
φ = | · | and φ∗ = ι[−1,1] (see Example 2.6).

(ii) proxσΩ
ξ = softΩ ξ, where softΩ is the soft thresholder defined in (1.11).

Proof. (i) is clear and, since σ∗
Ω = ιΩ, (ii) follows from (i) and Lemma 2.2(ii).

Example 2.7 (see [8, Examples 4.2 and 4.4]). Let p ∈ [1,+∞[, let ω ∈ ]0,+∞[,
let φ : R → R : η �→ ω|η|p, let ξ ∈ R, and set π = proxφ ξ. Then the following hold:

(i) π = soft[−ω,ω] (ξ) = sign(ξ) max{|ξ| − ω, 0} if p = 1;

(ii) π = ξ +
4ω

3 · 21/3
((ρ − ξ)1/3 − (ρ + ξ)1/3), where ρ =

√
ξ2 + 256ω3/729 if

p = 4/3;
(iii) π = ξ + 9ω2 sign(ξ)

(
1 −

√
1 + 16|ξ|/(9ω2)

)
/8 if p = 3/2;

(iv) π = ξ/(1 + 2ω) if p = 2;
(v) π = sign(ξ)

(√
1 + 12ω|ξ| − 1

)
/(6ω) if p = 3;

(vi) π =
(
ρ+ξ
8ω

)1/3 − (
ρ−ξ
8ω

)1/3
, where ρ =

√
ξ2 + 1/(27ω) if p = 4.

Remark 2.8. The variational problem described in (1.3) is equivalent to mini-
mizing over H the function x �→ f(x) + ‖z − x‖2/2, where f : H → ]−∞,+∞] : x �→∑

k∈N
ωk |〈x | ek〉|. In view of Lemma 2.3 and Example 2.7(i), its solution is proxf z =∑

k∈N
soft[−ωk,ωk] (〈z | ek〉)ek, as displayed in (1.1).

Proposition 2.9. Let ψ be a function in Γ0(R), and let ρ and θ be real numbers
in ]0,+∞[ such that

(i) ψ ≥ ψ(0) = 0,
(ii) ψ is differentiable at 0,
(iii) ψ is twice differentiable on [−ρ, ρ] � {0} and inf0<|ξ|≤ρ ψ′′(ξ) ≥ θ.

Then (∀ξ ∈ [−ρ, ρ])(∀η ∈ [−ρ, ρ]) |proxψ ξ − proxψ η| ≤ |ξ − η|/(1 + θ).
Proof. Set R = [−ρ, ρ] � {0} and ϕ : R → R : ζ �→ ζ + ψ′(ζ). We first infer

from (iii) that

(2.7) (∀ζ ∈ R) ϕ′(ζ) = 1 + ψ′′(ζ) ≥ 1 + θ.

Moreover, (2.4) yields (∀ζ ∈ R) proxψ ζ = ϕ−1(ζ). Note also that, in light of (2.4),
(ii), and (i), we have (∀ζ ∈ R) proxψ ζ = 0 ⇔ ζ ∈ ∂ψ(0) = {ψ′(0)} = {0}. Hence,
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proxψ vanishes only at 0 and we derive from Lemma 2.2(iii) that

(2.8) (∀ζ ∈ R) 0 < |ϕ−1(ζ)| = |proxψ ζ − proxψ 0| ≤ |ζ − 0| ≤ ρ.

In turn, we deduce from (2.7) that

(2.9) sup
ζ∈R

prox′
ψ ζ =

1

inf
ζ∈R

ϕ′(ϕ−1(ζ)
) ≤ 1

inf
ζ∈R

ϕ′(ζ)
≤ 1

1 + θ
.

Now fix ξ and η in R. First, let us assume that either ξ < η < 0 or 0 < ξ < η. Then,
since proxψ is increasing by Proposition 2.4, it follows from the mean value theorem
and (2.9) that there exists μ ∈ ]ξ, η[ such that

(2.10) 0 ≤ proxψ η − proxψ ξ = (η − ξ) prox′
ψ μ ≤ (η − ξ) sup

ζ∈R
prox′

ψ ζ ≤ η − ξ

1 + θ
.

Next, let us assume that ξ < 0 < η. Then the mean value theorem asserts that there
exist μ ∈ ]ξ, 0[ and ν ∈ ]0, η[ such that

(2.11) proxψ 0 − proxψ ξ = −ξ prox′
ψ μ and proxψ η − proxψ 0 = η prox′

ψ ν.

Since proxψ is increasing and proxψ 0 = 0, we obtain

(2.12) 0 ≤ proxψ η− proxψ ξ = η prox′
ψ ν − ξ prox′

ψ μ ≤ (η− ξ) sup
ζ∈R

prox′
ψ ζ ≤ η − ξ

1 + θ
.

Altogether, we have shown that, for every ξ and η in R, |proxψ ξ − proxψ η| ≤
|ξ − η|/(1 + θ). We conclude by observing that, due to the continuity of proxψ

(Lemma 2.2(iii)), this inequality holds for every ξ and η in [−ρ, ρ].

3. Proximal thresholding. The standard soft thresholder of (1.2), which was
extended to closed intervals in (1.11), was seen in Example 2.6(ii) to be a proximity
operator. As such, it possesses attractive properties (see Lemma 2.2(i) and (iii)) that
prove extremely useful in the convergence analysis of iterative methods [13]. This
remark motivates the following definition.

Definition 3.1. Let R : H → H, and let Ω be a nonempty closed convex subset
of H. Then R is a proximal thresholder on Ω if there exists a function f ∈ Γ0(H)
such that

(3.1) R = proxf and (∀x ∈ H) Rx = 0 ⇔ x ∈ Ω.

The next proposition provides characterizations of proximal thresholders.

Proposition 3.2. Let f ∈ Γ0(H), and let Ω be a nonempty closed convex subset
of H. Then the following are equivalent:

(i) proxf is a proximal thresholder on Ω.
(ii) ∂f(0) = Ω.
(iii) (∀x ∈ H)

[
proxf∗ x = x ⇔ x ∈ Ω

]
.

(iv) Argmin f∗ = Ω.

In particular, (i)–(iv) hold when

(v) f = g + σΩ, where g ∈ Γ0(H) is Gâteaux differentiable at 0 and ∇g(0) = 0.
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Proof. (i)⇔(ii): Fix x ∈ H. Then it follows from (2.4) that
[
proxf x = 0 ⇔

x ∈ Ω
]
⇔

[
x ∈ ∂f(0) ⇔ x ∈ Ω

]
⇔ ∂f(0) = Ω. (i)⇔(iii): Fix x ∈ H. Then it follows

from Lemma 2.2(ii) that
[
proxf x = 0 ⇔ x ∈ Ω

]
⇔

[
x − proxf∗ x = 0 ⇔ x ∈ Ω

]
.

(iii)⇔(iv): Since f ∈ Γ0(H), f∗ ∈ Γ0(H), and we can apply Lemma 2.2(i) to f∗.
(v)⇒(ii): Since (v) implies that 0 ∈ core dom g, we have 0 ∈ (core dom g) ∩ domσΩ,
and it follows from [41, Theorem 2.8.3] that

(3.2) ∂f(0) = ∂(g + σΩ)(0) = ∂g(0) + ∂σΩ(0) = ∂g(0) + Ω,

where the last equality results from the observation that, for every u ∈ H, Fenchel’s
identity yields u ∈ ∂σΩ(0) ⇔ 0 = 〈0 | u〉 = σΩ(0) + σ∗

Ω(u) ⇔ 0 = σ∗
Ω(u) = ιΩ(u) ⇔

u ∈ Ω. However, since ∂g(0) = {∇g(0)} = {0}, we obtain ∂f(0) = Ω, and (ii) is
therefore satisfied.

The following theorem is a significant refinement of a result of Proposition 3.2 in
the case when H = R that characterizes all the functions φ ∈ Γ0(R) for which proxφ

is a proximal thresholder.
Theorem 3.3. Let φ ∈ Γ0(R) and let Ω ⊂ R be a nonempty closed interval.

Then the following are equivalent:
(i) proxφ is a proximal thresholder on Ω.
(ii) φ = ψ + σΩ, where ψ ∈ Γ0(R) is differentiable at 0 and ψ′(0) = 0.
Proof. In view of Proposition 3.2, it is enough to show that ∂φ(0) = Ω ⇒ (ii). So

let us assume that ∂φ(0) = Ω, and set ω = inf Ω and ω = sup Ω. Since ∂φ(0) �= ∅,
we deduce from (2.3) that 0 ∈ domφ and that

(3.3) (∀ξ ∈ R) σΩ(ξ) = sup
ν∈Ω

(ξ − 0)ν ≤ φ(ξ) − φ(0).

Consequently,

(3.4) domφ ⊂ domσΩ.

Thus, in the case when Ω = R, Example 2.1(i) yields domφ = domσΩ = {0} and we
obtain φ = φ(0) + ι{0} = φ(0) + σΩ, hence (ii) with ψ ≡ φ(0). We henceforth assume
that Ω �= R and set

(3.5) (∀ξ ∈ R) ϕ(ξ) =

⎧⎪⎪⎨
⎪⎪⎩
φ(ξ) − φ(0) − ω ξ if ξ > 0 and ω < +∞,

φ(ξ) − φ(0) − ω ξ if ξ < 0 and ω > −∞,

0 otherwise.

Then Example 2.1(i) and (3.3) yield

(3.6) ϕ ≥ 0 = ϕ(0),

which also shows that ϕ is proper. In addition, we derive from Example 2.1(i) and
(3.5) the following three possible expressions for ϕ:

(a) If ω > −∞ and ω < +∞, then σΩ is a finite continuous function and

(3.7) (∀ξ ∈ R) ϕ(ξ) = φ(ξ) − φ(0) − σΩ(ξ).

(b) If ω = −∞ and ω < +∞, then

(3.8) (∀ξ ∈ R) ϕ(ξ) =

{
φ(ξ) − φ(0) − ω ξ if ξ > 0,

0 otherwise.
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(c) If ω > −∞ and ω = +∞, then

(3.9) (∀ξ ∈ R) ϕ(ξ) =

{
φ(ξ) − φ(0) − ω ξ if ξ < 0

0 otherwise.

Let us show that ϕ is lower semicontinuous. In case (a), this follows at once from the
lower semicontinuity of φ and the continuity of σΩ. In cases (b) and (c), ϕ is clearly
lower semicontinuous at every point ξ �= 0 and, by (3.6), at 0 as well. Next, let us
establish the convexity of ϕ. To this end, we set

(3.10) (∀ξ ∈ R) ϕ(ξ) =

{
φ(ξ) − φ(0) − ω ξ if ξ > 0 and ω < +∞,

0 otherwise,

and

(3.11) (∀ξ ∈ R) ϕ(ξ) =

{
φ(ξ) − φ(0) − ω ξ if ξ < 0 and ω > −∞,

0 otherwise.

By inspecting (3.5), (3.10), and (3.11) we learn that ϕ coincides with ϕ on [0,+∞[
and with ϕ on ]−∞, 0]. Hence, (3.6) yields

(3.12) ϕ ≥ 0 and ϕ ≥ 0,

and

(3.13) ϕ = max{ϕ,ϕ}.

Furthermore, since φ is convex, so are the functions ξ �→ φ(ξ) − φ(0) − ω ξ and
ξ �→ φ(ξ)−φ(0)−ω ξ, when ω < +∞ and ω > −∞, respectively. Therefore, it follows
from (3.10), (3.11), and (3.12) that ϕ and ϕ are convex, and hence from (3.13) that ϕ
is convex. We have thus shown that ϕ ∈ Γ0(R). We now claim that, for every ξ ∈ R,

(3.14) φ(ξ) = ϕ(ξ) + φ(0) + σΩ(ξ).

We can establish this identity with the help of Example 2.1(i). In case (a), (3.14)
follows at once from (3.7) since σΩ is finite. In case (b), (3.14) follows from (3.8)
when ξ ≥ 0, and from (3.3) when ξ < 0 since, in this case, σΩ(ξ) = +∞. Likewise,
in case (c), (3.14) follows from (3.9) when ξ ≤ 0, and from (3.3) when ξ > 0 since, in
this case, σΩ(ξ) = +∞. Next, let us show that

(3.15) 0 ∈ int(domφ− domσΩ).

In case (a), we have Ω = [ω, ω ]. Therefore, domσΩ = R and (3.15) trivially holds.
In case (b), we have Ω = ]−∞, ω] and, therefore, domσΩ = [0,+∞[. This implies,
via (3.4), that domφ ⊂ [0,+∞[. Therefore, there exists ν ∈ domφ ∩ ]0,+∞[ since
otherwise we would have domφ = {0}, which, in view of (2.3), would contradict
the current working assumption that ∂φ(0) = Ω �= R. By convexity of φ, it follows
that [0, ν] ⊂ domφ and, therefore, that ]−∞, ν] ⊂ domφ − domσΩ. We thus obtain
(3.15) in case (b); case (c) can be handled analogously. We can now appeal to [32,
Theorem 23.8] to derive from (3.14), (3.15), and Example 2.1(ii) that

(3.16) Ω = ∂φ(0) = ∂ϕ(0) + ∂σΩ(0) = ∂ϕ(0) + Ω.

Now fix ν ∈ ∂ϕ(0). Then (3.16) yields ν + Ω ⊂ Ω. There are three possible cases to
study.
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• In case (a), ν + Ω ⊂ Ω ⇔ [ν + ω, ν + ω] ⊂ [ω, ω] ⇒ ν = 0.
• In case (b), ν + Ω ⊂ Ω ⇔ ]−∞, ν + ω] ⊂ ]−∞, ω] ⇒ ν ≤ 0. On the other

hand, it follows from (2.3) and (3.8) that (∀ξ ∈ ]−∞, 0[) ξν ≤ ϕ(ξ) = 0,
hence ν ≥ 0. Altogether, ν = 0.

• In case (c), ν + Ω ⊂ Ω ⇔ [ν + ω,+∞[ ⊂ [ω,+∞[ ⇒ ν ≥ 0. Since (2.3) and
(3.9) imply that (∀ξ ∈ ]0,+∞[) ξν ≤ ϕ(ξ) = 0, we obtain ν ≤ 0 and conclude
that ν = 0.

We have thus shown in all cases that ν = 0 and, therefore, that ∂ϕ(0) = {0}. In turn,
upon invoking [32, Theorem 25.1], we conclude that ϕ is differentiable at 0 and that
ϕ′(0) = 0. Altogether, we obtain (ii) by setting ψ = ϕ + φ(0).

Remark 3.4. A standard requirement for thresholders on R is that they be in-
creasing functions [1, 33, 34, 39]. On the other hand, nonexpansivity is a key property
to establish the convergence of iterative methods [13] and, in particular, in Proposi-
tion 1.1 [18] and Proposition 1.2 [16]. As seen in Proposition 2.4 and Definition 3.1,
the increasing and nonexpansive functions � : R → R that vanish only on a closed
interval Ω ⊂ R coincide with the proximal thresholders on Ω. Hence, appealing to
Theorem 3.3 and Lemma 2.3, we conclude that the operators that perform a compo-
nentwise increasing and nonexpansive thresholding on (Ωk)k∈K of those coefficients
of the decomposition in (ek)k∈N indexed by K are precisely the operators of the form
proxΨ, where Ψ is as in (1.9).

Example 3.5. Let ω ∈ ]0,+∞[ and set

(3.17) φ : R → ]−∞,+∞] : ξ �→
{

ln(ω) − ln(ω − |ξ|) if |ξ| < ω,

+∞ otherwise.

The proximity operator associated with this function arises in certain Bayesian for-
mulations involving the triangular probability density function with support [−ω, ω]
[8]. Let us set

(3.18) ψ : R → ]−∞,+∞] : ξ �→
{

ln(ω) − ln(ω − |ξ|) − |ξ|/ω if |ξ| < ω,

+∞ otherwise

and Ω = [−1/ω, 1/ω]. Then ψ ∈ Γ0(R) is differentiable at 0, ψ′(0) = 0, and φ =
ψ + σΩ. Therefore, Theorem 3.3 asserts that proxφ is a proximal thresholder on
[−1/ω, 1/ω]. Actually (see Figure 3.1), for every ξ ∈ R, we have [8, Example 4.12]

(3.19) proxφ ξ =

⎧⎪⎨
⎪⎩sign(ξ)

|ξ| + ω −
√∣∣|ξ| − ω

∣∣2 + 4

2
if |ξ| > 1/ω,

0 otherwise.

Next, we provide a convenient decomposition rule for implementing proximal
thresholders.

Proposition 3.6. Let φ = ψ + σΩ, where ψ ∈ Γ0(R) and Ω ⊂ R is a nonempty
closed interval. Suppose that ψ is differentiable at 0 with ψ′(0) = 0. Then proxφ =
proxψ ◦ softΩ .

Proof. Fix ξ and π in R. We have 0 ∈ domσΩ and, since ψ is differentiable at 0,
0 ∈ int domψ. It therefore follows from (2.4) and [32, Theorem 23.8] that

π = proxφ ξ ⇔ ξ − π ∈ ∂φ(π) = ∂ψ(π) + ∂σΩ(π)(3.20)

⇔ (∃ ν ∈ ∂ψ(π)) ξ − (π + ν) ∈ ∂σΩ(π).
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Fig. 3.1. Graph of proxφ, where φ is as in (3.17) with ω = 1.

Let us observe that, if ν ∈ ∂ψ(π), then, since 0 ∈ Argminψ, (2.3) implies that
(0 − π)ν + ψ(π) ≤ ψ(0) ≤ ψ(π) < +∞ and, in turn, that πν ≥ 0. This shows that,
if ν ∈ ∂ψ(π) and π �= 0, then either π > 0 and ν ≥ 0, or π < 0 and ν ≤ 0; in turn,
Lemma 2.1(ii) yields ∂σΩ(π) = ∂σΩ(π + ν). Consequently, if π �= 0, we derive from
(3.20) and Example 2.6(ii) that

π = proxφ ξ ⇒ (∃ ν ∈ ∂ψ(π)) ξ − (π + ν) ∈ ∂σΩ(π + ν)(3.21)

⇔ (∃ ν ∈ ∂ψ(π)) π + ν = proxσΩ
ξ = softΩ ξ

⇔ softΩ ξ − π ∈ ∂ψ(π)

⇔ π = proxψ

(
softΩ ξ

)
.

On the other hand, if π = 0, since ∂ψ(0) = {ψ′(0)} = {0}, then we derive from (3.20),
Example 2.1(ii), (1.11), and Lemma 2.2(i) that

(3.22) π = proxφ ξ ⇒ ξ ∈ ∂σΩ(0) = Ω ⇒ softΩ ξ = 0 ⇒ proxψ

(
softΩ ξ

)
= 0 = π.

The proof is now complete.

In view of Proposition 3.6 and (1.11), the computation of the proximal thresholder
proxψ+σΩ

reduces to that of proxψ. By duality, we obtain a decomposition formula
for those proximal operators that coincide with the identity on a closed interval Ω.

Proposition 3.7. Let φ = ψ� ιΩ, where ψ ∈ Γ0(R) and Ω ⊂ R is a nonempty
closed interval. Suppose that ψ∗ is differentiable at 0 with ψ∗′(0) = 0. Then the
following hold.

(i) proxφ = PΩ + proxψ ◦ softΩ .
(ii) (∀ξ ∈ R) proxφ ξ = ξ ⇔ ξ ∈ Ω.
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Fig. 3.2. Graphs of the proximal thresholder proxφ (solid line) and its dual proxφ∗ (dashed
line), where φ = τ | · |p + | · |. Top: τ = 0.05 and p = 4. Bottom: τ = 0.9 and p = 4/3. Explicit
expressions for these thresholders are provided by Example 2.7(ii) and (vi), Proposition 3.6, and
Lemma 2.2(ii).

Proof. It follows from [32, Theorem 16.4] that

(3.23) φ∗ = ψ∗ + ι∗Ω = ψ∗ + σΩ.

Note also that, since ψ ∈ Γ0(R), we have ψ∗ ∈ Γ0(R) [32, Theorem 12.2]. (i) Fix
ξ ∈ R. Then, by Lemma 2.2(ii), (3.23), Proposition 3.6, and Example 2.6,

proxφ ξ = ξ − proxφ∗ ξ(3.24)

= ξ − proxψ∗+σΩ
ξ

= ξ − proxψ∗
(
proxσΩ

ξ
)

= ξ − proxσΩ
ξ + proxψ

(
proxσΩ

ξ
)

= proxσ∗
Ω
ξ + proxψ

(
proxσΩ

ξ
)

= proxιΩ ξ + proxψ

(
proxσΩ

ξ
)

= PΩξ + proxψ

(
softΩ ξ

)
.(3.25)
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Fig. 3.3. Graphs of the proximal thresholder proxφ (solid line) and its dual proxφ∗ (dashed

line), where φ = ψ + | · |. Top: ψ = ι[−2,2]. Bottom: ψ : ξ �→ ξ2/2, if |ξ| ≤ 1; |ξ| − 1/2, if |ξ| > 1
is the Huber function [27]. The closed-form expressions of these thresholders are obtained via [8,
Example 4.5], Proposition 3.6, and Lemma 2.2(ii).

(ii): It follows from (3.23) and Theorem 3.3 that proxφ∗ is a proximal thresholder
on Ω. Hence, we derive from (3.24) and (3.1) that (∀ξ ∈ R) proxφ ξ = ξ ⇔ proxφ∗ ξ = 0
⇔ ξ ∈ Ω.

Examples of proximal thresholders (see Proposition 3.6) and their duals (see
Proposition 3.7) are provided in Figures 3.2 and 3.3 (see also Figure 2.1) in the case
when Ω = [−1, 1].

4. Iterative proximal thresholding. Let us start with some basic properties
of Problem 1.3.

Proposition 4.1. Problem 1.3 possesses at least one solution.
Proof. Let Ψ be as in (1.9). We infer from the assumptions of Problem 1.3 and

Lemma 2.3 that Ψ ∈ Γ0(H) and, in turn, that Φ + Ψ ∈ Γ0(H). Hence, it suffices
to show that Φ + Ψ is coercive [41, Theorem 2.5.1(ii)], i.e., since inf Φ(H) > −∞ by
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assumption (i) in Problem 1.3, that Ψ is coercive. For this purpose, let x = (ξk)k∈N

denote a generic element in �2(N), and let

(4.1) Υ: �2(N) → ]−∞,+∞] : x �→
∑
k∈N

ψk(ξk) +
∑
k∈K

σΩk
(ξk).

Then, by Parseval’s identity, it is enough to show that Υ is coercive. To this end, set
xK = (ξk)k∈K and xL = (ξk)k∈L, and denote by ‖ · ‖K and ‖ · ‖L the standard norms on
�2(K) and �2(L), respectively. Using (4.1), assumptions (ii) and (vi) in Problem 1.3,
and Example 2.1(i), we obtain

(∀ x ∈ �2(N)) Υ(x) ≥
∑
k∈K

σΩk
(ξk) +

∑
k∈L

ψk(ξk)(4.2)

≥ ω
∑
k∈K

|ξk| + ΥL(xL)

≥ ω‖xK‖K + ΥL(xL),

where ΥL is defined in Problem 1.3(v). Now suppose that ‖x‖ =
√
‖xK‖2

K
+ ‖xL‖2

L
→

+∞. Then (4.2) and assumption (v) in Problem 1.3 yield Υ(x) → +∞, as desired.
Proposition 4.2. Let Ψ be as in (1.9), let x ∈ H, and let γ ∈ ]0,+∞[. Then x

is a solution to Problem 1.3 if and only if x = proxγΨ(x− γ∇Φ(x)).
Proof. Since Problem 1.3 is equivalent to minimizing Φ + Ψ, this identity is a

standard characterization; see, for instance, [16, Proposition 3.1(iii)].
Our algorithm for solving Problem 1.3 will be the following.
Algorithm 4.3. Fix x0 ∈ H and set, for every n ∈ N,

xn+1 = xn + λn

(∑
k∈K

(
αn,k + proxγnψk

(
softγnΩk

〈xn − γn(∇Φ(xn) + bn) | ek〉
))

ek

+
∑
k∈L

(
αn,k + proxγnψk

〈xn − γn(∇Φ(xn) + bn) | ek〉
)
ek − xn

)
,(4.3)

where
(i) (γn)n∈N is a sequence in ]0,+∞[ such that infn∈N γn > 0 and supn∈N γn < 2β,
(ii) (λn)n∈N is a sequence in ]0, 1] such that infn∈N λn > 0,
(iii) for every n ∈ N, (αn,k)k∈N is a sequence in �2(N) such that

∑
n∈N

√∑
k∈N

|αn,k|2 < +∞,

(iv) (bn)n∈N is a sequence in H such that
∑

n∈N
‖bn‖ < +∞.

Remark 4.4. Let us highlight some features of Algorithm 4.3.
• The set K contains the indices of those coefficients of the decomposition in

(ek)k∈N that are thresholded.
• The terms αn,k and bn stand for some numerical tolerance in the implemen-

tation of proxγnψk
and the computation of ∇Φ(xn), respectively.

• The parameters λn and γn provide added flexibility to the algorithm and can
be used to improve its convergence profile.
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• The operator softγnΩk
is given explicitly in (1.11).

Our main convergence result can now be stated.

Theorem 4.5. Every sequence generated by Algorithm 4.3 converges strongly to
a solution to Problem 1.3.

Proof. Hereafter, (xn)n∈N is a sequence generated by Algorithm 4.3, and we define

(4.4) (∀k ∈ N) φk =

{
ψk + σΩk

if k ∈ K,

ψk if k ∈ L.

It follows from the assumptions on (ψk)k∈N in Problem 1.3 that (∀k ∈ N) ψ′
k(0) = 0.

Therefore, for every n in N, Theorem 3.3 implies that

(4.5) for every k in K, proxγnφk
is a proximal thresholder on γnΩk,

while Proposition 3.6 supplies
(4.6)
(∀k ∈ K) proxγnφk

= proxγnψk+γnσΩk
= proxγnψk+σ(γnΩk)

= proxγnψk
◦ softγnΩk

.

Thus, (4.3) can be rewritten as

(4.7) xn+1 = xn +λn

(∑
k∈N

(
αn,k + proxγnφk

〈xn − γn(∇Φ(xn) + bn) | ek〉
)
ek −xn

)
.

Now let Ψ be as in (1.9), i.e., Ψ =
∑

k∈N
φk(〈· | ek〉), and set (∀n ∈ N) an =∑

k∈N
αn,kek. Then it follows from (4.4) and Lemma 2.3 that Ψ ∈ Γ0(H) and that

(4.7) can be rewritten as

(4.8) xn+1 = xn + λn

(
proxγnΨ

(
xn − γn(∇Φ(xn) + bn)

)
+ an − xn

)
.

Consequently, since Proposition 4.1 asserts that Φ + Ψ possesses a minimizer, we
derive from assumptions (i)–(iv) in Algorithm 4.3 and [16, Theorem 3.4] that

(4.9) (xn)n∈N converges weakly to a solution x to Problem 1.3

and that
(4.10)∑
n∈N

‖xn−proxγnΨ

(
xn−γn∇Φ(xn)

)
‖2 < +∞ and

∑
n∈N

‖∇Φ(xn)−∇Φ(x)‖2 < +∞.
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Hence, it follows from Lemma 2.2(iii) and assumption (i) in Algorithm 4.3 that

(4.11)
1

2

∑
n∈N

‖xn − proxγnΨ

(
xn − γn∇Φ(x)

)
‖2

≤
∑
n∈N

‖xn − proxγnΨ

(
xn − γn∇Φ(xn)

)
‖2

+
∑
n∈N

‖proxγnΨ

(
xn − γn∇Φ(xn)

)
− proxγnΨ

(
xn − γn∇Φ(x)

)
‖2

≤
∑
n∈N

‖xn − proxγnΨ

(
xn − γn∇Φ(xn)

)
‖2 +

∑
n∈N

γ2
n‖∇Φ(xn) −∇Φ(x)‖2

≤
∑
n∈N

‖xn − proxγnΨ

(
xn − γn∇Φ(xn)

)
‖2 + 4β2

∑
n∈N

‖∇Φ(xn) −∇Φ(x)‖2

< +∞.

Now define

(4.12) (∀n ∈ N) vn = xn − x and hn = x− γn∇Φ(x).

On the one hand, we derive from (4.9) that

(4.13) (vn)n∈N converges weakly to 0

and, on the other hand, we derive from (4.11) and Proposition 4.2 that∑
n∈N

‖vn − proxγnΨ(vn + hn) + proxγnΨ hn‖2 =
∑
n∈N

‖xn − proxγnΨ

(
xn − γn∇Φ(x)

)
‖2

< +∞.(4.14)

By Parseval’s identity, to establish that ‖vn‖ = ‖xn−x‖ → 0, we must show that

(4.15)
∑
k∈K

|νn,k|2 → 0 and
∑
k∈L

|νn,k|2 → 0,

where (∀n ∈ N)(∀k ∈ N) νn,k = 〈vn | ek〉. To this end, let us set, for every n ∈ N and
k ∈ N, ηn,k = 〈hn | ek〉 and observe that (4.14), Parseval’s identity, and Lemma 2.3
imply that

(4.16)
∑
k∈N

|νn,k − proxγnφk
(νn,k + ηn,k) + proxγnφk

ηn,k|2 → 0.

In addition, let us set r = 2β∇Φ(x) and, for every k ∈ N, ξk = 〈x | ek〉 and ρk =
〈r | ek〉. Then we derive from (4.12) and assumption (i) in Algorithm 4.3 that

(4.17) (∀n ∈ N)(∀k ∈ N) |ηn,k|2/2 ≤ |ξk|2 + γ2
n |〈∇Φ(x) | ek〉|2 ≤ |ξk|2 + |ρk|2.

To establish (4.15), let us first show that
∑

k∈K
|νn,k|2 → 0. For this purpose,

set δ = γω, where γ = infn∈N γn and where ω is supplied by assumption (vi) in
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Problem 1.3. Then it follows from assumption (i) in Algorithm 4.3 that δ > 0 and
that

(4.18) [−δ, δ] ⊂
⋂
n∈N

⋂
k∈K

γnΩk.

On the other hand, (4.17) yields

(4.19)
∑
k∈K

sup
n∈N

|ηn,k|2/2 ≤
∑
k∈N

(
|ξk|2 + |ρk|2

)
= ‖x‖2 + ‖r‖2 < +∞.

Hence, there exists a finite set K1 ⊂ K such that

(4.20) (∀n ∈ N)
∑
k∈K2

|ηn,k|2 ≤ δ2/4, where K2 = K � K1.

In view of (4.13), we have
∑

k∈K1
|νn,k|2 → 0. Let us now show that

∑
k∈K2

|νn,k|2 →
0. Note that (4.18) and (4.20) yield

(4.21) (∀n ∈ N)(∀k ∈ K2) ηn,k ∈ [−δ/2, δ/2] ⊂ γnΩk.

Therefore, (4.5) implies that

(4.22) (∀n ∈ N)(∀k ∈ K2) proxγnφk
ηn,k = 0.

Let us define

(4.23) (∀n ∈ N) K21,n =
{
k ∈ K2

∣∣ νn,k + ηn,k ∈ γnΩk

}
.

Then, invoking (4.5) once again, we obtain

(4.24) (∀n ∈ N)(∀k ∈ K21,n) proxγnφk
(νn,k + ηn,k) = 0

which, combined with (4.22), yields

(∀n ∈ N)
∑

k∈K21,n

|νn,k|2 =
∑

k∈K21,n

|νn,k − proxγnφk
(νn,k + ηn,k) + proxγnφk

ηn,k|2

≤
∑
k∈N

|νn,k − proxγnφk
(νn,k + ηn,k) + proxγnφk

ηn,k|2.(4.25)

Consequently, it results from (4.16) that
∑

k∈K21,n
|νn,k|2 → 0. Next, let us set

(4.26) (∀n ∈ N) K22,n = K2 � K21,n

and show that
∑

k∈K22,n
|νn,k|2 → 0. It follows from (4.26), (4.23), and (4.18) that

(4.27) (∀n ∈ N)(∀k ∈ K22,n) νn,k + ηn,k /∈ γnΩk ⊃ [−δ, δ].

Hence, appealing to (4.21), we obtain

(4.28) (∀n ∈ N)(∀k ∈ K22,n) |νn,k + ηn,k| ≥ δ ≥ |ηn,k| + δ/2.
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Now take n ∈ N and k ∈ K22,n. We derive from (4.22) and Lemma 2.2(ii) that

(4.29) |νn,k − proxγnφk
(νn,k + ηn,k) + proxγnφk

ηn,k|

= |(νn,k + ηn,k) − proxγnφk
(νn,k + ηn,k) − ηn,k|

= |prox(γnφk)∗(νn,k + ηn,k) − ηn,k|.

However, it results from (4.18), (4.5), and Proposition 3.2 that prox(γnφk)∗(±δ) = ±δ.
We consider two cases. First, if νn,k + ηn,k ≥ 0, then, since prox(γnφk)∗ is increasing
by Proposition 2.4, (4.28) yields νn,k + ηn,k ≥ δ and

(4.30) prox(γnφk)∗(νn,k + ηn,k) ≥ prox(γnφk)∗ δ = δ ≥ ηn,k + δ/2.

Likewise, if νn,k + ηn,k ≤ 0, then (4.28) yields νn,k + ηn,k ≤ −δ and

(4.31) prox(γnφk)∗(νn,k + ηn,k) ≤ prox(γnφk)∗(−δ) = −δ ≤ ηn,k − δ/2.

Altogether, we derive from (4.30) and (4.31) that

(4.32) (∀n ∈ N)(∀k ∈ K22,n) |prox(γnφk)∗(νn,k + ηn,k) − ηn,k| ≥ δ/2.

In turn, (4.29) yields
(4.33)

(∀n ∈ N)
∑

k∈K22,n

|νn,k − proxγnφk
(νn,k + ηn,k) + proxγnφk

ηn,k|2 ≥ card(K22,n)δ2/4.

However, it follows from (4.16) that, for n sufficiently large,

(4.34)
∑
k∈N

|νn,k − proxγnφk
(νn,k + ηn,k) + proxγnφk

ηn,k|2 ≤ δ2/5.

Thus, for n sufficiently large, K22,n = ∅. We conclude from this first part of the proof
that

∑
k∈K

|νn,k|2 → 0.
In order to obtain (4.15), we must now show that

∑
k∈L

|νn,k|2 → 0. We infer
from (4.13) that (vn)n∈N is bounded; hence

(4.35) sup
n∈N

∑
k∈L

|νn,k|2 ≤ sup
n∈N

‖vn‖2 ≤ ρ2/4

for some ρ ∈ ]0,+∞[. Now define

(4.36) L1 =
{
k ∈ L

∣∣ (∃n ∈ N) |ηn,k| ≥ ρ/2
}
.

Then we derive from (4.17) that

(4.37) (∀k ∈ L1)(∃n ∈ N) |ξk|2 + |ρk|2 ≥ |ηn,k|2/2 ≥ ρ2/8.

Consequently, we have

(4.38) +∞ > ‖x‖2 + ‖r‖2 ≥
∑
k∈L1

(
|ξk|2 + |ρk|2

)
≥ (card L1)ρ

2/8
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and therefore card(L1) < +∞. In turn, it results from (4.13) that
∑

k∈L1
|νn,k|2 → 0.

Hence, to obtain
∑

k∈L
|νn,k|2 → 0, it remains to show that

∑
k∈L2

|νn,k|2 → 0, where
L2 = L � L1. In view of (4.36) and (4.35), we have

(4.39) (∀n ∈ N)(∀k ∈ L2) |ηn,k| < ρ/2 and |νn,k + ηn,k| ≤ |νn,k| + |ηn,k| < ρ.

On the other hand, assumption (iv) in Problem 1.3 asserts that there exists θ ∈
]0,+∞[ such that

(4.40) inf
n∈N

inf
k∈L2

inf
0<|ξ|≤ρ

(γnψk)
′′(ξ) ≥ γ inf

k∈L2

inf
0<|ξ|≤ρ

ψ′′
k (ξ) ≥ γθ.

It therefore follows from assumptions (ii) and (iii) in Problem 1.3, Proposition 2.9,
and (4.4) that

(∀n ∈ N)(∀k ∈ L2) |νn,k| ≤ |νn,k − proxγnψk
(νn,k + ηn,k) + proxγnψk

ηn,k|

+ |proxγnψk
(νn,k + ηn,k) − proxγnψk

ηn,k|

≤ |νn,k − proxγnψk
(νn,k + ηn,k) + proxγnψk

ηn,k|

+ |νn,k|/(1 + γθ)

= |νn,k − proxγnφk
(νn,k + ηn,k) + proxγnφk

ηn,k|

+ |νn,k|/(1 + γθ).(4.41)

Consequently, upon setting μ = 1 + 1/(γθ), we obtain

(4.42) (∀n ∈ N)(∀k ∈ L2) |νn,k| ≤ μ|νn,k − proxγnφk
(νn,k + ηn,k) + proxγnφk

ηn,k|.

In turn,

(4.43) (∀n ∈ N)
∑
k∈L2

|νn,k|2 ≤ μ2
∑
k∈L2

|νn,k−proxγnφk
(νn,k+ηn,k)+proxγnφk

ηn,k|2.

Hence, (4.16) forces
∑

k∈L2
|νn,k|2 → 0, as desired.

Remark 4.6. An important aspect of Theorem 4.5 is that it provides a strong
convergence result. Indeed, in general, only weak convergence can be claimed for
forward-backward methods [16, 38] (see [3], [4], [16, Remark 5.12], and [25] for explicit
constructions in which strong convergence fails). In addition, the standard sufficient
conditions for strong convergence in this type of algorithm (see [13, Remark 6.6]
and [16, Theorem 3.4(iv)]) are not satisfied in Problem 1.3. Further aspects of the
relevance of strong convergence in proximal methods are discussed in [25, 26].

Remark 4.7. Let T be a nonzero bounded linear operator from H to a real Hilbert
space G, let z ∈ G, and let τ and ω be in ]0,+∞[. Specializing Theorem 4.5 to the
case when Φ: x �→ ‖Tx− z‖2/2 and either

(4.44) K = ∅ and (∀k ∈ L) ψk = τk|·|p, where p ∈ ]1, 2] and τk ∈ [τ,+∞[ ,

or
(4.45)

L = ∅ and (∀k ∈ K) ψk = 0 and Ωk = [−ωk, ωk], where ωk ∈ [ω,+∞[ ,

yields [16, Corollary 5.19]. If we further impose λn ≡ 1, ‖T‖ < 1, γn ≡ 1, αn,k ≡ 0,
and bn ≡ 0, we obtain [18, Theorem 3.1].
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5. Applications to sparse signal recovery.

5.1. A special case of Problem 1.3. In (1.4), a single observation z of the
original signal x is available. In certain problems, q such noisy linear observations are
available, say zi = Tix + vi (1 ≤ i ≤ q), which leads to the weighted least-squares
data fidelity term x �→

∑q
i=1 μi‖Tix − zi‖2; see [12] and the references therein. Fur-

thermore, signal recovery problems are typically accompanied with convex constraints
that confine x to some closed convex subsets (Si)1≤i≤m of H. The violation of these
constraints can be penalized via the cost function x �→

∑m
i=1 ϑid

2
Si

(x); see [10, 28]
and the references therein. On the other hand, power functions are frequently used
as cost functions in variational models for determining the coefficients of orthonormal
basis decompositions, e.g., [1, 7, 8, 18]. Moreover, we aim at promoting sparsity of a
solution x ∈ H with respect to (ek)k∈N in the sense that, for every k in K, we wish to
set to 0 the coefficient 〈x | ek〉 if it lies in the interval Ωk. The following formulation
is consistent with these considerations.

Problem 5.1. For every i ∈ {1, . . . , q}, let μi ∈ ]0,+∞[, let Ti be a nonzero
bounded linear operator from H to a real Hilbert space Gi, and let zi ∈ Gi. For every
i ∈ {1, . . . ,m}, let ϑi ∈ ]0,+∞[, and let Si be a nonempty closed and convex subset of
H. Furthermore, let (pk,l)0≤l≤Lk

be distinct real numbers in ]1,+∞[, let (τk,l)0≤l≤Lk

be real numbers in [0,+∞[, and let lk ∈ {0, . . . , Lk} satisfy pk,lk = min0≤l≤Lk
pk,l,

where (Lk)k∈N is a sequence in N. Finally, let K ⊂ N, let L = N � K, and let (Ωk)k∈K

be a sequence of closed intervals in R. The objective is to

(5.1) minimize
x∈H

1

2

q∑
i=1

μi‖Tix− zi‖2 +
1

2

m∑
i=1

ϑid
2
Si

(x)

+
∑
k∈N

Lk∑
l=0

τk,l|〈x | ek〉|pk,l +
∑
k∈K

σΩk
(〈x | ek〉),

under the following assumptions:
(i) infk∈L τk,lk > 0,
(ii) infk∈L pk,lk > 1,
(iii) supk∈L pk,lk ≤ 2,
(iv) 0 ∈ int

⋂
k∈K

Ωk.
Proposition 5.2. Problem 5.1 is a special case of Problem 1.3.
Proof. First, we observe that (5.1) corresponds to (1.7) where

(5.2)

Φ: x �→ 1

2

q∑
i=1

μi‖Tix−zi‖2 +
1

2

m∑
i=1

ϑid
2
Si

(x) and (∀k ∈ N) ψk : ξ �→
Lk∑
l=0

τk,l|ξ|pk,l .

Hence, Φ is a finite positive continuous convex function with Fréchet gradient

(5.3) ∇Φ: x �→
q∑

i=1

μiT
∗
i (Tix− zi) +

m∑
i=1

ϑi(x− Pix),

where Pi is the projection operator onto Si. Therefore, since the operators (Id −
Pi)1≤i≤m are nonexpansive, it follows that assumption (i) in Problem 1.3 is satisfied
with 1/β =

∑q
i=1 μi‖Ti‖2 +

∑m
i=1 ϑi. Moreover, the functions (ψk)k∈N are in Γ0(R)

and satisfy assumptions (ii) and (iii) in Problem 1.3.
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Let us now turn to assumption (iv) in Problem 1.3. Fix ρ ∈ ]0,+∞[ and set
τ = infk∈L τk,lk , p = infk∈L pk,lk , and θ = τp(p − 1) min{1, 1/ρ}. Then it follows
from (i), (ii), and (iii) that θ > 0 and that

inf
k∈L

inf
0<|ξ|≤ρ

ψ′′
k (ξ) = inf

k∈L

inf
0<|ξ|≤ρ

Lk∑
l=0

τk,lpk,l(pk,l − 1)|ξ|pk,l−2(5.4)

≥ inf
k∈L

τk,lkpk,lk(pk,lk − 1) inf
0<ξ≤ρ

ξpk,lk
−2

≥ τp(p− 1) inf
k∈L

inf
0<ξ≤ρ

ξpk,lk
−2

≥ τp(p− 1) inf
k∈L

(1/ρ)2−pk,lk

≥ θ,

which shows that (1.8) is satisfied.

It remains to check assumption (v) in Problem 1.3. To this end, let ‖ · ‖L denote
the standard norm on �2(L), take x = (ξk)k∈L ∈ �2(L) such that ‖x‖L ≥ 1, and set
(ηk)k∈L = x/‖x‖L. Then, for every k ∈ L, |ηk| ≤ 1 and, since pk,lk ∈ ]1, 2], we have
|ηk|pk,lk ≥ |ηk|2. Consequently,

(5.5)

ΥL(x) =
∑
k∈L

Lk∑
l=0

τk,l|ξk|pk,l ≥
∑
k∈L

τk,lk |ξk|pk,lk

≥ τ
∑
k∈L

|ξk|pk,lk = τ
∑
k∈L

‖x‖pk,lk

L
|ηk|pk,lk

≥ τ
∑
k∈L

‖x‖pk,lk

L
|ηk|2 = τ

∑
k∈L

‖x‖pk,lk
−2

L
|ξk|2

≥ τ‖x‖−1
L

∑
k∈L

|ξk|2 = τ‖x‖L.

We conclude that ΥL(x) → +∞ as ‖x‖L → +∞.

5.2. First example. Our first example concerns the simulated X-ray fluores-
cence spectrum x displayed in Figure 5.1, which is often used to test restoration
methods, e.g., [14, 37]. The measured signal z shown in Figure 5.2 has undergone
blurring by the limited resolution of the spectrometer and further corruption by ad-
dition of noise. In the underlying Hilbert space H = �2(N), this process is modeled
by z = Tx + v, where T : H → H is the operator of convolution with a truncated
Gaussian kernel. The noise samples are uncorrelated and drawn from a Gaussian
population with mean zero and standard deviation 0.15. The original signal x has
support {0, . . . , N − 1} (N = 1024), takes on positive values, and possesses a sparse
structure. These features can be promoted in Problem 5.1 by letting (ek)k∈N be the
canonical orthonormal basis of H and setting K = N, τk,l ≡ 0 and

(5.6) (∀k ∈ N) Ωk =

{
]−∞, ω] if 0 ≤ k ≤ N − 1,

R otherwise,
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Fig. 5.1. Original signal—first example.
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Fig. 5.2. Degraded signal—first example.

where the one-sided thresholding level is set to ω = 0.01. On the other hand, us-
ing the methodology described in [37], the above information about the noise can
be used to construct the constraint sets S1 =

{
x ∈ H

∣∣ ‖Tx− z‖ ≤ δ1
}

and S2 =⋂N−1
l=1

{
x ∈ H

∣∣ |T̂ x(l/N) − ẑ(l/N)| ≤ δ2
}
, where â : ν �→

∑+∞
k=0 〈a | ek〉 exp(−ı2πkν)

designates the Fourier transform of a ∈ H. The bounds δ1 and δ2 have been deter-
mined so as to guarantee that x lies in S1 and in S2 with a 99 percent confidence
level (see [15] for details). Finally, we set q = 0, m = 2, and ϑ1 = ϑ2 = 1 in (5.1)
(the computation of the projectors P1 and P2 required in (5.3) is detailed in [37]).
The solution produced by Algorithm 4.3 is shown in Figure 5.3. It is of much better
quality than the restorations obtained in [14] and [37] via alternative methods.

5.3. Second example. We provide a wavelet deconvolution example in H =
L

2(R). The original signal x is the classical “bumps” signal [40] displayed in Fig-
ure 5.4. The degraded version shown in Figure 5.5 is z1 = T1x+ v1, where T1 models
convolution with a uniform kernel and v1 is a realization of a zero-mean white Gaus-
sian noise.
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Fig. 5.3. Signal restored by Algorithm 4.3—first example.
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Fig. 5.4. Original signal—second example.

The basis (ek)k∈N is an orthonormal wavelet symlet basis with eight vanishing
moments [17]. Such wavelet bases are known to provide sparse representations for
a wide class of signals [22] such as this standard test signal. Note that there exists
a strong connection between Problem 5.1 and maximum a posteriori techniques for
estimating x in the presence of white Gaussian noise. In particular, setting q = 1,
m = 0, K = ∅ and Lk ≡ 0, and using suitably subband-adapted values of pk,0 and
τk,0 amounts to fitting an appropriate generalized Gaussian prior distribution to the
wavelet coefficients in each subband [1]. Such a statistical modeling is commonly used
in wavelet-based estimation, where values of pk,0 close to 2 may provide a good model
at coarse resolution levels, whereas values close to 1 should preferably be used at finer
resolutions.

The setting of the more general model we adopt here is the following: in Prob-
lem 5.1, K and L are the index sets of the detail and approximation coefficients [29],
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Fig. 5.5. Degraded signal—second example.
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Fig. 5.6. Signal restored by Algorithm 4.3—second example.

respectively, and
• (∀k ∈ K) Ωk = [−0.0023, 0.0023], Lk = 1, (pk,0, pk,1) = (2, 4), (τk,0, τk,1) =

(0.0052, 0.0001),
• (∀k ∈ L) Lk = 0, pk,0 = 2, τk,0 = 0.00083.

For each k, the integer Lk and the exponents (pk,l)0≤l≤Lk
are imposed, while the

set Ωk and the coefficients (τk,l)0≤l≤Lk
are chosen empirically. In addition, we set

q = 1, μ1 = 1, m = 1, ϑ1 = 1, and S1 =
{
x ∈ H

∣∣ x ≥ 0
}

(pointwise positivity
constraint). The solution x produced by Algorithm 4.3 is shown in Figure 5.6. The
estimation error is ‖x − x‖ = 8.33. For comparison, the signal x̃ restored via (1.4)
with Algorithm (1.5) is displayed in Figure 5.7. In Problem 5.1, this corresponds
to q = 1, m = 0, K = N, τk,l ≡ 0, Ωk ≡ [−2.9, 2.9] for the detail coefficients, and
Ωk ≡ [−0.0062, 0.0062] for the approximation coefficients. This setup yields a worse
error of ‖x̃− x‖ = 14.14 (the sets (Ωk)k∈N have been adjusted so as to mininize this
error). The above results have been obtained with a discrete implementation of the
wavelet decomposition over four resolution levels using 2048 signal samples [29].
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Fig. 5.7. Signal restored by solving (1.4)—second example.
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Abstract. In this paper we discuss the polynomiality of a feasible version of Mehrotra’s
predictor-corrector algorithm whose variants have been widely used in several interior point method
(IPM)-based optimization packages. A numerical example is given that shows that the adaptive
choice of centering parameter and correction terms in this algorithm may lead to small steps being
taken in order to keep the iterates in a large neighborhood of the central path, which is important
for proving polynomial complexity properties of this method. Motivated by this example, we in-
troduce a safeguard in Mehrotra’s algorithm that keeps the iterates in the prescribed neighborhood
and allows us to obtain a positive lower bound on the step size. This safeguard strategy is also used
when the affine scaling direction performs poorly. We prove that the safeguarded algorithm will ter-
minate after at most O(n2log(x0)T s0/ε) iterations. By modestly modifying the corrector direction,
we reduce the iteration complexity to O(nlog(x0)T s0/ε). To ensure fast asymptotic convergence of
the algorithm, we changed Mehrotra’s updating scheme of the centering parameter slightly while
keeping the safeguard. The new algorithms have the same order of iteration complexity as the safe-
guarded algorithms but enjoy superlinear convergence as well. Numerical results using the McIPM
and LIPSOL software packages are reported.
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1. Introduction. Since Karmarkar’s landmark paper [11], the study on interior
point methods (IPMs) has become one of the most active research areas in the field of
optimization. Many IPMs have been proposed and analyzed [22, 26, 27], and several
powerful IPM-based software packages have been developed and successfully applied
to numerous applications [1, 5, 29, 30]. Among various variants of IPMs, the so-called
predictor-corrector methods have attracted much attention in the IPM community
due to its high efficiency and have become the backbones of several optimization
packages. It should be mentioned that most implementations of predictor-corrector
IPMs adopted a heuristics proposed first by Mehrotra in his remarkable paper [6, 13].
The practical importance of Mehrotra’s algorithm motivated us to investigate its
theoretical properties. Before going into the details of the algorithm, we briefly review
the basics and unique results of IPMs and predictor-corrector IPMs.

We consider primal-dual IPMs for solving the following linear optimization (LO)
problem

(P) min {cTx : Ax = b, x ≥ 0},
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where A ∈ Rm×n satisfies rank(A) = m, b ∈ Rm, c ∈ Rn, and its dual problem

(D) max {bT y : AT y + s = c, s ≥ 0}.

It is common in IPMs theory to assume that both (P) and (D) satisfy the interior
point condition (IPC) [22]; i.e., there exists an (x0, y0, s0) such that

Ax0 = b x0 > 0, AT y0 + s0 = c, s0 > 0.

Finding optimal solutions of (P) and (D) is equivalent to solving the following system:

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,(1)

Xs = 0,

where X = diag (x). The basic idea of primal-dual IPMs is to replace the third
equation in (1) by the parameterized equation Xs = μe, where e is the all one vector.
This leads to the following system:

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,(2)

Xs = μe.

If the IPC holds, then for each μ > 0, system (2) has a unique solution. This solution,
denoted by (x(μ), y(μ), s(μ)), is called the μ-center of the primal-dual pair (P) and
(D). The set of μ-centers with all μ > 0 gives the central path of (P) and (D) [12, 24].
It has been shown that the limit of the central path (as μ goes to zero) exists and is
an optimal solution of (P) and (D) [22].

Applying Newton’s method to (2) for a given feasible point (x, y, s) gives the
following linear system of equations:

AΔx = 0,

ATΔy + Δs = 0,(3)

xΔs + sΔx = μe− xs,

where (Δx, Δy, Δs) give the Newton step.
Predictor-corrector algorithms use (3) with different values of μ in the predictor

and corrector steps. The predictor-corrector algorithm with best iteration complex-
ity is the Mizuno–Todd–Ye (MTY) algorithm for LO, which operates in two small
neighborhoods of the central path [16]. In the predictor step the MTY algorithm uses
the so-called primal-dual affine scaling step with μ = 0 in (3) and moves to a slightly

larger neighborhood. Then, in the corrector step, it uses μ = μg = xT s
n , propor-

tional to the duality gap, to bring the iterate towards the central path, back to the
smaller neighborhood. In spite of its strong theoretical results for LO and conic lin-
ear optimization problems, the algorithm has not been used in developing IPM-based
software packages. Several variants of MTY-type predictor-corrector algorithms op-
erating in both small and large neighborhoods have been proposed in the past decade
[2, 7, 8, 18, 10, 19, 20, 21, 23], and most of them follow a similar theoretical framework
as in [16].
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In what follows we describe in detail a feasible1 version of Mehrotra’s original
predictor-corrector algorithm that has been widely used in implementations [1, 13,
30]. In the predictor step Mehrotra’s algorithm computes the affine scaling search
direction, i.e.,

AΔax = 0,

ATΔay + Δas = 0,(4)

sΔax + xΔax = −xs;

then it computes the maximum feasible step size that ensures

(x + αaΔ
ax, s + αaΔ

as) ≥ 0.

However, the algorithm does not take such a step right away. It is worth mentioning
that Mehrotra’s original algorithm allows different step sizes in both primal and dual
spaces, while here for simplicity of the analysis we consider only the case when they
are equal. Mehrotra’s algorithm then uses the information from the predictor step to
compute the corrector direction that is defined as follows:

AΔx = 0,

ATΔy + Δs = 0,(5)

sΔx + xΔs = μe− xs− ΔaxΔas,

where μ is defined adaptively by

μ =

(
ga

g

)2
ga

n
,

where ga = (x + αaΔ
ax)T (s + αaΔ

as) and g = xT s. Since (Δax)TΔas = 0, the
previous relation implies

μ = (1 − αa)
3μg.(6)

From (6) it is obvious that if only a small step in the affine scaling direction can be
made, then we improve only the centrality of the iterate.

Finally, Mehrotra’s algorithm makes a step in the (Δx,Δy,Δs) direction by an
appropriate step size, and let us denote the new iterate by

x(α) := x + αΔx, y(α) := y + αΔy, s(α) := s + αΔs.

We note that several variants of the previous algorithm have been well studied in
the literature. For example, Mehrotra proposed an infeasible second order predictor-
corrector IPM [14] based on a similar power series extension of Monteiro, Adler, and
Resende [17]. In his infeasible variant, Mehrotra combined the adaptive scheme with a
safeguard technique to stabilize the convergence of the algorithm. Zhang and Zhang
[28] have analyzed this second order algorithm without using the adaptive update
of the centrality parameter. Jarre and Wechs [9] have suggested generating several
corrector directions first and then using the generated directions to construct a new

1The original Mehrotra algorithm is an infeasible algorithm. However, the self-dual embedding
model [22] can be used to construct a slightly bigger LO problem that has an obvious starting point
on the central path.
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search direction along which a step can be taken. Gondzio [6] proposed using multiple
centrality steps to bring the iterates back to the vicinity of the central path. Significant
improvements have been reported for solving several challenge NETLIB test problems
and problems arising from real applications. In a recent work [4], Gondzio further
combined the idea of multiple centering with a symmetric neighborhood to avoid
potential ill behaviors of Mehrotra’s predictor-corrector algorithm. More recently,
Mehrotra and Li [15] considered a Krylov subspace-based predictor-corrector method
and established its global convergence. Promising numerical results are reported as
well.

Different from the above-mentioned results, in this paper we first explore the po-
tential flaws in the feasible version of Mehrotra’s original algorithm. By a numerical
example we show that Mehrotra’s algorithm may result in very small steps in order
to keep the iterate in a certain neighborhood of the central path, which is essential to
prove the polynomiality of the algorithm. To avoid such a trap, we propose incorpo-
rating a safeguard in the algorithm so that we can guarantee a positive lower bound
for the step size and subsequently the polynomial complexity. Further, to ensure
the superlinear convergence of the algorithm we changed the updating scheme of the
centering parameter so that the new scheme preserves the same iteration complexity
with stronger asymptotic convergence results. It is worthwhile mentioning that our
simple safeguard strategy is different from the most recent results by Colombo and
Gondzio [4] and Mehrotra and Li [15], where they employ multiple centering with
symmetric neighborhood and Krylov subspace-based corrections, respectively. Most
recently, in [3] the author also provided another example that shows that the second
order variant of Mehrotra’s predictor-corrector algorithms may fail to converge to an
optimal solution. However, there have not been any numerical experiments.

The rest of the paper is organized as follows. First, in section 2, we present
a numerical example that motivates the introduction of a safeguard in Mehrotra’s
algorithm. Then, in section 3, we present the safeguard-based algorithm and establish
its worst case iteration complexity. For readability of the paper we moved some
technical lemmas that are used in section 3 to the appendix. In section 4, we further
modify the algorithm of section 3 and discuss its iteration complexity. In section 5,
Mehrotra’s updating scheme of the centering parameter is slightly modified to ensure
the superlinear convergence of both algorithms in sections 3 and 4. Some illustrative
numerical results using the NETLIB and Kennington test problems are reported in
section 6, and finally we conclude the paper by few remarks in section 7.

Conventions. Throughout the paper ‖ · ‖ denotes the 2-norm of vectors. We
denote by I the index set {1, 2, . . . , n}. For any two vectors x and s, xs denotes
the componentwise product of the two vectors, and e denotes the vector with all
components equal to one. For simplicity of notation we remove the iteration index in
the coming sections. We also use the notation

I+ = {i ∈ I | Δxa
i Δsai > 0}, I− = {i ∈ I | Δxa

i Δsai < 0},

F = {(x, y, s) ∈ Rn ×Rm ×Rn | (x, s) ≥ 0, Ax = b, AT y + s = c},

and

F0 = {(x, y, s) ∈ Rn ×Rm ×Rn | (x, s) > 0, Ax = b, AT y + s = c}.
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2. Motivation. In this section first we introduce the neighborhood of the central
path in which the algorithms operate. Then we give a numerical example showing that
using the strategy described in the introduction might force the algorithm to make
very small steps to keep the iterate in a certain neighborhood of the central path,
which further implies the algorithm needs to take many iterations to convergence.
The example indicates that Mehrotra’s adaptive updating scheme of the centering
parameter has to be combined with certain safeguards to get a warranted step size at
each iteration.

Most efficient IPM solvers work in the negative infinity norm neighborhood de-
fined by

N−
∞(γ) := {(x, y, s) ∈ F0 : xisi ≥ γμg ∀i = 1, . . . , n},(7)

where γ ∈ (0, 1) is a constant independent of n and μg = xT s
n . In this paper, we

consider algorithms that are working in N−
∞(γ) (called the large neighborhood).

Let us consider the following simple LO:

min −x2

s.t. 0 ≤ x1 ≤ 1,(8)

0 ≤ x2 ≤ 1 + δx1,

where δ = 0.1. Let the algorithm start with the following feasible points in the neigh-
borhood N−

∞(0.1):

x0 = (0.03; 0.9), s0 = (6.8; 1; 7; 2), y0 = (−7,−2).

For the given starting point, if we use identical step sizes for both primal and dual
problems, in the third iteration the maximum step size in the predictor step will be
αa = 0.96, while the maximum step size in the corrector step is O(10−4), and this
value is getting worse for later iterations. To explain what we observed, let us examine
the constraints

xi(α)si(α) ≥ γμg(α) ∀i ∈ I(9)

for γ = 0.1 that keeps the next iterate in the N−
∞(0.1) neighborhood, where

μg(α) =
x(α)T s(α)

n
=

(
1 − α + α

μ

μg

)
μg.(10)

By expanding inequality (9) and reordering one has

(1 − α)xisi + α(1 − 0.1)μ− αΔxa
iΔsa

i + α2ΔxiΔsi ≥ γ(1 − α)μg ∀i ∈ I.

Note that for the given staring point, x1s1−0.1μg is a very small nonnegative number,
while Δxa

1Δsa
1 and Δx1Δs1 are both negative numbers whose absolute values are

dominated by x1s1, and finally μ = O(10−5) due to a big affine scaling step size.
Incorporating all these information into (9) implies that the algorithm requires a very
small step to satisfy (9). This phenomenon might be the result of the following:

• There is an aggressive update of centering parameter μ using (6).
• There is usage of the correction terms in the corrector system of equations.

To resolve these difficulties, we propose the following remedies:
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• Use a fixed fraction of μg, for example, μ =
μg

10 , rather than an adaptive
update.

• Cut the maximum step size in the predictor step if it is above a certain thresh-
old. This might prevent the algorithm from having an aggressive update.

• Modify the correction terms in the corrector system of equations.
For this specific example, these ideas help us to solve the difficulty that might arise.
However, in general modifying the second order correction terms may not be as effec-
tive as using a simple large update of the centering parameter.

These observations motivate us to introduce a safeguard strategy that will help us
to have control on the minimal warranted step size from the theoretical and practical
points of view. In our safeguard we simply use a fixed fraction of μg as the μ value.
It is worthwhile mentioning that when the affine scaling step size is very small, for
example, when αa < 0.1, which implies marginal reduction of the complementarity
gap, we also employ the same large update safeguard.

3. A safeguard-based algorithm. In this section we first discuss the step size
estimation of the algorithm and then outline the safeguard-based algorithm. Finally,
we establish its worst case iteration complexity.

The following technical lemma will be used in the next theorem, which estimates
the maximum step size in the corrector step.

Lemma 3.1. Suppose the current iterate is (x, y, s) ∈ N−
∞(γ), and let (Δx,Δy,Δs)

be the solution of (5), where μ ≥ 0. Then we have

||ΔxΔs|| ≤ 2
−3
2

(
1

γ

(
μ

μg

)2

−
(

2 − 1

2γ

)
μ

μg
+

17γ + n

16γ

)
nμg.

Proof. If we multiply the third equation of (5) by (XS)−
1
2 , then by Lemma 5.3

of [26] we have

||ΔxΔs||≤ 2
−3
2 ||μ(XSe)−

1
2 − (XSe)

1
2 − (XS)−

1
2 ΔxaΔsa||2

= 2
−3
2

(
μ2

∑
i∈I

1

xisi
+
∑
i∈I

xisi +
∑
i∈I

(Δxa
iΔsa

i )
2

xisi
− 2nμ− 2μ

∑
i∈I

Δxa
iΔsa

i

xisi

)

≤ 2
−3
2

(
nμ2

γμg
+ nμg +

nμg

16
+

n2μg

16γ
− 2nμ +

nμ

2γ

)
,

where the last inequality follows from Lemma A.2 and the assumption that the pre-
vious iterate is in N−

∞(γ). By reordering and factorizing we get the statement of the
lemma.

Motivated from the computational practice, we use μ = β
1−βμg as the value of

safeguard, where γ ≤ β < 1
3 . This is due to the fact that using μ = γ

1−γμg for
small values of γ might imply an aggressive update of the barrier parameter. The
following corollary, which follows from Lemma 3.1, gives an explicit upper bound for
this specific value of μ.

Corollary 3.2. If μ = β
1−βμg, where γ ≤ β < 1

3 and γ ∈ (0, 1
3 ), then

||ΔxΔs|| ≤ 1

2γ
n2μg.

Theorem 3.3. Suppose the current iterate is (x, y, s) ∈ N−
∞(γ), where γ ∈ (0, 1

3 ),
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and let (Δx,Δy,Δs) be the solution of (5) with

μ =
β

1 − β
μg,

where γ ≤ β < 1
3 . Then the maximum step size αc, which keeps (x(αc), y(αc), s(αc))

in N−
∞(γ), satisfies

αc ≥
3γ2

2n2
.

Proof. The goal is to find the maximum nonnegative α for which the relation (9)
holds. To do so, first let use define

t = max
i∈I+

{
Δxa

iΔsa
i

xisi

}
.(11)

Since (Δxa)TΔsa = 0, then I+ �= ∅. Now it is sufficient to prove (9) for Δxa
iΔsa

i > 0.
To do so, we have

xi(α)si(α)= xisi + α(μ− xisi − Δxa
iΔsa

i) + α2ΔxiΔsi

≥ (1 − α)xisi + αμ− αtxisi −
α2n2μg

2γ

= (1 − (1 + t)α)xisi + αμ− α2n2μg

2γ
,

where the first inequality follows from α ≥ 0, (11), and Corollary 3.2. Moreover, from
Lemma A.1 we have that t ≤ 1

4 , which implies 1
1+t ≥

4
5 . Thus we further deduce that

for α ∈ [0, 4
5 ], we have

xi(α)si(α) ≥ (1 − (1 + t)α)γμg + αμ− α2n2μg

2γ
.

Now using (10), the next iterate belongs to N−
∞(γ), provided

(1 − (1 + t)α)γμg + αμ− α2n2μg

2γ
≥ γ

(
1 − α + α

μ

μg

)
μg,

which is equivalent to

(1 − γ)μ− γtμg ≥ αn2μg

2γ
.(12)

Using Lemma A.1 and the definition of μ one has

(1 − γ)μ− γtμg ≥ (1 − γ)β

(1 − β)
μg −

γμg

4
≥ 3γμg

4
.

Therefore, inequality (12) holds if

3γμg

4
≥ αn2μg

2γ
.
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This inequality definitely holds for α = 3γ2

2n2 . Now we can conclude that

αc ≥ min

(
4

5
,
3γ2

2n2

)
=

3γ2

2n2
.

We remind the readers that we use this safeguard when the affine scaling performs
poorly, for example, when αa < 0.1.

Now after all the previous discussions we may outline our new safeguard-based
algorithm as follows.

Algorithm 1

Input:
A proximity parameters γ ∈ (0, 1

3 );
a safeguard parameter β ∈ [γ, 1

3 );
an accuracy parameter ε > 0;
(x0, y0, s0) ∈ N−

∞(γ).

begin
while xT s ≥ ε do

begin
Predictor Step Solve (4) and compute the maximum step size αa such that
(x(αa), y(αa), s(αa)) ∈ F ;

end

begin
Corrector step
If αa ≥ 0.1, then solve (5) with μ = (1 − αa)

3μg and compute the maximum
step size αc such that (x(αc), y(αc), s(αc)) ∈ N−

∞(γ);

If αc < 3γ2

2n2 , then solve (5) with μ = β
1−βμg and compute the maximum step

size αc such that (x(αc), y(αc), s(αc)) ∈ N−
∞(γ);

end
else
Solve (5) with μ = β

1−βμg and compute the maximum step size αc such that

(x(αc), y(αc), s(αc)) ∈ N−
∞(γ);

end Set (x(αc), y(αc), s(αc)) = (x + αcΔx, y + αcΔy, s + αcΔs).
end

end

Remark 3.4. By using an identical step size for both the primal and the dual
problems, comparing with the Mehrotra’s algorithm, our new algorithm requires at
most an extra backsolve to make a better step.

The following theorem gives an upper bound for the maximum number of itera-
tions in which Algorithm 1 stops with an ε-approximate solution.

Theorem 3.5. Algorithm 1 stops after at most

O

(
n2 log

(x0)T s0

ε

)

iterations with a solution for which xT s ≤ ε.
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Proof. If αa < 0.1 or αc < 3γ2

2n2 , then the algorithm uses the safeguard strategy.
It follows from Theorem 3.3 and (10) that

μg(α) ≤
(

1 − 3γ2(1 − 2β)

2(1 − β)n2

)
μg.

If αa ≥ 0.1 and αc ≥ 3γ2

2n2 , then the algorithm uses Mehrotra’s updating strategy,
which further implies that

μg(α) ≤
(

1 − 2γ2

5n2

)
μg,

which completes the proof conforming to [26, Theorem 3.2].

4. A modified version of Algorithm 1. In this section we propose a slightly
modified version of Algorithm 1 (Algorithm 2) that enjoys much better iteration
complexity than Algorithm 1 and also is computationally more appealing. The im-
provement in the iteration complexity is the result of the following proposition and
modified corrector step that allow us to strengthen the bound in Lemma 3.1.

Proposition 4.1. For all i ∈ I− one has

−Δxa
iΔsa

i ≤ 1

αa

(
1

αa
− 1

)
xisi.(13)

Proof. For the maximum step size in the predictor step, αa, one has xi(αa)si(αa) ≥
0, i = 1, . . . , n. This is equivalent to (1−αa)xisi+α2

aΔxa
iΔsa

i ≥ 0, i = 1, . . . , n, which
the statement of the proposition follows.

The motivation for modifying the Newton system in the corrector step is the
following observation. If the maximal feasible step size for the affine scaling direction
is reasonably large, then the classical corrector direction should also be a good choice.
However, if the maximal feasible step size for the affine scaling search direction is
very small, then we should possibly try to bring the iterate back to the vicinity of the
central path. In such a case, the second order correction terms in system (5) might
not be a good choice since they might lead to a search direction moving towards the
boundary of the feasible region. Therefore, we propose changing the second order
correction terms in the corrector step proportional to the affine scaling step size when
it does not perform good, for example, when αa < 0.1.

The new corrector system of equations when αa < 0.1, which by using Proposition
4.1 enables us to improve on the iteration complexity of Algorithm 1, is

AΔx = 0,

ATΔy + Δs = 0,(14)

sΔx + xΔs = μe− xs− αaΔxaΔsa,

where the centering parameter μ is defined as in the previous section. Changing the
corrector system of equation to (14) when αa < 0.1 helps us avoid the potential ill
behaviors of Mehrotra’s original algorithm without sacrificing its practical efficiency
(see section 6). Thus, in what follows we consider this variant for further analysis.

Analogous to Lemma 3.1 we have the following bound for ‖ΔxΔs‖ when αa ∈
(0, 0.1).

Lemma 4.2. Suppose the current iterate is (x, y, s) ∈ N−
∞(γ), where αa ∈ (0, 0.1),

and let (Δx,Δy,Δs) be the solution of (14). Then we have

||ΔxΔs|| ≤ 2
−3
2

(
1

γ

(
μ

μg

)2

−
(

2 − αa

2γ

)
μ

μg
+

20 − 4αa + α2
a

16

)
nμg.
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Proof. Since (Δxa)TΔsa = 0, both I+ and I− are nonempty. If we multiply the

third equation of (14) by (XS)−
1
2 , then by Lemma 5.3 of [26] we have

‖ΔxΔs‖≤ 2
−3
2 ||μ(XSe)−

1
2 − (XSe)

1
2 − αa(XS)−

1
2 ΔxaΔsa||2

= 2
−3
2

(
μ2

∑
i∈I

1

xisi
+ xT s + α2

a

∑
i∈I

(Δxa
iΔsa

i )
2

xisi
− 2nμ− 2αaμ

∑
i∈I

Δxa
iΔsa

i

xisi

)

≤ 2
−3
2

⎛
⎝nμ2

γμg
+ nμg +

α2
anμg

16
− (1 − αa)

∑
i∈I−

Δxa
iΔsa

i − 2nμ +
αanμ

2γ

⎞
⎠

≤ 2
−3
2

(
1

γ

(
μ

μg

)2

+ 1 +
α2

a

16
+

(1 − αa)

4
− 2

μ

μg
+

αa

2γ

μ

μg

)
nμg

= 2
−3
2

(
1

γ

(
μ

μg

)2

−
(

2 − αa

2γ

)
μ

μg
+

20 − 4αa + α2
a

16

)
nμg,

where the second inequality follows from (13), Lemmas A.1 and A.2, and the assump-
tion that the previous iterate is in N−

∞(γ). The third inequality also follows from
Lemma A.2.

The following corollary gives an explicit upper bound for a specific μ.
Corollary 4.3. Let μ = β

1−βμg, where β ∈ [γ, 1
3 ), γ ∈ (0, 1

3 ), and αa ∈ (0, 0.1);
then

||ΔxΔs|| ≤ β√
2γ(1 − β)

nμg.

In the following theorem we estimate the maximum step size in the corrector step
of the modified algorithm defined by (14) for αa ∈ (0, .01).

Theorem 4.4. Suppose the current iterate is (x, y, s) ∈ N−
∞(γ), where γ ∈ (0, 1

3 ),

β ∈ [γ, 1
3 ), and αa ∈ (0, 0.1), and (Δx,Δy,Δs) is the solution of (14) with μ = β

1−βμg.

Then the maximum step size αc, such that (x(αc), y(αc), s(αc)) ∈ N−
∞(γ), satisfies

αc ≥
39
√

2γ(1 − γ)

40n
.

Proof. We need to estimate the maximum nonnegative α for which (9) holds. We
know that (Δxa)TΔsa = 0; then I+ �= ∅. It suffices to consider only the case when
Δxa

iΔsa
i > 0. Therefore, we have

xi(α)si(α)= xisi + α(μ− xisi − αaΔxa
iΔsa

i) + α2ΔxiΔsi

≥ (1 − α)xisi + αμ− ααatxisi −
β√

2γ(1 − β)
α2nμg

= (1 − α(1 + αat))xisi + αμ− β√
2γ(1 − β)

α2nμg,

where the first inequality follows from α being nonnegative, (11), and Corollary 4.3.
Moreover, from Lemma A.1 we have that t ≤ 1

4 , which implies 1
1+αat

≥ 4
5 . Thus we

further deduce that for α ∈ [0, 4
5 ], we have

xi(α)si(α) ≥ (1 − (1 + αat)α)γμg + αμ− β√
2γ(1 − β)

α2nμg.
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By using (10), the new iterate is in N−
∞(γ) whenever

γ (1 − α(1 + αat)) +
μ

μg
α− β√

2γ(1 − β)
α2n ≥ γ

(
1 − α +

μ

μg
α

)
.

Analogous to Theorem 3.3, one can easily verify that this inequality holds for

α =
39
√

2γ(1 − γ)

40n
.

Therefore, we have

αc ≥ min

(
4

5
,
39
√

2γ(1 − γ)

40n

)
=

39
√

2γ(1 − γ)

40n
:= α̂c.

Now we can outline Algorithm 2 as follows.

Algorithm 2

Input:
A proximity parameters γ ∈ (0, 1

3 );
a safeguard parameter β ∈ [γ, 1

3 );
an accuracy parameter ε > 0;
(x0, y0, s0) ∈ N−

∞(γ).

begin
while xT s ≥ ε do
begin

Predictor Step
Solve (4) and compute the maximum step size αa such that
(x(αa), y(αa), s(αa)) ∈ F ;

end

begin
Corrector step
If αa ≥ 0.1, then solve (5) with μ = (1−αa)

3μg and compute the maximum
step size αc such that (x(αc), y(αc), s(αc)) ∈ N−

∞(γ);
If αc < α̂c, then solve (5) with μ = β

1−βμg and compute the maximum step

size αc such that (x(αc), y(αc), s(αc)) ∈ N−
∞(γ);

end
else
Solve (14) with μ = β

1−βμg and compute the maximum step size αc such that

(x(αc), y(αc), s(αc)) ∈ N−
∞(γ);

end
Set (x(αc), y(αc), s(αc)) = (x + αcΔx, y + αcΔy, s + αcΔs).

end
end

The following theorem gives an upper bound for the number of iterations in which
Algorithm 2 stops with an ε-approximate solution.
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Theorem 4.5. Algorithm 2, the modified version of Algorithm 1, stops after at
most

O
(
n log

(x0)T s0

ε

)

iterations with a solution for which xT s ≤ ε.
Proof. If αa < 0.1 or αc < α̂c, then the algorithm uses the safeguard strategy.

Then by (10) and Theorem 4.4 one has

μg(α) ≤
(

1 − 39
√

2γ(1 − γ)(1 − 2β)

40(1 − β)n

)
μg.

If αa ≥ 0.1 and αc ≥ α̂c, then the algorithm uses Mehrotra’s updating strategy, which
further implies that

μg(α) ≤
(

1 − 37γ(1 − γ)

100n

)
μg,

which completes the proof conforming to Theorem 3.2 of [26].

5. Superlinear convergence. In this section we analyze the asymptotic be-
havior of the previous algorithms using a modification of the centering parameter μ
rather than using (6) due to the following observations.

We note that by Theorem 7.4 of [26] for (x, s) ∈ N−
∞(γ) the relations

|Δxa
iΔsa

i | ≤ O(μ2
g), i = 1, . . . , n,(15)

hold. This further implies that αa ≥ 1 − O(μg). Now, for the asymptotic case, one
has to estimate α that satisfies the following inequalities for each i ∈ I:

(1 − α)xk
i s

k
i + (1 − γ)αμ− αΔxa

iΔsa
i + α2ΔxiΔsi ≥ γ(1 − α)μk

g .

By using (6) one also has μ ≤ O
(
(μk

g)
4
)
. The worst asymptotic value for α might be

the result of the case when xisi = γμg and Δxa
iΔsa

i > 0. Assuming this, it is not clear
whether ΔxiΔsi is nonnegative or negative. In case of nonnegativity, the previous
inequality holds for a positive value of α. However, if ΔxiΔsi < 0, it might not hold
due to the very small μ value which is the result of sufficiently small μg. Therefore,
modifying Mehrotra’s heuristic might be cast as a way of achieving the superlinear
convergence. The new adaptive updating strategy is defined by

μ =
γt + γ min(μ

1
2
g , 1)

1 − γ
μg,(16)

where t is given by (11) and 0 < γ < 1
3 . The “γt” term in this definition guarantees the

existence of a positive step size following the proof of Theorems 3.3 and 4.4. However,
the second term enables us to prove the superlinear convergence as it will be proven
in what follows, since for small μg it is not as aggressive as (6). The “1 − γ” term
in the denominator of (16) is used for simplicity of the theoretical analysis which
follows. Following the analysis of sections 3 and 4, changing Mehrotra’s updating
scheme to this updating strategy in Algorithms 1 and 2, while preserving the large
update safeguard, does not change the order of the iteration complexity. Since the
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large update safeguard gives us a positive lower bound for the maximum step size in
the corrector step, for simplicity those complexity proofs are omitted here.

Theorem 5.1. Let the iterate (xk, yk, sk) be generated by Algorithm 1 or 2, where
μ is given by (16). When μg is sufficiently small, Algorithms 1 and 2 are superlinearly
convergent in the sense that μk+1

g = O
(
(μk

g)
1+r

)
for some r ∈ (0, 1).

Proof. Since
∣∣(Δxa)ki (Δsa)ki

∣∣ ≤ O((μk
g)

2) for all i ∈ I, then similar to the proof
of Theorem 7.4 of [26] one can show that

|(Δx)ki (Δs)ki | ≤ O
(
(μk

g)
2
)
.

By the new definition of μ, the next iterate is in the neighborhood N−
∞(γ) if for each

i ∈ I

(1 − α)xk
i s

k
i + α(1 − γ)μk − αΔxa

iΔsa
i + α2ΔxiΔsi ≥ γ(1 − α)μk

g .(17)

Our goal is to find α ∈ (0, 1] for which (17) holds. For this, it is sufficient to prove
(17) for the case where (Δxa)ki (Δsa)ki > 0 and (Δx)ki (Δs)ki < 0. Using the definition
of t, for a positive component of ΔxaΔsa one also has Δxa

iΔsa
i ≤ txisi. Therefore, it

suffices to find α ∈ (0, 1] for which the following inequality holds:

(1 − α(1 + t))xk
i s

k
i + α(1 − γ)μk − α2O((μk

g)
2) ≥ γ(1 − α)μk

g .(18)

If (18) holds for α ≥ 1
1+t , then α ≥ 1−O(μk

g), since 1
1+t = 1

1+O(μk
g)

≥ 1 −O(μk
g). Now

let us assume that α < 1
1+t . In order to have (18), using the fact that xk

i s
k
i ≥ γμk

g , it
suffices to have

(1 − α(1 + t))γμk
g + αγtμk

g+αγ min
(
μ

1
2
g , 1

)
μg − α2O((μk

g)
2)

≥ γ(1 − α)μk
g

for some α ∈ (0, 1], which is equivalent to

γμ
3
2
g − αO((μk

g)
2) ≥ 0.(19)

Inequality (19) definitely holds for α ≥ 1 −O
(
(μk

g)
r
)
, where r ∈ (0, 1).

Now, by using (10), one further has

μk
g(α

k
c ) =

(
1 − αk

c (1 −O(μk
g))

)
μk
g ≤

(
1 − (1 −O((μk

g)
r))(1 −O(μk

g))
)
μk
g ≤ O

(
(μk

g)
1+r

)
.

This gives the superlinear convergence of Algorithm 1 with the new choice of the
parameter μ. The superlinear convergence of Algorithm 2 also can be proved analo-
gously.

6. Numerical results. In this section we report some illustrative numerical re-
sults for different variants of Algorithm 2 due to its better computational performance
than Algorithm 1 for few problems. The results are obtained by modifying some of
the subroutines of the McIPM (a self-dual embedding model-based implementation)
and the LIPSOL (an infeasible IPM implementation for LO problems), two software
packages based in MATLAB [29, 30]. Our computational experiments are done on a
Pentium 4 machine with 2.53 GHZ and 512 MB ram. Numerical results are reported
for all feasible NETLIB and Kennington test problems. For each problem we report
the number of iterations, the time it takes to load the problem and solve it, and the
number of exact digits, respectively.

For the McIPM package we use the following abbreviations for the different im-
plementations of Mehrotra’s algorithm:
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• PMMcIPM: Mehrotra’s original algorithm presented in section 1.
• HMcIPM: Mehrotra’s original algorithm presented in section 1 combined

with heuristics in the definition of the centering parameter. The interested
reader can consult the McIPM package for heuristics that are used there [30].

• NMcIPMI: Algorithm 2.
• NMcIPMII: Algorithm 2 with the new definition of the centering parameter

(16) instead of using (6).
For all the above-mentioned variants we set γ = 10−4 and μ =

μg

10 as the safeguard.
In the implementation of our new definition of μ given by (16), we use μ = 1

5 (t +
min(μ1/2g, 1))μg rather than using (16), which is introduced for theoretical easiness.

Tables 1 to 3 show that for 36 problems (total number of problems is 112), the
number of iterations for PMcIPM is higher than NMcIPMI, for 63 problems is higher
than NMcIPMII, and for 65 problems is higher than HMcIPM implementations. As
one can notice from Tables 1 to 3, for some problems PMcIPM is doing better than the
other implementations, and for the rest they all perform equally. Significant difference
in time occurs when the number of iterations is significantly different; for example,
see “dfl001” and “degen3” in Table 1 and “osa-60” and “pds-20” in Table 3. The
comparison between our two new algorithms (NMcIPMI and NMcIPMII) shows that
NMcIPMII is better than NMcIPMI for 56 problems, while NMcIPMI is doing better
only for 22 problems, and they perform equally on the rest of the problems. Therefore,
overall NMcIPMII performs better than NMcIPMI. Finally, the comparison between
NMcIPMII and HMcIPM shows that HMcIPM is doing better for 26 problems, while
HMcIPM is better for 27 problems, and they perform equally on the rest of the
problems. This comparison also shows that our simple safeguard-based algorithm is
at least as effective as the heuristics used in the package and sometimes overperforms
HMcIPM on difficult problems as given in Table 3.

The following abbreviations are also used for different implementations of Mehro-
tra’s algorithm in LIPSOL:

• PLIPSOL: Infeasible variant of Mehrotra’s algorithm presented in section
1.

• HLIPSOL: Infeasible variant of Mehrotra’s original algorithm presented in
section 1 with heuristics that are used in the definition of the centering pa-
rameter by LIPOSL. One should consult the LIPSOL package for the details
of the heuristics [29].

• SLIPSOL: Infeasible variant of Algorithm 2.
For all the above-mentioned versions of LIPSOL we use γ = 10−4 and β

1−β = 10−1.
It is worthwhile mentioning that we do not have the second modification of the

LIPSOL, namely the new definition of the centering parameter, because it requires a
detailed analysis of the infeasible Mehrotra algorithm that is left for future research.

In Tables 4 to 6 we report the numerical results using the above-mentioned vari-
ants of LIPSOL. The comparison of iterations numbers show that for 66 problems
SLIPSOL and HLIPSOL are doing better than PLIPSOL, while PLIPSOL is better
only for a few problems. The comparison between SLIPSOL and HLIPSOL shows
that overall they perform equally. Finally, a significant difference in time occurs when
the number of iterations dramatically differ; for example, see “dfl001” in Table 4 and
“cre-d,” “osa-14,” “pds-10,” and “pds-20” in Table 6.

7. Final remarks. In this paper we have discussed the polynomiality of Mehro-
tra’s original predictor-corrector algorithm. By a numerical example we have shown
that Mehrotra’s algorithm might lead to an inefficient algorithm while keeping the it-
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Table 3

Comparison of the number of iterations for the Kennington test problems.

Problem MMcIPM NMcIPM I NMcIPM II HMcIPM

cre-a (28,8.3,8) (29,8.3,8) (27,7.1,8) (29,8.3,8)

cre-b (37,205,8) (36,200,8) (34,188.7,8) (34,190,8)

cre-c (31,7.9,8) (31,7.7,8) (32,7.5,8) (32,7.9,8)

cre-d (35,177.5,8) (34,173.20,8) (33,169,8) (32,163.4,8)

ken-07 (17,4,8) (17,3.2,8) (17,4,7) (17,3.6,7)

ken-11 (21,29.7,7) (21,29.5,7) (20,29.6,7) (20,30,7)

ken-13 (29,91,7) (28,88,7) (27,88.5,7) (26,83,7)

ken-18 (37,637.6,8) (36,621.6,8) (34,590.6,8) (35,621.6,8)

osa-07 (31,31,8) (31,31,8) (34,33,8) (40,39,7)

osa-14 (39,91,8) (39,87.5,8) (45,95.2,7) (52,114,8)

osa-30 (44,,209.5,7) (41,197.3,7) (44,206,7) (44,207,7)

osa-60 (51,612,7) (48,580,8) (47,573,8) (57,668,8)

pds-02 (34,12,7) (33,11,8) (32,10.8,88) (32,11,7)

pds-06 (51,164,7) (50,160,7) (43,136.5,7) (45,146,7)

pds-10 (70,864,7) (69,854,8) (56,698,8) (58,725,8)

pds-20 (96,8164.5,7) (85,7552.6,7) (79,6763,7) (81,6926.4,7)

erate in the N−
∞(γ) neighborhood, which is essential to prove the polynomial iteration

complexity. This motivated us to combine his idea with a safeguard strategy that
allows us to get a positive lower bound for the step size in the corrector step. Further,
by slightly changing the Newton system, the iteration complexity of the algorithm
is significantly reduced. This also led us to superior computational performance of
the algorithm. To ensure the superlinear convergence of the algorithm we changed
Mehrotra’s updating scheme of the centering parameter so that the new algorithms
preserve the iteration complexity and exhibit stronger asymptotic convergence proper-
ties. Our illustrative numerical results show that our new safeguard-based algorithms
are competitive with two state of the art software packages that are using heuristics
to stabilize the convergence of the implemented algorithms.

There are several interesting questions regarding the proposed safeguard strategy.
For example, one can analyze the infeasible variant of this prototype. It is also possible
to extend this approach to other classes of optimization problems such as SDO, SOCO,
and convex nonlinear optimization.

Appendix. In this section we prove two technical lemmas that have been used
frequently during the analysis.

Lemma A.1. Let (Δxa,Δya,Δsa) be the solution of (4). Then

Δxa
i Δsai ≤ xisi

4
∀i ∈ I+.

Proof. By (4) for i ∈ I+ we have

siΔxa
i + xiΔsai = −xisi.



1394 M. SALAHI, J. PENG, AND T. TERLAKY

Table 4

Comparison of the number of iterations for the Kennington test problems.

Problem PLIPSOL SLIPSOL HLIPSOL Problem PLIPSOL SLIPSOL HLIPSOL

25fv47 (27,3.1,10) (24,4,11) (25,3.7,10) e226 (23,1.2,7) (20,0.98,7) (21,1.2,11)

80bau3b (46,12.1,4) (40,10.8,4) (39,11.3,4) etamacro (27,1.8,7) (25,1.88,7) (25,1.6,7)

afiro (8,0.34,10) (8,0.35,10) (8,0.2,10) ffff800 (31,2.95,6) (26,2.5,6) (26,2.75,6)

adlittle (13,0.57,11) (13,0.57,11) (13,0.36,11) finnis (36,1.8,5) (28,1.8,5) (30,1.5,5)

agg (21,1.4,10) (21,1.64,10) (21,1.45,10) fit1d (20,1.63,11) (18,1.74,11) (19,1.7,11)

agg2 (20,1.9,10) (19,1.82,10) (18,2.1,10) fit1p (17,12.6,10) (16,12.3,10) (16,11.7,10)

agg3 (19,1.86,11) (18,1.77,11) (17,1.82,11) fit2d (23,11.7,11) (22,12,11) (22,11.5,9)

bandm (18,0.86,9) (18,0.85,8) (18,1,10) fit2p (21,28.5,9) (21,30,9), (21,33,9)

beaconfd (13,0.7,11) (13,0.68,11) (13,0.78,11) forplan (25,1.25,6) (24,1.1,6) (22,1.2,6)

blend (12,0.44,10) (12,0.42,10) (12,0.5,10) ganges (19,2,5) (18,2,5) (18,2,5)

bnl1 (33,2.14,7) (30,2,7) (26,2,7) gfrd-pnc (21,1,11) (20,0.7,11) (21,1,11)

bnl2 (38,12.3,9) (31,10.1,9) (31,10.4,9) greenbea (43,18,3) (48,19.9,3) 4(43,18.8,2)

boeing1 (24,1.6,10) (22,1.4,10) (21,1.6,9) greenbeb (42,14.4,4) (37,12.6,4) (38,13.6,4)

boeing2 (20,0.83,10) (17,0.65,8) (19,1.17,8) grow15 (18,1.44,11) (17,1.3,11) (17,1.4,11)

bore3d (17,0.83,11) (18,0.8,10) (18,1,11) groww22 (19,2,11) (18,1.8,11) (19,1.95,11)

brandy (18,0.88,10) (15,0.75,10) (17,1.2,10) grow7 (17,0.88,10) (16,0.86,10) (16,0.9,10)

capri (18,1,9) (18,1,10) (20,1.2,10) israel (25,1.76,11) (22,1.6,11) (23,1.3,11)

cycle (26,8.9,0) (25,8.4,6) (24,8.6,6) kb2 (14,0.45,10) (14,0.4,10) (15,0.55,11)

czprob (37,2.9,11) (38,3,11) (36,3,11) lotfi (18,0.9,7) (18,1.1,10) (18,0.8,10)

d2q06c (35,25.5,7) (33,23.9,7) (32,24,7) maros-r7 (16,154,8) (15,151,11) (15,144,11)

d6cube (27,8.1,9) (24,7.5,7) (23,7.2,9) maros (31,7,5) (33,4.4,11) (33,4.2,11)

degen3 (26,20.4,9) (20,16.9,11) (20,16.4,8) modszk1 (24,2,9) (24,1.8,9) (24,1.8,9)

degen2 (14,1.48,9) (14,1.46,9) (14,1.5,9) nesm (35,4.9,6) (33,5,6) (33,4.7,6)

df1001 (81,1883.33,6) (59,1452.6,6) (73,1810,6) perold (38,3.85,5) (33,3.46,5) (31,2.7,5)

If we divide this equation by xisi we get

Δxa
i

xi
+

Δsai
si

= −1.

Since Δxa
i Δsai > 0, this equality implies that both Δxa

i < 0 and Δsai < 0. Then from

0 ≤
(

Δxa
i

xi
− Δsai

si

)2

=

(
Δxa

i

xi

)2

+

(
Δsai
si

)2

− 2
Δxa

i Δsai
xisi

= 1 − 4
Δxa

i Δsai
xisi

we get

Δxa
i Δsai ≤ xisi

4
.

Lemma A.2. Let (Δxa,Δya,Δsa) be the solution of (4); then we have

∑
i∈I+

Δxa
i Δsai =

∑
i∈I−

|Δxa
i Δsai | ≤

1

4

∑
i∈I+

xisi ≤
xT s

4
.
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Table 5

Comparison of the number of iterations for the NETLIB test problems.

Problem PLIPSOL SLIPSOL HLIPSOL Problem PLIPSOL SLIPSOL HLIPSOL

pilot (39,43.6,4) (30,33.6,4) (31,37,4) sctap3 (19,1.92,11) (18,2.3,12) (18,2.3,12)

pilot4 (31,2.95,8) (34,3.2,8) (30,2.65,8) seba (20,3.64,12) (22,4.8,12) (22,4.3,12)

pilotja (34,7.4,6) (32,7,6) (31,6.7,6) share1b (23,0.7,11) (22,0.83,11) (22,0.88,11)

pilotnov (21,4.1,11) (19,3.94,11) (20,4.4,11) share2b (13,0.47,11) (12,0.4,11) (13,0.55,11)

pilotwe (40,3.5,6) (35,3,6) (37,3.8,6) shell (23,1.1,11) (19,0.78,11) (21,1.27,11)

pilot87 (42,159,6) (38,151,6) (38,149,6) ship04l (14,0.97,9) (14,0.9,9) (14,1,9)

recipe (9,0.45,11) (9,0.53,11) (9,0.58,11) ship04s (15,0.86,11) (14,0.75,11) (14,0.5,11)

sc105 (10,0.5,11) (10,0.4,11) (10,0.4,11) ship08l (16,1.9,11) (16,1.8,11) (16,1.8,11)

sc205 (11,0.5,11) (11,0.4,11) (11,0.4,11) ship08s (15,1.14,11) (15,1.1,11) (15,1,11)

sc50a (10,0.33,10) (10,0.45,10) (10,0.4,10) ship12l (17,1.9,1) (19,2,11) (18,1.6,11)

sc50b (7,0.38,8) (7,0.33,8) (7,0.27,8) ship12s (18,1,11) (18,1,11) (18,0.8,11)

scagr25 (17,0.8,) (17,0.7,) (17,0.95,) sierra (18,1.95,10) (18,1.72,10) (17,2,10)

scagr7 (14,0.52,7) (13,0.44,7) (14,0.63,7) stair (16,1.4,11) (14,1.15,10) (14,1.4,10)

scfxm1 (20,0.92,11) (19,0.78,10) (19,1.1,11) standata (18,0.92,11) (16,0.75,11) (17,1,11)

scfxm2 (22,1.55,11) (20,1.4,11) (21,1.7,10) standmps (25,1.25,11) (23,1.2,9) (24,1.46,11)

scfxm3 (23,2,10) (20,1.72,10) (21,2.1,10) stocfor1 (15,0.53,11) (17,0.42,11) (16,0.67,11)

scorpion (15,0.64,11) (15,0.65,11) (15,0.6,11) stocfor2 (22,2.75,10) (23,2.85,10) (21,2.94,10)

scrs8 (25,1.4,5) (25,1.55,5) (24,1.35,5) stocfor3 (33,30.3,5) (33,30.3,5) (33,30.3,5)

scsd1 (10,0.52,11) (10,0.63,7) (9,0.7,5) truss (20,4.1,10) (18,3.8,10) (19,4.1,10)

scsd6 (12,0.66,10) (11,0.78,6) (12,0.8,10) tuff (23,1.44,6) (20,0.95,6) (20,1.5,4)

scsd8 (11,0.91,10) (11,1.1,10) (11,1.16,10) vtpbase (19,0.72,11) (27,0.81,11) (23,1,11)

sctap1 (19,0.7,12) (17,0.8,12) (17,0.7,12) woodlp (24,6.15,10) (19,5.3,10) (19,5.3,6)

sctap2 (17,1.55,11) (16,1.8,10) (19,1.6,10) woodw (30,7.3,5) (26,6,6) (28,7.1,8)
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Table 6

Comparison of Iterations Number for the Kennington Test Problems.

Problem PLIPSOL SLIPSOL HLIPSOL

cre-a (33,7.18,8) (29,6.3,8) (30,6.8,8)

cre-b (45,352,8) (37,304.4) (42,332.4,8)

cre-c (32,6,8) (31,6.1,8) (30,6,8)

cre-d (47,310.5,8) (38,264.6,8) (38,271,8)

ken-07 (16,2.2,8) (15,2.2,8) (16,2.2,8)

ken-11 (23,18.8,7) (21,18.1,7) (22,18.3,7)

ken-13 (30,60.7,10) (28,60,10) (27,55.3,10)

ken-18 (42,650,8) (42,632,8) (38,574,8)

osa-07 (29,25.5,7) (27,25.7,7) (27,24.4,7)

osa-14 (30,63.5,8) (34,74,8) (37,76,8)

osa-30 (37,160.2,8) (39,183,8) (36,157,8)

osa-60 (39,461,8) (38,451,8) (34,422,8)

pds-02 (29,6.75,7) (28,7.2,7) (29,7.1,7)

pds-06 (44,200,7) (45,211,7) (42,191,7)

pds-10 (58,1226,8) (55,1183,8) (52,1104,8)

pds-20 (69,10975.2,7) (63,10028,7) (67,10645,7)

Proof. Since (Δxa)TΔsa = 0, the proof is a direct consequence of Lemma
A.1.

Acknowledgments. The authors thank the associate editor and two anonymous
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EFFICIENT REDUCTION OF POLYNOMIAL ZERO-ONE
OPTIMIZATION TO THE QUADRATIC CASE∗

CHRISTOPH BUCHHEIM† AND GIOVANNI RINALDI‡

Abstract. We address the problem of optimizing a polynomial with real coefficients over binary
variables. We show that a complete polyhedral description of the linearization of such a problem can
be derived in a simple way from the polyhedral description of the linearization of some quadratic
optimization problem. The number of variables in the latter linearization is only slightly larger than
in the former. If polynomial constraints are present in the original problem, then their linearized
counterparts carry over to the linearized quadratic problem unchanged. If the original problem for-
mulation does not contain any constraints, we obtain a reduction to unconstrained quadratic zero-one
optimization, which is equivalent to the well-studied max-cut problem. The separation problem for
general unconstrained polynomial zero-one optimization thus reduces to the separation problem for
the cut polytope. This allows us to transfer the entire knowledge gained for the latter polytope by
intensive research and, in particular, the sophisticated separation techniques that have been devel-
oped. We report preliminary experimental results obtained with a straightforward implementation
of this approach.

Key words. polynomial zero-one optimization, integer nonlinear programming, pseudo-boolean
functions, max-cut problem, multilinear function optimization
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DOI. 10.1137/050646500

1. Introduction. We consider the problem of maximizing (or minimizing) a
polynomial objective function over binary variables under arbitrary polynomial con-
straints, i.e., over all binary vectors belonging to a given semialgebraic set. We call it
polynomial zero-one optimization.

Many different names and interpretations of this problem are circulating. For
instance, if a set A is used to index the (original) variables, then one might think of
the variables as modeling some subset of A. The possible monomials are then in one-
to-one correspondence with the subsets of A, as we may assume that every variable
appears with exponent at most one in every monomial. Consequently, maximizing a
polynomial over these variables means searching for a subset S of A such that the
sum of all coefficients of monomials that correspond to subsets of S is maximized. In
other words, for every subset of A, one can arbitrarily reward or punish the fact that
all elements of this set are chosen by S.

Still in the unconstrained case, assume that the objective function is multilinear.
Then the constraints x ∈ {0, 1}A can be replaced by x ∈ [0, 1]A, as an optimal solution
is always attained at a vertex of the unit hypercube [25]. Moreover, as multilinear
functions are closed under affine variable transformations, the unit hypercube can be
replaced by an arbitrary box. Therefore, this case is equivalent to the problem of
maximizing a multilinear function over a box.
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A standard method to address such a problem is linearization: every nonlinear
term in the problem formulation is replaced by a newly introduced binary variable. In
other words, the new variables correspond to all monomials appearing in the objective
function or in one of the constraints of the original problem. Over this new set
of variables, the problem thus translates to an integer linear program, which can
hopefully be solved by polyhedral methods.

However, additional constraints are now needed to link the newly introduced vari-
ables to the original ones. More precisely, the value of a variable representing a mono-
mial xi1xi2 . . . xir must equal the product of the values of xi1 , xi2 , . . . , xir . The pur-
pose of this paper is to show that, after adding a small number of new variables, this
task can be reduced to the quadratic case in an efficient (and easily implementable)
way. Using elementary polyhedral results, we show that the separation problem for
the linearized original problem can be reduced to the separation problem for a lin-
earized quadratic problem that is only slightly larger. The construction of the latter
is “orthogonal” to the given polynomial constraints in the sense that their linearized
counterparts carry over to the quadratic problem unchanged. By the equivalence of
unconstrained quadratic zero-one optimization and max-cut, we can thus reduce the
original problem to a max-cut problem with additional linear constraints.

The most promising application for this reduction method arises in the uncon-
strained case, which we examine in more detail in this paper, also experimentally.
In this case, the separation problem reduces to the separation problem for the cut
polytope, without further constraints. The cut polytope is one of the most important
and best-studied objects in polyhedral combinatorics: many classes of cutting planes
as well as sophisticated separation techniques are at hand for addressing the corre-
sponding separation problem (see, e.g., [19] or [21]). Our approach aims at exploiting
this knowledge for optimizing polynomials of arbitrary degree.

The polynomial zero-one optimization problem, with different types of constraints,
has been studied extensively in the literature, often under the name of pseudo-boolean
optimization. The reader is referred to a comprehensive survey by Boros and Hammer
[5] that contains not only pointers to numerous applications but also approaches for
solving this problem. In particular, two different approaches are mentioned: a reduc-
tion to the quadratic case due to Rosenberg [26] and the so-called basic algorithm by
Hammer, Rosenberg, and Rudeanu [16]. The former approach can be combined with
any max-cut algorithm and is briefly discussed in section 3.5. For the latter approach,
to the best of our knowledge, an experimental evaluation exists only for a special case
where it runs in linear time [7]. The ongoing interest in pseudo-boolean optimization
is underlined by a recent special issue of the journal Discrete Applied Mathematics
[14]. We would also like to point to the numerous theoretical results that have been
obtained for pseudo-boolean functions, e.g., concerning persistency [15], and to inter-
esting special cases such as hyperbolic pseudo-boolean functions or products of linear
functions; see again [5].

This paper is organized as follows. In section 2, we define the general problem
addressed and recall the standard linearization method. In section 3, we present the
reduction method for polynomial zero-one programming to the quadratic case. The
unconstrained case is considered in section 4; in particular, preliminary experimental
results are reported. Some conclusions are drawn in section 5.

2. The standard linearization. Let A be any finite set of n elements, and
consider the set of binary variables {xa | a ∈ A}. Let g0, . . . , gr be polynomials over
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these variables. We consider the following polynomial zero-one optimization problem:

max g0(x)

s.t. gi(x) ≥ 0 for all i = 1, . . . , r,

x ∈ {0, 1}A .

(2.1)

The standard way of linearizing the problem (2.1) is to consider the set I of
all nonconstant monomials appearing in at least one of the gi’s and to use a binary
variable zI for every I ∈ I, yielding the equivalent formulation

max h0(z)

s.t. hi(z) ≥ 0 for all i = 1, . . . , r,

zI =
∏

a∈I z{a} for all I ∈ I,

z ∈ {0, 1}I .

(2.2)

Here we use hi to denote the polynomial gi considered as a linear function in the new
set of variables zI . As all variables in (2.1) are binary, we may assume that each gi is
multilinear. In particular, we can identify monomials with the corresponding subsets
of A and thus consider I as a subset of 2A \ {∅}; therefore, we will use expressions
such as “union of monomials” in the following. Moreover, for the ease of exposition,
we assume that {a} ∈ I for all a ∈ A. We denote the cardinality of I by m.

Throughout this paper, let F denote the set of feasible solutions of (2.2), and
let P denote the convex hull of F , which is a polytope in R

I . Problem (2.2) is still
a polynomial optimization problem, but the nonlinearity is restricted to the product
formulae. The remaining problem is to model these constraints by linear inequalities.
The easiest way to do this is the following: for every I ∈ I with |I| ≥ 2, use the |I|+1
linear inequalities

zI ≤ z{a} for all a ∈ I ,(2.3)

zI ≥
∑
a∈I

z{a} − |I| + 1 .(2.4)

This standard linearization approach has been widely discussed in the literature;
for early examples, see [10, 11, 12, 16, 28]. However, the relaxation of P given by
the constraints (2.3) and (2.4) is rather weak when the integrality constraints are
dropped. The aim of this paper is to present a general method for deriving much
tighter relaxations of P .

A different approach to problem (2.1) is to replace each polynomial function gi by
a collection of linear functions in the same set of variables. This approach has been
studied by Granot and Hammer [13] and later improved by Balas and Mazzola [2].
Unfortunately, the resulting LP has exponential size, and the corresponding relaxation
is rather weak in general. On the other hand, our aim is to keep the construction as
small as possible, at the same time allowing a tight polyhedral description.

Still another approach to solving problem (2.1) is to apply lift-and-project meth-
ods; for this topic, see the comparative survey by Laurent [20]. Here new polynomial
constraints are created by multiplication of given ones. In the LP-based approaches,
the resulting constraints are then linearized. According to the number of constraints
multiplied, one obtains hierarchies of LP relaxations that coincide with the polytope P
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at level n. Similar ideas have been used to develop cutting plane algorithms, e.g., by
Balas et al., who proposed strengthening the standard linearization by applying the
lifting to single fractional variables and computing most violated facets of the corre-
sponding relaxations, always projecting them back to the original variable space in
order to avoid exponential numbers of variables [1, 3].

Related methods based on semidefinite programming (SDP) have been introduced
by Lasserre [18] and Parillo [24]. These are based on deep results from real algebraic
geometry on representations of nonnegative polynomial as sums of squares. As shown
in [20], the hierarchy of relaxations constructed by Lasserre is stronger than earlier
hierarchies of LP-based relaxations [1, 22, 27]. However, in all these approaches the
number of variables already becomes large in the first levels of the hierarchy.

3. The general reduction method. In the following, we present a general
method of reducing polynomial zero-one optimization to the quadratic case via the
separation problem. We first prove elementary polyhedral results that provide the
theoretical background for the reduction (section 3.1). Then we give an algorithmic
description of the reduction procedure (section 3.2). Special aspects of this method
are discussed in sections 3.3 and 3.4. Finally, we compare this approach to the direct
reduction method (section 3.5).

3.1. Basic results. Starting from the polytope P corresponding to (2.2), we
first construct a new polytope P ∗ as follows: define the following subset of 2I whose
elements are all sets of two (not necessarily distinct) monomials whose union is a
monomial of I:

I∗ =
{
{I, J} | I, J ∈ I and I ∪ J ∈ I

}
.

As in the definition of I∗ the sets I and J may coincide, we have {I} ∈ I∗ for
each I ∈ I. If we associate a variable y{I,J} with every element {I, J} of I∗, every hi

gives rise to a linear function h∗
i over the new variables {yS | S ∈ I∗} by replacing

each variable zI with the corresponding variable y{I}. Now consider

max h∗
0(y)

s.t. h∗
i (y) ≥ 0 for all i = 1, . . . , r,

y{I,J} = y{I}y{J} for all {I, J} ∈ I∗,

y ∈ {0, 1}I∗
,

(3.1)

and let F ∗ be the set of feasible solutions of (3.1). Moreover, let P ∗ be the polytope
in R

I∗
defined as the convex hull of F ∗.

We do not aim to solve this optimization problem but rather are interested only
in the separation problem for P ∗. Note that the variables that appear in the objective
function and in the r linear constraints are only those indexed by a single monomial.
The variables indexed by sets of two monomials appear only in the product constraints.
Thus problem (3.1) can be thought of as the linearization of a quadratic zero-one
optimization problem. Our aim is to exploit this in the following. To do so, we define
an injective linear map ψ: RI → R

I∗
componentwise by (ψ(z)){I,J} = zI∪J , and we

set

Y =
{
y ∈ R

I∗ | y{I∪J} = y{I,J} for all I, J ∈ I with I ∪ J ∈ I
}
.
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From these definitions, it is readily checked that Y = ψ(RI). The preimage z under ψ
of a vector y in Y is determined by zI = y{I}.

Lemma 3.1. ψ(F ) ⊆ F ∗ ∩ Y .
Proof. Let z ∈ F , and set y = ψ(z). By definition, we have h∗

i (y) = hi(z), so
that all inequalities in (3.1) are satisfied by y. It remains to show y{I,J} = y{I}y{J}
for all I, J ∈ I. Indeed, as z belongs to F , we have

y{I,J} = zI∪J =
∏

a∈I∪J

z{a} =
∏
a∈I

z{a}
∏
a∈J

z{a} = zIzJ = y{I}y{J} .

Lemma 3.1 shows that every LP relaxation of P ∗ gives rise to an LP relaxation of P .
The following results concern the quality of this relaxation. For this, call the set I
reducible if every set in I containing more than one element is a union of two other
sets in I. Then we have the following.

Theorem 3.2. If I is reducible, then ψ(F ) = F ∗ ∩ Y .
Proof. By Lemma 3.1, it remains to show that every y ∈ F ∗∩Y belongs to ψ(F ).

As mentioned above, the vector z defined by zI = y{I} satisfies ψ(z) = y, and so
we have to show that z belongs to F . As hi(z) = h∗

i (y), all inequalities in (2.2) are
satisfied by z. As z is integer, it remains to show that

zI =
∏
a∈I

z{a}

holds for all I ∈ I. By definition of z, we thus have to prove

y{I} =
∏
a∈I

y{{a}}

for all I ∈ I. This is done by induction over the cardinality of I. If |I| = 1, the
claim is trivial. Otherwise, as I is reducible, there exist two sets I1, I2 ∈ I that are
smaller than I such that I = I1 ∪ I2. For any y ∈ F ∗, we have y{I1,I2} = y{I1}y{I2}
by definition. By induction,

y{I1} =
∏
a∈I1

y{{a}} and y{I2} =
∏
a∈I2

y{{a}} .

Finally, the equations in Y enforce y{I1,I2} = y{I1∪I2}. Connecting all this, we derive

y{I} = y{I1∪I2} = y{I1,I2} = y{I1}y{I2} =
∏
a∈I1

y{{a}}
∏
a∈I2

y{{a}} =
∏
a∈I

y{{a}} .

If I is not reducible, then Theorem 3.2 does not hold in general. To see this, consider
the unconstrained case, and assume that there is an element I ∈ I with |I| ≥ 2 such
that I 
= I1 ∪ I2 for all I1, I2 ∈ I \ {I}. In other words, I1 ∪ I2 = I implies I1 = I
or I2 = I. Define y ∈ R

I∗
by

y{I1,I2} =

{
1 if I1 ∪ I2 ⊆ I but I1 ∪ I2 
= I,

0 otherwise.

Then y ∈ F ∗ ∩ Y , but the unique preimage ψ−1(y) of y in R
I is not contained in F ,

as ψ−1(y)I = y{I} = 0, while∏
a∈I

ψ−1(y){a} =
∏
a∈I

y{{a}} = 1 .
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The latter is true because |I| ≥ 2 implies that each {a} is a proper subset of I.
Theorem 3.3. The polytope P ∗ ∩ Y is a face of P ∗ and thus integer.
Proof. Consider the linear subspace of R

I∗
given as

Y ′ =
{
y ∈ R

I∗ | y{I∪J} = y{I,I∪J} for all I, J ∈ I with I ∪ J ∈ I
}
.

As the equations defining Y ′ form a subset of those defining Y , we have Y ⊆ Y ′. In
particular, we have P ∗ ∩ Y = P ∗ ∩ Y ′ ∩ Y . We will first intersect P ∗ with Y ′ and
then with Y and show that in both steps the added equations are induced by valid
inequalities for the corresponding polytope, so that we cut out a face in each step.

For the first step, notice that the inequality y{I∪J} ≥ y{I,I∪J} is valid for P ∗

for all I, J ∈ I with I ∪ J ∈ I. Hence P ∗ ∩ Y ′ is a face of P ∗ and thus integer.
Now we claim that for P ∗ ∩ Y ′ the inequality y{I∪J} ≤ y{I,J} is valid. As P ∗ ∩ Y ′

is integer, we have to show this only for integer vectors in this polytope. For these,
we have y{I∪J} = y{I,I∪J} = y{I}y{I∪J} by definition, so that either y{I∪J} = 0
or y{I} = 1. The same argument for J instead of I yields y{I∪J} = 0 or y{J} = 1.
Thus, if y{I∪J} = 1, we have y{I} = y{J} = 1, and hence y{I,J} = y{I}y{J} = 1. We
derive y{I∪J} ≤ y{I,J}.

Corollary 3.4. If I is reducible, then P is isomorphic to a face of P ∗ via ψ.
To conclude this section, we consider the basic SDP relaxation of the quadratic

problem (3.1). For any set B, define Pk(B) = {B′ ⊆ B | |B′| ≤ k}. For B ⊆ 2B ,
let MB(y) denote the restriction of the moment matrix of y over B to rows and columns
indexed over B, and let ∗ denote the shift operator [18, 20]. With these definitions,
we have I∗ ⊆ P2(I), and the basic SDP relaxation of P ∗ is{

y ∈ R
P2(I) | MP1(I)(y) � 0, MP1(I)(h

∗
i ∗ y) � 0 for i = 1, . . . , r, y∅ = 1

}
.(3.2)

Note that MP1(I)(y){I},{J} = y{I,J}. Under the linear map ψ, the variable y{I,J}
corresponds to zI∪J in (2.2), so that (3.2) is equivalent to{

z ∈ R
I2∪{∅} | MI∪{∅}(z) � 0, MI∪{∅}(hi ∗ z) � 0 for i = 1, . . . , r, z∅ = 1

}
,(3.3)

where I2 = {I ∪ J | I, J ∈ I}. Projecting (3.3) to R
I yields an SDP relaxation of P .

Moreover, it is easy to see that the results of this section remain valid if we remove
each element {I} from I∗ for which I is maximal in I. Then instead of (3.3) we get{

z ∈ R
I′
2∪{∅} | MI′∪{∅}(z) � 0, MI′∪{∅}(hi ∗ z) � 0 for i = 1, . . . , r, z∅ = 1

}
,(3.4)

where I ′ is the set of nonmaximal elements of I and I ′
2 = {I ∪ J | I, J ∈ I ′}. Now

reducibility of I implies I ⊆ I ′
2, so that (3.4) in this case still induces a relaxation

of P , defined by an even smaller number of variables. If the original problem (2.1) is
already quadratic, then (3.4) is just the standard SDP relaxation of (2.1).

If I is reducible, then by Theorem 3.2 the integer points in (3.4) correspond
bijectively to the solutions of (2.2). On the other hand, if I is not reducible, then the
example given above shows that in general we can have MI∪{∅}(z) � 0 even if z is
integer and is infeasible for (2.2).

Using the framework of Laurent [20], the relaxation (3.4) can be compared to the
ones presented by Sherali and Adams [27] and Lasserre [18]: in all three cases, the
semidefiniteness of the (full) moment matrices is relaxed by requiring this property
only for certain submatrices. In particular, one finds that (3.4) contains the tth
Lasserre iterate if all monomials in I have degree at most t + 2 but not earlier in
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general. On the other hand, our relaxation is not usually contained in any Lasserre
iterate, as we restrict ourselves to very few rows and columns of the moment matrices,
corresponding to our aim to keep the number of variables as small as possible.

3.2. The reduction procedure. We showed that the polytope P is isomorphic
to a face of a polytope P ∗ corresponding to a quadratic instance if I is reducible. In
particular, in this case, the separation problem for P reduces to the separation problem
for P ∗; i.e., the general separation problem reduces to the one for the quadratic case.
More precisely, assume that a separation algorithm A is given for P ∗; then we obtain
the following induced separation algorithm for P .

Separation of a vector z ∈ R
I from P .

Compute the vector y∗ = ψ(z) ∈ R
I∗

Apply the separation algorithm A to y∗

if a violated constraint Γ is found
then

Replace every variable y{I,J} in Γ by zI∪J

Return the resulting constraint
else output “no cutting plane found”

By Lemma 3.1, any constraint returned by this algorithm is valid for P but violated
by z. In particular, the algorithm is correct whenever the answer is positive, i.e.,
whenever a cutting plane is found. On the other hand, its effectiveness, i.e., the
probability of finding a violated cutting plane if one exists, obviously depends on the
effectiveness of the underlying separation algorithm A. According to Corollary 3.4,
the former algorithm is an exact separation algorithm for P if the same is true for A
and I is reducible. The reducibility of I can be obtained artificially by adding new
zero-weight sets to I in a preprocessing step (see section 3.3).

The general idea supporting our approach is thus to solve all LP relaxations in
the original variable space (including variables needed for making I reducible) and
to move to the higher dimension of P ∗ only during separation. The advantage of
dealing with P ∗ instead of P in the separation phase is that the former belongs to
the smaller class of polytopes corresponding to quadratic problems, so that there
is more hope in finding a good polyhedral description of P ∗. For instance, in the
unconstrained case, P ∗ is isomorphic to a cut polytope, while in the general case, the
polytope P ∗ corresponds to a max-cut problem with additional constraints. For cut
polytopes, several classes of cutting planes and sophisticated separation techniques
are known, while nothing similar is at hand for the more general polytope P , even in
the unconstrained case. The practical benefit of this approach is underlined by the
results of a first experimental evaluation, presented in section 4.3.

3.3. How to make the instance reducible. As pointed out, our separation
approach can be expected to have a good performance only if the given set I is
reducible, even if the validity of the induced inequalities does not require reducibility
of I. Obviously, every set I can be made reducible by adding new elements, e.g., by
adding all subsets of elements in I. Unfortunately, the added elements have to be
represented by additional variables, so that the problem size increases. This gives rise
to the question of how many elements we have to add to I and how we can find a
possibly small set of new elements algorithmically.

One can show that determining a smallest set of additional variables sufficient
to make I reducible is an NP-hard problem, which remains true even for degree d =
3. This follows from the NP-hardness of finding an optimal replacement strategy
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in the direct reduction approach [5] (see section 3.5). Hence we have to resort to
heuristic methods. In our implementation, we use the following straightforward greedy
approach: first, add all singletons {a} to I if necessary. Then, as long as I is not
reducible, determine two distinct variables a1, a2 ∈ A such that the cardinality of

P(a1, a2) =
{
I ∈ I | a1, a2 ∈ I and I 
= I1 ∪ I2 for all I1, I2 ∈ I \ {I}

}
is maximal. Now add the sets {a1, a2} and I \ {a1, a2} to I for all I ∈ P(a1, a2).
In the worst case, i.e., if all I ∈ I are pairwise disjoint and no singletons exist in I,
the number of new terms produced by this algorithm is n +

∑
I∈I(|I| − 2) and thus

bounded by n+(d−2)m. For hard instances, however, the sets I ∈ I typically overlap
to a significant extent; thus in practice the average number of new variables can be
expected to be much smaller than n + (d− 2)m.

3.4. How to define the separation instance. The set I∗ as defined in sec-
tion 3.1 has, in general, quadratic size in m. However, assuming that I is reducible,
it is readily checked that all results of section 3.1 remain true if I∗ is constructed
in a sparser way as follows: for every I ∈ I, choose two smaller elements I1, I2 ∈ I
with I = I1 ∪ I2 and add {I1, I2}, {I1, I}, and {I2, I} to I∗. In other words, we
have to model only a single representation of I as a union of smaller elements in I.
Using this construction, the size of I∗ is at most four times the size of I. A further
improvement is obtained by omitting any singleton {I} for which I is maximal in I.

In summary, these modifications yield a smaller instance I∗ than the one proposed
in section 3.1. For example, if the original instance I was already a quadratic instance,
we now have I = I∗. So it might seem more appealing to use this sparse definition
of I∗. However, as for the quadratic case, a perfect separation algorithm is not
available; this is not always preferable from a computational point of view, because
the original dense definition leads to tighter LP relaxations in general.

Experimentally, we found that using the dense definition often leads to better
results. This, however, might depend on the separation algorithm used for the un-
derlying quadratic problem. It should be worthwhile to search for criteria that allow
us to decide whether or not a given pair of monomials should be added to I∗, i.e.,
whether it is likely that the resulting improvement of the relaxation justifies the new
variable. One could even take this decision dynamically, at the beginning of each
separation step, based on the current fractional solution z to be separated. We have
not included this in our implementation yet but plan to examine such strategies in
future work.

3.5. Connection to the direct reduction approach. The direct reduction
approach, proposed by Rosenberg [26] for the unconstrained case, can be easily ex-
tended to arbitrary polynomial zero-one optimization problems as in (2.1). It pro-
ceeds as follows: choose two variables xa and xb and replace their product xaxb by
a new variable xc wherever it appears in a monomial of any of the polynomials gi,
i = 0, . . . , r. Add the quadratic term −M(xaxb − 2xaxc − 2xbxc + 3xc) with M  0
to the objective function in order to enforce xc = xaxb for every optimal solution. It-
erate this replacement until all monomials have been reduced to products of at most
two variables. In this way, one obtains a quadratic problem instance; denote the
corresponding monomial set by I ′. In the unconstrained case, the problem is now
equivalent to the max-cut problem on some graph G′.

The size of I ′ strongly depends on the strategy of choosing the next pair of
variables to replace. The connection to our approach is that, whatever strategy is
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chosen, there is a corresponding strategy for making I reducible, such that the graph
for which we have to separate from the cut polytope is just G′—if we use the sparse
definition of I∗. The opposite is also true: every strategy for making I reducible
induces a replacement strategy such that the resulting graphs agree. Thus solving I ′

is equivalent to solving the max-cut problem on exactly the same graph that in our
algorithm is used for separation. The main advantage of our approach is that all other
parts of the algorithm are carried out on the instance arising from making I reducible,
which is much smaller than I∗. Experimental evidence of this claim is provided in
section 4.3. Furthermore, we can also choose the dense definition of I∗, which yields
better results in most cases (see section 3.4). Another advantage of our approach is
that there is no need for “big M” techniques to reduce the problem, which typically
introduces numerical difficulties in the resulting problem.

4. The unconstrained case. In the remainder of this paper, we restrict our-
selves to the unconstrained case; i.e., we consider the problem

max
{
g0(x) | x ∈ {0, 1}A

}
(4.1)

and its standard linearization

max h0(z)

s.t. zI =
∏

a∈I z{a} for all I ∈ I,

z ∈ {0, 1}I
(4.2)

with the corresponding polytope P and set of nonconstant monomials I. Observe
that P depends only on I now and that the feasible solutions correspond to all sub-
sets S ⊆ A. From now on, the characteristic vector for S in P is denoted by χS ; i.e.,
we define χS ∈ R

I by

χS
I =

{
1 if I ⊆ S,

0 otherwise.

Problem (3.1) in section 3.1 now becomes (the linearization of) an unconstrained
quadratic zero-one optimization problem. This implies that the corresponding poly-
tope P ∗ is a boolean quadric polytope. These polytopes have been studied extensively
by Padberg [23]. Later it was shown by De Simone that every boolean quadric poly-
tope is in fact isomorphic to a cut polytope [8]. In our case, the graph corresponding
to this cut polytope is just (I, I∗ \ I) extended by a root node r, i.e., a new node
adjacent to all other nodes in I. The transformation of variables between the two
formulations yielding the isomorphism is

zJ �→
{

x(r,I) if J = {I},
1
2

(
x(r,I1) + x(r,I2) − x(I1,I2)

)
if J = {I1, I2},

x(I1,I2) �→

⎧⎪⎨
⎪⎩

z{I2} if I1 = r,

z{I1} if I2 = r,

z{I1} + z{I2} − 2z{I1,I2} otherwise.

Here x(I1,I2) denotes the variable in the maximum cut formulation corresponding to
an edge (I1, I2) in the graph (I, I∗ \ I). From this, we derive the following.
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Corollary 4.1. The polytope P is isomorphic to a face of a cut polytope.
This is a direct consequence of Corollary 3.4. In particular, the separation problem

for our original polytope P reduces to a separation problem for a cut polytope in the
way explained in section 3.2. As the cut polytope is one of the best-studied objects
in polyhedral combinatorics, we can fall back upon a large number of known classes
of cutting planes and, in particular, sophisticated separation techniques for the cut
polytope in order to solve the unconstrained polynomial problem (4.1) (see, e.g., [21]).

Before reporting results of a straightforward implementation of this approach,
we examine P in two special cases with respect to the monomial set I, in which P
has some useful properties: the case that I is closed under taking supersets, and the
opposite case that I is closed under taking subsets.

4.1. Upward completeness. Throughout this section, we assume that I is
closed under taking supersets, i.e., that

I ∈ I, J ∈ 2A, I ⊆ J =⇒ J ∈ I .

In other words, the product of every monomial I ∈ I with every variable xa, a ∈ A,
is again a monomial in I. In this case, we have the following.

Theorem 4.2. The polytope P is isomorphic to the simplex of dimension m.
Proof. We first claim that P is given by the linear inequalities

(−1)|I|
∑
J⊇I

(−1)|J|zJ ≥ 0(4.3)

for every I ∈ I and ∑
I∈I

(−1)|I|
∑
J⊇I

(−1)|J|zJ ≤ 1 .(4.4)

These constraints are valid, as for integer vectors in P we have

(−1)|I|
∑
J⊇I

(−1)|J|zJ =
∏
a∈I

xa

∏
a∈A\I

(1 − xa) .

Now an isomorphism between the simplex of dimension m and the polytope P ′ given
by (4.3) and (4.4) is induced by the variable transformations

zI �→
∑
J⊇I

z′J and z′I �→ (−1)|I|
∑
J⊇I

(−1)|J|zJ for all I ∈ I .

These transformations are well defined because I is closed under taking supersets.
Moreover, they are inverse to each other, as one can check with some patience.

Under the given transformation, the inequality (4.3) becomes z′I ≥ 0, while (4.4) is
transformed into

∑
I∈I z′I ≤ 1. Hence P ′ is isomorphic to the simplex of dimension m.

Furthermore, it is readily checked that under this transformation all vertices of the
simplex correspond to characteristic vectors χS for suitable S ⊆ A. In particular, we
derive P ′ ⊆ P . The validity of (4.3) and (4.4) implies P = P ′.

Note that the transformation used in the proof of Theorem 4.2 is a multiplication
with the so-called zeta matrix ; see, e.g., section 3.1 in [20]. The constraints (4.3)
and (4.4) are sometimes called bound-factor product constraints.

The condition that I be closed under taking supersets is of purely theoretical
interest, as usually it will not hold for practical instances. Moreover, the number
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of elements that would have to be added to I in order to achieve this property is
exponential in general. However, the complete variable set 2A \ {∅} meets this con-
dition, and it is easy to see that every polytope P is a projection of the polytope P
corresponding to 2A \ {∅}, which is nothing but the n-th Sherali-Adams iterate [27]
of the cube [0, 1]A. Theorem 4.2 states that P is a simplex of dimension 2n − 1,
implying that P is full-dimensional for every I. However, in general, more interesting
properties of P do not carry over via this projection.

4.2. Downward completeness. In the previous section, we examined the spe-
cial case where I is closed under taking supersets. In this case, the polytope P turned
out to have a very simple structure. In this section, we assume, on the contrary, that I
is closed under taking nonempty subsets; i.e., we suppose

I ∈ I, J ∈ 2A \ {∅}, I ⊇ J =⇒ J ∈ I.

This case is practically much more relevant than the one considered previously. For
instance, it contains all quadratic instances and hence the max-cut problem as a
special case. However, in this case the polytope P shares some interesting properties
with the cut polytope of which it can consequently be considered as the natural
generalization.

A well-known property of the cut polytopes is their symmetry: for each two
vertices, there is an automorphism of the polytope, called switching, that maps the
first vertex to the second (see, e.g., [9]). We claim that this is true in general if I
is closed under taking nonempty subsets. Moreover, switching has a most natural
interpretation: switching with respect to S ⊆ A amounts to switching the value of
each variable xa with a ∈ S.

Theorem 4.3. Let P be the convex hull of feasible solutions of (4.2), and let {a} ∈
I for all a ∈ A. Then for each S ⊆ A, a switching πS of the vertices of P is given
by πS(χT ) = χT	S. Furthermore, the following statements are equivalent:

(a) The set I is closed under taking nonempty subsets.
(b) Each switching πS corresponds to an automorphism of P .
Proof. Since {a} ∈ I for all a ∈ A, the characteristic vectors χT for T ⊆ A

are pairwise distinct, so that the permutation πS is well defined. To show that (a)
implies (b), consider the affine map πS : RI → R

I , defined componentwise by

πS(z)I = (−1)|I\S|
∑

I\S ⊆ J ⊆ I

(−1)|J|zJ

for z ∈ R
I and I ∈ I. Here we set z ∅ = 1 for all z ∈ R

I . This map is well
defined, as I is closed under taking subsets. Moreover, as observed in section 4.1,
it brings 0 − 1 points to 0 − 1 points; thus it is an automorphism of P . It remains
to show that πS(χT ) = χT	S for all T ⊆ A, since this implies that πS induces a
switching of the vertices of P and hence an automorphism πS of P . Indeed, arguing
componentwise, we have

χT	S
I =

∏
a∈I

χ{a} · χTΔS =
∏

a∈I\S
χ{a} · χT

∏
a∈I∩S

(
1 − χ{a} · χT

)

= (−1)|I\S|
∑

I\S ⊆ J ⊆ I

(−1)|J|
∏
a∈J

χ{a} · χT = (−1)|I\S|
∑

I\S ⊆ J ⊆ I

(−1)|J|χT
J

= πS(χT )I
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for all I ∈ I. This completes the first part of the proof.
Now let (a) be violated. Then there are sets S ⊂ T ⊆ A with T ∈ I but T \S 
∈ I.

One may assume that S is maximal, so that all nonempty proper subsets of T \ S
belong to I. We claim that the 2|T\S| vectors {χR | R ⊆ T \S} are affinely dependent
in R

I , while their images under πS are not. This implies that πS is not induced by
any automorphism of P .

Indeed, these vectors are 0 in all dimensions I with I 
⊆ T \ S. As ∅ and T \ S
do not belong to I, the corresponding dimensions do not exist in R

I . Therefore,
the 2|T\S| vectors can differ only in the remaining 2|T\S| − 2 dimensions and are thus
affinely dependent. On the other hand, their images {χR∪S | R ⊆ T \ S} under πS

are affinely independent, as can be checked easily by inspecting the dimensions I
with ∅ 
= I ⊂ T \ S and I = T , which by construction all exist in R

I .
Corollary 4.4. Any vertex of the polytope P can be mapped to any other vertex

by a single automorphism πS. In particular, all affine cones pointed at the vertices
of P are isomorphic.

Corollary 4.5. Let a ∈ R
I and α ∈ R. Then the inequality a · y ≤ α is

valid for P if and only if the inequality a · πS(y) ≤ α is valid for P . The former is
facet-inducing for P if and only if the latter is.

4.3. Experimental evaluation. In this section, we report preliminary experi-
mental results obtained with a straightforward implementation of the ideas presented
in section 3, applied to the unconstrained case. They are meant only to give a first
indication of the practical performance and usability to be expected from the pre-
sented approach. Note that the entire implementation is a simple task if a separation
procedure for the cut polytope is ready to hand; one has to only code the trivial
transformations explained in section 3.2 and embed everything into a branch-and-cut
framework. For this, we used ABACUS [17] in combination with CPLEX [6]. For the
max-cut separation, we used only cycle inequalities here, with the well-known exact
separation algorithm [4]. We did not apply any tailing off strategy; for enumeration
we used the depth first approach.

We experimented with randomly generated instances of a given degree and den-
sity. In the following, we focus on instances with a small degree. For given degree d,
number of variables n, and number of monomials m, the instances were obtained by
randomly choosing m subsets of {1, . . . , n} with d elements each. Objective function
coefficients were chosen randomly from the reals in the interval [−1, 1].

For each selected set of parameters d, n,m, we solved 10 random instances on
a Pentium 4 processor with 2.8 GHz and 1 GB of main memory. The results are
displayed in Table 4.1. We report average figures for the total runtime in cpu-seconds
needed to solve the instance to optimality (Time) and for the number of nodes in
the enumeration tree (Subs). For comparison, we state these data for the CPLEX
MIP-solver [6] applied to the basic relaxation given by (2.3) and (2.4), for the direct
reduction approach discussed in section 3.5, and for the algorithm presented in this
paper. In some cases, CPLEX MIP or direct reduction could not solve all instances
within 24 cpu-hours. For these cases, we state lower bounds on both the runtime and
the number of subproblems.

In order to obtain comparable figures, we used the same implementation frame-
work for both the direct reduction and our algorithm; i.e., after reducing the objective
function we applied our own implementation to the resulting quadratic instance. In
Table 4.2, we show the average node degree of the corresponding separation graphs
and the quality of the upper bound at the root node.
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Table 4.1

Results for small-degree instances.

Instances CPLEX MIP Direct reduction Our algorithm

d n m Time Subs Time Subs Time Subs

3 200 400 8.20 374.3 3.47 1.2 2.07 1.2
3 200 500 1088.08 61588.4 156.27 24.4 69.11 16.8
3 200 600 > 49859.67 > 2104977.5 12935.19 1259.4 3107.30 549.8

3 400 700 15.06 328.5 19.59 2.0 16.81 2.6
3 400 800 2080.75 40455.9 505.06 35.6 147.32 14.8
3 400 900 > 51341.72 > 706246.6 > 11597.68 > 488.4 6517.69 416.6

3 600 1000 75.84 1010.0 31.62 1.2 21.11 1.2
3 600 1100 712.00 5695.1 443.83 13.8 248.53 10.4
3 600 1200 > 43309.47 > 369578.1 > 18989.30 > 425.0 11202.83 369.2

4 200 250 2.58 115.3 10.14 3.0 8.25 3.6
4 200 300 63.77 3550.0 252.86 43.0 105.80 27.8
4 200 350 1483.77 77808.8 2250.22 227.0 403.94 72.0

4 400 450 5.39 89.1 40.76 3.6 23.03 3.0
4 400 500 17.11 372.9 486.20 36.4 84.31 7.6
4 400 550 1416.09 26638.5 11217.64 443.8 737.08 43.2

4 600 650 6.41 45.9 31.38 1.4 21.60 1.6
4 600 700 43.66 484.1 433.53 12.8 164.25 6.2
4 600 750 489.12 4675.4 > 9670.97 > 211.8 2194.87 65.6

As we used only cycle inequalities for separation, the given bounds at the root
node correspond to the relaxation of P induced by the cycle relaxation of P ∗. The
results in Table 4.1 show that these bounds are rather tight for the examined instances:
few LPs and subproblems have to be solved in general. On the other hand, a single
separation phase takes a lot of time—for some instances, separation consumed more
than 50 % of the total runtime. To a certain extent, this is due to the nature of
our approach, as the separation instance is considerably larger than the LPs to be
solved. Nevertheless, there is a lot of room for improvement at this point, e.g., by
using faster separation algorithms such as the spanning-tree heuristic for separation
of cycle inequalities; see, for example, the recent survey [21].

For increasing degree d, the relaxation for P induced by the cycle relaxation of P ∗

will become weaker in general. Furthermore, the number of additional variables for
making I reducible will increase. We thus expect runtimes to increase with d. On the
other hand, higher degrees mean a stronger interrelation between different monomials,
making branching more efficient in general, as setting a monomial to 0 or 1 has a
greater effect in this case. Similar reasoning applies to the density m/n: for sparse
instances, the LP bounds are much better than for dense ones, while branching has a
greater effect for the latter instances. Therefore, our approach outperforms CPLEX
MIP much more clearly for instances of small degree and density in general.

All instances considered so far have a small degree. To examine the effect of
higher-degree monomials, we created another test set containing higher-degree in-
stances; to keep density low at the same time, we used an exponential distribution
for this. More precisely, each of the m monomials was chosen as follows: first, its
degree d ∈ {2, . . . , n} was determined randomly, where the probability of choosing
degree d < n was 21−d. Then the monomial was picked randomly from the set of
all possible monomials of the chosen degree. Again, we created 10 instances for each
combination of m and n. This generation method yields instances of high degree but
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Table 4.2

Root bounds for small-degree instances.

Instances Dense

d n m Deg Bnd

3 200 400 5.3 0.0 %
3 200 500 5.7 0.8 %
3 200 600 6.0 3.6 %

3 400 700 5.1 0.0 %
3 400 800 5.3 0.3 %
3 400 900 5.5 1.0 %

3 600 1000 5.0 0.0 %
3 600 1100 5.2 0.1 %
3 600 1200 5.3 0.6 %

4 200 250 4.9 0.1 %
4 200 300 5.2 1.1 %
4 200 350 5.4 2.6 %

4 400 450 4.8 0.1 %
4 400 500 5.0 0.2 %
4 400 550 5.1 0.6 %

4 600 650 4.8 0.0 %
4 600 700 4.9 0.1 %
4 600 750 5.0 0.4 %

with many lower-degree monomials, which is a situation likely to arise in practical
applications. Note that the expected degree of a monomial in these instances is almost
three. Nevertheless, results were much better than for instances with all monomials
of degree three (see Tables 4.3 and 4.4).

Table 4.3

Results for sparse higher-degree instances.

Instances CPLEX MIP Direct reduction Our algorithm

d n m Time Subs Time Subs Time Subs

11.5 200 500 5.16 297.6 4.03 1.0 2.80 1.0
12.4 200 600 408.65 33585.8 859.44 121.0 139.53 24.0
12.2 200 700 2676.27 172987.4 384.23 35.0 342.52 43.8
12.4 200 800 > 42411.65 > 2004332.2 9740.83 566.0 2359.17 207.2

12.1 400 800 5.92 42.8 9.67 1.4 5.55 1.4
12.1 400 900 32.11 882.5 39.27 2.4 28.28 2.4
12.1 400 1000 432.43 9431.9 293.76 11.8 95.35 4.4
12.3 400 1100 > 37274.49 > 891109.4 7161.89 239.8 3029.73 141.4

13.3 600 1100 35.58 946.5 33.58 1.2 25.40 1.2
13.9 600 1200 130.92 2769.4 311.97 9.4 171.38 6.6
13.7 600 1300 540.41 9325.6 336.80 7.4 194.50 5.2
14.1 600 1400 > 12080.52 > 185146.6 3186.61 57.6 1751.48 42.2

As pointed out, the results of Tables 4.1 and 4.3 were obtained by a vanilla
implementation. Runtimes should decrease considerably by using faster separation
routines, further classes of cutting planes, an adequate branching strategy, and so on.
Implementing separation routines designed for denser graphs should improve runtimes
considerably. As obvious from Tables 4.1 and 4.3, denser separation graphs are caused
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Table 4.4

Root bounds for sparse higher-degree instances.

Instances Dense

d n m Deg Bnd

11.5 200 500 6.8 0.0 %
12.4 200 600 7.1 0.9 %
12.2 200 700 7.4 0.9 %
12.4 200 800 7.7 2.3 %

12.1 400 800 6.2 0.0 %
12.1 400 900 6.5 0.0 %
12.1 400 1000 6.7 0.1 %
12.3 400 1100 6.8 0.6 %

13.3 600 1100 6.1 0.0 %
13.9 600 1200 6.2 0.0 %
13.7 600 1300 6.4 0.1 %
14.1 600 1400 6.6 0.2 %

by larger ratios m/n and by higher degrees d.

5. Conclusion. We presented a new approach for reducing polynomial zero-one
optimization problems to the quadratic case. Unlike other approaches, we do not
produce an equivalent quadratic instance directly but use a reduction of the general
separation problem to the one for quadratic instances and thus to the separation
problem for the cut polytope with additional linear constraints. All other components
of a branch-and-cut algorithm such as the solution of the LP relaxations, primal
heuristics, or branching can be performed on a much smaller instance that arises from
making the original instance reducible.

Experimental results show that our reduction method is a promising approach
for solving large unconstrained polynomial optimization problems. Here we make
use of the fact that the separation problem for the quadratic case is well studied.
Unfortunately, the situation is less comfortable in the presence of constraints. Certain
constrained quadratic problems, such as the quadratic assignment problem or the
quadratic knapsack problem, have been investigated from a polyhedral point of view;
the corresponding separation algorithms can be applied in our approach in order
to address the corresponding polynomial problems. However, general constrained
polynomial problems are reduced to general constrained quadratic problems, which
themselves are hard enough to solve. Our aim was to show that moving from quadratic
to polynomial functions does not add much to the hardness of the problem.

Acknowledgment. We would like to thank the two anonymous referees for their
helpful comments and suggestions that improved this paper significantly.
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Abstract. A high-order path-following method is proposed for finding the least 2-norm solution
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1. Introduction. In this paper we are concerned with finding the least 2-norm
solution of the following monotone LCP:

(1) 0 ≤ x ⊥ Mx + q ≥ 0,

where q ∈ Rn and M ∈ Rn×n is positive semidefinite. A monotone LCP may have
many solutions, but the least 2-norm solution is unique.

The problem of finding the least 2-norm solution to some optimization and com-
plementarity problems has been extensively studied. See [23, 5, 9] for some recent
results on linear programs and [18, 7, 21, 22, 24] on complementarity problems. Also,
it is well known that the Tikhonov regularization trajectory of a monotone comple-
mentarity problem converges to the least 2-norm solution [1].

On the other hand, there is a vast literature on finding a general solution of
LCPs. In particular, the local convergence analysis of interior-point-like methods for
monotone LCPs has been studied, to name a few, by Wright and Zhang [19], Ye and
Anstreicher [20], McShane [10], and Huang, Qi, and Sun [4], under the assumption
that there exists a strictly complementary solution, and by Mizuno [11], Potra and
Sheng [12], Sturm [17], Stoer, Wechs, and Mizuno [16], Stoer [14], and Zhao and
Sun [25] without such an assumption. The results in the last few papers, namely,
the second-order predictor-corrector method based on strictly feasible central paths
proposed in [17] and the local analysis of high-order methods based on infeasible
central paths presented in [16, 14, 25], are the direct motivation for this paper.

In [21, 22] Zhao and Li introduced a class of new paths for general complemen-
tarity problems. This class of paths has many nice properties. For example, it needs
weaker conditions to be existent and bounded than the normal central path does.
For monotone problems, these paths always converge to the least 2-norm solution as
long as the problem has at least one solution. However, along with the good prop-
erties come some difficulties for algorithm design. The study of this class of paths
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Tennessee State University summer and academic year research grant.
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is still far less mature than that for the usual central path. In [23] a path-following
method based on this class of paths was proposed to find the least 2-norm solution of
a linear program. But no local convergence analysis was provided for that method.
More recently, Zhao and Li proposed a globally and locally superlinearly convergent
method based on these paths for P0 LCP [24]. However, the superlinear convergence
was proved under a rather strong assumption that the solution to the LCP is not only
unique but also strictly complementary.

The goal of this paper is to use some variant of this class of paths to design a
high-order path-following method to locate the least 2-norm solution of a monotone
LCP. We will study the analytical property of these paths and use the result to obtain
a much better local convergence under a weaker condition than [24].

The paper is organized as follows. In section 2 we introduce the paths that will
be used. Then the algorithm will be presented in section 3. Sections 4 and 5 will be
devoted to global and local convergence analysis, respectively. Then in section 6 we
summarize and point out some future research directions.

We mention the following notation:

(i) For any matrix A, we use A � 0 or 0 � A to denote that A is square positive
semidefinite, and A � 0 or 0 ≺ A to denote that A is square positive definite. But A
needs not to be symmetric.

(ii) For any vector x, we use ‖x‖ and ‖x‖∞ to denote the 2-norm and ∞-norm
of x, respectively.

(iii) Given a vector x or vector function f(s), we use the corresponding uppercase
symbol X or F (s) to denote the natural diagonal matrix generated by x or f(s).

(iv) We use e to denote the all-1 vector with appropriate dimension.
(v) We use Rn

+ (respectively, Rn
++) to denote the nonnegative (respectively,

positive) orthant in Rn.

2. A class of regularized central paths. In this paper, we consider the fol-
lowing system:

(2)

⎧⎪⎨
⎪⎩

Xy = t2w,

y = Mx + tx + q,

x, y ∈ Rn
++,

where 0 < t ∈ R and 0 < w ∈ Rn are parameters. For each fixed w > 0, the solutions
form a path as t varies in R++.

This class of paths is actually a subclass of the regularized central path proposed
in [21] with different parametrization (which is very important for our purpose).

The following theorem about the basic properties of this class of paths can be
easily obtained by following the proof of Theorem 2.1 in [23].

Theorem 2.1.

(i) For each (t, w) > 0, system (2) has a unique solution (x(t, w), y(t, w)) > 0.
(ii) For any fixed w > 0 and any finite number 0 < t0 < ∞, the set {x(t, w)|0 <

t ≤ t0} is bounded if and only if the monotone LCP (1) has at least one solution.
(iii) LCP (1) has at least one solution if and only if for any fixed w > 0, x(t, w)

converges as t −→ 0+; when this is the case, the limit is the unique least 2-norm
solution, denoted by x∗.

Proof. Let a = w, b = 0, θ = t2

1+t2 ∈ (0, 1), φ(θ) =
√

θ
1−θ , and f(x) = Mx + q.
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Then according to Theorem 4.2(a) of [21], system

(3)

⎧⎨
⎩

Xv = θa,
v = (1 − θ)(Mx + q + φ(θ)x),
x, v ∈ Rn

++

has a unique solution. While by letting y = v
1−θ , it is easy to see that system (3) is

equivalent to system (2). So (i) is proved.
For (ii), if x(t, w) is bounded on 0 < t ≤ t0, then any limit point of x(t, w) as

t −→ 0+ solves the LCP (1). Conversely, if the LCP (1) has at least one solution,
then noticing

0 < t ≤ t0 ⇐⇒ 0 < θ ≤ t20
1 + t20

,

we have the boundedness of x(θ, w) and x(t, w) by Theorem 5.1(b) of [21].
Result (iii) is an immediate consequence of Theorem 5.2 of [21].
It is easy to show that (x(t, w), y(t, w)) is an analytic vector function for (t, w) > 0.

First we use the fact that for any (x, y) > 0 and a P0 matrix P ,
[
Y X
P −I

]
is nonsingular

[6], and noticing that any monotone matrix is a P0 matrix, we have the following
lemma.

Lemma 2.2. For positive diagonal matrices X,Y ∈ Rn×n and any t ≥ 0, the
matrix

J =

[
Y X

−(M + tI) I

]

is nonsingular.
Theorem 2.3. (x(t, w), y(t, w)) is an analytic vector function for (t, w) > 0.
Proof. Let (t̄, w̄) be any vector in Rn+1

++ , (x̄, ȳ) = (x(t̄, w̄), y(t̄, w̄)) > 0.

Let Φ(x, y, t, w) =
(

Xy− t2w
y− (M + tI)x− q

)
. Then (x̄, ȳ, t̄, w̄) is a solution of Φ(x, y,

t, w) = 0.
The Jacobian of Φ(x, y, t, w) with respect to (x, y) at (x̄, ȳ, t̄, w̄) is[

Ȳ X̄

−(M + t̄I) I

]
,

which is nonsingular according to Lemma 2.2.
Then from the implicit function theorem and the uniqueness of (x(t, w), y(t, w))

for any fixed (t, w) > 0, and noticing that Φ(x, y, t, w) is an analytic vector func-
tion of (x, y, t, w), we know that (x(t, w), y(t, w)) is an analytic vector function in a
neighborhood of (t̄, w̄).

Because this is true for all (t̄, w̄) > 0, the theorem is then proved.
Let

(4) u(γ, t, w) = w +
(γ − t)

1 + t
(w − e) =

1 + γ

1 + t
w +

t− γ

1 + t
e.

Lemma 2.4. If w > 0, t > −1, and −1 < γ < t + (1+t) min{wi}
1+min{wi} , then u(γ, t, w) >

0.
Proof. We consider two cases:
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(i) wi ≥ 1:

(1 + γ)wi + (t− γ) = wi + t + γ(wi − 1)

≥ wi + t− (wi − 1)

= t + 1

> 0;

(ii) wi < 1:

(1 + γ)wi + (t− γ) = wi + t + γ(wi − 1)

≥ wi + t +

(
t +

(1 + t) min{wj}
1 + min{wj}

)
(wi − 1)

= wi + t + twi − t +
(1 + t) min{wj}
1 + min{wj}

(wi − 1)

= (1 + t)wi + (1 + t)
(wi − 1) min{wj}

1 + min{wj}

= (1 + t)
2wi min{wj} + wi − min{wj}

1 + min{wj}

≥ (1 + t)
2wi min{wj}
1 + min{wj}

> 0.

Therefore ui(γ, t, w) = (1+γ)wi+(t−γ)
1+t > 0 for all i, and hence u(γ, t, w) > 0.

Consider the vector function

(x̂(γ, t, w), ŷ(γ, t, w)) = (x(γ, u(γ, t, w)), y(γ, u(γ, t, w))) .

From Theorem 2.3, the definition of u(γ, t, w) (4), and Lemma 2.4, it is clear that
(x̂(γ, t, w), ŷ(γ, t, w)) is a well-defined analytic vector function on the open set{

(γ, t, w)

∣∣∣∣w > 0, t > 0, 0 < γ < t +
(1 + t) min{wi}
1 + min{wi}

}
.

We will use the partial derivatives ∂l(x̂,ŷ)
∂γl (t, t, w) extensively in our algorithm. Fortu-

nately, they can be easily calculated.
First we introduce the following notation:

(i) x̂(l)(γ, t, w) := ∂lx̂
∂γl (γ, t, w), ŷ(l)(γ, t, w) := ∂lŷ

∂γl (γ, t, w), l = 1, 2, . . . .

(ii) x̂(0)(γ, t, w) := x̂(γ, t, w), ŷ(0)(γ, t, w) := ŷ(γ, t, w).

(iii) (x̂ + ŷ)(l)(γ, t, w) :=
∑l

i=0

(
l
i

)
X̂(i)(γ, t, w)ŷ(l−i)(γ, t, w), l = 1, 2, . . . .

(iv) (x̂ + ŷ)(0)(γ, t, w) := X̂(γ, t, w)ŷ(γ, t, w).
Since (x̂(γ, t, w), ŷ(γ, t, w)) satisfies

X̂(γ, t, w)ŷ(γ, t, w) = γ2u(γ, t, w),(5)

ŷ(γ, t, w) = Mx̂(γ, t, w) + γx̂(γ, t, w) + q,(6)
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the next lemma can be easily proved by differentiating (5) and (6) l times with respect
to γ and using the fact u(t, t, w) = w.

Lemma 2.5.

(x̂ + ŷ)(l)(t, t, w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t2w, l = 0,

2tw +
t2

1 + t
(w − e), l = 1,

2w +
4t

1 + t
(w − e), l = 2,

6

1 + t
(w − e), l = 3,

0, l ≥ 4,

and

ŷ(l)(t, t, w) = (M + tI)x̂(l)(t, t, w) + lx̂(l−1)(t, t, w), l ≥ 1.

The following lemma shows how to find x̂(l)(t, t, w) and ŷ(l)(t, t, w) assuming we
have (x(t, w), y(t, w), t, w) > 0.

Lemma 2.6. (x̂(l)(t, t, w), ŷ(l)(t, t, w)) is the unique solution to the linear system
for l ≥ 1: [

Y (t, w) X(t, w)

−(M + tI) I

][
x̂(l)(t, t, w)

ŷ(l)(t, t, w)

]

=

⎡
⎢⎢⎣ (x̂ + ŷ)(l)(t, t, w) −

∑l−1
i=1

(
l

i

)
X̂(i)(t, t, w)ŷ(l−i)(t, t, w)

lx̂(l−1)(t, t, w)

⎤
⎥⎥⎦ .

Proof. This result simply follows from Lemmas 2.2 and 2.5 and the fact that
(x̂(t, t, w), ŷ(t, t, w)) = (x(t, w), y(t, w)).

Therefore each (x̂(l)(t, t, w), ŷ(l)(t, t, w)) uniquely solves a linear system. And
all these linear systems share the same coefficient matrix. Furthermore, the right-
hand side of the linear system for solving (x̂(l)(t, t, w), ŷ(l)(t, t, w)) depends only on
(x̂(i)(t, t, w), ŷ(i)(t, t, w)) for 0 ≤ i ≤ l − 1.

Thus given (x(t, w), y(t, w), t, w), we can sequentially solve L linear systems to
find (x̂(1)(t, t, w), ŷ(1)(t, t, w)), (x̂(2)(t, t, w), ŷ(2)(t, t, w)), . . . , (x̂(L)(t, t, w), ŷ(L)(t, w)).
Since all these linear systems share the same coefficient matrix, the computational
cost is much less than solving L independent linear systems.

3. Algorithm. Let N(β) be a neighborhood of the regularized central path
(x(t, e), y(t, e)) defined as

N(β) := {(x, y, t)|x ∈ Rn
++, y ∈ Rn

++, t ∈ R++,

‖Xy − t2e‖∞ ≤ βt2, y = Mx + tx + q},

where β > 0.
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Algorithm 1.

1. Select an integer L ≥ 3 and three real numbers α ∈ (0, 1), β ∈ (0, 1), and
θ ∈ (1, L

2 ). Then find (x0, y0, t0) ∈ N(β). Set iteration index k = 0.
2. At the kth iteration, we have (xk, yk, tk) ∈ N(β). Let wk = Xkyk/t2k. Clearly

(xk, yk) = (x(tk, w
k), y(tk, w

k)).
Then using Lemmas 2.5 and 2.6 we solve L linear systems[

Y k Xk

−(M + tkI) I

][
x̂(l)(tk, tk, w

k)

ŷ(l)(tk, tk, w
k)

]

=

⎡
⎢⎢⎣ (x̂ + ŷ)(l)(tk, tk, w

k) −
∑l−1

i=1

(
l

i

)
X̂(i)(tk, tk, w

k)ŷ(l−i)(tk, tk, w
k)

lx̂(l−1)(tk, tk, w
k)

⎤
⎥⎥⎦

to find
(
x̂(l)(tk, tk, w

k), ŷ(l)(tk, tk, w
k)
)

for l = 1, 2, . . . , L.
Define

fk(s) :=

L∑
i=0

(s− tk)
i

i!
x̂(i)(tk, tk, w

k),

gk(s) :=

L∑
i=0

(s− tk)
i

i!
ŷ(i)(tk, tk, w

k) +
(s− tk)

L+1

L!
x̂(L)(tk, tk, w

k).

Let δk = tk −min{(tk)θ, tk
2 }. We pick tk+1 as the first of {tk − αiδk|i = 0, 1, . . .}

satisfying fk(tk+1) > 0 and ‖F k(tk+1)g
k(tk+1) − t2k+1e‖∞ ≤ βtk+1

2.

Then we set
(
xk+1, yk+1

)
=
(
fk(tk+1), g

k(tk+1)
)

and show that
(
xk+1, yk+1, tk+1

)
∈ N(β).

Set k = k + 1. Continue step 2.
Before we study the convergence properties of this algorithm in next two sections,

we first show its feasibility.

3.1. Step 1. There are many ways to find the starting point (x0, y0, t0). For
example, we can first find t0 > 0 satisfying

‖t0Me +
√
t0q‖∞ ≤ βt20.

Then let x0 =
√
t0e > 0 and y0 = Mx0 + t0x

0 + q. We have

‖X0y0 − t20e‖∞ = ‖t0Me +
√
t0q‖∞ ≤ βt20.

Since x0 > 0 and β ∈ (0, 1), we must have y0 > 0. Therefore (x0, y0, t0) ∈ N(β).

3.2. Step 2 . To simplify notation, we omit the super-/subscript k in this sub-
section; i.e., we use (x, y, t, w, f, g, δ) to denote (xk, yk, tk, w

k, fk, gk, δk). Further-
more, we denote

(
x̂(l)(t, t, w), ŷ(l)(t, t, w), (x̂ + ŷ)(l)(t, t, w)

)
by
(
x̂(l), ŷ(l), (x̂ + ŷ)(l)

)
,

since (t, w) is fixed in this subsection. We have the following lemmas.
Lemma 3.1.

g(s) = Mf(s) + sf(s) + q.
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Proof. We have

Mf(s) + sf(s) + q =

L∑
i=0

(s− t)i

i!
Mx̂(i) +

L∑
i=0

s(s− t)i

i!
x̂(i) + q

=

L∑
i=0

(s− t)i

i!
Mx̂(i) +

L∑
i=0

(s− t + t)(s− t)i

i!
x̂(i) + q

=

L∑
i=0

(s− t)i

i!
(M + tI)x̂(i) +

L∑
i=0

(s− t)i+1

i!
x̂(i) + q

=

L∑
i=0

(s− t)i

i!
(M + tI)x̂(i) +

L+1∑
i=1

i(s− t)i

i!
x̂(i−1) + q

= (M + tI)x̂(0) + q +

L∑
i=1

(s− t)i

i!

(
(M + tI)x̂(i) + ix̂(i−1)

)

+
(s− t)L+1

L!
x̂(L)

= ŷ(0) +

L∑
i=1

(s− t)i

i!
ŷ(i) +

(s− t)L+1

L!
x̂(L)

= g(s),

where we use Lemma 2.5.

Lemma 3.2.

F (s)g(s) = s2u(s, t, w) + (s− t)L+1R(s, t, w),

where

R(s, t, w) =
L∑

l=1

l−1∑
i=0

(s− t)i

l!(i + L− l + 1)!
X̂(l)ŷ(i+L−l+1)(7)

+
1

L!

(
X(L)

L∑
i=0

(s− t)i

i!
x̂(i)

)
.



LEAST 2-NORM SOLUTION OF MONOTONE LCPs 1421

Proof. Since

(
L∑

i=0

(s− t)i

i!
X̂(i)

)(
L∑

i=0

(s− t)i

i!
ŷ(i)

)

=
L∑

l=0

l∑
i=0

(s− t)i

i!

(s− t)l−i

(l − i)!
X̂(i)ŷ(l−i) +

L∑
l=1

L∑
i=L−l+1

(s− t)l

l!

(s− t)i

i!
X̂(l)ŷ(i)

=

L∑
l=0

(s− t)l

l!

l∑
i=0

(
l

i

)
X̂(i)ŷ(l−i)

+ (s− t)L+1
L∑

l=1

l−1∑
i=0

(s− t)i

l!(i + L− l + 1)!
X̂(l)ŷ(i+L−l+1)

=

L∑
l=0

(s− t)l

l!
(x̂ + ŷ)(l) + (s− t)L+1

L∑
l=1

l−1∑
i=0

(s− t)i

l!(i + L− l + 1)!
X̂(l)ŷ(i+L−l+1)

=

3∑
l=0

(s− t)l

l!
(x̂ + ŷ)(l) + (s− t)L+1

L∑
l=1

l−1∑
i=0

(s− t)i

l!(i + L− l + 1)!
X̂(l)ŷ(i+L−l+1)

= t2w + (s− t)

(
2tw +

t2

1 + t
(w − e)

)
+

(s− t)2

2

(
2w +

4t

1 + t
(w − e)

)

+
(s− t)3

6

6

1 + t
(w − e)

+ (s− t)L+1
L∑

l=1

l−1∑
i=0

(s− t)i

l!(i + L− l + 1)!
X̂(l)ŷ(i+L−l+1)

= s2u(s, t, w) + (s− t)L+1
L∑

l=1

l−1∑
i=0

(s− t)i

l!(i + L− l + 1)!
X̂(l)ŷ(i+L−l+1),

then

F (s)g(s) =

(
L∑

i=0

(s− t)i

i!
X̂(i)

)(
L∑

i=0

(s− t)i

i!
ŷ(i) +

(s− t)L+1

L!
x̂(L)

)

=

(
L∑

i=0

(s− t)i

i!
X̂(i)

)(
L∑

i=0

(s− t)i

i!
ŷ(i)

)

+
(s− t)L+1

L!

(
X(L)

L∑
i=0

(s− t)i

i!
x̂(i)

)

= s2u(s, t, w) + (s− t)L+1R(s, t, w).
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Lemma 3.3. For 0 < s ≤ t, we have

‖F (s)g(s) − s2e‖∞ − βs2 ≤ −(t− s)

(
βs2

1 + t
− (t− s)L‖R(s, t, w)‖∞

)
.

Proof. Since (x, y, t) ∈ N(β), then ‖w − e‖∞ ≤ β. We have

‖F (s)g(s) − s2e‖∞ − βs2

≤ ‖F (s)g(s) − s2u(s, t, w)‖∞ + s2‖u(s, t, w) − e‖∞ − βs2

= (t− s)L+1‖R(s, t, w)‖∞ + s2

(
1 +

s− t

1 + t

)
‖w − e‖∞ − βs2

≤ (t− s)L+1‖R(s, t, w)‖∞ + s2

(
1 +

s− t

1 + t

)
β − βs2

= −(t− s)

(
βs2

1 + t
− (t− s)L‖R(s, t, w)‖∞

)
.

Since

lim
i−→∞

f(t− αiδ) = f(t) = x̂(0)(t, t, w) = x > 0,

and from Lemma 3.3

lim sup
i−→∞

‖F (t− αiδ)g(t− αiδ) − (t− αiδ)2e‖∞ − β(t− ξiδ)2

t− (t− ξiδ)
≤ − βt2

1 + t
< 0,

tk+1 can be found after a finite number of trials. In addition, we have xk+1 > 0
and ‖Xk+1yk+1 − t2k+1e‖∞ ≤ βt2k+1. Because β ∈ (0, 1), so yk+1 > 0. Moreover,

Lemma 3.1 gives yk+1 = Mxk+1 + tk+1x
k+1 +q. Therefore (xk+1, yk+1, tk+1) ∈ N(β).

4. Global convergence analysis. We need the following assumption for the
global and local convergence analysis.

Assumption 1. The LCP (1) has at least one solution.
In this section we show that {xk} converges to the unique least 2-norm solution

x∗. First we need to show that tk decreases to 0.
Theorem 4.1. Under Assumption 1 we have

lim
k−→∞

tk = 0.

Proof. Since 0 < tk+1 < tk, then tk −→ t∗ ≥ 0. Now we prove t∗ = 0 by
contradiction.

Assume t∗ > 0. Since (x̂(γ, t, w), ŷ(γ, t, w)) is an analytic vector function on{
(γ, t, w)

∣∣∣∣w ∈ Rn
++, t ∈ R++, 0 < γ < t +

(1 + t) min{wi}
1 + min{wi}

}
,

by the definition of R(s, t, w) we know that R(s, t, w) is bounded on the compact set{
(s, t, w)

∣∣∣∣‖w − e‖∞ ≤ β, t∗ ≤ t ≤ t0, t− min

{
tθ,

t

2

}
≤ s ≤ t

}
.
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In other words, there exists C > 0 such that ‖R(s, t, w)‖∞ ≤ C when (s, t, w) lies in
the above set.

Let k be sufficiently large such that tk satisfies

0 < ε :=

(
min{tθ∗, t∗

2 }2β

2C(1 + t∗)

) 1
L

<

(
min{tθk, tk

2 }2β

C(1 + tk)

) 1
L

and

min

{
tθk,

tk
2

}
< t∗ < tk < t∗ +

α

2
ε.

Using Lemma 3.3, for all s ∈ [min{tθk, tk
2 }, tk] ∩ [tk − ε, tk] we have

‖F k(s)gk(s) − s2e‖∞ ≤ βs2 − (tk − s)

(
βs2

1 + tk
− C(tk − s)L

)

≤ βs2 − (tk − s)

(
β min{tθk, tk

2 }2

1 + tk
− CεL

)

≤ βs2.

Then from the continuity of (fk(s), gk(s)) and the fact that (fk(tk), g
k(tk)) =

(xk, yk) > 0, we know that (fk(s), gk(s)) > 0 for all s ∈ [min{tθk, tk
2 }, tk] ∩ [tk − ε, tk].

If ε > δk = tk − min{tθk, tk
2 }, then tk+1 = min{tθk, tk

2 } < t∗, which is a contradic-
tion. So ε ≤ δk.

Let i be the integer such that tk+1 = tk −αiδk. Since tk −α0δk = min{tkθ, tk
2 } <

t∗ < tk+1, then i ≥ 1. By the definition of tk+1, we must have tk − αi−1δk < tk − ε,
and hence ε < αi−1δk.

Therefore we have

tk+1 = tk − αiδk > t∗ =⇒ α

2
ε > tk − t∗ > αiδk > αε

=⇒ 1

2
> 1

=⇒ contradiction.

So t∗ = 0.

Now we can show the global convergence of {xk}.
Theorem 4.2. Under Assumption 1 we have

lim
k−→∞

xk = x∗,

where x∗ is the unique least 2-norm solution of the monotone LCP (1).

Proof. Since (xk, yk, tk) ∈ N(β), then (1 − β)tk
2e ≤ Xkyk ≤ (1 + β)tk

2e, and

hence xkT yk ≤ (1 + β)ntk
2.
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Using the facts that 0 ≤ x∗ ⊥ y∗ := Mx∗ + q ≥ 0, xk > 0, and yk = Mxk +
tkx

k + q > 0, we have

(1 + β)ntk
2 ≥ xkT yk − xkT y∗ − x∗T yk + x∗T y∗

= (xk − x∗)T (yk − y∗)

= (xk − x∗)T
(
M(xk − x∗) + tkx

k
)

≥ tk(x
k − x∗)Txk.

Hence

(8) (1 + β)ntk ≥ ‖xk‖2 − ‖x∗‖‖xk‖.

Since 0 < tk < t0, then {xk} is bounded. Let x̄ be any limit point of {xk}.
Because tk −→ 0, it is easy to see that x̄ is a solution to the LCP. Hence ‖x̄‖ ≥ ‖x∗‖.
From (8) we can get

0 ≥ ‖x̄‖2 − ‖x∗‖‖x̄‖ = ‖x̄‖(‖x̄‖ − ‖x∗‖).

So ‖x̄‖ = ‖x∗‖. By the uniqueness of the least 2-norm solution, we must have x̄ = x∗.
Since x̄ is any limit point of {xk}, we then have

lim
k−→∞

xk = x∗.

5. Local convergence analysis. First we introduce the following notation for
this section:

(i) S := the solution set of the LCP (1).
(ii) Sy := {y ∈ Rn|y = Mx + q for some x ∈ S}.
(iii) B := {i|xi > 0 for some x ∈ S}.
(iv) N := {i|yi > 0 for some y ∈ Sy}.
(v) J := {i|xi = yi = 0 ∀x ∈ S,∀y ∈ Sy}.

It is well known that the sets B,N, J form a partition of the index set {1, 2, . . . , n};
i.e., they are pairwise disjoint and B ∪N ∪ J = {1, 2, . . . , n}. Therefore a solution x
is called a maximally complementary solution if

xB > 0 and (Mx + q)N > 0.

If J = ∅, then a maximally complementary solution is called a strictly complementary
solution. Note that if J �= ∅, then LCP (1) has no strictly complementary solution.

In [24], a superlinearly convergent algorithm based on the same class of paths was
proposed under the assumption that x∗ is the only solution of the LCP and is strictly
complementary. The assumption needed for our local analysis is weaker.

Assumption 2. x∗ is maximally complementary.
Our analysis relies on the boundedness of {(x̂(l), ŷ(l))(t, t, w)|l = 1, 2, . . . , L} on

the noncompact set {(t, w)|0 < t ≤ t0, ‖w − e‖∞ ≤ β}. But we will show a stronger
result that (x̂(γ, t, w), ŷ(γ, t, w)), an analytic vector function on{

(γ, t, w)

∣∣∣∣w > 0, t > 0, 0 < γ < t +
(1 + t) min{wi}
1 + min{wi}

}
,
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can be analytically extended to the set{
(γ, t, w)

∣∣∣∣w > 0, t ≥ 0, 0 ≤ γ < t +
(1 + t) min{wi}
1 + min{wi}

}
.

From Theorem 2.1, for any fixed w > 0 we have

lim
t−→0+

(x(t, w), y(t, w)) = (x∗, y∗).

Now we first show that (x(t, w), y(t, w)) can be analytically extended to {(t, w)|t ≥
0, w > 0}. The following two technical lemmas will be needed.

Lemma 5.1. For any fixed w > 0, we have xj(t, w) = Θ(t) and yj(t, w) = Θ(t)
for all j ∈ J as t −→ 0+. Here we use the standard big-O notation: Given functions
f1(t) and f2(t), we say f1(t) = O(t) and f2(t) = Θ(t) as t −→ 0+ if and only if there
exist positive constants C1, C2, and C3 such that when t is sufficiently small we have
|f1(t)| ≤ C1t, and C2t ≤ |f2(t)| ≤ C3t.

Proof. For any x, y ∈ Rn, let d(x, S) and d(y, Sy) denote the distance between x
and S and the distance between y and Sy, respectively.

Corollary 2.2 of [8] states that r(x) + s(x) is a global error bound for a monotone
LCP, where r(x) = ‖x− (x−Mx− q)+‖ and s(x) = ‖(−Mx− q,−x,X(Mx+ q))+‖.
So there exists τ > 0 such that for any x ∈ Rn, d(x, S) ≤ τ(r(x) + s(x)).

For fixed w > 0, we consider (x(t, w), y(t, w)) > 0, the solution of{
X(t, w)y(t, w) = t2w,

y(t, w) = Mx(t, w) + tx(t, w) + q,

where 0 < t ≤ 1.
Since (x(t, w), y(t, w)) −→ (x∗, y∗) as t −→ 0+, and (x(t, w), y(t, w)) is an analytic

vector function on t > 0, then {(x(t, w), y(t, w))|0 < t ≤ 1} is bounded.
Now we show that s(x(t, w)) = O(t) and r(x(t, w)) = O(t).
For s(x(t, w)) we have

(X(t, w)(Mx(t, w) + q))+ = (X(t, w)(y(t, w) − tx(t, w)))+

= (t2w − tX(t, w)2e)+ ≤ t2w = O(t2),

(−x(t, w))+ = 0,

(−Mx(t, w) − q)+ = (tx(t, w) − y(t, w))+ ≤ tx(t, w) = O(t),

and so s(x(t, w)) = O(t).
For r(x(t, w)) we have r(x(t, w)) = ‖x(t, w) − ((1 + t)x(t, w) − y(t, w))+‖.

(i) If i is an index such that (1 + t)xi(t, w) − yi(t, w) > 0, then 0 < yi(t, w) <
(1 + t)xi(t, w) ≤ 2xi(t, w), and so yi(t, w)2 < 2xi(t, w)yi(t, w) = 2wit

2, and hence
yi(t, w) ≤

√
2wit; then

|xi(t, w) − ((1 + t)xi(t, w) − yi(t, w))+| = |yi(t, w) − txi(t, w)|

≤ yi(t, w) + txi(t, w)

≤ (
√

2wi + ‖x(t, w)‖)t.
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(ii) If i is an index such that (1+t)xi(t, w)−yi(t, w) ≤ 0, then xi(t, w) ≤ yi(t, w),
xi(t, w)2 ≤ xi(t, w)yi(t, w) = wit

2, and so xi(t, w) ≤ √
wit, and hence

|xi(t, w) − ((1 + t)xi(t, w) − yi(t, w))+| = xi(t, w) ≤ √
wit.

Combining the above inequalities we have r(x(t, w)) = O(t). Therefore d(x(t, w), S) =
O(t).

On the other hand, we also have

d(y(t, w), Sy) = min {‖Mx(t, w) + tx(t, w) + q − (Mx + q)‖ |x ∈ S }

= min{‖M(x(t, w) − x) + tx(t, w)‖|x ∈ S}

≤ min{‖M‖‖x(t, w) − x‖ + t‖x(t, w)‖|x ∈ S}

≤ ‖M‖d(x(t, w), S) + t‖x(t, w)‖

= O(t).

For all j ∈ J , since xj = yj = 0 for all x ∈ S and y ∈ Sy, we have

0 < xj(t, w) ≤ d(x(t, w), S) = O(t),

0 < yj(t, w) ≤ d(y(t, w), Sy) = O(t).

Notice that xj(t, w)yj(t, w) = t2wj for all t > 0, we must have xj(t, w) = Θ(t),
and yj(t, w) = Θ(t).

Lemma 5.2. If 0 � M ∈ Rn×n, then N (M) ∩ R(M) = {0}, where N (M) and
R(M) represent the null space and range space of M , respectively.

Proof. Since N (M) ⊆ N (M2), dim(N (M)) = n− rank(M), and dim(N (M2)) =
n− rank(M2), we have

N (M) ∩R(M) = {0} ⇐⇒ N (M) = N (M2) ⇐⇒ rank(M) = rank(M2).

Let A = M+MT

2 , B = M−MT

2 . Then A is symmetric positive semidefinite, while B
is skew-symmetric. If A is nonsingular, then so is M . Hence N (M) = N (M2) = {0}.
So we need only to consider the case when A is singular.

If A is of the form [D 0
0 0 ], where D is symmetric positive definite, then we can

partition B likewise: B = [ C F

−FT G
], where both C and G are skew-symmetric.

Letting z = [ u
v

] ∈ N (M), we have

Mz =

[
D + C F

−FT G

][
u

v

]
=

[
(D + C)u + Fv

−FTu + Gv

]
=

[
0

0

]
.

So uT ((D + C)u + Fv) + vT (−FTu + Gv) = uTDu = 0, and hence we get u = 0,
Fv = 0, and Gv = 0.

Therefore

N (M) =

{[
0

v

]∣∣∣∣∣ v ∈ N (F ) ∩N(G)

}
.

Now if z = [ u
v

] ∈ N (M2), then Mz = [ (D + C)u + Fv

−FTu + Gv
] ∈ N (M).



LEAST 2-NORM SOLUTION OF MONOTONE LCPs 1427

So (D + C)u + Fv = 0, F (−FTu + Gv) = 0, and G(−FTu + Gv) = 0. Then we
have

‖ − FTu + Gv‖2 = (−uTF + vTGT )(−FTu + Gv)

= −uTF (−FTu + Gv) + vTGT (−FTu + Gv)

= −uTF (−FTu + Gv) − vTG(−FTu + Gv)

= 0.

Thus −FTu + Gv = 0, and so Mz = 0, z ∈ N (M). Therefore N (M) = N (M2),
which is equivalent to rank(M) = rank(M2) when the symmetric part of M has this
special form.

For general symmetric positive semidefinite matrix A, there exists an orthogonal
matrix O such that OTAO = [ D 0

0 0
], where D is symmetric positive definite. So

rank(OTMO) = rank((OTMO)2).
Thus rank(M) = rank(OTMO) = rank((OTMO)2) = rank(OTM2O) = rank

(M2), and hence N (M) = N (M2) and N (M) ∩R(M) = {0}.
Now we can prove the main theorem.
Theorem 5.3. If x∗ is maximally complementary, i.e., (x∗

B , y
∗
N ) > 0, then

(x(t, w), y(t, w)) can be analytically extended to an open set P containing {t ≥ 0, w >
0}. In other words, there exist analytic vector functions f(t, w) and g(t, w) on P such
that f(t, w) = x(t, w) and g(t, w) = y(t, w) for all (t, w) > 0.

Proof. Without loss of generality, we assume B = {1, 2, . . . , |B|}, J = {|B| +
1, . . . , |B| + |J |}, and N = {|B| + |J | + 1, . . . , n}. Then x∗

B > 0, y∗B = 0, x∗
N = 0,

y∗N > 0, and x∗
J = y∗J = 0.

We consider only t ≤ 1.
Define the following vector functions for t > 0, w > 0:

x̃B(t, w) := xB(t, w),

x̃N (t, w) := WNyN (t, w)−1 = t−2xN (t, w),

x̃J(t, w) := t−1xJ(t, w),

ỹB(t, w) := WBxB(t, w)−1 = t−2yB(t, w),

ỹJ(t, w) := t−1yJ(t, w),

ỹN (t, w) := yN (t, w),

x̃(t, w) := (x̃B(t, w), x̃J(t, w), x̃N (t, w)),

ỹ(t, w) := (ỹB(t, w), ỹJ(t, w), ỹN (t, w)).

These are all positive analytic vector functions on (t > 0, w > 0).
For fixed w, since (xB(t, w), yN (t, w)) −→ (x∗

B , y
∗
N ) > 0, and(xJ(t, w), yJ(t, w)) =

Θ(t), then (x̃(t, w), ỹ(t, w)) is bounded when 0 < t ≤ 1. Let {tk(w)} be a positive
sequence decreasing to 0 such that (x̃(tk(w), w), ỹ(tk(w), w)) is convergent, and define
(x̃(0, w), ỹ(0, w)) to be the limit. Since X̃(t, w)ỹ(t, w) = w and (x̃(t, w), ỹ(t, w)) > 0
for t > 0, we must have (x̃(0, w), ỹ(0, w)) > 0.
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Therefore (x̃(t, w), ỹ(t, w)) is the unique positive solution of the following system
for any fixed (t, w) > 0:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎣

MBB MBJ MBN

MJB MJJ MJN

MNB MNJ MNN

⎤
⎥⎦
⎡
⎣ x̃B

tx̃J

t2x̃N

⎤
⎦+

⎡
⎢⎣

tx̃B

t2x̃J

t3x̃N

⎤
⎥⎦−

⎡
⎢⎣

t2ỹB

tỹJ

ỹN

⎤
⎥⎦+

⎡
⎢⎣

qB

qJ

qN

⎤
⎥⎦ = 0,

X̃ỹ − w = 0,

while (x̃(0, w), ỹ(0, w)) is a solution of this system for fixed (t = 0, w > 0).
The Jacobian of this system with respect to (x̃B , x̃J , x̃N , ỹB , ỹJ , ỹN ) is⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

MBB + tIB tMBJ t2MBN −t2IB 0 0

MJB tMJJ + t2IJ t2MJN 0 −tIJ 0

MNB tMNJ t2MNN + t3IN 0 0 −IN

ỸB(t, w) 0 0 X̃B(t, w) 0 0

0 ỸJ(t, w) 0 0 X̃J(t, w) 0

0 0 ỸN (t, w) 0 0 X̃N (t, w)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This matrix may become singular when t = 0, which prevents us from using the
implicit function theorem as in Theorem 2.3. In order to fix this problem, we use the
technique of “adding redundant equations” which was used in [3, 2, 15, 13] to study
the analyticity of the central path of LP, SDP, LCP, and SDLCP.

Let r = rank([ MBB

MJB
]). Then there exists P ∈ R(|B|+|J|−r)×(|B|+|J|) such that

P [ MBB

MJB
] = 0, and N (P ) = R

(
[ MBB

MJB
]
)
.

Multiplying the first two equations by P from the left, we get

P

[
MBB MBJ MBN

MJB MJJ MJN

]⎡⎢⎣
x̃B

tx̃J

t2x̃N

⎤
⎥⎦+ P

[
tx̃B

t2x̃J

]

−P

[
t2ỹB

tỹJ

]
+ P

[
qB

qJ

]
= 0

=⇒

P

[
MBJ MBN

MJJ MJN

][
tx̃J

t2x̃N

]
+ P

[
tx̃B

t2x̃J

]
− P

[
t2ỹB

tỹJ

]
+ P

[
qB

qJ

]
= 0.

Letting t −→ 0, we get P [ qB
qJ

] = 0. Hence the above system is equivalent to

P

[
MBJ MBN

MJJ MJN

][
tx̃J

t2x̃N

]
+ P

[
tx̃B

t2x̃J

]
− P

[
t2ỹB

tỹJ

]
= 0.

Factoring out t, we get

P

[
MBJ MBN

MJJ MJN

][
x̃J

tx̃N

]
+ P

[
x̃B

tx̃J

]
− P

[
tỹB

ỹJ

]
= 0.
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Therefore (x̃(t, w), ỹ(t, w), t, w) solves the enlarged system for t ≥ 0, w > 0:

Φ(x̃, ỹ, t, w) :=

⎛
⎜⎜⎜⎜⎜⎜⎝

P

[
MBJ MBN

MJJ MJN

] [
x̃J

tx̃N

]
+ P

[
x̃B

tx̃J

]
− P

[
tỹB

ỹJ

]

⎡
⎢⎣
MBB MBJ MBN

MJB MJJ MJN

MNB MNJ MNN

⎤
⎥⎦
⎡
⎢⎣

x̃B

tx̃J

t2x̃N

⎤
⎥⎦+

⎡
⎢⎣

tx̃B

t2x̃J

t3x̃N

⎤
⎥⎦−

⎡
⎢⎣
t2ỹB

tỹJ

ỹN

⎤
⎥⎦+

⎡
⎢⎣
qB

qJ

qN

⎤
⎥⎦

X̃ỹ − w

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0.

We partition P as P = [PB , PJ ]; then the Jacobian of Φ(x̃, ỹ, t, w) with respect
to (x̃B , x̃J , x̃N , ỹB , ỹJ , ỹN ) is

Φ′(x̃B , x̃J , x̃N , ỹB , ỹJ , ỹN , t, w)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

PB P
[
MBJ

MJJ

]
+ tPJ tP

[
MBN

MJN

]
−tPB −PJ 0

MBB + tIB tMBJ t2MBN −t2IB 0 0

MJB tMJJ + t2IJ t2MJN 0 −tIJ 0

MNB tMNJ t2MNN + t3IN 0 0 −IN

ỸB(t, w) 0 0 X̃B(t, w) 0 0

0 ỸJ(t, w) 0 0 X̃J(t, w) 0

0 0 ỸN (t, w) 0 0 X̃N (t, w)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

which is simplified to

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

PB P

[
MBJ

MJJ

]
0 0 −PJ 0

MBB 0 0 0 0 0

MJB 0 0 0 0 0

MNB 0 0 0 0 −IN

ỸB(0, w) 0 0 X̃B(0, w) 0 0

0 ỸJ(0, w) 0 0 X̃J(0, w) 0

0 0 ỸN (0, w) 0 0 X̃N (0, w)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

at (x̃(0, w), ỹ(0, w), 0, w).
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Considering the rank of J (after some simple row/column operations), we have

rank(J) = rank

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

PB P

[
MBJ

MJJ

]
0 0 −PJ 0

MBB 0 0 0 0 0

MJB 0 0 0 0 0

0 0 0 0 0 −IN

0 0 0 X̃B(0, w) 0 0

0 ỸJ(0, w) 0 0 X̃J(0, w) 0

0 0 ỸN (0, w) 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 2|N | + |B| + rank

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

PB P

[
MBJ

MJJ

]
−PJ

MBB 0 0

MJB 0 0

0 ỸJ(0, w) X̃J(0, w)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

= 2|N | + |B|

+ rank

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

PB P

[
MBJ

MJJ

]
+ PJX̃J(0, w)−1ỸJ(0, w) 0

MBB 0 0

MJB 0 0

0 ỸJ(0, w) X̃J(0, w)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

= |N | + n + rank

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

PB P

[
MBJ

MJJ

]
+ PJX̃J(0, w)−1ỸJ(0, w)

MBB 0

MJB 0

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ .

Let Z = X̃J(0, w)−1ỸJ(0, w) and

A =

⎡
⎢⎢⎢⎢⎣

PB P

[
MBJ

MJJ

]
+ PJZ

MBB 0

MJB 0

⎤
⎥⎥⎥⎥⎦ ∈ R(2|B|+|J|)×(|B|+|J|).

Now we show that A has full column rank. For all [ u
v

] ∈ N (A), we have

PBu + P

[
MBJ

MJJ

]
v + PJZv = 0,

MBBu = 0,

MJBu = 0.
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The first equation leads to

P

[
u + MBJv

(MJJ + Z)v

]
= 0 =⇒

[
u + MBJv

(MJJ + Z)v

]
∈ R

([
MBB

MJB

])
.

So there exists a ∈ R|B| such that u + MBJv = MBBa and (MJJ + Z)v = MJBa.

Since M � 0 and Z � 0, then MJJ + Z � 0 and [ MBB MBJ

MJB MJJ + Z
] � 0. So we

have v = (MJJ + Z)−1MJBa and u = (MBB −MBJ(MJJ + Z)−1MJB)a.

Since

[
MBB −MBJ(MJJ + Z)−1MJB MBJ −MT

JB(MJJ + Z)−T (MJJ + Z)

0 MJJ + Z

]

=

[
IB −MT

JB(MJJ + Z)−T

0 IJ

][
MBB MBJ

MJB MJJ + Z

]

×
[

IB 0

−(MJJ + Z)−1MJB IJ

]

� 0,

then M1 := MBB−MBJ(MJJ+Z)−1MJB � 0. Now because u ∈ N (MBB)∩N (MJB)
and u ∈ R(M1), we have u ∈ N (M1) ∩R(M1), and hence by Lemma 5.2, u = 0.

So (MBB −MBJ(MJJ + Z)−1MJB)a = 0, and hence

0 =
[
aT 0

]

×
[

MBB −MBJ(MJJ + Z)−1MJB MBJ −MT
JB(MJJ + Z)−T (MJJ + Z)

0 MJJ + Z

]

×
[

a

0

]

=
[
aT 0

] [ IB −MT
JB(MJJ + Z)−T

0 IJ

][
MBB MBJ

MJB MJJ + Z

]

×
[

IB 0

−(MJJ + Z)−1MJB IJ

][
a

0

]

=
[
aT −aTMT

JB(MJJ + Z)−T
] [ MBB MBJ

MJB MJJ + Z

]
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×
[

a

−(MJJ + Z)−1MJBa

]

=
[
aT −vT

]([ MBB MBJ

MJB MJJ

]
+

[
0 0

0 Z

])[
a

−v

]

≥ vTZv

≥ 0.

Because Z � 0, we must have v = 0.
Therefore N (A) = {0}, and so rank(A) = |B| + |J |, and hence rank(J) = 2n.
Thus the system of 2n+ |B|+ |J |−r equations Φ(x̃, ỹ, t, w) = 0 contains a subsys-

tem ΦL(x̃, ỹ, t, w) = 0 of |L| = 2n equations such that the Jacobian of the subsystem
ΦL(x̃, ỹ, t, w) with respect to (x̃, ỹ) is nonsingular at the solution (x̃(0, w), ỹ(0, w), 0, w)
for any w > 0. So by the implicit function theorem, for any fixed w̄ > 0, the subsystem
ΦL(x̃, ỹ, t, w) (depending analytically on every variable) has a locally unique analytic
solution (xw̄(t, w), yw̄(t, w)). More specifically, there exist open balls Bxy(w̄) ⊂ R2n

and Btw(w̄) ⊂ Rn+1, centering at (x̃(0, w̄), ỹ(0, w̄)) and (t = 0, w̄), respectively, satis-
fying the following:

(i) For each (t, w) ∈ Btw(w̄), there is a unique solution (xw̄(t, w), yw̄(t, w)) ∈
Bxy(w̄) of the system ΦL(x̃, ỹ, t, w) = 0.

(ii) (xw̄(t, w), yw̄(t, w)) is an analytic vector function for (t, w) ∈ Btw(w̄).
(iii) (xw̄(0, w̄), yw̄(0, w̄)) = (x̃(0, w̄), ỹ(0, w̄)).
Since tk(w̄) −→ 0 and (x̃(tk(w̄), w̄), ỹ(tk(w̄), w̄)) −→ (x̃(0, w̄), ỹ(0, w̄)), there ex-

ists k such that (tk(w̄), w̄) ∈ Btw(w̄) and (x̃(tk(w̄), w̄), ỹ(tk(w̄), w̄)) ∈ Bxy(w̄). Then
by the continuity of (x̃(t, w), ỹ(t, w)), there exists a small open neighborhood U such
that (tk(w̄), w̄) ∈ U ⊂ Btw(w̄) and (x̃, ỹ)(U) ⊂ Bxy(w̄). Since (x̃(t, w), ỹ(t, w), t, w) is
also a solution of the system ΦL(x̃, ỹ, t, w) = 0, then by the uniqueness of (xw̄(t, w),
yw̄(t, w)), we have (xw̄(t, w), yw̄(t, w)) = (x̃(t, w), ỹ(t, w)) for (t, w) ∈ U . Moreover,
by the analyticity of (xw̄(t, w), yw̄(t, w)) and (x̃(t, w), ỹ(t, w)), this equality extends
to Btw(w̄) ∩ {(t > 0, w > 0)}.

For any two different w1 > 0 and w2 > 0, if Btw(w1) ∩ Btw(w2) �= ∅, then
Btw(w1) ∩ Btw(w2) ∩ {t > 0, w > 0} �= ∅. Since (xw1(t, w), yw1(t, w)) = (x̃(t, w),
ỹ(t, w)) = (xw2(t, w), yw2(t, w)) on the open set Btw(w1) ∩Btw(w2) ∩ {t > 0, w > 0},
by their analyticity, we must have (xw1(t, w), yw1(t, w)) = (xw2(t, w), yw2(t, w)) on
Btw(w1) ∩Btw(w2).

Therefore we are able to analytically extend (x̃(t, w), ỹ(t, w)) to the open set
P = {t > 0, w > 0}

⋃
(∪w>0Btw(w)), which obviously contains {t ≥ 0, w > 0}.

Since (x(t, w), y(t, w)) = (x̃B(t, w), tx̃J(t, w), t2x̃N (t, w), t2ỹB(t, w), tỹJ(t, w),
ỹN (t, w)), we can do the same thing to (x(t, w), y(t, w)).

As an immediate consequence of Theorem 5.3, we know that ∂x
∂t (t, w) is bounded

on the compact set {0 ≤ t ≤ t0, ‖w − e‖∞ ≤ β}. Since xk = x(tk, w
k), x(0, wk) = x∗,

and ‖wk − e‖∞ ≤ β, by the mean value theorem we have ‖xk − x∗‖ = O(tk).
Finally we are ready to prove the fast local convergence of Algorithm 1 in terms

of tk.
Theorem 5.4. Under Assumption 2, when k is sufficiently large, we have tk+1 =

tθk.
Proof. Recall that in step 1 Algorithm 1, we pick an integer L ≥ 3 and a real

number θ ∈ (1, L
2 ).
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From Theorem 5.3 and the definitions of u(γ, t, w) and (x̂(γ, t, w), ŷ(γ, t, w)), it is
clear that we can analytically extend (x̂(γ, t, w), ŷ(γ, t, w)) to the open set

O = {(γ, t, w) |(γ, u(γ, t, w)) ∈ P, t > −1} ,

which contains{
(γ, t, w)

∣∣∣∣w > 0, t ≥ 0, 0 ≤ γ < t +
(1 + t) min{wi}
1 + min{wi}

}
.

Therefore R(s, t, w) is an analytic vector function on {(s, t, w)|s ∈ R, t ≥ 0, w > 0}
and thus bounded on the compact set {0 ≤ s ≤ t, 0 ≤ t ≤ t0, ‖w − e‖∞ ≤ β}. In
other words, there exists a constant χ > 0 such that ‖R(s, t, w)‖∞ ≤ χ when (s, t, w)
lies in this compact set.

Since 1 < θ < L
2 , we have

tk ≤ min

{
2

1
1−θ ,

(
β

2χ

) 1
L−2θ

, 1

}
=⇒

√
2χtk

L

β
≤ tk

θ ≤ tk
2
.

Therefore when tk satisfies the above inequality, for all s ∈ [tθk, tk], by Lemma 3.3 we
have

‖F k(s)gk(s) − s2e‖∞ − βs2 ≤ −(tk − s)

(
βs2

1 + tk
− (tk − s)L‖R(s, tk, wk)‖∞

)

≤ −(tk − s)

(
βt2θk

2
− χtLk

)

= −β(tk − s)

2

(
t2θk − 2χtLk

β

)

≤ 0.

Then using the continuity of (fk(s), gk(s)) and the fact that (fk(tk), g
k(tk))

= (xk, yk) > 0 we can show that (fk(s), gk(s)) > 0 for all s ∈ [tθk, tk].
So tk+1 = tθk.
Remark. L denotes the number of linear systems (with the same coefficient ma-

trix) we would like to solve in each predictor step. The bigger L is, the bigger γ can
be chosen and the faster the local convergence will be. For example, when L = 3, we
can choose γ = 1.4; while when L = 5, we can choose γ = 2.4.

6. Concluding remarks. In this paper we present a high-order path following
method for locating the least 2-norm solution of monotone LCPs. The algorithm was
partly motivated by the method proposed in [23] on finding the least 2-norm solution
of linear programs. We proved the global convergence of our algorithm under the
assumption that the LCP has at least one solution. We then showed the superlinear
rate of convergence under the further assumption that the least 2-norm solution is
maximally complementary.

Two directions are worthy of future research. The strength of this algorithm is on
its superior local rate of convergence. But the high-order approximation is essentially
a local technique. When the current estimate is far from the least 2-norm solution,
it is usually better not to spend too much effort trying to approximate the path very
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well. In order to make an efficient general algorithm, some fast globally convergent
techniques have to be combined with the high-order idea.

On the other hand, the local convergence analysis itself also needs further improve-
ment. Under the maximal complementarity assumption, we showed that x(t, w) is an
analytic function on {(t, w)|t ≥ 0, w > 0}, and thus ‖xk−x∗‖ = ‖x(tk, w

k)−x(0, wk)‖
= O(t). Therefore when tk is sufficiently small, it is generally safe to say that xk is
close to x∗. However, if the assumption does not hold, then we do not know whether
x(t, w) can still be analytically extended to t = 0. Hence it could happen that even
though t is very small, xk is still a little far from x∗. Thus it is natural and impor-
tant to consider the possibility of removing the maximal complementarity assumption.
Define OB := {i ∈ B|x∗

i = 0} and ON := {i ∈ N |y∗i = 0}. Then x∗ satisfying the max-
imal complementarity condition is equivalent to OB = ON = ∅. Now assume OB �= ∅
and/or ON �= ∅. Based on our analysis, it is important to find an accurate bound for
xi(t, w) for i ∈ OB , ON as t −→ 0+. Some numerical examples seem to suggest that

xi(t, w) = Θ(t
1
2 ) for i ∈ OB , while xi(t, w) = Θ(t

3
2 ) for i ∈ ON . If such bounds can

be found, then we may be able to carry out the local analysis without assuming x∗

to be maximally complementary, probably with a different parametrization.

Acknowledgment. The author thanks two anonymous referees for their helpful
comments and suggestions.
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PROBLEMS WITH GENERAL UNCERTAINTY SETS∗
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Abstract. We consider a rather general class of mathematical programming problems with data
uncertainty, where the uncertainty set is represented by a system of convex inequalities. We prove
that the robust counterparts of this class of problems can be reformulated equivalently as finite and
explicit optimization problems. Moreover, we develop simplified reformulations for problems with
uncertainty sets defined by convex homogeneous functions. Our results provide a unified treatment
of many situations that have been investigated in the literature and are applicable to a wider range of
problems and more complicated uncertainty sets than those considered before. The analysis in this
paper makes it possible to use existing continuous optimization algorithms to solve more complicated
robust optimization problems. The analysis also shows how the structure of the resulting reformu-
lation of the robust counterpart depends both on the structure of the original nominal optimization
problem and on the structure of the uncertainty set.
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1. Introduction. In classical optimization models, the data are usually assumed
to be known precisely. However, there are numerous situations where the data
are inexact/uncertain. In many applications, the optimal solution of the nominal
optimization problem may not be useful because it may be highly sensitive to small
changes of the parameters of the problem.

Sensitivity analysis and stochastic programming are two traditional methods to
deal with uncertain optimization problems. The former offers only local information
near the nominal values of the data, while the latter requires one to make assumptions
about the probability distribution of the uncertain data which may not be appropriate.
Moreover, the stochastic programming approach often leads to very large optimiza-
tion problems and cannot guarantee satisfaction of certain hard constraints, which is
required in some practical settings.

An increasingly popular approach to optimization problems with data uncertainty
is robust optimization, where it is assumed that possible values of data belong to some
well-defined uncertainty set. In robust optimization, the goal is to find a solution
that satisfies all constraints for any possible scenario from the uncertainty set and
optimizes the worst-case (guaranteed) value of the objective function. See, e.g., [5,
6, 7, 8, 9, 10, 11, 12, 13, 14, 21, 22, 23, 24, 25, 26, 29, 35, 39, 40]. The solutions
of robust optimization models are “uniformly good” for realizations of data from the
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uncertainty set. Early work in this direction was done by Soyster [39, 40] and Falk [22]
under the name of “inexact linear programming.” The robust optimization approach
has been applied to various problems in operations management, financial planning,
and engineering design (see, e.g., [29, 26, 10, 6, 31, 35]).

A formulation of a robust model as a mathematical programming problem is called
a robust counterpart. Since in the robust approach the constraints must be satisfied
for all possible realizations of data from the uncertainty set, the robust counterpart is
typically a complicated semi-infinite optimization problem. A fundamental question
in robust optimization is whether the robust counterpart can be represented as a
single finite and explicit optimization problem, so that existing optimization methods
can be used to solve it. Such an analysis also helps to understand computational
complexity of robust optimization problems.

So far, to obtain sufficiently simple robust counterparts, the uncertainty set was
normally assumed to have a fairly simple structure, for example, a Cartesian product
of intervals, an ellipsoid, an intersection of ellipsoids, or a set defined by certain norms
(see, e.g., [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 23, 24, 25, 26, 29]). Of course, the
simpler the uncertainty set is, the easier it is to solve the robust optimization problem,
and in some situations simplifying assumptions about uncertainty sets is natural when
modelling a practical problem. However, more complicated uncertainty sets may be
encountered in both theoretical study and in applications (see Remark 3.1 for details).
Therefore, it is important to understand possibilities of the robust approach dealing
with problems involving complicated or general uncertainty sets. Study of robust
optimization problems with general uncertainty sets may provide additional tools for
modelling intricate real-life situations and a unified treatment of specialized cases.
Moreover, such a study can provide additional insights and results and even improve
known results for some specialized cases when general results are reduced to such
specialized cases (see section 6 for details).

In this paper, we consider robust optimization problems with uncertainty sets
defined by a system of convex inequalities. The optimization problems we consider
may be nonconvex and are wide enough to include linear programming, linear com-
plementarity problems, quadratic programming, second order cone programming, and
general polynomial programming problems. We prove that the robust counterparts
of the considered problems with uncertainty are finite optimization problems which
can be formulated by using the nominal data of the underlying optimization prob-
lem and the conjugates of the functions defining the uncertainty set. Compared with
the original optimization problem, a major extra difficulty of the robust counterpart
comes from the conjugates of the functions that define the uncertainty set. The con-
jugates of these functions usually are not given explicitly and may be difficult to
compute. To identify explicit and simplified formulations of robust counterparts, we
focus on a class of convex functions whose conjugates can be expressed explicitly.
Our strongest results and simplest reformulations of robust counterparts correspond
to the case where the uncertainty sets are defined by convex homogeneous functions.
This class of uncertainty sets is broad enough to include most uncertainty models that
have been investigated in the literature, as well as many other important cases, for
example, where deviations of data from nominal values may be asymmetric and not
even defined by norms.

We note that instead of optimizing the worst-case value of the objective function,
another possibility is to optimize the worst-case regret, which is the worst-case devia-
tion of the objective function value from the optimal value under the realized scenario,
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or, in other words, to minimize the worst-case loss in the objective function value that
may occur because the decision is made before the realized scenario is known. This
criterion leads to minmax regret optimization models [29, 2, 1, 3, 4]. Minmax regret
problems are typically computationally hard [29, 4], although there are exceptions
(see, e.g., [2, 1, 3]). Minmax regret problems also fit the general paradigm of robust
optimization, but we do not consider them in this paper. We also note that there are
other concepts of robustness in the literature under the name of “model uncertainty”
or “ambiguity.” See, e.g., [42, 28, 17, 33, 18, 38, 27, 37, 16, 19, 20, 21, 31, 41].

This paper is organized as follows. In section 2, we describe the class of optimiza-
tion problems that we consider. In section 3, we define the uncertainty set of data and
provide an equivalent, deterministic representation of the robust optimization prob-
lems via Fenchel’s conjugate functions. In section 4, we give an explicit representation
for the robust counterpart when the uncertainty set is defined by (nonhomogeneous)
convex functions that fall in the linear space generated by homogeneous functions of
arbitrary degrees. The case of uncertainty sets defined by homogeneous functions is
studied in section 5. Specializing the general results of sections 3, 4, and 5 to robust
problems where the nominal problem is a linear programming problem and/or the
uncertainty set is of a special type commonly used in the literature is discussed in
section 6, and concluding remarks are provided in section 7.

2. A class of optimization problems with data uncertainty. We consider
the following optimization problem:

(1) min{cTx : fi(x) ≤ bi, i = 1, . . . ,m, F (x) ≤ 0},

where c = (c1, . . . , cn)T and b = (b1, . . . , bm)T are fixed vectors, and fi’s are functions
of the form

(2) fi(x) =
(
W (i)(x)

)T
M (i)V (i)(x), i = 1, . . . ,m,

where W (i)(x) and V (i)(x) are two mappings from Rn to RNi , M (i) is an Ni×Ni real
matrix, and Ni’s are positive integers. We write W (i)(x) and V (i)(x) as W (i)(x) =

(W
(i)
1 (x), . . . ,W

(i)
Ni

(x))T and V (i)(x) = (V
(i)
1 (x), . . . , V

(i)
Ni

(x))T , where each W
(i)
j (j =

1, . . . , Ni) is a function from Rn to R.
We assume that only the data M (i), i = 1, . . . ,m, are subject to uncertainty. In

(1), F (x) ≤ 0 denotes constraints without uncertainty, e.g., the simple constraints
x ≥ 0. We assume that c and b are certain without loss of generality, because a
problem with uncertain c and b can be easily transformed into a problem with certain
coefficients of the objective function and right-hand sides of the constraints. Also, if
the objective function is not linear, it can be made linear by introducing an additional
variable and a new constraint. We note that functions fi are linear in the uncertain
data M (i) (but can be nonlinear in the decision variables x).

The above optimization model is very general. For example, it includes the fol-
lowing important special cases.

Linear programming (LP). Let A ∈ Rm×n (i.e., an m × n matrix) and b =
(b1, . . . , bm)T . Without loss of generality, we assume m ≤ n. Consider functions fi(x)
of the form (2), where

W (i)(x) = ei ∈ Rn, V (i)(x) = x ∈ Rn, M (i) =

[
A
0

]
n×n

,
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where ei, throughout this paper, denotes the ith column of an n× n identity matrix,
and 0 in M (i) denotes an (n−m) × n zero matrix. It is evident that the inequalities
fi = (W (i))TM (i)V (i) ≤ bi, i = 1, . . . ,m, are equivalent to Ax ≤ b. Therefore,
problem (1) with F (x) = −x ≤ 0 reduces to the following LP problem:

(3) min{cTx : Ax ≤ b, x ≥ 0}.

This implies that the LP problem (3) with uncertain coefficient matrix A is a special
case of the optimization problem (1) with uncertain data M (i). There is also another
way to write an LP problem in the form (1)–(2); see (38) and (39) in section 6.2 for
details.

Linear complementarity problem (LCP). Given a matrix M ∈ Rn×n and a vector
q ∈ Rn, the LCP is defined as

Mx + q ≥ 0, x ≥ 0, xT (Mx + q) = 0.

Solutions to the LCP are very sensitive to changes in data because of the equation
xT (Mx + q) = 0. When the matrix M is uncertain, it is hard to find a solution that
satisfies the above system and is “immune” to changes of M. Thus, it is reasonable
to consider the optimization form of the LCP, i.e.,

min{xT (Mx + q) : Mx + q ≥ 0, x ≥ 0},

or equivalently

min{t : xT (Mx + q) − t ≤ 0, Mx + q ≥ 0, x ≥ 0},

which is less sensitive in the sense that it is equivalent to the LCP if the LCP has a
solution and can still have a solution even when the LCP has no solution. The above
optimization problem can be reformulated as (2) by letting

W (1)(x) =

⎛
⎜⎝

x

1

e1

⎞
⎟⎠ ∈ R2n+1, W (i) =

(
0(n+1)

ei−1

)
∈ R2n+1 for i = 2, . . . , n + 1,

M (i) =

⎡
⎢⎢⎢⎣

M q 0

n−1︷ ︸︸ ︷
0 . . . 0

0 0 −1 0 . . . 0

−M −q 0 0 . . . 0

⎤
⎥⎥⎥⎦ ,

V (i)(x) =

⎛
⎜⎜⎜⎝

x

1

t

0(n−1)

⎞
⎟⎟⎟⎠ ∈ R2n+1, i = 1, . . . , n + 1,

where t ∈ R, and 0(n+1) and 0(n−1) denote (n + 1)- and (n − 1)-dimensional zero
vectors, respectively. It is easy to verify that problem (1) with F (x) = −x ≤ 0 and
fi = (W (i))TM (i)V (i) ≤ 0 (i = 1, . . . , n+1) is the same as the optimization form of the
LCP. It is worth mentioning that Zhang [43] considered equality constrained robust
optimization, and his approach may be also used to deal with LCPs with uncertain
data.
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(Nonconvex) quadratic programming (QP). Consider functions fi(x) of the form
(2), where

W (i)(x) =

(
x
1

)
∈ Rn+1 for i = 0, . . . ,m,

V (0)(x) =

(
x
t

)
∈ Rn+1, V (i)(x) =

(
x
0

)
∈ Rn+1 for i = 1, . . . ,m

and

(4) M (i) =

[
Qi 0

qTi −1

]
(n+1)×(n+1)

for i = 0, . . . ,m,

where each Qi is an n× n symmetric matrix and each qi is a vector in Rn. Then the
optimization problem (1) with the objective t and constraints fi = (W (i))TM (i)V (i) ≤
−ci(i = 0, . . . ,m) is reduced to the following QP problem:

min xTQ0x + qT0 x + c0

s.t. xTQix + qTi x + ci ≤ 0 for i = 1, . . . ,m.

Thus, a QP problem with uncertain coefficients (Qi, qi)(i = 0, . . . ,m) can be repre-
sented as an optimization problem (1) with uncertain data M (i) given as (4).

Second order cone programming (SOCP). Let A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and β
be a scalar. Let

W (1)(x) = V (1)(x) =

(
x
1

)
∈ Rn+1

and

(5) M (1) =

[
ATA− ccT 0

2bTA− 2βcT bT b− β2

]
,

and W (2)(x) = e ∈ Rn (the vector with all components equal to 1), V (2)(x) = x ∈
Rn, and

M (2) =

[
−cT

0

]
n×n

.

Then the constraint f1 = (W (1))TM (1)V (1) ≤ 0, together with f2 = (W (2))TM (2)

V (2) ≤ β, is equivalent to the second order cone constraint: ‖Ax + b‖ ≤ cTx + β. In
fact, f1 ≤ 0 can be written as

(Ax + b)T (Ax + b) ≤ (cTx + β)2,

and f2 ≤ β can be written as cTx+β ≥ 0. Combination of these two inequalities leads
to a second order cone constraint. Thus, uncertainty of the data (A,B, c, β) leads to
uncertainty of the matrices M (1) and M (2).

Polynomial programming. We recall that a monomial in x1, . . . , xn is a product
of the form xα1

1 · xα2
2 · · ·xαn

n , where α1, . . . , αn are nonnegative integers. It is evident
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that if the components of W (x) and V (x) are monomials, then for any given matrix
M , a function of the form (2) is a polynomial. Conversely, any real polynomial is a
linear combination of some monomials, i.e.,

P (x1, x2, . . . , xn) =
∑

(α1,α2,...,αn)

C(α1,α2,...,αn)xα1
1 xα2

2 . . . xαn

n ,

where C(α1,...,αn) are real coefficients. Then the simplest way to write it in the form (2)
is to set W (x) = e , set V (x) to be the vector of all monomials xα1

1 xα2
2 . . . xαn

n appear-
ing in P (x), and set M to be the diagonal matrix with diagonal entries C(α1,α2,...,αn).
Thus polynomial optimization with uncertain coefficients is a special case of (1) with
uncertain data M (i).

3. Robust counterparts as finite deterministic optimization problems.
We start with a description of the uncertainty set. Let Ki, i = 1, . . . ,m, be a bounded
subset of RN2

i that contains the origin. Suppose that the uncertain data M (i) (i =
1, . . . ,m) of the ith constraint of (1) are allowed to vary in such a way that the

deviations from their fixed nominal values M
(i)

fall in Ki. That is, the uncertainty
set of the data M (i) is defined as

(6) Ui =
{
M̃ (i)

∣∣∣vec(M̃ (i)) − vec(M
(i)

) ∈ Ki

}
, i = 1, . . . ,m,

where for a given matrix M , vec(M) denotes the vector obtained by stacking the
transposed rows of M on top of one another. Then the robust counterpart of the
optimization problem (1) with uncertainty sets Ui is defined as follows:

min cTx(7)

s.t. fi =
(
W (i)(x)

)T
M̃ (i)V (i)(x) ≤ bi ∀M̃ (i) ∈ Ui, i = 1, . . . ,m, F (x) ≤ 0,

which is a semi-infinite optimization problem. The optimal solution to this problem
is feasible for all realizations of the data M̃ (i).

We denote by δ(u|K) the indicator function of a set K (see [36]), and the conjugate
function of δ(u|K) is denoted by δ∗(u|K), which is equal to the support function
ψK(u) = max{uT v : v ∈ K}. First we state the following general result, which shows
that the robust counterpart (7) can be written equivalently as a finite deterministic
optimization problem, regardless of the type of uncertainty sets.

Theorem 3.1. The robust optimization problem (7) is equivalent to the following
finite and deterministic optimization problem:

min cTx

s.t.
(
W (i)(x)

)T
M

(i)
V (i)(x) + δ∗(χi|cl(coKi)) ≤ bi, i = 1, . . . ,m,

F (x) ≤ 0,

where cl(coKi) denotes the closure of the convex hull of set Ki, and χi = W (i)(x) ⊗
V (i)(x) ∈ RN2

i , i.e., is the Kronecker product of the vectors W (i)(x) and V (i)(x).

Proof. In fact, the constraint fi = (W (i)(x))T M̃ (i)V (i)(x) ≤ bi for all vec(M̃ (i))−
vec(M

(i)
) ∈ Ki is equivalent to

(8) sup
{
W (i)(x)T M̃ (i)V (i)(x) : vec(M̃ (i)) − vec(M

(i)
) ∈ Ki

}
≤ bi.
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Notice that for any square matrices B,C, we have tr(BC ) = (vec(B))T vec(CT ). Thus,
we have(

W (i)(x)
)T

M̃ (i)V (i)(x) = tr

(
M̃ (i)V (i)(x)

(
W (i)(x)

)T)

=
(
vec(M̃ (i))

)T
vec

(
W (i)(x)

(
V (i)(x)

)T)

=
(
vec(M̃ (i))

)T (
W (i)(x) ⊗ V (i)(x)

)
.

Denoting χi = W (i)(x) ⊗ V (i)(x), the constraint (8) can be written as

bi ≥ sup

{(
vec(M̃ (i))

)T
χi : vec(M̃ (i)) − vec(M

(i)
) ∈ Ki

}

=
(
vec(M

(i)
)
)T

χi + sup
u∈Ki

uTχi =
(
vec(M

(i)
)
)T

χi + sup
u∈cl(coKi)

uTχi

=
(
W (i)(x)

)T
M

(i)
V (i)(x) + δ∗(χi|cl(coKi)).

The original semi-infinite constraints become finite and deterministic constraints.
For robust optimization, when the uncertainty set is not convex, the robust coun-

terpart remains unchanged if we replace the uncertainty set by its closed convex hull.
This observation was first mentioned in [7] and can be seen clearly from the above
result. Because of this fact, we may assume without loss of generality that each Ki

is a closed convex set. In applications, the convex set Ki is usually determined by a
system of convex inequalities. So, throughout the rest of the paper, we assume that
Ki is a closed, bounded convex set containing the origin and it can be represented as

(9) Ki =
{
u
∣∣∣ g(i)

j (u) ≤ Δ
(i)
j , j = 1, . . . , �(i)

}
, i = 1, . . . ,m,

where �(i)’s are given integers, Δ
(i)
j ’s are constants, and g

(i)
j ’s are proper closed convex

functions from RN2
i to R. Here R = R∪{+∞} and “proper” means that the function

is finite somewhere (throughout the paper, we use the terminology from [36]). Since

0 ∈ Ki, we have g
(i)
j (0) ≤ Δ

(i)
j for all j = 1, . . . , �(i).

Remark 3.1. In this remark, we give additional motivation for considering the
general uncertainty set (9) as opposed to special uncertainty sets studied in the lit-
erature. We note that the importance of studying robust problems with complicated
uncertainty sets was emphasized, for example, in [15].

(i) Consider the following uncertainty set:

(10) U =

⎧⎨
⎩D

∣∣∣∣∣∣∃z ∈ R|N | : D = D0 + ψ(z) = D0 +
∑
j∈N

ΔDjzj , ‖z‖ ≤ Ω

⎫⎬
⎭ ,

where Ω is a given number, D0 is a given vector (nominal values of the uncertain
data), and ΔDj ’s are directions of data perturbation. This uncertainty set has been
widely used in the literature (see, e.g., [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 23, 24, 25, 26].
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It is the image of a ball (defined by some norm) under linear transformation; i.e., the
function ψ(z) here is a linear function in z. This widely used uncertainty set can be
written in the form (9) with only one convex inequality g(u) ≤ Ω, where function
g(u) is also homogeneous of 1-degree, and g(u) is not a norm, in general, unless
|N | is equal to the number of data and the data perturbation directions ΔDj ’s are
linearly independent (see section 6.1 for details). This typical example shows that

it is necessary to study the case when the functions g
(i)
j (u) in (9) are convex and

homogeneous (but not necessarily norms). Section 5 of this paper is devoted to this
important case.

For the uncertainty set U defined by (10), the function ψ(z) is linear in z. In some
applications, however, such a model is insufficient for description of more complicated
uncertainty sets. The next two examples show that in some situations the function
ψ(z) may be nonlinear, and hence the uncertainty set may be much more complicated.

(ii) Consider SOCP. It is often assumed that the data (A, b, c) are subject to an
ellipsoidal uncertainty set which is the case of (10) where the norm is the 2-norm.
When we reformulate SOCP into the form of (1), the data M (1) is determined by the
matrix (5). It is easy to see the data M (1) belongs to the following uncertainty set:

(11) U =
{
D
∣∣∣∃z ∈ R|N | : D = D0 + ψ(z), ‖z‖ ≤ Ω

}
,

where ψ(z) is a quadratic function in z. Thus, this example shows that a more com-
plicated uncertainty set than (10) might appear when we make a reformulation of
the problem. Such reformulations are often made when a problem is studied from
different perspectives.

(iii) This example, taken from [23], shows that a nonlinear function ψ(z) arises
in (11) when robust interpolation problems are considered. Let n ≥ 1 and k be given
integers. We want to find a polynomial of degree n− 1, p(t) = x1 + · · ·+ xnt

n−1 that
interpolates given points (ai, bi), i.e., p(ai) = bi, i = 1, . . . , k. If interpolation points
(ai, bi) are known precisely, we obtain the following linear equation:

⎡
⎢⎣

1 a1 · · · an−1
1

...
...

...
1 ak · · · an−1

k

⎤
⎥⎦
⎡
⎢⎣

x1

...
xn

⎤
⎥⎦ =

⎡
⎢⎣

b1
...
bn

⎤
⎥⎦ .

Now assume that ai’s are not known precisely, i.e., ai(δ) = ai + δi, i = 1, . . . , k, where
the δ = (δ1, . . . , δk) is unknown but bounded, i.e., ‖δ‖∞ ≤ ρ, where ρ ≥ 0 is given. A
robust interpolant is a solution x that minimizes ‖A(δ)x−b‖ over the region ‖δ‖∞ ≤ ρ,
where

A(δ) =

⎡
⎢⎣

1 a1(δ) · · · a1(δ)
n−1

...
...

...
1 ak(δ) · · · ak(δ)

n−1

⎤
⎥⎦

is an uncertain Vandermonde matrix. Such a matrix can be written in the form (11)
with nonlinear function ψ(z). In fact, we have (see [23] for details)

A(δ) = A(0) + LΔ(I −DΔ)−1RA,

where L, D, and RA are constant matrices determined by ai’s, and Δ = ⊕k
i=1δiIn−1.
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(iv) Our model provides a unified treatment of many uncertainty sets in the
literature. Note that (11) can be written in the form (9) by letting g(D) = inf{‖z‖ :
D = ψ(z)}. Then U − {D0} = {D : g(D) ≤ Ω}. This can be proved by the same
argument as Lemma 6.1.

(v) Studying problems with general uncertainty sets may in fact lead to new or
stronger results for important special cases, as we demonstrate in section 6.

Since robust optimization problems, in general, are semi-infinite optimization
problems which are hard to solve, the fundamental question is whether a robust
optimization problem can be explicitly represented as an equivalent finite optimization
problem, so that the existing optimization methods can be applied. We are addressing
this question in this paper. It should be mentioned that, generally, two research di-
rections are possible: (1) developing computationally tractable approximate (relaxed)
formulations; (2) developing exact formulations which, naturally, will be computation-
ally difficult for sufficiently complicated nominal problems and/or uncertainty sets.
Our paper focuses on the second direction; the first direction was investigated, for
instance, in Bertsimas and Sim [14]. We believe that both directions are important
for theoretical and practical progress in robust optimization; we comment on this in
more detail in section 6.

Let us mention some auxiliary results and definitions. Given a function f we
denote its domain by dom(f) and denote its Fenchel’s conjugate function by f∗, i.e.,

f∗(w) = sup
x∈dom(f)

(
wTx− f(x)

)
.

We recall that the infimal convolution function of gj(j = 1, . . . , �), denoted by g1 �
g2 � · · · � g�, is defined as

(g1 � g2 � · · · � g�)(u) = inf

⎧⎨
⎩

�∑
j=1

gj(uj) :

�∑
j=1

uj = u

⎫⎬
⎭ .

The following result will be used in our later analysis.

Lemma 3.1 (see [36, Theorem 16.4]). Let f1, . . . , f� : Rn → R be proper convex
functions. Then (cl(f1)+· · ·+cl(f�))

∗ = cl(f∗
1 �· · ·�f∗

� ), where cl(f) denotes the closure
of the convex function f. If the relative interiors of the domains of these functions,
i.e., ri(dom(fi)), i = 1, . . . , �, have a point in common, then

(
�∑

i=1

fi

)∗

(x) = (f∗
1 � · · · � f∗

� )(x) = inf

{
�∑

i=1

f∗
i (xi) :

�∑
i=1

xi = x

}
,

where for each x ∈ Rn the infimum is attained.

Now we consider the robust programming problem (7) where the uncertainty set
is determined by (6) and (9). We have the following general result.

Theorem 3.2. Let Ki (i = 1, . . . ,m) be given by (9), where each g
(i)
j (j =

1 . . . , �(i)) is a closed proper convex function. Suppose that Slater’s condition holds

for each i; i.e., for each i, there exists a point u
(i)
0 such that g

(i)
j (u

(i)
0 ) < Δ

(i)
j for all

j = 1, . . . , �(i). Then the robust counterpart (7) is equivalent to

min cTx
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s.t.
(
W (i)(x)

)T
M

(i)
V (i)(x) +

�(i)∑
j=1

λ
(i)
j Δ

(i)
j +

⎛
⎝ �(i)∑

j=1

λ
(i)
j g

(i)
j

⎞
⎠

∗

(χi) ≤ bi,

i = 1, . . . ,m, λ
(i)
j ≥ 0, j = 1, . . . , �(i), i = 1, . . . ,m,

F (x) ≤ 0,

where χi = W (i)(x) ⊗ V (i)(x). This problem can be further written as

min cTx

s.t.
(
W (i)(x)

)T
M

(i)
V (i)(x) +

�(i)∑
j=1

λ
(i)
j Δ

(i)
j + Υ(i)(λ(i), u(i)) ≤ bi, i = 1, . . . ,m,

χi =

{ ∑
j∈Ji

u
(i)
j if Ji �= ∅,

0 otherwise,
i = 1, . . . ,m,(12)

λ
(i)
j ≥ 0, j = 1, . . . , �(i), i = 1, . . . ,m,

F (x) ≤ 0,

where Ji = {j : λ
(i)
j > 0, j = 1, . . . , �(i)}, λ(i) denotes the vector whose components

are λ
(i)
j , j = 1, . . . , �(i), u(i) denotes the vector whose components are u

(i)
j , j ∈ Ji, and

Υ(i)(λ(i), u(i)) =

⎧⎨
⎩

∑
j∈Ji

λ
(i)
j

(
g
(i)
j

)∗ (
u

(i)
j /λ

(i)
j

)
if Ji �= ∅,

0 otherwise.

Proof. We see from the proof of Theorem 3.1 that x is feasible to the robust
problem (7) if and only if F (x) ≤ 0 and for each i we have

(13)
(
W (i)(x)

)T
M

(i)
V (i)(x) + max

u∈Ki

uTχi ≤ bi.

Let Z(χi) = max{uTχi : u ∈ Ki}, where Ki is given by (9), which by our assumption
is a bounded, closed convex set. Thus the maximum value of the convex optimiza-
tion problem max{uTχi : u ∈ Ki} is finite and attainable. Denote the Lagrangian

multiplier vector for this problem by λ(i) = (λ
(i)
1 , λ

(i)
2 , . . . , λ

(i)

�(i)
) ∈ R�(i)

+ . Since Slater’s

condition holds for the problem max{uTχi : u ∈ Ki}, by Lagrangian saddle-point
theorem (see, e.g., Theorem 28.3, Corollary 28.3.1, and Theorem 28.4 in [36]), we have

Z(χi) = −min{−uTχi : g
(i)
j (u) ≤ Δ

(i)
j , j = 1, . . . , �(i)}(14)

= − sup
λ(i)∈R�(i)

+

inf
u∈RN2

i

⎛
⎝−uTχi +

�(i)∑
j=1

λ
(i)
j

(
g
(i)
j (u) − Δ

(i)
j

)⎞⎠

= − sup
λ(i)∈R�(i)

+

⎡
⎣− �(i)∑

j=1

λ
(i)
j Δ

(i)
j + inf

u∈RN2
i

⎛
⎝−uTχi +

�(i)∑
j=1

λ
(i)
j g

(i)
j (u)

⎞
⎠
⎤
⎦
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= − sup
λ(i)∈R�(i)

+

⎡
⎣− �(i)∑

j=1

λ
(i)
j Δ

(i)
j − sup

u∈RN2
i

⎛
⎝uTχi −

�(i)∑
j=1

λ
(i)
j g

(i)
j (u)

⎞
⎠
⎤
⎦

= − sup
λ(i)∈R�(i)

+

⎛
⎝−

�(i)∑
j=1

λ
(i)
j Δ

(i)
j −

⎛
⎝ �(i)∑

i=1

λ
(i)
j g

(i)
j

⎞
⎠

∗

(χi)

⎞
⎠

= inf
λ(i)∈R�(i)

+

⎛
⎝ �(i)∑

j=1

λ
(i)
j Δ

(i)
j +

⎛
⎝ �(i)∑

j=1

λ
(i)
j g

(i)
j

⎞
⎠

∗

(χi)

⎞
⎠ .

Under our assumptions, the above infimum is attainable (by the existence of a saddle
point of the Lagrangian function [36]). Substituting (14) into (13), we see that x
satisfies (13) if and only if it satisfies the following inequalities for some λ(i):

(
W (i)(x)

)T
M

(i)
V (i)(x) +

�(i)∑
j=1

λ
(i)
j Δ

(i)
j +

⎛
⎝ �(i)∑

j=1

λ
(i)
j g

(i)
j

⎞
⎠

∗

(χi) ≤ bi,(15)

λ(i) = (λ
(i)
1 , λ

(i)
2 , . . . , λ

(i)

�(i)
) ∈ R�(i)

+ .(16)

Indeed, if x is feasible to (13), since the infimum in (14) is attainable, there exists

some λ(i) ∈ R�(i)

+ such that (x, λ(i)) is feasible to the system (15)–(16). Conversely,

if (x, λ(i)) is feasible to (15) and (16), then by (14), we see that (15) implies (13).
Replacing (13) by (15) together with (16), the first part of the desired result follows
from Theorem 3.1.

We now derive the optimization problem (12). Suppose that (x, λ(i)) satisfies (15)
and (16). We have two cases.

Case 1. Ji = {j : λ
(i)
j > 0, j = 1, . . . , �(i)} �= ∅. Denote by u(i) the vector

whose components are u
(i)
j , j ∈ Ji. Notice that for any constant α > 0, the conjugate

(αf)∗(x) = αf∗(x/α). For given λ(i) ∈ R�(i)

+ , by Lemma 3.1, we have⎛
⎝ �(i)∑

j=1

λ
(i)
j g

(i)
j

⎞
⎠

∗

(χi) = inf
u(i)

⎧⎨
⎩
∑
j∈Ji

λ
(i)
j

(
g
(i)
j

)∗
(u

(i)
j /λ

(i)
j ) : χi =

∑
j∈Ji

u
(i)
j

⎫⎬
⎭ .

Again, by Lemma 3.1, the infimum above is attainable, and hence there are u
(i)
j ,

j ∈ Ji, such that ⎛
⎝ �(i)∑

j=1

λ
(i)
j g

(i)
j

⎞
⎠

∗

(χi) =
∑
j∈Ji

λ
(i)
j

(
g
(i)
j

)∗
(u

(i)
j /λ

(i)
j ),

χi =
∑
j∈Ji

u
(i)
j .

Case 2. Ji = ∅. Notice that⎛
⎝ �(i)∑

j=1

λ
(i)
j g

(i)
j

⎞
⎠

∗

(w) = sup
u∈Rn

(wTu− 0) =

{
∞ if w �= 0,

0 if w = 0.
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Since (x, λ(i)) is feasible to (15) and (16), we conclude that for this case

χi = 0,

⎛
⎝ �(i)∑

j=1

λ
(i)
j g

(i)
j

⎞
⎠

∗

(χi) = 0.

Combining the above two cases leads to the optimization problem (12).
We see from Theorem 3.2 that the level of complexity of the robust counterpart,

compared with the nominal optimization problem, is determined mainly by the con-

jugate functions (g
(i)
j )∗ (j = 1, . . . , �(i), i = 1, . . . ,m) and functions χi (i = 1, . . . ,m).

The more complicated the conjugate functions are, the more difficult the robust coun-

terpart is. Notice that the constraint
∑

j∈Ji
u

(i)
j = χi is an explicit expression, and in

some cases, e.g., LP, χi is linear in x and thus does not add difficulty. We also note

that when �(i) = 1, i.e., when Ki is defined by only one constraint, then u
(i)
j = χi,

in which case the formula
∑

j∈Ji
u

(i)
j = χi will not appear in (12). For an arbitrary

function, however, its conjugate function is not given explicitly, and hence (12) is not
an explicit optimization problem. As a result, to obtain an explicit formulation of
the robust counterpart, one has to compute the conjugate functions of the constraint

functions g
(i)
j , which except for very simple cases is not easy. This motivates us to

investigate in the remainder of the paper under what conditions the robust counter-
part in Theorem 3.2 can be further simplified, avoiding the computation of conjugate
functions.

4. Explicit reformulation for robust counterparts. For any function f , let

�D(f) =
⋃

x∈dom(f)

∂f(x);

that is, �D(f) is the range of the subdifferential mapping ∂f(·). If f is differentiable,
�D(f) reduces to the range of its gradient mapping, i.e., �D(f) = {∇f(x) : x ∈
dom (f)}. In this section we make the following assumption.

Assumption 4.1. The functions g
(i)
j (j = 1, . . . , �(i), i = 1, . . . ,m) in (9) belong to

the set of convex functions f that satisfy the condition

(17) dom(f∗) = �D(f).

In fact, by the definition of subdifferential, the following relation always holds for
any proper convex function: dom(f∗) ⊇ �D(f). Condition (17) requires the converse
also to be true. Indeed, condition (17) holds for many functions. It is evident that all
convex functions defined on a subset of Rn with �D(f) = Rn satisfy condition (17).
For example, when the function f is differentiable and strongly convex on Rn, the
gradient ∇f(x) is a strongly monotone function from Rn to Rn. This implies that
∇f(x) is a bijective mapping [34, Theorem 6.4.4], and hence we have �D(f) = Rn. A
simple example is the quadratic function f = 1

2x
TQx + bx + c, where Q is a positive

definite matrix; then �D(f) = {Qx + b : x ∈ Rn} = Rn. When �D(f) �= Rn, (17)
can still be satisfied in many cases. Later, we will show that all convex homogeneous
of 1-degree functions satisfy (17) trivially, and �D(f) of any function of this class
is a closed bounded region including the origin. Notice that for any (u, x) such that
u ∈ ∂f(x), we have f∗(u) = uTx − f(x). The importance of condition (17) is that
under (17), for any u ∈ dom(f∗) there is x ∈ dom(f) such that u ∈ ∂f(x) and there-
fore f∗(u) = uTx− f(x). Therefore, under Assumption 4.1, the robust counterpart
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(12) can be represented explicitly. However, we omit the statement of this general re-
sult. We are now interested in functions that have more properties leading to further
simplification of the robust counterpart.

We recall that a function h : Rn → R is said to be positively homogeneous if there
exists a constant p > 0 such that h(λx) = λph(x) for all λ ≥ 0 and x ∈ dom(h). If
such a p exists, we simply say that the function h is homogeneous of p-degree. Notice
that the definition implies 0 ∈ dom(h) and h(0) = 0. We consider the linear space LH

generated by homogeneous functions; i.e., LH is the collection of all functions that are
finite linear combinations of homogeneous functions. Notice that for any real number
α, (αh)(x) is also a homogeneous function if h is homogeneous. Therefore, LH is the
set of all finite sums of homogeneous functions. Clearly, a function f which is the sum
of several homogeneous functions fi is not necessarily homogeneous, unless all fi have
the same homogeneous degree. Linear space LH includes many important classes of
functions. Needless to say, all homogeneous functions (in particular, all norms ‖ · ‖)
are in LH and all polynomial functions are in LH .

The classical Euler homogeneous function theorem claims that if f is continuously
differentiable and homogeneous of p-degree, then pf(x) = xT∇f(x), where ∇f(x) is
the gradient of f. Below we establish a somewhat different version of the Euler ho-
mogeneous function theorem. This version allows the function to be nondifferentiable
and nonhomogeneous but to belong to LH and be convex.

Lemma 4.1. Let f : Rn → R be a convex function in LH . Thus, f can be
represented as f(x) = f1(x) + · · ·+ fN (x) for some N, where each fi is homogeneous
of pi-degree, respectively.

(i) For any x ∈ dom (f), we have

N∑
i=1

pifi(x) = inf
y∈∂f(x)

yTx = sup
y∈∂f(x)

yTx;

i.e., for any y ∈ ∂f(x), we have
∑N

i=1 pifi(x) = yTx.
(ii) Suppose that f : Rn → R is a convex function and is homogeneous of p-degree.

Then for any x ∈ dom(f) and for any y ∈ ∂f(x), we have pf(x) = yTx.
Proof. For any given x ∈ dom(f) and y ∈ ∂f(x), by definition of subdifferential

we have f(u) ≥ f(x) + yT (u − x) for all u ∈ dom(f). Notice that x ∈ dom(f) if
and only if x ∈ dom(fi) for all i = 1, . . . , N. Since all fi’s are homogeneous, for any
t > 0, we have u = tx ∈ dom(fi) for all i = 1, . . . , N. This in turn implies that
u = tx ∈ dom (f) for any t > 0. Setting u = tx in the above inequality and by using
homogeneity, we have

f(tx ) =

N∑
i=1

fi(tx ) =

N∑
i=1

tpifi(x) ≥ f(x) + yT (tx − x) ∀ t > 0,

i.e.,

(18)
N∑
i=1

(tpi − 1)fi(x) ≥ (t− 1)yTx ∀ t > 0.

For t > 1, dividing both sides by t−1 and noting that y is any given element in ∂f(x),
we see from the above inequality that

lim
t→1+

N∑
i=1

tpi − 1

t− 1
fi(x) ≥ sup

y∈∂f(x)

yTx.
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Thus, we have
∑N

i=1 pifi(x) ≥ supy∈∂f(x) y
Tx. Similarly, when t < 1, dividing both

sides of (18) by t− 1, we can prove that

N∑
i=1

pifi(x) = lim
t→1−

N∑
i=1

tpi − 1

t− 1
fi(x) ≤ inf

y∈∂f(x)
yTx.

Combining the last two inequalities yields the desired result (i). Setting N = 1, we
obtain the result (ii) from (i).

Notice that when N > 1, Lemma 4.1 requires convexity of f but does not require
convexity of individual functions fi, which can be nonconvex. The next theorem
is the main result of this section, which states that the robust counterpart can be
represented explicitly by using only the nominal data and the constraint functions gi
together with their subdifferentials.

Theorem 4.1. Let Ki (i = 1, . . . ,m) be given by (9), where each g
(i)
j (j =

1, . . . , �(i), i = 1, . . . ,m) is a closed proper convex function and belongs to the lin-
ear space LH , and is represented as

(19) g
(i)
j (x) =

m(ij)∑
k=1

h
(ij)
k (x),

where each h
(ij)
k (x) is homogeneous of p

(ij)
k -degree, and each m(ij) ≥ 1 is a given

integer number. Let g
(i)
j satisfy Assumption 4.1 and Slater’s condition for each i.

Then the robust programming problem (7) is equivalent to

min cTx

s.t.
(
W (i)(x)

)T
M

(i)
V (i)(x) +

�(i)∑
j=1

λ
(i)
j Δ

(i)
j + Υ(i) ≤ bi, i = 1, . . . ,m,

χi =

{ ∑
j∈Ji

u
(i)
j if Ji �= ∅,

0 otherwise,
i = 1, . . . ,m,(20)

λ
(i)
j ≥ 0, j = 1, . . . , �(i), i = 1, . . . ,m,

F (x) ≤ 0,

where χi = W (i)(x) ⊗ V (i)(x) and Ji = {j : λ
(i)
j > 0, j = 1, . . . , �(i)}, and

Υ(i) =

{ ∑
j∈Ji

λ
(i)
j

(∑m(ij)

k=1 (p
(ij)
k − 1)h

(ij)
k (w

(i)
j )

)
if Ji �= ∅,

0 otherwise,

where w
(i)
j satisfies that u

(i)
j /λ

(i)
j ∈ ∂g

(i)
j (w

(i)
j ) for j ∈ Ji �= ∅.

Proof. Let f ∈ LH be any convex function such that f(x) = f1(x) + · · ·+ fN (x),
where fi is homogeneous of pi-degree, and let f satisfy condition (17). Let y∗ be any
element in dom(f∗) = �D(f). This implies that there exists some point x∗ ∈ dom (f)
such that y∗ ∈ ∂f(x∗). Then, for any x ∈ dom(f), we have f(x) ≥ f(x∗) + (y∗)T
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(x−x∗), which can be written as (y∗)Tx−f(x) ≤ (y∗)Tx∗−f(x∗) for all x ∈ dom(f).
This, together with Lemma 4.1, implies that

(21) f∗(y∗) = (y∗)Tx∗ − f(x∗) =

N∑
i=1

pifi(x
∗) − f(x∗) =

N∑
i=1

(pi − 1)fi(x
∗).

Setting f = g
(i)
j and y∗ = u

(i)
j /λ

(i)
j , where g

(i)
j is given by (19), it follows from (21)

that

(
g
(i)
j

)∗
(u

(i)
j /λ

(i)
j ) =

m(ij)∑
k=1

(p
(ij)
k − 1)h

(ij)
k (w

(i)
j ),

where w
(i)
j can be any point such that u

(i)
j /λ

(i)
j ∈ ∂g

(i)
j (w

(i)
j ). Substituting the above

into Theorem 3.2, we have the desired result.

We now consider the case in which all the functions g
(i)
j (j = 1, . . . , �(i)) are ho-

mogeneous. This is a special case of (19) with m(ij) = 1 (for all j = 1, . . . , �(i), i =
1, . . . ,m). We have the following result.

Corollary 4.1. Let Ki be given by (9), where each g
(i)
j (j = 1, . . . , �(i)) is

convex and homogeneous of p
(i)
j -degree, and g

(i)
j satisfy Assumption 4.1. Then the

robust programming problem (7) is equivalent to (20), but Υ(i) is given as follows:

Υ(i) =

{ ∑
j∈Ji

(p
(i)
j − 1)λ

(i)
j g

(i)
j (w

(i)
j ) if Ji �= ∅,

0 otherwise,

where w
(i)
j satisfies that u

(i)
j /λ

(i)
j ∈ ∂g

(i)
j (w

(i)
j ) for j ∈ Ji �= ∅.

It is worth mentioning that Υ(i) can be written as

Υ(i) =

{ ∑
j∈Ji

(
1 − 1/p

(i)
j

)
(u

(i)
j )Tw

(i)
j if Ji �= ∅,

0 otherwise.

This follows from (ii) of Lemma 4.1. Actually, for any function f satisfying Assump-
tion 4.1, (21) can also be written as f∗(y∗) = (y∗)Tx∗ − f(x∗) = (1 − 1/p)(y∗)Tx∗.
Therefore, (

g
(i)
j

)∗
(u

(i)
j /λ

(i)
j ) = (1 − 1/p

(i)
j )(u

(i)
j )Tw

(i)
j /λ

(i)
j

for some w
(i)
j such that u

(i)
j /λ

(i)
j ∈ ∂g

(i)
j (w

(i)
j ).

Remark 4.1. (i) Notice that in Corollary 4.1 we do not require Slater’s condition,
since it was shown in [32] that for homogeneous convex optimization, Lagrangian
duality results hold without Slater’s condition.

(ii) It should be mentioned that Slater’s condition in Theorem 4.1 is not essential,
and can be removed in many situations, or enforced by slightly changing the constants

Δ
(i)
j in (9). Any function g in the linear space LH is the sum of some homogeneous

functions whose value is zero at the origin. Thus 0 ∈ Ki implies that 0 = g
(i)
j (0) ≤ Δ

(i)
j

for j = 1, . . . , �(i); i.e., all constants Δ
(i)
j must be nonnegative in (9) when g

(i)
j ∈ LH .

If all Δ
(i)
j are positive, Slater’s condition holds trivially (this is the situation in most
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practical applications; for example, when g
(i)
j is a norm, Δ

(i)
j is positive since otherwise

the uncertainty set contains at most one point). If not all Δ
(i)
j are positive, replacing

Δ
(i)
j in (9) by Δ̂

(i)
j , where Δ̂

(i)
j = Δ

(i)
j if Δ

(i)
j > 0, and Δ̂

(i)
j = ε otherwise, for some

small ε > 0, allows us to satisfy Slater’s condition.
In the next section, we show that in homogeneous cases the above results can be

further improved without making Assumption 4.1.

5. Homogeneous cases. We now show that for homogeneous of 1-degree func-
tions, Assumption 4.1 holds trivially, and for a degree p �= 1, a simple transformation
will make the resulting functions satisfy Assumption 4.1. We also further simplify the
reformulation. We first prove some basic properties of homogeneous functions. Part
(i) of the following lemma in fact follows from [30], but for completeness we provide a
simple proof. It appears that the result of part (ii) of the following lemma should be
valid for nondifferentiable functions as well, but for simplicity of the proof we state it
for twice differentiable functions.

Lemma 5.1. Let f : dom(f) ⊆ Rn → R be convex and homogeneous of p-degree.
(i) If the degree p > 1, then f(x) ≥ 0 over its domain, and if p < 1, then f(x) ≤ 0

over its domain.
(ii) Let f be twice differentiable over its domain. Then for p > 1, the function

(f(x))1/p is convex and homogeneous of 1-degree; for p < 1, the function −(−f(x))1/p

is convex and homogeneous of 1-degree.
Proof. Let x be any point in dom (f). By homogeneity and convexity of f, we

have

(1/2)
p
f(x) = f(x/2) ≤ f(x)/2 + f(0)/2 = f(x)/2.

Thus, [(1/2)
p − 1/2] f(x) ≤ 0, and hence the result (i) follows.

We now prove the result of part (ii). Consider the case of p > 1. By (i), p > 1
implies that f(x) ≥ 0 over its domain. Let ε > 0 be any given positive number. Denote
gε(x) := (f(x) + ε)1/p. Notice that dom(gε) = dom (f), and gε is twice differentiable.
We prove first that gε is a convex function for any given ε > 0. It suffices to show
that ∇2gε(x) � 0 (positive semidefinite). Since

∇2gε(x) =
1

p
(f(x) + ε)

1
p−2

[(
1

p
− 1

)
∇f(x)∇f(x)T + (f(x) + ε)∇2f(x)

]
,

it is sufficient to prove that(
1

p
− 1

)
∇f(x)∇f(x)T + (f(x) + ε)∇2f(x) � 0.

By Schur complementarity property, this is equivalent to showing that[
p

p−1 (f(x) + ε) ∇f(x)T

∇f(x) ∇2f(x)

]
� 0.

Thus, we need to show for all (t, u) ∈ Rn+1 that

ϕ(t, u) = (t, uT )

[
p

p−1 (f(x) + ε) ∇f(x)T

∇f(x) ∇2f(x)

](
t
u

)

=
p

p− 1
t2(f(x) + ε) + 2t∇f(x)Tu + uT∇2f(x)u ≥ 0.
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Case 1. t = 0. By convexity of f , uT∇2f(x)u ≥ 0 for any u ∈ Rn; thus we have
ϕ(t, u) ≥ 0.

Case 2. t �= 0. In this case, it suffices to show that for any u ∈ Rn

ϕ(1, u) =
p

p− 1
(f(x) + ε) + 2∇f(x)Tu + uT∇2f(x)u ≥ 0.

Since ∇2f(x) � 0, the function ϕ(1, u) is convex with respect to u, and its minimum
is attained if there exists some u∗ such that

(22) ∇f(x) = −∇2f(x)u∗,

and the minimum value is

ϕ(1, u∗) =
p

p− 1
(f(x) + ε) + ∇f(x)Tu∗.

By Euler’s formula, we have xT∇f(x) = pf(x). Differentiating both sides of this
equation, we have (p−1)∇f(x) = ∇2f(x)x, which shows that the vector u∗ = − 1

p−1x

satisfies (22); thus the minimum value is

ϕ(1, u∗) =
p

p− 1
(f(x) + ε) − 1

p− 1
∇f(x)Tx =

p

p− 1
ε > 0.

The last equation follows from Euler’s formula again. Therefore ϕ(t, u) ≥ 0 for any
(t, u) ∈ Rn+1. Convexity of gε(x) follows. Since ε > 0 is arbitrary and (f(x))1/p =
limε→0 gε(x), we conclude that (f(x))1/p is convex.

The case of p < 1 is considered analogously.
According to our definition of a homogeneous function, its domain includes the

origin. The next lemma shows that Assumption 4.1 is satisfied for any homogeneous
of 1-degree convex function, and its subdifferential at the origin defines the domain
of the conjugate function.

Lemma 5.2. Let h : dom(h) ⊆ RN → R be a closed proper convex function and
be homogeneous of 1-degree. Then

�D(h) =
⋃

x∈dom(h)

∂h(x) = ∂h(0).

Moreover, dom(h∗) = �D(h) = ∂h(0).
Proof. Let z be any subgradient of h at x; then for any given y and any positive

number λ we have h(λy) ≥ h(x) + zT (λy− x). Since λ is positive, dividing both sides
of the inequality by λ and using homogeneity of h, we have

h(y) ≥ h(x) − zTx

λ
+ zT y.

Let λ → ∞. We have h(y) ≥ zT y, which holds for any y. Consider the set

S := {z : zT y ≤ h(y) for any y ∈ dom(h)}.

From the above proof, we have seen that ∂h(x) ⊆ S for any x, i.e., �D(h) ⊆ S. In
particular, we have ∂h(0) ⊆ S. Conversely, since h(0) = 0, we see that any z ∈ S is a
subgradient of h at x = 0. Thus, we have S ⊆ ∂h(0). We conclude that �D(h) = S =
∂h(0). The first part of the lemma has been proved.



REFORMULATIONS FOR ROBUST OPTIMIZATION PROBLEMS 1453

We now prove the second part of the lemma. For any y∗ ∈ �D(h), there exists
an x∗ such that y∗ ∈ ∂f(x∗), and by definition of subgradient, we have that (y∗)Tx−
h(x) ≤ (y∗)Tx∗ − h(x∗) for any x ∈ dom(h), which implies that h∗(y∗) < ∞, i.e.,
y∗ ∈ dom(h∗). Thus, the inclusion �D(h) ⊆ dom(h∗) holds trivially (we mentioned
this observation at the beginning of section 4).

Now we show that converse inclusion is also valid. Suppose that y∗ ∈ dom(h∗).
We show that y∗ ∈ S. Notice that for homogeneous of 1-degree function h, dom(h) is
a cone. Thus, for any given positive number λ, we have

λh∗(y∗) = sup
x∈dom(h)

(y∗)T (λx) − λh(x) = sup
x∈dom(h)

(y∗)T (λx) − h(λx) = h∗(y∗).

Since λ > 0 can be any positive number, we have h∗(y∗) = 0, which in turn implies
that (y∗)Tx − h(x) ≤ h∗(y∗) = 0 for any x ∈ dom(h), and therefore y∗ ∈ S. The
desired result follows.

We can now simplify the robust counterpart for the homogeneous 1-degree case.

Theorem 5.1. Let Ki be defined by (9), where all the functions g
(i)
j , i =

1, . . . , �(i), are closed proper convex functions and are homogeneous of 1-degree. Then
the robust counterpart (7) is equivalent to

min cTx

s.t.
(
W (i)(x)

)T
M

(i)
V (i)(x) +

�(i)∑
j=1

λ
(i)
j Δ

(i)
j ≤ bi, i = 1, . . . ,m,

χi =

{ ∑
j∈Ji

u
(i)
j if Ji �= ∅,

0 otherwise,
i = 1, . . . ,m,(23)

λ
(i)
j ≥ 0, j = 1, . . . , �(i), i = 1, . . . ,m,

F (x) ≤ 0,

where χi and Ji are the same as in Theorem 4.1, and u
(i)
j /λ

(i)
j ∈ ∂g

(i)
j (0) for j ∈ Ji �=

∅, i = 1, . . . ,m.
Proof. Under the conditions of the theorem, Lemma 5.2 claims that Assump-

tion 4.1 holds, and, moreover, �D(g
(i)
j ) = ∂g

(i)
j (0) for all i = 1, . . . , �(i). From the proof

of Theorem 4.1, when Ji �= ∅, we can set w
(i)
j = 0, and hence Υ(i) = (g

(i)
j )∗(u

(i)
j /λ

(i)
j ) =

0. Thus, in this case, Υ(i) ≡ 0 no matter what Ji is. Therefore, the robust counterpart
(7) eventually reduces to (23). As mentioned in Remark 4.1, we do not need Slater’s
condition for homogeneous cases.

When g
(i)
j is homogeneous of p

(i)
j -degree, where p

(i)
j �= 1 and is twice differentiable,

by (ii) of Lemma 5.1, we may transform it into a homogeneous of 1-degree function.

Then we can use Theorem 5.1. When p
(i)
j < 1, by Lemma 5.1, the value of g

(i)
j is

nonpositive; thus the constraint g
(i)
j ≤ Δ

(i)
j becomes redundant (since Δ

(i)
j ≥ 0) and

thus can be removed from the list of constraints defining Ki. Therefore, without loss

of generality, we assume that all p
(i)
j ≥ 1. We now have the following result.

Theorem 5.2. Let Ki be defined by (9), where the functions g
(i)
j , j = 1, . . . , �(i),

are twice differentiable, convex, and homogeneous of p
(i)
j -degree (p

(i)
j ≥ 1), respectively.
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Then the robust programming problem (7) is equivalent to

min cTx

s.t.
(
W (i)(x)

)T
M

(i)
V (i)(x) +

�(i)∑
j=1

λ
(i)
j Δ̃

(i)
j ≤ bi, i = 1, . . . ,m,

χi =

{ ∑
j∈Ji

u
(i)
j if Ji �= ∅,

0 otherwise,
i = 1, . . . ,m,

λ
(i)
j ≥ 0, j = 1, . . . , �(i), i = 1, . . . ,m,

F (x) ≤ 0,

where χi and Ji are the same as in Theorem 4.1, u
(i)
j ∈ λ

(i)
j ∂G(i)

j (0) for j ∈ Ji �=
∅, i = 1, . . . ,m, and

(24) G(i)
j =

{
(g

(i)
j )1/p

(i)
j , p

(i)
j > 1,

g
(i)
j , p

(i)
j = 1,

Δ̃
(i)
j =

{
(Δ

(i)
j )1/p

(i)
j , p

(i)
j > 1,

Δ
(i)
j , p

(i)
j = 1.

Proof. We note that for p
(i)
j > 1, since g

(i)
j and Δ

(i)
j are nonnegative by Lemma 5.1,

the constraint g
(i)
j ≤ Δ

(i)
j in (9) is equivalent to (g

(i)
j )1/p

(i)
j ≤ (Δ

(i)
j )1/p

(i)
j . Define G(i)

j

and Δ̃
(i)
j as in (24). Then this result is an immediate consequence of Theorem 5.1

and Lemma 5.1.

From Theorems 5.1 and 5.2, the structure of robust counterparts of uncertain

optimization problems mainly depends on the subdifferentials of g
(i)
j or G(i)

j at the

origin when functions g
(i)
j are homogeneous.

Notice that any norm is convex and homogeneous of 1-degree and can be defined
on the whole space. (But the converse is not true; for example, consider f(t) : R → R
given by f(t) = t if t ≥ 0 and f(t) = 2|t| if t < 0. Clearly, f is convex and homogeneous
of 1-degree, but it is not a norm, because f(−1) �= f(1).) Theorem 5.1 can be
immediately applied to the case of an uncertainty set defined by a finite system of
norm inequalities. For this case, however, in addition to the above formulation of the
robust counterpart via subgradients at the origin, we can further simplify it using

dual norms and eliminating all variables λ
(i)
j . For any norm ‖ · ‖, we denote its dual

norm by ‖ ·‖∗, i.e., ‖u‖∗ = sup‖x‖≤1 u
Tx. When g

(i)
j is a norm, we denote it by ‖ ·‖(ij)

and its dual norm by ‖ · ‖(ij)
∗ .

Corollary 5.1. Let Ki be defined by (9), where all g
(i)
j (j = 1, . . . , �(i), i =

1, . . . ,m) are norms, denoted, respectively, by ‖ · ‖(ij)(j = 1, . . . , �(i), i = 1, . . . ,m);
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then the robust counterpart (7) is equivalent to

min cTx

s.t.
(
W (i)(x)

)T
M

(i)
V (i)(x) +

�(i)∑
j=1

Δ
(i)
j

∥∥∥u(i)
j

∥∥∥(ij)

∗
≤ bi, i = 1, . . . ,m,

χi =

�(i)∑
j=1

u
(i)
j , i = 1, . . . ,m,

F (x) ≤ 0,

where χi = W (i)(x) ⊗ V (i)(x).

Proof. Notice that u ∈ ∂‖0‖ if and only if uTx ≤ ‖x‖ for any x which can be

written as uT (x/‖x‖) ≤ 1, i.e., ‖u‖∗ ≤ 1. Therefore, for j ∈ Ji �= ∅, u(i)
j /λ

(i)
j ∈ ∂g

(i)
j (0)

is equivalent to ‖u
(i)
j

λ
(i)
j

‖(ij)
∗ ≤ 1, or just ‖u(i)

j ‖(ij)
∗ ≤ λ

(i)
j . Therefore, the constraints of

(23) can be further written as

(
W (i)(x)

)T
M

(i)
V (i)(x) +

�(i)∑
j=1

λ
(i)
j Δ

(i)
j ≤ bi, i = 1, . . . ,m,

χi =

{ ∑
j∈Ji

u
(i)
j if Ji �= ∅,

0 otherwise
, i = 1, . . . ,m,

λ
(i)
j ≥ 0, j = 1, . . . , �(i), i = 1, . . . ,m,

‖u(i)
j ‖(ij)

∗ ≤ λ
(i)
j ∀j ∈ Ji �= ∅, i = 1, . . . ,m,

F (x) ≤ 0.

It is evident that the above system is equivalent to

(
W (i)(x)

)T
M

(i)
V (i)(x) +

�(i)∑
j=1

λ
(i)
j Δ

(i)
j ≤ bi, i = 1, . . . ,m,

‖u(i)
j ‖(ij)

∗ ≤ λ
(i)
j , j = 1, . . . , �(i), i = 1, . . . ,m,

χi =

�(i)∑
j=1

u
(i)
j , i = 1, . . . ,m,

λ
(i)
j ≥ 0, j = 1, . . . , �(i), i = 1, . . . ,m,

F (x) ≤ 0.
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Eliminating the variables λ
(i)
j , the above system becomes

(
W (i)(x)

)T
M

(i)
V (i)(x) +

�(i)∑
j=1

Δ
(i)
j

∥∥∥u(i)
j

∥∥∥(ij)

∗
≤ bi, i = 1, . . . ,m,

χi =

�(i)∑
j=1

u
(i)
j , i = 1, . . . ,m,

F (x) ≤ 0.

The desired result is obtained.

6. Special cases. Complexity of robust counterparts depends both on the struc-
ture of the original optimization problems and on the structure of the uncertainty
set. The harder the original optimization problem is and/or the more complex the
uncertainty set is, the more difficult the robust counterpart is. In this section, we
demonstrate how the general results developed above can be simplified by consider-
ing special optimization problems and/or special uncertainty sets. We take the LP
problem as an example of a special optimization problem and take the widely used
uncertainty set (10) as an example of a special uncertainty set. Thus we obtain new
results for problem (1) with uncertainty set defined by (10) and for robust LP with
general uncertainty sets. For this simplest of the considered cases (robust LP with
uncertainty set (10)), we show that our results contain a number of related results in
the literature, but they are under less restrictive assumptions, thus generalizing and
strengthening these results.

6.1. Problem (1) with uncertainty set U defined by (10). Now we consider
the uncertainty set (10), i.e.,

U =:

⎧⎨
⎩D

∣∣∣∣∣∣∃z ∈ R|N | : D = D0 +
∑
j∈N

ΔDjzj , ‖z‖ ≤ Ω

⎫⎬
⎭ .

Since this model has been widely used in the literature (see, e.g., [5, 6, 7, 8, 9, 10,
11, 12, 13, 14]), it is interesting to see how our general results can be simplified when
reduced to the above uncertainty set. Let H denote the matrix whose columns are
ΔDj , j = 1, . . . , |N |, i.e.,

H = [ΔD1, . . . ,ΔD|N |].

Define the function

(25) g(u) = inf{‖z‖ : Hz = u}.

Then g(u) is convex and homogeneous of 1-degree (convexity is proven in [36], and
homogeneity can be checked directly). Now we show that the uncertainty set (10) can
be represented equivalently in the form (9).

Lemma 6.1. Consider the uncertainty set U given by (10). Let K = {u| g(u) ≤
Ω}, where g is given by (25). Then we have K = U − {D0}.

Proof. Let u be any point in K. By the definition of g(u), there exists a point
z∗ such that g(u) = ‖z∗‖ and Hz∗ = u. Since u ∈ K implies g(u) ≤ Ω, we have
‖z∗‖ ≤ Ω. By the definition of U , we see that u ∈ U − {D0}.
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Conversely, suppose that u ∈ U − {D0}. Then there exists a point D ∈ U such
that u = D−D0. By the definition of U , there exists a point z such that u = Hz and
‖z‖ ≤ Ω. By the definition of g, this implies g(u) ≤ Ω, and hence u ∈ K.

If the vectors {ΔDj : j = 1, . . . , N} are linearly independent, from Hz = u we
have z = (HTH)−1HTu. Thus, we have

U − {D0} = K =
{
u
∣∣g(u) = ‖(HTH)−1HTu‖ ≤ Ω

}
.

Since in general |N | is less than the number of data of the problem, the term HTu
can be zero even when u �= 0. Thus, g(u) is not a norm in this case, unless {ΔDj : j =
1, . . . , N} are linearly independent and |N | equals the number of data of the problem,
in which case H is an |N | × |N | invertible matrix.

Notice that K here has only one constraint which corresponds to the case �(i) = 1
for all i = 1, . . . ,m, and by Theorem 16.3 in [36] the conjugate function of g(u) is
given by

(26) g∗(w) =

{
0 ‖HTw‖∗ ≤ 1,

∞ otherwise,

where ‖ · ‖∗ denotes the dual norm of ‖ · ‖.
We now consider our problem (1), where data M (i)’s are subject to uncertainty

of the type (10); i.e., for each i, the data M (i) belong to the set

(27)

⎧⎨
⎩M (i)

∣∣∣∣∣∣∃z ∈ R|N(i)| : M (i) = M
(i)

0 +
∑

j∈N(i)

ΔM
(i)
j zj , ‖z‖(i) ≤ Ω(i)

⎫⎬
⎭ .

This can be written equivalently as

Ui =

⎧⎨
⎩vec(M(i))

∣∣∣∣∣∣∃z ∈ R|N(i)| : vec(M(i)) = vec(M
(i)
0 ) +

∑
j∈N(i)

vec
(
ΔM

(i)
j

)
zj , ‖z‖(i) ≤ Ω(i)

⎫⎬
⎭ ,

(28)

i = 1, . . . ,m, where N (i) is the corresponding index set (not to be confused with
Ni—the dimension of matrix M (i)), and Ω(i) is a given number. Note that we add
the index (i) to the norm (i.e., ‖ · ‖(i)), which allows us to use different norms for
different constraints. Accordingly, we have the function

g(i)(u) = inf{‖z‖(i) : H(i)z = u},

where H(i) = [vec(ΔM
(i)
1 ), vec(ΔM

(i)
2 ), . . . , vec(ΔM

(i)

|N(i)|)], and thus by Lemma 6.1

we have

Ui − {vec(M (i)
)} = Ki = {u|g(i)(u) ≤ Ω(i)}.

Using (26), we have

(29) (g(i))∗(w) =

{
0, ‖(H(i))Tw‖(i)

∗ ≤ 1,

∞ otherwise.

Now we have all the necessary ingredients to develop our result. We first note that
in this case, �(i) = 1 for all i = 1, . . . ,m since the uncertainty set Ui has only one
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constraint g(i)(u) ≤ Ω(i). So, λ(i) is reduced to a scalar. Therefore, the constraints of
the robust counterpart (12) that correspond to index i reduce to

(
W (i)(x)

)T
M

(i)
V (i)(x) + λ(i)Ω(i) + Υ(i) ≤ bi,(30)

χi =

{
u(i), λ(i) > 0,

0, λ(i) = 0,
(31)

where

(32) Υ(i) =

{
λ(i)(g(i))∗(u(i)/λ(i)), λ(i) > 0,

0, λ(i) = 0.

When λ(i) > 0, the system (30)–(32) becomes

(
W (i)(x)

)T
M

(i)
V (i)(x) + λ(i)Ω(i) + λ(i)(g(i))∗(u(i)/λ(i)) ≤ bi,

χi = u(i).

Eliminating u(i) and using (29), the above system is equivalent to

(
W (i)(x)

)T
M

(i)
V (i)(x) + λ(i)Ω(i) ≤ bi,

‖(H(i))T (χi)‖(i)
∗ ≤ λ(i).

This can be written as

(33)
(
W (i)(x)

)T
M

(i)
V (i)(x) + Ω(i)‖(H(i))Tχi‖(i)

∗ ≤ bi.

When λ(i) = 0, the system (30)–(32) is written as

(
W (i)(x)

)T
M

(i)
V (i)(x) ≤ bi,

χi = 0.

Clearly, this system can be written as (33), too. Hence, by Theorem 3.2, we have the
following result.

Theorem 6.1. Under the uncertainty set (27) (or equally, (28)), the robust
counterpart (7) is equivalent to

min cTx

s.t.
(
W (i)(x)

)T
M

(i)
V (i)(x) + Ω(i)

∥∥∥(H(i))Tχi

∥∥∥(i)

∗
≤ bi, i = 1, . . . ,m,

F (x) ≤ 0,

where χi = W (i)(x)⊗V (i)(x) and H(i) = [vec(ΔM
(i)
1 ), vec(ΔM

(i)
2 ), . . . ,Δvec(M

(i)

N(i))].
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6.2. LP with general uncertainty sets. Consider the LP problem discussed
in section 2: min{cTx : Ax ≤ b, x ≥ 0}, where A ∈ Rm×n, b ∈ Rm, and c ∈ Rn. As
discussed in section 2, without loss of generality, we assume that only the coefficients
of A are subject to uncertainty.

There are two widely used ways to characterize the uncertain data of LP problems.
One is the “row-wise” uncertainty model (a separate uncertainty set is specified for
each row of A), and the other is what we may call the “global” uncertainty model (one
uncertainty set for the whole matrix A is specified). We first consider the situation
of “global” uncertainty.

Suppose that A is allowed to vary in such a way that its deviations from a given
nominal A fall in a bounded convex set K of Rmn that contains the origin (zero).
That is, the uncertainty set is defined as

(34) U = {Ã|vec(Ã) − vec(A) ∈ K},

where K is defined by convex inequalities:

(35) K = {u| gj(u) ≤ Δj , j = 1, . . . , �}.

Here Δj ’s are constants, and all gj are closed proper convex functions. Then the
robust counterpart of the LP problem with uncertainty set U is

(36) min{cTx : Ãx ≤ b, x ≥ 0 ∀Ã ∈ U}.

First, from section 2 we know that for LP we can drop indexes i for g
(i)
j and Δ

(i)
j

in the previous discussion, since in the reformulation of LP as a special case of (1) and
(2), the data matrix for each constraint (2) is the same; i.e., M (i) = [A0 ]n×n for all i
(see section 2). Second, we note that for LP, the vector χi = W (i) ⊗ V (i) = ei ⊗ x is
linear in x. Therefore, the results in previous sections can be further simplified for LP.
For example, Theorems 3.1, 3.2, and 5.2 and Corollary 5.1 can be stated as follows
(Theorems 6.2 through 6.4 and Corollary 6.1, respectively).

Theorem 6.2. The robust LP problem (36) is equivalent to the convex program-
ming problem

min cTx

s.t. āTi x + δ∗(χi|cl(co(K))) ≤ bi, i = 1, . . . ,m,

x ≥ 0,

where cl(co(K)) is the closed convex hull of the set K, and χi = ei ⊗ x.

Since δ∗(·|cl(coK)) is a closed convex function, the robust counterpart of any LP
problem with the uncertainty set denoted by (34) and (35) is a convex programming
problem.

Theorem 6.3. Let K be given by (35), where gj(j = 1 . . . , �), are arbitrary closed
proper convex functions. Suppose that Slater’s condition holds; i.e., there exists a
point u0 such that gj(u0) < Δj for all j = 1, . . . , �. Then the robust LP problem (36)
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is equivalent to

min cTx

s.t. āTi x +

�∑
j=1

λ
(i)
j Δj +

⎛
⎝ �∑

j=1

λ
(i)
j gj

⎞
⎠

∗

(χi) ≤ bi, i = 1, . . . ,m,

λ
(i)
j ≥ 0, j = 1, . . . , �, i = 1, . . . ,m,

x ≥ 0,

or equivalently,

min cTx

s.t. āTi x +

�∑
j=1

λ
(i)
j Δj + Υ(i) ≤ bi, i = 1, . . . ,m,

χi =

{ ∑
j∈Ji

u
(i)
j if Ji �= ∅,

0 otherwise,
i = 1, . . . ,m,(37)

λ
(i)
j ≥ 0, j = 1, . . . , �, i = 1, . . . ,m,

x ≥ 0,

where χi = ei ⊗ x, Ji = {j : λ
(i)
j > 0, j = 1, . . . , �}, and

Υ(i) =

{ ∑
j∈Ji

λ
(i)
j g∗j (u

(i)
j /λ

(i)
j ) if Ji �= ∅,

0 otherwise.

Remark 6.1. (i) For LP, the constraint “χi =
∑

j∈Ji
u

(i)
j ” is a linear constraint.

(ii) It is well known that for any convex function f , the function f̂(x, t) = tf(x/t),
where t > 0, is also convex in (x, t), and is positive homogeneous of 1-degree, that is,

f̂(αx, αt) = αf̂(x, t), for any α > 0. Problem (37) shows that all functions involved are
homogeneous of 1-degree with respect to the variables (x, λ(i), u(i)). Thus, the robust
LP problem (36) is not only a convex programming problem but also a homogeneous
programming problem, i.e., an optimization problem where all functions involved are
homogeneous.

Theorem 6.4. Let K be defined by (35), where the functions gj , j = 1, . . . , �,
are twice differentiable, convex, and homogeneous of pj-degree (pj ≥ 1), respectively.
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Then the robust LP problem (36) is equivalent to

min cTx

s.t. āTi x +

�∑
j=1

λ
(i)
j Δ̃j ≤ bi, i = 1, . . . ,m,

χi =

{ ∑
j∈Ji

u
(i)
j if Ji �= ∅,

0 otherwise,
i = 1, . . . ,m,

λ
(i)
j ≥ 0, j = 1, . . . , �, i = 1, . . . ,m,

x ≥ 0,

where χi and Ji are the same as in Theorem 6.3, u
(i)
j ∈ λ

(i)
j ∂Gj(0) for j ∈ Ji �= ∅, i =

1, . . . ,m, and

Gj =

{
(gj)

1/pj , pj > 1,

gj , pj = 1,
Δ̃j =

{
(Δj)

1/pj , pj > 1,

Δj , pj = 1.

Corollary 6.1. Let K be defined by (35), where all gj (j = 1, . . . , �) are norms,
denoted, respectively, by ‖ · ‖(j), j = 1, . . . , �; then the robust counterpart (36) is equiv-
alent to

min cTx

s.t. āTi x +

�∑
j=1

Δj‖u(i)
j ‖(j)

∗ ≤ bi, i = 1, . . . ,m,

ei ⊗ x =

�∑
j=1

u
(i)
j , i = 1, . . . ,m,

x ≥ 0.

Now we briefly discuss the situation of “row-wise” uncertainty sets. In this case,
in order to apply our general results, we reformulate LP in the form (1) in a different
way than in section 2. Consider functions fi(x) of the form (2), where W (i)(x) = ei ∈
Rn, V (i)(x) = x ∈ Rn (same as in section 2). Throughout the rest of the paper, we
denote by Ai(i = 1, . . . ,m) the ith row of A. Thus, Ai is an n-dimensional row vector.
The n× n matrix M (i) is the matrix having Ai as its ith row and 0 elsewhere, i.e.,

(38) M (i) =

⎡
⎢⎣

0

Ai

0

⎤
⎥⎦
n×n

, i = 1, . . . ,m.

Then the ith constraint of Ax ≤ b can be written as

(39) fi = (W (i))TM (i)V (i) ≤ bi

for i = 1, . . . ,m. Then applying the results of sections 3, 4, and 5 to the optimization
problem (1) with the above inequality constraints and F (x) = −x ≤ 0, we can obtain
a formulation for robust LP with “row-wise” uncertainty sets. We omit these results.

The formulation for other special cases such as the LCP and QP can be derived
similarly; we leave these derivations to interested readers.
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6.3. LP with uncertainty set of type (10). In this section, we consider the
LP problem min{cTx : Ax ≤ b, x ≥ 0} under uncertainty of type (10). We will show
that our results in this section include a number of recent results on robust LP in the
literature as special cases. From Theorems 6.1 and 6.3, we have the following result.

Theorem 6.5. (i) Under the “row-wise” uncertainty set

(40) Ui =

⎧⎨
⎩Ai

∣∣∣∣∣∣∃u ∈ RN(i)

: Ai = Ai +
∑

j∈N(i)

ΔA
(i)
j uj , ‖u‖(i) ≤ Ω(i)

⎫⎬
⎭ ,

the robust counterpart of LP is equivalent to

min cTx

s.t. āTi x + Ω(i)

∥∥∥∥(H(i)
)T

x

∥∥∥∥
(i)

∗
≤ bi, i = 1, . . . ,m,(41)

x ≥ 0,

where the matrix H(i) = [(ΔA
(i)
1 )T , (ΔA

(i)
2 )T , . . . , (ΔA

(i)

|N(i)|)
T ].

(ii) Under the “global” uncertainty set

(42) U =

⎧⎨
⎩A

∣∣∣∣∣∣∃u ∈ R|N | : A = A +
∑
j∈N

ΔAjuj , ‖u‖ ≤ Ω

⎫⎬
⎭ ,

where A is an m× n matrix, the robust counterpart of LP is equivalent to

min cTx

s.t. āTi x + Ω
∥∥∥H̃T χ̃i

∥∥∥
∗
≤ bi, i = 1, . . . ,m,(43)

x ≥ 0,

where the matrix H̃ = [vec(ΔA1), vec(ΔA2), . . . , vec(ΔA|N |)] and χ̃i = e
(m)
i ⊗ x,

where e
(m)
i denotes the ith column of the m × m identity matrix. Equivalently, the

inequality (43) can be written as

āTi x + Ω

∥∥∥∥(H̃(i)
)T

x

∥∥∥∥
∗
≤ bi, i = 1, . . . ,m,

where the matrix H̃(i) = [(ΔA1)
T e

(m)
i , (ΔA2)

T e
(m)
i , . . . , (ΔA|N |)

T e
(m)
i ].

Proof. To prove the result (i), we show that it is an immediate corollary of
Theorem 6.1. To apply Theorem 6.1, we first reformulate the LP problem in the form
(1) as we did at the end of section 6.2. The ith constraint of Ax ≤ b, i.e., Aix ≤ bi,
can be written as (39), where M (i) is given by (38). Clearly, we have

vec(M (i)) = ei ⊗AT
i , vec(M

(i)
) = ei ⊗A

T

i .

Notice that when Ai belongs to the uncertainty set (40), then the vec(M (i)) belongs
to the following uncertainty set:⎧⎨
⎩vec(M(i))

∣∣∣∣∣∣∃u ∈ R|N(i)| : vec(M(i)) = ei ⊗A
T
i +

∑
j∈N(i)

(
ei ⊗ (ΔA

(i)
j )T

)
uj , ‖u‖(i) ≤ Ω(i)

⎫⎬
⎭ .
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By Theorem 6.1, robust LP is equivalent to

min cTx

s.t. āTi x + Ω(i)

∥∥∥∥(P (i)
)T

χi

∥∥∥∥
(i)

∗
≤ bi, i = 1, . . . ,m,

x ≥ 0,

where χi = ei ⊗ x and the matrix

P (i) =
[
ei ⊗ (ΔA

(i)
1 )T , ei ⊗ (ΔA

(i)
2 )T , . . . , ei ⊗ (ΔA

(i)

|N(i)|)
T
]
.

Notice that (
P (i)

)T
χi =

[
(ΔA

(i)
1 )T , (ΔA

(i)
2 )T , . . . , (ΔA

(i)

|N(i)|)
T
]T

x.

Therefore, the result (i) holds.
Using the uncertainty set (42), item (ii) can also be proved by applying Theo-

rem 6.1. In fact, we can reformulate the LP problem in the form of (1) as in section 2,
where all the data matrix M (i) are equal to [A0 ]n×n. Notice that the uncertainty set
(42) can be written as⎧⎨

⎩vec

([
A
0

]) ∣∣∣∣∣∣∃u ∈ R|N| : vec

([
A
0

])
= vec

([
A
0

])
+
∑
j∈N

vec

([
ΔAj

0

])
uj , ‖u‖ ≤ Ω

⎫⎬
⎭ .

This is the uncertainty set of the form (28). Thus, by Theorem 6.1, robust LP is
equivalent to

min cTx

s.t. āTi x + Ω‖HTχi‖∗ ≤ bi, i = 1, . . . ,m,

x ≥ 0,

where χi = ei ⊗ x and the matrix

H =

[
vec

([
ΔA1

0

])
, vec

([
ΔA2

0

])
, . . . , vec

([
ΔA|N |

0

])]
.

Denote by χ̃i = e
(m)
i ⊗ x, where e

(m)
i denotes the ith column of the m ×m identity

matrix. It is easy to check that

HTχi = H̃T χ̃i =
(
H̃(i)

)T
x,

where the matrices

H̃ =
[
vec(ΔA1), vec(ΔA2), . . . , vec(ΔA|N |)

]
,

H(i) =
[
(ΔA1)

T e
(m)
i , (ΔA2)

T e
(m)
i , . . . , (ΔA|N |)

T e
(m)
i

]
.

Thus, the desired result (ii) follows.
Notice that dual norms appear in (41) and (43). If the norms used are some

special norms such as �1, �2, �∞, �1 ∩ �∞, �2 ∩ �∞, then their dual norms ‖ · ‖∗ are
explicitly known (see, e.g., [14]).
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In [12], Bertsimas, Pachamanova, and Sim studied the case of robust LP with
uncertainty sets defined by general norms. Their result provides a unified treatment
of the approaches in [23, 24, 6, 7, 11]. However, their result is a special case of
Theorem 6.5. Their uncertainty set is defined by the inequality

‖M(vec(A) − vec(A))‖ ≤ Δ,

where M is an invertible matrix and Δ is a given constant. Clearly, this inequality
can be written as

vec(A) = vec(A) + M−1u, ‖u‖ ≤ Δ.

This is a special case of the uncertainty model (42), corresponding to the case when
|N | is equal to the number of data and the perturbation directions ΔAj ’s are linearly
independent (here ΔAj ’s are the column vectors of M−1). So, when we apply Theo-
rem 6.5(ii) to such a special uncertainty set, we obtain the same result as “Theorem
2” in [12]. But our result in Theorem 6.5(ii) is more general than the result in [12] be-
cause our result can even deal with the cases when the perturbation direction matrix
H is singular and even not a square matrix.

It should be mentioned that “Theorem 2” in [12] can also be obtained from our
Corollary 6.1. Since M is invertible, we can define the function g(D) = ‖MD‖, which
is a norm. The uncertainty set is defined by only one norm inequality, i.e., g(D) ≤ Δ.
So, setting � = 1 in Corollary 6.1, we obtain “Theorem 2” in [12] again.

Now we compare Theorem 6.5 with the corresponding results for robust LP in
Bertsimas and Sim [14]. For LP, Theorem 6.5(i) strengthens (generalizes) the corre-
sponding result in [14] in the sense that we do not impose extra conditions on the
norms, but in [14] a similar result is obtained under the additional assumption that
the norms are absolute norms. Below we elaborate on this in more detail.

As we pointed out in section 2, without loss of generality, it is sufficient to consider
the case when only A is subject to uncertainty. For LP, only “row-wise” uncertainty is
considered in [14]; for the ith linear inequality Aix ≤ bi, Ai belongs to the uncertainty
set (40). Bertsimas and Sim [14] defined f(x,Ai) = −(Aix− bi), and

sj = g(x,ΔA
(i)
j ) =: max{−(ΔA

(i)
j )x, (ΔA

(i)
j )x} =

∣∣∣(ΔA
(i)
j )x

∣∣∣ , j = 1, . . . , N (i).

Bertsimas and Sim [14] proved that for LP, when the norm ‖ · ‖(i) used in (40) is an
absolute norm, the robust LP constraint is equivalent to

f(x,Ai) ≥ Ω(i)‖s‖(i)
∗ (or equally, f(x,Ai) ≥ Ω(i)y, ‖s‖(i)

∗ ≤ y).

That is,

−Aix− bi ≥ Ω(i)

∥∥∥∥[(ΔA
(i)
1 )T , (ΔA

(i)
2 )T , . . . , (ΔA

(i)

|N(i)|)
T
]T

x

∥∥∥∥
(i)

∗
,

which is

Aix + Ω(i)

∥∥∥∥[(ΔA
(i)
1 )T , (ΔA

(i)
2 )T , . . . , (ΔA

(i)

|N(i)|)
T
]T

x

∥∥∥∥
(i)

∗
≤ bi.

This is the same result as Theorem 6.5(i). So, Bertsimas and Sim [14] proved the result
of Theorem 6.5(i) under the assumption that the norms used are absolute norms. We
obtain this result without additional assumptions on the norms.
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We can also apply our general results to nonlinear problems such as SOCP and
QP. Let us comment on the differences of our approach from the approach of Bert-
simas and Sim [14]. Applying our general results to robust QP would lead to exact
formulations which, in general, would be computationally difficult. Bertsimas and
Sim [14] aim at obtaining computationally tractable approximate formulations. These
are two different ways of approaching nonlinear robust optimization problems. Com-
putationally tractable approximate formulations are important for practical solution
of large-scale problems: approximate solution is the price one has to pay for compu-
tational tractability. Exact formulations are also important. First, from a theoretical
viewpoint, they allow us to gain more insight and to study the structure of the prob-
lems. Second, they can be used in practice to obtain exact solutions to small-scale
problems. Third, they can provide new or strengthened results for important special
cases when restricted to such cases, as demonstrated in this section.

7. Conclusion. One of our main goals was to show how the classic convex anal-
ysis tools can be used to study robust optimization. We showed that some rather
general classes of robust optimization problems can be represented as explicit math-
ematical programming problems. We demonstrated how explicit reformulations of
the robust counterpart of an uncertain optimization problem can be obtained if the
uncertainty set is defined by convex functions that fall in the space LH and satisfy the
condition (17). Our strongest results correspond to the case where the functions defin-
ing the uncertainty set are homogeneous, because in this case the condition (17) holds
trivially, and the robust counterpart can be further simplified. Our results provide
a unified treatment of many situations that have been investigated in the literature.
The analysis of this paper is applicable to much wider situations and more compli-
cated uncertainty sets than those considered before; for example, it is applicable to
cases where fluctuations of data may be asymmetric and not defined by norms.
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Abstract. We give a proximal bundle method for constrained convex optimization. It requires
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1. Introduction. We are concerned with the solution of the following convex
programming problem:

(1.1) f∗ := inf{ f(u) : h(u) ≤ 0, u ∈ C },

where C is a “simple” closed convex set (typically a polyhedron) in the Euclidean
space R

m with inner product 〈·, ·〉 and norm | · |, f and h are convex real-valued
functions, and there exists a Slater point

(1.2) ů ∈ C such that h(̊u) < 0.

Further, we assume that for fixed (and possibly unknown) accuracy tolerances εf , εh ≥
0, for each u ∈ C we can find approximate values fu, hu and approximate subgradients
guf , guh that produce the approximate linearizations of f and h:

f̄u(·) := fu + 〈guf , · − u〉 ≤ f(·) with f̄u(u) = fu ≥ f(u) − εf ,(1.3a)

h̄u(·) := hu + 〈guh , · − u〉 ≤ h(·) with h̄u(u) = hu ≥ h(u) − εh.(1.3b)

Thus fu ∈ [f(u) − εf , f(u)] estimates f(u), and guf ∈ ∂εf f(u); i.e., guf is a member of

∂εf f(u) := {g : f(·) ≥ f(u) − εf + 〈g, · − u〉} ,

the εf -subdifferential of f at u. Similar relations hold for f replaced by h.
This paper modifies the phase 1-phase 2 method of centers of [Kiw85, section 5.7]

and extends it to approximate linearizations. We first discuss the exact case of
εf = εh = 0. For an infeasible starting point, in phase 1 this method reduces the
constraint violation while keeping the objective increase as small as possible; this
is reasonable especially if the starting point is close to a solution. Once a feasible
point is found, in phase 2 the method reduces the objective while maintaining fea-
sibility. Both phases employ the same improvement function, and each iterate solves
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a subproblem with f and h approximated via accumulated linearizations, stabilized
by a quadratic term centered at the best point found so far. For phase 1, the anal-
ysis of [Kiw85, section 5.7] established optimality of all cluster points of the iterates
without discussing their existence. A nontrivial sufficient condition for their existence
was recently given in [SaS05, Prop. 4.3(ii)] for a modified variant. We show that
this condition may be expected to hold only if problem (1.1) has a Lagrange multi-
plier μ̄ ≤ 1 (cf. Remark 3.13(ii)). We extend this condition to μ̄ > 1 by replacing
the current objective value in the improvement function with the value of an exact
penalty function for penalty parameters ĉ ≥ μ̄ − 1. In effect, our results (cf. Theo-
rems 3.8, 3.9, and 3.12) extend the main convergence results of [Kiw85, Thm. 5.7.4]
and [SaS05, Thms. 4.4–4.5]. It is crucial for large-scale implementations that our
results hold for various aggregation schemes that control the size of each quadratic
programming (QP) subproblem, including the schemes of [Kiw85, section 5.7] and
[SaS05] (see Remark 4.1).

Our combination of improvement and penalty functions with suitable penalty
parameter updates seems to be necessary for our extension to inexact evaluations
(otherwise, the method could jam at phase 1 when the standard improvement function
cannot be reduced by more than max{εf , εh} for the tolerances εf , εh of (1.3); see
Remark 3.5). Our method generates iterates in the set C, having f -values of at most
f∗ + εf and h-values of at most εh asymptotically (cf. Theorems 3.8–3.10), without
any additional boundedness assumptions (such as boundedness of the feasible set, or
the sufficient conditions discussed above). In a sense, this is the strongest convergence
result one could hope for. Our algorithmic constructions and analysis combine the
inexact linearization framework of [Kiw06a] (in a simplified version that highlights its
crucial ingredients; cf. [Kiw06b]) with fairly intricate properties of improvement and
penalty functions which have not been used so far in bundle methods.

As for other bundle methods, we note that the exact penalty function meth-
ods of [Kiw87, Kiw91] require additionally that the set C be bounded and may
converge slowly when their penalty parameter estimates are too high. The level
methods of [LNN95] (also see [Kiw95, Fáb00, BTN05]) need boundedness of the set
C as well. Similar boundedness assumptions are employed in the filter methods of
[FlL99, KRSS07]. Except for [Fáb00], all these methods work with exact lineariza-
tions. The conic bundle variant of [KiL07] employs inexact linearizations and does
not need artificial merit functions, but it requires the knowledge of a Slater point and
f being “simple” (e.g., linear or quadratic). We show elsewhere how to handle inexact
linearizations in an exact penalty method [Kiw07b] and a filter method [Kiw07a], the
latter being based on the present paper.

Our work was partly motivated by possible applications in column generation ap-
proaches to integer programming problems [LüD05], which lead to linear programming
(LP) problems with huge numbers of columns. When the dual LP problems can be for-
mulated as (1.1) (cf. [BLM+07, LüD05, Sav97]), our approach allows for εh-accurate
solutions of column generation subproblems as well as for recovering approximate
solutions to the primal problems. (See [Kiw05, KiL07] for related developments and
numerical results.)

The paper is organized as follows. In section 2, after reviewing basic properties of
penalty and improvement functions, we present our bundle method. Its convergence
is analyzed in section 3. Several modifications are given in section 4. Applications to
column generation for LP problems are studied in section 5.
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2. The proximal bundle method of centers.

2.1. Lagrange multipliers and exact penalties. We first recall some basic
duality results for problem (1.1) (cf. [Ber99, sections 5.1 and 5.3]).

Consider the Lagrangian L(·;μ) := f(·) + μh(·) with μ ∈ R, the dual function
q(μ) := infC L(·;μ), and the dual problem q∗ := supR+

q of (1.1). Under our assump-
tions, f∗ = q∗. If f∗ > −∞, the dual optimal set M := Arg maxR+ q is nonempty and
compact and consists of Lagrange multipliers μ ≥ 0 such that q(μ) = f∗; if f∗ = −∞,
M := ∅. Thus, the quantity μ̄ := infμ∈M μ is the minimal Lagrange multiplier if
f∗ > −∞, μ̄ = ∞ otherwise.

For a penalty parameter c ≥ 0, the exact penalty function

(2.1) π(·; c) := f(·) + ch(·)+ with h(·)+ := max{h(·), 0}

satisfies infC π(·; c) = f∗ > −∞ iff c ≥ μ̄ (cf. [Ber99, section 5.4.5]).

2.2. Improvement functions. We associate with problem (1.1) the improve-
ment functions defined for τ ∈ R by

(2.2) e(·; τ) := max{f(·)−τ, h(·)}, eC(·; τ) := e(·; τ)+iC(·), E(τ) := inf eC(·; τ),

where iC is the indicator function of C (iC(u) = 0 if u ∈ C, ∞ if u /∈ C). In our
context, τ will be an asymptotic estimate of f∗ generated by our method, and to prove
that τ ≤ f∗, we shall need the main property of the function E given in part (vi) of
the lemma below.

Lemma 2.1. (i) The function E defined by (2.2) is nonincreasing and convex.
(ii) If E is improper, then E(·) = f∗ = −∞ for f∗ given by (1.1).
(iii) If E is proper, then E is Lipschitzian with modulus 1.
(iv) If E is proper and f∗ = −∞, then E(·) = infC h ∈ (−∞, 0).
(v) If f∗ > −∞, then E(τ) > 0 for τ < f∗, E(f∗) = 0, and E(τ) < 0 for

f∗ < τ .
(vi) If E(τ) ≥ 0 for some τ ∈ R, then τ ≤ f∗.
Proof. (i) Monotonicity is obvious, and convexity follows from [Roc70, Thm. 5.7].
(ii) Since domE = R, we have E(·) = −∞ by [Roc70, Thm. 7.2], and then

f∗ = −∞ by (1.1).
(iii) E is finite on domE = R, and e(·; τ ′) ≤ e(·; τ) + |τ − τ ′| for any τ and τ ′.
(iv) Since f∗ = −∞ implies E(·) ≤ 0, E(·) is constant and finite by [Roc70,

Cor. 8.6.2], i.e., E(·) = α ∈ R. Then, on the one hand, α ≥ infC h by (2.2). On
the other hand, for u ∈ C and τ ≥ f(u) − h(u), the fact that e(u; τ) ≤ h(u) yields
α ≤ infC h < 0 by (1.2).

(v) We have E(f∗) ≤ 0 by (1.1), and E(f∗) ≥ 0 (otherwise f(u) < f∗ and
h(u) < 0 for some u ∈ C would contradict (1.1)); thus E(f∗) = 0. By (1.2), for
τ̊ := f (̊u) − h(̊u) > f (̊u) ≥ f∗, e(̊u; τ̊) = h(̊u) < 0 implies E(̊τ) < 0; so by convexity
(consider the secant line Ē(τ) := E(̊τ)(τ−f∗)/(̊τ−f∗)), we have E(τ) > 0 for τ < f∗,
E(τ) < 0 for τ ∈ (f∗, τ̊ ], and E(τ) < 0 for τ > τ̊ by monotonicity.

(vi) E is proper by (ii), f∗ > −∞ by (iv), and (v) yields the conclusion.
Let U := {u ∈ C : h(u) ≤ 0} and U∗ := Arg minU f denote the feasible and

optimal sets of problem (1.1). We shall need the following extension of [Kiw85, Lem.
1.2.16].

Lemma 2.2. Let ū ∈ C, c̄ ≥ 0, τ̄ := π(ū; c̄) (cf. (2.1)). Then the following are
equivalent :

(a) ū ∈ U∗ (i.e., ū solves problem (1.1));
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(b) E(τ̄) = eC(ū; τ̄) (i.e., ū minimizes e(·; τ̄) over C);
(c) 0 ∈ ∂eC(ū; τ̄) (i.e., 0 ∈ ∂ψ(ū), where ψ(·) := eC(·; τ̄)).
Proof. First, (a) implies τ̄ = f(ū) = f∗, e(ū; τ̄) = 0, E(τ̄) = 0 by Lemma 2.1(v),

and hence (b). Since (b) means ū ∈ Arg min eC(·; τ̄), (b) and (c) are equivalent. Next,
note that

(2.3) ∂eC(ū; τ̄) = ∂iC(ū) +

⎧⎪⎨
⎪⎩

∂f(ū) if f(ū) − τ̄ > h(ū),

co{∂f(ū) ∪ ∂h(ū)} if f(ū) − τ̄ = h(ū),

∂h(ū) if f(ū) − τ̄ < h(ū).

Finally, (c) implies h(ū) ≤ 0 (otherwise h(ū) > 0 ≥ f(ū) − τ̄ and 0 ∈ ∂eC(ū; τ̄) =
∂h(ū) + ∂iC(ū) would give minC h = h(ū) > 0, contradicting (1.2)); so the facts that
τ̄ = f(ū) and E(τ̄) = e(ū; τ̄) = 0 yield τ̄ = f∗ by Lemma 2.1(v), and hence (a).

Lemma 2.2 suggests the following algorithmic scheme: Given the current iterate
û ∈ C and the target τ̂ := π(û; ĉ) for a penalty parameter ĉ ≥ 0, find an approximate
minimizer u of eC(·; τ̂), replace û by u, and repeat. Note that if eC(u; τ̂) < eC(û; τ̂),
then u is better than û: either f(u) < f(û) and u ∈ U if û ∈ U , or h(u) < h(û) if
û /∈ U . To progress towards the optimal set U∗, it helps if eC(ū; τ̂) ≤ eC(û; τ̂) for any
optimal ū ∈ U∗; the sufficient condition given below employs the minimal multiplier
μ̄ of section 2.1.

Lemma 2.3. Let ū ∈ U∗, û ∈ C, ĉ ≥ 0, τ̂ := π(û; ĉ). Then e(û; τ̂) = h(û)+, and
e(ū; τ̂) ≤ e(û; τ̂) iff f(ū) ≤ π(û; ĉ+1). In particular, f(ū) ≤ π(û; ĉ+1) if ĉ ≥ μ̄−1.

Proof. First, τ̂ = f(û) and e(û; τ̂) = 0 if h(û) ≤ 0, e(û; τ̂) = h(û) if h(û) > 0.
Next,

e(ū; τ̂) − e(û; τ̂) = max{f(ū) − π(û; ĉ + 1), h(ū) − h(û)+}

is nonpositive iff f∗ = f(ū) ≤ π(û; ĉ + 1); the latter holds if ĉ + 1 ≥ μ̄ (see section
2.1).

2.3. An overview of the method. Our method generates a sequence of trial
points {uk}∞k=1 ⊂ C for evaluating the approximate values fk

u := fuk , hk
u := huk ,

subgradients gkf := gu
k

f , gkh := gu
k

h , and linearizations fk := f̄uk , hk := h̄uk of f and h

at uk, respectively, such that

fk(·) = fk
u + 〈gkf , · − uk〉 ≤ f(·) with fk(u

k) = fk
u ≥ f(uk) − εf ,(2.4a)

hk(·) = hk
u + 〈gkh, · − uk〉 ≤ h(·) with hk(u

k) = hk
u ≥ h(uk) − εh,(2.4b)

as stipulated in (1.3). At iteration k, the polyhedral cutting-plane models of f and h

f̌k(·) := max
j∈Jk

f

fj(·) ≤ f(·) with k ∈ Jk
f ⊂ {1, . . . , k},(2.5a)

ȟk(·) := max
j∈Jk

h

hj(·) ≤ h(·) with k ∈ Jk
h ⊂ {1, . . . , k},(2.5b)

which stem from the accumulated linearizations, yield the relaxed version of problem
(1.1)

(2.6) f̌k
∗ := inf

{
f̌k(u) : u ∈ Ȟk ∩ C

}
with Ȟk :=

{
u : ȟk(u) ≤ 0

}
,
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in which Ȟk is an outer approximation of H := {u : h(u) ≤ 0}. The current prox

(or stability) center ûk := uk(l) ∈ C for some k(l) ≤ k has the values fk
û = f

k(l)
u and

hk
û = h

k(l)
u :

(2.7) fk
û ∈ [f(ûk) − εf , f(ûk)] and hk

û ∈ [h(ûk) − εh, h(ûk)].

As in (2.2) and Lemma 2.2, our improvement function for subproblem (2.6) is given
by

(2.8) ěk(·) := max{f̌k(·) − τk, ȟk(·)} with τk := fk
û + ck[h

k
û]+

for some penalty coefficient ck ≥ 0 and [·]+ := max{·, 0}. We solve a proximal version
of the relaxed improvement problem Ěk := inf ěkC with ěkC := ěk + iC by finding the
trial point

(2.9) uk+1 := arg min
{
φk(·) := ěk(·) + iC(·) + 1

2tk
| · −ûk|2

}
,

where tk > 0 is a stepsize that controls the size of |uk+1 − ûk|. For deciding whether
uk+1 is better than ûk, we use approximate values of the improvement function e(·; τk).
Thus, e(ûk; τk) is approximated by [hk

û]+, and e(ûk; τk) − ěk(u
k+1) by the predicted

decrease

(2.10) vk := [hk
û]+ − ěk(u

k+1).

When fk
û < f̌k(û

k) or hk
û < ȟk(û

k) due to inexact evaluations, vk may be nonpositive;
if necessary, we increase tk, as well as ck in (2.8) if hk

û > 0, and recompute uk+1

to decrease ěk(u
k+1) until vk ≥ |uk+1 − ûk|2/2tk (as motivated below). Of course,

e(uk+1; τk) is approximated by max{fk+1
u −τk, h

k+1
u }. A descent step to ûk+1 := uk+1

occurs if max{fk+1
u − τk, h

k+1
u } ≤ [hk

û]+ − κvk for a fixed κ ∈ (0, 1). Otherwise, a
null step ûk+1 := ûk improves the next models f̌k+1, ȟk+1 with the new linearizations
fk+1 and hk+1 (cf. (2.5)).

2.4. Aggregate linearizations and an optimality estimate. Extending the
approach of [Kiw06a], we now use optimality conditions for subproblem (2.9) to derive
aggregate linearizations (i.e., affine minorants) of the problem functions at uk+1 as
well as an optimality estimate (see (2.22) below) related to Lemma 2.1(vi).

Lemma 2.4. (i) There exist subgradients pkf , pkh, pkC and a multiplier νk such
that

pkf ∈ ∂f̌k(u
k+1), pkh ∈ ∂ȟk(u

k+1), pkC ∈ ∂iC(uk+1),(2.11)

νkp
k
f + (1 − νk)p

k
h + pkC = −

(
uk+1 − ûk

)
/tk,(2.12)

νk ∈ [0, 1], νk[ěk(u
k+1) − f̌k(u

k+1) + τk] = 0, (1 − νk)[ěk(u
k+1) − ȟk(u

k+1)] = 0.

(2.13)

(ii) These subgradients determine the following aggregate linearizations:

f̄k(·) := f̌k(u
k+1) + 〈pkf , · − uk+1〉 ≤ f̌k(·) ≤ f(·),(2.14)

h̄k(·) := ȟk(u
k+1) + 〈pkh, · − uk+1〉 ≤ ȟk(·) ≤ h(·),(2.15)

ı̄kC(·) := iC(uk+1) + 〈pkC , · − uk+1〉 ≤ iC(·),(2.16)

ēkC(·) := νk[f̄k(·) − τk] + (1 − νk)h̄k(·) + ı̄kC(·) ≤ ěkC(·) ≤ eC(·; τk).(2.17)
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(iii) For the aggregate subgradient and the aggregate linearization error given by

(2.18) pk := νkp
k
f + (1 − νk)p

k
h + pkC =

(
ûk − uk+1

)
/tk and εk := [hk

û]+ − ēkC(ûk)

and the optimality measure

(2.19) Vk := max
{
|pk|, εk + 〈pk, ûk〉

}
,

we have

ēkC(·) = ěk(u
k+1) + 〈pk, · − uk+1〉,(2.20)

[hk
û]+ − εk + 〈pk, · − ûk〉 = ēkC(·) ≤ ěkC(·) ≤ eC(·; τk),(2.21)

eC(u; τk) ≥ ěkC(u) ≥
[
hk
û

]
+
− Vk

(
1 + |u|

)
for all u.(2.22)

Proof. (i) Use the optimality condition 0 ∈ ∂φk(u
k+1) for (2.9) and the form (2.8)

of ěk.
(ii) The first inequalities in (2.14)–(2.15) stem from (2.11) and the final ones from

(2.5). Similarly, (2.11) gives (2.16) with iC(uk+1) = 0. Then (2.17) follows from the
facts that ν ∈ [0, 1] (cf. (2.13)) yields νk(f̄k − τk) + (1 − νk)h̄k ≤ ěk by using f̄k ≤ f̌k
and h̄k ≤ ȟk in (2.8) and that ěkC := ěk + iC ≤ eC(·; τk) by using f̌k ≤ f and ȟk ≤ h
in (2.2).

(iii) For (2.20), use (2.12)–(2.13) and the definitions in (2.14)–(2.18); since ēkC
is affine, its expression in (2.21) follows from (2.18). Finally, since by the Cauchy–
Schwarz inequality,

−〈pk, u〉 + εk + 〈pk, ûk〉 ≤ |pk||u| + εk + 〈pk, ûk〉 ≤ max{|pk|, εk + 〈pk, ûk〉}(1 + |u|)

in (2.21), we obtain (2.22) from the definition of Vk in (2.19).
Observe that Vk is an optimality measure at phase 2: if Vk = 0 in (2.22), then

E(τk) ≥ 0 gives fk
û ≤ τk ≤ f∗ by Lemma 2.1(vi); similar relations hold asymptotically.

2.5. Ensuring sufficient predicted decrease. In view of the optimality esti-
mate (2.22), we would like Vk to vanish asymptotically. Hence it is crucial to bound
Vk via the predicted decrease vk, since normally bundling and descent steps drive vk
to 0. The necessary bounds are given below.

Lemma 2.5. (i) In the notation of (2.18), the predicted decrease vk of (2.10)
satisfies

(2.23) vk = tk|pk|2 + εk.

(ii) We have vk ≥ −εk ⇔ tk|pk|2/2 ≥ −εk ⇔ vk ≥ tk|pk|2/2 = |uk+1 − ûk|/2tk.
(iii) For the maximal evaluation error εmax := max{εf , εh}, we have

(2.24) −εk ≤ εmax.

(iv) The optimality measure of (2.19) satisfies Vk ≤ max{|pk|, εk}(1+|ûk|). More-
over,

vk ≥ max
{
tk|pk|2/2, |εk|

}
if vk ≥ −εk,(2.25)

Vk ≤ max
{
(2vk/tk)

1/2, vk
}(

1 + |ûk|
)

if vk ≥ −εk,(2.26)

Vk < (2εmax/tk)
1/2 (

1 + |ûk|
)

if vk < −εk.(2.27)



METHOD OF CENTERS WITH APPROXIMATE SUBGRADIENTS 1473

Proof. (i) We have 〈pk, uk+1 − ûk〉 = −tk|pk|2 by (2.18), whereas by (2.20),

ěk(u
k+1) = ēkC(uk+1) = ēkC(ûk) + 〈pk, uk+1 − ûk〉;

so vk := [hk
û]+ − ěk(u

k+1) = εk + tk|pk|2 by (2.18). Note that vk ≥ εk.
(ii) This follows from (2.23) and the first part of (2.18).
(iii) By the definitions of ēkC and εk in (2.17)–(2.18), we may express −εk as

follows:

−εk = νk[f̄k(û
k) − τk] + (1 − νk)h̄k(û

k) + ı̄kC(ûk) − [hk
û]+,

where νk ∈ [0, 1] by (2.13), f̄k(û
k) ≤ f(ûk) ≤ fk

û + εf , h̄k(û
k) ≤ h(ûk) ≤ hk

û + εh, and
ı̄kC(ûk) ≤ iC(ûk) = 0 by (2.14)–(2.16) and (2.7), and τk ≥ fk

û by (2.8). Therefore, we
have

−εk ≤ νkεf + (1 − νk)h(ûk) − (1 − νk)
[
hk
û

]
+
≤ νkεf + (1 − νk)εh ≤ εmax.

(iv) Since Vk ≤ max{|pk|, εk}(1 + |ûk|) by (2.19) and the Cauchy–Schwarz in-
equality, the bounds follow from the equivalences in statement (ii), using vk ≥ εk and
(2.24).

The bound (2.27) will imply that if τk > f∗ (so that E(τk) < 0 by Lemma 2.1(vi),
and hence Vk cannot vanish in (2.22) as tk increases), then both vk ≥ −εk and the
bound (2.26) must hold for tk large enough.

2.6. Linearization selection. For choosing the sets Jk+1
f and Jk+1

h , note that

(2.4)–(2.5) and (2.11) yield the existence of multipliers αk
j for the pieces fj , j ∈ Jk

f ,

and βk
j for the pieces hj , j ∈ Jk

h , such that

(pkf , 1) =
∑
j∈Jk

f

αk
j (∇fj , 1) αk

j ≥ 0, αk
j

[
f̌k(u

k+1) − fj(u
k+1)

]
= 0, j ∈ Jk

f ,(2.28a)

(pkh, 1) =
∑
j∈Jk

h

βk
j (∇hj , 1) βk

j ≥ 0, βk
j

[
ȟk(u

k+1) − hj(u
k+1)

]
= 0, j ∈ Jk

h .(2.28b)

Denote the indices of linearizations fj and hj that are “strongly” active at uk+1 by

(2.29) Ĵk
f :=

{
j ∈ Jk

f : αk
j �= 0

}
and Ĵk

h :=
{
j ∈ Jk

h : βk
j �= 0

}
.

These linearizations embody all the information contained in the aggregates f̄k and h̄k

(which are actually their convex combinations; cf. (2.14)–(2.15) and (2.28)). To save
storage and work per iteration, we may drop the remaining linearizations. (Alternative
strategies based on aggregation instead of selection are discussed in section 4.2.)

2.7. The method. We now have the necessary ingredients to state our method
in detail.

Algorithm 2.6.

Step 0 (initialization). Select u1 ∈ C, a descent parameter κ ∈ (0, 1), an infeasi-
bility contraction bound κh ∈ (0, 1], a stepsize bound tmin > 0, a stepsize t1 ≥ tmin, and

a penalty coefficient c1 ≥ 0. Set û1 := u1, f1
û := f1

u := fu1 , g1
f := gu

1

f , h1
û := h1

u := hu1 ,

g1
h := gu

1

h (cf. (2.4)), J1
f := J1

h := {1}, i1t := 0, k := k(0) := 1, and l := 0 (k(l)− 1 will
denote the iteration of the lth descent step).



1474 KRZYSZTOF C. KIWIEL

Step 1 (trial point finding). For ěk given by (2.8), find uk+1 (cf. (2.9)) and
multipliers αk

j , β
k
j such that (2.28) holds. Set vk by (2.10), pk := (ûk −uk+1)/tk, and

εk := vk − tk|pk|2.
Step 2 (stopping criterion). If Vk = 0 (cf. (2.19)) and hk

û ≤ 0, stop (fk
û ≤ f∗).

Step 3 (phase 1 stepsize correction). If hk
û ≤ 0 or εmax = 0 or vk ≥ κhh

k
û, go to

Step 4. Set tk := 10tk, i
k
t := k. If ck > 0, set ck := 2ck; otherwise, pick ck > 0. Go

back to Step 1.
Step 4 (stepsize correction). If vk ≥ −εk, go to Step 5. Set tk := 10tk, i

k
t := k.

If hk
û > 0, set ck := 2ck if ck > 0; otherwise, pick ck > 0. Go back to Step 1.
Step 5 (descent test). Evaluate fk+1 and hk+1 (cf. (2.4)). If the descent test

holds,

(2.30) max{fk+1
u − τk, h

k+1
u } ≤

[
hk
û]+ − κvk,

set ûk+1 := uk+1, fk+1
û := fk+1

u , hk+1
û := hk+1

u , ik+1
t := 0, and k(l + 1) := k + 1

and increase l by 1 (descent step); else set ûk+1 := ûk, fk+1
û := fk

û , hk+1
û := hk

û, and

ik+1
t := ikt (null step).

Step 6 (bundle selection). For the active sets Ĵk
f and Ĵk

h given by (2.29), choose

(2.31) Jk+1
f ⊃ Ĵk

f ∪ {k + 1} and Jk+1
h ⊃ Ĵk

h ∪ {k + 1}.

Step 7 (stepsize updating). If k(l) = k + 1 (i.e., after a descent step), select
tk+1 ≥ tk and ck+1 ≥ 0; otherwise, set ck+1 := ck and either set tk+1 := tk, or choose
tk+1 ∈ [tmin, tk] if ik+1

t = 0.
Step 8 (loop). Increase k by 1 and go to Step 1.
Several comments on the method are in order.
Remark 2.7. (i) When the set C is polyhedral, Step 1 may use the QP method

of [Kiw94], which can efficiently solve sequences of related subproblems (2.9).
(ii) Step 2 may also use the test inf ěkC ≥ 0 and hk

û ≤ 0 (see Lemma 3.1(i) below).
(iii) Step 3 is needed in phase 1 (for hk

û > 0) when inaccuracies occur (εmax > 0);
it increases tk and τk (via ck) to obtain vk ≥ κhh

k
û, so that eventually a descent step

(cf. (2.30)) will reduce the constraint violation significantly: hk+1
û ≤ (1 − κκh)hk

û.
(iv) In the case of exact evaluations (εmax = 0), Step 4 is redundant, since vk ≥

εk ≥ 0 (cf. (2.23)–(2.24)). When inexactness is discovered via vk < −εk, tk is increased
to produce descent or confirm that ûk is almost optimal. Namely, when ûk is bounded
in (2.27), increasing tk drives Vk to 0, so that fk

û ≤ τk ≤ f∗ asymptotically. Whenever
tk is increased at Steps 3 or 4, the stepsize indicator ikt �= 0 prevents Step 7 from
decreasing tk after null steps until the next descent step occurs (cf. Step 5). Otherwise,
decreasing tk at Step 7 aims at collecting more local information about f and h at
null steps.

(v) When εmax := max{εf , εh} = 0, our method employs the exact function values

(2.32) fk
û = f(ûk), hk

û = h(ûk), τk = π(ûk; ck) ≥ f(ûk), and [hk
û]+ = e(ûk; τk)

(cf. (2.7), (2.1), (2.8), and Lemma 2.3), and the aggregate inequality (2.21) means that

(2.33) pk ∈ ∂εkeC(ûk; τk) with εk ≥ 0.

Thus, if Vk = 0 in (2.19), then |pk| = εk = 0 implies that 0 ∈ ∂eC(ûk; τk) and hence
that ûk ∈ U∗ by Lemma 2.2; in particular, in this case we have hk

û = h(ûk) ≤ 0.
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(vi) At Step 5, we have vk > 0 (using (2.26) and Vk > 0 at Step 2 if hk
û ≤ 0;

otherwise vk ≥ κhh
k
û > 0 by Step 3 if εmax > 0, Vk > 0 by item (v) if εmax = 0).

When a descent step occurs, the descent test (2.30) with the target τk given by (2.8)
implies that

hk+1
û ≤ hk

û − κvk if hk
û > 0,(2.34a)

fk+1
û ≤ fk

û − κvk and hk+1
û ≤ 0 if hk

û ≤ 0.(2.34b)

Thus at phase 1 (i.e., when hk
û > 0), we have reduction in the constraint violation,

whereas at phase 2 the objective value is decreased while preserving (approximate)
feasibility. In the exact case (cf. (2.32)), the descent test (2.30) becomes

max
{
f(uk+1) − f(ûk) − ckh(ûk)+, h(uk+1)

}
≤ h(ûk)+ − κvk,

coinciding with the tests used in [Kiw85, section 5.7] and [KRSS07, SaS05] with ck ≡ 0.
(vii) An active-set method for solving (2.9) (cf. [Kiw94]) will produce |Ĵk

f |+|Ĵk
h | ≤

m + 1 (cf. (2.29)). Hence Step 6 can keep |Jk+1
f | + |Jk+1

h | ≤ m̄ for any given bound
m̄ ≥ m + 3.

(viii) Step 7 may use the techniques of [Kiw90, LeS97] for updating tk (or the
proximity weight 1/tk) with obvious modifications. For updates of ck, see section 4.4.

3. Convergence. Our analysis splits into several cases.

3.1. The case of an infinite cycle due to oracle errors. We first show that,
in phase 2, the loop between Steps 1 and 4 is infinite iff 0 ≤ inf ěkC < ěk(û

k), in which
case ûk is approximately optimal : f(ûk) ≤ f∗ + εf and h(ûk) ≤ εh.

Lemma 3.1. Assuming that hk
û ≤ 0, recall that Ěk := inf ěkC with ěkC := ěk + iC .

Then we have the following statements:
(i) If Ěk ≥ 0, then f(ûk) − εf ≤ fk

û ≤ f∗ and h(ûk) ≤ εh.
(ii) Step 2 terminates, i.e., Vk := max{|pk|, εk + 〈pk, ûk〉} = 0, iff 0 ≤ Ěk =

ěk(û
k).
(iii) If the loop between Steps 1 and 4 is infinite, then Ěk ≥ 0 and Vk → 0.
(iv) If Ěk ≥ 0 at Step 1 and Step 2 does not terminate (i.e., Ěk < ěk(û

k); cf.
(ii)), then an infinite loop between Steps 4 and 1 occurs.

Proof. (i) We have E(τk) ≥ Ěk and τk = fk
û (cf. (2.2), (2.8), (2.14)–(2.15)); so

fk
û ≤ f∗ by Lemma 2.1(vi), whereas f(ûk) ≤ fk

û + εf and h(ûk) ≤ hk
û + εh by (2.7).

(ii) “⇒”: Since |pk| = 0 ≥ εk, (2.18) and (2.21) yield uk+1 = ûk, ēkC(ûk) ≤ ěkC(·)
and 0 ≤ ēkC(ûk), whereas by (2.20), ēkC(ûk) = ěk(u

k+1) = ěk(û
k). “⇐”: Since

ěkC(ûk) = min ěkC , using φk(û
k) = min ěkC ≤ φk(u

k+1) ≤ φk(û
k) in (2.9) gives uk+1 =

ûk; thus ēkC(ûk) = ěkC(ûk) by (2.20), and (2.18) yields pk = 0 and εk = −ěkC(ûk) ≤ 0.
(iii) At Step 4 during the loop the facts that Vk < (2εmax/tk)

1/2(1 + |ûk|) (cf.
(2.27)) and tk ↑ ∞ as the loop continues give Vk → 0; so ěkC(·) ≥ 0 by (2.22).

(iv) We have ěk(u
k+1) ≥ inf ěkC ≥ 0. Thus vk = −ěk(u

k+1) ≤ 0 (cf. (2.10))
and vk = tk|pk|2 + εk (cf. (2.23)) yield εk ≤ −tk|pk|2 at Step 4 with pk �= 0 (since
max{|pk|, εk + 〈pk, ûk〉} =: Vk > 0 at Step 2). Hence εk < − tk

2 |pk|2; so vk < −εk and
Step 4 loops back to Step 1, after which Step 2 cannot terminate due to (ii).

In view of Lemma 3.1, from now on we assume (unless stated otherwise) that the
algorithm neither terminates nor cycles infinitely between Steps 1 and 4 at phase 2
(otherwise ûk is approximately optimal). For phase 1, our analysis will imply that any
loop between Steps 1 and 3 or 4 is finite. We shall show that the algorithm generates
points that are approximately optimal asymptotically by establishing upper bounds
on the values fk

û and hk
û.
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3.2. Bounding the objective values. We first bound fk
û via Vk.

Lemma 3.2. Let K ⊂ N satisfy Vk
K−→ 0. Then limk∈K fk

û ≤ limk∈K τk ≤ f∗.

Proof. Pick K ′ ⊂ K such that τk
K′
−→ τ̄ := limk∈K τk. Since fk

û ≤ τk by (2.8),
we need only show that τ̄ ≤ f∗ when τ̄ > −∞. Note that τ̄ < ∞, since otherwise for
τk ≥ f (̊u) − h(̊u), the fact that e(̊u; τk) = h(̊u) < 0 (cf. (2.2), (1.2)) and the bound
(2.22) would yield the following contradiction:

0 > h(̊u) = eC (̊u; τk) ≥ −Vk(1 + |̊u|) K′
−→ 0.

Thus τ̄ is finite. Since eC(u; ·) is continuous, letting k
K′
−→ ∞ in (2.22) gives eC(·; τ̄) ≥

0. Therefore, we have E(τ̄) ≥ 0, and hence τ̄ ≤ f∗ by Lemma 2.1(vi).
The upper bound of Lemma 3.2 is complemented below with a lower bound (which

is highly useful for the “dual” applications in sections 4.3 and 5).
Lemma 3.3. If limk h

k
û ≤ 0, then for the minimal multiplier μ̄ := infμ∈M μ of

problem (1.1) (cf. section 2.1), we have

(3.1) limk f
k
û + εf ≥ limk f(ûk) ≥ f∗ − μ̄εh and limk h(ûk) ≤ εh.

Proof. For all k, ûk ∈ C and (cf. section 2.1) L(ûk; μ̄) := f(ûk) + μ̄h(ûk) ≥ f∗,
with 0 ≤ μ̄ < ∞ if f∗ > −∞, μ̄ = ∞ otherwise. Moreover, f(ûk) ≤ fk

û + εf , and
h(ûk) ≤ hk

û + εh by (2.7). The conclusion follows.

3.3. The case of finitely many descent steps. We now consider the case
where only finitely many descent steps occur. After the last descent step, only null
steps occur and {tk} becomes eventually monotone, since once Steps 3 or 4 increase
tk, Step 7 cannot decrease tk; thus the limit t∞ := limk tk exists. After showing that
t∞ = ∞ may occur only at phase 2 in Lemma 3.4, we deal with the cases of t∞ = ∞
in Lemma 3.6 and t∞ < ∞ in Lemma 3.7.

Lemma 3.4. Suppose there exists k̄ such that hk̄
û > 0 and only null steps occur

for all k ≥ k̄. Then Steps 3 and 4 can increase tk only a finite number of times.
Proof. For contradiction, suppose that tk → ∞. Since τk → ∞ (because ck → ∞;

cf. Steps 3 and 4 and (2.8)), we may assume that τk ≥ τ̊ := f (̊u)−h(̊u) for the Slater
point ů of (1.2) and for all k ≥ k̄; then, using the minorants f̌k ≤ f and ȟk ≤ h (cf.
(2.4)) in the definitions (2.8) and (2.2) yields

(3.2) ěk (̊u) ≤ max{f̌k (̊u) − τ̊ , ȟk (̊u)} ≤ e(̊u; τ̊) = h(̊u) < 0 with ů ∈ C.

At Step 1, (2.9) gives the proximal projection property for the level set of ěkC := ěk+iC :

(3.3) uk+1 = arg min
{

1
2 |u− ûk|2 : ěkC(u) ≤ ěkC(uk+1)

}
,

whereas before Step 3 increases tk, vk < κhh
k
û yields ěk(u

k+1) > (1 − κh)hk
û ≥ 0 by

(2.10); so for k ≥ k̄, (3.2) and (3.3) with ûk = ûk̄ give |uk+1 − ûk| ≤ r := |̊u − ûk̄|,
and hence |pk| ≤ r/tk by (2.18). Therefore, if Step 3 increases tk at infinitely many

iterations, indexed by K, say, then tk → ∞ yields pk
K−→ 0; thus, from (2.21), (2.20),

the fact that |uk+1 − ûk̄| ≤ r, and the Cauchy–Schwarz inequality, we get

0 > h(̊u) ≥ ěkC (̊u) ≥ ēkC (̊u) = ěk(u
k+1) + 〈pk, ů− uk+1〉 ≥ 〈pk, ů− uk+1〉 K−→ 0,

a contradiction. Similarly, if Step 4 is entered with vk < −εk for infinitely many

iterations indexed by K, say, then tk → ∞ and (2.27) give Vk
K−→ 0, and we obtain

0 > h(̊u) ≥ ěkC (̊u) ≥ −Vk(1 + |̊u|) K−→ 0
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from (3.2) and (2.22), another contradiction. The conclusion follows.
Remark 3.5. To illustrate the need for increasing ck at Steps 3 and 4, suppose

momentarily that ck ≡ 0 for all k. Consider the following example. Let m = 1,
f(u) := u, h(u) := 1 − u, C := R. Suppose that u1 := 0, f1 := f , h1 := h − 0.5;
so that h1

û = 0.5 for εh = 0.5. For k = 1, vk ≤ 1/4; so if κh ∈ (1/2, 1), then a loop
between Steps 3 and 1 occurs. Next, for κh ∈ (0, 1/2], suppose fk+1 = f and hk+1 = h
at Step 5; then a null step occurs, and at Step 1 for k = 2, ěk = max{f, h} is exact,
min ěk = 1/2 = hk

û, and vk ≤ 0, so that a loop between Steps 3 and 1 occurs. Even if
Step 3 were omitted, a loop between Steps 4 and 1 would occur.

The case where the stepsize tk keeps growing at a fixed prox center is quite simple.
Lemma 3.6. Suppose there exists k̄ such that only null steps occur for all k ≥ k̄,

and t∞ := limk tk = ∞. Let K := {k ≥ k̄ : tk+1 > tk}. Then Vk
K−→ 0, and hk̄

û ≤ 0.

Proof. We have hk̄
û ≤ 0 (otherwise Lemma 3.4 would imply t∞ < ∞, a contradic-

tion). For k ∈ K, before tk is increased at Step 4 on the last loop to Step 1, we have

Vk < (2εmax/tk)
1/2(1 + |ûk̄|) by (2.27); so tk → ∞ gives Vk

K−→ 0.
The case where the stepsize tk does not grow at a fixed prox center is analyzed

as in [Kiw06a]. After showing that the optimal value φk(u
k+1) of subproblem (2.9) is

nondecreasing and bounded above, uk+1 is bounded, and uk+2−uk+1 → 0, we invoke
the descent test (2.30) to get vk → 0; the rest follows from the bounds (2.25)–(2.26).

Lemma 3.7. Suppose that there exists k̄ such that for all k ≥ k̄, only null steps
occur, and Steps 3 and 4 do not increase tk. Then Vk → 0, and hk̄

û ≤ 0.
Proof. Fix k ≥ k̄. We show that the aggregate ēkC minorizes the next model ěk+1

C :

(3.4) ēkC(·) ≤ ěk+1
C (·) := ěk+1(·) + iC(·).

Consider the selected model f̂k := maxj∈Ĵk
f
fj of f̌k := maxj∈Jk

f
fj ; then f̂k ≤ f̌k.

Using (2.29) in the expression (2.28a) of pkf gives f̂k(u
k+1) = f̌k(u

k+1) and pkf ∈
∂f̂k(u

k+1) (cf. [HUL93, Ex. VI.3.4]). Thus f̄k ≤ f̂k by (2.14); so the choice of Ĵk
f ⊂

Jk+1
f implies that f̄k ≤ f̂k ≤ f̌k+1. Similarly, for ĥk := maxj∈Ĵk

h
hj , (2.28b) yields

h̄k ≤ ĥk ≤ ȟk+1. Then using the definition (2.17) of ēkC with νk ∈ [0, 1] (cf. (2.13)),
the minorization ı̄kC ≤ iC of (2.16), and the fact that τk+1 = τk (by (2.8) and Steps 3
and 4) gives the required bound

ēkC ≤ νk[f̌k+1 − τk] + (1 − νk)ȟk+1 + iC ≤ max{f̌k+1 − τk+1, ȟk+1} + iC = ěk+1
C .

(Note that this bound needs only the minorizations f̄k ≤ f̌k+1+iC and h̄k ≤ ȟk+1+iC ;
this will be important when selection is replaced by aggregation in section 4.2.)

Next, consider the following partial linearization of the objective φk of (2.9):

(3.5) φ̄k(·) := ēkC(·) + 1
2tk

| · −ûk|2.

We have ēkC(uk+1) = ěk(u
k+1) by (2.20) and ∇φ̄k(u

k+1) = 0 from ∇ēkC = pk =
(ûk − uk+1)/tk (cf. (2.20), (2.18)); hence φ̄k(u

k+1) = φk(u
k+1) by (2.9), and by

Taylor’s expansion

(3.6) φ̄k(·) = φk(u
k+1) + 1

2tk
| · −uk+1|2.

To bound φ̄k(û
k) from above, notice that (3.5), (2.18), and (2.24) imply that

φ̄k(û
k) = ēkC(ûk) = [hk

û]+ − εk ≤ [hk
û]+ + εmax.
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Then by (3.6),

(3.7) φk(u
k+1) + 1

2tk
|uk+1 − ûk|2 = φ̄k(û

k) ≤
[
hk̄
û

]
+

+ εmax.

Now using the facts that ûk+1 = ûk and tk+1 ≤ tk and the model minorization
property (3.4) in the definitions (3.5) of φ̄k and (2.9) of φk+1 gives φ̄k ≤ φk+1. Hence
by (3.6),

(3.8) φk(u
k+1) + 1

2tk
|uk+2 − uk+1|2 = φ̄k(u

k+2) ≤ φk+1(u
k+2).

Thus the nondecreasing sequence {φk(u
k+1)}k≥k̄, being bounded above by (3.7) with

ûk = ûk̄ for k ≥ k̄, must have a limit, say φ∞ ≤ [hk̄
û]+ + εmax. Moreover, since the

stepsizes satisfy tk ≤ tk̄ for k ≥ k̄, we deduce from the bounds (3.7)–(3.8) that

(3.9) φk(u
k+1) ↑ φ∞, uk+2 − uk+1 → 0,

and the sequence {uk+1} is bounded. Then the sequence {gk+1
f } is bounded as well,

since gkf ∈ ∂εf f(uk) by (2.4), whereas the mapping ∂εf f is locally bounded [HUL93,

section XI.4.1]; similarly, the sequence {gk+1
h } is bounded, since gkh ∈ ∂εhh(uk) by

(2.4).
For vk := [hk

û]+ − ěk(u
k+1) and the following linearization of e(·; τk) at uk+1,

(3.10) ek+1(·) :=

{
fk+1(·) − τk if fk+1

u − τk ≥ hk+1
u ,

hk+1(·) otherwise,

the descent test (2.30) reads ek+1(u
k+1) ≤ [hk

û]+ − κvk or equivalently

(3.11) ε̃k := ek+1(u
k+1) − ěk(u

k+1) ≤ (1 − κ)vk.

We now show that this approximation error ε̃k → 0. First, note that the linearization
gradients gk+1

e := ∇ek+1 are bounded, since |gk+1
e | ≤ max{|gk+1

f |, |gk+1
h |} by (2.4).

Further, the minorizations fk+1 ≤ f̌k+1 and hk+1 ≤ ȟk+1 due to k + 1 ∈ Jk+1
f ∩ Jk+1

h

(cf. (2.5)) yield ek+1 ≤ ěk+1 by (2.8), since τk+1 = τk. Using the linearity of ek+1,
the bound ek+1 ≤ ěk+1, the Cauchy–Schwarz inequality, and (2.9) with ûk = ûk̄ for
k ≥ k̄, we estimate

ε̃k := ek+1(u
k+1) − ěk(u

k+1)

= ek+1(u
k+2) − ěk(u

k+1) + 〈gk+1
e , uk+1 − uk+2〉

≤ ěk+1(u
k+2) − ěk(u

k+1) + |gk+1
e ||uk+1 − uk+2|

= φk+1(u
k+2) − φk(u

k+1) + Δk + |gk+1
e ||uk+1 − uk+2|,(3.12)

where Δk := |uk+1 − ûk̄|2/2tk − |uk+2 − ûk̄|2/2tk+1. We have Δk → 0, since tmin ≤
tk+1 ≤ tk (cf. Step 7), |uk+1 − ûk̄|2 is bounded, uk+2 − uk+1 → 0 by (3.9), and

|uk+2 − ûk̄|2 = |uk+1 − ûk̄|2 + 2〈uk+2 − uk+1, uk+1 − ûk̄〉 + |uk+2 − uk+1|2.

Hence, using (3.9) and the boundedness of {gk+1
e } in (3.12) yields limk ε̃k ≤ 0. On

the other hand, for k ≥ k̄, the descent test written as (3.11) fails: (1 − κ)vk < ε̃k,
where κ < 1 and vk > 0; it follows that ε̃k → 0 and vk → 0.
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Since vk → 0, tk ≥ tmin, and ûk = ûk̄ for k ≥ k̄, we have Vk → 0 by (2.26), εk → 0,
and |pk| → 0 by (2.25). It remains to prove that hk̄

û ≤ 0. If εmax > 0, but hk̄
û > 0, then

the facts that vk → 0 with vk ≥ κhh
k
û (cf. Step 3), κh > 0, and hk

û = hk̄
û for k ≥ k̄ give

in the limit hk̄
û ≤ 0, a contradiction. Finally, for εmax = 0, recalling Remark 2.7(v)

and using εk, |pk| → 0 in (2.21) yields eC(ûk̄; τk̄) ≤ eC(·; τk̄). In other words, we have
0 ∈ ∂eC(ûk̄; τk̄); so ûk̄ ∈ U∗ by Lemma 2.2, and thus hk̄

û = h(ûk̄) ≤ 0.
We may now finish the case of infinitely many consecutive null steps.
Theorem 3.8. Suppose there exists k̄ such that only null steps occur for all

k ≥ k̄. Let K := {k ≥ k̄ : tk+1 > tk} if tk → ∞, K := {k : k ≥ k̄} otherwise. Then

Vk
K−→ 0, f k̄

û ≤ f∗ and hk̄
û ≤ 0. Moreover, the bounds of (3.1) hold.

Proof. Steps 3, 4, 5, and 7 ensure that {tk} is monotone for large k (see above

Lemma 3.4). We have Vk
K−→ 0 and hk̄

û ≤ 0 from either Lemma 3.6 if t∞ = ∞ or

Lemma 3.7 if t∞ < ∞. Then f k̄
û ≤ f∗ by Lemma 3.2 (since τk = fk

û = f k̄
û for k ≥ k̄).

The final assertion stems from Lemma 3.3.
It may be interesting to observe that uk → ûk̄ if t∞ < ∞ (since |uk+1−ûk| = tk|pk|

by (2.18), and pk → 0 in the proof of Lemma 3.7). In contrast, we may have t∞ = ∞
and |uk| → ∞ (consider m = 1, f(u) := eu, h(u) ≡ −1, C := R, u1 := 0, f1

u := −1,
g1
f = 1, and exact evaluations for k ≥ 2).

3.4. The case of infinitely many descent steps. We first analyze the case
of infinitely many descent steps in phase 2.

Theorem 3.9. Suppose infinitely many descent steps occur, and hk̄
û ≤ 0 for some

k̄. Let f∞
û := limk f

k
û and K := {k ≥ k̄ : fk+1

û < fk
û}. Then either f∞

û = f∗ = −∞,
or −∞ < f∞

û ≤ f∗ and limk∈K Vk = 0. Moreover, the bounds of (3.1) hold. In

particular, if {ûk} is bounded, then f∞
û > −∞ and Vk

K−→ 0.
Proof. For k ≥ k̄, we have hk

û ≤ 0, τk = fk
û (cf. (2.8)), and fk+1

û ≤ fk
û , since by

(2.34b), a descent step yields hk+1
û ≤ 0 and fk+1

û − fk
û ≤ −κvk < 0, so that |K| = ∞.

First, suppose that f∞
û > −∞.

We have 0 < κvk ≤ fk
û − fk+1

û if k ∈ K, fk+1
û = fk

û otherwise; so
∑

k∈K κvk ≤
f k̄
û−f∞

û < ∞ gives vk
K−→ 0 and hence εk, tk|pk|2

K−→ 0 by (2.25), as well as |pk| K−→ 0,
using tk ≥ tmin. Now, for the descent iterations k ∈ K, we have ûk+1 − ûk = −tkp

k

by (2.18) and therefore

|ûk+1|2 − |ûk|2 = tk
{
tk|pk|2 − 2〈pk, ûk〉

}
.

Sum up and use the facts that ûk+1 = ûk if k /∈ K and
∑

k∈K tk ≥
∑

k∈K tmin = ∞
to get

lim
k∈K

{
tk|pk|2 − 2〈pk, ûk〉

}
≥ 0

(since otherwise |ûk|2 → −∞, which is impossible). Combining this with tk|pk|2
K−→ 0

gives limk∈K〈pk, ûk〉 ≤ 0. Since also εk, |pk|
K−→ 0, we have limk∈K Vk = 0 by (2.19).

Then using limk∈K Vk = 0 and τk → f∞
û in Lemma 3.2 shows that f∞

û ≤ f∗.
For the case of f∞

û = −∞ and the assertion on (3.1), invoke Lemma 3.3.
For the final assertion, if {ûk} ⊂ C is bounded, then infk f(ûk) > −∞ (f is closed

on C) implies that f∞
û > −∞ by (3.1); so we have εk, |pk|

K−→ 0 as above. Hence the

fact that Vk ≤ max{|pk|, εk}(1 + |ûk|) by Lemma 2.5(iv) gives Vk
K−→ 0.

We now deal with the case of infinitely many descent steps at phase 1 for εmax > 0.
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Theorem 3.10. Suppose infinitely many descent steps occur, hk
û > 0 for all k,

and εmax > 0. Let K := {k : hk+1
û < hk

û}. Then we have the following statements:
(i) hk

û ↓ 0 (this relies upon the property that vk ≥ κhh
k
û at Step 5).

(ii) limk∈K Vk = 0; also
∑

k∈K vk < ∞, and limk∈K max{εk, |pk|} = 0.

(iii) Let K ′ ⊂ N be such that Vk
K′
−→ 0. Then limk∈K′ fk

û ≤ limk∈K′ τk ≤ f∗.
(iv) If {ûk} is bounded, then limk∈K Vk = 0, and we may take K ′ = K in (iii).
(v) The bounds of (3.1) hold, and limk τk ≥ f∗ − εf − μ̄εh.
(vi) Assertions (ii)–(iv) above hold also if εmax = 0.
Proof. We have hk+1

û −hk
û ≤ −κvk < 0 at descent steps by (2.34a); thus |K| = ∞.

(i) We have 0 < κvk ≤ hk
û − hk+1

û if k ∈ K, hk+1
û = hk

û otherwise; so
∑

k∈K κvk ≤
h1
û gives limk∈K vk = 0. Hence the fact that vk ≥ κhh

k
û (cf. Step 3) yields hk

û ↓ 0.

(ii) Use
∑

k∈K vk < ∞, and then vk
K−→ 0 (from the proof of (i)) as in the proof

of Theorem 3.9 to get limk∈K Vk = 0, limk∈K εk = 0, and limk∈K |pk| = 0.
(iii) This follows from Lemma 3.2.
(iv) Invoke Lemma 2.5(iv) and the fact that limk∈K max{εk, |pk|} = 0 by (ii).
(v) This follows from (i), Lemma 3.3, and the fact that τk ≥ fk

û for all k.
(vi) This statement is immediate from the preceding arguments and the rules of

Step 3.
It is instructive to examine the assumptions of the preceding results.
Remark 3.11. (i) Inspection of the preceding proofs reveals that Theorems 3.8–

3.10 require only convexity and finiteness of f and h on C and local boundedness of
the approximate subgradient mappings guf of f and guh of h on C. In particular, it
suffices to assume that f and h are finite convex on a neighborhood of C.

(ii) Using the evaluation errors εkf := f(uk)−fk
u and εkh := h(uk)−hk

u, our results

are sharpened as follows; cf. [Kiw06b, section 4.2]. In general, f(ûk) = fk
û + ε

k(l)
f and

h(ûk) = hk
û + ε

k(l)
h , where k(l) − 1 denotes the iteration number of the lth descent

step. Hence εf and εh in the bounds of (3.1) for Theorems 3.8–3.10 may be replaced

by the asymptotic errors ε∞f and ε∞h , where ε∞f equals the final ε
k(l)
f if only finitely

many descent steps occur, liml ε
k(l)
f otherwise, and ε∞h is defined analogously.

(iii) Concerning Theorem 3.10(iv), note that the sequence {ûk} is bounded if the
feasible set U is bounded. Indeed, h(ûk) ≤ hk

û + εh (cf. (2.7)) with hk
û ≤ h1

û implies
that {ûk} lies in the set {u ∈ C : h(u) ≤ h1

û + εh}, which is bounded, since such is U .
Finally, we analyze infinitely many descent steps in the exact case of εmax = 0.
Theorem 3.12. Suppose that infinitely many descent steps occur and εmax = 0.

Let K := {k(l) − 1}∞l=1 index the descent iterations (cf. Step 5), and let k̄ := inf{k :
h(ûk) ≤ 0} (so that phase 2 starts at iteration k = k̄ iff k̄ < ∞). Then we have the
following statements:

(i) If k̄ < ∞, then f(ûk) → f∗, τk → f∗, h(ûk)+ → 0, and each cluster point of
{ûk} (if any) lies in the optimal set U∗; moreover, limk∈K Vk = 0 if f∗ > −∞.

(ii) If infk f(ûk) > −∞ or k̄ = ∞, then
∑

k∈K vk < ∞, εk
K−→ 0, and pk

K−→ 0.

(iii) If the sequence {ûk} is bounded, then all its cluster points lie in the optimal

set U∗, and we have f(ûk) → f∗ > −∞, τk → f∗, h(ûk)+ → 0, and Vk
K−→ 0.

(iv) If {ûk} has a cluster point ū, then ū ∈ U∗, h(ûk)+ → 0, and limk τk ≥
limk f(ûk) ≥ f∗ > −∞; moreover, if K ′ ⊂ K is such that ûk K′

−→ ū, then Vk
K′
−→ 0.

(v) The sequence {ûk} has a cluster point if the set U∗ is nonempty and bounded.
(vi) The sequence {ûk} is bounded if such is the set U := {u ∈ C : h(u) ≤ 0}.
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(vii) Suppose that ū ∈ U∗ and there exists an iteration index k′ such that

(3.13) f(ū) ≤ π(ûk; ck + 1) for all k ≥ k′, k ∈ K.

In particular, (3.13) holds if ûk′ ∈ U for some k′, or ck ≥ μ̄−1 for all k ≥ k′, k ∈ K.
Further, suppose limk∈K tk < ∞. Then the sequence {ûk} converges to a point in U∗.

(viii) Suppose that {ûk} is bounded, but we have only
∑

k∈K tk = ∞ instead of

infk∈K tk ≥ tmin. Then {ûk} has a cluster point in U∗. Moreover, assertion (vii) still
holds.

Proof. First, recalling the “exact” relations (2.32)–(2.33), note that εk ≥ 0 and

(3.14) eC(·; τk) ≥ eC(ûk; τk) + 〈pk, · − ûk〉 − εk with eC(ûk; τk) = h(ûk)+.

By Remark 2.7(vi), the descent test (2.30) ensures that 0 < h(ûk+1) ≤ h(ûk) for all
k if k̄ = ∞, f∗ ≤ f(ûk+1) ≤ f(ûk), and h(ûk) ≤ 0 for all k ≥ k̄ otherwise.

(i) Use f∞
û = limk f(ûk) = limk τk in Theorem 3.9 and the closedness of C, f , h.

(ii) Use the proof of Theorem 3.9 if k̄ < ∞ or Theorem 3.10(vi) otherwise.
(iii) First, suppose that k̄ = ∞; i.e., consider phase 1 with h(ûk) > 0 for all k.
Let ū be a cluster point of {ûk}. Then ū ∈ C, since {ûk} ⊂ C and C is closed.

Pick K ′ ⊂ K such that ûk K′
−→ ū. Then f(ûk)

K′
−→ f(ū), h(ûk)

K′
−→ h(ū) ≥ 0 (f , h

are continuous on C). Since εk, |pk|
K−→ 0 by (ii), Lemma 2.5(iv) yields Vk

K′
−→ 0.

Let τ̄ be any cluster point of {τk}k∈K′ . Pick K ′′ ⊂ K ′ such that τk
K′′
−→ τ̄ . We have

τ̄ ≥ f(ū) (τk ≥ f(ûk)) and τ̄ < ∞; otherwise for large k ∈ K ′′, τk ≥ f (̊u) − h(̊u)

would give e(̊u; τk) = h(̊u) < 0 by (2.2) and (1.2), and by (3.14) with εk, |pk|
K−→ 0,

0 > h(̊u) = eC (̊u; τk) ≥ h(ûk)+ + 〈pk, ů− ûk〉 − εk
K′′
−→ h(ū)+ ≥ 0,

a contradiction. Since eC is continuous on C × R, letting k
K′′
−→ ∞ in (3.14) gives

eC(·; τ̄) ≥ eC(ū; τ̄), i.e., 0 ∈ ∂eC(ū; τ̄). Since h(ū) ≥ 0 and τ̄ ≥ f(ū), 0 ∈ ∂eC(ū; τ̄) in
(2.3) implies τ̄ = f(ū) and h(ū) = 0 (otherwise for hC := h + iC , 0 ∈ ∂hC(ū) would
give minC h ≥ 0, contradicting (1.2)). Hence, ū ∈ U∗ by Lemma 2.2 (using τ̄ = π(ū; c̄)
for any c̄ ≥ 0) and f(ū) = f∗. Since h(ū) = 0 and {h(ûk)} is nonincreasing, we obtain
that h(ûk) → 0.

By considering any convergent subsequences, we deduce that Vk
K−→ 0 and that

f∗ is the unique cluster point of {τk}k∈K and {f(ûk)}k∈K . Hence, liml τk(l)−1 =

liml f(ûk(l)−1) = f∗. Since f(ûk(l)) ≤ τk ≤ τk(l+1)−1 for k(l) ≤ k < k(l + 1) by

Steps 3, 4, and 7, we obtain limk f(ûk) = limk τk = f∗.
Finally, for the remaining case of k̄ < ∞, use the monotonicity of {τk = f(ûk)}k≥k̄

and the relations τ̄ = f(ū), h(ū) ≤ 0 in the second to last paragraph to get 0 ∈
∂eC(ū; τ̄) and ū ∈ U∗ from Lemma 2.2; the rest follows as before.

(iv) Use the proof of (iii), getting limk f(ûk) ≥ f∗ from Lemma 3.3.
(v) If k̄ < ∞, the set {u ∈ C : f(u) ≤ f(ûk̄), h(u) ≤ 0} is bounded (such is

U∗) and contains {ûk}k≥k̄. Suppose that k̄ = ∞. By Theorem 3.10(vi), there is

K ′ ⊂ K such that limk∈K′ f(ûk) ≤ f∗. Hence, for infinitely many k, ûk lies in the set
{u ∈ C : f(u) ≤ f∗ + 1, h(u) ≤ h(u1)+}, which is bounded (such is U∗). Therefore,
{ûk} has a cluster point.

(vi) The set {u ∈ C : h(u) ≤ h(u1)+} is bounded (such is U) and contains {ûk}.
(vii) If k̄ < ∞, then for k ≥ k̄, ûk ∈ U implies f(ū) = f∗ ≤ f(ûk) = π(ûk; ck + 1);

together with Lemma 2.3, this validates our claim below (3.13). Let k ∈ K, k ≥ k′.
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Since (3.13) implies eC(ū; τk) ≤ eC(ûk; τk) by Lemma 2.3, (3.14) yields 〈pk, ū− ûk〉 ≤
εk. Then, using the facts that ûk+1 − ûk = −tkp

k by (2.18) and vk = tk|pk|2 + εk by
(2.23), we get

|ûk+1 − ū|2 = |ûk − ū|2 + 2〈ûk+1 − ûk, ûk − ū〉 + |ûk+1 − ûk|2

≤ |ûk − ū|2 + 2tkεk + 2t2k|pk|2 = |ûk − ū|2 + 2tkvk.

Therefore, since limk∈K tk < ∞,
∑

k∈K vk < ∞ by (ii), and |ûk+1 − ū|2 = |ûk − ū|2
if k /∈ K, we deduce from [Pol83, Lem. 2.2.2] that the sequence {|ûk − ū|} converges.
Thus the sequence {ûk} is bounded, and using (iii) we may choose ū ∈ U∗ as a cluster
point of {ûk}, in which case the sequence {|ûk − ū|} must converge to zero, i.e.,
ûk → ū.

(viii) Argue as for (ii) to get
∑

k∈K vk < ∞. Since vk = tk|pk|2 + εk (cf. (2.23))

and εk ≥ 0, we have limk∈K |pk|2 = 0 (using
∑

k∈K tk = ∞) and limk∈K εk = 0. Thus,

there is K̄ ⊂ K such that εk, |pk|
K̄−→ 0. Let ū be a cluster point of {ûk}k∈K̄ . To see

that ū ∈ U∗, replace K by K̄ in the proof of (iii). Hence, this point ū may be used in
the final part of the proof of (vii).

Remark 3.13. (i) The condition εmax = 0 in Theorem 3.12 means that the
linearizations are exact and Step 3 is inactive. If we drop this condition in Step 3,
so that Step 3 ensures vk ≥ κhh

k
û when hk

û > 0 in the exact case as well, then for
εmax = 0, both Theorems 3.12 and 3.10 hold with εf = εh = 0 in the bounds of (3.1).

(ii) Condition (3.13) was used in [SaS05, Prop. 4.3(ii)] with ck ≡ 0. Since in this
case, f∗ = infC π(·, ck + 1) iff μ̄ ≤ 1 (cf. section 2.1), we conclude that at phase 1
(k̄ = ∞) condition (3.13) with ck ≡ 0 may be expected to hold only if μ̄ ≤ 1. (Also
see section 4.4.)

4. Modifications. In this section we consider several useful modifications.

4.1. Alternative descent tests. As in [Kiw06a, section 4.3], at Steps 4 and 5
we may replace the predicted decrease vk = tk|pk|2 + εk (cf. (2.23)) by the smaller
quantity wk := tk|pk|2/2 + εk. Then Lemma 2.5(ii) is replaced by the fact that

wk ≥ −εk ⇐⇒ tk|pk|2/4 ≥ −εk ⇐⇒ wk ≥ tk|pk|2/4.

Hence, wk ≥ −εk at Step 5 implies wk ≤ vk ≤ 3wk and vk ≥ −εk for the bounds
(2.25)–(2.26), whereas for Step 4, the bound (2.27) is replaced by the fact that

Vk < (4εmax/tk)
1/2(1 + |ûk|) if wk < −εk.

The preceding results extend easily (in the proof of Lemma 3.7, ek+1(u
k+1) > [hk

û]+−
κwk implies ek+1(u

k+1) > [hk
û]+ − κvk, whereas in the proofs of Theorems 3.9 and

3.10(i), we have
∑

k∈K vk ≤ 3
∑

k∈K wk < ∞). We add that [SaS05, Alg. 3.1] uses
wk instead of vk.

As in [Kiw85, p. 227], we may replace the descent test (2.30) by the two-part test

hk+1
u ≤ hk

û − κvk if hk
û > 0,(4.1a)

fk+1
u ≤ fk

û − κvk and hk+1
u ≤ 0 if hk

û ≤ 0.(4.1b)

Since (2.30) implies (4.1), the latter test may produce faster convergence. In par-
ticular, at phase 2 (hk

û ≤ 0) the additional requirement hk+1
u ≤ −κvk of (2.30) may
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hinder the progress of {ûk} towards the boundary of the feasible set. The preceding
convergence results are not affected (since if (4.1) fails at a null step, then so does
(2.30), whereas the requirements of (4.1) suffice for descent steps).

In connection with (4.1b), we add that if h1
û ≤ 0, i.e., the starting point is ap-

proximately feasible, then the objective linearizations need not be defined at infeasible
points. Specifically, if hk+1

u > 0 in (4.1b), then a null step must occur; so we may skip
evaluating fk+1

u and choose Jk+1
f ⊃ Ĵk

f at Step 6 (without requiring Jk+1
f � k + 1).

In the proof of Lemma 3.7, using vk = −ěk(u
k+1) (cf. (2.10)) and replacing (3.10) by

(4.2) ek+1(·) :=

{
fk+1(·) − fk

û if hk+1
u ≤ 0,

hk+1(·) otherwise,

we see that (4.1b) can be expressed as ek+1(u
k+1) ≤ −κvk or equivalently by (3.11);

this suffices for the proof. Similarly, if hk+1
u ≤ 0, then we may skip finding the

subgradient gk+1
h and choose Jk+1

h ⊃ Ĵk
h at Step 6 (omitting ȟk in (2.8) if Jk

h = ∅).
4.2. Linearization aggregation. To trade off storage and work per iteration

for speed of convergence, one may replace selection with aggregation, so that only
m̄ ≥ 4 subgradients are stored. To this end, we note that the preceding results
remain valid if, for each k, f̌k+1 and ȟk+1 are closed convex functions such that
0 ∈ ∂φk(u

k+1) implies (2.11)–(2.13) for k increased by 1, and

max
{
f̄k(u), fk+1(u)

}
≤ f̌k+1(u) ≤ f(u) for all u ∈ C,(4.3a)

max
{
h̄k(u), hk+1(u)

}
≤ ȟk+1(u) ≤ h(u) for all u ∈ C.(4.3b)

(This extends some ideas of [CoL93].) The max terms above are needed only after
null steps in the proof of Lemma 3.7, f̄k is not needed if νk = 0, and h̄k is not needed
if νk = 1. The aggregate linearizations may be treated like the oracle linearizations.
Indeed, letting f−j := f̄j , h−j := h̄j for j = 1, . . . , k, to ensure that f̄k ≤ f̌k+1

and h̄k ≤ ȟk+1, we may work with Jk+1
f , Jk+1

h ⊂ {−k,−k + 1, . . . , k + 1} in (2.31),

replacing the set Ĵk
f or Ĵk

h by {−k} when Ĵk
f or Ĵk

h is “too large.”
To illustrate, consider the following scheme with minimal aggregation. First,

suppose |Jk
f | + |Jk

h | = m̄. If |Ĵk
f | + |Ĵk

h | ≤ m̄ − 2, remove from Jk
f or Jk

h two indices

in Jk
f \ Ĵk

f or Jk
h \ Ĵk

h . If |Ĵk
f | + |Ĵk

h | = m̄ − 1, set Jk
f := Ĵk

f , Jk
h := Ĵk

h ; if |Ĵk
h | ≥ 2,

remove two indices from Ĵk
h and set Jk

h := Ĵk
h ∪ {−k}; otherwise, remove two indices

from Ĵk
f and set Jk

f := Ĵk
f ∪ {−k}. If |Ĵk

f |+ |Ĵk
h | = m̄, remove four indices from Ĵk

f or

Ĵk
h , and set Jk

f := Ĵk
f ∪{−k}, Jk

h := Ĵk
h ∪{−k}. Next, suppose |Jk

f |+ |Jk
h | = m̄− 1. If

|Ĵk
f |+|Ĵk

h | = m̄−1, proceed as in the second case above. If |Ĵk
f |+|Ĵk

h | ≤ m̄−2, remove

from Jk
f or Jk

h one index in Jk
f \ Ĵk

f or Jk
h \ Ĵk

h . At this stage, |Jk
f |+ |Jk

h | ≤ m̄− 2; so

set Jk+1
f := Jk

f ∪ {k + 1}, Jk+1
h := Jk

h ∪ {k + 1}. This scheme employs aggregation
only where needed; for m̄ ≥ m + 3, it reduces to selection (cf. Remark 2.7(vii)).

In practice, without storing the points uj for j ≥ 1, we may use the representations

fj(·) = fj(û
k) + 〈∇fj , · − ûk〉 and hj(·) = hj(û

k) + 〈∇hj , · − ûk〉,

since after a descent step, we can update the linearization values

fj(û
k+1) = fj(û

k) + 〈∇fj , û
k+1 − ûk〉 for j ∈ Jk+1

f ,(4.4a)

hj(û
k+1) = hj(û

k) + 〈∇hj , û
k+1 − ûk〉 for j ∈ Jk+1

h .(4.4b)
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Let us now consider total aggregation, in which only m̄ ≥ 2 linearizations need be
stored. Define e1 by (3.10) with k = 0 and τ0 := τ1. Let J1

e := {1}. For k ≥ 1, having
linearizations ej(·) ≤ e(·; τk) for j ∈ Jk

e , replace ěk in (2.8) by the “overall” model

(4.5) ěk(·) := max
j∈Jk

e

ej(·)

of e(·; τk); thus we still have ěk(·) ≤ e(·; τk) without maintaining separate models
of f and h. Then the optimality condition 0 ∈ ∂φk(u

k+1) yields the existence of a
subgradient pke ∈ ∂ěk(u

k+1) such that pke replaces νkp
k
f + (1 − νk)pkh in (2.12) and

(2.18). Consequently, using the aggregate linearization

(4.6) ēk(·) := ěk(u
k+1) + 〈pke , · − uk+1〉 ≤ ěk(·) ≤ e(·; τk)

and replacing the definition (2.17) of the linearization ēkC and its expression (2.20) by

(4.7) ēkC(·) := ēk(·) + ı̄kC(·) = ěk(u
k+1) + 〈pk, · − uk+1〉

yields (2.21)–(2.22) and Lemma 2.5 as before. With ek+1 given by (3.10), for lin-
earization selection we may use multipliers γk

j of the pieces ej , j ∈ Jk
e , such that

(4.8) (pke , 1) =
∑
j∈Jk

e

γk
j (∇ej , 1), γk

j ≥ 0, γk
j

[
ěk(u

k+1) − ej(u
k+1)

]
= 0, j ∈ Jk

e ,

to choose the set Jk+1
e ⊃ Ĵk

e ∪ {k + 1} with Ĵk
e := {j ∈ Jk

e : γk
j �= 0}. For aggregation

(cf. (4.3)), after a null step the next model ěk+1 should satisfy

(4.9) max
{
ēk(u), ek+1(u)

}
≤ ěk+1(u) ≤ e(u; τk) for all u ∈ C,

and it suffices to choose Jk+1
e ⊃ {−k, k + 1} with e−k := ēk. Note that (4.6) and

the minorization ek+1(·) ≤ e(·; τk) (cf. (3.10)) yield ěk+1(·) ≤ e(·; τk). To ensure that
e(·; τk) is still minorized by each ej(·) = ej(û

k) + 〈∇ej , · − ûk〉 after a descent step,
since e(·; τk+1) ≥ e(·; τk) − (τk+1 − τk)+ (cf. (2.2)), we may update

(4.10) ej(û
k+1) := ej(û

k) + 〈∇ej , û
k+1 − ûk〉 − (τk+1 − τk)+.

Similarly, when τk increases to τ ′k, say, at Steps 3 or 4, the update ej(û
k) := ej(û

k)−
τ ′k + τk provides the minorization ej(·) ≤ e(·; τ ′k).

Although total aggregation needs only m̄ ≥ 2 linearizations, whereas separate ag-
gregation described below (4.3) needs m̄ ≥ 4, in practice this difference is immaterial,
since larger values of m̄ are required for faster convergence anyway. On the other
hand, total aggregation has a serious drawback: its update (4.10), being based on a
crude pessimistic estimate, tends to make the linearizations ej lower than necessary
when τk+1 �= τk. In contrast, separate aggregation is not sensitive to changes of τk.

Similar techniques can be applied to the composite model

(4.11) ěk(·) := max

{
max
j∈Jk

f

fj(·) − τk,max
j∈Jk

h

hj(·),max
j∈Jk

e

ej(·)
}
.

For instance, (4.9) holds if Jk+1
f � k + 1, Jk+1

h � k + 1, Jk+1
e � −k, but many other

choices are possible.
Remark 4.1. We add that [SaS05, Alg. 3.1] employs the model (4.11) with

(4.12) Jk
f := { j ∈ Jk : f j

u − τk ≥ hj
u } and Jk

h := { j ∈ Jk : f j
u − τk < hj

u }
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for an additional “oracle” set Jk ⊂ {1, . . . , k}; then Jk and Jk
e are reduced if necessary

so that 2|Jk| + |Jk
e | ≤ m̄ − 3 for a given m̄ ≥ 3, and Jk+1 := Jk ∪ {k + 1}, Jk+1

e :=
Jk
e ∪{−k}. First, this scheme is quite unusual: although |Jk| “original” linearizations

of f and h are maintained (2|Jk| in total), only half of them are selected via (4.12)
for the model (4.11), thus reducing the QP size from 2|Jk|+ |Jk

e | to |Jk|+ |Jk
e |. (This

selection is unnecessary in the sense that even for Jk
f = Jk

h = Jk, the model (4.11) still
satisfies ěk(·) ≤ e(·, τk).) Second, its storage requirement of m̄ ≥ 3 places it between
total aggregation and separate aggregation. Third, this scheme employs the update
of (4.10) for j ∈ Jk

e .

4.3. Estimating Lagrange multipliers. Suppose that f∗ > −∞, so that the
dual optimal set M := Arg maxR+ q is nonempty (cf. section 2.1). For ε̄ ≥ 0, the set
of ε̄-optimal dual solutions is defined by

(4.13) Mε̄ := {μ ∈ R+ : q(μ) ≥ f∗ − ε̄ }.

We now develop conditions under which the Lagrange multiplier estimates

(4.14) μk := (1 − νk)/νk

converge to the set Mε̄ for a suitable ε̄ ≥ 0, where νk is the multiplier of (2.12)–(2.13).
Since νk ∈ [0, 1] by (2.13), (2.14)–(2.19) yield the sharper version of (2.22):

(4.15) νk
[
f(u) − τk

]
+ (1 − νk)h(u) ≥

[
hk
û

]
+
− Vk

(
1 + |u|

)
for all u ∈ C.

If νk > 0 (e.g., Vk < −h(̊u)/(1 + |̊u|)), then (4.14) with μk ∈ R+ and (4.15) give

(4.16) f(u) + μkh(u) ≥ τk − Vk

(
1 + |u|

)
/νk for all u ∈ C.

Lemma 4.2. (i) Suppose that f∗ > −∞. Let K ′ ⊂ N be such that Vk
K′
−→ 0 and

(4.17) lim
k∈K′

τk ≥ f∗ − εf − μ̄εh,

where μ̄ := infμ∈M μ (cf. section 2.1). Then limk∈K′ μk < ∞ and Vk/νk
K′
−→ 0.

Moreover, the sequence {μk}k∈K′ converges to the set Mε̄ given by (4.13) for ε̄ :=
εf + μ̄εh.

(ii) If f∗ > −∞, then a set K ′ satisfying the requirements of (i) exists under the
assumptions of Theorems 3.8, 3.9, or 3.10 or those of Theorem 3.12 if additionally
either inf{k : h(ûk) ≤ 0} < ∞ or |ûk| �→ ∞ (e.g., the optimal set U∗ is nonempty
and bounded).

Proof. (i) By (4.17), τ∞ := limk∈K′ τk ≥ f∗ − ε̄. If we had limk∈K′ νk = 0,
for u = ů, (4.15) would yield in the limit 0 > h(̊u) ≥ 0, a contradiction. Hence,

limk∈K′ νk > 0, so that Vk/νk
K′
−→ 0 and limk∈K′ μk < ∞ by (4.14). Let μ∞ be any

cluster point of {μk}k∈K′ ; then μ∞ ∈ R+. Passing to the limit in (4.16) bounds the
Lagrangian values as follows:

L(u;μ∞) := f(u) + μ∞h(u) ≥ τ∞ for all u ∈ C.

Hence, q(μ∞) ≥ τ∞ ≥ f∗ − ε̄ implies μ∞ ∈ Mε̄ by (4.13). Since μ∞ was an arbitrary
cluster point of {μk}k∈K′ ⊂ R+ ∪ {∞} and limk∈K′ μk < ∞, the conclusion follows.

(ii) In Theorem 3.8, τk = f k̄
û for all k ≥ k̄ (and we may take K ′ = K). In

Theorem 3.9, τk → f∞
û ∈ [f∗ − εf − μ̄εh, f∗] and limk∈K Vk = 0. For the rest,

see Theorems 3.10(ii, v) and 3.12(i, iv, v), noting that |ûk| �→ ∞ iff {ûk} has a cluster
point.
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4.4. Updating the penalty coefficient in the exact case. We first show
how to choose the penalty coefficient ck by using the Lagrange multiplier estimate μk

of (4.14) to ensure the “convergence” condition (3.13) of Theorem 3.12(vii).
Lemma 4.3. Under the assumptions of Theorem 3.12, suppose that |ûk| �→ ∞.

Moreover, suppose that for all large k, after a descent step, Step 7 chooses ck+1 ≥
max{μk, ck} if μk < ∞, ck+1 ≥ ck otherwise. Then there exists k′ such that condition
(3.13) holds for any ū ∈ U∗.

Proof. By Theorem 3.12(iv), the assumptions of Lemma 4.2(i) hold for some K ′ ⊂
K, εf = εh = ε̄ = 0; thus, {μk}k∈K′ converges to M0 = M , and limk∈K′ μk ≥ μ̄ :=
infμ∈M μ implies μk ≥ μ̄− 1 for all large k ∈ K ′. Hence, since {ck} is nondecreasing
for large k, we have ck ≥ μ̄ − 1 for all large k, and the conclusion follows from
Theorem 3.12(vii).

Remark 4.4. Variations on the strategy of Lemma 4.3 are possible. For instance,
if {ûk} is bounded (e.g., U is bounded), Step 7 may choose ck+1 ≥ μk after each
descent step when μk < ∞; this suffices for the proof of Lemma 4.3 with K ′ = K by
Theorem 3.12(iii).

We shall exploit the following basic property of the exact penalty function (2.1).
Lemma 4.5. If c ≥ μ̄, then π(u; c) ≥ f∗ + (c− μ̄)h(u)+ for all u ∈ C.
Proof. By (2.1), π(u; c) = L(u; μ̄)+(c− μ̄)h(u)+ + μ̄[h(u)+−h(u)] for each u ∈ C,

where L(u; μ̄) ≥ q(μ̄) = f∗ (cf. section 2.1), μ̄ ≥ 0, and h(u)+ ≥ h(u).
For phase 1 in the exact case (when Step 3 is inactive), the main difficulty lies

in ensuring h(ûk) ↓ 0. Complementing Theorem 3.12, we now show that it suffices
if the penalty parameter ck majorizes strictly the minimal Lagrange multiplier μ̄
asymptotically, and we give a specific update of ck, based on a simple idea: increase
the penalty coefficient if the constraint violation is large relative to the optimality
measure (cf. [Kiw91]).

Lemma 4.6. Under the assumptions of Theorem 3.12, suppose that h(ûk) > 0
for all k. Then we have the following statements:

(i) There is K ′ ⊂ K such that Vk
K′
−→ 0 and limk∈K′ f(ûk) ≤ limk∈K′ τk ≤ f∗.

(ii) If c∞ := limk ck > μ̄, then h(ûk) ↓ 0.
(iii) Suppose that for all large k, after a descent step, Step 7 chooses ck+1 ≥ 2ck

if h(ûk+1) > Vk, ck+1 ≥ ck otherwise, ck+1 > 0 when h(ûk+1) > 0. If f∗ > −∞,
then h(ûk) ↓ 0.

(iv) If h(ûk) ↓ 0, then limk τk ≥ limk f(ûk) ≥ f∗, and f(ûk)
K′
−→ f∗ in (i) above.

Proof. (i) This follows from Theorem 3.10(vi).
(ii) By (i) and Lemma 4.5, f∗ ≥ limk τk ≥ f∗ +(c∞− μ̄) limk h(ûk)+ with c∞ > μ̄

yields limk h(ûk)+ = 0. Hence, h(ûk) ↓ 0, using 0 < h(ûk+1) ≤ h(ûk) by (2.34a).
(iii) If c∞ := limk ck < ∞, then h(ûk+1) ≤ Vk for all large k ∈ K; so by (i),

Vk
K′
−→ 0 yields h(ûk) ↓ 0. Otherwise, c∞ = ∞ > μ̄ (from f∗ > −∞), and (ii) applies.
(iv) Invoke Lemma 3.3 with εf = εh = 0, and use the fact that τk ≥ f(ûk).

5. Column generation for LP problems. In this section we consider the
following primal-dual pair of LP problems:

min cλ s.t. Aλ ≥ b, λ ≥ 0,(5.1)

max ub s.t. uA ≤ c, u ≥ 0,(5.2)

where c ∈ R
n, A ∈ R

m×n, b ∈ R
m. We assume that c > 0. Let Ai denote column i

of A for i ∈ I := {1: n}. When the number of columns is huge, problems (5.1)–(5.2)
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may be solved by column generation, provided that for each u ≥ 0, one can solve
the column generation subproblem of finding iu ∈ Arg maxi∈I(uAi − ci). We show
that this subproblem may be solved inexactly when our method is applied to the
dual problem (5.2) formulated as (1.1) and that approximate solutions to (5.1) can
be recovered at no extra cost.

To ease subsequent notation, let us rewrite the LP problems (5.1)–(5.2) as follows:

max ψ0(λ) := −cλ s.t. ψ(λ) := Aλ− b ≥ 0, λ ∈ R
n
+,(5.3)

min f(u) := −ub s.t. uA ≤ c, u ∈ R
m
+ .(5.4)

We regard the dual problem (5.4) as (1.1) with C := R
m
+ and the constraint function

(5.5) h(·) := max
i∈I

(
〈Ai, ·〉 − ci

)
.

Since c > 0, ů := 0 may serve as the Slater point. For our method applied to (1.1), we
assume that f is evaluated exactly (i.e., εf = 0 and fk = f), whereas the approximate
linearization condition (2.4b) boils down to finding an index ik ∈ I such that

(5.6) hk(·) = 〈Aik , ·〉 − cik with hk(u
k) ≥ h(uk) − εh.

By duality, f∗ is the common optimal value of (5.3) and (5.4). In view of Lemma 4.2,

we assume that f∗ > −∞ and let K ′ ⊂ N be the set such that Vk
K′
−→ 0 and (4.17)

holds; then νk > 0 and μk := (1 − νk)/νk < ∞ for large k ∈ K ′. We shall show
that the corresponding subsequence of the multipliers {μkβ

k
j }j∈Jk

h
of (2.28b) solves

the primal problem (5.3) approximately; thus, below we consider only k ∈ K ′ such
that νk > 0.

The multipliers {μkβ
k
j }j∈Jk

h
define an approximate primal solution λ̂k ∈ R

n
+ via

λ̂k
i := μk

∑
j∈Jk

h :ij=i

βk
j for each i ∈ I.

Let 1 := (1, . . . , 1) ∈ R
n. In this notation, using the form (5.6) of the linearizations hj

in (2.28b) and the fact that μkȟk(u
k+1) = μkěk(u

k+1) (cf. (2.13)) yields the relations

(5.7) μkp
k
h = Aλ̂k, μk = 1λ̂k, λ̂k ≥ 0, (uk+1A− c)λ̂k = μkěk(u

k+1).

We first derive useful expressions for the primal function values ψ0(λ̂
k) and ψ(λ̂k).

Lemma 5.1. ψ0(λ̂
k) = τk + ([hk

û]+ − εk − 〈pk, ûk〉)/νk, ψ(λ̂k) = (pk − pkC)/νk ≥
pk/νk.

Proof. Since pkf = ∇f = −b (cf. (2.11), (5.4)), μkp
k
h = Aλ̂k by (5.7), and νkμk =

1 − νk by (4.14), the definitions of ψ(λ) in (5.3) and of pk in (2.18) give

νkψ(λ̂k) = νk
(
Aλ̂k − b

)
= νkp

k
f + (1 − νk)p

k
h = pk − pkC ,

where pkC ∈ ∂iRm
+

(uk+1) implies pkC ≤ 0 and 〈pkC , uk+1〉 = 0. Next, by (5.7) and (2.18),

νkcλ̂
k + (1 − νk)ěk(u

k+1) = 〈νkμkp
k
h, u

k+1〉

= 〈(1 − νk)p
k
h + pkC , u

k+1〉 = 〈pk − νkp
k
f , u

k+1〉,
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where νk〈pkf , uk+1〉 = νkf̌k(u
k+1) = νkěk(u

k+1) + νkτk by (2.13). Hence,

−νkcλ̂
k − νkτk = ěk(u

k+1) − 〈pk, uk+1〉 = ēkC(0) =
[
hk
û

]
+
− 〈pk, ûk〉 − εk,

where we have used (2.20)–(2.21). Dividing by νk gives the required expression of

ψ0(λ̂
k) := −cλ̂k; for ψ(λ̂k), see the first displayed equality above.
In terms of the optimality measure Vk of (2.19), the bounds of Lemma 5.1 imply

(5.8) λ̂k ≥ 0 with ψ0(λ̂
k) ≥ τk − Vk/νk, ψi(λ̂

k) ≥ −Vk/νk, i = 1: m.

We now show that {λ̂k}k∈K′ converges to the set of ε̄-optimal primal solutions

(5.9) Λε̄ :=
{
λ ∈ R

n
+ : ψ0(λ) ≥ f∗ − ε̄, ψ(λ) ≥ 0

}
,

where ε̄ := μ̄εh, with μ̄ being the minimal Lagrange multiplier of (1.1); in our context,
we may as well take (a possibly larger) μ̄ := 1λ̄ for any primal solution λ̄ of (5.3).

Theorem 5.2. Suppose that f∗ > −∞. Let K ′ ⊂ N be such that Vk
K′
−→ 0 and

(4.17) holds (see Lemma 4.2(ii) for sufficient conditions). Then we have the following
statements:

(i) The sequence {λ̂k}k∈K′ is bounded and all its cluster points lie in R
n
+.

(ii) Let λ̂∞ be a cluster point of {λ̂k}k∈K′ . Then λ̂∞ ∈ Λε̄.

(iii) dΛε̄(λ̂
k) := infλ∈Λε̄ |λ̂k − λ| K′

−→ 0.

Proof. By Lemma 4.2, limk∈K′ μk < ∞ and Vk/νk
K′
−→ 0. Since limk∈K′ τk ≥ f∗−ε̄

by (4.17), (5.8) yields limk∈K′ ψ0(λ̂
k) ≥ f∗ − ε̄ and limk∈K′ minn

i=1 ψi(λ̂
k) ≥ 0.

(i) This follows from limk∈K′ 1λ̂k = limk∈K′ μk < ∞ (cf. (5.7)) and λ̂k ≥ 0.

(ii) We have λ̂∞ ≥ 0, ψ0(λ̂
∞) ≥ f∗− ε̄, and ψ(λ̂∞) ≥ 0 by continuity of ψ0 and ψ.

(iii) Use (i), (ii), and the continuity of the distance function dΛε̄ .
Remark 5.3. (i) By Remark 3.11(ii), we may use ε̄ := μ̄ε∞h for Theorem 5.2.
(ii) By Lemma 3.1(iii) and the proof of Theorem 5.2, if an infinite loop between

Steps 1 and 4 occurs, then Vk → 0 yields dΛε̄
(λ̂k) → 0. Similarly, if Step 2 terminates

with Vk = 0, then λ̂k ∈ Λε̄. In both cases, we may take ε̄ := μ̄ε
k(l)
h by Remark 3.11(ii).

(iii) Given two tolerances εF, εtol > 0, the method may stop if hk
û ≤ εF,

ψ0(λ̂
k) ≥ f(ûk) − εtol and ψi(λ̂

k) ≥ −εtol, i = 1: m.

Then ψ0(λ̂
k) ≥ f∗ − μ̄(εh + εF) − εtol from f(ûk) ≥ f∗ − μ̄(εh + εF); so λ̂k is an

approximate solution of (5.3). This stopping criterion will be met when Vk/νk ≤ εtol.
We add that our numerical experiments (to be reported elsewhere) on the test

problems of [Kiw05, KiL07, SaS05] indicate that our method is quite sensitive to
constraint scaling; yet, with proper scaling, it can perform quite well.

Acknowledgments. I would like to thank the Associate Editor, the two anony-
mous referees, and Claude Lemaréchal for helpful comments.
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[HUL93] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Al-
gorithms, Springer-Verlag, Berlin, 1993.

[KRSS07] E. Karas, A. Ribeiro, C. Sagastizábal, and M. Solodov, A bundle–filter method
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IMPROVED APPROXIMATION ALGORITHMS FOR WEIGHTED
HYPERGRAPH EMBEDDING IN A CYCLE∗
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Abstract. We consider the problem of embedding weighted hyperedges of a hypergraph as paths
in a cycle on the same number of vertices, such that the maximum congestion of any physical link
of the cycle is minimized. The problem, called weighted hypergraph embedding in a cycle (WHEC),
is known to be NP-complete even when each hyperedge is unweighted or each weighted hyperedge
contains exactly two vertices. In this paper, we propose an improved rounding algorithm for the
WHEC problem to provide a solution with an approximation bound of 1.5(opt + wmax), where opt
represents the optimal value of the problem and wmax denotes the largest weight of hyperedges.
For any fixed ε > 0, we also present a polynomial time algorithm to provide an embedding whose
congestion is at most (1.5 + ε) times the optimum. This improves previous results for the general
WHEC problem.

Key words. weighted hypergraph embedding in a cycle, linear programming, approximation
algorithm, hypergraph, NP-complete
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1. Introduction. The problem of weighted hypergraph embedding in a cycle
(WHEC) is to embed m weighted hyperedges of a hypergraph as paths in an n-vertex
cycle, such that the maximum congestion of any physical link in the cycle is minimized.
Note that each vertex of the hypergraph actually is the same as the vertex in the cycle;
i.e., the problem of mapping vertices between hypergraph and cycle is not considered
here. The WHEC problem is NP-complete even when each hyperedge is unweighted
or each weighted hyperedge contains exactly two vertices [1].

In the first special case when each hyperedge is unweighted, the unweighted
version of the WHEC problem has many applications in electronic design automa-
tion [2, 3]. Several studies related to the unweighted WHEC problem have been
performed. Frank et al. [4] and Gonzalez and Lee [2] proposed linear time algorithms
to solve the problem when all hyperedges contain exactly only two vertices. Gan-
ley and Cohoon [5] showed that the unweighted WHEC problem is NP-complete in
general but solvable in polynomial time if the maximum congestion is bounded by a
constant. Gonzalez [6] proposed two improved approximation algorithms that both
generate solutions with maximum congestion at most two times the optimum. Car-
penter et al. [7] provided a linear time approximation algorithm which routes the
hyperedges in the clockwise direction starting from the lowest numbered vertex to the
highest numbered vertex. This algorithm is also guaranteed to find a solution whose
value is at most twice the optimal value. Recently, Gu and Wang presented an algo-
rithm to solve the unweighted WHEC problem with the performance ratio 1.8 by a
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reembedding technique [8]. Lee and Ho presented an LP-based algorithm to solve the
problem with the performance ratio 1.5 [9]. Deng and Li proposed a polynomial time
approximation scheme (PTAS) for the unweighted WHEC problem by a randomized
rounding approach [10].

In the second special case when each weighted hyperedge contains exactly two
vertices, the graph version of the WHEC problem is equivalent to the ring loading
problem without demand splitting. When each demand must be entirely routed in
either of the two directions, the ring loading problem is NP-complete [11]. Cosares and
Saniee presented a polynomial time algorithm that approximates the optimal solution
value to within a multiplicative factor of two [11]. Schrijver, Seymour, and Winkler
developed an efficient algorithm to generate a solution that exceeds the optimum by
at most an additive term of 1.5 times the maximum weight [12]. Khanna proposed a
PTAS that computes a solution with at most (1+ ε) times the optimum for any fixed
ε > 0 [13].

The WHEC problem has many applications, including minimizing communication
congestions in computer networks and parallel computations. These applications focus
on minimizing the maximum congestions of multicast transmissions over any physical
communication link. For example, in computer networks, the hypergraph embedding
problem is equivalent to a multicast congestion problem [16, 17, 18] when each hy-
peredge is formed as a multicast tree (i.e., Steiner tree). Several studies related to
the multicast congestion problem on more general graphs have been performed. Vem-
pala and Vöcking [16] presented a randomized rounding algorithm for approximating
multicast congestion to within O(log n) times the optimum. Carr and Vempala [17]
proposed a randomized asymptotic algorithm for the multicast congestion problem
to find a solution of congestion O(opt + log n), where opt is the optimal value of the
maximum congestion. Jansen and Zhang [18] presented an improved approximation
algorithm to overcome the difficulties of an exponential number of variables.

We are concerned with the general WHEC problem. In [1], an LP-based rounding
algorithm and a linear time algorithm had been proposed to find a solution with
maximum congestion at most two times the optimum. In this paper, we propose
an improved (2/3)-rounding algorithm to provide a solution with an approximation
bound of 1.5(opt + wmax), where opt represents the optimal value of the problem
and wmax denotes the largest weight of hyperedges. For any fixed ε > 0, we also
present a PTAS to provide an embedding whose congestion is at most (1.5 + ε) times
the optimum. This improves the previous approximation results [1] for the general
WHEC problem.

2. Notation and problem definition. The WHEC problem is to embed the
weighted hyperedges of a hypergraph as the paths in a cycle, such that the maximum
congestion of any physical link in the cycle is minimized. We denote the cycle as
C = (V,Ec), where V = {1, 2, . . . , n} is a set of vertices and Ec = {(i, i + 1)|1 ≤
i ≤ n − 1}

⋃
{(n, 1)} is a set of physical links. The vertices of the cycle are labelled

clockwise by 1 through n, and each edge in the cycle is referred to as an undirected
link. A hypergraph H = (V,Eh) with m weighted hyperedges is defined over the same
set of vertices V , where Eh = {h1, h2, . . . , hm} is a set of hyperedges. The hyperedge
hi consists of |hi| vertices with a nonnegative weight wi for interconnecting these
vertices. In particular, these interconnected vertices of hyperedge hi are represented
as an ordered sequence (vi1, v

i
2, . . . , v

i
|hi|), i.e., vi1 ≤ vi2 ≤ · · · ≤ vi|hi|. For example, a

hypergraph H = {h1, h2, h3} is embedded in an 8-vertex cycle as shown in Figure 1.
We denote the jth adjacent path of hyperedge hi as p(i, j), where p(i, j) is a
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h1=(1,5,6,8), w1=3

h2=(2,8), w2=3

h3=(4,5,7), w3=1

Fig. 1. A weighted hypergraph H = {h1, h2, h3} is embedded in an 8-vertex cycle. The link
(8, 1) has the maximum congestion of 6 that is an optimal solution.

clockwise connecting path between vij and vij+1 in the cycle C, and the last adjacent

path p(i, |hi|) of the hyperedge hi is connected between vi|hi| and vi1. Obviously,

vertices vi1, v
i
2, . . . , v

i
|hi| in the hyperedge hi must be connected by at least |hi| − 1

adjacent paths to ensure the connectivity. We define an assignment of adjacent paths
to embed the hypergraph H in the cycle C as a set of binary variables Y = {yp(i,j)|∀i ∈
{1, 2, . . . ,m}, j ∈ {1, 2, . . . , |hi|}}, where yp(i,j) = 1 if an adjacent path p(i, j) is
embedded in the cycle C, and yp(i,j) = 0 otherwise. Therefore, a feasible assignment
of adjacent paths can be expressed as

∑
1≤j≤|hi| yp(i,j) ≥ |hi|−1 ∀hi ∈ Eh. Moreover,

we denote P (e) as a set of adjacent paths that pass through the link e ∈ Ec. Therefore,
the WHEC problem can be formally defined as follows.

Definition 2.1. The problem of minimizing the maximum congestion for WHEC
is as follows: Given a cycle C = (V,Ec) and a weighted hypergraph H = (V,Eh), find
a feasible assignment Y of adjacent paths to embed the hypergraph H in the cycle C
such that the maximum congestion ϕ over any link in Ec is minimized. Note that each
hyperedge hi is associated with a nonnegative weight wi and the maximum link con-
gestion of an assignment Y can be expressed as ϕ = maxe∈Ec{

∑
p(i,j)∈P (e) yp(i,j)wi},

where yp(i,j) = 1 if the p(i, j) is embedded in the cycle C, and yp(i,j) = 0 otherwise.

3. Mixed integer linear programming. The WHEC problem can be mod-
elled as a mixed integer linear programming (MILP) formulation. We define a set
of binary variables Y = {yp(i,j)|∀i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , |hi|}} to represent
the assignment of adjacent paths to embed the hypergraph H in the cycle C, where
yp(i,j) = 1 if an adjacent path p(i, j) is embedded in the cycle C, and yp(i,j) = 0 other-
wise. Each hyperedge hi is associated with a nonnegative weight wi. Our objective is
to minimize the maximum congestion ϕ over all links in Ec. We formulate an MILP
model to solve the problem as follows:

Φ(Y ) : Minimize ϕ
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Subject to∑
1≤j≤|hi|

yp(i,j) ≥ |hi| − 1 ∀hi ∈ Eh, i ∈ {1, 2, . . . ,m} (connectivity constraints),

∑
p(i,j)∈P (e)

yp(i,j)wi ≤ ϕ ∀e ∈ Ec (capacity constraints),

yp(i,j) ∈ {0, 1} ∀i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , |hi|} (binary variables).

There are two classes of constraints in this problem. First, the connectivity con-
straints mean that each hyperedge hi ∈ Eh must be connected by at least |hi| − 1
adjacent paths. Second, the capacity constraints ensure that each physical link e ∈ Ec

can only be embedded with hyperedges at most the maximum congestion ϕ. Finally,
the objective function Φ(Y ) of the MILP is to minimize the maximum congestion ϕ.
Note that ϕ is a continuous variable since the binary variable yp(i,j) is multiplied by
a weight wi which is a nonnegative real constant.

Suppose that we relax the integer constraints of Y and require only that 0 ≤
yp(i,j) ≤ 1 ∀i, j; this linear program is called the LP relaxation of the MILP for-
mulation, and the LP solution immediately provides a lower bound on the mini-
mum congestion. On the other hand, finding a tight upper bound for the MILP
formulation presents a difficult challenge. However, the LP-rounding technique can
commonly be applied to find an upper bound and generate an approximate solution.
Let ϕ∗ = Φ(Y ∗) and ϕL = Φ(Y L) be the optimal solutions of MILP formulation and
LP relaxation, respectively. If the solution for the LP-rounding is ϕR, then we have
ϕL ≤ ϕ∗ ≤ ϕR.

The next lemma states that the value of the kth smallest variable in {yLp(i,j) | 1 ≤
j ≤ |hi|} is at least (k−1)/k for every hyperedge hi ∈ Eh. This implies that the value
of the second smallest variable is at least 1/2. Therefore, a (1/2)-rounding approach
can be applied to generate an approximate solution ϕR = Φ(Y R), where we assign
yRp(i,j) = 1 if yLp(i,j) ≥ 1/2, and yRp(i,j) = 0 otherwise. The (1/2)-rounding approach

always produce a 2-approximated solution for the WHEC problem [1].
Lemma 3.1. For every hyperedge hi ∈ Eh, |hi| ≥ k, i ∈ {1, 2, . . . ,m}, the value

of the kth smallest variable in {yLp(i,j) | 1 ≤ j ≤ |hi|} is at least (k − 1)/k.
Proof. From connectivity constraints, the solution of LP relaxation must ensure

that
∑

1≤j≤|hi| y
L
p(i,j) ≥ |hi| − 1 ∀yLp(i,j) ∈ [0, 1]. In an extreme case, values from the

(k + 1)st smallest variable to the greatest variable are equal to 1, and we need to
distribute the value k − 1 into k smaller variables. We know that the value of the
largest element in the k smaller variables is at least (k − 1)/k.

4. 1.5(opt+wmax) approximation. In this section, we apply a (2/3)-rounding
approach to generate an approximate solution ϕR = Φ(Y R), where we assign yRp(i,j) =

1 if yLp(i,j) ≥ 2/3, and yRp(i,j) = 0 otherwise. Lemma 4.1 states that the maximum
congestion of the rounding approach is at most 1.5 times the optimal congestion of
the WHEC problem when the value of the smallest LP variable in {yLp(i,j) | 1 ≤ j ≤
|hi|} is at most 1/3; i.e., min1≤j≤|hi|{yLp(i,j)} ≤ 1/3 for every hyperedge hi ∈ Eh,

i ∈ {1, 2, . . . ,m}.
Lemma 4.1. The maximum congestion of the (2/3)-rounding approach is at most

1.5 times the optimum if min1≤j≤|hi|{yLp(i,j)} ≤ 1/3 for every hyperedge hi ∈ Eh,

i ∈ {1, 2, . . . ,m}.
Proof. Let ϕR = Φ(Y R) be the solution of the (2/3)-rounding approach. First, we

show that Φ(Y R) is a feasible solution if the condition of min1≤j≤|hi|{yLp(i,j)} ≤ 1/3
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∀hi ∈ Eh is satisfied. According to connectivity constraints, any solution to LP
relaxation must satisfy that

∑
1≤j≤|hi| y

L
p(i,j) ≥ |hi| − 1 for every hyperedge hi ∈ Eh,

i ∈ {1, 2, . . . ,m}. If the value of the smallest LP variable in {yLp(i,j) | 1 ≤ j ≤ |hi|}
is at most 1/3, we know that the value of the second smallest LP variable is at
least 2/3. This implies that the sum of rounded values

∑
1≤j≤|hi| y

R
p(i,j) is at least

|hi| − 1 ∀i ∈ {1, 2, . . . ,m}. Each hyperedge hi ∈ Eh is continuously connected, and
hence the solution Φ(Y R) is feasible. Next, we show that ϕR ≤ 1.5ϕ∗. If yRp(i,j)
is rounded to 1, then yLp(i,j) has a value at least 2/3. Therefore, we have yRp(i,j) ≤
(3/2)yLp(i,j) ∀i, j. From the capacity constraints, we have

∑
p(i,j)∈P (e) y

R
p(i,j)wi ≤ ϕR ≤∑

p(i,j)∈P (e)(3/2)yLp(i,j)wi ≤ (3/2)ϕL ≤ (3/2)ϕ∗ ∀e ∈ Ec.

When min1≤j≤|hi|{yLp(i,j)} ≤ 1/3 ∀hi ∈ Eh, the (2/3)-rounding approach gener-
ates a feasible solution whose value is at most 1.5 times the optimum. However, the
solution of the (2/3)-rounding algorithm may be infeasible if the condition is unsatis-
fied. In this case, we will propose a 1.5(opt + wmax) approximation algorithm on the
condition that min1≤j≤|hi|{yLp(i,j)} > 1/3, ∃hi ∈ Eh.

From Lemma 3.1, the value of the kth smallest variable in {yLp(i,j) | 1 ≤ j ≤ |hi|}
is at least (k−1)/k for each hyperedge hi ∈ Eh. If the (2/3)-rounding algorithm is ap-
plied to generate an approximate solution, the third smallest variable and these |hi|−3
larger variables will certainly be rounded to 1. If the condition min1≤j≤|hi|{yLp(i,j)} ≤
1/3 is unsatisfied, values of the first and second smallest variables are both less than
2/3 and will be truncated to 0 by the (2/3)-rounding algorithm. In this case, the
hyperedge hi is disconnected, and we need to round either the first or second smallest
variable to 1 for ensuring the connectivity of the hyperedge.

Let D be the set of disconnected hyperedges in the output of the (2/3)-rounding
algorithm, i.e., D = {hi|

∑
1≤j≤|hi| y

R
p(i,j) = |hi| − 2, 1 ≤ i ≤ m}. The problem of

rounding selection for the smallest two variables on hi ∈ D can be translated into
the ring loading problem without demand splitting. The ring loading problem was
studied by Cosares and Saniee [11], Schrijver, Seymour, and Winkler [12], Wilfong
and Winkler [14], Khanna [13], and Myung [15]. When each demand must be entirely
routed in either of the two directions, the ring loading problem is NP-complete. Here
we need only to consider the unsplitting subproblem of the ring loading problem. In
this case, each separated variable in D must be merged and entirely routed in either
of the two directions.

Let yLg(i,k) be the kth smallest LP variable for the hyperedge hi, where g(i, k)
represents the corresponding adjacent path for the kth smallest variable. If the adja-
cent path g(i, 2) for the second smallest variable is connected around the cycle from
vertex si to vertex ti in the clockwise direction, we rearrange the adjacent path g(i, 1)
for connecting in the other way around the cycle from ti to si. Now we define new
variables as yMg(i,2) = 3

2y
L
g(i,2) and yMg(i,1) = 1−yMg(i,2). For each disconnected hyperedge

hi ∈ D, we need to round either yMg(i,1) or yMg(i,2) to 1 for ensuring the connectivity of

the hyperedge hi. Our objective is to find an optimal rounding assignment of yRg(i,1)
and yRg(i,2) for each disconnected hyperedge hi ∈ D such that the maximum increment
of weighted load, denoted as Δ, over any physical link in the cycle is minimized. The
next lemma shows that the translation is valid.

Lemma 4.2. For each disconnected hyperedge hi ∈ D, we have (yMg(i,2)+yRg(i,2))wi ≤
3
2y

L
g(i,2)wi and (yMg(i,1) + yRg(i,j))wi ≤ 3

2y
L
g(i,j)wi ∀j �= 2.

Proof. Consider a disconnected hyperedge hi ∈ D from the output of (2/3)-
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rounding algorithm. From Lemma 3.1, the value of the third smallest LP variable
yLg(i,3) of hi is at least 2/3. Since the hyperedge hi is disconnected, both the first

and second smallest LP variables should be less than 2/3, i.e., yLg(i,1) ≤ yLg(i,2) < 2
3 .

Therefore, we have yRg(i,1) = 0, yRg(i,2) = 0, and yRg(i,j) = 1 ∀j ≥ 3. It is trivial that

(yMg(i,2) + yRg(i,2))wi ≤ 3
2y

L
g(i,2)wi, since we define yMg(i,2) = 3

2y
L
g(i,2) and we know that

yRg(i,2) = 0. Next, we show that (yMg(i,1) + yRg(i,1))wi ≤ 3
2y

L
g(i,1)wi. From the definition,

we have yMg(i,1) = 1 − 3
2y

L
g(i,2). Since yRg(i,1) = 0 and we know that yLg(i,1) + yLg(i,2) ≥ 1

from Lemma 3.1, we have (yMg(i,1)+yRg(i,1))wi = (1− 3
2y

L
g(i,2))wi ≤ (1− 3

2 (1−yLg(i,1)))wi <
3
2y

L
g(i,1)wi. Finally, we show that (yMg(i,1) + yRg(i,j))wi ≤ 3

2y
L
g(i,j)wi, 3 ≤ j ≤ |hi|.

Since yRg(i,1) = 0, yLg(i,1) < 2
3 and we know that yLg(i,1) + yLg(i,2) + yLg(i,3) ≥ 2 from

Lemma 3.1, we have yLg(i,2) ≥ 2 − yLg(i,1) − yLg(i,3) > 2 − 2
3 − yLg(i,3) = 4

3 − yLg(i,3).

Then, for j ≥ 3, we have yLg(i,2) ≥ 4
3 − yLg(i,j) since yLg(i,j) ≥ yLg(i,3). We thus have

(yMg(i,1) + yRg(i,j))wi = (1− 3
2y

L
g(i,2) + yRg(i,j))wi ≤ (2− 3

2 ( 4
3 − yLg(i,j)))wi = 3

2y
L
g(i,j)wi for

any j ≥ 3.
Next, we extend the merging and sequential rounding techniques [12, 14] from the

ring loading problem to ensure
∑

p(i,j)∈P (e) y
R
p(i,j)wi ≤ 3

2 (wmax+
∑

p(i,j)∈P (e) y
L
p(i,j)wi)

≤ 3
2 (opt + wmax) ∀e ∈ Ec. Here opt represents the optimal value of the problem and

wmax denotes the largest weight of hyperedges, i.e., opt = ϕ∗ and wmax = max{wi |
1 ≤ i ≤ m}. In order to apply the merging and sequential rounding techniques
for the unsplitting problem, we represent the notation of adjacent paths g(i, 1) and
g(i, 2) for each disconnected hyperedge hi ∈ D in clockwise order around the cycle.
Let s(i, 1) and s(i, 2), respectively, be the first and second adjacent paths of hi in
clockwise order around the cycle (sequencing from vertex 1). Now, given the adjacent
paths s(i, 1) and s(i, 2) with translative variables yMs(i,1) and yMs(i,2) for all disconnected

hyperedge hi ∈ D, our objective is to find an optimal rounding assignment of yRs(i,1)
and yRs(i,2) such that the maximum increment of weighted load over any physical link
in the cycle is minimized. Two disconnected hyperedges hi and hj are said to be
crossing if both their two adjacent paths s(i, 1), s(i, 2) and s(j, 1), s(j, 2) intersect
on at least one physical link. Otherwise, they are said to be noncrossing. The next
lemma describes how to merge two noncrossing hyperedges into a connected hyperedge
without increasing the total load over any physical link.

Lemma 4.3. If two disconnected hyperedges are noncrossing, they can be merged
into a connected hyperedge without increasing the total load over any physical link.

Proof. Suppose that two disconnected hyperedges hi and hj are noncrossing.
Without loss of generality, we assume that their noncrossing adjacent paths are given
as Figure 2(a). In this figure, we assume that a = wi, a1 = yMs(i,1)wi, a2 = yMs(i,2)wi,

b = wj , b1 = yMs(j,1)wj , and b2 = yMs(j,2)wj , respectively. If yMs(j,2)wj ≥ (1 − yMs(i,1))wi

(see Figure 2(b)), we output an unsplitting assignment to ensure the connectivity
of the hyperedge hi by setting yRs(i,1) = yMs(i,1) = 1, yRs(i,2) = yMs(i,2) = 0, and D =

D−{hi}. Then we define a new splitting assignment for the hyperedge hj by setting
yMs(j,1) = yMs(j,1) + yMs(i,2)(wi/wj) and yMs(j,2) = yMs(j,2) − (1 − yMs(i,1))(wi/wj). The new
load on each physical link is either unchanged or reduced. And, the new splitting
assignment for the hyperedge hj keeps the same property of yMs(j,1) + yMs(j,2) = 1. On

the other hand, if yMs(j,2)wj < (1−yMs(i,1))wi (see Figure 2(c)), we output an unsplitting

assignment to ensure the connectivity of hyperedge hj by setting yRs(j,1) = yMs(j,1) = 1,
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s(i,2)

a1a2 b2b1

(a)  original

a

b2+a1-a

b1+a2

b

a2+b1-b a1+b2

s(i,1)

s(j,2)

s(j,1)

(c)  b2< a - a1(b)  b2       a - a1

Fig. 2. Merge two disconnected hyperedges into a connected hyperedge.

yRs(j,2) = yMs(j,2) = 0, and D = D−{hj}. Similarly, we define a new splitting assignment

for the hyperedge hi by setting yMs(i,1) = yMs(i,1) + yMs(j,2)(wj/wi) and yMs(i,2) = yMs(i,2) −
(1 − yMs(j,1))(wj/wi). In this case, the load on each physical link and the property for
the hyperedge hi are also properly maintained.

The merging procedure can be performed repeatedly without increasing the max-
imum load over any physical link; i.e., the maximum load increment Δ in the cycle is
zero. Since each time we reduce by one the total number of disconnected hyperedges,
this procedure will terminate in at most |D| steps until no two disconnected hyper-
edges contain a pair of noncrossing adjacent paths. Nevertheless, not all adjacent
paths of disconnected hyperedges are noncrossing. Let S be the set of remnant
disconnected hyperedges. We perform a sequential rounding technique to round
each remnant variable in the clockwise direction around the cycle. In the following
algorithm, we combine the (2/3)-rounding, merging, and sequential rounding tech-
niques for ensuring an approximation bound of 1.5(opt + wmax). Here opt represents
the optimal value of the problem and wmax denotes the largest weight of hyperedges,
i.e., wmax = max{wi | 1 ≤ i ≤ m}.

Algorithm 1. The improved (2/3)-rounding algorithm.
Step (1). Solve optimally the LP relaxation of the MILP formulation. Let the opti-

mal solution be Φ(Y L), where Y L = [yLp(i,j)] and 0 ≤ yLp(i,j) ≤ 1.

Step (2). ∀i, j, letyRp(i,j) = 1 if yLp(i,j) ≥ 2/3, and yRp(i,j) = 0 otherwise.

Step (3). Let D = {hi |
∑

1≤j≤|hi| y
R
p(i,j) = |hi| − 2, 1 ≤ i ≤ m} be the set of

disconnected hyperedges. Let g(i, j) denote the adjacent path with the jth
smallest LP variable for the hyperedge hi ∈ D. Rearrange the adjacent path
g(i, 1) and assign yMg(i,2) = 3

2y
L
g(i,2) and yMg(i,1) = 1 − yMg(i,2), respectively.
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(k,k+1)

rk

rk+1

rk-1

Fig. 3. The link (k, k + 1) is crossed by the adjacent paths s(r1, 1), s(r2, 1), . . . , s(rk, 1),
s(rk+1, 2), s(rk+2, 2), . . . , s(r|S|, 2).

Step (4). Given the adjacent paths g(i, j) and translative variables yMg(i,j) ∀hi ∈ D,

j ∈ {1, 2}, perform the merging procedure on D repeatedly until only crossing
adjacent paths remain.

Step (5). Let S be the set of remnant hyperedges. For each hyperedge hi ∈ S, let
yMs(i,1) and yMs(i,2), respectively, be the first and second variables of hi in clock-
wise order. And let r1, r2, . . . , r|S| be the labels of hyperedges in S in clockwise
sequential order.

Step (6). Let yRs(r1,1) = 1 and yRs(r1,2) = 0 if yMs(r1,1) > 0.5; otherwise let yRs(r1,1) = 0

and yRs(r1,2) = 1.

Step (7). ∀2 ≤ k ≤ |S|, if (1−yMs(rk,1))wk+
∑

i∈{r1,...,rk−1}(y
R
s(i,1)−yMs(i,1))wi<wmax/2,

then let yRs(rk,1) = 1 and yRs(rk,2) = 0; otherwise let yRs(rk,1) = 0 and yRs(rk,2) = 1.

Due to the complementary nature, we have
∑

i∈{r1,...,rk}(y
R
s(i,1) − yMs(i,1))wi ∈

[−wmax

2 , wmax

2 ) and
∑

i∈{r1,...,rk}(y
R
s(i,2) − yMs(i,2))wi ∈ (−wmax

2 , wmax

2 ].

Step (8). Output the approximate solution ϕR = Φ(Y R) of the maximum congestion.
Theorem 4.4. The improved (2/3)-rounding algorithm has an approximation

bound of 1.5(opt + wmax), where opt represents the optimal value of the problem and
wmax denotes the largest weight of hyperedges.

Proof. Step (6) ensures that (yRs(r1,1) − yMs(r1,1))wr1 ∈ [−wr1

2 ,
wr1

2 ) and (yRs(r1,2) −
yMs(r1,2))wr1 ∈ (−wr1

2 ,
wr1

2 ]. By induction, if the partial sum
∑

i∈{r1,...,rk−1}(y
R
s(i,1) −

yMs(i,1))wi from r1 to rk−1 is given and places in the interval [−wmax

2 , wmax

2 ), then we

define yRs(k,1) sequentially around the cycle from r1 to r|S| by Step (7) for ensuring∑
i∈{r1,...,rk}(y

R
s(i,1) − yMs(i,1))wi ∈ [−wmax

2 , wmax

2 ). Due to the complementary nature,

we also have
∑

i∈{r1,...,rk}(y
R
s(i,2) − yMs(i,2))wi ∈ (−wmax

2 , wmax

2 ].

For any physical link (k, k+1) ∈ Ec, we assume without loss of generality that it is
crossed by two partitions of sequential hyperedges r1, r2, . . . , rk and rk+1, rk+2, . . . , r|S|,
as shown in Figure 3. Therefore, the increment of congestion of the link (k, k + 1)
is at most Δk =

∑
i∈{r1,...,rk}(y

R
s(i,1)−yMs(i,1))wi+

∑
i∈{rk+1,...,r|S|}(y

R
s(i,2)−yMs(i,2))wi =∑

i∈{r1,...,rk}(y
R
s(i,1)−yMs(i,1))wi+

∑
i∈{r1,...,r|S|}(y

R
s(i,2)−yMs(i,2))wi−

∑
i∈{r1,...,rk}(y

R
s(i,2)−

yMs(i,2))wi ≤ wmax

2 + wmax

2 − (−wmax

2 ) = 3
2wmax. We thus have Δ = maxk{Δk} ≤

3
2wmax. Therefore, from Lemma 4.1, we have an approximation bound of 1.5(opt +
wmax).
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5. (1.5+ε) approximation. The improved (2/3)-rounding algorithm generates
a feasible solution whose value is at most 1.5(opt+wmax). Clearly, if the optimal value
opt of maximum congestion is large, the additional term of the maximum weight wmax

of hyperedges can be translated into a relatively small deviation in value from the
optimal solution. However, the value of optimal solution may be near the maximum
weight of hyperedges, and the additive error term could be a significant deviation from
the optimum. In this section we will apply the PTAS in [13] to show that for any fixed
ε > 0, there is a polynomial time algorithm that yields a (1.5 + ε) approximation.

Let ϕT denote the value of approximate solution of the (1/2)-rounding algo-
rithm [1]. The approximate solution of the (1/2)-rounding algorithm is always feasi-
ble, and it ensures that ϕT ≤ 2ϕ∗. On the other hand, if the improved (2/3)-rounding
algorithm is applied to generate an approximate solution, we need to round either the
first or second smallest variable of a disconnected hyperedge to 1 for ensuring the con-
nectivity. In Algorithm 1, we denote S as the set of these disconnected hyperedges.
A hyperedge in S is said to be heavy if its weight is at least 1

3εϕ
T and light otherwise.

Let SH and SL, respectively, denote the subsets of heavy and light hyperedges in S.
The following lemma bounds the total number of heavy hyperedges in SH .

Lemma 5.1. The set SH contains at most 3n
2ε hyperedges, i.e., |SH | ≤ 3n

2ε .
Proof. Each hyperedge in SH has weight at least 1

3εϕ
T ≤ 2

3εϕ
∗. In an ideal case,

these hyperedges are routed in one hop and shared out equally among n physical
links in the cycle. Obviously, the maximum congestion on any physical link is at least
2
3εϕ

∗ |SH |
n . This gives a lower bound on the maximum congestion for embedding all

hyperedges in SH . Hence we have 2
3εϕ

∗ |SH |
n ≤ ϕ∗. Rearranging the term, we get

|SH | ≤ 3n
2ε .

For every disconnected hyperedge in SH , we need to choose one of two adjacent
paths for ensuring the connectivity. If the longer of the two adjacent paths is selected
for connecting a disconnected hyperedge along the cycle, we say that the hyperedge is
routed in the long way. The next lemma bounds the total number of heavy hyperedges
that could be routed in the long way for any optimal routing.

Lemma 5.2. In any optimal routing, at most 3/ε heavy hyperedges are embedded
in the long way.

Proof. Suppose to the contrary that more than 3/ε heavy hyperedges were routed
in the long way in the optimal solution. Since the hyperedge must be routed at
least �n/2	 physical links in the long way, the total weight induced by those heavy
hyperedges in the long way is more than �n/2	× 2

3εϕ
∗×3/ε ≥ nϕ∗. By the pigeonhole

principle, there must be some links with congestion more than the optimal value
nϕ∗

n = ϕ∗, which contradicts the optimality of the optimal routing.
Since the largest weight of hyperedges in SL is less than 1

3εϕ
T ≤ 2

3εϕ
∗, we can

perform the clockwise sequential rounding algorithm on SL to generate an approxi-
mation with a bound of 3

2wmax < 3
2 × 2

3εϕ
∗ = εϕ∗. On the other hand, we need to

exhaustively try all possible ways to find the optimal solution for embedding all hy-
peredges in SH . Fortunately, the time complexity of the exhaustive search is bounded
by a polynomial function of the problem size.

Lemma 5.3. For an exhaustive search on SH , the total number of times for
searching is bounded by k( en2 )k, where k = 3/ε.

Proof. Since the set SH contains at most 3n
2ε hyperedges, we need only to choose

at most 3/ε heavy hyperedges from SH for embedding them in the long way. Let

k = 3/ε. The number of choices is bounded by
∑k

i=0

( kn
2
i

)
. From the well-known
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inequality
(
x
y

)
≤ ( exy )y, we have

k∑
i=0

(kn
2

i

)
≤

k∑
i=0

(
e× kn

2i

)i

≤ k

(
en

2

)k

.

Thus, the total running time of exhaustive search on SH is bounded by a polynomial
function of n.

Theorem 5.4. For any fixed ε > 0, there is a polynomial time algorithm whose
approximate solution is within (1.5 + ε) times the optimum for the general WHEC
problem.

6. Conclusion. This paper concerns the problem of WHEC and focuses on the
impact of the maximum congestion. We formulate the problem as a MILP and propose
an improved (2/3)-rounding algorithm to provide a solution with an approximation
bound of 1.5(opt + wmax), where opt represents the optimal value of the WHEC
problem and wmax denotes the largest weight of hyperedges. If the value of optimal
solution is near the maximum weight of hyperedges, then the additive error term
wmax could be a significant deviation from the optimum. For any fixed ε > 0, we
also present a polynomial time approximation algorithm to provide an embedding
whose congestion is at most (1.5 + ε) times the optimum. To our knowledge, this is
the best approximation bound known for the general problem of embedding weighted
hypergraph in a cycle. However, the main problem with the LP-based approximation
is the time required to solve the linear program. To improve the efficiency, it is
worthwhile to look into ways of making better use of the congestion information for
obtaining a simple heuristic algorithm with a tighter approximation bound.
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[16] S. Vempala and B. Vöcking, Approximating multicast congestion, in Proceedings of the
10th International Symposium on Algorithms and Computation, Springer, Berlin, 1999,
pp. 367–372.

[17] R. Carr and S. Vempala, Randomized metarounding, in Proceedings of the 32nd ACM Sym-
posium on Theory of Computing, 2000, pp. 58–62.

[18] K. Jansen and H. Zhang, An approximation algorithm for the multicast congestion problem
via minimum Steiner trees, in Proceedings of the 3rd International Workshop on Approx-
imation and Randomized Algorithms in Communication Networks, Carleton Scientific,
Waterloo, ON, Canada, 2002, pp. 1–15.



SIAM J. OPTIM. c© 2008 Society for Industrial and Applied Mathematics
Vol. 18, No. 4, pp. 1501–1503

ERRATUM: MESH ADAPTIVE DIRECT SEARCH ALGORITHMS
FOR CONSTRAINED OPTIMIZATION∗

CHARLES AUDET† , A. L. CUSTÓDIO‡ , AND J. E. DENNIS, JR.§

Abstract. In [SIAM J. Optim., 17 (2006), pp. 188–217] Audet and Dennis proposed the class
of mesh adaptive direct search (MADS) algorithms for minimization of a nonsmooth function under
general nonsmooth constraints. The notation used in the paper evolved since the preliminary versions,
and, unfortunately, even though the statement of Proposition 4.2 is correct, it is not compatible with
the final notation. The purpose of this note is to show that the proposition is valid.
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In [1] Audet and Dennis proposed the class of mesh adaptive direct search (MADS)
algorithms for minimization of a nonsmooth function under general nonsmooth con-
straints. The paper contains a convergence analysis for this class of methods and
proposes two variants of an implementable instance called LTMADS.

The proof that LTMADS is indeed an instance of MADS is not compatible with
the notation used in the rest of the paper. We restate the proposition and propose a
consistent proof.

Proposition 0.1 (Proposition 4.2 of [1]). At each iteration k, the procedure
above yields a Dk and a MADS frame Pk such that

Pk = {xk + Δm
k d : d ∈ Dk} ⊂ Mk,

where Δm
k > 0 is the mesh size parameter, Mk is given by Definition 2.1 of [1], and

Dk is a positive spanning set such that for each d ∈ Dk,

• d can be written as a nonnegative integer combination of the directions in D:
d = Du for some vector u ∈ N

nD that may depend on the iteration number k;
• the distance from the frame center xk to a frame point xk + Δm

k d ∈ Pk

is bounded above by a constant times the poll size parameter: Δm
k ‖d‖∞ ≤

Δp
k max{‖d′‖∞ : d′ ∈ D};

• limits (as defined in Coope and Price [2]) of convergent subsequences of the
normalized sets Dk := { d

‖d‖∞
: d ∈ Dk} are positive spanning sets.
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Proof. In order to construct the set of directions Dk, the algorithm builds matrices
at iteration k that should be called Lk, Bk, and B′

k. To ease the presentation, we omit
the index k in the proof of the two first bullets. The index k reappears in the proof
of the last bullet since this last result involves limits as k goes to infinity.

By the construction in [1], L is a lower triangular (n− 1)× (n− 1) matrix where
each term on the diagonal is either plus or minus 2�, and the lower components
are randomly chosen from the discrete set {−2� + 1,−2� + 2, . . . , 2� − 1}, with � an
integer that satisfies 2� =1/

√
Δm

k . The rules for updating the mesh size parameter

Δm
k ensure that � ∈ N. It follows that L is a basis in R

n−1 with |det(L)| = 2�(n−1).
Let {p1, p2, . . . , pn−1} be a random permutation of the set {1, 2, . . . , n} \ {ι̂}, where
{ι̂} is defined in [1]. The elements of the matrix B are defined as

Bpi,j = Li,j for i, j = 1, 2, . . . , n− 1,
Bι̂,j = 0 for j = 1, 2, . . . , n− 1,
Bi,n = bi(�) for i = 1, 2, . . . , n,

where bi(�) is a vector that depends only on the value of the mesh size parameter and
not on the iteration number (see section 4.1 of [1]). It follows that B is a permutation
of the rows and the columns of a lower triangular matrix whose diagonal elements are
either −2� or 2�. Therefore B is a basis in R

n and |det(B)| = 2�n.
The square matrix B′ is obtained by permuting the columns of B, and therefore

the columns of B′ form a basis of R
n. Furthermore, |det(B′)| = |det(B)| = 2�n.

One of the proposed versions of LTMADS uses a minimal positive basis at every
iteration, and the other variant uses a maximal positive basis at every iteration. The
columns of [B′ − b′] with b′i =

∑
j∈N B′

ij define a minimal positive basis, and the
columns of [B′ −B′] define a maximal positive basis [3].

Therefore, if Dk = [B′ − b′] or if Dk = [B′ − B′], then all entries of Dk are
integers in the interval [−n2�, n2�] or in the interval [−2�, 2�], respectively. It follows
that each column d of Dk can be written as a nonnegative integer combination of the
columns of D = [I − I]. Hence, the frame defined by Dk is on the mesh Mk.

Two cases must be considered to show the second bullet. Recall that with
LTMADS, the poll size parameter Δp

k (see [1]) is defined differently depending on
whether minimal or maximal positive bases are used. If the maximal positive basis
construction is used, then ‖Δm

k d‖∞ = Δm
k ‖d‖∞ =

√
Δm

k = Δp
k. If the minimal posi-

tive basis construction is used, then ‖Δm
k d‖∞ = Δm

k ‖d‖∞ ≤ n
√

Δm
k = Δp

k. The proof
of the second bullet follows by noticing that max{‖d′‖∞ : d′ ∈ [I − I]} = 1.

To show the third bullet, we will verify that the limit of the normalized sets
Dk := { d

‖d‖∞
: d ∈ Dk} forms a positive basis. It suffices to show that the conditions

(1a), (1b), and (C1) or (C2) of Coope and Price [2] hold.
• Conditions (1a) and (1b) ensure that the limit of any convergent subsequence

of the sequence of bases B′
k := { d

‖d‖∞
: d ∈ B′

k} is also a basis. Condition

(1a) requires that |det(B′
k)| be bounded below by a positive constant that is

independent of k. In our context, |det(B′
k)| = 1 for all k, and therefore this

condition is satisfied. Condition (1b) is also easily satisfied since normalized
directions are used. It follows that the limit of B′

k is a basis.
• Conditions (C1) and (C2) involve the columns added to each basis B′

k to form
a positive basis. In the case of the maximal bases, condition (C1) is easily
satisfied. For the minimal bases, (C2) holds since all the structure constants
ξ (again following the definition of Coope and Price [2]) satisfy −1 ≤ ξ ≤ − 1

n .
This concludes the proof.
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